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Abstract 

Mesh generation has been an important topic of research for the past four decades, 

pnmarily because it is one of the cntical elements in the numerical simulation of fluid 

flows One of the main current issues m this regard is mesh generation and flow solution 

on domains with moving boundanes In this research a no\ el scheme has been proposed 

for mesh generation on domains \\ ith moving boundanes. with the location of boundary 

nodes known at any particular time A new set of hneanzed equations is den\ ed based on 

a full nonlinear elliptic gnd generation system The basic assumption in den\ ing these 

new equations is that each node expenences only a small amount of disturbance when the 

mesh moves from one time to the next Companson with gnds generated by the full 

elliptic system shows that this new method can generate high quality gnds with 

significantly less computational cost 

Inherently, the flow on such a domain will be unsteady The \ a \ ler-Stokes equations for 

unsteady 2D laminar incompressible flow are expressed in the pnmitne \anables 

formulation A SIMPLE-hke scheme is applied to link the pressure and \elocity fields 

and ensure conservation of mass is satisfied The equations are discretized in a pure finite 

difference formulation and solved by implicitly marching in time The flow solver is 

validated against results in the literature for flow through a channel with a moving 

indentation along one wall 
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APTER 1 
INTRODUCTION 

1.1 Grid Generation 

Mesh generation is an interdisciplinary area, and researchers from different disciplines, 

including mathematicians, computer scientists and engineers are working on developing 

improvements to the existing methodologies. One of the major applications of mesh 

generation is in computational fluid dynamics. Since the fluid flow equations will be 

discretized on the mesh that has been generated, the quality of the mesh generally plays a 

significant role in the accuracy of the results obtained from the numerical solution of the 

flow equations. One of the main issues of current interest is generating the grid on 

domains with moving boundaries, referred to as dynamic grid generation. The motivation 

for grid generation on domains with moving (deforming) boundaries is its application in 

many fluid mechanics problems such as free surface flow, simulating blood flow in 

carotid arteries, scour problems (Figure 1.1) and airfoil'wing shape optimization. In 

general, grid movement may be because of the change of the shape of the boundaries of 

the domain, or for the purpose of adapting the grid with the physical solution of the 

problem at hand. 

Different methods for grid generation on domain with deforming boundaries have been 

introduced in the literature. The method proposed here applies an elliptic grid generator 

for generating the basic (initial) grid. The boundary points are then assumed to be 



perturbed by very small amounts. A new set of linear equations is obtained which, upon 

solution, give the x and y displacement of the interior nodes due to the motion of the 

boundaries. Since the displacement of the grid points is assumed to be very small, the 

second order terms in the equations can be ignored. For the purpose of avoiding 

entanglement of the grid in some regions, which is caused by the accumulation of errors 

after a few successive grids have been generated by the perturbed equations, a full elliptic 

grid generation can be applied once. The significant decrease in the number of grid 

generations by the full elliptic equations is the main advantage of this method, saving a 

noticeable amount of computational time. 
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Figure 1.1: Scour by Water Surface Jet, Showing the Deformed Bed 

1.2 Flow Solution 

Navier-Stokes equations were formulated in the 19th century. They are one of the most 

useful sets of equations because they describe the physics of a large number of fluid flow 

phenomena. The Navier-Stokes equations are nonlinear partial differential equations. 
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They can be expressed in conservative or non-conservative, dimensional or non-

dimensional form. 

The governing equations for an incompressible flow may be expressed in primitive 

variable formulation or vorticity-streamfunction formulation. The primitive variable 

formulation uses velocity and pressure, while the vorticity-streamfunction formulation 

introduces vorticity and strearnfunction to re-formulate the flow equations. The primitive 

variable formulation is a mixed elliptic-parabolic system of equations and there is no 

direct link between continuity and momentum equations. To resolve this limitation, two 

procedures exist, that is, there are two ways to link the continuity and momentum 

equations. The first method is to apply a Poisson equation for pressure and the second is 

to introduce artificial compressibility into the continuity equation. The advantage of the 

primitive variable formulation is that its extension to three dimensions is straightforward. 

In the vorticity-streamfunction formulation, the Navier-Stokes equations are decoupled 

into an elliptic and a parabolic equation. Extension of this method to three dimensions is 

not easy, since a simple strearnfunction does not exist in three dimensions. 

The focus of this research is on developing a solution algorithm for the unsteady two-

dimensional incompressible equations in dimensional, non-conservative form, expressed 

in primitive variables. The basic idea proposed in this research is to implement a 

SIMPLE-type algorithm for the pressure field calculation, similar to that used in a finite 

volume method, whereas the discretized equations are developed as a purely finite 

difference formulation. 
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C HAPTER 2 
LITERATURE REVIEW 

2.1 Introduction 

Computational fluid dynamics (CFD) is one of the branches of fluid mechanics that uses 

numerical methods and algorithms to sohe and analyze problems that involve fluid 

flows. The equations to be solved in many CFD problems are the Navier-Stokes 

equations, which govern any single-phase fluid flow. The need for grid generation arises 

when the numerical solution of the Navier-Stokes equations is sought on a non-

rectangular physical domain. In this case, the domain is discretized into cells or elements, 

and the flow equations are approximated on the discretized domain based on the applied 

numerical method, that is, the finite difference, finite volume, or finite element method. 

Finite difference method is a numerical method for approximating the solutions to 

differential equations using finite difference formulae to approximate derivatives. Values 

of the flow variables are calculated at discrete nodes on a meshed geometry. 

Finite volume method is similar to the finite difference method. But, instead of 

approximating derivatives, the flow equations are written in integral form and the 

integrals are approximated. Values are calculated on discrete volumes, surrounding each 

node, on a meshed geometry. In the finite volume method, volume integrals in a partial 

differential equation that contain a divergence term are converted to surface integrals, 

using the divergence theorem. 

4 



In the finite element method the solution approach is based on rendering the PDE into an 

approximating system of ordinary differential equations, by approximating the integrand 

in terms of some basis functions. These ODEs are then solved using standard techniques 

such as Euler's method, Runge-Kutta, etc. 

The focus of the research in this thesis is on mesh generation for domains w ith deforming 

boundaries, and subsequently solving the unsteady Na\ ler-Stokes equations using the 

finite differencing method. 

2.2 Moving Grid Techniques 

Grid (or mesh) generation has been around since the appearance of computational fluid 

dynamics. Grid generation can be \ iewed as distributing nodes on the ph> sical domain 

and specifying the connectivity between these nodes. In structured grid generation this 

connectivity is accomplished by mapping the grid points from the computational domain 

onto the physical domain. With this definition Brackbill and Saltzman [1] noted that the 

differential properties of the mapping define the properties of the grid. They introduced 

three functionals that are measures of the accumulation of different grid properties; 

namely a measure of spacing between the grid lines (smoothness) Is. a measure of the 

orthogonality of the grid lines /„, and a measure of the area of the mesh cells /„,. 

Minimizing any combination of these functional produces a grid with good qualities, 

such as smooth transition in the spacing between grid lines, reduced skewness and cell 

areas which are not too small. Applying the calculus of \ ariations to minimize these 

functionals leads to a set of partial differential equations for the positions of the nodes. 

If the solution domain has regions with high spatial activity, a fixed grid will be 

inefficient. In this situation, as the flow field evohes. the regions where the flow 

5 



gradients are large may shift with time, and thus a good mesh at one time may not be 

appropriate at some later time. Meshing procedures which allow the nodes to adjust their 

location to respond to the evolution of the flow are referred to as adaptive techniques. In 

the realm of adaptive techniques for time-dependent PDEs, one can roughly distinguish 

between two classes of methods [2], ^-refinement and r-refinement. In the /z-refinement 

method the grid is adapted at discrete time levels and the partial differential equations are 

discretized on a grid which is kept fixed over the entire time level. The r-refinement 

methods have the advantage of moving continuously in time in such a way that the 

discretization of the PDEs and grid movement are coupled. The number of grid points is 

usually kept fixed. 

