
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2010

Towards A Quasi High Level Compiler Comparative and Towards A Quasi High Level Compiler Comparative and

Attributive Model for OpenMP Programs Attributive Model for OpenMP Programs

Mohammed F. Mokbel
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Mokbel, Mohammed F., "Towards A Quasi High Level Compiler Comparative and Attributive Model for
OpenMP Programs" (2010). Electronic Theses and Dissertations. 8270.
https://scholar.uwindsor.ca/etd/8270

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8270?utm_source=scholar.uwindsor.ca%2Fetd%2F8270&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Towards A Quasi High Level Compiler Comparative

and Attributive Model for OpenMP Programs

by

Mohammed F. Mokbel

A Thesis
Submitted to the Faculty of Graduate Studies

through Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada
2010

© 2010 Mohammed F. Mokbel

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-80240-3
Our file Notre reference
ISBN: 978-0-494-80240-3

NOTICE: AVIS:

The author has granted a non
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduce, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantias de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1*1

Canada

Declaration of Co-Authorship / Previous Publication

I. Co-Authorship Declaration

I hereby declare that this thesis incorporates material that is result of joint research, as follows:

This thesis also incorporates the outcome of a joint research undertaken in collaboration with Mr. Michael

Wong. The collaboration is covered in Chapter 4 of the thesis. In all cases, the key ideas, primary

contributions, experimental designs, data analysis and interpretation, were performed by the author, and the

contribution of co-authors was primarily through the provision of constructive criticism.

I am aware of the University of Windsor Senate Policy on Authorship and I certify that I have

properly acknowledged the contribution of other researchers to my thesis, and have obtained written

permission from each of the co-author(s) to include the above matenal(s) in my thesis

I certify that, with the above qualification, this thesis, and the research to which it refers, is the

product of my own work.

II. Declaration of Previous Publication

This thesis includes 1 original paper that has been previously published/submitted for publication in

peer reviewed journals, as follows.

Thesis
Chapter

Chapter 4

Publication tide/ full citation

Mokbel, M. F., Kent, R. D. and Wong, M. (2010) An Abstract
Semantically Rich Compiler Collocative and Interpretative Model for

OpenMP Programs. The Computer Journal.

Publication
status*

Submitted

111

I certify that I have obtained a written permission from the copyright owner(s) to include the

above published material(s) in my thesis. I certify that the above material describes work completed

during my registration as graduate student at the University of Windsor.

I declare that, to the best of my knowledge, my thesis does not infringe upon anyone's copyright

nor violate any proprietary rights and that any ideas, techniques, quotations, or any other material

from the work of other people included in my thesis, published or otherwise, are fully acknowledged

in accordance with the standard referencing practices. Furthermore, to the extent that I have

included copyrighted material that surpasses the bounds of fair dealing within the meaning of the

Canada Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my

thesis committee and the Graduate Studies office, and that this thesis has not been submitted for a

higher degree to any other University or Institution.

IV

ABSTRACT

In order to understand the behavior of OpenMP programs, special tools and adaptive techniques are

needed for performance analysis. However, these tools provide low level profile information at the

assembly and functions boundaries via instrumentation at the binary or code level, which are very

hard to interpret. Hence, this thesis proposes a new model for OpenMP enabled compilers that

assesses the performance differences in well defined formulations by dividing OpenMP program

conditions into four distinct states which account for all the possible cases that an OpenMP program

can take. An improved version of the standard performance metrics is proposed: speedup, overhead

and efficiency based on the model categorization that is state's aware. Moreover, an algorithmic

approach to find patterns between OpenMP compilers is proposed which is verified along with the

model formulations experimentally. Finally, the thesis reveals the mathematical model behind the

optimum performance for any OpenMP program.

v

DEDICATION
To

The unconscious, unknown of me, the source

My family for theix endless support and encouragement

My mother Amina and brother Ali

VI

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisors, Professor Robert Kent and Professor

Akshaikumar Aggarwal Their guidance and encouragement throughout my graduate studies helped

me a lot when I needed it the most. Furthermore, I'm grateful to my thesis advisor, Professor Robert

Kent for encouraging me to do my best while I was philosophizing, and giving me the choice to

research the topics that I like His guidance, benevolence and comradeship were indispensable for me

to complete my thesis work successfully.

I would also like to thank my committee members for their helpful comments and suggestions. I

would like to thank Zina Ibrahim for correcting all the spelling errors in this work.

I would like to thank the whole RL C++ FrontEnd & Runtime Development team at IBM

Toronto Lab for the fantastic 8 months I spent with them as a master co-op student Special thanks

to my mentor Christopher Cambly who provided all the support and directions while working on the

compiler performance analysis tasks. Special thanks to Michael Wong from IBM Toronto Lab who

read the paper and provided valuable comments.

Thanks to many bands and musicians, their music helped me a lot while I was working on my

thesis Among them are: Antonio Vivaldi specially The Four Seasons violin concertos and more

precisely Winter season, Ludwig van Beethoven, Johann Strauss, Amadeus Mozart, Johann Sebastian

Bach, Placebo, Coldplay, Era, The Killers and Travis.

Lasdy but not least, thanks to Walter Isaacson for writing a great book about Albert Einstein: His

Life and Universe. My Saturday's and Sunday's nights were just another dimension on Einstein's life,

the greatest physicist the humanity ever have.

Vll

TABLE OF CONTENTS

DECLARATION OF CO-AUTHORSHIP / PREVIOUS PUBLICATION iii

ABSTRACT v

DEDICATION vi

ACKNOWLEDGEMENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF ALGORITHMS xii

I. INTRODUCTION 1

11 Contribution 5

12 Thesis Organization 5

II. OpenMP THE LANGUAGE 7

II 1 Why OpenMP 7

II 2 History 8

II 3 OpenMP Features 8

II 4 How it Works An Example 11

II 5 OpenMP Internals 13

III. LITERATURE REVIEW 16

IV. PROPOSED MODEL 21

IV 1 Introduction 21

Vlll

TABLE OF CONTENTS

IV. 2 Model Definitions 22

IV. 3 Model Consideration for HT 24

IV. 4 Horizontal X Vertical Formulations 25

IV. 5 Vertical Formulations 26

IV. 6 Horizontal Formulations 28

IV 7 K-stage Comparator 29

IV. 8 Detecting Compilers Patterns 30

IV. 9 Graph Theoretical Representation and Problem Modeling 32

IV. 10 Compilers Comparisons Consistency 34

IV. 11 The Model Formulations Characteristics 35

TV. 12 2CA Optimum Performance Characterization 36

IV. 13 An Inclusive Projection of 2CA Over S.O.E Standard Performance Metrics 39

V. EXPERIMENTAL EVALUATION 44

V. 1 Test Programs 44

V. 2 Experimentation Setup 45

V. 3 Results Analysis 45

V. 4 Results Analysis for Different Experimentation Setup 50

VI. CONCLUSION AND FUTURE WORK 53

BIBLIOGRAPHY 56

VITAAUCTORIS 63

IX

LIST OF TABLES

1. The structure of OpenMP compiler comparison model 23

2. The 2CA model optimum performance characterization domains 37

x

LIST OF FIGURES

1. Time line of OpenMP specification 8

2. OpenMP fork-join model 9

3. Simple OpenMP program 13

4. OpenMP implementation [6] 14

5. K-stage comparator 30

6. Graph mapping of the model 33

7. 2CA model optimum performance characterization 37

8. N-Queens cXlr compiler performance metrics (Speedup, Efficiency and Overhead) evaluation:

2CA vs. Original metrics 41

9. SimpleAdd_s cZlr compiler performance metrics evaluation: 2CA vs. Original metrics 42

10. N-Queens compilers comparison 46

11. SimpleAdd_s compilers comparison 47

12. SimpleAdd_g compilers comparison 48

13. SimpleAdd_d compilers comparison 48

14. Compilers pattern recognition (SimpleAdd_s) 49

15. MD compilers comparison 49

16. MD 64-bit compilers comparison on Intel® Core™2 Quad 51

17. N-Queens 64-bit compilers comparison on Intel® Core™2 Quad 52

LIST OF ALGORITHMS

1. Compilers Pattern Detection 31

2. OpenMP Optimum Performance Characterization 39

Xll

"Give me extension and motion and I mil construct the universe"

- Rene Descartes

INTRODUCTION

OpenMP [1] is a widely accepted Application Programming Interface API for shared memory

parallel programming architecture It consists of a set of compiler directives, runtime library routines

and environment variables OpenMP expands C/C++ and Fortran 77/90 languages to comprise

additional denotative parallel semantics For OpenMP to work, it has to be supported by the

compiler runtime system, because the code is introduced with very high level constructs that depend

on the compiler low level conversion to multithreaded code Two of the most important features of

OpenMP are incremental parallelism that often does not require any changes in the original source

code to be parallelized with OpenMP and sequential equivalence, which preserves the consistency in

the results between one and multiple threads code

The performance of OpenMP programs is closely coupled with the underlying environment, it is

the hardware architecture and software optimization that take a major part in determining the

performance of the program Processor architecture, pipelining, memory speed and bus interconnect

bandwidth and the levels of cache all contribute to the overall performance of the program

Commonly, for OpenMP programs performance to scale, the sequential version should be coded

efficiendy and resourcefully so that the conversion to OpenMP is not affected by the inefficiency of

the serial version of the code Thus, the scalability of OpenMP application is bounded by the

efficient design of the original sequential source code

For a thorough performance analysis of OpenMP programs, specially designed tools are needed to

understand the internal behavior of the application Intel VTune, Intel Thread Profiler [2], Intel

Parallel Studio [3] and others, are the kind of tools which provide low level profile information that

CHAPTER I

i

I. INTRODUCTION

can help in determining the real causes of the performance problems. Some of these tools (e.g.

VTune) rely on the hardware performance counters that are architecture speafic for performance

analysis and tuning. However, mastering these tools is not an easy task and requires a deep

knowledge of each tool with respect to OpenMP performance.

In [4], Tian et al clearly state the complexity of conducting a fair comparison between commercial

product compilers that support OpenMP. Since these compilers do not publish their internal

implementation and techniques of optimization transformations, it becomes very difficult to

construct a scientific comparative study among them. In this case, Reverse Code Engineering (RCE)

each compiler would be the only method available to reveal the internal implementation of OpenMP

for each compiler However, RCE is a very complicated process, in which reconstructing the logic of

the implementation starts with disassembling the binary file and entails dealing with the low level

assembly language.

On the other hand, EPCC OpenMP microbenchmarks v2.0 [5] [6] measure the synchronization

and scheduling overheads incurred by OpenMP compiler directives of a specific OpenMP

implementation (synchronization, loop scheduling and array operations), where the overhead cost

incurred by a specific compiler directive is measured by comparing the sequential execution time for

a section of code against the parallel execution of the same code containing the compiler directive.

An important issue with EPCC microbenchmarks is that they do not take into consideration other

important factors such as the effect of the single thread version on the runtime library that is, the

difference between the original serial version of the application and single threaded version with

OpenMP directives being enabled. Nonetheless, these benchmarks can be used to carry out a

comparison among various OpenMP enabled compilers at the directive level. However, the

complexity of the real world OpenMP applications is not appropriate for a synthetic benchmark like

EPCC. Hence, we cannot decisively determine the performance of the compiler based solely on the

overhead and synchronization differences in the OpenMP runtime library The design and structure

2

I. INTRODUCTION

of the code might dramatically alter the performance of the OpenMP program since some of the

optimization transformations are applicable to a specific code pattern. Moreover, the order of the

optimizations implementation in the compiler analysis on the OpenMP code has an important effect

on the overall performance of the program [4].

