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ABSTRACT 

Lanthanides are known for their distinctive magnetic properties and have been 

utilized for the design of multinuclear single-molecule magnets. Mononuclear trivalent 

lanthanide complexes were prepared from the reaction of tripodal amido ligands 

[P(CH2NHArR)3] and Ln[N(SiMe3)2] (ArR = C6H5, 3,5-Me2 and 3,5-(CF3)2 and Ln = Y, 

Tb, Dy, Ho, Er, Tm and Yb) in the presence of THF. These mononuclear lanthanide 

complexes were then further utilized for the syntheses of d-f heteronuclear compounds, 

using various transition metal complexes such as Pt(cyclooctadiene)Me2, 

Ni(acetylacetonate)2 and Co-porphyrin. 

Mononuclear trivalent lanthanide complexes, prepared using 2-methyl 

anthranilate, contained a rigid chelate ring with six proton environments. The P{ H} 

NMR spectra demonstrated a through-space interaction between the minor lobe of 

phosphine lone pair and the yttrium metal. Binding of a paramagnetic cobalt metal 

complex to the unbound phosphine lone pair provided heterodinuclear d-f metal 

complexes. The EPR spectra and the magnetic study of heterodinuclear complexes 

indicated the through-space antiferromagnetic coupling between unpaired electrons of 

gadolinium and cobalt centers. 

Magnetic anisotropy of lanthanide complexes with more than C2 symmetry can 

be easily measured by their NMR shifts due to the presence of dipolar contribution. 

According to Bleaney, temperature dependence of the magnetic anisotropy of lanthanide 

complexes should be proportional to T2 and the crystal field parameter (a2o). 

^ , | - Z ± = ^ T « 2 o (eq. 1) 

v 



McGarvey later expanded the temperature dependence of the anisotropy by 

including a term that is proportional to T~3 and other crystal field parameters (equation 

2). 

XH-Xl=C2T-2+C3T-' (eq.2) 

From our calculations, we demonstrated the dependence of higher terms (>T2) 

for the calculation of magnetic anisotropy near room temperature. These higher terms 

showed the contribution of 20-90 % of the T1 term. 

Estimation of crystal field parameters (related with magnetic properties) 

generally requires low temperature optical spectroscopy or a SQUID magnetometer. Our 

trivalent mononuclear lanthanide complexes have C3 symmetry, which required 6 crystal 

field parameters, #20, B40, Bea, S43, 563 and B^. Here, we utilized variable temperature 

NMR spectra to calculate the set of crystal field parameters. A best set of crystal-field 

parameters were then obtained by comparing experimental and theoretical magnetic 

anisotropics. In the future, these parameters can be further utilized for the electronic 

structure of lanthanide complexes. 
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Chapter-1: Molecular Magnetism and Tripodal Amido ligands 

CHAPTER-1 

Molecular Magnetism and Tripodal 
Amido Ligands 

1. Overview of Dissertation 

This Ph.D. dissertation covers a synthetic approach to tripodal amido 

ligand-stabilized mononuclear trivalent lanthanide complexes, which act as building 

blocks for heterodinuclear complexes. The aim of this research is to utilize the magnetic 

properties of lanthanides for the assembly of magnetic molecules. This thesis is divided 

into six chapters. The first Chapter provides an introduction to the thesis and is divided 

into two sections: the first section provides a review of lanthanide complexes, their 
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syntheses and applications in molecular magnetism, while the second section reviews 

tripodal amido ligands and other ligands such as ligands containing phosphorus and 

nitrogen donor atoms, tris(pyrazolyl)borate, and their metal complexes. Some of the 

tripodal amido ligands reported in this thesis have also been utilized to generate 

multinuclear complexes with potential application as molecular magnets.1' 

Chapter 2 describes the syntheses of mononuclear trivalent lanthanide 

compounds and their heterodinuclear d-f metal complexes using an appropriate 

transition metal complex to observe magnetic interactions. Chapter 3 describes the 

design of a new tripodal amido ligand with amido nitrogens, ester functionality oxygens, 

and a phosphine donor and its utilization in mono and heterodinuclear complexes 

(published 2007). For the last few decades, due to the presence of unique magnetic 

properties, such as large magnetic anisotropics and large zero field splitting, lanthanide 

complexes have been used for the syntheses of various magnetic molecules and 

heteronuclear complexes. The large magnetic anisotropy of lanthanide complexes 

depends on the crystal field splitting and temperature. The magnetic anisotropy is also 

responsible for large NMR shifts of paramagnetic lanthanide complexes; therefore, the 

paramagnetic NMR shifts are also temperature dependent. Thus Chapter 4 of the thesis 

focuses on the temperature dependent terms of magnetic anisotropy (T2, T3 T") and 

their relevance on pseudocontact shifts. Crystal field parameters, which are essential to 

define magnetic properties of lanthanide complexes, are mostly determined by low 

temperature optical spectroscopy. In Chapter 5, a new approach is proposed by which 

the crystal field parameters of trivalent lanthanide complexes can be determined by 

using variable-temperature NMR spectroscopy. Chapter 6 summarizes this thesis with a 
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few preliminary results obtained from synthesizing heteronuclear d-d metal complexes 

and the potential future approaches towards other heteronuclear complexes. 

The long term goals of this research work are: 1) preparation of multinuclear 

complexes and clusters with specific magnetic properties, and 2) to develop new 

molecular magnets such as single molecule magnets (SMMs). The ultimate goal of this 

study is to incorporate these SMMs and molecular molecules in information storage 

devices. 

1.1 Molecular Magnetism 

Fundamentally, metal complexes exhibit two types of magnetic behaviours: 

diamagnetism (paired electrons) and paramagnetism (unpaired electrons). Unlike 

diamagnetism, in paramagnetism, the spin of one or more electrons does not get 

cancelled by electrons with opposite spin, which causes magnetic dipole. In an external 

magnetic field, the magnetic dipoles present in the compound align with the field, which 

causes magnetization that creates an induced field within the substance called the 

magnetic induction (B). It can be expressed as: 

B = H+4nM (1.1) 

H = external magnetic field 

M = magnetization 

However, commonly the magnetization is expressed in terms of magnetic 

susceptibility (x) and can be written as: 

X = MH (1.2) 
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While diamagnetism is characterized by small negative % values, paramagnetism 

yields large positive x values. Magnetic calculations depend on the population of 

different energy levels (Boltzmann distribution), which defines the magnetic 

susceptibility at any particular temperature. For example, for any unpaired electron 

(S = V-i), there are two levels of interest and in the absence of a magnetic field, the S = V2 

state possesses two energetically degenerate quantum levels referred to as a Kramer's' 

doublet. This degeneracy, after applying an external magnetic field, splits into two 

quantum levels, ms = +V2 and ms = -V2. As shown in Figure 1.1, this splitting of 

Kramers' doublet is called Zeeman splitting. 

< +1/2 

-1/2 

No Magnetic Field Magnetic Field 

Figure 1.1. Zeeman splitting effect of an unpaired electron (S = V2) 

In transition metal complexes, the presence of supporting ligands is responsible 

for the distribution of electrons in J-orbitals, while lanthanide complexes are not 

strongly influenced by ligand field splitting. Traditional equations that describe the 

magnetic moment of transition metal complexes generally fail to account for the large 

unquenched orbital angular momentum of lanthanides. For example, in transition metal 
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complexes, the magnetic moment is the result of only spin angular momentum and can 

be calculated as given in equation 1.3. 

/4ff = gVS*(S+l) (1.3) 

/Jeff = magnetic moment 

g = ̂ -factor 

S = total spin angular momentum 

Calculation of the magnetic moment of the paramagnetic lanthanide complexes 

requires additional parameters such as orbital angular momentum and spin-orbital 

coupling. With the exception of Gd3+ and Eu3+, which have orbitally non-degenerate 

ground states,3 the unquenched orbital angular momentum (L) and spin angular 

momentum (5) interact further to produce several new micro states. These micro states 

arise from the spin-orbit coupling and are defined as the total angular momentum (J). 

The values of J = L+S, L+S-1, L+S-2, L+S-3 L-S. 

For most of the trivalent lanthanide ions, the excited J levels are thermally 

accessible due to the large spin-orbit coupling; thus, their magnetic behaviour is 

generally determined by the ground spin-orbit coupled state. At room temperature, the 

magnetic moment of lanthanides can be defined as shown in equation (1.4): 

/^ff = gWj(J+l) (1.4) 

3 S(S+\)-L(L+l) 
gj = — + 2 U{J+\) 

(1.5) 
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gi = Lande factor 

S = total spin angular momentum 

L = total orbital angular momentum 

J= total angular momentum 

As shown in Table 1.1, paramagnetic lanthanide metal ions exhibit large 

magnetic moment and this property of lanthanides has been exploited to synthesize 

several magnetic materials. ' 

Table 1.1. Magnetic Properties of Ln3+ at Room Temperature. 

Ln3+ 

La 

Ce 

Pr 

Nd 

Pm 

Sm 

Eu 

Gd 

Tb 

Dy 

Ho 

Er 

Tm 

Yb 

Lu 

r 
f 
f 
f 
f 
f 
f 
f 
f 
f 
f 
r 
/ n 

rn 

/ , 3 

/ I 4 

Ground State 

'So 

F5/2 

3H4 

I9/2 

5T 14 

H5/2 

7Fo 

•̂ 7/2 

7F6 

H i 5/2 

5 l8 
4T 

M5/2 
3H6 

F7/2 

'So 

Air" 

0 

2.54 

3.58 

3.68 

2.83 

0.85 

0 

7.94 

9.72 

10.63 

10.60 

9.59 

7.57 

4.53 

0 

XmT(cm3in< 

0 

0.80 

1.60 

1.64 

0.90 

0.09 

0 

7.88 

11.82 

14.72 

14.07 

11.48 

7.15 

2.57 

0 
% neff is the magnetic moment and xmT is the product of magnetic susceptibility and temperature for f-

block metal ions (Ln3+) 

f = no. of^electrons 
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For lanthanide complexes, splitting of ground state multiplets depends on the 

surrounding ligands and can be described by crystal field theory. To fully understand the 

magnetic behaviour of lanthanide complexes, understanding of crystal field parameters 

are require, which are require for the splitting of ground state multiplets. Total six 

crystal field parameters, B2Q, BW, S43, B(,o, B& and 566 are require for lanthanide 

complexes with C3 symmetry. These crystal filed parameters are responsible for the 

splitting of ground state multiplets. In lanthanide complexes while spin-orbit coupling is 

responsible for splitting on the order of 50-2000 cm"1, crystal field splitting is on order 

of 30-200 cm"1.5 Crystal field splitting introduces magnetic anisotropy into the magnetic 

susceptibility, defined as the difference between minimum and maximum susceptibility. 

For the axially symmetric lanthanide complexes, the relationship between magnetic 

susceptibility and anisotropy can be written as given in equations. 1.6-1.8.6'7 

Xzz- x = %(x\\-i±) 0-6) 

X = (X2z+Xxx+Xyy)/3 (1.7) 

Xzz=X|| andxxx=Xyy= X± (1-8) 

Magnetic anisotropy is a temperature dependent term and gives higher values at 

low temperatures due to the presence of the thermally populated ground state. Increasing 

the temperature increases the number of thermally populated excited states, and thus, 

decreases the magnetic anisotropy. In simple way, the magnetic anisotropy of lanthanide 

complex can be determined from crystal field parameters and has temperature 

dependence. Magnetic anisotropy also induces paramagnetic NMR shifts in lanthanide 
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complexes, that allows them to serve as a lanthanide shift reagent, for the structural 

determination of complicated bio and organic molecules.8, 9 Paramagnetic shifts of 

lanthanides are the combination of contact and pseudocontact shifts.10 While contact 

shifts arise from the derealization of metal spin density to the substrate nuclei, 

pseudocontact shifts arise from the dipolar contribution and provide structural 

information of the lanthanide complexes. Paramagnetic pseudocontact shifts can be 

utilized to measure the magnetic anisotropy as shown in equation 1.9.10 

A 5 = ( 3 c o s ^ l ) _ - } 

A8 = chemical shifts 

R = distance between lanthanide metal and substrate nuclei 

8 = angle between lanthanide metal and substrate nuclei 

A large magnetic anisotropy is a desirable property in magnetic molecules for 

observing through-space magnetic interaction. Commonly, in magnetic molecules, 

exchange coupling between metal center ions is calculated by spin Hamiltonian (H), as 

given in equation (1.10).6' " 

H=(-J)(SvS2) (1.10) 

-J = antiferromagnetic coupling constant 

+J = ferromagnetic coupling coupling constant 

S\ and 52 = spin operators associated with both metal centers 

As shown in Figure 1.2., the net magnetic moment (5) of a magnetic molecule is 

the result of the net effect of the atomic moments of each paramagnetic ion. Depending 

upon the direction of the magnetic moment of both metals, their interaction can be of 
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three types. A) Ferromagnetic, which is the strongest interaction and occurs even in the 

absence of the magnetic field. Ferromagnetic interaction is due to the parallel 

arrangement of atomic moments, which align in the same direction. B) 

Antiferromagnetic interaction, which is due to the antiparallel arrangement of atomic 

moments, resulting in a net zero magnetization value, and C) ferrimagnetic interaction, 

which is a special case of antiferromagnetic interaction, where the net magnetization 

value cannot be zero. In this type of magnetic interaction, the adjacent magnetic spins 

with different magnitude align themselves antiparallel to each other, resulting a non zero 

magnetic moment. 

Ferromagnetic 
(A) 

Antiferromagnetic 
(B) 

Ferrimagnetic 
(C) 

Figure 1.2. Different types of magnetic interactions showing the net magnetic moment. 

Lanthanide metal ions exhibit weak interactions between f-f metal centers due to 

the presence of unquenched orbital angular momentum and the internal nature o f / 

electrons. Complexes containing both paramagnetic lanthanides (/) and transition metal 

ions (d) produce measurable effects due to stronger magnetic interaction and hence have 

been used for various magnetic molecules. Most of the d-f metal complexes reported in 

the literature are the Gd3+ and Cu2+ coupled system because of the non-degenerate 

ground state of Gd3+, which simplifies the magnetic analysis. ' Bencini et al. first 

reported a magnetic study of two trinuclear Gd-Cu complexes containing two copper 
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metal ions within the trinuclear units. Both the d-f metal complexes showed a 

ferromagnetic interaction between the two Cu2+ ions and one Gd + ion within the 

trinuclear units.1 With the exception of a few examples, most of the Gd + and Cu + 

containing d-/metal complexes showed ferromagnetic interactions between Gd-Cu. ' 

The first magnetic molecule, diethydithiocarbamate iron chloride, was 

synthesized and characterized by Wickman et al. in 1967.17 One of the recently 

developed giant magnetic molecules also contains transition metal ions (Mo-Fe system) 

with a total of 30 trivalent iron metal ions (S = 5/2), 

Mo72Fe30O252(Mo2O7(H2O))2(Mo2O8H2)(H2O))(CH3COO)i2(H2O)9i] • 150H2O Mo72Fe30).
18 

The contribution of magnetism or magnetic materials in different area involve: a) 

synthetic chemistry- designing of molecular systems that contain magnetic properties i.e. 

molecular magnets " and single-molecule magnets " and b) molecular electronics, 

where these molecular systems can be used in electronic devices. Synthetic approaches 

towards molecular magnets have grown rapidly in the last few years due to the 

increasing demand for magnetic molecules in various fields. Not only in information 

storage industries or academic research, magnetic molecules have also found their place 

in biomedicine, such as use of magneto fluorescent nanoparticles and magnetic materials 

for sensing, imaging, and magnetic separation27"29 Bruck in 2005 focused on the 

improvements and developments on magnetic refrigerator, which are analogues of 

commercially available refrigerators but with environmental friendly features such as 

water coolants, a gas free compressor, and low electricity consumption. 

Molecular magnetism, which involves magnetic molecules formed due to the 

magnetic interaction between metallic centers, is a significant large area in material 

10 
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chemistry. These magnetic molecules act as building block and can be further used to 

build molecules for designing electronics and magnetic materials, such as molecular 

wires, medical devices, microphones, data storage devices, motors, and generators.31 

Traditional magnetic materials are the combination of two- or three-dimensional arrays 

of inorganic molecules that are composed of paramagnetic transition or lanthanides 

metal ions. Production of these materials requires high-temperature metallurgical 

processes. In contrast to these traditional magnetic materials, molecular magnets are 

comprised of paramagnetic metal ions or organic radicals and require low temperature 

synthetic processes.31'32 

Most of the early reported magnetic molecules are the combination of either 

transition metals or transition and lanthanide based metal systems, rather than lanthanide 

metal ions exclusively, since the f-f interaction is comparatively smaller than the 

interaction between / and s, p or d electrons. Though the heteronuclear complexes 

containing d a n d / block metal ions first appeared in early 1970's, detailed studies on 

the magnetic chemistry of heteronuclear complexes containing d and / block metals 

remain less understood than d-d metal ions.33"41 Due to the increasing demand for new 

molecular-based materials, there has been a significant amount of research dedicated to 

the syntheses of new d-f heteronuclear complexes providing a better understanding of 

exchange-coupling/magnetic interactions. However, designing appropriate chelating 

ligands that can provide a close proximity between both metals is still a great challenge. 
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1.1.1 Exchange Interaction 

In the case of traditional magnets, a net magnetic moment involves the alignment 

of unpaired electron spins via a mechanical effect. The magnetic moment of molecular 

magnets or magnetic coupling between unpaired electrons of paramagnetic metal ions is 

the result of one of the following two main mechanisms: 

1.1.1.1 Superexchange- A process in which paramagnetic metal ions are bridged 

via bridging ligands and the exchange interaction occurs by charge transfer between 

metal ions and ligands.7'42_44 Superexchange interactions can be expressed by the spin-

Hamiltonian as shown in equation (1.10). Goodenough and coworkers proposed a 

mechanism for superexchange coupling from which the exchange coupling constant can 

be predicted.45 In 1993, Kahn and coworkers suggested that in the case of lanthanide 

complexes, the sign of the interaction (J) depends on the number of unpaired ^electrons 

and is antiferromagnetic if J is negative (-J).36 Due to the shielding effect of 4/-electrons 

by 5s and 5p orbitals,/-orbitals are weakly delocalized towards the surrounding ligands. 

Therefore, interaction between ligand and metal ions is due to the electron exchange 

process. 

1.1.1.2 Direct exchange- This type of interaction mainly occurs due to 

overlapping of the orbitals of paramagnetic metal ions.4 ' 

In recent years, increasing demands for nanoscale magnetic materials have 

developed into a new scientific field involving the design of intricate architectures, 

including macro molecular polynuclear complexes, 1-D wires, and 2-D or 3-D 

networks.48 In order to act as a magnetic material, the specific molecular cluster or 

polynuclear complex must enable the transmission of exchange coupling via the same 
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bonding interactions that assemble these complexes and networks. The superexchange 

coupling is often performed by single atom bridged metal centres, but larger n-

conjugated bridging ligands are also capable of propagating exchange. In addition to 

these properties, magnetic anisotropy also plays an important role in enhancing the 

magnetic interaction between metal ions in polynuclear magnetic complexes. Cyanido-

metallate complexes have recently revolutionized the design of magnetic network-

structures43' 49 and single molecule magnets.50'5I In these cyanido-bridged complexes, 

the cyanido group provides an exchange pathway for the interaction between the metal 

centers. Other bridging ligands that have been utilized successfully to design 

polynuclear complexes and magnetic network are tetracyanoethene (TCNE), ' ' ' 

bis{3-(A'-/er/-butoxyamino)-5-ter/-butylphenyl}aminoxyl (TNOP),54' 55 Hhmp (2-

(hydroxymethyl)-pyridine),56 Hmmi (2-hydroxymethyl-l-methylimidazole),57 and 

azacyano-carbanions.58 Hhmp is a well known bridging ligand in the synthesis of Mn 

single-molecule magnets (SMMs) (Figure 1.3) 32 

Me 

/ 
N 
\ 

/ 

Hmmi 

OH 

TNOP 

rr^X 

HO 
Hhmp 

Figure 1.3. Bridging ligands for magnetic complexes. 
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The lanthanide complexes discussed in the present thesis are supported by 

tripodal amido ligands, which provide two different active sites to accommodate two 

different metal ions while also serving as a bridging ligand between the metal ions. 

1.1.2 Single Molecule Magnets (SMMs) 

Single molecule magnets 4 '59 '60 are the class of molecule-based magnet in which 

each and every molecule behaves as a magnet, yet do not magnetically interact with 

each other. SMMs require a combination of large axial magnetic anisotropy, or negative 

zero field splitting (-D) and large spin ground states, (S = +S (|) or -S (J.)) which 

results in the formation of a significant barrier (U) with the maximum value of U=S1\D\ 

or U = (S> — U)\D\ depending upon the integer or non-integer spins respectively as 

shown in Figure 1.4.61 

Figure 1.4. Potential energy diagram with negative zero field splitting (-D) and energy 

barrier U=S2\D\ 

The first SMM reported by Caneschi et al. is the Mn-acetate cluster 

Mni20i2(MeC02)i6(H20)4, which contained four inner Mn-ions surrounded by outer 
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eight Mn-ions, bridged by oxygens (Figure 1.5). The net spin (S = 10) of the cluster was 

the result of the spin of each four inner Mn3+ (S = 2li) and eight outer (S = 2) Mn4+ ions 

giving large zero field splitting and slow relaxation magnetization at low temperature. 

Both inner (Mn3+) and outer (Mn4+) metal ions showed antiferromagnetic coupling 

between each other. 

Figure 1.5. Structure of Mni20i2(MeC02)i6(H20)4 showing magnetic coupling between 

Mn ions. Ferromagnetically coupled inner Mn3+ (S = 3/2) with total spin 5 = 6 and outer 

eight Mn4+ (S = 2) with total spin 5 = 1 6 . Net spin results due to the antiferromagnetic 

exchange, S= 16-6 = 10. 