Various major moving grid techniques will now be briefly introduced. 

Method of Characteristics (MoC): One of the simplest choices is to let the grid move 

based on the characteristic equations of the PDEs that govern the flow. This method is 

primarily used for high speed compressible inviscid flows, since the governing equations 

are hyperbolic and therefore have a set of distinct characteristic curves which move with 

time and can be used to provide the grid system. 

Equidistribution: One of the most widely used methods to move the grid in one 

dimension is to consider solution of the equation, 

U»=° < 2 1 > 
where M > 0 is called a monitor or control function. Manipulating this equation gives a 

formula that describes equidistribution 

AXi-M-! = AXiMi l<i<N-l (2.2) 
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Moving Finite Differences (MFD): This is an extension of the equidistribution method 

which generates smoother grid results. 

Moving Finite Elements (MFE): This method is a two-dimensional moving grid 

technique based on the minimization of the PDE residuals, and is obtained by 

approximating the PDE solution with finite element basis functions. 

Lagrangian-Eulerian Methods 

A fundamentally important consideration in coping with problems with strong distortion 

of the continuum is determining the relationship between the deforming continuum and 

the mesh of the computing domain. Two classical descriptions of motion can be used, the 

Lagrangian approach and the Eulerian approach. Originally, Arbitrary Lagrangian-

Eulerian (ALE) methods were developed by Noh [3], Franck and Lazarus [4]. Trulio [5]. 

Hirt et al. [6]. Donea et al. [7] surveyed this approach and the applications in fluid 

dynamics. 

Lagrangian Algorithms: 

In Lagrangian based algorithms, widely used in solid mechanics, each node of the 

computational grid follows the material particle during motion. In this approach the grid 

points are connected to the same material points at all times. 

Eulerian Algorithms: 

In algorithms based on the Eulerian approach, commonly used in fluid dynamics, the 

computational mesh is fixed and the continuum moves with respect to the grid. 

Lagrangian-Eulerian Algorithms: 

The ALE algorithms allow the nodes of the computational mesh to move as in the 

Lagrangian fashion or be fixed as in the Eulerian fashion or in some arbitrary way. The 

7 



advantage of this approach is that greater distortions can be handled with more resolution. 

The fundamental ALE equation is 

The function / represents a physical quantity for the particle X w ith the reference 

coordinate x held fixed, and c is the relath e speed between the material and the reference 

system. 

2.3 Unsteady Incompressible Flow Equations 

Generally, the incompressible Na\ ier-Stokes equations are formulated in \orticit\-

streamfunction formulation or the primithe variables formulation, the variables being 

velocity components and pressure. Since there is no direct link between \elocity and 

pressure in the continuity and momentum equations for incompressible flow. the major 

issue in solving the Na\ ier-Stokes equations is pressures elocity coupling. From a 

physical point of \iew. Na\ ier-Stokes equations can be categorized as stead\ and 

unsteady. Numerical procedures are essentially the same for both categories. There are 

two points worth mentioning here. First, the "'time" in stead} problems is not a ph\ sical 

time, while time has a physical meaning in unsteady problems. Therefore, for unstead\ 

flow simulations, the time step should match the actual physical time increment, and the 

maximum allowable time step may be determined by the desired accuracy or a stability 

criterion. If an unsteady solver is used to simulate steady flow problems, the maximum 

allowable time step is indicated only by the stability criterion. The process of marching in 

time to a steady-state is closely associated with the iterath e solution of the stead} flow-

equations. Secondly, it is important to note that for an unsteady problem the initial 

8 

file:///orticit/
file:///elocity


conditions are real physical conditions at time = 0, while for a steady problem it is just an 

initial guess. 

2.3.1 Vorticity-Streamfunction Method 

The main advantage of the vorticity-streamfunction formulation is that there is no need 

for pressure-velocity coupling, since the momentum equations are combined to eliminate 

the pressure gradient terms, yielding an equation for vorticity. Ghia et al. [8] proposed a 

direct method for the solution of unsteady incompressible flow equations in generalized 

curvilinear coordinates based on the vorticity-streamfunction formulation. The transport 

equation was solved by an alternating direction implicit method and the streamfunction 

equation was solved by direct block Gaussian elimination. 

Ewing et al. [9] proposed a fourth-order equation for streamfunction and solved the 

equations by finite differencing on a uniform grid. A multilevel technique was applied for 

treating the ill-conditioned system of linear algebraic equations representing the fourth-

order system. 

There is a large body of literature using the vorticity-streamfunction formulation to test 

important issues that arise in CFD, such as the capability and limitations of new solution 

algorithms, effects of meshing, comparisons of different discretization techniques, 

implementation of boundary conditions, etc. However, extension of this formulation to 

3D is extremely cumbersome, and hence it is not useful for practical application to 

realistic flow situations. 

2.3.2 Artificial Compressibility Method 

Artificial compressibility method was first introduced by Chorin [10] for steady flows, 

and extended to unsteady flows by Peyret [11]. This method is still very popular for the 
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simulation of steady incompressible flows, and the e\ olution of the method has been 

outlined in [12] 

The artificial compressibility scheme invoh es adding a time denvative of pressure to the 

continuity equation, 

£ + i ( £ + £ ) = <, (2 4) 
dt T \dx dyJ v ' 

The quantity T can be interpreted as artificial compressibility of the fluid The continuity 

equation along with the momentum equations are solved until com ergence to the stead} -

state is reached, which implies that — vanishes, v\ hich means divergence of velocity 

becomes zero Merkle and Athavale [13] extended the application of artificial 

compressibility method to three-dimensional unsteady calculations Tang and 

Sotiropoulos [14] introduced a fractional step artificial compressibility method for 

unsteady.. three-dimensional, incompressible Na\ ler-Stokes equations This approach 

applies the ideas from both the standard, dual-time stepping artificial compressibility 

iteration scheme and pressure-based fractional step formulations To obtain time-accurate 

solutions, pseudo-time derivatives of pressure and velocity fields are introduced into the 

continuity and momentum equations, respectively The resulting system is iterated until 

convergence is reached at each time step The CPU time per physical time step for 

artificial compressibility methods is considerably large This deficiency is somewhat 

overcome by applying fractional step methods In fractional step methods, an 

intermediate velocity field is calculated first This velocity field is projected into the 

divergence free space by solving a Poisson equation. 

10 



2.3.3 SIMPLE Method 

SIMPLE stands for Semi-Implicit Method for Pressure Linked Equations, introduced by 

Patankar and Spalding [15] in 1972. In this method, a pressure field is guessed. The 

momentum equations are solved but the resulting velocity field does not satisfy the 

continuity equation due to the inaccurate pressure guess. The pressure and velocity fields 

are then corrected successively until a converged solution is obtained. The words semi-

implicit in the name SIMPLE has been used to acknowledge the omission of the 

summation of velocity corrections of neighbouring points. This represents an indirect 

influence of the pressure correction on velocity. 

Van Doormaal and Raithby [16] have introduced some enhancements for the SIMPLE 

method. As mentioned before, the summation of velocity corrections at neighbouring 

points is neglected from the velocity correction equations in the SIMPLE method. In an 

effort to enhance the SIMPLE method, Doormaal and Raithby suggest that this term can 

be subtracted from both sides of the equation and hence a new velocity correction 

equation is obtained. This method is called SIMPLE Consistent (SIMPLEC). Setting the 

pressure correction to be zero where pressure is specified is another recommendation 

made by them. 