In [7], Pierattini noticed an interesting behavior in one of the reported barrier synchronization

overhead. A sudden change in barrier construct speed at 32 processors on Origina2000 machine was

due to a change in the implementation such that, the OpenMP runtime library uses a specific

processor instruction (11/sc) to implement the barrier up to 32 processors. Since that instruction does

not scale beyond 32 processors, a change in the algorithm is detected (fetch&op). However, this kind

of implementation behavior is not detectable by EPCC OpenMP microbenchmarks.

SPEC O M P benchmarks suite [8] evaluates the performance of Shared-Memory Multiprocessor

SMP systems. The suite consists of 11 OpenMP large scientific applications that are compute-

intensive. Eight applications are written in FORTRAN, and three in C. These benchmarks are good

candidates to stress the compiler optimizer to generate an optimum code.

Hence, the need for methodical experimentation with different compilers that support OpenMP

arises in order to justify the use of a specific compiler over the other. However, there is neither a

systematic way nor a defined model that provide a high level dimensionality capable of assessing the

behavior and performance of OpenMP programs and compilers.

In this thesis, we propose a comparative model that provides a methodical and well defined

approach to solve these problems from the compiler perspective. Having a proper control over the

states that constitute an OpenMP program helps in classifying the reasons behind each compiler

performance differences. The program states are defined as follows: original code (OpenMP not

activated), OpenMP code with 1 thread, the state when number of threads is equal to the number of

cores and the state when number of threads is greater than the number of cores. Our model does not

3

I INTRODUCTION

work at the directive level, because we quantify the performance of the program as a whole based on

the states partitioning we provide as a better solution.

OpenMP programs performance is, to a certain extent, determined by the level of optimization

and efficiency of the compiler implementation of OpenMP as well as the operating system memory

and thread scheduling management implementation. However, there are some architecture-specific

decisions (e g., instruction selection, scheduling and vectorization) that each compiler can exploit to

produce processor-specific optimized code, targeting one or more architecture as part of the same

executable file. For example, P G I and Intel compilers provide Unified Binary [9] and CPU-Dispatch

[10] technologies respectively, which allow the generation of a single executable file that has multiple

binary code streams, each optimized for a specific architecture. Hence, a mapping of one executable

to many compatible platforms is guaranteed to maintain good performance.

Therefore, all the optimization transformations are inherent to each compiler and not all the

compilers have the same capabilities. T o abstract these differences, we need a model that can support

reasoning at a higher level without breaking the underlying variations. To our knowledge there has

not been any attempt to devise an OpenMP compiler comparative model.

The model proposed in this thesis works at a higher level of abstraction to reason about the most

probable performance problems It is complementary to the low level analysis phase. The state

categorization it provides helps in pointing out specific characteristics of the OpenMP runtime

system, compiler differences, and code design. Because the proposed model accounts for all the

states that an OpenMP parallel program can take, it was successfully used to derive a concrete

solution that provides an informative, structured and semantically rich compiler comparative model.

Since the state composition is explicrtiy profiled, an enhanced version of the standard performance

metrics (speedup, overhead and efficiency) is proposed that are more precise in terms of OpenMP

implementation.

4

I INTRODUCTION

The model presented here is verified experimentally using three well known commercial compilers

on three OpenMP programs The results are interesting because the model exposed the differences

between the compilers in a subde and unobtrusive way In the experimentation section, it is shown

that OpenMP runtime library has no effect on the performance differences between compilers as

much as it is the compiler optimizer capabilities and dependability

LI Contribution

This thesis presents, for the first time, a complete self-defined compiler comparative model for

OpenMP parallel programming programs The model consists of 16 equations, divided into 3

categories, where each category verifies specific aspects of OpenMP programs performance in terms

of the states definitions and compilers interactions The thesis also presents a compiler pattern

detection algorithm to identify comparable behaviors across multiple OpenMP enabled compilers In

addition, the following pages enfold an improved version of the standard performance metrics based

on the model definitions which are more accurate in terms of OpenMP implementation The model

definitions are also used as a base to find the model behind the optimum performance for a given

OpenMP application

1.2 Thesis Organization

This thesis is organized in six chapters Chapter II provides an overview of the history, execution,

internal and translation model of OpenMP along with a brief review of some OpenMP features and

an example showing how OpenMP works While chapter III briefly discusses related work of

OpenMP performance in terms of compiler optimization differences and various OpenMP

performance monitoring proposals, chapter IV explains in details the proposed compiler comparative

model that addresses the difficulties of conducting performance comparison among OpenMP

enabled compilers An experimental evaluation of the model is presented in chapter V which proves

5

I. INTRODUCTION

the applicability of the model. Finally, we conclude in chapter VI and overview possibilities for future

work.

'The shortest path between two truths in the real domain passes

through the complex domain" - Jacques Salomon Hadamard

OpenMP THE LANGUAGE

OpenMP [1] is a set of compiler directives, library routines and environment variables It supports

C / C + + and FORTRAN as part of the specification to create a multithreaded programming

language The unit of execution in OpenMP is a thread that shares the same address space with

another thread It is based on the fork-join programming model and is designed with ease of use as

one of its main goals The high performance computing communities as well as major industry

vendors are not only supporting OpenMP evolution and adopting it as an influential programming

paradigm for shared-memory parallel programming, but also adopting it for hybrid programming,

such as the combination between OpenMP and MPI on distributed shared memory architectures

IL 1 Why OpenMP

The driving force behind OpenMP is that for the past fifteen years, there has been a need for a

standardization of Symmetric Multi-Processing (SMP) architecture development Since shared

memory architecture have been around for a long time, most of the major corporations of high

performance shared memory multiprocessor computers have their own set of directives,

consequendy obstructing the portability of the code across different platforms To amend this,

openmp org was established in 1996 to set a standard that is adequate for the high performance

community and industry and to provide better code portability across shared memory platforms The

standardization aspect of OpenMP is supported by all major vendors such as IBM, Intel, HP , SGI,

Sun, NASA Ames and many others and is highly regarded in the high performance computing

community

CHAPTER II

7

II. OpenMP THE LANGUAGE

IL 2 History

OpenMP is considered young and promising. In 1997, the first specification of OpenMP for

FORTRAN was released. The Architecture Review Board (ARB) released another version (OpenMP

2.1) for C/C++ and FORTRAN as separate specifications with more features. In version 2.5

FORTRAN and C/C++ were merged together to form a single specification. After that, OpenMP

3.0 was released in May 2008 with a major support for irregular parallelism through the tasking

model to exploit unstructured parallelism efficiendy [1] [11]. Figure 1 shows the evolution of

OpenMP specification.

> i9©7 >^lyil.99& yV ^ &H9& ~̂*̂ PV 2000 rSN'/ 2&Q2 W^ 2005^ >V

FORTRAN C/C++ FORTRAN FORTRAN C/C++ FORTRAN/ FORTRAN/

V.1.0 V.1.0 V . l . l V.2.0 V.2.0 C/C++V.2.5 C/C++V.3.0

Fig. 1. Time line of OpenMP specification

IL 3 OpenMP Features

OpenMP supports the fork-join programming model. An OpenMP program starts with a single

thread called the master thread, and when it encounters a parallel region with one of OpenMP

constructs, a team of threads is created (forked) to execute the work in parallel. At the end of the

parallel region all the spawned threads synchronize (through an implicit or explicit barrier construct)

and terminate (join; with nowait clause, the threads at the end of the construct will immediately

proceed to perform other work) and only the initial master thread continues. If the team of threads

encountered another parallel construct in the same parallel region, then each thread of the original

team will form another team of threads, and this is called nested parallelism. Figure 2 illustrates

OpenMP's fork-join model.

II. OpenMP THE LANGUAGE

Parallel region
Fork Join , A «,

' v ' v v ' Nested parallelism
Parallel region Parallel region

Fig. 2. OpenMP fork-join model

OpenMP directives are placed at main locations in the program source code. In C / C + + ,

the directives are specified using the #pragma preprocessing directive, and in FORTRAN,

they are specified using special comments that are identified by unique sentinels such as

!omp, comp or *$omp. Mosdy, OpenMP directives apply to structured blocks with a single

point of entry at the top and a single point of exit at the bottom. The compiler will check for

OpenMP directives and generate the appropriate code to parallelize the designated code block.

#pragma omp directive — name [clause[[,]clause] ...]new — line

!$omp directive — name [clause[[,]clause] ...]new — line

Most of OpenMP directives enable the program to generate a team of threads to execute a

specified region (in OpenMP, a region embraces all the code that is in the dynamic extent of a

construct) in parallel. The C / C + + for loop or DO in FORTRAN is usually the main target for

parallelization and especially in the scientific numerical applications. This can be accomplished in

OpenMP via the work-sharing construct omp parallel for in C / C + + and omp parallel do in

FORTRAN. In addition, the sections construct omp sections, clauses private and shared with the

parallel work-sharing construct for, all lead to the creation of a team of threads.

9

II. OpenMP THE LANGUAGE

The runtime library routines and environment variables provide a mean to monitor and affect

threads, processors and the parallel environment. The runtime library routines are defined in the

include header file "omp h" in the case of C / C + + .

Environment variables manage the internal control variables ICV that are controlled by the

OpenMP implementation, which in turn govern the behavior of the program at runtime in important

ways (ICV' nthreads-var, dyn-var, nest-var, run-sched-var, def-sched-var).

The schedule clause is only supported with the loop construct, which manages the distribution of

loop iterations among the threads. Consequendy, an appropriate scheduler type that fits specific

characteristics of the problem size and properties is a must for performance. OpenMP specification

3 0 supports five kinds of schedule clauses (static, dynamic, guided, runtime and auto). The

schedule syntax is as follows.

schedule {kind, [chunk_size])

The schedule clause states how the iterations of the loop are assigned to the threads in the team.

The granularity of this workload distribution is a chunk (the chunk_size need not be a constant), a

contiguous, nonempty subset of the iteration space.

The static (iterations are divided as per the size of the chunk_size statically in a round-robin

fashion) schedule has the least overhead, and most of OpenMP compilers enable it by default if no

explicit schedule type is specified. For irregular and weakly balanced workloads, dynamic (the

iterations are assigned to threads as the threads demand them) and guided types are helpful for these

cases. With guided schedule, the size of the chunk decrease over time. The reason behind guided

design is that initially, larger chunks are desirable because they reduce the overhead, and this design

preserves the fairness among large and small thread work distribution And often load balancing is

not of an issue toward the end of the computation. For runtime, the decision regarding the schedule

10

II. OpenMP THE LANGUAGE

kind is made at runtime via the OMP_SCHEDULE environment variable. In auto kind, the

scheduling decision is delegated to the compiler implementation or runtime system

Selecting an appropriate chunk size is not always easy as it depends on the code in the loop, the

specific problem size and the number of threads used. So, delegating the selection of the scheduler to

the compiler runtime system is a good choice to pick up the optimum scheduler based on the

aforementioned factors as well as other hardware and software specific properties (if designed so).

Except static schedule type, the allocation is non deterministic and it could vary from run to run

based on the load on the system.

The interested reader can refer to [1] for more information about OpenMP features.

IL 4 How it Works: An Example

Figure 3 shows a simple OpenMP program with a for loop. The preprocessing directives #ifdef

_ O P E N M P and #endif are used to check if the include header file "omp.h" (OpenMP support) is

enabled by the compiler or not. As we can see, OpenMP program is similar to the original sequential

version, where OpenMP directives are inserted on top of the original program. The compiler will

generate the multithreaded code by parsing OpenMP directives. Hence, all the low level

implementation details are hidden from the user. A call to the runtime library routine

omp_get_num_threadsQ is used which will return a value of 1, because no parallel region has been

entered yet. Another call omp_get_wtime() to get the elapsed wall clock time in seconds for the for

parallelized loop.