It has been reported by Waldmann recently, that the most important factor to 

obtain a good quality SMM is a larger zero-field splitting,63' M while the previously 

reported SMMs were based on large spin ground states.24'65 The large spin ground state 
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values of any SMM are the result of either ferromagnetic or antiferromagnetic exchange 

coupling between metal ions by which SMMs behave like super paramagnets. In the 

case of SMMs, the magnetic moment of each paramagnetic molecule aligns parallel to 

the applied external magnetic field and remains magnetized at low temperature, even 

after the removal of the magnetic field. At low temperatures, in the absence of a 

magnetic field, SMMs develop an energy barrier, which requires reversing the direction 

of the magnetization. As shown below in Figure 1.6, in the absence of a magnetic field, 

all micro spin states are at the same energy levels and become unequal only after the 

application of an external magnetic field (field direction is parallel to z-axis). At low 

temperature, one of the spin states becomes populated and magnetization reaches its 

saturation point. Removal of the external magnetic field reverts the system to its original 

equilibrium position via a process called relaxation, thereby creating an energy barrier, 

which is a necessary requirement for SMM. 
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A) 

Ms = S-1 

B) 

C) 

Figure 1.6. Energy levels for a spin state S with easy axis magnetic anisotropy. Left 

well shows +Ms levels and the right well -Ms levels. A) Equally populated wells in the 

absence of magnetic field, B) Highly populated right well in the presence of magnetic 

field, and C) removal of field creates multiple steps to return to equilibrium. 

Another known SMM is [{Fe802(OH)i2(tacn)6}Br7H20]Br-8H20, (Where, tacn 

is 1,4,7-triazacyclononane) with a ground state of S = 10 in which the iron metal ions 

are bridged by oxygen and hydroxyl groups.60 Although most of the reported SMMs 

contain primarily Mn3+ ions, it is known that the spin of transition metal ions affect the 

rate of magnetization.66 SMMs, containing other metal ions include, tetranuclear C04L4, 

where L = A^-di[l-(2-hydroxypheny)ethlidene]hydrazone,67 [Ni(hmp)(CH2OH)Cl]4, 

where hmp = monoanion of 2-hydroxymethylpyridine with four Ni2+ and four hmp~ at 

,63 alternating corners , mononuclear bis(pthalocyanato)Tb , bis(phthalocyanin)Dy~ 
64, 68 

17 
References begin on page 30 



Chapter-1: Molecular Magnetism and Tripodal Amido ligands 

and heterometallic complexes such as tetranuclear [CunLTbni(hfac)2]2 and 

[CunLDym(hfac)2]2 (Where, hfac = hexafluoroacetylacetone and H3L = l-2(-

hydroxybenzarnide)-2-(2-hydroxy-3-memoxybenzylidenearnino)ethane)69 and [Mni lDy^g 

(OH)6(OMeH02CPh)i6(N03)5(H20)3]i5MeCN(1.15MeCN) with five or nine coordinate 

Mn3+ and Dy3+ ions respectively.35'70 Properties of the SMMs composed of d-f metal 

complexes depend on both metal ions and can be tuned by using appropriate 

combination of metals. For example, the above given Mn-Dy-complex is the first known 

d-f SMM and has an energy barrier of 9 K,70 which is lower than other heterometallic 

complexes containing Tb-Cu systems (21 K and 14 K).39 Trivalent Tb and Dy metal ions 

play a significant role in increasing anisotropy and can also lead to fast tunneling at H = 

0. Recently Ishikawa reported a SMM made of trivalent Terbium and Dysprosium ions 

sandwiched with two phthalocyaninato molecules to form a double-decker structure. x 

1.1.3 Building Block Approach Toward Magnetism 

The properties of molecular magnetic materials can be controlled by using an 

ideal geometrical arrangement of building blocks. Depending upon the assembly of the 

polynuclear complexes, molecular magnets can be 0-D (SMM), 1-D [Single Chain 

Magnet (SCM)], 2-D or 3-D networks.48 Single chain magnets are the extended form of 

single molecule magnets, including molecular wires.72"74 A strong easy axis anisotropy 

and a stronger intra-chain interaction rather than inter-chain interaction, differentiate a 

SCM from SMM.32 The first cyano-bridged 1-D molecular chain compounds contained 

Gd"1 and Cr"1 metal ions and displayed antiferromagnetic coupling between both the 

metals.75 A large energy barrier of 154 K has been reported for the SCM 
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[Co(hfac)2(NiTPhOMe)], which is almost double than that has been reported for 

Mn,2acetate (SMM).76 

The first heterometallic SCM complex [Mn2(saltmen)2Ni(pao)2L2]A2 (where 

saltmen2" = Af Af'-(l,l,2,2-tetramethylene)bis(salicylideneiminate), pao~ = pyridine-2-

aldoximate, L = nitrogen donor and A = univalent anion) reported in 2002 contains 

antiferromagnetically coupled Ni(II) and Mn(III) bridged by a single aldoxime ligand. 

The SCM contained two ferromagnetically coupled Mn(III) ions, bridged by double 

phenolate-oxo ligands and showed slow magnetic relaxation below 3.5 K.77 Several 

single-chain compounds contain a combination of transition metal ions with lanthanide 

ions due to the high magnetic anisotropy of lanthanides. Among all the lanthanide series, 

Tb ' and Dy are the typically used lanthanides that have been involved in the 

formation of magnetic molecules. The first 1-D polymer system 

[{Ln(02NO)(H20)3}{Ni(bpca)2}](N03)2-3H20] (Ln10 =Gd, Dy or Tb) contains Ni(bpca)2 

(where bpca = bis(2-pyridylcarbonyl)amine) coordinated with Gd"1, Tb111 and Dy111 

metal ions and showed weak interactions.78 Heteronuclear (d-f) metal phosphonates 

containing Lnni-Cu" (Lnni = La, Pr, Nd, Gd, Sm, Tb, Dy or Ho) are the first example of 

heterometallic phosphonates, where Ln1" = Gd, Pr or Nd were ferromagnetically coupled 

with the Cu° metal ion.79 

Ligand choice plays an important role in observing a magnetic interaction 

between metal ions in heterometallic complexes. Cyanometallates and metal oxalates are 

common building blocks used in the syntheses of multidimensional systems, where 

SO 

cyano ligands act as the bridging ligand and facilitate interactions between metal ions. 

The most commonly used cyano-metal anionic building blocks for magnetic materials 
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are [M(CN)6]"~ (M = Cr(III), Fe(II), Fe(III), Mn(II) or Co(III)).72"74'80_83 Cotton et al. 

reported dinuclear ruthenium carboxylate complexes,84 which can also be used as 

building blocks for magnetic material using appropriate bridging ligands. 

1. 2 Tripodal Amido Ligands 

In organometallic chemistry, modification of the reactivity of metal-carbon 

bonds introduced amido ligands that are very well suited for early as well as for late 

transition metals with higher oxidation states.85 Due to the stable nature of bonding 

between amides and metal ions, amido ligands have been utilized in the formation of 

various polynuclear complexes and clusters.86' 87 In lanthanide chemistry 

cyclopentadienyl ligands (Cp) play an important role and it has been shown that LnCp 

complexes possess unique catalytic reactivity in a variety of reactions including 

hydrogenation, polymerization, hydroamination, and hydrosilation.88"91 Efforts have also 

been made to develop another suitable ligand system as an alternative in which nitrogen-

based inorganic amido ligands (eg benzamidinates,92 aminotroponiminates,93'M and P-N 

ligands92) were used to stabilize lanthanide metal complexes. Similar to Cp-metal 

complexes ligands, reactivity and stability of amido ligand supported complexes can be 

altered by changing the electronic and steric properties of the ligands. Lanthanocene 

amides have also been reported for catalyzing a variety of catalytic reactions.95 

Lanthanide metal complexes containing inorganic tripodal amido ligands have also been 

involved in nuclear medicinal chemistry.96' 97 Multidentate ligands are suitable for the 

formation of lanthanide complexes with high coordination numbers.98"100 
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Amido ligands are one of the multidentate ligands, which are important in 

observing interaction between two metal ions of heterometallic complexes. The 

connectivity between two metals requires an appropriate ligand design especially for 

heteronuclear complexes, where ligands containing hard and soft donor moieties are 

desirable for two different types of metal ions. Modification in the reactivity as well as 

in the selectivity of these ligands can result in the suitable combination of two metals 

associated together in heterometallic complexes. One of the desirable properties of 

amido ligands is their ability to stabilize metal-metal bonds in polynuclear complexes 

and thus, these can be used for studying the interaction between metal ions. Currently, 

heteronuclear complexes containing d- and/- block metals are of great interest because 

of their unique properties and various applications such as in the modelling of 

metalloenzymes and catalytic reactions.101"103 The combination of paramagnetic d an&f-

block metals is also very well suited for the development of magnetic materials and 

molecular based magnets.23'49'57 

Modification in either the electronic or the steric property of the amido ligand 

[NR.2]~ by changing both substituents (R) can greatly affect the chemistry of the attached 

metal center.104"108 It also affects the stability of polynuclear complexes since amido 

ligands act as building blocks for these complexes.109"113 Most tripodal amido ligands 

reported to date act as chelating ligands in which the nitrogen atoms, with its 

substituents, create a coordination sphere, which kinetically stabilize the polynuclear 

complexes. Depending upon the number of substituents attached to the nitrogen atom 

and its availability for binding a metal center, amido ligands are divided into mono, bi, 

tri and polydentate ligands. Amido donors are very well known 71 and a donors, and act 
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as hard Lewis bases for hard metals such as lanthanides.104' 114 Tripodal amido ligands 

are also associated with supramolecular coordination chemistry but their use in 

lanthanide supramolecular chemistry115 is still less studied in comparison to transition 

metals. 116, 117 

Most tripodal amido ligands contain a carbon backbone, however, examples of 

nitrogen, silicon, and phosphorus backbones are also known, as shown in 

Figure 1.7. 104-106, 118-121 

Me 

...-SL 
MezSi1'11" / ^ s i M e 2 

/Me2S 

NH / 

« . / 

NH HN. 
\ 

R = p-Tol R = 'Pr, SiMe3 

„...P>. 
^ 

...-NH NH 

R 

NH 
\ 

R = C6H5 R = SiMe3, SiMe2'Bu, C6F5 

Figure 1.7. Tripodal tridentate amido ligands with different backbones. 

Another type of amido ligand that has been utilized greatly in lanthanide 

chemistry (Figure 1.8) contains a purely carbon back bone with flexible amino phenol 

arms is F^tam, where H3tam= l,l,l-tris((2-hydroxybenzyl)aminomethyl)ethane. The 

22 
References begin on page 30 



Chapter-1: Molecular Magnetism and Tripodal Amido ligands 

reported ligand has been used for the syntheses of various d-f metal complexes 

[LnNi2(tam)2)]+ (Ln = La, Pr, Nd, Gd, Dy, Ho, Er, Yb) in which phenolic oxygens prefer 

to bind to the bridging lanthanide metal centre. 122 

Figure 1.8. Structure of H3tam (l,l,l-tris(((2-hydroxybenzyl)amino)methyl)ethane). 

1.2.1 Syntheses of Complexes Containing Tripodal Amido Ligands 

Synthetic routes involving the facile preparation of complexes containing 

tripodal amido ligands via the metathesis of metal halides with lithium salts of ligands 

are shown in Scheme l.l.106 'I23 ' ,24 
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Scheme 1.1 

Me3Si> , NH 

Me3Si 

THF 

+ 3 "BuLi 
»-

Me3Si»" /̂ JJ""/L i^
N 

SiMe3 ^ L i ^ " " ' / \ . x "SiMe-, 

Me3Si THF 

+ MCI2 

Me3Si / N N " " T I ^ N 

T I 7 ^ T r 
Me3Si 

"SiMe3 

Me3Si> N ' ^ ' " " M ^ N \ 

/ \ L j / SiMe3 

M e 3 S i T H F / ^ T H F 

M = Sn, Ge 

Similar to tripodal amido phosphine ligands, triamidoamine ligands 

([(RNCH2CH2)3N]3 where, R = bulky substituent, such as SiMes) have also been used to 

stabilize tetravalent transition metals, such as V4+, Ta4+ or W4+. These amine ligands 

are very much related to the neutral tren ligands or tris(pyrazolyl)borate ligands, which 

have been mostly used with late transition metals.125'126 These ligands create a 3-fold-

symmetric pocket by coordinating to the transition metal centre in tetradentate manner. 

As shown in Scheme 1.2, lithium salts of triamidoamine ligands can be used as a starting 

material to synthesize these pseudo trigonal-bipyramidal complexes. 127, 128 
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Scheme 1.2 

[N3N]Li3 

Me3Si, 

MCI4L2 

^-
L = THF 

CI SiMe3 

/ 
...N SiMe3 

N MV^J / 
»N 

M = V, Ti, W, Mo 

As shown in Scheme 1.3, tripodal amido amine ligands can also be utilized to 

stabilize the metal-ligand triple bond, for example, alkylation of tungsten chloride by 

lithium salt generated thermodynamically favorable W=C bond after the lost of 

hydrogen gas.127 

Scheme 1.3 

+ LiMe "H2 

[R3N3N]WCI • [R3N3N]W CH3 • [ R 3 N 3 N ] W = C H 
-LiCI 

1.2.2 Lanthanide Complexes Supported by Ligands Containing both Phosphorus 

and Nitrogen Donor Atoms ([P-N] System) 

A new class of chelating ligands that has been used in lanthanide chemistry 

involves ligands containing two different types of donor atoms, such as P-N ligand 

systems with both phosphorus and nitrogen as donor atoms.92'129 The important feature 

of these ligands is that they have a ability to stabilize metals with various oxidation 

numbers and geometry. Most of the previously reported ligands that were involved in 

synthesizing polynuclear complexes or clusters were mainly associated with transition 

1 TO 

metal or main group elements and not many examples are known for lanthanides. 

Moreover, these reported ligands are specific for particular metal centers and can only 
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be used for explicit applications. Amido ligands with phosphorus back bones were first 

synthesized in 1970's but were never used as ligands until recently86 where they were 

paired with transition metals to make various types of heteronuclear complexes. 

Another well known P-N ligand system that has been used for making lanthanide metal 

complexes is the amino-phosphinate ligand class. A significant amount of research in 

this area has also been conducted by Roesky and coworkers, which involves the 

Figure 1.9. Ligands derived from P-N ligand system. 

Fryzuk and his group have also greatly contributed to the field of P-N ligand 

systems and their related complexes.123, 130 However, these ligands have been mainly 

utilized in the formation of mononuclear transition metal complexes to study of their 

coordination chemistry with transition metal ions. As shown in Figure 1.10, depending 

upon the arrangement of phosphine and amide donors, these ligands are divided into 

A) [PNP], B) [P2N2] and C) [NPN] systems.131'132 
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Me2 Me2 

Si Si 
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[P2N2] 

(A) (B) 

Figure 1.10. Fryzuk motif representing [PN] ligand systems. 

Me2 

Si R 

- / " \ 
Si R 
Me2 

[NPN] 

(C) 

Recently, Orvig et al. have synthesized numerous varieties of amino-phosphinate 

ligands used for group 13 metals as well as for lanthanides.133 These amino-phosphinate 

ligands can form capped or bicapped complexes depending upon the stoichiometric ratio 

of ligands to metals (Figure 1.11). It is also reported that these ligands form a 

coordination sphere around lanthanides with unusual coordination modes.134 Amino-

phosphinate supported lanthanide complexes have been used as catalysts for olefin 

polymerization.135 Syntheses of most lanthanide amido complexes involve the reaction 

of metal halides with appropriate ligands to form complexes coordination numbers of 5-

10. 134 

Figure 1.11. Amino-phosphinate ligands. 
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1.2.3 Lanthanide Complexes Supported by Tris(pyrazolyl)borate (Tp) Ligands 

Discussion of the chemistry of lanthanide complexes can not be completed 

without mentioning the contribution of tris(pyrazolyl)borate ligands.136"140 Due to the 

large size, ionic bonding nature and tendency to form complexes with high coordination 

numbers, lanthanides generally prefer to bind with multidentate ligands. 

Tris(pyrazolyl)borate (Tp) ligands, discovered by Trofimenko, fulfill all these 

requirements while also providing enough steric bulk that can be tuned by altering the 

1 Oft 

substituents at 3 and 5 positions of pyrazole ring. These ligands have been reported to 

form stable complexes not only with trivalent lanthanides, but also with bivalent 

lanthanides; for example Sm" and Yb11 complexes using different substituents at 3 and 5 

position.141' 142 Many review articles have also been reported by Takats and Marques 

which cover the chemical behaviour of Tp ligands associated lanthanide complexes and 

their applications in catalysis.136"139' 143 Synthesis of these complexes involve the 

reaction of metal halides with the sodium or potassium salt of tris(pyrazolyl)borate via 

salt metathesis as shown in Figure 1.12.136 

R 

K • LnCI, T"F • f^l"Pbi'^S • KCI 

CP* I 'CI I 
THF 

Figure 1.12. Synthesis of tris(pyrazolyl)borate supported trivalent lanthanide complex. 
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Selection or design of appropriate ligands plays an important role in the 

syntheses as well as the reactivity of heteronuclear complexes. Not many ligands are 

available with the ability to bind two different metals; surprisingly, there are no tripodal 

amido ligands reported to date, that contain phosphine, available to bind with another 

metal. Behaviour of many of these ligands is reserved exclusively for specific metal ions 

and therefore, they are limited in their potential. The tripodal amido phsophine ligands 

synthesized in our lab contain desirable properties that other ligands lack; for example, 

the ability to bind different metal ions in assorted manners, as shown in Figure 1.13.1' 

86,87 

Arh 

'N ' N ^ N 

JJ 
W 

A 

ArR 

~NK,<^ArR M 
N |M 

p4— ArK 

ivi' 

J 
ArR , / 

N - ^ 

B 

M 

.N- ~ArF 

Figure 1.13. Bonding modes of tripodal amido phosphine ligands P(CH2NArR)3 viewing 

the binding of two different metal ions on two different donor sites. 

Other than incorporating these ligands in a variety of multinuclear complexes 

and clusters, we have also utilized these ligands for the syntheses of magnetic molecules 

and clusters.1'2 Applications of these ligands in multiple areas include: 1) synthesis of 

polynuclear copper cluster,87 which contains a total of 8 Cu(I) metal ions, in which 

center Cu(I) binds to phosphines donor sites of two ligands, and the rest of the Cu(I) 

metal ions bind to the amido sites; 2) syntheses of heteronuclear complexes containing 
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early and late-transition metals, where the amido sites are capable of binding early 

D C 0 £ 

transition metals, while the lone pair of phosphorus binds to late metals; ' 3) 

introduction of selenium in ligands (tripodal triaminophosphine selenides 

Se=P(CH2NHArR)3) for stabilizing trinuclear and tetranuclear aluminum complexes and 

also improving interaction between polynuclear magnetic complexes;85 and 4) syntheses 

of trinuclear clusters using only the amido donors, yet leaving the phosphines for 

binding to other metal centers. 

In this thesis, tripodal amido phosphine ligand-supported paramagnetic 

mononuclear lanthanide complexes and their contribution in heteronuclear d-f metal 

complexes will be discussed. The presence of both hard (N) and soft (P) donor atoms in 

the ligand systems make these ligands highly appropriate for diamagnetic as well as for 

paramagnetic heterodinuclear complexes. 
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CHAPTER-2 

Syntheses and Characterization of 
Trivalent Lanthanide Complexes: A Step 

Towards Heteronuclear */-/Metal 
Complexes 

2.1 Introduction 

Heteronuclear complexes containing d and/block metal ions have been known to 

possess interesting magnetic properties, which make them desirable to use as building 

blocks for molecular magnets.1"5 Due to the increasing demand for new molecular 

materials, there has been a significant amount of research into the syntheses of d-f metal 

complexes to better understand the magnetic coupling between metal centers. However, 
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designing an appropriate ligand with the ability to chelate d and/metal ions in order to 

observe the bonding interaction between the metal centers is still a problem. To date, 

combinations of various d-f metal ions have been used for di-, tri- and polynuclear 

complexes; the most well known polynuclear complexes are Ln-Co,6-10Ln-Cu,2'"'12Ln-

Ni,13 and Ln-Fe14"16 (Ln = lanthanides). Most ^-/magnetic complexes contain Gd(III) and 

Cu(II) because of the non-degenerate ground state of Gd3+, which simplifies the magnetic 

analysis.1 The magnetic interaction between two metal centers in heteronuclear 

complexes also depends on the binding ability of the supporting ligand. To date, the most 

common binding modes that have been found in heteronuclear complexes involve: A) 

binding of two different metal ions at the same coordination site on the ligands, such as 

bridging amides, phosphides, carbonyl donor ligands; B) binding of two different metals 

to a ligand that contains two different donor (hard and soft) sites, such as ligands 

containing phosphorus and nitrogen as soft and hard donor atoms respectively, and C) 

direct bonding interaction between metal centers. (Figure 2.1) 

R 

X f ] ( / I — M 
M M' M M' V 

(A) (B) (C) 

Figure 2.1. Different types of binding modes in heterodinuclear complexes. Here M and 

M' represent two different metal centers, R = substituent attach to the ligand sites, and X 

and Y are two different sites of the ligand. (A) = ligand with single coordination site, 

(B) = multidentate bridging ligand, and (C) = metal ions connected to each other without 

any ligand support. 

0 
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All the heteronuclear d-f metal complexes reported in the literature are based on 

the above described metal-ligand binding modes, which allow both d and/metal ions to 

interact with each other. For example, reaction of Fe3(CO)i2 with 2 equivalents of 

(C5Me5)2Yb(OEt2) formed a carbonyl bridged heteronuclear complex namely, 

[(C5Me5)2Yb]2[Fe3(CO)7(/i-CO)4].18 Costes et al. have also reported a number of d-f 

heteronuclear complexes bridged by supporting ligands,19"21 in which the hexadentate 1,2-

bis((3-methoxysalicylidene)amino)-ethane ligand acts as a suitable ligand for binding Fe + 

and Gd via phenolate oxygen atoms. Other d-f metal complexes include CuLn(Fsal-

3)(N03)3(CH3OH)o.5, (where H2Fsal-3 is N,N'-bis(3-formyl-5-methylsalicylidene)) and Ln 

= La, Nd, Eu, Gd, and Ho. In these examples, Cu was attached to the N2O2 site, and 

Ln3+ was attached to the O4- coordination site of the ligand, showing ferromagnetically 

coupled metal centers.23 Heteronuclear [Sm6Cu24(//-OH)3o(Gly)i2(Ac)i2(C104)(H20)i6]-

•(C104)9-(OH)2-(H20)3i; (where Gly = glycine and Ac = acetate) possessed an octahedral 

skeleton, where the glycine ligand chelated copper and samarium ions via carboxyl and 

amine sites. The complex contained six Sm3+ ions at the vertices, twelve Cu2+ ions in the 

middle and the remaining twelve Cu + ions formed the outer layer. 4 

There are not many examples in the literature that involve direct Ln-M bonds. 