Raithby and Schneider [17] introduced a method of treating the velocity-pressure 

coupling for internal flows that are parabolic in one coordinate direction. They introduced 

the following equation, where subscript P denotes the point at which differencing is done, 

11 



The momentum equations are solved, which gives vp. and consequently fp is calculated 

Then AQ. which is chosen m a way to make the total mass flow rate correct, is calculated, 

follow ed by a correction to the \ elocity field. 

iP = vp + fpAQ 

2.4Unstead\ Flow Solution on Domains with Mo>ing Boundaries 

Whilst many solutions of the unstead\ \avier-Stokes equations ha\e been described, 

there are only a limited number with moving boundanes [18] \ lecelli [19] applied the 

marker-and-cell method to solve free-surface problems Peskin [20. 21] modeled cardiac 

flows He replaced the boundary movement by a distribution of forces that satisfy the 

boundary conditions Daly [22] used a mixed Lagrangian-Eulenan approach for studv mg 

the pressure distribution in flexible tubes 

Ralph and Pedley [18] modeled the flow in a channel with a moving indentation using the 

\ orticity-streamfunction formulation and the finite difference method They incorporated 

the boundary movement into the flow equations by applying a time-dependent 

transformation in such a way that the computational domain remains a fixed rectangle 

Since they applied an explicit scheme, thev had to use small time steps to preserve 

stability 

In 1990, Demirdzic and Penc [23] simulated the same problem b\ integrating the 

gov erning equations for an arbitrary moving control v olume. w ith pressure and Cartesian 

velocity components as dependent variables Since they used fulh implicit temporal 

differencing the method is stable at all time steps SIMPLE algorithm was used for 

pressure-v elocity coupling 

12 
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Stngberger [24] proposed a perturbation method to solve the Poisson equation, which is 

widely used in the computation of unsteady incompressible Navier-Stokes equations, on a 

moderately deforming grid. 

Wu and Rath [25] proposed a finite difference solution of incompressible Navier-Stokes 

equations for flows with rotation and moving boundary on a nonstaggered grid, based on 

a SIMPLE-like method. 
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C HAPTER 3 

DYNAMIC GRID GENERATOR 

3.1 Goals of Grid Generation 

Numerical grid generation arises from the need to discretize the partial differential 

equations of fluid dynamics in order to compute their solutions on physical regions with 

complex geometry [26]. 

A mesh is a discretization of a geometric domain into small simple shapes called 

elements or cells. Numerical grid generation, in terms of geometry, is categorized as 

structured or unstructured. 

Structured Grids: 

Structured grid generation has its roots in the U.S. with the work of Winslow and 

Crowley at Lawrence Livermore National Lab in the late 1960s and in Russia by 

Godunov and Prokopov at about the same time [26]. Structured numerical grid generation 

is an algorithm procedure that orderly distributes a finite number of computational nodes 

over a physical field in such a way that some coordinate (grid) lines are coincident with 

each segment of the boundary of the physical domain [27]. Structured grids can be 

generated algebraically or as the solution of PDEs [2]. 

A structured mesh is characterized by regular connectivity that can be expressed as a two-

or three-dimensional array. This restricts the element choices to quadrilaterals in 2D or 

hexahedral in 3D. Some advantages of structured meshes that generally hold for most 
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applications are simplicity, availability of code, and suitability for multigrid and finite 

difference methods. From a flow solution point of view, structured grids usually allow 

more effective grid clustering in regions of high flow gradients, such as boundary layers 

or shock regions, thereby improving the accuracy of the numerical solution. The main 

disadvantage is that it is often difficult to construct a good structured mesh in highly 

irregular domains. This problem is somewhat alleviated by using multiblock structured 

grids. 

Unstructured Grids: 

An unstructured mesh is characterized by irregular connectivity which is not readily 

expressed as a two- or three-dimensional array in computer memory. This allows for any 

possible element that a flow solver might be able to use. Compared to structured meshes, 

the storage requirements for an unstructured mesh can be substantially larger since the 

neighbouring connectivity must be explicitly stored. A hybrid mesh is a mesh that 

contains structured portions and unstructured portions and, as such, could be classified as 

a special case of a totally unstructured mesh. 

The main advantages of unstructured meshes are that they conform to the flow domain 

more easily and allow element sizes to vary more dramatically. 

3.2 Dynamic Grid Generation 

One of the areas of research interest has been grid generation as a function of time, 

generally referred to as dynamic grid generation. In other words, grid points are allowed 

to move within the flow domain as the solution proceeds. Grid movement can be because 

of the change of the shape of the boundaries of the domain, or for the purpose of adapting 

the grid with the physical solution of the problem at hand. The first scenario usually 
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occurs for unsteady flow problems, where forces are acting on the domain boundaries, 

causing them to move or deform. The second case occurs in problems in which the grid 

points adjust themselves in response to the development of the solution of the physical 

problem being solved on the grid, known as adaptive gridding. The goal is to concentrate 

the grid points in the regions where the gradients of the physical variables of the problem 

are large. 

There are some considerations to be taken into account in dynamic mesh generation. A 

major issue is that the grid generation algorithm should be done in a way which ensures 

that no region will be void of points. For practical applications, it is also essential to keep 

the computational time spent on the grid generation as low as possible. 

3.3 Grid Generation Techniques 

The use of numerical techniques to generate curvilinear grids is considered to be one of 

the most important enabling technologies in computational fluid dynamics [28]. These 

techniques can be divided into three categories, conformal mapping system, algebraic 

systems, and partial differential equations systems. Conformal mappings are limited to 

2D problems and require knowledge of complex variables, whereas algebraic and PDE 

methods are applicable in either 2D or 3D. Algebraic grid generation involves computing 

the nodal coordinates by interpolation of the boundary points. Different interpolation 

functions can be used for this purpose, the most popular method being transfinite 

interpolation. Partial differential equations systems can be elliptic, parabolic or 

hyperbolic. There are several important considerations when using partial differential 

equations to generate the grid system: 

• Most numerical solution algorithms for PDEs must be applied on grids describing 
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the physical domain of interest 

• Accurate application of boundary conditions requires that grid lines coincide \\ ith 

physical boundaries This also tends to reduce the logic in computer codes 

applying the numerical techniques 

• Solution accuracy and finite computational resources require grids to be 

concentrated in regions where there are high gradients of the flow \ arables 

3.3.1 Transformation of Coordinates 

The pnmary goal of transforming the physical coordinates to a simpler computational 

region is to remove the complexity of the shape of the physical region The 

computational domain is also referred to as the logical domain An effectn e approach to 

solving PDEs with complex boundary geometry and different scales of motion in the 

solution domain is to transform the physical domain and equations of motion to an 

idealized rectangular computational domain, where a flow solution algorithm can be 

applied In the terminology of transformations, the Jacobian of the transformation is 

required to be nonzero to ensure that the transformation is lmertible (Figure 3 1) A 

rectangular grid system is first generated in the computational space and then mapped to 

physical space Transformations containing a point with zero Jacobian are called folded, 

avoiding a folded transformation is a major objectne of grid generation algorithms Also, 

it is well known that the error in the approximations of the flow equations depends not 

only on the derivatives of the solution but also on the rate of change of grid spacing and 

the departure from orthogonality [29] 
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Figure 3.1 Grid System in 2D Physical and Computational Space 

3.3.2 Elliptic Grid Generation 

Elliptic grid generation, based on solving a system of elliptic PDEs. is the most 

commonly used method for generating a structured curvilinear grid on domains with 

known boundary. One of the advantages of an elliptic grid generator is that it will 

generate a smooth grid. Smoothness of the grid, which provides a measure of spacing 

between the grid lines, is an important factor when solving the flow equations on that 

domain. For 2D elliptic grid generation, suppose that f and r] are the two coordinates 

which define the curvilinear coordinate system: x and y define the rectangular 

coordinate system. The goal is to generate a distribution of points such that £ and r] 

obtain their maximum and minimum values on the boundaries and change monotonically 

in the interior. This can be achieved by solving the elliptic Poisson equations 

fxx+ $yy = P(S.ri) 

Vxx+ Vyy = Qtf.V) (3-1) 

where P(£,77) and Q(^,t]) are control functions, to be specified by the user in order to 

achieve some desirable characteristics for the resulting grid system, such as clustering 
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around some point or line, or orthogonality near the boundaries. 