The upper bound of the loop _UB is set to be shared, so that all the threads have access to _UB

The index _V is set to private because each thread must be given a unique and local copy of the loop

variable _V so that it can safely modify the value. The default clause is set to none so that all the

variables referenced in the specified construct will have to be exphaty set to be either shared or

11

II. OpenMP THE LANGUAGE

private (In C / C + + , the syntax is default(none | shared)). So, it is to give variables a default data-

sharing attribute, reduction clause (syntax: reduction(operator:list)) is used for specifying some forms

of recurrence calculations involving mathematically associative and cummutative operators [1] so that

they can be performed in parallel without code modification. Thus, we just have to identify the

operation and the variable that will hold the result value, and the compiler will generate all the

appropriate code. If we didn't specify variable _A as a reduction then the result of the summation

would be zero.

The schedule type is set to static. Using nowait clause eliminates the implied barrier on #pragma

omp for loop construct, since there is no need to synchronize threads work at the end of the work-

sharing construct in this example. Hence, better performance, and even with this simple example the

difference is in microseconds, once you ensure the correctness of the parallelized program results, it

is always a good strategy to try to pinpoint the places in the code where implcit barrier is not needed.

It is safe to use nowait in this example, since the parallel region ends with a barrier anyhow and the

value of _A is not used before the end of the region. Once the threads finish their works, the

reduction will compute the summation and leave the results in variable _A.

The printf inside the for loop is to show which iteration gets executed by which thread via the call

to omp_get_thread_numQ. O n a dual core machine, the number of threads would be two if it hasn't

been explicity set to something else via omp_set_num_threads(int num_threads). And that gives a

perfect speedup!

12

II. OpenMP THE LANGUAGE

l #include <stdio.h>
2 #ifdef .OPENMP
3 #include "omp.h"
4 #endif

5 int
6 {
7
8
9
10
11
12
13
14
15
16
17
18
19

20
21
22

23
24
25
26
27
28
29
30
31
32

33
34 }

_tmain(int argc, _TCHAR* argvQ)

double.Tl, _T2 = 0;
const unsigned int _Ub = 10;

unsigned int _A, _V = 0;

#ifdef .OPENMP
int _MThrd = omp_get_num_threadsO;
#endif
printf("Number of Threads: %d\n'

#ifdef .OPENMP
_T1 = omp_get_wtimeO;
#endif

,_MThrd);

#pragma omp parallel default(none) shared(_Ufa) \
private(_V) reduction(+:

{
#pragma omp for schedule(static) nowait

for l_V= 0;_K<_Ub; ++_V){
_A+=_V;

printf("Iteration %d is carried out by thread
V, omp^et thread numOJ;

}
}
#ifdef .OPENMP
_T2 = omp^et.wtimeO;
#endif
printf("Time: %f \n", {_T2 -_T1));

return 0;

A)

%d\n", \

Fig. 3. Simple OpenMP program

IL 5 OpenMP Internals

It is the developer's responsibihty to ensure that a proper synchronization between threads has been

setup correctiy to manage dependencies between them, and that the compiler will generates all the

explicit threaded code. After that, in the translation phase of OpenMP directives with the program

13

II OpenMP THE LANGUAGE

source code, the compiler will generate a multithreaded object program Figure 4 shows OpenMP

implementation

Program with OpenMP directives
Sequential Compilation^^,^

f OpenMP \

Fortran/C/C++ 1

v Compiler J

OpenMP Compilation *

Sequential Object Code

Parallel Object Code

With calls to runtime library

Fig. 4. OpenMP implementation [13]

The compiler ignores OpenMP pragmas if it is compiled sequentially without supplying the

required OpenMP option during compilation phase Hence, the same code is used for generating

OpenMP parallelized code and serial code just by providing the compiler with the correct OpenMP

flag

Threading libraries abound, some of the research compilers merely generate a threaded version of

the OpenMP code without relying on the compiler runtime system, hence breaking this integration

phase In this case, the runtime is managed through a hbrary with the appropriate calls from the

threaded version There are no standard specific runtime libraries or memory management systems to

be used with OpenMP as the details are compiler specific This allows for better OpenMP compilers

research based of any, such as OMPi [12] for C, a source-to-source translator, where one has the

choice of any back end to compile and link the code with (even different thread libraries) Thus

providing a flexible environment for experimentation with different compilers

Translating OpenMP directives to a suitable threaded version takes a set of predefined steps by the

compiler to ensure the correctness as well as the validation of the OpenMP constructs Parallel

14

II OpenMP THE LANGUAGE

regions must be handled to the thread runtime hbrary routines appropriately. The compiler

encapsulates the parallel region into a procedure by an explicit outlining of the parallel code.

Preserving shared variables references is done via referencing the shared data accordingly while for

private variables each thread will have it is own copy. The outlining phase incurs some overhead

which needs to be carefully optimized to avoid hindering the optimizer work as compared to inkning

trans formation.

[13] and [14] provide a detailed explanation about OpenMP translation phases for many of the

OpenMP language features such as parallel constructs, work-sharing constructs with their associated

clauses and the runtime system.

15

"In times like these, it is helpful to remember that there have always

been times like these" - Paul Harvey

LITERATURE REVIEW

Since our model is the first to tackle the OpenMP compilers comparison problem, there has not

been any attempt in the literature for any proposal that has a significant relevance to this work.

Hence, there are not enough research papers that resemble our studies. However, this work is self

contained since everything has been defined in terms of the model definitions. Nonetheless, we list

the most relevant work that touches on some aspects of the studies presented in this thesis.

Compiler optimization is one of the most important factors that can dramatically affect the

performance of OpenMP programs. For example, loop optimization, especially loop unrolling

improves cache utilization by improving data reuse and loop fusion improves Instruction Level

Parallelism (ILP). Thus, the performance of OpenMP programs depends on the code generated by

the compiler, the runtime system, compiler options, the hbrary used, calling conventions, the lnhner

and the capability to generate optimized instructions for specific architecture.

For Memory bounded applications, the Intel compiler provides an option that enables

performance tuning and heuristics that control memory bandwidth among processors. Hence, the

compiler imposes a selective adjustment on the optimizer to be less aggressive with optimizations

that consume more bandwidth, so that the bandwidth can be well-shared among multiple processors

for a parallel program.

Tian et al [4] present many compiler optimization techniques for the Intel compiler with a special

emphasis on the performance of OpenMP programs. They provided a major analysis on the effect of

order of optimization phases in the compiler and how critical it is for achieving optimal performance

CHAPTER III

16

III. LITERATURE REVIEW

To test the effect of the OpenMP runtime library on the optimization transformations as compared

to the original serial program, 1-thread application with OpenMP O N is compared against the

original program Some applications such as the 310wupwise_m SPECOMP2001 benchmark [8]

achieved 88.53% of its serial execution performance, mainly because a less aggressive inkning was

performed to reduce resource contention for a better scaling on large CPU count system. O n the

other hand, 328.fma3d_m benchmark obtained 111.83% of its serial execution performance simply

due to an aggression loop invariant code motion being enabled when OpenMP was enabled, and it

turns out that this optimization should applies to serial code as well.

In another part of the study, the authors examine the effect of different optimization levels and

options on the performance improvement of SPEC OMPM2001 benchmarks, all compiled with Intel

C++/For t r an compilers. The performance results show a gain of 3 % from OMP + 0 2 to

O M P + 0 2 + I P O (Inter-procedural Optimizations). From OMP + 0 2 to OMP + 0 3 , the performance

gain is 22% and 19% versus OMP + 0 2 + IPO. This proves the importance of high level

optimizations on the multithreaded-code generated for OpenMP programs.

Tian and Girkar [15] studied the effect of optimizations on performance of OpenMP programs.

Using SPEC OMPL and OMPM 2001 benchmarks suite compiled at optimization level 3, a

performance improvement of 4.3% to 28.3% on some of the benchmarks was achieved. The same

study shows a performance gain ranging from 7% to 98% on 10 out of 11 SPEC OMPM2001

benchmarks suite compiled at optimization level 0 3 plus Inter-Procedural Optimization (IPO)

option enabled (compiled with Intel Compiler v8 0). This proves how compiler optimization affects

the overall performance of OpenMP programs In [16], Muller studied the effectiveness of various

compilers optimization capabilities using simple OpenMP programs to test some of the optimization

features.

The translation of OpenMP language features by the compiler has already been discussed in the

literature [13] [14] [17] such as parallel constructs and work-sharing constructs, along with their

17

III. LITERATURE REVIEW

associated clauses and the runtime system. The performance of OpenMP varies from compiler to

compiler, based on the code design pattern and primarily the optimization factor. Some compilers

such as Quaver [18] undertake smart analytical decisions to optimize OpenMP barrier elimination

whenever possible. Two methods have been used to generate OpenMP code, either on source-to-

source transformations (e g., OMPi [12], odinMP [19], NanosCompiler [20]) or these transformations

are done internally by the compiler (eg. Intel [21], PGI [22], MS [23]). The latter is better for

vectonzation and loop optimization.

In [24], Aslot proposed a Quantitative performance analysis Model for parallel programs. The

purpose of the model is to quantify the reasons that limit scalability of parallel programs by analyzing

the difference between measured and ideal speedup of the parallel program. This difference is

subdivided into speedup components which represent the overhead factors responsible for

suboptimal performance. However, the model relies on code instrumentation and hardware

performance counters as part of the formulations which represent low level profile information.

Defining a performance monitoring interface for OpenMP is not an easy task and requires

significant work at the language specification level as well as compiler integration. In [25], Mohr et al

proposed an instrumentation (at the code or runtime system level) based monitoring interface called

POMP. Since OpenMP specification does not support any performance mterface as a set of

directives, runtime libraries, or API's, P O M P proposal aim is to make it to be part of OpenMP API

specification. The objective of POMP interface is to develop a clear and portable API for OpenMP

program that makes execution events visible to runtime monitoring tools, primary tools for

performance measurement and debugging. However, OpenMP directives undergo a complex

transformation by the compiler which poses significant challenges at the instrumentation and

monitoring levels, which entails an instrumentation that is strongly attached with OpenMP directive

processing

18

Ill LITERATURE REVIEW

Bui et al. [26] present a fully integrated OpenMP run-time performance analyzer prototype. This

analyzer does not interfere with static compiler optimizer as no instrumentation points are needed. It

is totally developed to be part of the underlying runtime environment The analyzer adopts a light

weight sampling based technique to extract low level performance metrics, causing less overhead

The instrumentation points are part of the OpenMP runtime library.

Profiling OpenMP programs is very important to understand the behavior of each construct and

directive under different workloads To pinpoint the culprit section of the code, a profiler is needed

to help identify any load imbalance that is induced as part of OpenMP work-sharing constructs and

directives placement. In [27], Furknger and Gerndt presented ompP OpenMP profiling tool to

address this issue in a convenient way, especially to spot any synchronization and communication

problems in parallel regions. Performance data representation is reported in a very expressive way,

for each construct and directive. The semantics of each region is preserved so that the reported times

and counts is self informative as per the region descriptor.

Tools are very important assets when it comes to examining the behavior of OpenMP programs

and the system under analysis. Performance measurements entail careful instrumentation at the

software and system level to provide descriptive and helpful results which can facilitate in

determining the causes of the problem and even provide intelligent advisory solutions for debugging,

creating and optimizing applications for multicore processors. This kind of solutions has been

already addressed with Intel Parallel Studio [3] which can greatiy help in designing, verifying, finding

bottlenecks, pointing out memory and threading errors and tuning parallelized applications for better

performance on multi-core machines

Formalizing performance problems with a well defined specification language is a necessary

objective to simplify testing automatic and manual performance analysis tools That also help express

the correctness and effectiveness of the language under investigation such as OpenMP, MPI, and

H P F in a structured way However, this still requires the performance analysis tools to support

19

Ill LITERATURE REVIEW

enough performance information that correlates with the language specification. In [28], Fahnnger et

al. defined the APART Specification Language (ASL) for writing portable specifications of typical

performance problems. To test the automatic performance analysis tools, Gerndt et al. [29] developed

the APART Test Suite (ATS) which allows easy construction of synthetic positive and negative test

programs for testing the correctness and effectiveness of those tools. In ASL terminology, a

performance property characterizes a particular performance-related behavior of a program based on

available or required performance data. For example, some of OpenMP load imbalances

performance properties as defined in ASL: imbalance_in_parallel_region,

imbalance_in_parallel_loop, imbalance_in_parallel_loop_nowait, imbalance_in_parallel_section,

imbalance_due_to_uneven_section_distnbution.