Among these, the reported Lu-Ru complex [(THF)Cp2Lu-RuCp(CO)2J, (where THF = 

tetrahydrofuran) displayed the shortest lanthanide-transition metal-metal distance of 2.96 

A known to date.25 In this metal complex both the metal centers were connected to each 

other via a metal-metal bond without using any bridging ligand (Figure 2.1 C). Though d-f 

heterometallic complexes have more applications in catalysis, our target applications 

involve syntheses of magnetic materials or molecule-based magnets. Bencini in 1986, 
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reported two magnetic d-f trinuclear metal complexes 

Gd{Cu(Hapen)}2(H20)3(C104)3-2Cu(Hapen), (where Hapen = JV,JV-ethylenebis(o-

hydroxyacetophenoneiminato)) and Gd{Cu(Salen)}2(H2O)ClO4)3-2Cu(Salen)0.5C2H5NO2], 

(where Salen = A^A^mylenebis(salicylaldiminato)o-hydroxyacetophenoneiminato)). Both 

of the metal complexes showed a ferromagnetic interaction between Cu(II) and Gd(III) 

metal centers. 

Ligand design as well as metal selection plays an important role in the chemical 

and physical behaviour of heteronuclear complexes. Most of the lanthanide complexes 

that have been used for d-f heteronuclear complexes are based on multidentate ligands. ' 

28 Lanthanide ions form high coordination complexes due to their large ionic size and 

ionic bonding nature, and the ligand design controls coordination chemistry as well as the 

geometry of these complexes. Although the preferred and the most stable oxidation state 

for all lanthanide ions is +3, oxidation states such as +2 and +4 are also accessible.29"33 

Syntheses of lanthanide amido complexes involve the reaction of metal halides with the 

appropriate amido ligands. Lanthanides with amides and other P-N ligand systems, such 

as phosphinoamides, bis(phosphino)amides, bis(phosphinoamino)methanides, and 

amino-phosphinate complexes, have been used as catalysts for polymerization. 4' 5 

Lanthanides are also known for their unique magnetic and spectroscopic 

properties that depend on the surrounding ligands. The purpose of this study is to use the 

trivalent lanthanide metal ions for the syntheses of heteronuclear complexes supported by 

tripodal amido-ligands. In this Chapter, we are reporting the syntheses of a series of 

mononuclear trivalent lanthanide complexes, which were then further utilized to interact 
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with various transition metal complexes for synthesizing heterodinuclear d-f metal 

complexes. 

2.2 Results and Discussion 

2.2.1 Syntheses of Mononuclear Trivalent Lanthanide Complexes 

In this study, diamagnetic yttrium complexes (2a-c) were chosen as model 

compounds and all other lanthanide-based reactions were performed in an analogous 

manner. Syntheses of mononuclear trivalent yttrium complexes involve the reaction of 1 

equivalent of [P(CH2NHC6H5)3] (la) or [P(CH2NH-3,5-Me2C6H3)3] (lb) with 1 

equivalent of Y[N(SiMe2)2]3 in THF. The reaction mixture enabled the formation of 

block-shaped crystals (66-69 %) of the intended product at room temperature after 24 h 

(equation 2.1). To optimize the process, the same reactions were also tested in different 

solvents such as toluene, benzene, acetonitrile, and pyridine. These experiments gave 

inconclusive results and showed the presence of only ligand peaks (la-lc) in P{ H} 

NMR spectra. While reactions of Y[N(SiMe2)2]3 with la or lb required 1 equivalent of 

Y[N(SiMe2)2]3, the same reaction with lc required 1.5 equivalents of Y[N(SiMe2)2]3 and 

8-10 h refluxing. The reaction of equimolar amounts of Y[N(SiMe2)2]3 and lc showed the 

presence of excess ligand with the resulting complex in 31P{'H} as well as in *H NMR 

spectra and required excess amount of Y[N(SiMe2)2]3 for the formation of complex 2c 

(yield 97 %). Further addition of Y[N(SiMe2)2]3 reacted with the excess amount of ligand 

and thus increased the formation of lc with no sign of ligand peaks, as noticed in NMR 

spectra. 
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THF .r°x;/° 
[P(CH2NHArK)3] + Ln[N(SiMe3)2]3 , 3 H N ( S | M e 3 » A ^ ^ L \ ^ ( 2 - 1 > 

ArR = C6H5(1a) 
3,5-Me2C6H3(1b) 
3,5-(CF3)2C6H3 (1 c) Ln = Y (2a-c) 

Gd (3a-c) 
Tb (4a-c) 
Dy (5a-c) 
Ho (6a-c) 
Er (7a-c) 
Tm (8a-c) 

The 'H NMR spectra in THF as well as the X-ray crystal structures of complexes 

2a, 2b and 2c revealed the presence of C3 symmetry in solution and in the solid state due 

to the fact that both hydrogen atoms that are attached to the CH2S (CH2 connected with 

phosphorus atom) are diastereotopic in solution. A solid-state crystal structure of six 

coordinate [P(CH2NArR)3Y(THF)3] is depicted in Figure 2.2. Crystals of 2a and 2b were 

obtained directly from the reaction mixture, while 2c was crystallized from a mixture of 

benzene/hexamethyldisiloxane. Crystalline 2b contains disordered THF solvent 

molecules, while 2c showed rotational disorder of the CF3 substituents. In all these 

structures, the lanthanide metal centers are chelated by three ancillary amido donors and 

capped with three THF molecules. The phosphine lone pair is directed away from the 

metal and is well suited to interact with another metal. Introduction of a yttrium metal 

center to the tripodal amido ligand altered the C-P-C angles and showed that the sum of 

C-P-C angles in 2a, 2b, and 2c, are 316.82(7)°, 318.75(3)° and 320.58(7)° respectively, 

which are larger than the sum of the ligand precursors; for example, for lb the sum of C-

P-C angles is 299.5(3)°. For complexes 2b and 2c, presence of the methyl and 

trifluoromethyl substituents on the phenyl ring is responsible for the increase of the C-P-C 
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angle. Comparison of structural data of all the lanthanide metal complexes (2-8) showed 

small difference in bond lengths, bond angles and C-P-C angles. The small difference in 

C-P-C angles in the lanthanide series (Gd-Yb) is due to the introduction of different sizes 

metal ions, which should also affect the donor ability. Despite the fact that phosphine lone 

pair is away from the lanthanide metal center, affect of metal can be noticed on 31P{!H} 

NMR shifts, which shifted in the direction of unexpected upfield in comparison to the 

ligand precursors (la-lc). It has been reported that the increase in C-P-C angles move the 

chemical shifts towards downfield. For example, P{ H} NMR shifts of alkyl phosphine, 

such as PMe3, PEt3, and PlBu3 are -62, -20, and +63 ppm.36 

Figure 2.2. An ORTEP depiction of the solid-state molecular structure of [P(CH2N-3,5-

Me2C6H3)3]Y(THF)3 (2b). Hydrogen atoms are omitted for clarity. Selected bond lengths 

or distances (A): Y(l)-~P(l), 3.281(7); Y(l)-N(l), 2.254(4); Y(l)-0(1), 2.444(3); C(l)-

N(l), 1.446(6); C(l)-P(l), 1.854(5). Selected angles in deg: N(l)-C(l)-P(l), 121.5(4); 

C(l)-P(l)-Y(l), 67.47(17); N(l)-Y(l)-N(l), 96.51(12); N(l)-Y(l)-0(1), 89.64(15); N(l)-

Y(l)-P(l), 59.49(9). 
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The *H and 31P{'H} NMR spectra of complexes 2a and 2b, acquired in any 

solvent (toluene or benzene) other than THF showed the presence of the mixture of two 

compounds (mononuclear and dinuclear). Variable-temperature NMR confirmed an 

equilibrium between mononuclear and dinuclear products due to the loss of THF 

molecules. As shown in Scheme 2.1, high temperature directed the equilibrium towards a 

dinuclear product after losing two THF molecules. Cooling the sample at room 

temperature shifted the equilibrium towards mononuclear complex. The *H NMR 

spectrum of mononuclear symmetric complex (2a-2c) displayed one CH2, three aromatic 

(one o-H, w-H and p-K) and two proton environments for three THF molecules bound to 

the yttrium metal center. However, the *H NMR spectrum of the dinuclear product 

showed six CHi's, nine aromatic environments (six for each o-H, m-B. and p-K) and two 

proton environments for THF molecules. Attempts to isolate the dinuclear complex 

involved the dissolving of symmetric complex in warm toluene, followed by drying to 

remove the free THF molecules. The addition of 1-2 drops of THF to the dinuclear 

complex generated mononuclear yttrium product, which confirmed the formation of the 

dinuclear product due to the loss of the THF molecule. Several cycles of heating and 

drying decomposed the product and hence affected the isolated yield of the dinuclear 

yttrium complex. 
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Scheme 2.1 

Ar* = C6H5 (2a) Ar* = C6H5 (2a1) 
= 3,5-Me2C6H3 (2b) = 3,5-Me2C6H3 (2b1) 

Various attempts at crystallizing the dinuclear product succeeded in the formation 

of block shaped off-white crystals, which were obtained from the bromobenzene solution. 

The X-ray molecular structure shown in Figure 2.3, confirmed the presence of dinuclear 

yttrium complex in which both yttrium ions are attached to each other by bridging amido 

nitrogen atoms. Each trivalent yttrium ion is five coordinate and contains one THF 

molecule. The dinuclear product has C\ symmetry, where both asymmetric units are 

related to each other. The crystal structure also contained disordered bromobenzene 

molecules. The yttrium-yttrium distance was found to be 3.808(4) A, which is ~4 % 

longer than the distance reported in closely related dimeric yttrium hydro compound 

(3.672(1) A) in which both yttrium amido metal ions are bridged by hydrogen atoms.37 
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Figure 2.3. An ORTEP depiction of the solid-state molecular structure of [P(CH2N-3,5-

Me2C6H3)20-N-3,5-Me2C6H3 )Y(THF)]2 (2b"). Hydrogen atoms are omitted for clarity. 

Selected bond lengths or distances (A): Y(l)-N(l), 2.282(14); Y(l)-N(2), 2.305(14); 

Y(l)-N(3), 2.504(13); Y(l)-Y(2), 3.808(4). Selected angles in deg: N(l)-C(l)-P(l), 

118.83(4); N(l)-Y(l)-N(2), 133.83(17); N(l)-Y(l)-N(3), 94.84(13); N(l)-Y(l)-0(1), 

98.12(10). 

Syntheses of all the paramagnetic trivalent lanthanide complexes (3a-b to 8a-b) 

were analogous to 2a-b and involved mixing of equimolar amount of ligand and 

Ln[N(SiMe2)2]3 in THF. Similar to complex 2c, complexes (3-8c) were obtained from 

refluxing the mixture of 1 equivalent of [P(CH2NH-3,5-(CF3)2C6H3)3] (lc) and 1.5 

equivalents of Ln[N(SiMe2)2]3 (where Ln = Gd, Tb, Dy, Ho, Er, and Tm) in THF for 9-10 
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h. Chemical shifts of 4 to 8a-c were assigned by *H and 31P{'H} NMR spectroscopy and 

all the paramagnetic lanthanide complexes (Table 2.1) except 8a-c showed a large 

chemical shift range from -1000 to 1200 ppm in the 31P{'H} NMR due to dipolar shifts. 

However, in the case of the thulium complexes (8a-c) we were not able to observe the 

phosphorus NMR shifts because of the larger line width broadening (Experimental 

Section, Table 2.1). 

2.2.1.1 Through-space 31P-89Y Coupling 

The 31P{'H} NMR spectra chemical shifts of the ligand precursors (la, lb and lc) 

are -32.1, -29.6 and -32.6 ppm respectively, whereas yttrium complexes (2a-c) showed 

signals at 8 -60.6, -61.4 and -62.8 ppm. The coordination of yttrium metal to these 

ligands causes an upfield shift of the 31P resonances, which is unusual, because increasing 

T O 

C-P-C angles normally shifts the chemical shift towards lower fields. We have 

previously ascribed this unusual shift in related transition metal complexes by interactions 

of the minor lobe of the lone pair associated orbital with the adjacent metal centre. All 
RQ 

three mononuclear yttrium complexes exhibit 15 Hz couplings between yttrium ( Y, I = 
T i l T g 

V-i) and phosphorus in their P{ H} NMR spectra. This Jpy value is large considering 

that ' Jpy values are typically in the range of 50-80 Hz, and Vpy values are typically 4 to 6 

Hz, though values as large as 11 Hz have been reported in conjugated systems. ' As 

expected, Jpy coupling constants should be smaller due to the predominantly ionic nature 

of bonding in Y3+ complexes 2a-c and thus the smaller Fermi contact terms, but we were 

unable to uncover any example of Jpy values in the literature for comparison. This 

suggests that the coupling between Y and P could be mediated by a through-space 
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interaction. The X-ray data demonstrate that the Y-P distance is 3.281(7) A in complex 

2b, and this proximity of the phosphorus and Y atoms could allow a weak bonding 

interaction to occur between the minor lobe of the phosphorus lone pair and the metal. A 

detailed explanation regarding Y-P coupling is provided in Chapter 5. 

2.2.1.2 Magnetic Susceptibilities of Trivalent Lanthanides 

The molar magnetic susceptibilities %m of powdered samples of paramagnetic 

trivalent lanthanide amides were studied over the temperature range of 300.0-2.0 K. A 

plot of the product of magnetic susceptibility and temperature (XmT) versus temperature 

(T) for complexes [P(CH2N-3,5-Me2C6H3)3]Ln(THF)3 (Ln = Er, Dy or Tm) is shown in 

Figure 2.4. At room temperature complexes 4a, 7a and 8a displayed XmT values of 11.34, 

14.17 and 7.11 cm Kmol", respectively, which correspond to the previously calculated 

values of their trivalent free ions at room temperature eg. Er3+ (11.48 cm3-K-mol"1), Dy3* 

(14.17 cnr'-Kmol"1) and Tm3+ (7.15 cm^K-mol"1).42 
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Figure 2.4. Plot of xmT versus temperature for complexes 4a (squares), 7a (diamonds) 

and 8a (triangles). 

2.2.1.3 Electron Paramagnetic Resonance (EPR) Spectrum of Mononuclear 

Gadolinium Compounds 

All the three gadolinium complexes (3a-c) were characterized by their EPR 

spectra and elemental analyses. The solid-state X-ray structure of 3b confirmed the C3 

symmetry and showed that analogous to other mononuclear lanthanides, complexes 3a-c 

also contain six coordinate metal centres chelated by the amido donors. The X-band EPR 

spectra of powdered Gd complexes (3a-c) obtained at 77 K are shown in Figure 2.5 A-C, 

which display resonances from zero to 14000 G. These gadolinium compounds showed 

large zero-field splittings, which are larger than the reported anionic 

bis(phthalocyaninato)gadolinium complex.43 The spectra were adequately modelled using 

only B2o values from ±0.181 to +0.197 cm"1, B40 values from 1.87 x 10"5 to 2.67 x 10"5 and 
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the g value of 2.0023. Even after every effort of modelling the EPR spectra of complex 3a 

and c, we were not able to produce a better model. It can be predicted that the peaks 

obtained in the experimental spectra might be due to the presence of either a mixture of 

compounds (mono and dinuclear) or due to the presence of polymorphism. As expected 

for Gd(III), 520 terms were found to be much larger than the Bw .643, #60, B& and B^ 

crystal field parameters, and attempts to fit these parameters did not produce a 

significantly better model of the experimental data. However, modelling of the data using 

anisotropic line widths made considerable improvement in modelled spectra. The relative 

sign of B20 cannot be determined from this EPR data, and thus it is not clear if the ms = 

±1/2 or ms = ±7/2 substates are lowest in energy. 

2000 4000 6000 8000 10000 12000 14000 

Magnetic Field (Gauss) 

Figure 2.5.A. X-band EPR spectrum of [P(CH2NC6H5)3]Gd(THF)3 (3a) (dark line) and 

simulated spectrum (grey line) (B2o = ±0.189 cm"1 (±2025 G), 540 = 2.0 x 10"5 cm"1 (0.21 

G ) , g\\ = g± = 2.0023 and anisotropic line widths (|| = 160 G, ± = 200 G)). 
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0 2000 4000 6000 8000 10000 12000 14000 
Magnetic Field (Gauss) 

Figure 2.5.B. X-band EPR spectrum of [P(CH2N-3,5-Me2C6H3)3]Gd(THF)3 (3b) (dark 

line) and simulated spectrum (grey line) (fi2o = ±0.195 cm"1 (±2090 G), B40 = 1.87 x 10"5 

cm"1 (0.20 G), g\\ = g± = 2.0023 and anisotropic line widths (|| = 140 G, ± = 200 G)). 
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0 2000 4000 6000 8000 10000 12000 14000 

Magnetic Field (Gauss) 

Figure 2.5.C. X-band EPR spectrum of [P(CH2N-3,5-(CF3)2C6H3)3]Gd(THF)3 (3c) (dark 

line) and simulated spectrum (grey line) (B2o = ±0.182 cm"1 (±1950 G), 5 4 0 =3x 10"5 

cm"1 (0.28 G), g|| = g± = 2.0023 and anisotropic line widths (|| = 160 G, 1 = 270 G)). 

2.2.2 Mononuclear Lanthanide Complexes: Building Blocks for Heteronuclear d-f 

Metal Complexes 

In these mononuclear lanthanide complexes, the lone pair of the phosphorus atom 

is directed away from the lanthanide metal centre and acts as a suitable donor for the 

interaction of another metal centre. In order to build polynuclear complexes where these 

lanthanide complexes can couple to transition metal complexes via bridging tripodal 

ligands, these mononuclear lanthanide complexes were used to react with various 

transition metal complexes. For through-space exchange coupling, the desired transition 
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metal complex must be attached to the phosphine donor and should satisfy two 

requirements: first, it must direct unpaired electron density towards the mononuclear 

lanthanide ion; and second, it must have magnetic properties that are easy to model. 

To further investigate the possibility of interaction between two metal ions in 

heterodinuclear complexes, diamagnetic PtMe2(COD) (where COD = 1,5-cyclooctadiene) 

was selected and reacted with a two-fold excess of 2c in the presence of THF, as shown in 

equation (2.2). The solution was then filtered and layered with pentane, which crystallized 

in the form of red colour crystals after 5-6 days. The presence of a singlet with 195Pt 

satellites and 1770 Hz coupling in the phosphorus NMR spectrum provide the evidence of 

typical c/5-bis(phosphine)Pt-complexes.44 The resultant square planar heteronuclear Pt-

complex (9) showed no sign of Pt-Y coupling in the 31P{'H} NMR spectrum. 

kr\ M e ^ Me ArR 

2[P(CH2NArR)3Y](THF)3 + P tMe 2 (COD)— T H F „ T H F ^ / P* * . " " "^JN (2.2) 

THP / * v J \ \ JL--THF 
2 c THF , N > N ^ l ' " T H F 

/ / / 
ArR = 3,5-(CF3)2C6H3 A r W A f R 

THF 

The solid-state molecular structure of complex 9, as presented in Figure 2.6 shows 

the presence of two molecules of 2c attached to a platinum atom, after replacing 

cyclooctadiene. The lone pairs of both phosphine molecules, which are directed away 

from yttrium metal, act as donor moeity for platinum metal ions. The distance between the 

platinum and the yttrium metal center is 5.677(7) A and between the platinum and 

phosphorus is 2.287(6) A. Introduction of platinum metal in the formation of the 
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heteronuclear complex slightly decreased the sum of the P-C-P angles (320.58(7)°) in 

complex 9. 

Figure 2.6. An ORTEP depiction of solid state molecular structure of [P(CFf2N-3,5-

(CF3)2C6H3)3Y(THF)3]2PtMe2 (9). Hydrogen atoms and CF3 groups are omitted for clarity. 

Selected bond lengths or distances (A): Y(l)~-P(l), 3.394(10); P(l)-Pt(l), 2.287(7); Y(l)-

--Pt(l), 5.677(7); Selected angles in deg: P(l)-Pt(l)-P(l), 97.7(3); C(l)-Pt(l)-C(2), 

81.8(17). 

A second attempt towards the syntheses of heterodinuclear d-f metal complexes involved 

the reaction of 1 equivalent Ni(acac)2 (acac = actylacetonate) with a 2 equivalents of 

P(CH2NHC6H5)3 followed by its reaction with Ln[N(SiMe)2]3. The synthesis of the d-f 

metal complex synthesis involve, first mixing of both reactants (la and Ni(acac)2) in THF 

for 3 h followed by rinsing with pentane before drying for 2 h (equation 2.3). After 2-3 

days, a saturated solution in benzene resulted in the formation of violet crystals of 
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[P(CH2NHC6H5)3Ni(acac)2] (10). The X-ray crystal structure revealed that the product 

was an octahedral phosphine adduct, which formed upon the addition of two molecules of 

ligand to the Ni(acac)2. Further reaction of complex 10 with 2 equivalents of 

Y[N(SiMe)2]3 did not form the expected d-f metal complex, which can be explained on 

the basis of HSAB (hard- and soft- acid and base) theory. According to this theory, in this 

reaction, nickel would act as a soft Lewis acid in comparison to the harder yttrium ion and 

the acac ligand (acetylacetonate) as a hard Lewis base (harder than the amido donor), 

which would favour the yttrium ion binding to the acac ligand, by replacing the amido 

donor. Therefore, this theory suggests that transition metal complexes containing soft 

Lewis bases (softer than the amido donor) will be a better choice for the formation of d-f 

metal complexes. 

CfiH„ 
NH 

NH 
6 5^NH ,3H* 

N H \ 
c6hw NH 

THF 7 , N , , x 

2[P(CH2MHC6H5)3] + Ni(acac)2 - { [ ^Niv ) ) (2.3) 

acac = Acetylacetonate 

NH 
6"5 " " \ C6H5 

C6H5 
CM-' N H 

10 

The solid-state molecular structure of complex 10, given in Figure 2.7, shows the 

octahedral nature of Ni(II) complex in which the nickel metal ion is 2.4617(8) A apart 

from phosphorus atom, which is 0.09 A shorter than the previously reported nickel-
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phosphine complex.45 Bonding of the nickel ion in between two molecules of ligand 

precursor la slightly opens up the C-P-C angle, which then becomes 313.26(5)°. 