Grid metrics are calculated as 

s i i = *} + y} 

0i2 = x^xv + y^yn 

922 =x% + y% (3.2) 

and the Jacobian is given by/ = x^yv — xvy^ 

It is not convenient to solve Equations (3.1), since they are formulated in the physical 

space where the domain is irregular. Hence, these equations are transformed to the 

computational space, taking the form 

022*« - 2012^7, + 011*7,7, = -J2(P*s + QXr,) 

g22y^ - 2012^7, + anyrm = -J\Pys + Qyn) (3.3) 

These are two nonlinear coupled elliptic PDEs for functions x(f, rf) and y(<f, rf). 

The straight boundaries in the computational domain must be the images of the curved 

boundaries of the physical region. Discretization of this set of equations must conform to 

the boundaries of the region. The boundary conditions for Equations (3.3). which are 

solved on the rectangular computational domain, are the known boundary values in the 

physical domain, as illustrated in Figure 3.2. 
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Figure 3.2: Boundary Conditions for Elliptic Grid Generation 

3 J J Control Functions 

Control functions are functions used to control the specific distribution of grid points in 

the domain. In the absence of control functions, i.e.. when P — Q = 0. the generation 

system tends to produce the smoothest possible uniform grid, with a tendency for grid 

lines to concentrate over convex boundary regions and to spread over concave regions 

[2]. Generally speaking, the P function controls spacing in the £ direction and the Q 

function controls spacing in the 77 direction. Various forms of these control functions 

have been suggested in the literature [2. 30]. 

3.4 Perturbation Method for Dynamic Grid Generation 

For a static grid, the Cartesian coordinates x and y are functions of f and 77. For a 

dynamic grid, x and y are also function of time t. In general, the grid movement could be 

caused by changes in the boundaries of the physical domain, or by requiring the grid to 

20 



adapt to the development of the flow. In this section we devise a technique that is 

applicable to mesh generation on domains for which the boundaries of the domain are 

gradually deforming. The boundary shape is allowed to deform slightly over one time 

step At, from one time t„ to the next time t„+i. Knowing the boundary nodes 

displacements from one time to the next, the aim is to obtain the location of the interior 

nodes at the new time. Elliptic grid generation method is used as the fundamental tool for 

the grid generation. 

Assume that an interior point with coordinates (x,y) at time t„ moves to a new 

location (x + x',y + y') at time t„-j. Elliptic grid generation, Equations (3.3), is used as 

the basis to generate the grid at time /„ /. However, the system of equations is simplified 

by assuming that x' and y ' are small, resulting in a new system of linear equations which, 

upon solution, gives the amounts of perturbation of all interior nodes. The elliptic system 

(3.3) at time t„+i takes the form 

S2n2+10^ + * '«) ~ 25in2+10^ + X'fr) + 5 ? l + 1 ( ^ + X'm) 

= -(/n+1)2(Pn+10* + *'?) + Qn+\xv + *'„)) (3.4) 

022+1(y« + / « ) - 2g^1(y^ + y'fI,) + ^ O v ? + ?'»»»,) 

= - ( / n + 1 ) 2 ( P n + 1 (yf + y' f ) + Q"+i(y„ + y'^)) (3.5) 

where superscript w+1 indicates the quantity is evaluated at time ?„+;. Using Equations 

(3.2) and neglecting quadratic terms in the small quantities x and y', the grid metrics and 

the Jacobian of the transformation are approximated as follows: 

0ii+1 = (*? + * » 2 + (y^ + y'^) = *f +*J- + 2x^x\ + y\ +y^+ 2yfy'f 

* x\ + y\ + 2xfx> + 2y^y'f (3.6) 
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9i2+1 = (*? + *>)(** + x\) + (yf + y'f ) (y„ + y' J 

= x(xv + Xfx'v + x'fxv + x\x\ + y ^ + y^y'^ + y'fy,, + y\y\ 

« x ^ + y^y,, + x ^ + x'fx,, + y^y'v + y '^yv (3.7) 

9221 = (*„ + x'r,)2 + (y„ + y ' J = x2 + -*^ + 2x„x'77 + y* + ^ + 2y77y'7? 

« x2 + y2 + 2xr]x\ + 2yr]y'r} (3.8) 

(T+1)2 = (Jn +J)2 * (/n)2 + # + 2/n7' (3.9) 

The termy can be evaluated in terms of derivath es. 

ln+1 = (*? + *>) (^ + y'J - (*, + *',) (y? + y'f) 

« xfy,, - x ^ + x^y' + x'^yv - xvy . - x\y^ (3.10) 

ln J' 

Therefore, 

/ ' = Xfy'v + x\y^ - xny'^ - x\y$ (3.11) 

Substitution of these grid metrics and the Jacobian into the elliptic grid generation 

system, Equation (3.4) results in the following equation for x at time /„_; 

L.H.S. = 

(x2 + y„2)x^ + 2 (xrjx'r, + y^y'v) x^ + (x2 + y*)x'^ - 2(x?xv + y^x^ 

- 2 (xfx'v + Xrjx'f + y^y'v + yny\) xf„ - 2(xfx7? + y^x'^ 

+ (xf + y\)xm + 2 [x^x\ + y(y'f) xvv + (xf + yl)x'vv 

= (A + yl)x^ - 2(xtxn + y^)x(v + Of + y})xw +2 {xnx\ + yr,y'v) * « + 

2 (x fx' f + ysy\) xm - 2 {xp\ + xvx'^ + y^y'v + y^y\) xf„ + (x2 + y„2)*'re + 

(xf + y})^ - 2fox„ + y^x'^ (3-12) 
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and R.H.S. = 

(( /n)2 + 2]nn[{Pn + p-)fa + * » + (Qn + Q")(xv + *'„)] 

= - ( ( / n ) 2 + 2JnJ')[Pnx^ + Pnx\ + P'xf +-P^r+ Qnxv + Qnx'v + Q'xv +#^&] 

~ - ( / n ) 2 ( P n ^ + <?%) - (Jn¥(Pnx'i; + P"xf + Qnx'v + Qxv) + 2JnJ'(Pnx^ + 

Qnxv) (3.13) 

where we have written Pn+1 = Pn + P and Qn+1 = Qn + Q 

The bold terms on the L.H.S. and R.H.S. define the basic full elliptic grid generation 

equation, which has been satisfied at the previous time and therefore are canceled out. 