APART also defines the properties for synchronization, control of parallelism and inefficient serial

execution. Each performance property is described by a boolean condition, which has an associated

severity for expressing the relative importance of the property. So, a performance property is a

performance problem if it is present and it's severity exceeds a preset threshold. O n the other hand, a

performance bottleneck is the most severe performance problem. In testing Hitachi tool, simple load

imbalance problems weren't detected due to the unavailability of synchronization information. The

author proposed the use of hardware performance counters to get hints to load imbalances in

identifying false sharing. On the other hand, testing EXPERT tool proved to be able to detect

performance problems automatically with synchronization overhead. However, detecting the reasons

behind load imbalances is not automatic, showing the complexity and dependability of these

performance analysis tools when the system under analysis does not fully support the required data.

20

"And there must be simple substances, because there are compounds;

for the compound is nothing but a collection or aggregatum of simples"

- Leibni^

PROPOSED MODEL

IV. 1 Introduction

The proposed model provides a topological assessment of the compiler differences in well defined

formulations. The model enables an inclusive classification of OpenMP parallel programs. It works

by dividing the program conditions into four states which account for all the possible cases that need

to be evaluated Each state models and depicts specific attributes about OpenMP program

performance. The first state {Referenceoriginai) tells about the performance of the original non-

parallelized program without any OpenMP pragmas enabled by the compiler. The second one

(Sequentiali_thread) is to check for the overhead incurred by OpenMP directives and the runtime

system with one thread as compared to Referenceariginal state. The third state (Nthreads = Ncores) is

when the number of threads is equal to the number of processors/cores, and this state reports the

perfect speedup that the program can achieve in an optimal situation. Lasdy is the state where the

number of threads is greater than the number of cores (Nthreads > Ncores), which for some

applications scales well to some extent (e.g. server-type applications) but needs to be quantified to

ensure enough coverage is attained.

Each OpenMP enabled compiler is mapped to all of the four states for comparison. The structure

of the model is shown in Table 1. Each intersection cell represents the timing for one of the states

with a particular compiler. The notation in every cell is an abbreviation that links both a particular

state with a specific compiler and is read clockwise starting from T letter, for example, T \ is the

time for compiler C, in reference state

CHAPTER IV

21

IV PROPOSED MODEL

IV. 2 Model Definitions

The model is defined using set notations to clearly describe the relationships and memberships

between the program states and each compiler We stnved to construct the definitions in simple

proper formulations. However, Table 1 is a helpful visualization tool that provides an easy access to

the set formulations and can be used in conjunction with set notation. Nevertheless, in the

formulation phase, the rules need to be carefully observed. We believe that the proposed

formulations are enough to account for almost all the major operations in the companson phase. The

model is flexible in its formulations in that it is easily extensible. However, our main concern is to

conceptualize the low level details to a higher level of abstraction that is to sustain a semantically nch

system.

We define C as the set that contains all the OpenMP enabled compilers. Implicitty, every C, holds

all the options that are to be used to conduct the experimental companson. <£>T
y
z is a globally

restticted set which defines the conformance of options used for every companson and compiler,

consequently, it contains all the options that are supported by every compiler in the companson.

Virtually, it contains the set of locally restricted options that are drawn from the global set <t>yZ for

one companson; hence, it needs to be updated for every companson with different subset of options.

And for the companson to be valid, <I>yZ has to hold true all the time and for every compiler The

options for every compiler should be highly comparable to preserve a fair and unbiased companson.

T is the set of all OpenMP programs. The subscnpt y is a tracking number used to differentiate

between different sets of options for the same OpenMP program, such that more than one <bxf can

map to the same xz where (y > z). © set contains all the states that each OpenMP program can

spawn. In Q we define a relation between TZ and C in which every OpenMP program belongs to the

set of states & and compilers C

The 1-argument predicate XQi) is introduced to account for the reference state a in Q Because we

defined TZ as the set that contains all the OpenMP programs, then not all OpenMP programs belong

22

IV. PROPOSED MODEL

to © as defined in Q. And this is controlled via omp_flag option that enables/disables the activation

of OpenMP code.

TZ = {Z|V(z 6 Z),z is an OpenMP program}

C - {Q|V(q £ Q), q is an OpenMP enabled compiler]

0 = {S\s = a V s = /3Vs = y V s = <}

<Prf = {X\V(x €X)(x E Q o x e Ci+1) for alii = l,...,nandy = 1, ...,n}
ft = {n e TZ x C\n = (z, q~), where V<(z 6 &)m =» (z 6 C)>}

3! ft=0mp Jlag £ ^j, if k £ &\k=a

n=omp J lag ^ ^y > else

Table 1. The structure of OpenMP compiler comparison model.

Order

a

P

y

!

State

Referenceoriginal

Sequential^thread

^threads "*" Scores

^threads ** ™cores

Ci

'ref

'l-th

'Nth=Nc

rpL[
lNth>Nc

Q + i

...

Q+n

7*W+n
'ref

7*W+n
'l-th

TCi+n
lNth=Nc

rpCt+n
lNtk>Nc

a, fS, y and (are mutable variables that simplify the manipulation of each state. So, instead of

referring to the state name in the formulations, it is easier to use a variable that plays many roles

when assigning multiple denotations. The range (number of threads K) of £ is application oriented.

Less often, some applications show good performance when Nthreaa-S >K Ncores for small K.

However, in [30], Suleman et al. proposed a mechanism that controls the number of threads based on

the application behavior at runtime, it predicts the optimal number of threads based on the amount

of data synchronization as well as the minimum number of threads required to saturate the off-chip

23

IV. PROPOSED MODEL

bus. Usually, the first three states provide strong evidence about the overall performance of the

application. However, we can formulate the range as follows'

Ncores + 1 ^ Z>Nthreads ^ Ncores + K | K > 1 and K is application oriented. (1)

£ can be quantified by taking the geometnc mean for a speafic range as implied by K:

n=N cores +K Vn

H n "threads

"threads —"cores + 1

The geometric mean is a viable metric to enumerate over all the threads in £ state, since the

purpose at this stage is to compute a single value for differential comparison against y primarily and

the other states.

For/? and y * y * 0 \ {yNthreads A y c J > l

The four states we defined target a specific behavior of the application. Each state serves a speafic

purpose. However, m order to determine the continuity of the behavioral evolution for a given

OpenMP program, we have to consider each thread as a constituent part of the overall performance

Hence, we define the Intermediate state Iy which lies between /? and y states. Iy state completes the

accountability for every computational thread in the model. On the other hand, we do not consider

Iy as a major state since it does not serve a major functional interpretation by itself as compared to

the other four states But, Iy accounts for the expectancy of finding a time decreasing homogenous

behavior as Iy approaches y Iy can be quantified by taking the geometnc mean as well.

threads -2 We calculate the number of threads for I-, as follows (l\,) = YN
1 ' Nthreads '

IV. 3 Model Consideration for HT

Some architectures support Simultaneous Multi-Threading (SMT) such as Intel Xeon processor MP

implementation of Hyper-Threading (HT) Technology [31] which enables the operating system to

24

IV. PROPOSED MODEL

see a single processor as two logical processors with each processor maintaining a separate run

queue. Almost all of the physical resources are shared by the logical processors, such as cache,

execution umts, branch predictors, control logic and buses. Most importandy, HT provides better

supports for Thread Level Parallelism (TLP) as it allows multiple independent threads to execute

different instructions each cycle. As mentioned in [32] and [33] HT provides no potential gains unless

the application program is multithreaded.

In addition to that, the operating system must support HT via HALT instruction optimization to

avoid the idle loop. The compiler optimizer should take advantage of SMT/HT by leveraging the use

of vectorization instructions such as Stteaming-SIMD-Extensions (SSE and SSE2) with other inter

procedural optimizations. Hence, SMT has no special effect on the definitions and states of the

model and it is to be considered as two logical processors. The reason is that we still have the control

over TLP.

IV. 4 Horizontal X Vertical Formulations

We group the formulations in three categories: Horizontal: the ones that work per state, Vertical: per

compiler and Horizontal X Vertical which provides a joint analysis about the overall performance of

the compilers. The formulation below checks for the consistency of a specific compiler performance

by taking the minimum timing across all the compilers and states.

aCi~>min{Tr
c
e'f - T^"}]

PCi ~> min{T^h - 7&+»}

yCl->min{T^h=Nc-T^lNc}

rCi~>min{Tc
N>th>Nc - r ^ J

• * / (« < : , = & : , = * : , = & ,) (2)

(2) => Ct is uniformly superior else unevenly ranked.

In (2), the timing differences between the compilers across the states could be very small (±fe),

but the generality of the formulation remains the same. However, the differences should be

25

rV PROPOSED MODEL

significant in order to obtain meaningful results. In the case where there can be more than one

minimum, the compilers performance is equal.

To determine whether the compilers are close in their performance, we take the total sum o~„ of

the standard deviations ax for each state across all the compilers, and then check if every o~n over the

ax is much less than an. Let

o~n = Sx=a °~x such that if
* * = p .

«o„ (3)

(3) => the compilers exhibit huge differences, and they are not comparable.

else if <o-w (4)

(4) => the compilers exhibit relative distribution, which means they are comparable.

a state is not included in the conditional evaluation, because of the effect it has on the distribution

as compared to the other states. After all, it has nothing to do with the checking of the actual

differences at the level of the hbrary implementation.

IV. 5 Vertical Formulations

The following formulations provide informative messages that pinpoint the most probable causes of

the performance degradation.

if [(Tr
C

e
l
f =e r £ h) | £ is very small] (5)

(5) => OpenMP runtime library incurs no significant overhead.

if[(T^f>zTl\h)\e is small (6)

(6) ==> could be due to optimizations.

26

IV. PROPOSED MODEL

if[(Tr% <sT1
C.ith)\ sis large] (7)

(7) =» OpenMP runtime library incurs significant overhead.

(5), (6) and (7) have already been discussed in the literature [14]; however, they are not adaptable

enough to account for the sensitivity of the assessment of the differences across a and /? states.

Practically, the degree of difference is important to consider, since at this level, minimal variations

cause each formulation to report a specific diagnostic message and that's why we reformulated them

in terms of the model structure with better characterization and sensitivity.

Despite the fact that (6) appears counterintuitive, it seems that it is possible, since the compiler

optimizer may find other opportunities for aggressive optimizations when OpenMP is enabled. In

[4], the authors found a case where 328.fma3d_m SPEC OMPM2001 benchmark compiled with

Intel compiler got 111.83% of its serial execution performance \TrJr)- And it was due to an

aggression loop invariant code motion being enabled when OpenMP was enabled. (7) could also be

due to less aggressive optimization when OpenMP is enabled.

(8) => Yc, ' s scaling appropriately for the same compiler system.

d s e i / [(y C i < a C i) | y C i = / ^] (9)
L "cores J

(9) => Yc, is perfectly scaling for the same compiler system (Optimal).

Otherwise (9) does not scale at all.

if [{{.Yc, <K fc.) A (fc, <K Pcji) W > K)] (10)

(10) => ZCl is progressively homogeneous.

27

IV. PROPOSED MODEL

else if [((yc, <K» fc.) A (fc, <K PC,)) M » *) A [(aC| V &,) * y c j] (11)

(11) => scalability is very bad and fCi exhibits too much fluctuations.