Figure 2.7. An ORTEP depiction of solid state molecular structure of [P(CH2NHC6H5)3]2 

Ni(acac)2 (10) showing 30% probability surface . Hydrogen atoms are omitted for clarity. 

Selected bond lengths or distances (A): Ni(l)~P(l) , 2.4617(8); Ni(l)-0(1), 2.011(2); 

Ni(l)-0(2), 2.038(2). 

One of our attempts to check the possibility of interaction between d-f metal ions 

in heteronuclear complexes also involved the reaction of 2a-c with [TPP]Co (where TPP 

= 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin). To achieve our goal, 1 equivalent of 

2c was reacted with 1 equivalent of [TPPJCo in toluene, which resulted in the formation 

of the related five-coordinate phosphine adducts of Co(II) porphyrin, as known 

previously.4 Reddish brown crystals were obtained directly from the toluene solution 

and the crystal structure (Figure 2.8) revealed that the resultant product is a five 
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coordinate heteronuclear Co-Y complex in which two THF and one DMF (dimethyl 

formamide) molecules are coordinated to the yttrium metal centre instead of three THF 

molecules (present in the mononuclear yttrium complex 2a-c). Further investigation 

suggested that the presence of a DMF molecule ([TPPJCo purchased from Aldrich was 

crystallized from DMF) in the resulting five coordinate cobalt phosphine complex was 

due to the stronger donor ability of DMF. In complex P(CH2N-3,5-

(CF3)2C6H3)3Y(THF)2(DMF)]TPPCo (11), average Y-N distance is 2.283(2) A, P(l)— 

Y(l) distance is 3.305(6) A and Y(l)—Co(l) are 5.685(10) A apart from each other. The 

sum of the C-P-C angles in complex 11 is 325.9(12) A, which is approximately 28° larger 

than the sum of C-P-C angles for the ligand precursor, lc. 

Figure 2.8. An ORTEP depiction of solid state molecular structure of [P(CH2N-3,5-

(CF3)2C6H3)3Y(THF)2(DMF)]TPPCo (11). Hydrogen and fluorine atoms are omitted for 

clarity and only the ipso carbons of the phenyl substituent on nitrogen are shown. Selected 

bond lengths or distances (A): Y(l)—P(l), 3.305(6); P(l)-Co(l), 2.382(9); Y(l)-N(l), 

2.279(5); Y(l)-N(2), 2.288(5); Y(l)-N(3), 2.280(5); Y(l)~-Co(l), 5.685(10). 
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2.2.3 Introduction of Tris(Pyrazolyl)Borate: A THF Substitute 

Due to the weaker donor ability of THF towards our lanthanide complexes, all 

three THF molecules were easily replaced by the tris(pyrazolyl)borate ligand. A variety of 

poly(pyrazolyl)borate ligands have been used to study the chemical and photophysical 

properties of lanthanides.49"51 It has been reported previously that tris(pyrazolyl)borate 

ligands control the reactivity as well as the steric bulk of the metal complexes. The 

number of equivalents of pyrazolyl ligands required to attach to the metal centre depend 

on the steric bulk of the substituents attached to the 3- and 5- position of the pyrazolyl 

rings, which also controls the coordination sphere. Depending upon the substituents 

attached to the pyrazolyl ring, various other Tp ligands have also been studied, such as 

Tp, TpMe'Me (methyl group attached in 3 and 5 positions), TpMe'Me'Et (Me on 3,5 and Et on 

4th position), TpCF3CF3 (R3 = R5 = CF3) etc, as shown in Table 2.1. Out of these, TpMe'Me is 

the most extensively used, due to the appropriate amount of steric bulk provided by 

methyl groups. 

Tris(pyrazolyl)borate ligand 
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Table 2.1. Substituents attached to the pyrazolyl ring 

R3 

H 

Me 

Me 

fBu 

Mes 

Mes 

CF3 

R» 

H 

H 

Et 

H 

H 

H 

H 

Rs 

H 

Me 

Me 

Me 

H 

Me 

CF3 

To replace the THF donor molecules from complexes 2a-c, 1 equivalent of 

yttrium complexes (2a-c) were reacted with similar numbers of moles of the 

tris(pyrazolyl) borate potassium salt (KTpMe) in THF (Equation 2.4). 

Tris(pyrazolyl)borate behaves as a tridentate anionic ligand and has been used earlier for 

lanthanide complexes.49 Mixing of both reactants (2a-c and KTpMe) resulted in the 

formation of six coordinate lanthanide compounds capped with three nitrogen molecules 

of the tris(pyrazolyl)borate and chelated with three nitrogen molecules of tripodal amido 

ligand. Similar to the formation of 2a and 2b, 12a and 12b required mixing of 1 

equivalent of 2a-b with 1 equivalent of KTpMe at room temperature in the presence of 

THF. Formation of 12c required reaction of 1.5 equivalents of potassium salt of 

tris(pyrazolyl) borate with 1 equivalent of KTpMe and 10-12 h refluxing in THF. 

Symbol 

Tp 
T p Me2 

^ Me2Et 

Tp 
T p M s 

T-. MsMe 
IP 

Tp' (CF3)2 
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K+ 

•M \ I N , 
LN 

Me 

THF 

ArR = C6H5(12a) 

(2.4) 

3,5-Me2C6H3 (12b) 
3,5-(CF3)2C6H3(12c) 

Efforts to obtain X-ray quality crystals of 12a-c, as well as their further reactions 

with different metal complexes, revealed that both 12a and 12b are less soluble in 

benzene or toluene than 12c. It has been reported that most of these LnTp reactions 

involve the metathesis of lanthanide salts in THF and it was also found that the solubility 

of these compounds depend on their relative structures (with or without solvent 

molecules).51 Block-shaped X-ray quality crystals of 12c were easily obtained from the 

mixture of benzene/hexamethyldisiloxane. The ORTEP depiction of the solid state 

molecular structure of 12c is given in Figure 2.9. The crystal structure of 12c displays that 

the potassium metal ion is coordinated with one molecule of THF and one molecule of 

benzene. Comparison of bond lengths and angles with 2a-c showed only small variations 

due to the replacement of THF molecules by a KTpMe ligand in complex 12c. There was 

no significant difference observed in the sum of C-P-C angles in complex 12c 

(320.95°(8)) and in complex 2c (320.58°(7)). 
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Figure 2.9. An ORTEP depiction of the solid-state molecular structure of K+[P(CH2N-

3,5-(CF3)2C6H3)3YTpMe]_ (12c) showing potassium attached with cocrystallized benzene 

and THF. 30% thermal ellipsoids are shown. Hydrogen atoms are omitted for clarity and 

only the ipso carbons of the phenyl substituents on nitrogen are shown. Selected bond 

lengths or distances (A): Y(1)~P(1), 3.3173(9); Y(1)~B(1), 3.543(5); Y(l)-N(3), 

2.298(3); Y(l)-N(l), 2.292(3); Y(l)-N(2), 2.288(3); Y(l)-N(5) 2.432(3); Y(l)-N(7) 

2.452(3); Y(l)-N(9), 2.453(3). Selected angles in degrees: N(7)-Y(l)-N(9), 78.81(9); 

N(5)-Y(l)-N(9), 74.49(9); N(5)-Y(l)-N(7), 77.61(9); C(3)-P(l)-C(l), 105.87(15); C(3)-

P(l)-C(2), 106.96(15); C(l)-P(l)-C(2), 108.12(15). 

In order to form the heteronuclear complexes with magnetically coupled d and / 

block metals, mononuclear compounds 12a-c were further reacted with various transition 
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metal halides. Most of these reactions involve the displacement of the yttrium ion from 

the amido complexes by harder Lewis bases (harder than the amido donors). An example 

of these reactions involve the reaction of complex 12 with Zr-halides, which resulted in 

the form of Zr-amido complexes.53 The 31P{'H} chemical shifts of the Zr-complexes 

correspond to the previously reported Zr-amido complexes and showed the shifts ~ -70 

ppm.53 These displacement reactions, where harder Lewis acid (Y3+) was easily displaced 

by hard chloride ions, suggest that transition metal complexes containing soft Lewis bases 

(softer than the amido donors) will be a better choice to for the syntheses of d-f metal 

complexes.54 

[P(CH2NArR)3]YTpMe + ZrCI4 — »• [P(CH2NArR)3]ZrCI(THF) (2.5) 

major product 

THF 
[P(CH2NArR)3]YTpMe + Cp2ZrCI2 — • [P(CH2NArR)3]ZrCp (2.6) 

major product 

2.3 Summary and Conclusions 

The syntheses and characterization of a series of tripodal amido ligand supported 

mononuclear lanthanide complexes were carried out using different donor molecules and 

tripodal amido phosphine ligands. Large zero field splitting was observed in mononuclear 

gadolinium complexes, which is larger than in the reported anionic 

bis(phthalocyaninato)gadolinium complex. These mononuclear complexes were then 

further utilized for the syntheses of heteronuclear d-f metal complexes. Preliminary 

efforts at synthesizing heteronuclear complexes done in this Chapter provided some 

insight into the importance of ligand design as well as on the selection of appropriate 
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transition metal complexes for d-f metal-metal interaction. It can also be concluded that 

transition metal complexes, which possess large magnetic anisotropy and weaker field 

ligands will be more appropriate for observing metallic interactions when making 

complexes with anionic complexes of lanthanide K+[P(CH2NArRC6H3)3LnTpMe]~. 

2.4 Experimental 

General Techniques - Unless otherwise stated, all experiments were performed 

under an inert atmosphere of dinitrogen using either Schlenk techniques, or an MBraun 

glove box. Dry oxygen free solvents were used throughout. Anhydrous pentane and 

toluene were purchased from Aldrich, sparged with nitrogen and passed through activated 

alumina under a positive pressure of nitrogen gas; toluene and hexanes were further 

deoxygenated using Ridox catalyst columns.55 Deuterated benzene and toluene were dried 

by heating at reflux over Na/K in a sealed vessel under partial pressure, then trap-to-trap 

distilled, and freeze-pump-thaw degassed three times. 

Instrumentation - 'H, ^Cl 'H}, ^Fl 'H} and 31P{'H} NMR spectra were recorded 

on Bruker AMX (300 MHz) and Bruker AMX (500 MHz) spectrometers. All chemical 

shifts are reported in ppm, and all NMR coupling constants (J) are in Hz. !H NMR spectra 

were referenced to residual protons (C6D5H, 5 7.15, C7D7H, 8 2.09, CHDC12 5 5.35, and 

C4D7HO 5 1.73) with respect to trimethylsilane at 8 0.0. 13C{'H} spectra were referenced 

relative to solvent resonances (C6D6, 5 128.0 and C7D8, 5 20.4, CD2C12 5 54.0, and C4D80 

8 67.4). 31P{'H} NMR spectra referenced to external 85 % H3PO4 at 8 0.0. For 19F{'H} 

NMR spectra, trifluoroacetic acid was used as the external reference at 8 0.0. Elemental 

analyses were performed by the Centre for Catalysis and Materials Research (CCMR) at 
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the University of Windsor. Magnetizations were measured with a Quantum Design 

MPMS-XL system at Simon Fraser University. Samples were run in a PVC holder 

specially designed to possess a constant cross-sectional area. 

EPR Spectroscopy - EPR spectra were collected using an X-band Bruker ESR 

300 E spectrometer. The program Spin56 was used to simulate the Gd3+ spectrum using 

only E$2o(D) crystal field parameter and the program Sim57 was used to generate spectra 

with the B20, B40, B43, B60, B63 and B66 crystal field parameters. 

Chemicals - The compounds tris(hydroxymethyl)phosphine, aniline, 3,5-dimethyl 

aniline, 3,5-bis(trifluoromethyl)aniline, anhydrous YCI3, 3,5-dimethyl-lpyrazolyl, 

Ni(acac)2, PtMe2(COD)2, potassium borohydride, LiN(SiMe2), NaN(SiMe2) and [TPP]Co 

(where TPP = 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin) were purchased from 

Aldrich. Anhydrous LnCl3 (Ln = Gd, Tm, Ho, Tb, Dy and Er) were purchased from 

Strem. All the reagents were used without further purification. All three tripodal amido-

phosphine ligands were synthesized by the method reported previously from our lab.39 

The compounds Y[N(SiMe3)2]3 and Ln[N(SiMe3)2]3 (Ln = Gd, Tm, Ho, Tb, Dy and Er) 

were synthesized via the literature methods.58'59 Potassium hydrotris(l-pyrazolyl)borate 

(KTp e) was synthesized by the method given in the literature. The ligand precursors 

P(CH2NHC6H5)3, P(CH2NH-3,5-Me2C6H3)3 and P(CH2NH-3,5-(CF3)2C6H3)3 were 

prepared by literature methods and will be numbered as la, l b and lc, respectively.39 

Synthesis of Symmetric [P(CH2NC6H5)3Y(THF)3] (2a). A mixture of 

P(CH2NHC6H6)3 (500 mg, 1.4 mmol) and Y[N(SiMe3)2]3 (798 mg, 1.4 mmol) was stirred 

in 20 mL of THF at room temperature for 30 min and left overnight for crystallization. 

The solution was filtered and the remaining white crystalline solid rinsed with 50 mL 
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pentane and dried under vacuum for 3 h (66 %, 600 mg). 'H NMR (C4D80, 300 MHz, 

298 K): 5 1.45 (12H, YOCH2C//2), 3.52 (12H, YOC//2), 4.12 (d, VPH = 6.2 Hz, 6H, 

PC//2), 7.12 (d, Ar, 6H, o-H), 7.24 (m, Ar, 6H, m andp-H). 31P{'H} NMR (C4DgO, 121.5 

MHz, 298 K): 5 -60.6 (d, JPY = 15.1 Hz). Anal. Calcd for C33H45N3O3PY: C, 60.83; H, 

3.95; N, 6.09. Found: C, 60.90; H, 4.01; N, 6.12. 

Dinuclear Complex [P(CH2NC6Hs)2C"-NC6H5)Y(THF)]2 (2a'). Complex 2a 

converts into dinuclear complex 2a' after losing two THF molecules at high temperatures 

and in the presence of benzene or toluene. Synthesis of 2a' involves the redissolving of 

complex 2a in warm toluene followed by drying under vacuum. The process was repeated 

5-6 times till the resultant product was obtained. !H NMR (C6D6, 300 MHz, 338 K): 5 

1.35 (br, 8H, OCH2C//2), 3.46 (br, 8H, YOCH2), 3.85 (m, 6H, ?CH2), 3.57 (t, 2H, PC/fc), 

4.67 (d, 2H, PC/fc), 4.95 (dd, 2H, PC/fc), 6.42 (d, Ar, 4H, o-H), 6.65 (m, Ar, 6H, o and/?-

H), 6.73 (d, Ar, 4H, o-H), 6.82 (t, Ar, 2H,p-H), 7.28 (m, Ar, 6H, m andp-H), 7.1-7.34(m, 

Ar, 8H, m-H). ^P^H} NMR (C6D6, 121.5 MHz, 338 K): 5 - 45.2 (d, JPY = 15.1 Hz). 

Synthesis of Symmetric [P(CH2N-3,5-Me2C6H3)3Y(THF)3] (2b). A mixture of 

P(CH2NH-3,5-Me2C6H3)3 (500 mg, 1.15 mmol) and Y[N(SiMe3)2]3 (657 mg, 1.15 mmol) 

was stirred in 20 mL of THF at room temperature for 30 min and left overnight for 

crystallization. The solution was filtered and the remaining white crystalline solid rinsed 

with 50 mL pentane and dried under vacuum for 3 h (68.5 %, 575 mg). 'H NMR (C4D80, 

300 MHz, 298 K): 5 1.45 (b, 12H, YOCH2C//2), 2.25 (s, 18H, A1-CH3), 3.51 (b, 12H, 

YOCH2), 4.05 (d, 6H, 2JPH = 6.1 Hz, PC//2), 6.19 (b, Ar, 6H, o-H), 6.23 (s, 3H, p-H). 

3IP{'H} NMR (C4D80, 121.5 MHz, 298 K): 5 - 61.4 (d, JPY = 15.1 Hz). Anal. Calcd for 

C39H57N3O3PY: C, 63.66; H, 7.81; N, 5.71. Found: C, 63.80; H, 7.92; N, 5.73. 
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Dinuclear Complex [P(CH2N-3^-Me2C6H3)2Cfi-N3^-Me2C6H3)Y(THr)]2 (2b'). 

Complex 2b converts into asymmetric complex 2b' after losing two THF molecules at 

high temperatures and in the presence of benzene or toluene. Synthesis of 2b' involves the 

redissolving of complex 2b in warm toluene followed by drying. The process was 

repeated 5-6 times till the resultant product was obtained. !H NMR (C6D6, 300 MHz, 338 

K): 5 1.47 (b, 8H, OCH2C//2), 3.50 (b, 8H, YOCH2), 2.12 (s, 6H, Ar-CH3), 2.25 (s, 6H, 

Ai-CHi), 2.35 (s, 6H, Ar-C//3) 3.56 (m, 6H, PC//2), 3.62 (d, 2H, ?CH2), 4.45 (d, 2H, 

PCH2), 5.16 (dd, 2H, ?CH2), 5.84 (s, Ar, 4H, o-H), 6.14 (s, Ar, 2YL,p-H), 6.20 (s, Ar, 4H, 

o-H), 6.24 (s, Ar, 2H, p-H), 6.34 (s, Ar, 2H,/?-H), 6.85 (s, Ar, 4H, o-H). n?{xYi} NMR 

(C6D6, 300 MHz, 338 K): 5 - 46.0 (d, JPY =15.1 Hz). 

Synthesis of [P(CH2N-3,5-(CF3)2C6H3)3Y(THF)3] (2c). A mixture of 

P(CH2NH-3,5-(CF3)2C6H3)3 (750 mg, 0.993 mmol) and Y[N(SiMe3)2]3 (849.10 mg, 1.48 

mmol) was refluxed in 20 mL of THF overnight. The solvent was evacuated after cooling 

the mixture to room temperature yielding an off-white solid. The product was then washed 

with 50 mL pentane and dried under vacuum for 3 h (97 %, 890 mg). X-ray quality 

crystals were obtained from benzene/hexamethyldisiloxane mixture. *H NMR (CeD6, 300 

MHz, 298 K): 5 1.72 (b, 12H, YOCH2), 3.58 (d, 6H, 2Jm = 5.8 Hz, ?CH2), 4.13 (b, 12H, 

YOCH2), 6.81 (s, Ar, 6H, o-H), 6.87 (s, Ar, 3H, p-H), 13C{'H} NMR (C6D6, 75.5 MHz, 

298 K): 5 26.2 (s, YOCH2CH2), 44.2 (d, JPC = 17.4 Hz, PCH2), 68.4 (s, YOCH2CH2), 

106.5 (s, Ar o-C), 113.2 (s, Arp-C), and 124.1 (s, Ar m-C), 122.9 (q, J= 32.9 Hz, ArCF3), 

156.8 (d, J= 5.5 Hz, ipso-Q. 31P{'H} NMR (C6D6, 121.5 MHz, 298 K): 5 - 62.8 (d, J?Y 

= 15.1 Hz), 19F{'H} NMR (C6D6, 282.1 MHz, 298 K): 5 14.71 (s). Anal. Calcd. for 

C39H39F18N303PY: C, 44.21; H, 3.71; N, 3.97. Found: C, 44.28; H, 3.85; N, 3.84. 
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Syntheses of [P(CH2NC6H5)3Ln(THF)3] (Ln = Gd, Tb, Dy, Ho, Er and Tm) 

(3a-8a). All other lanthanide complexes were also synthesized in an analogous manner to 

the yttrium complex using 1:1 ratio of ligand and Ln[N(SiMe3)2]3. Products were 

crystallized in the form of white (Gd, Tb, Dy, Ho, Tm and Yb) and pink (Er) coloured 

crystals (yield 60-70 %). Crystallized products were filtered next day, and then rinsed 

with pentane followed by drying under vacuum for 2 h. 

Syntheses of [P(CH2N-3,5-Me2C6H3)3Ln(THF)3] (Ln = Gd, Tb, Dy, Ho, Er and 

Tm) (3b-8b). A mixture of P(CH2NH-3,5-Me2C6H3)3 and Ln[N(SiMe3)2]3 (1:1) was 

stirred in 20 mL of THF at room temperature for 30 min. After filtration crystallized 

products were rinsed with pentane and then dried under vacuum for 2h (yield 60-70 %). 

Synthesis of [P(CH2N-3,5-(CF3)2C6H3)3Ln(THF)3] (Ln = Gd, Tb, Dy, Ho, Er 

and Tm) (3c-8c). A mixture of P(CH2NH-3,5-(CF3)2C6H3)3 and Ln[N(SiMe3)2]3 (1:1.5) 

was refluxed in 20 mL of THF 9-10 h. The solvent was removed under vacuum after 

cooling the mixture to room temperature leaving an off-white (Gd, Tb, Dy, Ho, and Tm) 

and pink colour solid (Er). The product was washed with 50 mL pentane and dried under 

vacuum for 3 h (yield 60-70 %). 

lH (C6D6, 300 MHz, 298 K) and 31P{'H} (C6D6, 121.5 MHz, 298 K) NMR 

spectrum of [P(CH2NArR)3Ln(THF)3] ( Ln = Tb, Dy, Ho, Er and Tm) as shown in Table 

2.2. 

71 References begin on page 79 



Chapter-2: Syntheses and Characterization ofTrivalent Lanthanide Complexes: A Step Towards 
Heteronuclear d-f Metal Complexes 

Table 2.2. NMR chemical shifts of complexes 4a-c, 5a-c, 6a-c, 7a-c and 8a-c. 