Hence, using (3.11) and collecting all the x' terms on the left, the equation which should 

be solved for x (£, rf) is, 

(x* + yflx'tf - 2(x^xv + y^yr,)x)r, + (*? + yf K ™ + 2{x^xm - xvx^)x^ + 

2(xvx^ - x ^ x ^ + (/B)2(Pnx> + Qnxv) + 2r(Pnx; + 0 % ) ( y , x > - yfx'„) = 

-2yny\x^ - ly^y^xm + 2yvy^r} + ly^y'^x^ - (Jnf{x^P + xvQ') -

2Jn(Pnx; + Qnxv)(x^y'v - xny\) (3.14) 

The derivatives of x and y on the R.H.S. are known values from the grid at the previous 

time, and the derivatives of y' will be taken as known from the previous iteration during 

the iterative solution process. This equation is a linear elliptic PDE for the displacement 

of the jr-coordinate of the grid nodes. Note that this equation also involves the known 

displacement of the v-coordinate, i.e. y', from the previous iteration. 

A similar equation applies for y (f,/?), 

W + y%)y 'x - 2(x^xv + yp^y'to + ( 4 + y})y'nr) + 2 ( 3 ^ - y^y's + 

2(y,y« - y^n)y'r, + 0n)2 ( > y f + Q V „ ) + 2p(pn
y^ + <?>„) fay^ -
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xtf)) = -2x1lx\y^ - 2xfX'fyvr, + 2xr)x\y^r] + 2x^xT)y^T] - {Jn)2{y^P' + ynQ') -

2/n(pnn + Qnyn)(y(x'v ~ yvx'0 (3-15) 

The x and y derivatives on the R.H.S. are known values from the grid at the previous 

time and the x' derivatives are known from the previous iteration. 

The amount of perturbation of the boundaries, which defines the boundary conditions on 

x' and y', is known prior to the solution of Equations (3.14) and (3.15). Figure 3.3 depicts 

this concept. 

(Xb>yb) 
<Xb -^xb>yb +y'b) 

l n - i 

Figure 3.3: Illustration of Boundary Conditions for Domains with Moving 

Boundaries 

Hence, we use an iterative procedure to solve for x' and v Second order central 

differencing is applied for all derivatives of x' on the L.H.S. The resulting finite 

difference equation at (i,j") will take the form, 

(x}+y} | 2xvx^ 2XfXfr, t J*Q 2]{Px^Qxn)y^ 

AT; 2 2Ar] 2ATJ 2ATJ 2Arj 
[ ) * u + i + (: 

xf+y| 2XVXK | 2x(x(r, 
Ar;2 2AT/ 2ATJ 
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)2Q , 2j(Pxf+Qxv)y^\ ^ , /xg+yj , 2x^xm 2x,x f t y2p 2y(Px?+Q*„)y7?\| ^. 
i ^ + 2 ^ ; X ^ - 1 + \ , ^ ? ^ + 2Af 2Af + 2Af + 2A? J * ' + U + 

(tf+y2- 2^*iw , 2 ^ ^ » / 2 P 2/(p^+<?^)y>,\ - f ?
y l + y | ? *3 + yf \ r , 

V M2 2tf + 2Af 2M 2M ) l~hJ V ^ ^ I lJ 

H : ^ i ) ^ w « + (2a^)*-. tv,-. + (2a^S)*.-w« + 

]2{xK?' + xnQ') - 2](Pxs + Qxv)(Xfy n - *„y'f) (3.16) 

where the coefficients are known from the previous grid (grid at the previous time) and 

evaluated at (£,/)• Point-Successive-Over-Relaxation method is applied for solving the 

above equation. Solving the Equation (3.16) iteratively will give the amount of 

displacement of interior nodes, xl}. 

A similar equation applies fory i ;. central differencing is applied for the derivatives of y 

on the L.H.S. The resulting finite difference equation will take the form 

M+y{ | Zyuyff &&& { J2Q 2j(Pyf+<?y,,)xA . /sf+yj 2y,y f f 2yfy?„ 
V A772 2ATJ 2A?7 2A77 2A/7 ) " i.J + 1 \ AT;2 2A7? 2Ar; 

72Q . 27(py?+Qyr,>A • 
2Ar; 2A77 / y ij-l 

f*§+y| , zygyiw _ 2y»yfr, y^p 27(pyg+Qy„)s„\ /s2+y2 _ 2y?y»» 2y„yfl| _ 

V A£2 2Af 2Af 2A£ 2A£ / ̂  i+lj \ A?2 2Af 2A£ 

2A? 2Af Jy 1-1J V AT;2 \^ ) y i.j \ 4Af AT; / y i+lj + l 

f n ^ ^ + y ^ A ,- f 2 ^ ^ + y ^ \ - f 2
X fX , |+y*y i ,W' 

V 4AfAr; J y i+l j ' - l V 4A^AT7 i ' K j + l T l 4A?Ar; / ^ t - l j - 1 

- z y i j y ' , ^ - 2y?yV*w + ^ V * ^ + tyy'^* - (Jn)2(xtp' + x
vQ) -

2j(Pnx^ + QnxT,Xx^yri-xvy)) 

(3.17) 
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Point-Successive-Over-Relaxation is applied for solving Equation (3.17) for y \ .. 

The solution algorithm is to solve for x\j and y\ . respectively point by point until the 

whole domain is swept once. This procedure, sweeping across the domain point-by-point, 

continues until convergence. 

Whenever a grid point is about to fall outside of the domain, the grid is regenerated by 

full elliptic grid generation once and then the perturbed method is continued. 

3.5 Results 

The perturbation method described in section 3.4 is applied on different geometries and 

the grid qualities are compared to the grid quality of the grid generated by the full elliptic 

grid generation system. Note that in the following cases T represents the period of 

oscillation. 

Case I: Grid Generation on a Domain with a Moving Indentation (0 < t < T) 

Figures 3.5 to 3.8 demonstrate that the grids generated by the linear perturbation method 

and the full elliptic equations are almost identical. The overall quality of these grids will 

be discussed in section 3.5.1. 

26 



2 -

1.5 -

\ -——-——-—-—— 

_ 
_ 

0 5 - -
— 
-
— 

n J L J L 1 

' 

_ i J. t : 

1 ; | 

.1 L _l 

0 
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Figure 3.5(a): Grid Generated b> Perturbation Method at t — -

Figure 3.5(b): Grid Generated by Full Elliptic System at t = -
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Figure 3.6(a): Grid Generated by Perturbation Method at t — -
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Figure 3.6(b): Grid Generated by Full Elliptic System at t — -
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Figure 3.8(a): Grid Generated by Perturbation Method at t = T 
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Case II: Grid Generation on a Domain with a Moving Sine \Ya\ e (0 < t < F) 

In this case a sine wave moves along the lower boundary and, as seen from Figures 3.10 

to 3.13. there is \ en little difference between the grids generated by the two methods. 
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Figure 3.10(a): Grid Generated by Perturbation Method at t = -

1 5 -

0 5 

-0 5 

Figure 3.10(b): Grid Generated by Full Elliptic System at t = -
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Figure 3.11(a): Grid Generated by Perturbation Method at t = -
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Figure 3.13(a): Grid Generated by Perturbation Method at t = T 

Figure 3.13(b): Grid Generated Full by Elliptic System at t = T 
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3.5.1 Grid Quality 

A. Global Functionals 

The orthogonality functional (/0) and the Modified Liao functional (/ML), defined in 

Equations (3.18) and (3.19) respectively, are introduced as a measure of the quality of the 

grid generated by the perturbation method and the full elliptic system. The results for 

Case II at time t = - are shown in Table 3.1. For both functionals, the minimum value 
4 

obtained by the perturbation method is only slightly higher than that obtained from the 

full elliptic generator. 