(10) and (11) check for the relative consistency in the variations between the threads with respect

to £ state. The difference in the timing among the states should be harmonical and stable such that

the difference should he within the context of each state. However, sometimes the variations within £

state exhibit irregular behavior in which comparing them against y state confirms the existence of

inconsistency in the performance of the compiler by showing huge differences that are not supposed

to be there. In (11), if this condition [(aCj V/?C|) =£ y cJ holds false, this means that no parallelization

occurred, hence, we should flag this instance of comparison as faulty due to an intrinsic problem by

the compiler OpenMP runtime hbrary which could be an optimization or code generation problem.

else if [((yC[<*« ?c) A (fc, <K> &,)) \(K' » K) A (/?c, > aC|)] (12)

(12) => the problem lies in /?C|.

if[Yc, >K» {Pc, A aCl)]V[(/?Cl A yc) >K» ac] (13)

(13) =» Code design problem.most probably scheduling problem.

IV. 6 Horizontal Formulations

For the compilers performance to be relatively close they must register a small standard deviation a

that lies within an acceptable K, such that K is application onented. Evaluating the reference state a

differences provide a strong indication about the actual deviations in the model as compared to the

other states. Hence, the below formulations infer the hidden causes of the variations.

28

IV PROPOSED MODEL

V [*(?%.",TZr)]»K < l4>

(14) => This is weak comparison. And it is highly probable that the same variations will be

reflected on the other states.

if[o(P,yandO]»K (15)

(15) =» This is in perfect correlation with the above formulation Hence, the problem is not in

the OpenMP runtime library, but compiler code generation and optimization factors.

IV. 7 Arstage Comparator

X-stage comparator provides a coarse-grained and scaled version of the actual timing numbers for

every state and compiler. It unties the numbers from their unique states by dividing the time for each

compiler state over the sum of the reference time for all the compilers as shown in the below

formulation and Figure 5 Hence, an intermediate representation is revealed that shows the

differences at a finer level such as, the minimal decrease or increase in the timing from state to state

is smoothed to hide the insignificant minor differences between the states while the major ones are

exposed appropnately Hence, differences that range between +k for very small k between the states

are not momentous and that meet the model formulations accurately.

K-SCpeSl = f—— \K £ 0. (16)

29

IV PROPOSED MODEL

a

a-sc

P
/S-sc

Y

y-sc

c
r-sc

C. c, +n

©1—D—[©

©]—u—[©

© • [©

©1—0 [©

Fig. 5. K-stage comparator.

IV. 8 Detecting Compilers Patterns

Some compilers exhibit similar behavior on the same OpenMP program. That is, an increase or

decrease in time from state to state is also reflected on more than one compiler. However, this

doesn't mean that the performance is the same, but finding behavioral similanties is helpful in

determining the real causes of the differences across multiple OpenMP programs. And this is done

by binary encoding each state with respect to the previous and next state. The algonthm is presented

in Algonthm 1 In the reference state, the compiler that registers the highest timing is set to 1 (L. 08),

everything else to 0 (L. 09). After that, we set the next state to 1 or 0 if the previous state record is

less (L. 12) or more (L. 14) respectively; otherwise if no change happened then set the value to the

value of the previous state (L. 15). And this is best illustrated using the radar-diagram (later in the

experimentation evaluation section, Figure 14) which conceptualize the structure of each compiler

with respect to the four states and provides a coarse grain descnption about the model.

30

IV. PROPOSED MODEL

In algorithm 1, the computational complexity for finding the maximum in a state is 0 (| c | — l) ;

0 (| 01 |C|) for setting the flag over all the states across all the compilers, therefore the computational

complexity for Compilers Pattern Detection algorithm is O (| 0 | | c | + \c\ — l) .

Algorithm 1. Compilers Pattern Detection

01. Input: C and©

02. Output: Radar diagram

03. _begin

04. foriba\ip^ 6 9,p. € [1,4] /* ip loops over all the compilers in a) as stated at L. 5 */

05. for(o :=Cj|i <—- 1 ton

06. switch (xpa J I* u is an index to loop over all the states in 9 in order */

07. case xp^]=a

08. set max (ip%]) <— 1;

09. else set ip%] <— 0;

10. caseipu1* /* for all other cases /states /?, yond^*/

11. i f (^] > ^ - 1]) t h e n

12. set^*-l;

13. else if (t /#] < ib%~1]) then

14. set ip%] *— 0;

15. else set ip%] <^-ip%~1];

16. end if

17. end for

18. end for

19. end

31

IV. PROPOSED MODEL

IV. 9 Graph Theoretical Representation and Problem

Modeling

The definiteness of the model allows it to be very flexible and easy to map to different theoretical

representations. The model can be represented as a simple undirected graph as shown in Figure 6a,

where each graph has its own compiler C, that operates on the same OpenMP program P, and states

O.

All the compilers graphs share the same graphical representation and structure. Hence the graphs

are isomorphic. And we define the model for a single graph instance as follows:

LetGc, = {V.E.A}, where c, € C; 0 c V, V = {o . /J . / .^p , ,^ }, E = [e^, e%', e?, e^, ec
s' },

\V\ = 6,\E\ = 5; Gc,(6,5)

Vertex pt is of degree 5, whereas all the others are pendant vertices.

And the incident function is defined as:

A : E -»{{u,v}\u,v 6 7},A(ei
c') = {c,.Pl },A(e2

c') = {p„a},A(e3
c0 = {Pl,/?},A(e4

c") = {p„y},A(e5
Cl) =

(P..0-

All graphs instances are isomorphic such that GC[= Gc x — ••• — GC[,if 3 a one — to —

one correspondence K:V—*V1—* > Vn \ [u, v} E E <=> {S(u),X(v)} E E2 <=> — <=>

{X(u),N(t7)}eEn.

The set of optimization options and sub-options that are available for each compiler are diversified

and large. In cases like the GCC compiler, the number of optimization options can reach up to sixty.

The problem is when we try to enumerate over all these options to achieve the best performance

possible on a given architecture, application and compilation environment. The complexity increases

exponentially as the number of options increase, for instance, for k — 60 optimization options, the

32

IV. PROPOSED MODEL

search space results in 2k possibilities. This is a very important problem to tackle since it's not

guaranteed that higher optimization levels would achieve better performance [34]. Each program can

exhibit different performance on some of the options which are designed for specific architecture.

(a) Graph theoretical representation (b) Optimization options comparison process

Fig. 6. Graph mapping of the model.

And the way these options interact with each other is very comphcated as there is no way to

determine the feasibility of the combination of multiple options without trying them. Brute forcing

all the possibilities through an iterative process is definitely an impractical solution. However, this

kind of problem has already been discussed in the literature with viable solutions.

For example, in [35] [34] and [36] the authors tackled this problem efficiendy to reduce the search

space based on selective criteria's such as, random generation of compiler settings, an automatic

procedure to select compiler options for a given application based on statistical analysis of profile

information using Orthogonal Arrays and performance counters respectively. However, this subject

33

IV. PROPOSED MODEL

is beyond the scope of the thesis topic and we only bnefly presented it to show how this problem

can be mapped to OpenMP enabled compders from the model perspective as shown in Figure 6b.

Thus, an OpenMP program p(is compiled with a specific optimization option or multiple options

o,. And this process is repeated (Vs £ 0) for each compiler r, Linking and compilation are needed in

a and /? states only. We consider the cost of these two states to be high since y and £ states can be

set via an environment vanable without the need for recompilation. And this is a very expensive

process for large programs. This mapping provides an approach to find the best possible set of

optimization options that maximize the performance.

IV. 10 Compilers Comparisons Consistency

In order to avoid the unfairness that could occur in the experimentation and any other uncertainties,

some universal charactenstics have to be abided stncdy. Therefore, we define another predicate that

needs to be preserved consecutively between compansons. The predicate states that, it is not allowed

comparing the same set of compilers under different hardware and setup configurations expecting

that the results would be almost the same or scaling proportionally. This would be different

companson and it has nothing to do with the model, since, it infers the consistency of the

performance of each compiler on different hard/soft setups. It is certainly different, and we cannot

just draw conclusions from one experiment.

Conducting thorough experimentations on both platforms (different OS's) is more of analyzing

the behavior of the same compiler under different OS's which means a lot of factors could affect the

performance: the hbranes, optimizations (some optimizations takes advantage of specific OS

features, designed only for specific version of the operating system), scheduling and memory

management.. Considering that the implementation of OpenMP hbrary is the same.

Hence, the model works per comparison and to compare it against another different companson

(different Hard/Soft) requires the model to be extended to accommodate for those differences.

34

IV. PROPOSED MODEL

Some programs, they are not memory greedy (less fluctuations), only computation intensive, hence

we might get the same results on a similar architecture if the saturation level is scalable within the

lowest architectural platform up to some threshold.

Therefore, we define the following 2-arg predicate U(s,/l) that needs to be checked at the

beginning of each companson. If the return is true then continue otherwise break.

p = {ARCH\V(arch E ARCH),arch is a hardware architecture feature)

3t = {5F|V(s/ £ SF),sf is a software feature),where C c 5R.

S = PU5R

U(s,h) = \I™' </CV[sAh]6$)
(False, else

IV. 11 The Model Formulations Characteristics

The sensitivity of the formulations is very high. Some of them are intermixed with each other to

provide a better problem resolution in such a way that the degree of interpretation of the joint

formulations is more synthesized.

For example, formulation (7) is the conditional part in formulation (12) and relatively both lead

to the same conclusion However, (7) consists only of two states while (12) operates on the four

states including the condition part that is (7). Since (12) is more complex in terms of the states

usage, it should be given a higher pnonty such that the order is enforced when executing (7) and

(12) (if both are flagged for an OpenMP program). Thus, (12) is more decisive in terms of problem

determination.

Conversely, (7) and (13) hold true in the case of SimpleAdd_x kernel (as shown in the

experimentation section) But, the problem is not only the OpenMP runtime hbrary overhead

(formulation (7)) So, this formula and as reported in [14] failed to address this issue appropriately

35

IV. PROPOSED MODEL

because it has only two specific states which are not trained to detect any other problem possibilities.

However, (13) provides a deeper look at what the actual problem might be In cases where

scheduling is involved, care must be taken to ensure that it is not the runtime library's fault as stated

in (7). It could be that the scheduler kind may not be appropnate for this type of program, or it

could be that the chunk size is not properly set; hence, we cannot conclude that it is the runtime

hbrary problem unless everything else has been equally venfied.

Note that formulations (8) and (9) are almost identical but the stringency in terms of the

evaluation performed favors (9), since it converges to a higher limit in the companson process,

which is more accurate.

Formulations (14) and (15) form a semi-decision based order such that if the evaluation of (14) is

true it is more likely that (15) will proves (14) conjecture. Hence, this mutual dependence between

(14) and (15) allows (15) to concludes with a conclusive decision.

Based on the vertical formulations, we notice that four pairs of formulations work together to

venfy the culpnt state such that each pair is mapped to one of the states with complete coverage of

the four states. [(5), (6)] -» a, [(7), (12)] -> /?, [(8), (9)] -» y and [(10), (11)] -> £• And this ensures

the validity of the model in terms of problem determination across all the states.

IV. 12 2CA Optimum Performance Characterization

The model states classification provides complete performance coverage for a given OpenMP

application Hence, based on the states definitions and formulations, we can characterize the

behavior of an OpenMP program accurately such that, the optimum performance pattern should

match the domains characterization as shown in Table 2 And this is one of the most important

conclusions of the model.

36

IV. PROPOSED MODEL

Table 2. The 2CA model optimum performance characterization domains.