Compounds 
[P(CH2NC6H5)3Ln(THF)3] 

Tb 
Dy 
Ho 
Er 
Tm 

[P(CH2N-3,5-
Me2C6H3)3Ln(THF)3] 

Tb 
Dy 
Ho 
Er 
Tm 

[P(CH2N-3,5-
CF3)2C6H3)3Ln(THF)3] 

Tb 
Dy 
Ho 
Er 
Tm 

!H 
CH2 

^14.5 
-322.3 
-56.8 
-210.4 

415.2 

-49.2 
^03 .4 
-66.4 
-278.7 
508.3 

-40.4 
-275.5 
^ 7 . 7 
-101.4 
322.2 

CH3 

-30.1 
-289.2 
-42.7 

-159.3 
410.2 

Axo-H 

42.6 
26.2 
20.2 
27.5 

-31.5 

39.2 
21.2 
16.4 
24.6 

-27.3 

47.7 
30.2 
26.3 
33.9 

^ 3 . 4 

Aim-H 

54.2 
32.3 
29.6 
28.5 

-41.3 

Arp-H 

64.3 
48.5 
37.3 
25.6 

-48.2 

61.3 
35.4 
28.5 
20.3 

-35.6 

66.2 
59.0 
45.2 
27.4 

-55.7 

"P^H} 

-950 
-1017 
- 4 8 
-413 

-956 
-1225 
-56 

-576 

L -931 
-957 
- 3 9 
-303 

Wpf'H} 

-A9 
-301 
-59 
179 
514 

Synthesis of [P(CH2N-3,5-(CF3)2C6H3)3Y(THF)3]2PtMe2 (9). In a small flask 1 

equivalent of PtMe2COD (20 mg, 0.0149 mmol) and 2 equivalents of [P(CH2N-3,5-

(CF3)2C6H3)3Y(THF)3] (128 mg, 0.0299 mmol) were stirred in 0.7 mL of CH2C12 for 24 h. 

After that solution mixture was filtered and layered with pentane which resulted as red 

coloured crystals of 9. 3,P{'H} NMR (CD2C12, 121.5 MHz, 298 K): 5 - 7.58 (s, JPtP = 

1770 Hz). 

Synthesis of [P(CH2NHC6H5)3]2Ni(acac)2 (10). A mixture of 2 equivalents of 

P(CH2NHC6H5)3 (1.36 g, 3.89 mmol) with Ni(acac)2 (500 mg, 1.94 mmol) was added 

together in 40 mL of THF and stirred for 4 h at room temperature. After 4 h the solvent 

was removed under vacuum and the residue was rinsed with pentane and dried under 
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vacuum for 2 h. Evaporation of a saturated solution in benzene provided violet coloured 

crystals (60 %, 700 mg). Anal. Calcd for C52H64N604P2Ni: C, 65.21; H, 6.74; N, 8.77. 

Found: C, 65.50; H, 6.96; N, 8.57. 

Synthesis of P(CH2N-3,5-(CF3)2C6H3)3Y(THF)2(DMF)]TPPCo (11). A mixture 

of 2c (500 mg, 0.737 mmol) and [5, 10, 15, 20-tetrakis(4-methoxyphenyl)porphinato]cobalt (II), 

[TPP]Co(II) (584 mg, 0.737 mmol) was stirred in 25 mL of toluene for 30 min. The 

solution was filtered and the resultant reddish-purple crystalline solid was washed with 

pentane (50 mL) and dried under vacuum for 4 h (47.5 %, 515 mg). Anal. Calcd for 

C39H39Fi8N803PYCo: C, 61.30; H, 4.32; N, 6.67. Found: C, 61.47; H, 4.12; N, 6.54. 

Synthesis of K+[P(CH2NC6H5)3YTpMe]".THF.Benzene (12a). A mixture of 

[P(CH2NC6H5)3Y(THF)3] (678 mg, 1.04 mmol) and K[HB(C3H3N2)3] (350 mg, 1.04 

mmol) was stirred in 20 mL of THF at room temperature for 5 h. The solution was filtered 

and the remaining white solid was rinsed with 50 mL pentane and dried under vacuum for 

3 h (76 %, 615 mg). !H NMR (C6D6, 300 MHz, 298 K): 5 2.76 (s, 9H, TpC#5), 2.85 (s, 

9H, TpCtfj), 3.13 (d, 6H, 2Jm = 7.1 Hz, PC//2), 4.21 (b, 1H, BH), 6.12 (s, 3H, TpH), 6.47 

(d, 6H, Ar o-H), 6.75 (t, 3H, ATp-H), 7.12 (m, 6H, Ar m-H). 13C{'H} NMR (C6D6, 75.5 

MHz, 298 K): 5 26.1 (d, JK= 16.2 Hz, PCH2), 16.5 (s, TpCH3), 11.2 (s, TpCH3), 112.1, 

114.4 and 132.9 (s, Ar, o-C, p-C and m-Q, 153.6 ( Ar, ipso-Q, 146.1 (s, TpC-1), 108.2 

(s, TpC-2), 141.4 (s, TpC-3). 31P{'H} NMR (C6D6, 121.5 MHz, 298 K): 5 -50.5 (d, JPY = 

15.1 Hz). Anal. Calcd. for C36H43N9BKPY: C, 56.04; H, 5.62; N, 16.34. Found: C, 56.14; 

H, 5.72; N, 16.36. 

Synthesis of K+[P(CH2N-3,5-Me2C6H3)3YTpMT.THF.Benzene (12b). A 

mixture of [P(CH2N-3,5-Me2C6H3)3Y(THF)3] (653 mg, 0.909 mmol) and 
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K[HB(C3H3N2)3] (305 mg, 0.909 mmol) was stirred in 20 mL of THF at room 

temperature for 5 h. The solution was filtered and remaining white solid was rinsed with 

50 mL pentane and dried under vacuum for 3 h (77 %, 600 mg). *H NMR (C6D6, 300 

MHz, 298 K): 5 2.32 (s, 18H, Ar CH3), 2.68 (s, 9H, TpC//?), 2.91 (s, 9H, TpCft), 3.32 

(d, 6H, VPH = 7.3 Hz, PCtf2), 4.30 (b, 1H, BH), 5.9 (s, 3H, TpH), 6.34 (d, Ar, 6H, o-H), 

6.45 (s, Ar, 3H, p-H). 13C{'H} NMR (C6D6, 75.5 MHz, 298 K): 5 25.2 (d, JPC = 17.4 

Hz, PCH2), 17.2 (s, TpCH3), 11.6 (s, TpCH3), 23.1 (s, Ar CH3), 109.8, 138.5 and 119.4 (s, 

Ar, o-C, p-C and m-Q, 142.3 ( Ar, ipso-Q, 144.6 (s, TpC-1), 105.2 (s, TpC-2), 139.1 (s, 

TpC-3). 31P{'H} NMR (C6D6, 121.5 MHz, 298 K): 5 - 48.6 (d, JPY = 15Hz). Anal. Calcd. 

for C42H55N9BKPY: C, 58.95; H, 6.48; N, 14.73. Found: C, 58.92; H, 6.37; N, 14.71. 

Synthesis of K+[P(CH2N-3,5-(CF3)2C6H3)3YTpMe] -THF.Benzene (12c). A 

mixture of [P(CH2N-3,5-(CF3)2C6H3)3Y(THF)3] (608 mg, 0.573 mmol) and 

K[HB(C3H3N2)3] (193.3 mg, 0.573 mmol) was refluxed in 20 mL of THF for 6-8 h. The 

solvent was then removed under vacuum after cooling the mixture to room temperature 

leaving an off-white solid. The product was washed with ~50 mL pentane and dried under 

vacuum for 3 h (68 %, 440 mg). 'H NMR (C6D6, 300 MHz, 298 K): 5 1.81 (s, 9H, 

TpCH3), 2.43 (s, 9H, TpCH3), 3.83 (d, 6H, 2JPH = 8.1 Hz, PC/ft), 4.33 (b, 1H, BH), 5.61 

(s, 3H, TpH), 6.47 (d, Ar, 6H, o-H), 6.75 (s, Ar, 3H, p-H). 13C{'H} NMR (C6D6, 75.5 

MHz, 298 K): 5 30.8 (d, JPC = 15.4 Hz, PCH2), 116.5 and 113.2, 134.1 (s, Ar, o-C, p-C 

and m-Q, 122.6 (q, J = 32.9 Hz, ArCF3), 155.8 (d, J= 5.5 Hz, ipso-Q. 31P{'H} NMR 

(C6D6, 121.5 MHz, 298 K) 8: - 49.4 (d, JPY = 15Hz). 19F{'H} NMR (C6D6, 282.1 MHz, 

298 K): 5 14.75 (s). Anal. Calcd for C42H37F18N9PBKY: C, 42.77; H, 3.16; N, 10.69. 

Found: C, 42.92; H, 3.28; N, 10.63. 

74 References begin on page 79 



Chapter-2: Syntheses and Characterization ofTrivalentLanthanide Complexes: A Step Towards 
Heteronuclear d-f Metal Complexes 

X-ray Crystallography - Each crystal was covered with paratone, mounted on a 

glass fibre and rapidly placed into the cold N2-stream of the Kryo-Flex low temperature 

device. The X-ray data were collected using the SMART60 software on a Bruker APEX 

CCD diffractometer using a graphite monochromator with Mo Ka radiation (k= 0.71073 

A). Details of crystal data, data collection and structure refinement are listed in Table 2.1, 

2.2 and 2.3. Data reduction was performed using SAINTPlus61 software, and data were 

corrected for absorption using SADABS. The structures were solved by direct methods 

using SIR9763, refined by full-matrix least squares on F2 using SHELXL-9764 and the 

WinGX65 software package, and the thermal ellipsoid plots were produced using 

ORTEP32.66 All non-hydrogen atoms were refined anisotropically and all hydrogen atoms 

were placed in appropriate geometrically calculated positions. 

Details of selected crystallographic data, data collection and structure refinement 

of compounds 2b, 2b', 3a, 5c, 10,12c and 9 are listed in Table 2.3, 2.4 and 2.5. 
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Table 2.3. Selected X-ray Crystallographic Data for Compounds 2b, 2b'and 3a. 

Empirical formula 

Formula weight 

Crystal system 

a (A) 

MA) 
c(A) 

a (deg) 

P(deg) 

Y(deg) 

V(A3) 

Space group 

Z 

Density (g/cm3) 

JJ (Mo Ka) (mm"1) 

Temperature (K) 

Total no. of reflections 

Residuals: Ri; WR2 

2b 

C39H57N3O3PY 

799.80 

Trigonal 

12.3093(14) 

12.3093(14) 

16.548(4) 

90 

90 

120 

2171.4(6) 

P3i/c 

2 

1.224 

1.421 

293 

24637 

0.0563; 0.1405 

2b' 

C66H83Br2N602P2Y2 

1391.97 

Cubic 

9.758(4) 

24.918(9) 

14.161(5) 

90 

96.894(5) 

90 

3418(2) 

P2,/n 

4 

1.430 

1.623 

293 

29081 

0.0724; 0.1283 

3a 

C33H45N303PGd 

719.94 

Cubic 

19.2900(8) 

19.2900(8) 

19.2900(8) 

90 

90 

90 

7177.9(5) 

Pa-3 

8 

1.332 

1.925 

293 

77491 

0.0604; 0.1483 
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Table 2.4. Selected X-ray Crystallographic Data for Compounds 5c, 10 and 12c. 

5c 10 12c 

Empirical formula Ca^FigNsOaPDy CsiH^NgC^Ni C42H37Fi8N9PBKY 

Formula weight 

Crystal system 

a (A) 

MA) 

c(A) 

a(deg) 

P(deg) 

Y(deg) 

V(A3) 

Space group 

Z 

Density (g/cm3) 

//(MoKa)(mm"') 

Temperature (K) 

Total no. of reflections 

Residuals: Ri; WR2 

1197.24 

Monoclinic 

13.101(3) 

21.381(6) 

17.083(4) 

90 

92.847(3) 

90 

4779(2) 

P121/nl 

4 

1.662 

1.150 

293 

11074 

0.0397; 0.114 

1075.2 

Trigonal 

34.6050(18) 

34.6050(18) 

12.1404(13) 

90 

90.00 

120 

12590.45(16) 

R-3 

9 

1.134 

0.449 

298 

24637 

0.0522; 0.1307 

2869.9 

Triclinic 

12.8569(15) 

13.5299(16) 

18.278(2) 

71.7250(10) 

72.6370(10) 

79.9150(10) 

2869.9(6) 

P-\ 

2 

1.539 

1.222 

293 

10101 

0.0462; 0.1347 
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Table 2.5. Selected X-ray Crystallographic Data for Compound 9 

Empirical formula C8oH78F36N906P2Y2Pt 

Formula weight 

Crystal system 

a (A) 

b(A) 

c (A) 

a(deg) 

p(deg) 

7(deg) 

V(A3) 

Space group 

Z 

Density (g/cm3) 

/i(MoKa)(mm'') 

Temperature (K) 

Total no. of reflection 

Residuals: Ri; WR2 

7225.6 

Monoclinic 

26.998(9) 

12.941(4) 

28.785(9) 

90 

92.224(5) 

90 

10049.36(6) 

C2/c 

1 

1.19 

1.595 

293 

10101 

0.0624:0.1012 
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CHAPTER-3 

A Phosphine-Mediated Through-Space 
Exchange Coupling Pathway for 

Unpaired Electrons in a Heterobimetallic 
f/-/Metal Complexes 

3.1 Introduction 

In molecular magnets,1" exchange coupling4'5 between homo or heteronuclear 

paramagnetic metal ions depend on the electronic and magnetic properties of the 

participating metal centres. Progress in the field of molecular magnets demands new 

synthetic approaches to design intricate architectures, which can include macromolecular 

polynuclear complexes.6 Typically, the same bonding interactions that assemble these 
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complexes and networks are also responsible for the transmission of exchange coupling 

by a super-exchange pathway. Single atom bridging metal centres often perform this role, 

but larger 7i-conjugated bridging ligands, such as cyano donors and examples of other 

bridging donors ligands as stated in Chapter 1, are also capable of propagating exchange 

coupling ' . An appropriate ligand design that could facilitate a building block approach 

to magnetic materials would be beneficial to this field, and in particular, building blocks 

with at least axial symmetry would aid in the modelling of magnetically anisotropic 

systems. 

It has been shown earlier that trianionic tripodal triamidophosphine ligands such 

as P(CH2NHPh)3 can be used to generate both polynuclear9'10 as well as heterobimetallic 

complexes,11 as depicted in Figure 3.1. In the case of exchange or super-exchange 

coupling between the two metal centres labelled M and M' in paramagnetic 

heterobimetallic analogues, these P(CH2NPh)3M moieties could act as valuable building 

blocks. Due to the ubiquity of phosphine donors in coordination chemistry, it should 

prove facile to utilize these complexes in the assembly of magnetic polynuclear 

complexes and modify them to generate extended networks. The tripodal ligands are 

designed in such a way that separates both metal centres M and M' from each other by 

four a-bonds, which would seem to preclude any significant exchange coupling via this 

pathway. However, the minor lobe of the lone pair associated orbital extends the 

phosphine towards the metal centre labelled in M', which in theory could provide a unique 

combined through-bond/through-space pathway for exchange coupling. The study of 

heterodinuclear complexes containing both lanthanides and transition metal ions {d-f 

complexes) " is of current interest due to the large magnetic anisotropies of the 
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lanthanides. These lanthanide metal ions, mainly heavier lanthanides (f -f ), have also 

been utilized to design single-molecule magnets.15'20' 24"28 This chapter describes the 

through-space exchange coupling between d-f metal centres (M and M') via a bridging 

phosphine donor. 

M' 

Figure 3.1. Through-space interactions in tripodal complexes of P(CH2NPh)3 with metal 

complexes M and M' with the minor and major lobes of lone pair orbital on phosphorus. 

3.2. Results and Discussions 

3.2.1 Synthesis of the Ligand Precursor 

To achieve the goal of stable well-defined lanthanide building blocks, we modified 

the tripodal triamido donors we had previously used (Chapter 2) to incorporate additional 

donors and to satisfy the desire of the trivalent lanthanides to form complexes with high 

coordination numbers (Chapter 2). The target ligand precursor, P(CH2NHC6H4-2-

C02Me)3 (13), was synthesized via the reaction of P(CH20H)3 with methyl anthranilate, 

H2NC6H4-2-C02Me, in toluene, as shown in equation 3.1. The water produced in this 

reaction was removed by azeotropic distillation using a Dean-Stark apparatus. The 
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solution of 13 oxidizes rapidly in air, and thus, the solid product was stored under an inert 

atmosphere. 

P(CH2OH)3 + 3 

C02Me 
Toluene 

-3H20 
P[CH2NHC6H4-2-C02Me]3 

13 

(3.1) 

X-ray quality crystals of 13 were obtained by slow evaporation of a 

benzene/hexamethyldisiloxane solution. An ORTEP depiction of the solid-state molecular 

structure is shown in Figure 3.2. The structure features intramolecular hydrogen bonding 

between the carbonyl and amino functionalities. The positions of the three amino 

hydrogens were refined using isotropic thermal parameters. The sum of C-P-C angles is 

298.31(2)°, typical for phosphine donors with C-P-C angles less than the tetrahedral angle 

(109.5°) 30 

° < 2 ' ^ ~°<1> 0(3, ^ 

C(3) ,&••- J ^ # 0 < 4 , 

ksr© 
N<2) 

0 ( 5 ) # 

0(6) ^^J—Q) 

Figure 3.2. Solid-state molecular structure of [P(CH2NHC6H4-2-C02Me)3] (13) as 

determined by X-ray crystallography. Hydrogen atoms are omitted for clarity, except 

those associated with N(l), N(2) and N(3). Hydrogen bonding interactions are shown as 

dashed lines. Selected bond angles (°): C(l)-P(l)-C(2), 102.62(13); C(l)-P(l)-C(3), 

98.44(14); C(l)-P(l)-C(3), 97.25(13). 
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3.2.1 Synthesis of a Mononuclear Yttrium Complex 

The similar ionic radius of Y(III) to the ionic radii of the heavier lanthanides, such 

as Gd(III), prompted us to begin our studies by preparing an yttrium complex of 13 to be 

used as a diamagnetic model complex. The reaction of 13 with 1 equivalent of 

Y[N(SiMe3)2J3 in toluene at room temperature resulted in the precipitation of 

orthorhombic yellow crystals of P(CH2NC6H4-2-C02Me)3Y (14), as shown in equation 

3.2. The aromatic region of the *H NMR spectrum of 14 features 4 multiplets, assigned 

by a combination of 2D-COSY and 2D-NOESY spectroscopy. Analysis of the reaction 

mixture via 'H and 31P{'H} NMR spectroscopy revealed that no side products were 

formed, other than the byproduct HN(SiMe3)2. 

MeO 
MeO 

OMe 

Toluene 
P(CH2NHC6H4-2-C02Me)3 + Ln[N(SiMe3)2]3 *-

- 3 HN(SiMe3)2 

13 

14(Ln = Y),15(Ln = Gd) 

The solid-state molecular structure of 14 was determined by X-ray 

crystallography, and an ORTEP depiction is shown in Figure 3.3. Despite the collection of 

X-ray diffraction data on several crystals of 14 that appeared suitable for solid-state 

structure determination, twinning complicated the solution of this structure. All atoms in 

the model structure were treated isotropically, and some restraints had to be used, which 

limited the accuracy of bond lengths and angles. Complex 14 has crystallographic C3 

symmetry, and features a six-coordinate Y centre chelated by the ligand amido donors and 

(3.2) 
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the carbonyl oxygens of the ester functionality. The phosphine lone pair is directed away 

from the metal, and thus, is available for donation to a second metal. 

Figure 3.3. Solid-state molecular structure of [P(CH2NC6H4-2-C02Me)3]Y (14) as 

determined by X-ray crystallography. Hydrogen atoms are omitted for clarity. 

Alternatively, mononuclear trivalent lanthanide complexes (14 and 15) could also 

be prepared via the reaction of 1 equivalent of complex 16 with 1 equivalent of anhydrous 

lanthanide trichloride in toluene (Scheme 3.1). While NMR scale reactions confirmed the 

presence of complexes 14 and 15 in both !H and 31P{'H} NMR spectra, scaling up the 

reaction always resulted in the formation of the mixture of compounds, as observed in 

NMR spectra. 
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Scheme 3.1. 

P(CH2NHC6H4-2-C02Me)3H3 + 3Li[N(SiMe3)2]
 T o l u e n e »• P(CH2NC6H4-2-C02Me)3Li3 

-3 HN(SiMe3)2 1 6 
13 

LnCh Toluene 

P(CH2NC6H4-2-C02Me)3Ln + 3 LiCI 

Ln = Y, Gd 

14,15 

3.2.3 Synthesis of a Li-salt of Ligand Precursor 

The lithium salt of ligand precursor (16), shown in Scheme 3.1 can be easily 

produced via the reaction of 3 equivalents of lithium bis(trimethylsilyl) amide with a 

single equivalent of ligand precursor (13) in toluene (Scheme 3.1). Mixing of both 

reactants at room temperature, with toluene as the solvent, produced yellow X-ray quality 

crystals of compound 16. Analysis of the isolated lithium salt by *H and 31P{'H}NMR 

spectroscopy proved it to be devoid of any side product. 

The solid-state molecular structure of 16 was determined by X-ray 

crystallography, and an ORTEP depiction is shown in Figure 3.4. The complex displayed 

approximate C3 symmetry, with all lithium ions bridged between amido donors. In many 

of the reported lithium salts of amido ligand, lithium ions require an oxygen containing 

external donor moiety, such as THF or ether, for stabilization. ' However, the present 

compound (16) contains built-in oxygen atoms within the ester functions of the methyl 

anthranilate arms. The X-ray data showed the presence of two cocrystallized toluene 
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molecules which were removed from the powder of 16, after several hours of drying, as 

confirmed by elemental analysis. 

Figure 3.4. Solid-state structure of [P(CH2NC6H4-2-C02Me)3]Li3 (16) as determined by 

X-ray crystallography. Hydrogen atoms and co-crystallized toluene molecules are omitted 

for clarity. Selected bond angles (°): C(l)-P(l)-C(2), 106.48(10); C(l)-P(l)-C(3), 

107.85(10); C(2)-P(l)-C(3), 106.56(11). Selected bond distances (A): Li(l)-N(l), 

1.936(5); Li(l)-N(2), 1.996(5); Li(2)-N(2), 1.982(5); Li(2)-N(3), 2.014(4); Li(l)-Li(3), 

2.777(6); Li(l)-Li(2), 2.697(7); Li(3)-P(l), 2.575(4). 