U U 011522 

-1 C^-r911+9 22\2. /M, = J070 C ^ ) 2 ^ (3.19) 

Perturbation Method 

Elliptic Method 

Orhogonality 
Functional 

45.161493 

44.391483 

Modified Liao 
Functional 

16.168057 

15.998572 

Table 3.1: Comparison of Grid Functionals at t — - (Case II) 

B. Skew Angle 

The angle created by £ and 77 lines crossing each other is called the skew angle and can 

be calculated at any grid node from 

e = ™ « - i ( 9l2 •) 
yJ9ll922 

The skew angle at some typical points are recorded in Table 3.2. 
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Coordinates 

i = :o.j=: 

i = 40.j=8 

i = 20,j=5 

Perturbation Method 

89.371836 

"2.936906 

Elliptic Method 

96.873012 

72.83026" 

94.994802 95.190263 

i 

i = 40.j=15 80.323625 S3.586S" 

T 

Table 3.2: Comparison of Grid Skew Angles (deg) at t — - (Case II) 

Considering these tables, it can be seen that the grid generated by the perturbation 

method not only preserves the qualities of the grid generated by the full elliptic system 

but improves these qualities at some points. It should also be remembered that the main 

advantage of introducing this new grid generator is to achieve a reduction in 

computational time. For instance, in these examples, the computational time consumed 

for generating the grid with the perturbation method was 1 5 of the time required for 

generating the same grid with the full elliptic system. 
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APTER 

4 FLOW SOLVER 

4.1 Introduction 

This chapter concentrates on solving the two-dimensional, unsteady incompressible 

Navier-Stokes equations in general curvilinear coordinates and non-conservative form. 

The continuity and momentum equations are written in dimensional form and discretized 

in computational curvilinear space. The velocity field is marched in time using the 

momentum equations, which are solved implicitly. To ensure conservation of mass, a 

SIMPLE-like approach for unsteady flows is used to derive a pressure correction 

equation, which also gives velocity corrections and the pressure field at the next time. 

This approach is an extension of the method introduced by Zogheib and Barron for steady 

flows [31]. 

4.2 Flow Equations 

The governing unsteady flow equations in general curvilinear coordinates (£, rf) and non-

conservative form are 

Continuity equation: 

(x«f + TlxUrj + $y Vf + T]yVv = 0 (4.1) 

u-momentum equation: 
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"t + fo + "fcr + V*y)Uf + 0?t + urlx + ™7yH 

+ (txx + Syy)^ + (Vxx + Vyy)^} 

(4.2) 

v-momentum equation: 

vt + (& + ufx + v$y)vi. + (jit + ur]x + vt]y)vn 

+ ^xVx + SyVy)vfv + (%xx + Syy)vs + (T]XX + T)yy)vv} 

(4.3) 

where u and v are the velocity components in the x and y directions respectively, p is the 

density, p is the pressure and v is kinematic viscosity. The quantities ft, %x, £y. 7yt. 77̂  

and T]y are metrics of the transformation which are given by 

?t 

> x : 

»7x = 

^y = 

^ y 

- * t 

7 

~7 

7 

•yr/ + yjxv 
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where / is the Jacobian of the transformation from Cartesian coordinates to curvilinear 

coordinates, ie., 

= d{x,y) = 1 
1 d^,V) dtf,V) 

d(x,y) 

4.3 Discretization of the Momentum Equations 

A staggered grid with N points in the £ direction and M points in the r\ direction is 

applied for discretizing the momentum and continuity equations, with A% = Ar\ — 1. The 

u and v values are stored at i — l,j and i,j + 1 locations respectively, and p is stored at 

i,j as shown in Figure 4.1. Upwinding is used for convective terms and diffusion terms 

are second order central differenced. Pressure gradients are approximated by second 

order central differencing. For calculation of grid metrics, central differencing with 

spacing A£ and AT? between the nodes is used at interior nodes. The grid metrics on the 

West and South boundaries are second order forward differenced and the grid metrics on 

the East and North boundaries are second order backward differenced; refer to [32] for 

details of differencing various terms. 
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Figure 4.1: Staggered Grid with Notations and Storage Locations 

If At is the time between two successive grid geometries at times tn and tn+1. during 

which the grid nodes change their positions from (xn y n) to (x n + 1 .y n + 1 ) . then the 

following first order approximations are used in the expressions for £t and r]t, 

xn+l _ xn 

At 

yt ~ 
y-n+1 _ y-n 

~A~t 
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4.3.1 Discretized Equations at Interior Nodes 

Using the Implicit Euler scheme for the time march, the discrete u- and v- momentum 

equations at interior nodes are written as 

Pi-2j ~ Pij 
apWi-ij + °*Ui-xj+2 + % u i - i j - 2 + % « i - 3 j + aEui+lj = <fx — — - + Su 

(4.4) 

Pij ~ Pi j+n 

bpVij+i + bNviJ+3 + b s Vg-i + bwv,_2J+1 + bEvi+2J+1 = rjy ' ' " + Sv 

(4.5) 

Denoting U = u%x + vt;y and V — UT]X + vr)y and with At; — AT] = 1. the coefficients 

take the form 

i t 2 + 2 + 2 2 2J'au 2J: 

• in I<-'-' ^ « min(0J ) v v 

ay =min(0. ^ ) — + -gu V-77 
!?'._,, | 2 2 4J~au 4 

._ r,_u » max(0.r,_1,.) u v 
as =-max(0, —) — - rgu Vn 

IT-..,! - 2 4 J - " 4 ' 

,_ £',-_,.,- .f, max(0.t/ ) y „ 
o„- =-max(0 . — ) — Tg^ V \ -

| l M J 2 2 4J - - 4 ' 

. £",-_,., = min(0, £/,_,.,) v v 

aF =min(0, —) — + r ? ^ V">r 
X _ , . , l 2 2 4 J - * - 4 " 

and 

S*=-7- + -^7\P,.,-2- PL,-2~ P,-2.,-i 'P.-:. - : ) 

The coefficients in the v-equation are the same as in the //-equation, but all variables and 
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metrics are evaluated at the v-nodes ij+l instead of the w-nodes z'-l J and 

-^JTgl2(r,+l ,+3 -V,-2,J+i -V ,+2, j - l +V,-2.j-l) 

These equations are an extension to unsteady flow of those derived by Barron and 

Zogheib [33], the first terms representing extra terms due to the time derivative terms in 

the momentum equations. All the terms in the Equations (4.4) and (4.5) are evaluated at 

time tn + 1 except those with superscript n which are evaluated at time tn. For the purpose 

of linearization the velocity terms in the coefficient and the pressure terms are evaluated 

at the previous iteration within time tn+1. 

4.3.2 Discretized Equations at the Boundaries 

Discretizing equations at the boundaries depends on the problem to be solved and the 

type of boundary conditions to be applied. The main problem considered in this chapter is 

a channel with a moving indentation on the South boundary. The channel is rectangular 

with fully developed parabolic flow throughout the channel at the initial time. As time 

proceeds the boundary moves up until the maximum amplitude is reached and then it 

comes back to its initial position. The oscillation period is the time required for the 

channel to pass one whole cycle. Dirichlet boundary conditions, which means zero 

velocity components (ie., no-slip), are applied along the North and South boundaries. On 

the East boundary, an outflow condition is applied in the form 

du dv 

re"' rra 
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In order to approximate pressure gradients at near-boundary nodes, one-sided 

differencing is used since the pressure values along the boundaries are not known. Along 

the East boundary the condition -^ = 0 is applied at i = N and T 7 - 0 at i = N — 1. 

Refer to [32] for details on discretizing the momentum equations near the boundaries. 