[1]

[2]

[3]

[4]

a<P a- /? a> B

I? <(aAB)

y<ip
y

£ < y; for small k ^ = y; for small k $ > y.for small/large k/k'

For any OpenMP program, the normal behavior should resembles one of the possible shapes in

Figure 7. If the performance does not match any of the possible shapes in Figure 7, then a

performance problem is detected. What is worth noting here is the sensitivity of case 4 and especially

when k' is large. In this case, when the number of threads is very large as compared to the number of

cores available, we should notice a continuous steep rise in that section of the curve. Furthermore, in

case 4, for small k, the rising of the curve should be balanced such that, the increase in time as the

number of threads increases should be uniform and consistent. Nevertheless, this is not a rule and it

should be considered as sensitivity metric which is application dependent.

Note that k and k' represent the number of threads and they are application oriented. Also to note

that each state is represented in its unpacked form that is thread by thread. The states a, /?, y, £ and

Iy in Figure 7 represent the execution time for an OpenMP program.

Number of threads

Fig. 7. The 2CA model optimum performance characterization.

37

IV. PROPOSED MODEL

It turns out that the shape in Figure 7 resembles the quadratic function shown in (17) Thus, the

optimum performance of OpenMP programs must converge to the mathematical formulation (17)

for the relationship between time and thread numbers However, the quadratic function does not

fully model the actual behavior of the optimum performance since there are some vanations along

the curve which are not accounted for

GZCA W = & ~ Y)2 I X E (0 U fY) (17)

The difference between a and B states is only one thread. Therefore, formulations (5), (6) and (7)

model the exact behavior of this section of the curve as shown in Figure 7 y state represents the

division factor between (a,B,Iy) and £ states. Since y state depicts the optimum performance when

the number of threads is equal to the number of cores, formulations (8) and (9) must hold true for y

to be optimum. Therefore, by the definition of formulations (8) and (9), y should be less than a, B,

y and Iy , otherwise it is not optimum. When number of threads is greater than the number of cores,

formulation (10) precisely model this section of the curve. However, the performance of OpenMP

programs is unpredictable at this level.

The optimahty of the performance characterization shown in Figure 7 can be sorted in three

categories such that, the dashed curve below the solid one is the most optimum, the solid curve is the

optimum and the dashed curve above the solid one represents the less optimum. Algonthm 2

characterizes the performance of OpenMP programs as well as the optimahty level.

The computational complexity for finding the optimahty level for a single compiler is O (| 0 | + l)

and O ^ (| 0 | + l) | c | J for n compilers. However, the computational complexity for the unpacked

form that is thread by thread is 0 (Nthreads \ C |)

38

IV. PROPOSED MODEL

Algorithm 2. OpenMP Optimum Performance Characterization

01. Input: 0U/^

02. Output: Performance Optimahty Level POL

03. .begin

04. if [(or > B) A [fY < (a A B)) A (y < fy) A (r <{for small k] y) A (< >{for large k '} y)] then

05. set POL <— "Most Optimum"; /* the dashed curve below the solid one */

06. else if [(a = B) A {$ < (a A /?)) A (y < /£) A (f =V o r sma„ k} y) A (f > { /or /arfle k>} y)] then

07. set POL <— "Optimum"; /* the solid curve */

08. else if [(a < B) A (/* < (a A /?)) A (y < /£) A (< > f /or sma„ fc} y) A (? >{ /or ,arae fc-j y)] then

09. set POL <— "Less Optimum"; /* the dashed curve above the solid one */

10. else

11. set POL <— "Not Optimum";

12. end if

13. return POL

14. _end

IV. 13 An Inclusive Projection of 2CA Over S.O.E

Standard Performance Metrics

The S O E standard metncs (18), (19) and (20) do not take into consideration the effect of the

OpenMP runtime hbrary as a constituent part of the senal execution time (T^) as used in [14] [37]

Hence, when we take the measured time for p cores and k threads(rp f), the overhead incurred by

the runtime hbrary becomes a part of the parallel execution time that has not been computed as part

of 7\. And in this case, the results are influenced by the incompleteness of 7\ factor, in which the

absence of /? state causes the overhead metnc to report more optimistic results and the others less

pessimistic results (only a is considered).

39

IV. PROPOSED MODEL

Speedup = -±- (18)
•p k

Overhead = Tpk - j (19)

Efficiency = -^- (20)

Since p state is part of the senal execution it should be added to a to account for the overhead

incurred by the runtime hbrary. Therefore, y state becomes free from the concealed effect of P state.

The transformed metncs based on the model definitions are represented in _l(m, X)2CA function,

where m defines the metric type and x enables you to choose between either one of the sub-metncs

for each mettle based on the state you want to analyze. In Slt Oxand £"x metncs, B is introduced

accordingly as part of the senal execution time whereas y is simply multiplied by 2 to account for the

newly introduced B state in the nominator. So, these metncs are only to examine y state. 5 2 , 0 2 and

E2 sub-metncs deal with C state for a specific thread number. Since y and £ states are both part of the

parallel execution, we add them together such that y is the base state for any £ thread specific

number x. The sub-metncs provide a mean to study the effect of an additional thread on the overall

behavior of OpenMP programs.

When [(y A /?) > a | y < B], the improved speedup and efficiency metncs report very optimistic

ratios as compared to the standard metncs (Figure 9a). Since the onginal metrics do not capture the

actual parallelism within the runtime hbrary, that is, the difference between B and y states, hence,

they fail to acknowledge this phenomena. In Figure 9b, the differences in the overhead are due to the

very high overhead incurred by the runtime hbrary in B state (as shown in the table to the right of

Figure 9b).

40

IV. PROPOSED MODEL

_I(m,x)2CA = •

Si ra + B
2 x y

a+P
52 ^ Y + Sth=x

,ifx = Yth
• ,if m = Speedup

.else

Ox

*• E2

2 x y
a + P
AL,

if x- y t h

a+P
(Y + Sth=x)~T, >else

Nr,

• ,ifm = Overhead

a+P

2xNr, x y
a + p

VNr,

,ifx = Yth

.else
x (Y + Ztn=x)

• ,if m — Efficiency

Figure 8 shows the differences across all the metrics when all the states exhibit regular and

expected performance. Again, we notice how /? is affecting each metric and especially the overhead.

Since the difference between a and /? states is significant, the overhead exposes it in association with

y state.

14

12

10

8

6

4

2

0

• S-2CA • S-Orig • E-2CA • E-Orig • 0-2CA « O-Orig

1 9 l 1 i
y=2 4 5 6

Number of threads

i i
•f
T
3
4
5
6
-?
8

cXlr
74
83
45
42
45
46
441
43
43

Fig. 8. N-Queens cXlr compiler performance metrics (Speedup, Efficiency and Overhead)

evaluation: 2CA vs. Original metrics.

41

IV. PROPOSED MODEL

1.4

1.2

1

g 0.8

" 0.6

0.4

0.2

• S-2CA • S-Orig m E-2CA a E-Orig

h~ WW • r » < H - >

III™
y=2 4 5 6

Number of threads

(a) Speedup and Efficiency

Number of threads

&
rp
T
3
ty"$

if
6
7

r«

SW
90
305
160
208
167
192
213
204
214

(b) Overhead

Fig. 9. SimpleAdd_s cZlr compiler performance metrics evaluation: 2CA vs. Original metrics.

Thus, the improved metrics defined in _I(m, x)2CA function are more accurate in terms of

OpenMP implementation. They provide a fine grained approach that helps unravel the implicit

differences within each state. However, the 2CA metrics are not to be compared to the original ones

since each one operates on a different set of states. In addition to that, 2CA metrics are to be

considered as a special case of the original ones since they target only the OpenMP implementation.

42

IV. PROPOSED MODEL

For overhead analysis, equation (19) is a very simplistic model to reason about the actual hidden

overhead in the case of OpenMP implementation. Even though it provides a rough estimate about

the overhead of the whole code, a much more ngorous schema is needed that correlates with

OpenMP constructs for a particular region of interest. In [38], Bane and Riley extend the overhead

analysis to compnse multifaceted OpenMP structures that are more definite and precise in terms of

OpenMP implementation. In [39], Yongjian et al. break down the overhead into detailed categones

"such that each overhead class is just corresponding to one identified cause, then by measuring the

overhead, we can directly trace back to their causes and thus reduce or even eliminate performance

overhead in a recipe way."

In addition to that, a layered model for overhead analysis is proposed in [39] to help programmers

locate and understand the performance at OpenMP language level. The abstract layer model of

OpenMP implementation views the overhead as inefficiencies in the implementation which can be

injected into the code at any of these abstract layers, and the performance of programs wntten in

high level is determined by the implementation efficiency of each lower level abstract layer. The

authors claim that the overhead at a speafic abstract level can be inherent ineffiaency, such as those

caused by non-optimal implementations, or ineffiaencies induced by high level reasons.

43

"Demonstration is also something necessary, because a demonstration

cannot go otherwise than it does, And the cause of this lies with the

primary premises/principles" - Aristotle

EXPERIMENTAL EVALUATION

The compiler comparative model presented in chapter four encompasses enormous details that need

to be examined experimentally For this purpose, three major commercial compilers were chosen

These compilers support OpenMP with their latest versions, PGI Workstation v9 01, Microsoft

C/C++ Optimizing Compiler Version 15 00 21022 08 and Intel C++ Professional Version 11 1

Build 20090930 In this chapter, their names are kept anonymous in the analysis due to the sensitivity

of the information denved

V. 1 Test Programs

Three C++ examples annotated with the appropnate OpenMP pragmas were used in the

experimentation The first example deals with N-Queens problem (taken from Intel compiler

samples) of board size 15 which achieves 2279184 distinct solutions and it uses the backtracking

search algorithm This code is exploitable by the compiler for any optimization opportunities

The other one is a simple for loop kernel (Figure 3) that adds two vanables with an upper bound of

10e7 and a stride value of 1 The purpose of the second example is to stress one computing unit such

that the instruction mix is the same among all the threads, making all the threads share a non-idle

resource which affect the throughput We refer to the first one as the N-Queens example and the

second as SimpleAdd_x kernel (where x = s, g or d) s, g and d stand for static, guided and dynamic

scheduler kinds respectively that are supported by OpenMP specification Hence, three versions were

denved for SimpleAdd_x example, each one tests the performance of a speafic scheduler type to

track the consistency of the compilers performance behaviors

CHAPTER V

44

V. EXPERIMENTAL EVALUATION

The third is a molecular dynamic simulations program [40] which consists of 2 heavy

computational routines: the first is to compute forces and energies and the second is to compute the

displacement and distance between two particles. The runs were taken with 1000 particles, 400 steps

and 0 0001 the size for each time step. The purpose behind this program is the heavy computation

involved and the optimization opportunities available for the compiler to exploit. We refer to the

third test program as M D example.

The three test programs revealed significant differences among the compilers. Providing a

performance analysis for each compiler is beyond the scope of this thesis, and we only present the

analysis from the model perspective.

V. 2 Experimentation Setup

We assigned the following pseudo names for each compiler to mask its real identity in the analysis (in

no particular order): cXlr, cYlr and cZlr. For compilation, we used only the highest optimization

option (Intel and MS: Ox, PGI 0 4) supported by each compiler with the appropnate OpenMP flag.

Thus, they are all equivalent as per the options chosen. Windows 7 Pro 32 bit was used on an Intel

core 2 duo P7350 @ 2 00GHz with 4 GB's of rams, 32KB LI D-Cache, 32KB LI I-Cache (both 8-

ways set associative, 64-byte line size) and 3MB L2 Cache (12-way set associative, 64-byte line size).