3.2.4 Through-Space 3Ip.89Y Coupling 

The 31P{'H} NMR spectrum chemical shift of 13 is 6 -33.6 ppm, whereas in 

complex 14, the P signal is observed at 5 -57.0 ppm. This upfield shift is unusual, since 

the increase in C-P-C angles upon coordination of a large metal such as Y should induce 

the opposite effect;32 we have previously ascribed this unusual shift in related complexes 
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to interactions of the minor lobe of the lone pair with the adjacent metal centre 

(Figure 3.1).11 

Also notable in the 31P{'H} NMR of complex 14 is the observation of a 15 Hz 

on T 

coupling between yttrium ( Y, / = Vi) and phosphorus. This JPY value is large 

considering that' JPY values are typically in the range of 50-80 Hz,33'34 and 2Jpy values are 

typically 4 to 6 Hz, though values as large as 11 Hz have been reported in conjugated 

systems.34' 35 The largely ionic nature of bonding to Y suggests that 3JPY coupling 

constants should be smaller, due to smaller Fermi contact terms, but we could find no JPY 

values in the literature for comparison. This suggests that the coupling between Y and P 

could be mediated by a through-space interaction. The X-ray data suggest an approximate 

Y-P distance of 3.36 A, and the proximity of the phosphorus and Y atoms could allow a 

formal bonding interaction to occur between the minor lobe of the phosphorus lone pair 

and the metal. 

An ab initio calculation using the density functional theory (DFT) B3YLP method 

and DGDZVP basis set was used to test this theory. This calculation predicts a JPY value 

of-11.2 Hz, whose absolute value is close to the -15 Hz observed experimentally, and the 

Fermi contact term of-10.2 Hz predominates. The sign of this value is consistent with a 

direct interaction between nuclei mediated by a pair of electrons and the opposite signs of 

the magnetogyric ratios for 31P and 89Y. The paramagnetic spin-orbit, dipolar, and 

diamagnetic spin-orbit contributions to the coupling constant are all calculated to be much 

smaller than the Fermi contact term, with values of -0.8, -0.14 and -0.026 Hz, 

respectively. An analysis of the molecular orbitals predicted from this calculation 

determined that only the HOMO-3 has any significant overlap of density between P and 
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Y, as required for a Fermi contact term. A depiction of this molecular orbital, which is 

primarily associated with the lone pair on phosphorus, is shown in Figure 3.5. The minor 

lobe of the lone pair orbital clearly extends back towards the Y centre, allowing a 

through-space interaction. 

Figure 3.5. Depiction of the HOMO-3 orbital associated with the phosphorus lone pair, 

obtained from a DFT calculation. 

3.2.5 Synthesis of a Mononuclear Gadolinium Complex 

The reaction of the ligand precursor 13 with Gd[N(SiMe3)2]3 produced the 

paramagnetic complex P(CH2NC6H4-2-C02Me)3Gd (15), as shown in equation 3.3. 

Similar to the synthesis of 14, yellow orthorhombic X-ray quality crystals precipitated 

from toluene. The crystal structures of both 14 and 15 are isomorphous, and only small 

metric differences in the unit cell parameters, due to the slightly larger size of Gd(III), 

were observed for this complex. As with complex 14, this C3 symmetric complex 

crystallized in a trigonal space group, and difficulties associated with twinning 
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complicated the solution of this structure; therefore connectivity could not be accurately 

determined. 

The X-band EPR spectrum of a powdered sample of complex 15 was obtained at 

77 K and is shown in Figure 3.6. The spectrum displays resonances from near zero-field 

to 12500 G. The spectrum can be adequately modelled using only a B20 value of ±0.194 

cm"1 (±2080 G), and a g value of 1.994.37 As would be expected for Gd(III), the B40 B43, 

B(,$, #63 and B^ crystal field parameters were found to be much smaller than the B20 term, 

and attempts to fit these parameters did not produce a significantly better model of the 

experimental data; in fact more significant improvements in fit were obtained by 

modelling the line widths anisotropically. The zero-field splitting in 15 is almost an order 

of magnitude larger than has been reported for a related anionic 

bis(phthalocyaninato)gadolinium complex,38 whose Dy, Tb,39 and Ho40 analogues have 

been shown to behave as mononuclear single-molecule magnets due to the large ligand 

induced zero-field splitting of their ground states. The approximate energy difference 

between the lowest and highest sublevels at zero-field for complex 15 is 2.328 cm"1; 

however, the relative sign of B20 cannot be determined from this EPR data, and thus it is 

not clear if the S = ±1/2 or S = ±7/2 substates are lowest in energy. 
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Figure 3.6. X-band EPR spectrum of a powdered sample of 15 at 77 K (lower trace) and a 

simulated spectrum (upper trace) with S = 7/2, 52 0 = ±0.194 cm"1 (± 2080 G), g = 1.994, 

and anisotropic line widths (|| = 240 G, _L = 360 G). 

3.2.6 Magnetic Susceptibility of Complex 15 

The molar magnetic susceptibility Xm of a powdered sample of complex 15 

immobilized in eicosane was studied over the temperature range of 300.0-2.0 K using a 

SQUID magnetometer. A plot of the product of magnetic susceptibility and temperature 

(XmT) versus temperature for complex 15 is shown in Figure 3.7. The %mT value of 15 at 

room temperature of 7.82 cm^K-mol"1 corresponds to the expected value of Gd + ion at 

room temperature (7.88 cm^K-mol"1), and is also in agreement with the room temperature 

toluene solution value of 7.8 cm3-K-mof1 determined using Evans' method. The 

magnitude of %mT for the powdered sample of 15 decreased slightly below 15 K, and 

reaches a value of 7.43 cm3-K-mol"' at 2 K. The modelled temperature dependence of XmT 

obtained using the negative value of the Z?2o crystal field value, -0.194 cm"1, obtained 
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from the simulation of the EPR data is also shown in Figure 3.7, as a solid line. This 

model predicts a slight drop in XmT at low temperatures, as is observed, but the fit is not 

sufficient to determine the sign of £20, because a similar decrease in %mT is predicted 

using a positive .820 value. The calculated magnetic anisotropy at low temperatures for 

this magnitude of #20 is n o t insignificant at temperatures below 20 K, and the 

contributions from x||mT and XimT are shown as dashed lines in Figure 3.7. At 1 K x||mT 

and XimT are predicted to be 15.74 and 3.31 cm^K-mol'1, respectively, when #20 is -0.194 

cm"1. For the corresponding positive value of .B20, the 1 K, x||mT and XimT values are 2.60 

and 10.07, respectively. For the majority of d-f heteronuclear gadolinium complexes 

studied, exchange coupling is small and only observed at low temperatures, but little 

consideration has been given to the potential influence of crystal-field induced magnetic 

anisotropy at Gd in the spin-spin coupling pathways that operate in these complexes. 

Regardless, the nearly temperature independent value of XmT in complex 15 facilitates the 

observation of spin-spin exchange coupling in heterobimetallic complexes prepared using 

this precursor. 
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Figure 3.7. Plot of xmT versus temperature for complex 15, shown as diamonds, along 

with the simulated fit, obtained using 52o
 = -0.194 cm"1 and g = 1.994, shown as a solid 

line. The calculated x||mT and x±mT contributions obtained from the simulation are shown 

as dashed lines. The simulations were performed using the spin Hamiltonians Hz = 

[B2o(Sz
2-2\/4)] + gBHoSz for the parallel component and #x,y = [B2o(Sz

2-2V4)] + gBH0Sx,y 

for the perpendicular component, where B represents the Bohr magneton and Ho is the 

applied field. 

A DFT geometry optimization calculation was performed on 15, and the resultant 

calculated spin-density is shown in Figure 3.8. The unpaired spins are primarily located 

on the Gd(III) centre, which is expected due to the contracted nature of the /-orbitals; 

however, some spin density of the opposite sign is found on the amido and carbonyl donor 

atoms. Only a very small contribution from unpaired spin density is found on the 

phosphorus atom or the adjacent carbon atoms. To use complex 15 as a magnetic building 

block, it is necessary to observe exchange coupling between the gadolinium centre and a 
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transition metal bound to the available phosphine donor. The localized nature of the 

unpaired electrons on gadolinium necessitates a careful choice of transition metal to attach 

to the phosphine; it must be capable of delocalizing its unpaired electron density towards 

the gadolinium centre. 

Figure 3.8. An isosurface of the calculated spin density for P(CH2NC6H4-2-C02Me)3Gd 

(15). 

3.3.7 Determining the Phosphine Donor Ability of Yttrium and Gadolinium 

Complexes From Their reactions with [Rh(CO)2(//-Cl)]2 

The standard procedure to measure the phosphine donor ability of any carbonyl 

containing phosphines depends on the carbonyl stretching frequency. Various methods 

have been used in this regard, in which the reaction of phosphine complexes with trans-

chloro carbonyl rhodium compound is the most extensively used method. As shown in 

Scheme 3.2, this method involves the reaction of one equivalent of a rhodium carbonyl 

compound with four equivalents of phosphine complexes 13, 14 and 15. 
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Scheme 3.2 

2 P(CH2NHC6H4-2-C02Me)3 + 1/2 [Rh(CO)2(//-CI)]2 - frans-CI(CO)Rh[P(CH2NHC6H4-2-C02Me)3]2 

13 17 

2 P(CH2NC6H4-2-C02Me)3Y + 1/2 [Rh(CO)2(/v-CI)]2 frans-CI(CO)Rh[P(CH2NC6H4-2-C02Me)3Y]2 

14 18 

2 P(CH2NC6H4-2-C02Me)3Gd + 1/2 [Rh(CO)2(//-CI)]2 - frans-CI(CO)Rh[P(CH2NC6H4-2-C02Me)3Gd]2 

15 19 

The products precipitated as an orange-yellow powder after mixing the reagents 

and leaving the reaction mixture at room temperature in dichloromethane. Products were 

indentify as trans-rhodium carbonyl phosphine complexes by !H and 31P{'H} NMR 

spectroscopy. Comparison of CO stretching frequencies of all three complexes (17, 18 

and 19) revealed that the phosphine ligand (vto = 1978.9 cm"1) is less electron donating 

than the yttrium phosphine complex (vto = 1963.4 cm"1), which has a lesser donating 

ability than gadolinium complex (vCo = 1954.1 cm"1). Comparison of these complexes 

with other phosphine donors showed that the strongest phosphine donor ability of 

complex 16, has similar donor ability to P'Bii341'42 which shows CO stretching frequency 

of 1954 cm"1 with rhodium carbonyl complex. Despite the fact that the phosphine lone 

pair is directed away from metal centers, the phosphine donor capability of trivalent 

lanthanide metal complexes affects the syntheses of heteronuclear complex. Introduction 

of metal ions to the ligand center strengthens the donor capability of metal complexes by 

increasing the sum of the C-P-C angles, which also depend on the size of the metal ion. 
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3.2.8 Syntheses of Heterobimetallic (d-f) Metal Complexes 

To demonstrate that through-space exchange coupling is viable in 

heterobimetallic complexes using these tripodal amidophosphine ligands, a transition 

metal complex must be attached to the phosphine donor that satisfies two requirements: 

firstly, it must direct unpaired electron density towards the complexed gadolinium centre; 

secondly, it must have magnetic properties that are easy to model. We chose to use 

[TPP]Co (where [TPP] = 5, 10, 15, 20-tetrakis(4-methoxyphenyl)porphine) as the 

transition metal moiety, because it has a single unpaired electron in a nondegenerate 

orbital, and thus should exhibit straightforward magnetism. Additionally, the singly 

occupied molecular orbital (SOMO) in adducts of [TPPJCo is primarily the dz orbital 

directed perpendicular to the plane of the [TPP] Co moiety, and thus should directly 

overlap with the phosphine donor orbital. Related five-coordinate phosphine adducts of 

Co(II) porphyrins with diamagnetic phosphine donors are known. 

Complexes 3 and 4 reacted with [TPPJCo in toluene to provide brown-purple 

crystalline solids, which were identified as the heterobimetallic complexes 

[TPP]CoP(CH2NC6H4-2-C02Me)3Ln (Ln = Y(20) or Gd (21)), as shown in equation 3.3. 
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ArR = C6H4-4-OMe A r 

20 (Ln = Y) and 21 (Ln = Gd) 

Single crystals of 20 and 21 were obtained from the slow evaporation of saturated 

toluene solutions. The initial solubility of these complexes in toluene appears kinetic, as 

the resultant product has only modest solubility. The solid-state molecular structures of 20 

and 21 were determined by X-ray crystallography, and an ORTEP depiction of the solid-

state molecular structure of 21 is shown in Figure 3.9. As anticipated, the triamido donors 

chelate the lanthanide centre, and the phosphine lone pair is bound to the [TPPJCo moiety. 

Although 20 and 21 display slightly different metrical parameters, they are isostructural. 

These structures further confirm the connectivity determined for the mononuclear 

complexes 15 and 16; the tripodal ligand chelates via the amido donors and the carbonyl 

oxygens to the lanthanide metals. The Co-P bond length in complex 21 is 2.4128(9) A; 

there is a large range of reported Co(II)-phosphine distances, which can be as short as 

2.2127(8) A46 and as long as 2.479(5) A.47 The relatively elongated Co-P bond length in 

complex 21 can be rationalized from a crystal-field theory argument that the lone 

unpaired electron in this d7 species occupies the dz
2 orbital, which is directed towards the 

phosphine donor. 
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The ionic radius of Gd(III) is approximately 0.04 A larger than the ionic radius of 

Y(IH),48 and this results in slightly different bond lengths between complexes 20 and 21. 

In complex 21, the average Gd-N distance is 2.330(2) A and the average Gd-0 bond 

length is 2.315(2) A, whereas in complex 21 the average Y-N and Y-0 bond lengths are 

2.299(1) and 2.2771(9) A, respectively. The P(l)• • Y(l) distance of 3.2575(6) A in 20 is 

less than 7 % longer than the longest reported Y-P bond length of 3.045(2) A,49 although 

shorter Y-P bond lengths are more typical.33'50 In comparison, the P ( l ) -Gd( l ) distance 

of 3.2440(9) A in 21 is actually shorter than the P(l)---Y(l) distance in 20, which can be 

rationalized by the slightly larger size of the Gd(III) ion requiring a greater strain in the 

ancillary ligand to accommodate this large metal. This assertion is confirmed by the 

slightly smaller sum of C-P-C angles in 20 than in 21, which are 324.69(17)°, and 

326.70(26)° respectively. These values are approximately 28° larger than the sum of 

C-P-C angles for the ligand precursor, 13, which can be attributed primarily to the 

coordination of the large lanthanide.11 
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Figure 3.9. Solid-state molecular structure of [TPP]CoP(CH2NC6H4-2-C02Me)3Gd (21) 

as determined by X-ray crystallography. Hydrogen atoms are omitted for clarity. Selected 

distances (A): P(l)-Co(l), 2.4128(9); Gd(l)-N(l), 2.325(3); Gd(l)-N(2), 2.332(3); Gd(l)-

N(3), 2.336(3); Gd(l)--P(l), 3.2440(9). 

3.2.9 EPR Spectra of Complexes 20 and 21 

The X-band EPR spectrum of a frozen toluene solution of [TPP]CoP(CH2NC6H4-

2-C02Me)3Y was obtained at 77 K and is shown in Figure 3.10. The EPR spectrum of 20 

confirms the low spin S = Vi nature of the complex and that the complex remains a 1:1 

adduct of 14 and [TPP]Co in solution. A simulated spectrum was obtained by considering 

the cobalt centre in 20 to have approximate axial symmetry and was fitted using 

anisotropic g|| and g± values of 1.98 and 2.21, respectively. The simulation revealed that 

the phosphorus superhyperfine coupling constants AP\\ and APX_ of 176 and 144 G, 
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respectively are larger than the cobalt (59Co, / - 7/2) hyperfine coupling constants Ac0\\ 

and AQOL of 50 and 63 G, respectively. The simulated spectrum is also shown in Figure 

3.10. In the room-temperature solution EPR spectra, the signal is a doublet due to 

superhyperfine coupling to 31P, and AQ0 cannot be resolved, which further confirms that in 

these adducts have considerable unpaired electron density residing on the phosphine 

donor. 

l 1 1 1 r 

2650 2850 3050 3250 3450 3650 

Magnetic Field (Gauss) 

Figure 3.10. X-band EPR spectrum of a powdered sample of 20 at 77 K (solid line) and a 

simulated spectrum (dotted line, offset above) obtained using g\\ = 1.98, g± = 2.21, Ap\\ = 

176 G, APV= 144 G, ACo\\ = 50 G, ACo± = 63 G. 

It has previously been shown51 in related complexes that, by using third order 

perturbation theory, the g values can be used to determine the energy separation of the Ai 

ground state and the 2E, 4A2, and 4E excited states in phosphine adducts of cobalt 

porphyrins. In this complex, the lowest energy d-orbitals should be the degenerate dxz and 

dyz orbitals, followed by the dxy orbital and the singly occupied dz2 orbital. The dx2-y2 
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orbital is highest in energy and is unoccupied in the ground state. The ci, C3 and C5 

parameters are related to the g\\ and g± values as shown in equation 3.5 and 3.6. Here ci = 

^/(E[ E]-E[ Ai]), where E [state] represents the energy of a given state and £, is the one 

electron spin-orbit coupling constant. The E excited configuration results from an 

electron from the doubly degenerate dxy and dyz orbitals being promoted to the dz2 orbital. 

Similarly, C3 = |/(E[4E]-E[2A[]) and C5 = ^/(E[4A2]-E[2Ai]) are parameters corresponding 

to the 4A2 and E configurations. With strong-field donors such as phosphines, the A2 

configuration, which results from the promotion of an electron from the dxy orbital to the 

dx2-y2 orbital is similar in energy to the 4E state, which results from the promotion of an 

electron from the doubly degenerate dxy and dyz orbitals to the dx2-y2 orbital. This is 

because the d^ and dyz orbitals are relatively close in energy to the dxy orbital, whereas the 

dx2-y2 orbital is significantly higher in energy. The approximation that C3 = C5 is therefore 

reasonable, ' and a simplified expression for g±_ is obtained, as shown in equation 3.7. 

For complex 20 this analysis results in the values ci = 0.039 MHz and C3 = 0.11 MHz, 

which is consistent with previously reported data for related complexes. 

g\\ = 2.0023 + 2c3
2 - 3ci2 (3.5) 

gi = 2.0023 + 6c, - 6c,2 + (2/3)c3
2 + (8/3)c5

2 - (4/3)c3c5 (3.6) 

g±= 2.0023 + 6c, -6ci2+2c3
2 (c3 = c5) (3.7) 

This analysis can be extended to the evaluation of the hyperfine and 

superhyperfine coupling constants.59 The expressions for the hyperfine coupling constants 

A Co || and Ac0± are given in equations 3.8 and 3.9 and can be used to estimate the values of 

105 
References begin on page 121 



CHAPTERS: A Phosphine-Mediated Through-Space Exchange Coupling Pathway for Unpaired Electrons 
in a Heterobimetallic d-f Metal Complex 

P, which is the dipolar term for the hyperfine coupling constant, and K, which is the 

Fermi contact term. An equation for P using the assumption C3 s C5 is shown in equation 

3.10. The value for P for complex 8 was determined to be 683 MHz, which is very close 

to the value for the free ion, which is 689 MHz,54 and is indicative of primarily large dz2 

spin density on the Co(II) centre, as was anticipated. The value of K is -187 MHz. It 

should be noted that this analysis predicts that the sign of Ac0± is negative.59 An analysis 

of the superhyperfine coupling constants to P allows for a evaluation of the contribution 

of the phosphine 3 s and 3p orbitals to the unpaired spin density on the phosphine donor. 

This breakdown estimates that 12% of the unpaired spin density resides on the phosphine 

donor, with 4.5% associated with the phosphorus 3s orbital and 4.9% residing in the 

phosphorus 3p orbital. 

ACo\\ = K. + P[4/7 - (4/7)c3 - (6/7)c, + (2/63)c3
2 - (64/63)c5

2 + (30/14)c,2 + (8/21)c5c3] (3.8) 

ACoi= K + P[-2/7 + (2/7)c3 + (45/7)c, + (12/63)c3
2 + (40/63)c5

2- (57/14)c,2- (34/21 )c5c3] (3.9) 

P - (ACo\\ -Acoi) I [(6/7) - (6/7)c3 - (51/7)c, + (12/63)c3
2 + (87/14)c,2] (3.10) 

A DFT calculation was performed on complex 20 using the solid-state structural 

coordinates obtained by X-ray crystallography. The spin-density predicted from this 

calculation is shown as an isosurface depiction in Figure 3.11 (left). Consistent with the 

EPR spectrum of 20, this analysis reveals that considerable unpaired electron density 

resides on the phosphorus atom. Notably, this unpaired electron density extends back 

towards the Y centre, which should allow for through-space exchange coupling in 

complexes where Y is replaced by a paramagnetic lanthanide. The extensive 

derealization of the unpaired electron density onto the phosphorus atom and towards the 

yttrium centre can be rationalized by considering the nature of the SOMO, which can be 
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approximated as an antibonding interaction between the phosphine lone-pair, which has 

contributions from both the 3 s and 3p orbital of the phosphorus atom, and the dz2 orbital 

of the cobalt centre. A simplified depiction of this interaction is also shown in Figure 

3.11(right). 

Figure 3.11. A depiction of an isosurface of the calculated spin density for 

heterodinuclear yttrium-cobalt complex 20 (left) and a simplification of the antibonding 

interaction associated with the SOMO (right). 

The 77 K X-band EPR spectrum of a powdered sample of complex 21 is shown in 

Figure 3.12. The spectrum cannot be modelled to a reasonable fit by assuming no 

interaction between the Co(II) and Gd(III) centre using any combination of the B20 and 

Bj2 crystal field parameters. The complete spin Hamiltonian for complex 21 would have 

to take into account the crystal field splitting of the Stark substates as well as the 

exchange coupling between the two metal centres. This is complicated by the presence of 

only pseudo-axial symmetry in complex 21, as well as the significant exchange coupling 
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interaction between the unpaired electrons associated with Co(II) and Gd(III). The 

exchange interaction is more easily estimated from the magnetic susceptibility data. 

2500 5000 7500 10000 12500 15000 

Magnetic Field (Gauss) 

Figure 3.12. X-band EPR spectrum of a powdered sample of 21 at 77 K. 

3.2.10 Magnetic Properties of Complexes 20 and 21 

The Evans' method value of %mT for a 298 K toluene solution of complex 20 was 

difficult to measure, due to the low solubility of 20 and the significant diamagnetic 

contribution cancelling the majority of the paramagnetic contribution to the susceptibility. 

The uncorrected value was determined to be 0.36 cm3Kmol"', which is close to the value 

of 0.375 cm 3 Kmor ' expected for a species bearing a single unpaired electron in a 

nondegenerate orbital12 but after subtraction of the diamagnetic contribution a corrected 

value of XmT of 0.59 cm 3 Kmor 1 was obtained. The molar magnetic susceptibility of 

complex 20 was measured over the temperature range of 300-1.8 K in an applied 

magnetic field of 1 T, and XmT (corrected for a slight temperature-independent 
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paramagnetism of 1.38 x 10"3 cra^K-mol"1) was found to be independent of temperature, 

with a value of 0.39 cm^Kmol"1 at 1.8 K. The simplicity of the magnetism of this species 

renders the observation of exchange coupling in species 21 facile, because in the absence 

of coupling a negligible temperature dependence of xmT with temperature is predicted. 