4.4 SIMPLE-like Velocity-Pressure Coupling 

If iTand v'are the discrete velocity fields that result from the solution of momentum 

equations (4.4) and (4.5) corresponding to some pressure field p*, they do not necessarily 

satisfy the continuity equation. Hence, the velocity and pressure fields are corrected as 

u = u* + u' 

v = v* + v' 

P = r+p' (4.6) 

where primes denote corrections. Subtracting the corrected and the uncorrected 

momentum equations will result in equations for velocity and pressure corrections 

ai-l,jui-l,j — LQ-nbUnb + ' 

Kj + lV'i,J+l = ZbnbVnb+ p 

As in the SIMPLE algorithm, these equations are approximated as 

Zx P'l-2,J ~ Pij 
a^Ju^J ~ J 2 

, , _VyP'i,j-p'i,]+2 
Oi.J+iVlJ+1 ~ p 2 

Substituting in Equations (4.6) gives 

£*Pl -2J Pi] . cl 

P 2 u 

VyP'i.rP'ij+2 ci 
•> v 

(4.7) 

(4.8) 

«.-u = i*r-iJ + f x ^ p ! l (4.9) 
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V , - 1 J = V^ + T}y 
P'lJ-p'lJ + 2 

2PblJ+l 
(4.10) 

A similar approach has been suggested by Chung [34]. 

4.4.1 Pressure Correction Equation 

The form of the pressure correction equation is the same as the steady flow case, since 

there is no time dependent term in the continuity equation. Substitution of corrected 

velocity fields into the continuity equation (4.1) results in an equation for correcting the 

pressure field, 

Sx 

, ,GP t , J~P l+2, 
Ui+U+ p z a , , , , P 2 a i+l , J 

, Hxp'i-2.rp'i.j 
- 1 J P 2» t - l J 

+ Vy 

, VyPi.j-Pij+2 
l'+1 P tbi.i+1 

. 7?yP[,;-2-p(,;| 

Rearranging terms gives the pressure correction equation at interior nodes 

C p P t j + CEpi+2j + Cwpi_2j + CNPIJ+2 + CsPi,j-2 

, ul-l,J ul+l,J vl,)+l vl,J-l , f, 
- Sx n ^ ~ "" *>» Vy-

(4.11) 

where 

„ _ _ (Ul+l,)+2 + Ui-l,)+2 Ul+l,j-2 Ul-l,J-2\ 

>P--VX{ 8 ) 

_ , (Vl + 2,J + 1 + Vl+2,]-l ~ Vl-2,J + 1 ~ Vi-2,]-l 

~ < y \ 8 

f* 6? *7y *7y 

) 

4pat+1>J 4pa,_ l j 4pb I J + 1 4p6 I J_1 

C P = 

f2 

Sx 
4 p a , - + i j 
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r — 'x 

Lw — 

CN — 

4pa,_ l i , 

Vy 

4pbl>J+1 

Vy 
Cs~ 4p* lJ_1 

4.4.2 Pressure Correction Equation at the Boundaries 

The velocity components are known at the inlet (West boundary). Since North and South 

boundaries are walls the velocity components are set to be zero along these boundaries. 

When Dirichlet conditions on velocity are known at a boundary, these values are used in 

the continuity equation adjacent to that boundary before (4.9) and (4.10) are substituted 

to obtain the pressure correction equation. In the discretized pressure correction equation 

at the East boundary the link to the outlet boundary side is suppressed by setting CE — 0. 

For a more detailed treatment of pressure equations near the boundaries, refer to [32]. 

4.4.3 Solution Algorithm 

Once all the necessary equations have been derived, the overall solution algorithm can be 

described by the following steps: 

l . S e t n = 0. 

2. Read the mesh data files produced by the mesh generator. 

3. Calculate the grid metrics at the new time. 

4. Set the initial conditions on the pressure and velocity fields over the domain at time 

t = tn. 
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5. Solve the w-momentum equation at all w-nodes. 

6. Solve the v-momentum equation at all v-nodes. 

7. Solve the pressure correction equation at all/?-nodes. 

8. Correct the pressure and velocity fields. 

9. Continue through steps 5-8 until the results (w, v, p) meet a specified convergence 

criteria. 

10. Set the converged results to be the initial conditions for the next time. 

11. If n is less than the specified number of time steps, increase n to n + 1 and go back 

to step 2. 

4.5 Results and Discussions 

In this section the algorithm developed in this chapter is applied to two test problems. 

The first is developing flow in a rectangular channel; the second problem is fully 

developed flow in a channel with a moving indentation along the wall. The second 

problem is of great interest in the literature as a benchmark problem for the validation of 

unsteady codes. It has been experimentally studied by Pedley and Stephanoff [35], and 

numerically studied by Ralph and Pedley [18] using a vorticity-streamfunction 

formulation. Thereafter, Demirdzic and Peric [23] solved this problem with a finite 

volume approach and their results are in good agreement with those of Ralph and Pedley 

[18] and the experimental results of Pedley and Stephanoff [35]. 
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4.5.1 Test Case 1: Developing Flow in a Rectangular Channel 

The purpose of this example is to test the capability of the unsteady code to solve steady 

flow problems by considering the time as iteration, and marching to the steady-state. The 

channel is covered with 371 x 41 grid lines in the x and y directions respectively. The 

channel length is 27.85 cm and channel height is 1 cm. The inlet flow has a uniform 

profile, the media is water at 20°C and Reynolds number based on inlet velocity and 

channel height is 50. 

The results show that the unsteady solver is capable of generating the steady flow by 

marching in time until the steady-state is reached. The tolerances for convergence have 

been set at 10~10, and typical residuals for the w-momentum, v-momentum and continuity 

equations are of the order of at least 10"8, 10"9 and 10~10 respectively. Figure 4.2 compares 

the non-dimensional centreline velocity with the data available from the steady solver of 

Zogheib and Barron [31]. The present method predicts x — 0.301 as the point where 

centreline velocity reaches 99% of the maximum non-dimensional centreline velocity 

(ie.,1.5). This development length is the same as that reported by Zogheib and Barron 

[31]. 
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Figure 4.2: Comparison of Non-Dimensional Centreline Velocities at Different 

Locations from the Flow Entrance 

4.5.2 Test Case 2: Flow in a Channel with a Moving Indentation 

The channel shown in Figure 4.3 covered with 371 x 41 grid lines in the £ and rj 

directions respectively (Figure 4.4a). The un-indented channel has length of 27.85 cm 

(lx = 9.85 cm, l2 = 18cm) and height of b = 1 cm. The inlet flow has a fixed parabolic 

profile, the media is air at 20°C. The geometry of the channel changes with time (see. for 

example, Figure 4.4b) and the grid is generated by the method developed in Chapter 3. as 

illustrated in Figures 3.4-3.8. 
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Figure 4.3: Geometry of Test Case 2 

The height of the bottom (indented) wall is given by [23] 

y(x) 
(h for 0 <x < xr, 

0.5h(l — tanh[a(x - x2)]) for x1 < x < x2, 
0 for x > x3, 

(4.12) 

where a = 4.14, xx = 46, x3 — 6.5b, x2 = 0.5(x! + x3) and 

h = 0 . 5 / w t l - COS^TT^)] 

Here b is the channel height, T is the oscillation period and h^^ = 0.38b specifies the 

maximum blockage of the channel at tf — 0.5. where £y = - is introduced as the time 

fraction relative to the oscillation period. 

The Reynolds number and Strouhal number based on the channel height b. bulk velocity 

UbuUc and oscillation period T are defined as 

Re = 
Uhniifb 

St = 
TUbulk 
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In order to compare directly with the results of Demirdzic and Penc [23], the simulations 

are carried out for Re = 507 and St — 0.037. For the purpose of marching in time, the 

7" 

time step in the unstead\ flow soh er is taken to be Atf = —. 