The three programs were compiled as 32-bit binanes Special care has been taken to ensure proper

environment setup between each compiler tests to guarantee a fair companson. Ten runs were taken

for each experiment and thread timing, and then averaged using the geometnc mean

V. 3 Results Analysis

This section presents the results for the three test programs descnbed in section V. l . Analysis is only

provided from the model perspective

45

V. EXPERIMENTAL EVALUATION

Figure 10 shows the compilers performance differences for 8 threads. The relative coherency in

the distribution is depicted in Figure 10 as specified in formulation (4). Although cYlr reference

timing is not the lowest, it is almost equal to cXlr, therefore by (2), cYk is uniformly superior. cXlr

runtime Hbrary registers significant overhead (9 seconds) according to (7), whereas cYlr and cZlr

foUow (5). The three compilers hold true for (8), (9) and (10). Note that, the scheduler kind in this

example is imphcitiy determined by each compiler at runtime. But we determined that the three

compilers selected static scheduler kind via the call to omp_schedule_type OpenMP API.

Ref 1 2 3 4 5 6 7 8

Number of threads

Fig. 10. N-Queens compilers comparison.

cYlr and cXlr support cross linking and compiling of the OpenMP runtime Hbraries between each

other. We compiled and linked N-Queens example with cXlr using cYlr OpenMP runtime hbrary,

but the results remained almost the same, with an increase in 1 second of cXlr /? state. However, the

reference time for cXlr is less than cYlr by 2 seconds. This reveals an important aspect of the

compiler optimizer and other factors dependency. Thus, the compiler optimizer and code generator

play a significant role in determining the overall performance of the appHcation, and not only the

implementation of the runtime Hbrary. This helps in revealing interesting aspects of each compiler

capabilities.

46

V. EXPERIMENTAL EVALUATION

Formulation (3) holds true for aU of the SimpleAdd_s g and d (Figures 11, 12 and 13) examples.

The reader should note the large difference between a and /? states in the case of SimpleAdd_s and g

for cZlr and cXlr, as stated in (7). (11) holds true for SimpleAdd_g and d for cZlr compiler.

Formulation (12) strongly holds true for cXlr in SimpleAdd_s and cZlr in SimpleAdd_d. In

SimpleAdd_d, we notice an exceptionally abnormal behavior for the three compilers when OpenMP

is activated in P and y states for cYlr and cZlr, while in cXlr this abnormahty starts earher in a state,

this is certainly a scheduling problem and most appropnately the impractical chunk size that has been

set per iteration, hence (13) holds true.

Ref

Number of threads

Fig. 11. SimpleAdd_s compilers companson.

As shown in the examples, the compiler performance vanes from apphcation to another, and thus,

we cannot assert a deterministic decision on the overall performance of the compiler. Code design

has a significant impact on the performance, and at the same time, we notice that the same ranking

for each compiler is preserved across different scenarios. Hence, there are fundamental code

differences that are inherent in the design of each compiler, in which they propagate constantiy to

affect the performance of the compiled program. And that's reflected in the ranking of each compiler

as reported in both examples where cYlr registers the lowest timing, next cXlr and then conies cZlr.

cZlr has a very sporadic behavior when number of threads is greater than the number of cores as

47

V EXPERIMENTAL EVALUATION

shown in Figures 11, 12 and 13, in which formulation (11) verifies this unbalanced performance

Whereas, cYlr and cXlr are highly regular and almost constant with slight vanations

Ref

Number of threads

Fig. 12. SimpleAdd_g compilers companson

10000

1000

100

Ref 3 4 5

Number of threads

Fig. 13. SimpleAdd_d compilers companson

The compilers pattern detection algonthm provides an insight into the actual behavior of the

compilers from high level perspective As shown in Figure 14, each corner point represents a state,

and a line ongmating from the centre joining any state means that a 1 has been set, otherwise 0 cYlr

and cXlr exhibit the same pattern (cYlr is on the same line as cXlr represented with dot inside the

48

V. EXPERIMENTAL EVALUATION

square). We can even map more than one appHcation on the same graph by changing the encoding

number, in which a visual parallel demonstration is revealed to reason about the behavior of the

compilers performance. This method helps in finding similarities between compilers, from state-to-

state, which faciHtate the identification of the problematic state.

_. 500

o 400

Nth > Nc 1-Thread

Nth = Nc

Fig. 14. Compilers pattern recognition (SimpleAdd_s).

Ref

Number of threads

Fig. 15. M D compilers comparison.

49

V. EXPERIMENTAL EVALUATION

Figure 15 shows the performance of MD example across the three compilers. The behavior of this

example matches the model formulations. However, we restnct ourselves to pomt only on a very

important aspect of cZlr compiler The a and p states are equal to y state and certainly this is an out

of phase behavior for a paraUehzing compiler. For this to happen, a defect in the compilation process

must have hindered the compiler parallehzer on this specific program. Therefore, the code design

pattern poses a great chaUenge on the compiler optimizer to produce correct and effiaent code. This

kind of behavior is part of formulation (11) conditional evaluation.

This shows that it is not enough to provide a performance analysis based only on the evaluation of

the overhead incurred by the OpenMP directives as in the case of EPCC microbenchmarks. It is very

important that we evaluate each program as a separate case study so that a quantified metrics are

used to provide an amalgamated performance analysis about the overall behavior of the compiler.

And this is one of the goals of the proposed model.

V. 4 Results Analysis for Different Experimentation Setup

This section contains the results for MD and N-Queens programs on different hardware and

software configurations. The compilers used are: PGI Workstation 10 1 (64-bit), Intel C++ 64

Compiler Professional Version 11.1054 Build 20091130 and Microsoft (R) C/C++ Optimizing

Compiler Version 15.00 21022.08 for x64. Microsoft Windows Vista (6 0) 64-bit Home Premium

Edition Service Pack 2 (Build 6002) was used on an Intel(R) Core(TM)2 Quad CPU Q8200 @

2.33GHz with 8 GB's of rams, 4 x 32KB LI D-Cache, 4 x 32KB LI I-Cache (both 8-ways set

associative, 64-byte line size) and 4MB L2 Cache (8-way set associative, 64-byte Hne size). Both

programs were compiled as 64-bit binaries.

The purpose of this section is to examine aU the states definitions in the model including the

Intermediate state ly How the same programs behave on different hardware/software

configurations? How the compilers performance and ranking differ with respect to different

50

V EXPERIMENTAL EVALUATION

hardware, versions and software configurations? Finding the optimum behavior for a given OpenMP

program?

It is important to note that it is not possible to HteraUy compare the results of this section to the

previous experiments. However, we can extrapolate some interesting differences as in the case of

MD example and especially in the case of cZlr compiler when a and /? states are equal to y state

(Figure 15 versus Figure 16). The newer version of cZlr compiler solved this out of phase behavior.

Also to note the asymmetncal relational differences between the states across the three compilers in

the case of N-Queens example (Figure 17) such that, despite the fact that cYlr, cZlr and cXlr

compilers register some differences in a and /? states, they equal each other in y and £ states. We

beheve that this is a 64-bit-dependent behavior. However, the differences are minimal and the

Intermediate state Iy predicts the time decreasing convergence of each compiler performance as it

approaches y state

Ref 1 2 3 4 5 6 7 8

Number of threads

Fig. 16. M D 64-bit compilers companson on Intel® Core™2 Quad.

Section IV 12 presented the charactenzation of the optimum performance for a given OpenMP

program. Such performance is depicted in Figure 16 and Figure 17 with varying degrees of

fluctuations.

51

V. EXPERIMENTAL EVALUATION

70 - -

60 - -

f 50
o
1 40
ai
.1 30

20

10

1 p* m icYlr icZIr »cXlr

Ref

N N f i N N ° |

J_ MM
3 4 5

Number of threads

Fig. 17. N-Queens 64-bit compilers comparison on Intel® Core™2 Quad.

52

"He who controls the present, controls the past He who controls the

past, controls the future" - George Orwell

CONCLUSION AND FUTURE WORK

This thesis presented a new high level compder comparative model to evaluate OpenMP programs

on different compilers A model is defined using set theory notations so that it can be improved to

encompass any additional formulations while aUowing the expression of formulations in two very

flexible methods using ather stnct set notations or mutable ones that can adapt to different

situations The thesis presents enough formulations that simplify the classification of OpenMP

programs for single and multiple compilers, hence giving the developer the choice to select the best

compiler to use in a very short time and effortlessly The model has a high degree of expressiveness

aUowing it to be completely programmed and automated for generating a report to summarize aU the

results in an instructive way

The experimentation verified the applicability of the model and aided the discovery of how the

performance of one of the three commercial compders vaned severely under three OpenMP

programs Another notable result is the compiler optimization and code generation capabiHties that

influenced the overall performance of the appHcation and not only the OpenMP runtime hbrary as

shown in the experimentation Also, the thesis details a compiler pattern detection algonthm which

operates on states to find if the compilers are behaving similarly

The improved version of the performance metncs proved to be very flexible and more accurate to

consider when analyzing OpenMP programs

CHAPTER VI

53

VI. CONCLUSION AND FUTURE WORK

Furthermore, the model presented here concludes with a very important finding, that is, the

mathematical characterization of the optimum performance helps in classifying the evolutionary

behavior for any OpenMP program. This helps in accurately determining the problematic state.

The model works at a higher level of abstraction as compared to other dedicated performance

analysis tools. It does not replace the tools which provide low level profile information at the

directive level. Hence, using speciaUy designed tools for performance analysis of OpenMP programs

is a must to understand the real causes of any performance degradations. However, the difficulty of

debugging and analyzing OpenMP paraUel programming programs increases tremendously as the

program size increases.

Future work includes experimenting with different hardware and software architectures (eg.

AMD, Intel Itanium, and different Operating Systems) to investigate the performance of some of the

compilers on different non-targeted platforms However, in our case, since Intel compiler takes

advantage of its own architecture while PGI does not, we tned all the optimization features/options

available with PGI that take advantage of Intel architecture but no differences were noticed.

TBB (Threading Building Blocks) [41] and Intel Cilk++ [42] [43] Hbranes are two similar paraUel

programming languages to OpenMP It would be an interesting study to see if the model maps

properly to these two languages. However, a deep knowledge is required about the features and

implementation of each Hbrary in order to examine the vahdity of the cunent model formulations in

companson with the two Hbranes. The initial attempts presented here confirm the possibiHty of

extending the model to work with TBB and Intel Cilk++ Hbranes. Nonetheless, an extensive

experimentation is needed to ensure the generality of any extension on the model (e g. scheduling

differences).

Another possibiHty to extend the model formulations is by building a knowledge base based on the

program usage of each OpenMP directive and construct. On the other hand, it is possible to add

additional formulations by conducting large amount of experimentations on different compilers and

54

VI. CONCLUSION AND FUTURE WORK

OpenMP programs. This will ennch the model to provide more detailed analysis on each compiler

performance.

Section IV.9 explained how to map the model states to the compiler options selection process that

tries to find the best possible set of optimization options that maximize the performance. Currently,

we are working on extending Analysis of Compiler Options via Evolutionary Algonthms

(ACOVEA) [42] framework to support more than one compiler as weU as automating the

companson process across the four states.

In conclusion, the proposed analytical model serves its purpose effiaendy as proved in the

expenmentation section. It is hoped that the model and results will help OpenMP developers in their

experimentations to choose the best OpenMP enabled compiler in an easy way.

55

BIBLIOGRAPHY

[1] OpenMP AppHcation Program Interface, Version 3.0, OpenMP Architecture Review

Board, May (2008).

[2] Intel Software Network. (2009) Intel VTune Performance Analyzer with Intel Thread

Profiler, http://software intel com/en-us/intel-vtune/

[3] Intel Software Network (2009) Intel ParaUel Studio, http://softwareintel.com/en-

us/intel-sdp-home/

[4] Tian, x , Girkar, M., Bik, A. and Saito, H. (2005) Practical Compder Techniques on

Efficient Multithreaded Code Generation for OpenMP Programs. The Computer

Journal, 4(5), 588-601

[5] Reid, F. J. L. and BulL J. M. (2004) OpenMP Microbenchmarks Version 2.0

Proceedings of the 6th European Workshop on OpenMP (EWOMP'04), Stockholm,

Sweden, October 18-22.