At room temperature, the anticipated value of XmT for complex 21 is 8.26 

cm 3 Kmor ' . This value corresponds to the value of two uncoupled isolated ions Gd(III), 

(S = 7/2, XmT = 7.88 cm'-K-mol"1) and Co(II), (S = 1/2, XmT = 0.375 cm3K-mol"'). The 

Evans' method value of XmT for a 298 K toluene solution of complex 21 was determined 

to be 8.40 cm3K mol"1, which is approximately the value anticipated in the absence of 

coupling. The molar magnetic susceptibility of a powdered sample of complex 21 was 

measured over the temperature range of 300-1.8 K in an applied magnetic field of 0.01 T. 

The plot of the product of susceptibility and temperature (XmT) versus temperature for 

complex 21 is shown in Figure 3.13. At room temperature, the experimental value of xmT 

is close to the value 8.26 cm Kmol"1 predicted in the absence of significant coupling. 

This value decreases at low temperatures, to a value of 6.20 cm Kmol" at 1.8 K, 

suggesting a weak antiferromagnetic coupling between the 5=1/2 and S = 7/2 centres that 

result in an S = 3 ground state, which should have a XmT value of 6.0 cm Kmol" . 
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Figure 3.13. Plots of XmT versus T for complex 21 (0), and the simulated fit obtained 

using J = -2.1 cm* , shown as a solid line. 

This data was modelled using the simplified spin Hamiltonian given in equation 

3.11, where Sod and Sco are the spin-operators associated with Gd(III) and Co(II), and J is 

the magnetic exchange constant. The simplified Hamiltonian results in an expression that 

can be used to fit the temperature dependence of XmT using the coupling constant J, as 

shown in equation 3.12. 

Hex
 = -J SGASCO (3.11) 

Am * 

k 

N= Avogadro's number 

P = Bohr Magneton & k = Boltzman constant 

A J value of-2.1 cm"1 was determined from this analysis, and the modelled fit is 

included as a solid line in Figure 3.13. This J value corresponds to an 8.4 cm"1 separation 

of the S = 3 ground state and the S = 4 state. The antiferromagnetic nature of the 

interaction is opposite to that most typically observed,12' 14, 16' 17' 20 '31 ' 55 and provides 
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support for the suggestion that the exchange mechanism involves the direct overlap of the 

magnetic orbitals which contain the unpaired electrons associated with the Co(II) and 

Gd(III) centres, primarily due the extensive derealization of the magnetic orbitals 

associated with the Co(II) over the phosphorus donor. The magnitude of J found here is 

comparable to the values that have been determined for other d-f heterobimetallics,56 

which demonstrates that the through-space exchange-coupling between transition metal 

and lanthanides mediated by these tripodal ligand is equally as effective as the 

superexchange mechanism which commonly operates in d-f complexes that utilize 

bridging donor atoms shared by the transition metal and lanthanide. This result suggests 

that paramagnetic tripodal complexes of the transition metals or lanthanides using 

analogous supporting ligands should be effective as magnetic building blocks. 

3.3 Summary and Conclusions 

The ligand precursor P(CH2NHC6H4-2-C02Me)3 (13) was used to synthesize six 

coordinate lanthanide complexes P(CH2NC6H4-2-C02Me)3Ln (Ln = Y(15), Gd (16)) 

where both metals are attached with amido donors. The lithium salt of ligands precursor 

(14) was generated after the reaction of one equivalent of 13 with three equivalents of 

LiN(SiMe3)2 in toluene, and was also used to make complexes 15 and 16 via an 

alternative method. 

In order to make heterobimetallic d-f metal complexes, the phosphorus lone pair 

was utilized to bind to a transition metal complex. Effects of both lanthanide metals (Y 

and Gd) on the donor capability of phosphine was extrapolated from the CO stretching 

frequencies of /rafls-Rh(CO)ClL2 (L = 13, 15 and 16) and the result suggested that the 
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heavier gadolinium metal increases the donor ability of phosphine to a greater degree than 

yttrium metal due to increased C-P-C angles. Even though calculations suggest that the 

Gd(III) complex P(CH2NC6H4-2-C02Me)3Gd (15) has negligible spin density on the 

phosphorus atom, with the appropriate choice of transition metal complex it proved 

possible to observe magnetic exchange coupling in the heterobimetallic complex 

[TPP]CoP(CH2NC6H4-2-C02Me)3Gd (21). This coupling is mediated by the 

derealization of the spin-density of the cobalt centre onto the phosphine donor, which 

allows direct overlap of the magnetic orbital associated with Co(II) with the ̂ electrons on 

the Gd(III) centre. Contrary to what is typically observed in d-f complexes, where more 

ligand mediated super-exchange pathways operate, this through-space interaction results 

in weak antiferromagnetic coupling. The magnitude of this exchange coupling is of an 

equal magnitude to other d-f complexes, which bodes well for the potential use of the 

mononuclear lanthanide complexes of this ligand as building blocks for larger 

polymetallic complexes where through-space interactions yield magnetically ordered 

systems or single-molecule magnet behaviour. 

3.4 Experimental 

General Techniques - Unless otherwise stated, all experiments were performed 

under an inert atmosphere of dinitrogen using either using Schlenk techniques or an 

MBraun glove box. Dry oxygen-free solvents were used throughout. Anhydrous pentane 

and toluene were purchased from Aldrich, sparged with nitrogen and passed through 

activated alumina under a positive pressure of nitrogen gas; toluene and hexanes were 

further deoxygenated using Ridox catalyst columns.57 Deuterated benzene was dried by 
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heating at reflux over sodium/potassium in a sealed vessel under partial pressure, then 

trap-to-trap distilled, and freeze-pump-thaw degassed three times. 

Instrumentation - ]H, 13C{'H} and 31P{]H} NMR spectra were recorded from 

Bruker AMX (300 MHz) or Bruker AMX (500 MHz) spectrometer. All chemical shifts 

are reported in ppm, and all NMR coupling constants (J) are in Hz. !H NMR spectra were 

referenced to residual protons (C6D5H, 6 7.15 and CDHCI2, 8 5.32) with respect to 

trimethylsilane at 8 0.0. 13C{'H} spectra were referenced relative to solvent resonances 

(C6D6, 8 128.0 and CD2C12, 8 54.0, 298 K). 31P{!H} NMR spectra referenced to external 

85% H3PO4 at 8 0.0. EPR spectra of all solid samples were collected using an X-band 

Bruker ESR 300E spectrometer. Unless otherwise noted, magnetizations were measured 

at 100 G with a Quantum Design Evercool MPMS-XL system. Corrections for the 

diamagnetic contributions of compounds were made using Pascal's constants. Samples 

were run in a PVC holder specially designed to possess a constant cross-sectional area. 

Elemental analyses were performed by the Centre for Catalysis and Materials Research 

(CCMR) at the University of Windsor. 

Computer Programmes - The program Simpip58 was used to model the Co(II) 

spectra of complex 20. The program Spin 9 was used to simulate the Gd + spectrum of 16 

using only the B20 crystal field parameter and the program Sim60 was used to generate 

spectra with the B20, B40 £43, B^, B& and Z?66 crystal field parameters. 

Calculations - Ab inito DFT calculations were performed using the hybrid 

functional B3LYP or UB3LYP61 method with the Gaussian 03 package.62 The basis 

functions used were the DGDZVP set for complex 15 and the CEP-31G for complex 16. 

Both were optimized with C3 symmetry. For the model complex for species 20 the CEP-
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121G* basis set was used on all atoms except for Y and Co, for which the CEP-121G 

basis set was used. All these basis sets are provided in the Gaussian 03 program. 

Chemicals - The compounds tris(hydroxymethyl)phosphine, methyl anthranilate, 

5, 10, 15, 20-tetrakis(4-methoxyphenyl)-21//,23//-porphine cobalt(II), lithium 

bis(trimethylsilyl)amide, [(CO)Rh(//-Cl)]2 and anhydrous YCI3 were purchased from 

Sigma Aldrich. Anhydrous GdC^ was purchased from Strem. All the reagents were used 

without further purification. The compounds Y[N(SiMe3)2]3 and Gd[N(SiMe3)2]3 were 

synthesized via the literature methods.63'M 

Synthesis of P(CH2NHC6H4-2-C02Me)3 (13). A mixture of P(CH2OH)3 (5 g, 

0.040 mol) methyl anthranilate (30.45 g, 0.20 mol) and 70 mL of toluene were combined 

in a 250 mL three neck flask equationuipped with Dean-Stark trap and a condenser. The 

solution was heated to reflux for 1 h and the water produced was removed azeotropically. 

After cooling to room temperature the solvent was evaporated to dryness under vacuum, 

and the creamy white residue was rinsed with diethyl ether 2-3 times to remove excess 

methyl anthranilate. The product was then collected by filtration and dried under vacuum 

(20 g, 95 % yield). X-ray quality crystals were obtained by slow evaporation of a benzene 

and hexamethyldisiloxane solution. *H NMR (C6D6, 300 MHz, 298 K): 8 3.36 (d, 2JPH = 

5.1 Hz, 6H, PC//2), 3.46 (s, 9H, CH3), 6.49 (dd, 3H, Ar-H), 6.71(d, 3H, Ai-H), 7.15 (ddd, 

3H, Ar-H), 7.96 (dd, 3H, Ar-H), 8.29 (br, 3H, Nfl). 13C{'H} NMR (C6D6, 75.5 MHz, 298 

K): 5 38.1 (d, JP C= 15.4 Hz, PCH2), 51.1 (s, CH3), 110.9, 112.1, 115.3, 131.9 and 134.8 

(s, Ar-Q, 151.6 (d, J= 2.7 Hz ipso-Q, 169.1 (s, C02).31P{'H} NMR (C6D6, 121.5 MHz, 

298 K): 5 -33.6 (s). Anal. Calcd for C27H3oN306P: C, 61.94; H, 5.78; N, 8.03. Found: C, 

61.90; H, 5.68; N 8.13. 
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Synthesis of P(CH2NC6H4-2-C02Me)3Y (14). A mixture of 13 (1 g, 1.91 mmol) 

and Y[N(SiMe3)2]3 (1.633 g, 2.86 mmol) was stirred in 70 mL of toluene for 5 h. The 

resultant yellow crystalline precipitate was isolated by filtration, rinsed with 50 mL 

pentane and dried for 4 h (77 %, 1.45 g). *H NMR (C6D6, 300 MHz, 298 K): 5 3.25 (s, 

9H, CH3), 3.92 (d, 2JPH = 7.1 Hz, 6H, PC//2), 6.46 (dd, 3JHH = 8.1, 6.6 Hz, 3H, C6H4-5-

CH), 6.78 (d, VHH = 8.8 Hz, 3H, C6H4-3-C5//), 7.27 (ddd, 3JHH = 8.8, 6.6 Hz, VHH = 1.8 

Hz, 3H, C6H4-4-C//), 8.10 (dd, VHH = 8.1 Hz, VHH = 1.8 Hz, 3H, C6H4-6-C#). 13C{'H} 

NMR (C6D6, 75.5 MHz, 298 K) 5: 38.1 (d, JPC= 15.4 Hz, PCH2), 51.5 (s, CH3), 172.1 (s, 

C02), 108.7, 112.1, 114.4, 132.9 and 136.6 (s, Ar-Q, 153.6 ( ipso-Q. 31P{'H} NMR 

(C6D6j 121.5 MHz, 298 K) 5: -57.0 (d, JPY = 15.1 Hz). Anal. Calcd for C27H27N306PY: C, 

53.21; H, 4.47; N, 6.90. Found: C, 53.10; H, 4.45; N, 6.96. 

Alternative method to prepare complex 14 in NMR scale involve, the mixing of 

complex 16 (15 mg, 0.028 mmol) and YCI3 (5.5 mg, 0.028 mmol) in 2 mL of toluene. 

Synthesis of P(CH2NC6H4-2-C02Me)3Gd (15). A mixture of 13 (500 mg, 0.938 

mmol) and Gd[N(SiMe3)2]3 (600 mg, 0.938 mmol) was stirred in 20 mL of toluene for 30 

min. The solution was filtered and remaining yellow crystalline solid was rinsed with 50 

mL pentane and dried for 4 h (67 %, 425 mg). Anal. Calcd for C ^ H ^ O e P G d : C, 47.04; 

H, 3.95; N, 6.09. Found: C, 47.28; H, 4.02; N, 6.24. 

Synthesis of P(CH2NC6H4-2-C02Me)3Li3 (16). A mixture of 13 (1.06 g, 1.99 

mmol) and LiN(SiMe3)2 (1 g, 5.98 mmol) was stirred in 40 mL of toluene for 30 min. The 

solution was filtered and remaining yellow crystalline solid was rinsed with 50 mL of 

pentane and dried for 4 h (68 %, 975 mg). A second crop of the product was obtained 

from the mother liquor in the form of yellow powder (15 % 210 mg), which make the 
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total yield of 83 %. 'H NMR (C6D6, 300 MHz, 298 K): 5 1.19 (b, LiOCH2CH2), 3.17 (b, 

LiOCH2), 3.33 (d, 2Jm = 7.7 Hz, 6H, PCH2), 3.52 (s, 9H, OC//3), 6.35 (dd, 3JHH = 8.1, 6.8 

Hz, 3H, C6H4-5-CH), 7.27 (ddd, VHH = 8.8, 6.6 Hz, 4JHH = 1.8 Hz, 3H, C6H4-4-C//), 7.5 

(d, VHH = 9.8 Hz, 3H, C6H4-3-C5//), 8.10 (dd, VHH = 8.1 Hz, VHH = 1.8 Hz, 3H, C6H4-6-

C//).13C{'H} NMR (C6D6, 75.5 MHz, 298 K) 5: 38.1 (d, J?c = 15.4 Hz, PCH2), 51.5 (s, 

CH3), 172.1 (s, C02), 108.7, 112.1, 114.4, 132.9 and 136.6 (s, Ar-Q, 153.6 (ipso-Q. 

3lP{lU} NMR (C6D6, 121.5 MHz, 298 K) 5: -22.5 (s). Anal. Calcd for C27H27N3U3O6P: 

C, 59.91; H, 5.03; N, 7.76. Found: C, 60.01; H, 5.12; N, 7.60. 

Synthesis of [/raMS-RhCI(CO)[P(CH2NHC6H4-2-C02Me)3)l2 (17). A mixture of 

13 (54.8 mg, 0.102 mmol) and [Rh(CO)20u-Cl)]2 (10 mg, 0.026 mmol) was stirred in 5 

mL of toluene for 30 min. The orange-yellow precipitate was filtered and dried for 2 h. H 

NMR (CD2C12, 300 MHz, 298 K): 5 3.47 (s, 9H, CH3), 3.55 (s, 6H, ?CH2), 6.42 (t, 3H, 

3JHH =13.6 Hz, Ar-H), 7.03 (d, 3H, 2JHH = 7.9 Hz, Ar-H), 7.41 (td, 3H, Ar-H), 8.1 (dd, 

3H, Ar-H), 8.5 (br, 3H, N//.13C{*H} NMR (CD2C12, 75.5 MHz, 298 K), 8: 43.2 (d, JPC = 

15.4 Hz, PCH2), 52.5 (s,CH3), 112.1, 113.2, 116.2, 133.1 and 135.9 (s, Ar-Q, 153.6 ( d , / 

= 2.7 Hz ipso-Q, 171.1 (s, C02).3,P{,H} NMR (CD2C12, 121.5 MHz, 298 K) 5: 24.8 ( d, 

yPRh = 122.07 Hz). IR: u = 1978.9 cm"1. 

Synthesis of [*ra«s-RhCl(CO)[P(CH2NC6H4-2-C02Me)3Y]2 (18). A mixture of 

14 (62.68 mg, 0.102 mmol) and [Rh(CO)2(//-Cl)]2 (10 mg, 0.0257 mmol) was stirred in 5 

mL of toluene for 30 min. Crystallized orange-yellow product was filtered and dried for 2 

h. 'H NMR (CD2C12, 300 MHz, 298 K): 5 3.96 (s, 9H, C//3), 4.34 (s, 6H, ?CH2), 6.4 (t, 

3H, 3JHH = 14.7 Hz, Ar-H), 6.9 (d, 3H, 2JHH = 9.0 Hz, Ai-H), 7.37 (td, 3H, Ar-H), 7.9 (dd, 
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3H, Ai-H). 13C{'H} NMR (CD2C12, 75.5 MHz, 298 K), 8: 172.9 (s, C02), 160.8 (ipso-Q, 

136.9, 133.0, 114.6, 112.5, 108.9 (s, Ar-Q, 120.1 (s, CO) 52.6 (s, CH3), 48.2 (s, PCH2). 

3l?{lH} NMR (CD2C12, 121.5 MHz, 298 K) 5: 4.0 ( d, JPRh = 123.6 Hz). IR: v = 1963.6 

cm"1. 

Synthesis of [/ra«s-RhCl(CO)[P(CH2NC6H4-2-C02Me)3Gd]2 (19). A mixture of 

15 (69.71 mg, 0.025 mmol) and [Rh(CO)2(//-Cl)]2 (10 mg, 0.0257 mmol) was stirred in 5 

mL of toluene for 30 min. Crystalline orange-yellow product was filtered and dried for 2 

h. IR:u = 1954.2 cm"1. 

Synthesis of [TPP]CoP(CH2NC6H4-2-C02Me)3Y (20). A mixture of 14 (450 

mg, 0.738 mmol) and [5, 10, 15, 20-tetrakis(4-methoxyphenyl)porphinato]cobalt(II) 

(584.67 mg, 0.737 mmol) was stirred in 25 mL of toluene for 30 min. The solution was 

filtered and the resultant reddish-purple crystalline solid was washed with pentane (50 

mL) and dried for 4 h (65.2 %, 675 mg). X-ray quality crystals were obtained by 

performing the reaction without stirring, and the structure contains 2 equationuivalents of 

cocrystallized toluene. The complex is sparingly soluble in toluene and benzene. H 

NMR (C5D6, 300 MHz, 298 K): 5 3.2 (br, 9H, C02CH3), 4.4 (br, 18 H total,-OC#3 and 

PCi/2), 5.8 (br, 3H, CeHA), 6.9 (br, 3H, C ^ ) , 7.3 (br, 3H, CsH*), 8.2 (br, 3H, CeH4), 8.8 

(br, 8H, TP?-m-H), 11.5 (v br, 8H, TPP-o-//), 15.1 (v br, 8H, pyrrole-//). Anal. Calcd for 

C75H63N7O10PYC0: C, 64.29; H, 4.53; N, 7.00. Found: C, 64.23; H, 4.82; N, 6.81. 

Synthesis of [TPP]CoP(CH2NC6H4-2-C02Me)3Gd (21). A mixture of 15 (500 

mg, 0.737 mmol) and [5, 10, 15, 20-tetrakis(4-methoxyphenyl)porphinato]cobalt (II), 

[TPP]Co(II) (584 mg, 0.737 mmol) was stirred in 25 mL of toluene for 30 min. The 
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solution was filtered and the resultant reddish-purple crystalline solid was washed with 

pentane (50 mL) and dried for 4 h (47.5%, 515 mg). Anal. Calcd for CysHesNyOioPGdCo: 

C, 61.30; H, 4.32; N, 6.67. Found: C, 61.47; H, 4.12; N, 6.54. 

X-ray Crystallography. Each crystal was covered with Paratone, mounted on a 

glass fibre and rapidly placed into the cold N2 stream of the Kryo-Flex low-temperature 

device. The data were collected using the SMART65 software on a Bruker APEX CCD 

diffractometer using a graphite monochromator with Mo Ka radiation (A, = 0.71073 A). 

Data reduction was performed using SAINT software, and the data were corrected for 

absorption using SADABS. The structures were solved by direct methods using SIR97 

and refined by full-matrix least-squares on F2 using SHELXL-9769 and the WinGX70 

software package, and the thermal ellipsoid plots were produced using ORTEP32.71 In 

general, thermal parameters for non-hydrogen atoms were treated anisotropically, and all 

hydrogens were placed in idealized locations. The co-crystallized benzene solvent in 

complex 13 was modelled as an idealized hexagon, with equationual isotropic thermal 

parameters on the six carbon atoms, and the hydrogens associated with this disordered 

moiety were omitted. The hydrogen atoms associated with the three amine functionalities 

that were involved in hydrogen bonding in complex 13 were located in an electron-

density difference map and their positions and isotropic thermal parameters were refined. 

Multiple data sets were acquired for complexes 15 and 16, but all suffered from twinning. 

118 
References begin on page 121 



CHAPTERS: A Phosphine-Mediated Through-Space Exchange Coupling Pathway for Unpaired Electrons 
in a Heterobimetallic d-f Metal Complex 

Details of selected crystallographic data, data collection and structure refinement 

of compounds 13,14,15,16, 20 and 21 are listed in Table 3.1 and 3.2. 

Table 3.1. Selected X-ray Crystallographic Data for Compounds 13,14 and 15. 

Empirical formula 

Formula weight 

Crystal system 

a (A) 

MA) 
c(A) 

a (deg) 

P (deg) 

T(deg) 

V(A3) 

Space group 

Z 

Density (g/cm ) 

//(Mo Ka) (mm-1) 

Temperature (K) 

Total no. of reflections 

Residuals: Ri; WR2 

(all data) 

13 

C27H3oN306P 

562.56 

Triclinic 

10.8108(17) 

11.3382(18) 

12.513(2) 

104.725(2) 

104.725(2) 

90.718(2) 

1429.3(4) 

P-\ 

2 

1.31 

0.144 

173 

16454 

0.0624; 0.1800 

14 

C27H27N3O6PU3 

725.6 

Tetragonal 

24.3430(14) 

24.3430(14) 

13.2326(15) 

90 

90 

90 

7841.40(11) 

1-4 

8 

1.23 

0.119 

173 

43927 

0.0582; 0.1434 

15 

C27H27N306PY 

609.40 

Trigonal 

14.6660(3) 

14.6660(3) 

20.9460(9) 

90 

90 

120 

3905.06(20) 

R3c 

6 

1.56 

2.349 

173 

13993 

0.1372; 0.4167 
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Table 3.2. Selected X-ray Crystallographic Data for Compounds 16, 20 and 21. 