The inlet velocity profile is 

u = 6Ubulkl(l~l) (4.13) 

Figure 4.4(a): Mesh for Flow in a Channel with a Moving Indentation at ty = 0 

Figure 4.4(b): Mesh for Flow in a Channel with a Moving Indentation at fy = 0. 5 

The velocity vectors (Figures 4.5(a)-4.5(i)) and streamlines (Figures 4.6(a)-4.6(i)) are 

compared at various time steps v\ ith the numerical simulation results available from 

Demirdzic and Peric [23]. In each figure the upper graph depicts results from Demirdzic 

and Penc's simulation and the lower graph is the current research results. Since the 

section before the indentation is not affected \ ery much by the indentation, it is simph a 
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converging channel with rather uninteresting flow features, it is not shown in these 

figures. 

There are a few conclusions which can be made by observing the figures and numerical 

data obtained from the soh er. The maximum velocity occurs at tf = 0.4. The first 

separation occurs behind the indentation between tf = 0.2 and tf = 0.3. Between 

tf — 0.35 and 0.4 another vortex appears on the opposite wall. At about tf — 0.45 the 

third vortex appears on the bottom wall. The vortex building process continues until there 

are three of them on each wall. After tf = 0.7. they start to become weaker until tf = 0.9 

when almost no eddies exist. The strength of the eddies predicted by the present method 

is a little weaker, therefore the smaller eddies are not captured. However, the maximum 

speeds at various times are compared in Table 4.1. and show good agreement with 

previous results. 

*/ 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

Demirdzic and 
Peric [23] 

2.20 

2.53 

2.64 

Present Method 

2.19 

2.48 

2.61 

2.38 2.33 

1.99 

1.73 

1.56 

1.50 

1.51 

1.93 

1.54 

1.51 

1.50 

1.50 

Table 4.1: Comparison of Maximum Velocities at Various Times (TTI/S) 
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Figure 4.5 (a): Velocity Vectors Downstream of the Indentation (tf — 0.2) 

Figure 4.5 (b): Velocity Vectors Downstream of the Indentation (tf = 0.3) 

Figure 4.5 (c): Velocity Vectors Downstream of the Indentation (tf = 0.4) 

Figure 4.5 (d): Velocity Vectors Downstream of the Indentation (tf = 0. 5) 
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Figure 4.5 (e): Velocity Vectors Downstream of the Indentation (tf = 0.6) 

Figure 4.5 (f): Velocity Vectors Downstream of the Indentation (ty = 0. 7) 
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Figure 4.5 (g): Velocity Vectors Downstream of the Indentation (tf = 0.8) 
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Figure 4.5 (h): Velocity Vectors Downstream of the Indentation (tf = 0.9) 
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Figure 4.5 (i): Velocity Vectors Downstream of the Indentation (tf — 1.0) 

Figure 4.6 (a): Streamlines Downstream of the Indentation (tf = 0.2) 

Figure 4.6 (b): Streamlines Downstream of the Indentation (tf = 0. 3) 

Figure 4.6 (c): Streamlines Downstream of the Indentation (tf = 0.4) 
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Figure 4.6 (d): Streamlines Downstream of the Indentation (tf = 0.5) 
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Figure 4.6 (e): Streamlines Downstream of the Indentation (tf = 0.6) 
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Figure 4.6 (f): Streamlines Downstream of the Indentation (tf — 0. 7) 
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Figure 4.6 (g): Streamlines Downstream of the Indentation (ty = 0.8) 
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Figure 4.6 (h): Streamlines Downstream of the Indentation (tf = 0.9) 

Figure 4.6 (i): Streamlines Downstream of the Indentation {tf = 1.0) 
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C HAPTER 5 
CONCLUSIONS 

AND RECOMMENDATIONS 

5.1 Conclusions 

A novel method for dynamic grid generation on two-dimensional domains with moving 

boundaries, with the boundary nodes coordinates prescribed as a function of time, has 

been developed. The full elliptic grid generation system is applied once to generate the 

initial grid on the domain, and a perturbed system of linear equations is obtained from the 

full elliptic equations by assuming a small amount of disturbance at each node. Solving 

the perturbed equations at subsequent times, based on the known amount of perturbation 

on the boundaries, results in the amount of perturbation at all interior nodes. The basic 

advantage of applying this method, rather than solving the full elliptic system for all 

times, is the significant reduction in the amount of time consumed for grid generation. 

Based on our limited tests, we can achieve about 80% reduction in the computational 

time using the grid perturbation method. This could be especially significant on domains 

with fine grids or for 3D domains, for which the computational time considerably 

increases. In order to avoid grid entanglement, the full elliptic system can be applied as 

needed after some time steps. 

In Chapter 4 the finite difference formulation introduced by Zogheib and Barron [31] for 
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steady flows has been extended to unsteady flows. The idea is to apply a SIMPLE-like 

scheme commonly introduced in finite volume formulations to link the velocity and 

pressure, when the momentum and continuity equations are discretized in a pure finite 

difference formulation. Hence, a pressure correction equation is solved for obtaining the 

amount of pressure correction at each grid point on the domain. The velocity and pressure 

fields are then corrected, and the momentum equations and pressure correction equation 

are solved again using the updated values from the previous solution. This procedure is 

resumed at each time step until the results are obtained for that time. The velocity and 

pressure fields of one time constitute the initial conditions for the next time step. 

The grid generator and flow solver are applied to two test cases. In the first case, the 

unsteady solver is used to solve a steady flow problem. In the second, the flow through a 

channel with a moving boundary is simulated. 

5.2 Recommendations 

The method proposed for dynamic grid generation has shown great capability for 

efficiently generating good quality meshes in 2D. This approach can easily be extended 

to surface meshing and 3D volume meshing, where the computational savings will be 

even more significant In the present formulation, the number of boundary nodes and 

interior nodes must remain the same throughout the calculation process, ie., for all time. 

This is related to the fact that the comers of the domain are not allowed to move. There is 

nothing inherent in the approach which forces this restriction, so it should be possible to 

allow movement of the corner nodes as well as insertion and deletion of grid lines as the 

domain deforms. 

Furthermore, the control functions introducing in the perturbed system of equations are 
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simply taken to be zero in the present work, since zero perturbation to the control 

functions seemed to give the best results in terms of less likelihood of grid entanglement. 

A considerable amount of investigation can be done on the behavior of the perturbed 

equations as these control functions change. The improvements which may be realized by 

choosing appropriate control functions include reducing the need for occasional 

application of the full elliptic system and improving the grid quality. 

The results from the current flow solver can be improved in several ways. The time step 

applied in this research is four times larger compared to the time step applied by 

Demirdzic and Peric [23]. Taking a smaller time step can return more accurate results. 

The number of grid points can also be increased, which would reduce any truncation 

errors due to the finite difference approximations. A grid with clustering near the 

boundaries would generate more accurate results, since a finer grid would capture more 

points in the boundary layers, ie., in the regions with high flow gradients. 

The flow solver itself could also be improved. For example, the first order upwinding 

scheme for the convective terms could be replaced by higher order schemes, such as third 

order upwinding, or through the use of Pade approximations. Higher order accurate time 

march methods, such as a second order Crank-Nicolson or fourth order Runge-Kutta 

scheme could be implemented. Improved velocity-pressure coupling procedures such as 

SIMPLEC or PISO could be used to accelerate the convergence. 

Having established, in this thesis, the capability of the proposed approach to solve the 

unsteady incompressible Navier-Stokes equations, the above suggestions are promising 

avenues for future research. 
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