[6] Bull, J. M (1999) Measuring Synchronisation and Scheduling Overheads in OpenMP. In

Proceedings of the First European Workshop on OpenMP (EWOMP'99), Lund,

Sweden, September 30-October 1

[7] Pierattini, S. (2002) Note on OpenMP performance. Corso di Sviluppo e

Programmazione SGI Senale e Parallela, vO 9,

http-//www.afs.enea.it/grafica/Corsi/SGIHPC/SGIHPC.html

56

http://software
http://softwareintel.com/enus/intel-sdp-home/
http://softwareintel.com/enus/intel-sdp-home/
http://www.afs.enea.it/grafica/Corsi/SGIHPC/SGIHPC.html

BIBLIOGRAPHY

[8] Aslot, V., Domeika, M., Eigenmann, R., Gaertner, G., Jones, W. B. and Parady, B.

(2001) SPEComp: A New Benchmark Suite for Measuring Parallel Computer

Performance. Proceedings of the International Workshop on OpenMP AppHcations and

Tools (WOMPAT'01), West Lafayette, IN, USA, July 30-31, LNCS 2104, 15-23,

Springer-Verlag, Berlin.

[9] The Portland Group. (2009) PGI Unified Binary,

http://www.pgroup.com/resources/unified_binary.htm

[10] Schouten, D., Tian, X., Bik, A. and Girkar, M. (2003) Inside the Intel Compder. Linux

Journal, 2003(106). p.4, February 2003.

[11] Ayguade, E., Copty, N., Duran, A., Hoefhnger, J., Lin, Y., Massaioh, F., Teruel, X.,

Unniknshnan, P. And Zhang G. (2009) The Design of OpenMP Tasks. I E E E

Transactions on ParaUel and Distributed Systems, 20(3), 404-418.

[12] Dimakopoulos, V. V., Leontiadis, E. and Tzoumas, G. (2003) A Portable C Compder

for OpenMP V.2.0. Proceedings of the Fifth European Workshop on OpenMP

(EWOMP'03), Aachen, Germany, September 22-26, 5-11.

[13] Chapman, B. and Huang, L. (2009) OpenMP Under The Hood. Proceedings of the Fifth

International Workshop on OpenMP (TWOMP'09), Dresden, Germany, June 3-5.

[14] Chapman, B., Jost, G. and Pas, R. V. D. (2008) Using OpenMP Portable Shared

Memory ParaUel Programming. The MIT Press, Cambndge, Massachusetts.

[15] Tian, X. and Girkar, M. (2004) Effect of Optimizations on Performance of OpenMP

Programs. Proceedings of the Eleventh International Conference on High Performance

Computing (HiPC'04), Bangalore, India, December 19-22, LNCS 3296, 133-143,

Springer-Verlag, Berlin.

57

http://www.pgroup.com/resources/unified_binary.htm

BIBLIOGRAPHY

[16] MuUer, M. (2001) Some Simple OpenMP Optimization Techniques. Proceedings of the

Second International Workshop on OpenMP Apphcations and Tools (WOMPAT'01),

West Lafayette, IN, USA, July 30-31, LNCS 2104, 31-39.

[17] Quinlan, D., Schordan, M , Yi, K. and de Supinskt, B. R. (2003) A C + + Infrastructure

for Automatic Introduction and Translation of OpenMP Directives Proceedings of the

Fourth International Workshop on OpenMP Apphcations and Tools (WOMPAT'03),

Toronto, Canada, June 26-27, LNCS 2716, 13-25, Springer-Verlag, Berlin.

[18] Yonezawa, N., Wada, K., and Aida, T. (2006) Barner Ehnunation Based on Access

Dependency Analysis for OpenMP. Proceedings of the Fourth International Symposium

on ParaUel and Distnbuted Processing and Apphcations (ISPA'06), Sorrento, Germany,

December 4-6, LNCS 4330, 362-373, Springer-Verlag, Berlin.

[19] Brunschen, C. and Brosson, M (2000) OdinMP/CCp - A portable implementation of

OpenMP for C. Concurrency: Practice and Expenence, 12,1193-1203.

[20] Ayguade, E., Gonzalez, M , Labatta, J., MartorelL X., Navano, N. and OHver, J. (1999)

NanosCompder: A Research Platform for OpenMP Extensions. Proceedings of the First

European Workshop on OpenMP (EWOMP'99), Lund, Sweden, September 30-

October 1.

[21] Intel Software Network (2009)Intel C + + Compder Professional Edition,

http.//software.intel.com/en-us/intel-compders/

[22] The Portland Group. (2009) PGI C + + Workstation,

h t tp : / /wwwpgroup com/products/workpgcc htm

58

http://http.//software.intel.com/en-us/intel-compders/
http://wwwpgroup

BIBLIOGRAPHY

[23] Microsoft Corporation. (2009) Microsoft Visual Studio 2008 Team Edition,

h t t p : / /msdn microsoft.com/en-us/teamsystem/default aspx

[24] Aslot, V. (2001) Performance Characterization of the SPEC OMP Benchmarks. Master's

thesis, Purdue University.

[25] Mohr, B , Malony, A. D , Hope, H - C , SchHmbach, F., Grant, H., HoefHnger, J. and

Shah, S (2002) A Performance Monitoring Interface for OpenMP. Proceedings of the

Fourth European Workshop on OpenMP (EWOMP'02), September 18-20, Roma, Italy.

[26] But, V , Hernandez, O , Chapman, B. and Kufnn, R. (2006) An OpenMP run-time

Performance Analyzer. Proceedings of the ACM Conference for Languages, Compders,

and Tools for Embedded Systems (DIGPLAN/SIGBED) , Ottawa, Ontano, Canada,

61-64.

[27] Furhnger, K. and Gerndt, M (2005) ompP: A Profiling Tool for OpenMP. In

Proceedings of the First International Workshop on OpenMP (TWOMP'05), Eugene,

Oregon, USA, June 1-4, L A O 4315,15-23, Spnnger-Verlag, Berlin.

[28] FZJ-ZAM-IB-2001-08 (2001) Knowledge Specification for Automatic Performance

Analysis APART Technical Report Juhch Supercomputing Centre (JSC), Germany.

[29] Gerndt, M , Mohr, B. And Traff, J L. (2004) Evaluating OpenMP Performance Analysis

Tools with the APART Test Suite. Proceedings of the 10th International Euro-Par

ParaUel Processing Conference (Euro-Par'04), Pisa, Italy, August 31-September 3, LNCS

3149,155-162, Spnnger-Verlag, Berlin.

[30] Suleman, A M., Quresht, K M. and Part, N . Y. (2008) Feedback-Dnven Threading-

Power-Efficient and High-Performance Execution of Multi-threaded Workloads on

CMPs. Proceedings of the 13th International Conference on Architectural Support for

59

http://msdn
http://microsoft.com/en-us/teamsystem/default

BIBLIOGRAPHY

Programming Languages and Operating Systems (ASPLOS'08), Seattle, Washington,

USA, March 1-5, ACM SIGPLAN Notices, 36(1), 277-286.

[31] Marr, D T , Binns, F , Hdl, D., Hinton, G , Koufaty, D., MiUer, J. A. and Upton, M.

(2002) Hyper-Threading Technology Architecture and Microarchitecture. Intel

Technology Journal, 6(1), 4-15.

[32] Tian, X , Bik, A., Girkar, M., Grey, P., Saito, H. and Su, E. (2002) Intel® OpenMP

C++/For t r an Compder for Hyper-Threading Technology Implementation and

Performance. Intel Technology Journal, 6(1), 36-46

[33] Magro, W., Petersen, P. and Shah, S (2002) Hyper-Threading Technology. Impact on

Compute-Intensive Workloads. Intel Technology Journal, 6(1), 58-66.

[34] Pinkers, R. P J., Knijnenburg, P. M. W., Haneda, M and Wijshoff H A. G (2004)

Statistical Selection of Compder Options. Proceedings of the I E E E 12th Annual

International Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems (MASCOTS'04), Volendam, The Netherlands, October 4-

8, 494-501, I E E E Computer Society.

[35] Haneda, M , Knijnenburg, P. M W. and Wijshoff, H A. G. (2005) Generating New

General Compder Optimization Settings. Proceedings of the 19th annual International

Conference on Supercomputing (ICS'05), Cambndge, Massachusetts, USA, June 20-22,

161-168. ACM Press, New York, NY

[36] Cavazos, J., Fursin, G., Agakov, F , Bondla, E., O'Boyle, M F. P. and Temam, O. (2007)

Rapidly Selecting Good Compder Optimizations using Performance Counters

Proceedings of the International Symposium on Code Generation and Optimization

(CGO'07), San Jose, California, USA, March 11-14, 185-197, I E E E Computer Soaety.

60

BIBLIOGRAPHY

[37] Marowka, A. (2008) Performance of OpenMP Benchmarks on Multicores Processors

Proceedings of the Eighth International Conference on Algonthms and Architectures

for ParaUel Processing (ICA3PP'08), Cyprus, June 9-11, LNCS 5022, 208-219, Spnnger-

Verlag, Berlin.

[38] Bane, M. K. and Rdey, G. D (2002) Extended Overhead Analysis for OpenMP.

Proceedings of the Eighth International Euro-Par Conference (Euro-Par'02), Paderborn,

Germany, August 27-30, LNCS 2400,1-16, Spnnger-Verlag, Berlin.

[39] Yongjian, C , Dingxing, W. and Weimin, Z. (2003) Extended Overhead Analysis for

OpenMP Performance Tuning. Proceedings of the Fourth International Workshop on

OpenMP Apphcations and Tools (WOMPAT'03), Toronto, Canada, June 26-27, LNCS

2716, 160-169, Spnnger-Verlag, Berlin.

[40] Burkardt, J. (2010) Molecular Dynamics using OpenMP (MD_OPEN_MP),

http:/ /people.se fsu edu/~burkardt /cpp_src /md_open_mp/md_open_mp.html

[41] Intel Software Network. (2010) Intel Threading Budding Blocks 2.2,

h t tp . / /www.inte lcom/sof tware/products / tbb/

[42] Leiserson, C. E (2009) The Cdk++ concurrency platform. Proceedings of the 49th

Automation Design Conference (DAC'09), San Francisco, CA, USA, July 26-31, 522-

527. ACM Press, New York, NY.

[43] Blumofe, R D , Joerg, C. F , Kuszmaul, B C , Leiserson, C. E., Randall, K. H. and

Zhou, Y. (1995) CiHV An Efficient Multithreaded Runtime System. Proceedings of the

fifth ACM SIGPLAN symposium on Principles and practice of paraUel programming,

Santa Barbara, Cahforma, United States, July 19-21, 207-216, ACM SIGPLAN Notices,

30(8), 207-216

61

http://people.se
http://http.//www.intelcom/software/products/tbb/

BIBLIOGRAPHY

[44] Ladd., S. R.. (2010) Analysis of Compiler Options via Evolutionary Algorithm

ACOVEA. http://www.coyotegulch.com/products/acovea/index.html

62

http://www.coyotegulch.com/products/acovea/index.html

VITAAUCrORIS

NAME: Mohammed F. Mokbel

PLACE OF BIRTH: Kfarhatta, Lebanon

YEAR OF BIRTH: 1984

EDUCATION: University of Windsor

Windsor, Ontario, Canada

2007-2010 M.Sc. Computer Science

Lebanese International University

Majdelyoun, Lebanon

2003-2006 B.Sc. Computer Engineering

63

	Towards A Quasi High Level Compiler Comparative and Attributive Model for OpenMP Programs
	Recommended Citation

	ProQuest Dissertations