Empirical formula 

Formula weight 

Crystal system 

a (A) 

b{k) 

c (A) 

a(deg) 

P (deg) 

Y (deg) 

V(A3) 

Space group 

Z 

Density (g/cm3) 

//(MoKa)(mm"') 

Temperature (K) 

Total no. of reflections 

Residuals: Ri; WR2 

(all data) 

16 

C27H27N306PGd 

708.7 

Trigonal 

14.6765(11) 

14.6660(11) 

21.2161(3) 

90.00 

90.00 

120.00 

3957.7(7) 

i?3c 

6 

1.70 

2.684 

173 

13580 

Not fully solved(a) 

20 

C89H79N7CM0PC0Y 

1585.46 

Triclinic 

14.4404(19) 

15.509(2) 

18.736(2) 

90.2840(10) 

112.6130(10) 

90.1050(10) 

3873.5(10) 

P-\ 

2 

1.42 

1.046 

173 

44292 

0.0397; 0.1041 

21 

C89H79N7OioPCoGd 

1653.74 

Triclinic 

14.442(2) 

15.495(2) 

18.737(3) 

90.6480(2) 

112.571(2) 

89.894(2) 

3871.5(10) 

P-\ 

2 

1.36 

1.150 

173 

43148 

0.0397; 0.1115 

(a) twinning complicated the solution of structures for complexes 15 and 16 
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CHAPTER-4 

Effect of Temperature on Pseudocontact 
Shifts of Paramagnetic Lanthanide 

Complexes 

4.1 Introduction 

For lanthanides, crystal field parameters play an important role in describing the 

magnetic properties and hence, the direction of the magnetization i.e. magnetic 

anisotropy in magnetic molecules. The unique magnetic properties of the lanthanides 

enables them to be used as magnetic materials and single molecule magnets (SMMs). " 

In magnetic materials such as SMMs, large magnetic moment and large magnetic 

anisotropy are the two important features, and are responsible for the through-space 

coupling between metal ions.4' 5 The magnitude as well as the sign of the magnetic 
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anisotropy depends on the nature of the lanthanide ion, crystal field splitting strength 

and the molecular geometry of the compound. Depending upon the sign of anisotropy, 

trivalent lanthanide ions are divided into two categories: the first group involves Ce +, 

Sm3+, Tb3+, Dy3+ and Ho3+, with positive anisotropy and the second group involves late 

lanthanides such as Er3+, Tm3+ and Yb3+ with negative anisotropy. It is reported that 

lanthanide ions from the two different categories can not have the same sign for 

anisotropy. Among all the trivalent lanthanide ions, Dy , Tb , and Tm show high 

magnetic anisotropy, with Tb3+ being the highest.4'6'7 Magnetic anisotropy also induces 

pseudocontact (dipolar) shifts in lanthanide complexes and thus can be measured by 

NMR spectroscopy as described in Chapter 1 (Section 1.1, equation 1.9). 

The paramagnetic shifts of lanthanide complexes are the combination of 

isotropic contact (5c) and anisotropic pseudocontact (5pc) shifts (equation (4.1)). In 

principle, the separation of these two terms is based on their temperature dependence 

and requires the chemical shifts of a single lanthanide complex. It has been reported 

earlier that in :H NMR spectra pseudocontact contribution dominates over the contact 

contribution, whereas in 13C and 31P spectra, the contact contribution plays an important 

role.8 

A5 = 5C + 8pC = F<Sz> + G { £ 2 0 } C r 2 (4.1) 

Sz = projection of the total electron spin magnetization of the lanthanide on 
the direction of the external magnetic field 

C = magnetic constant at given temperature T 

520 = second order crystal field parameter 

F = contact shift (depends on the derealization of the metal spin density on 
sustrate nuclei) 

G = pseudocontact shift (depends on the geometry of the complex) 
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The large pseudocontact shifts, which are due to the dipolar contribution, enables 

lanthanide complexes to be used as lanthanide shift reagents (LSR) and contrast agents 

in structural biology9'10 and in magnetic resonance imaging (MRI) respectively.11'' The 

pseudocontact contribution of lanthanide complexes increases the separation between 

the closely related NMR signals, which simplifies the complex NMR spectra of organic 

compounds in solution NMR-spectroscopy.13"15 The magnetic anisotropy of lanthanides 

also allows them to align the related complex in an external magnetic field. This 

tendency of lanthanide complexes allows them to be used as magnetically active liquid 

crystals for the alignment of the protein molecules in magnetic fields.1 "18 Lanthanide 

liquid crystals are easier to magnetize by weak external fields than the conventional 

diamagnetic liquid crystals. 

The paramagnetic properties of the lanthanides permit them not only to be used 

for spectral simplification of low-molecular weight complexes but also as biological 

probes for determining protein and peptide structures.19"25 Heptadentate water soluble 

lanthanide complexes have been reported to act as multiple probes (luminescent, NMR 

and chiroptical) for bioactive species.26"28 Paramagnetic lanthanide ions can also be used 

for NMR studies of biological membranes such as phospholipids-bilayered micelles, by 

changing their magnetic alignment.29' 30 Bicelles, a mixture of long and short-chain 

phospholipids offer an environment for membrane proteins. Whereas similar to micelles, 

small bicelles can be used for the solution NMR study of membrane proteins,31 larger 

bicelles are use for the alignment of membrane proteins in the solid-state NMR 

spectroscopy. Although the structural study of proteins by solution NMR is much more 

complicated than solving their crystal structures, small structural changes due to 
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temperature or pH can be easily detected by solution NMR. Due to the paramagnetic 

properties of lanthanides, their attachment to proteins facilitates the determination of 

protein solution structures and dynamics. 

In the protein structure study, calcium ions bound to protein molecules can be 

replaced by lanthanide ions, because of the similarity between calcium and lanthanide 

ions. ' ' Both divalent Ca and trivalent Ln share similar ionic radii (Caz = 1-1.18 

A and Ln3+ = 0.86-1.22 A) and form the same type of bonds in biological systems. Other 

than sharing these properties with the calcium ion, lanthanides also possess some 

characteristic features, such as colour, magnetism and luminescence, which also favour 

them for use in biochemical investigations. Recently Bertini et al reported the structural 

characterization of the metalloprotein (calbindin D^) by replacing the Ca2+ with 

trivalent cerium (Ce ) . Introduction of lanthanides in proteins changes the chemical 

shifts and line broadening and thus provide important information regarding protein 

structure or protein encounter complexes.24' 25' 34 Sykes and coworkers have used 

trivalent lanthanides such as Yb3+ to bind with the EF site of parvalbumin for 

determining the protein structure.24' 35 They have also proposed a new method for 

separating the contact and pseudocontact shifts of late lanthanide ions (Dy-Yb) without 

the knowledge of the structural symmetry of the lanthanide binding protein complexes. 

Other than replacing Ca2+, lanthanides also act as binding tags for specific sites of 

proteins and peptides. It has been reported recently that a lanthanide-binding peptide tag 

with a Cysteine residue can also be used to study the protein in different magnetic 

anisotropy tensor orientations.36 
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As reported earlier, contact and pseudocontact shifts of an isostructural series of 

lanthanide complexes can be separated from each other on the basis of their temperature 

dependence.7 To date, several methods have been developed to calculate the 

pseudocontact shifts of lanthanides. McGarvey and Kurland first verified the 

relationship between the pseudocontact shifts and the magnetic susceptibility of the 

anisotropic portion of the shifts.37 Later, Bleaney expanded the isotropic portion of the 

shifts using a temperature dependent term and magnetic anisotropy.7 Bleaney's theory is 

based upon the high temperature magnetic anisotropy. As shown in equation (4.2), 

Bleaney described the magnetic anisotropy of a lanthanide complex using the second 

order crystal field parameter (<22o) and has T1 temperature dependence. Here, Ko is a 

constant, which depends on the lanthanide.7 

Z,-^=ff*2o (4-2) 

The above equation (4.2) can also be written as equation (4.3): 

Z,-^=ff- (4-3) 

Where, 

= g2j/3h(J+\)(2J+3)(J-\)42l3(a20kJ2 <r2 >) ( 4 4 ) 

30k2 

fa = constant with different values for each lanthanide with different J states 

g] = Lande factor 

Be = Bohr magneton 

C2 can be calculated by using gj, /?e and k}2 values given in the literature.7 
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Bleaney's theory is based on the hypothesis that the overall crystal field splitting 

(AECF) of the lanthanides should not be larger than their thermal energy (AT). Therefore, 

only second-rank crystal-field parameters such as #20 and B22 can be used for the 

calculation of magnetic anisotropy. For example, lanthanide complexes, where thermal 

energy is lower than the crystal field splitting, particularly for those complexes that 

exhibit large magnetic anisotropy and have the ratio of AECF/AT greater than one, T~ 

term does not provide enough information about the magnetic anisotropy. Bleaney's 

theory does not fit with these complexes because it completely ignores the higher crystal 

field parameters and higher temperature dependent terms (71-3, 71-4... 7"""). 

Reilley and coworkers supported this theory and proved experimentally that 

pseudocontact shifts depend only on T~2}% However, Wong and Horrocks and 

Horrocks independently40 later supported the dependency of pseudocontact shift on T~ 

rather than on T~ . Golding and Pyykko extended Bleaney's theory and reported small 

deviations in lanthanide shifts using higher crystal field parameters.41 While Cheng and 

1 ") 

Gutowsky showed that paramagnetic shifts depend on either T~ or T~, Gutowsky and 

Stout extended Bleaney's theory using a T~ term and concluded that contribution of this 

term is very small (-10 %), and that T~ is the only important term for most of the 

lanthanide complexes. ' McGarvey also supported Gutowsky and Stout's theory using 

additional higher temperature dependent terms such as T~ , and concluded that these 

terms also make significant contributions in pseudocontact shifts and require additional 

crystal field parameters, including rank four and six (2?40'S and 560's)-44 An expansion of 

equations 4.3 (equation 4.5) using higher term such as T~ shows that the T~ 

temperature dependence of the magnetic anisotropy requires additional crystal field 
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parameters. The presence of additional crystal field parameters, such as L = 2, 4 and 6 

complicate the calculation and result in the expression of the magnetic anisotropy as 

shown in equation (4.5). 

^ - ^ = c 2 r - 2 + c 3 r - 3 (4.5) 

For the lanthanide complexes that require more than 6 crystal-field parameters, 

the equation for the T~ temperature dependent term can be written as given below 

(equation 4.6): 

C3 M2/31}g3/?|Hy(J+l)(2J-^ (4 6) 

+ V 3 0 f l 4(f60 + 1 2 ^63 a 43) + ^( 7 f l 60- 5 f l 63- 2 2 f l 66 ) 

Here, kj-s are the constants and depend on the lanthanides. McGarvey expressed 

the crystal field parameters as OLM41' 44 (Stevens formulation) and reported that a 

contribution of the T~ term can not be ignored for the calculation of magnetic 

anisotropics because it contributes -10-20 % at room temperature. Conversion of aLM to 

5'scan be done using another operator, A^ , given in the literature.44'45 

In this Chapter we are reinvestigating the importance of higher temperature 

dependent terms and their significant contribution in pseudocontact shifts and magnetic 

anisotropy at room temperature. In our study we calculated the magnetic anisotropics of 

the given crystal field parameters over the range of 100-500 K using McGarvey's and 

Bleaney's methods and then compared them with the values obtained from the 

computational program employing full quantum mechanical treatment (CONDON).46 
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4.2 Results and Discussion 

4.2.1 Temperature Dependent Magnetic Anisotropy 

In order to determine the consequence of T~ and higher terms on 

pseudocontact shifts, a series of earlier reported isostructural lanthanide complexes were 

selected. The given crystal field parameters (Brs, B^s and 56s) of these chosen 

complexes were used to calculate the temperature dependent magnetic anisotropy using 

Bleaney's and McGarvey's equations (4.1 and 4.4).7' ^ Other than calculating the 

magnetic anisotropics of the paramagnetic lanthanides, these methods can also be used 

to express the magnitude and the sign of the pseudocontact shifts. Contribution of both 

T~ and T~ terms on lanthanide's pseudocontact shifts were calculated over the 

temperature range from 100 to 500 K at 10 K intervals. All the crystal field parameters 

used in this study were obtained from the literature.47"53 

Bis(phthalocyaninato)lanthanide complexes [Pc2Ln]~TBA+ - The first 

example (Figure 4.1) chosen in this study is a set of anionic 

bis(phthalocyaninato)lanthanide complexes [Pc2Ln]~TBA+ (where Pc = dianion of 

phthalocyanin, and Ln = Tb3+, Dy3+, Ho3+, Er3+, Tm3+ and Yb3+; TBA = tetra(«-

butyl)ammonium). Crystal field parameters of these fully characterized compounds have 

been reported earlier.47 These double-decker phthalocyanine complexes contain eight-

coordinate lanthanide metal center sandwiched between two ^-conjugate planar ligands. 

These complexes have D^ symmetry, which requires only three major crystal field 

parameters (B20, #40 and B^). The solid-state molecular structures of these isostructural 

complexes,47 as determined by X-ray crystallography, showed a slight decrease in skew 
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angle and distance between both ligands, with increase in lanthanide atomic number, due 

to the lanthanide contraction. 

Figure 4.1. Diagram of [Pc2Ln] TBA+, showing lanthanide ion (Ln = Tb3+, Dy3*, Ho3+, 

Er3+ Tm3+ and Yb3+) sandwiched between two phthalocyanine ligands. 

The comparison of the two approaches (Bleaney's equation 4.3 and McGarvey's 

equation 4.5) to estimate the magnetic anisotropy using the reported crystal field 

parameters are plotted, along with the full quantum mechanical treatment (CONDON) 

and is shown in Figure 4.2 & 4.3. It was reported earlier that the T~2 term is an 

important factor and plays as a major component in pseudocontact shifts at room 

temperature, where other terms are less than 10 %.7 Our results suggest that the 

contribution of the T~3 and other higher order terms is also noteworthy at room 

temperature and can be neglected only at extremely high temperatures (>500 K). 
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Anisotropy versus temperature graphs in Figure 4.2, show that at temperature range 

from 300-500 K, anisotropics calculated from equation 4.5 (including T~ term) is closer 

to the CONDON values than the anisotropics calculated from equation 4.3 (only T~ 

term). 
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Figure 4.2. Comparison plots of temperature dependent magnetic anisotropics (Ax) 

calculated from Bleaney's equation 4.3 (big dash), McGarvey's equation 4.5 (small 

dash) and a complete quantum mechanical treatment (CONDON) (grey line) vs 

temperature (T) for [Pc2Ln]~TBA+ . Deviation in anisotropy at temperature ranges from 

300-500 K. 
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Data calculated in the temperature range from 300-500 K revealed the 

importance of higher terms such as 7^3, which suggested that higher terms contributed 

almost 2-48 % of the T~ term. However, in the case of Tb and Yb-complexes the T~ 

contribution is around 85-90 % of the T~2 term. It is noticeable from the graphs shown in 

Figure 4.1 that the T~ term alone does not provide sufficient magnitude for anisotropy 

to match up with the CONDON values. This error between CONDON values and T~ 

values become less after including the T~ term. In this example, the T~ term is more 

important than the T~ term over the temperature range from 300-500 K for calculating 

anisotropics, however, no obvious trend was observed among the lanthanide series. 

•a 

Although, including the T~ term gives the results closer to CONDON, it also shows the 

presence of other higher terms below 250 K, which deviate the magnetic anisotropy 

from the anisotropy obtained from CONDON (Figure 4.3). Comparison of magnetic 

anisotropy calculations also showed that the magnitude of the Ci term is proportional to 

the second order crystal field (L = 2), and the magnitude as well as the sign of the C3 

term is proportional to the higher crystal field parameters such as L = 2, 4 and 6. 

Although B2o and other second order crystal field parameters play major roles in 

temperature dependent magnetic anisotropy, other crystal field terms also have 

significant contributions and hence these cannot be ignored. 
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Figure 4.3. Comparison plots of temperature dependent magnetic anisotropics (Ax) 

calculated from Bleaney's equation 4.3 (big dash), McGarvey's equation 4.5 (small 

dash) and a complete quantum mechanical treatment (CONDON) (grey line) vs 

temperature (T) for [Pc2LnfTBA+ at temperature ranges from 100-500 K. 

To analyse the contribution of the J1-3 relative to the T~2 term, the ratio of C3/C2T 

was calculated as shown in Table 4.1. The results showed that variation (2-90 % of the 

C2 term) in the contribution of the C3 term can be noticed through out the lanthanide 

series. 
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Table 4.1. Ratio of (C3/C2T)xl00 at 300 K in [LnPc2]"TBA+ 

Ln 

TbJ+ 

DyJ+ 

HoJ+ 

Erj+ 

TmJ+ 

YbJ+ 

D (a) 
» 2 0 

840 
800 
740 
700 
676 
650 

X>40 

-1840 
-1760 
-1600 
-1480 
-1200 
-1200 

» (a) 

592 
640 
720 
752 
800 
960 

Ratio 

(C3/C2T)xl00 

84.06 
-1.62 
-45.59 
47.59 

-10.71 
-89.06 

%Errors Relative 
to CONDON 
c2 c3 

67.5 
23.7 
267 
27.3 
24.2 
300 

10.9 
21.2 
5.6 
7.3 
10.9 
44.6 

Crystal field parameters are expressed in Wybourne's formulation (cm ') 

Since we are emphasising the importance of the 7~3 and other higher temperature 

dependent terms on pseudocontact shifts, the relative % errors (% error of C2 and C3 

relative to CONDON) were also calculated over the temperature range of 100-500 K. As 

shown from Table 4.1, comparison of the magnetic susceptibilities calculated from 

CONDON and the C3 term showed less difference and closer values than obtained by 

comparing CONDON values with the C2 term. 

Not only the overall magnetic susceptibility but both the key components (Xxx/Xyy 

and Xzz) of the magnetic susceptibility also show their temperature dependency. The 

change in the product of susceptibility and temperature (XxxT and XzzT) can be noticed in 

Figure 4.4. Of all these lanthanide complexes, Tb and Dy complexes show the decrease 

in XzzT and increase in XxxT, starting above 100 K. The difference in both components at 

low temperature is due to the higher energy gap between the ground substates. In case of 

[Pc2Ho]~, the rapid change in XxxT and XzzT values at low temperatures are the result of 

a strong temperature dependency. In case of [Pc2Yb]~, the XxxT value starts to increase at 

low temperature and at 270 K shows a higher value than XzzT. This change in anisotropy 

is due to the increase in the population in the higher energy states. These results also 
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suggest a clear division between metal ions on the basis of axial and planar magnetic 

anisotropics, in which Tb, Dy and Ho-complexes show a higher value of XzzT and Er, 

Tm and Yb-complexes show a higher value of %XXT at room temperature. 
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Figure 4.4. Temperature dependence of the products of the magnetic susceptibilities 

and temperature XxxT (small dash), XzzT (big dash) of (T^LnfTBA+ for C3 and higher 

terms using only McGarvey's equation. 
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As mentioned earlier, lanthanide induced shifts (LIS) are the combination of 

contact and pseudocontact shifts, which depend on T~ and T~ respectively (equation 

(4.7)). ' ' Thus, in principle, the individual contribution of these terms on LIS can be 

easily measured and both 71-1 and T~2 can be separated by plotting a graph between 

8Lis'Tvs T~l. 

5 L I S T = SCS + Spcs (4.7) 

T 

However, according to our calculations, due to the considerable involvement of 

other higher terms such as T~3 in pseudocontact shifts, separation of the two shifts on the 

basis of temperature dependence is unfeasible. On the basis of our theory that 

pseudocontact shifts are the combination of multiple temperature dependent terms in 

which not only T~ but T~ and higher terms are also important, paramagnetic shifts of 

[LnPc2] were calculated using Ci and C3 terms. The calculated shifts obtained from both 

terms were then compared to the reported chemical shifts of [LnPc2]~.47 Depending upon 

the position of the protons from the metal center as given in Table 4.2, 5a and 8p 

represent the chemical shifts of the closer and farther protons respectively. The results as 

given Table 4.2, show the remarkable similarities between experimental and calculated 

values A5Caicd (C3 term) than A5caiCd (Ci term). Similar to the constant value of the ratios 

(A5p/A5a) given in the paper,47 calculations using Cj and C3 terms also gave a constant 

chemical shift ratio (A5p/A5a), and hence verified the presence of a negligible contact 

term in paramagnetic NMR shifts. The difference in the chemical shifts of paramagnetic 

lanthanide complexes with respect to the diamagnetic yttrium complex is represented by 

AS. 
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Table 4.2. Comparison of calculated chemical shifts using Bleaney's and McGarvey's 

(equation 4.3 &equation 4.5) approaches and the experimental chemical shifts (8) of 

[LnPc2] 

Ln 

Tb3+ 

DyJ+ 

HoJ+ 

Er3+ 

Tm3+ 

YbJ+ 

A5a(obs) 

-94.2 

-51.06 

-14.53 

26.21 

25.99 

3.05 

A8a(C2) 

-57.7 

-63.23 

-23.0 

17.9 

28.07 

11.10 

A8a(C3) 

-106.0 

-62.24 

-12.5 

26.50 

25.07 

1.21 

A8p(obs) 

-48.71 

-26.71 

-7.81 

13.04 

13.07 

1.56 

A8P(C2) 

-29.2 

-32.05 

-11.7 

9.09 

14.23 

5.62 

A8P(C3) 

-53.8 

-31.55 

-6.34 

13.4 

12.70 

0.615 

ASp/ASa 

(obs) 

0.52 

0.52 

0.54 

0.50 

0.50 

0.51 

A8p/A8a 

(C3) 

0.51 

0.51 

0.51 

0.51 

0.51 

0.51 

A8p/A8a 

(C3) 

0.51 

0.51 

0.51 

0.51 

0.51 

0.51 

Though the C2 term is important at extremely high temperatures (>500 K), higher 

terms are important at room temperature and contribute -30-40 % of the C2 term. The 

absence of the higher terms can be easily predicted from Figure 4.5, where chemical 

shift calculations using only the C2 term showed larger errors than the chemical shifts 

calculated using the CT, term. As reported by Ishikawa and coworkers,47 calculations for 

the magnetic anisotropy of [YbPc2]~ using both Bleaney's and McGarvey's methods 

also showed change in the anisotropy's sign in between 180-190 K, where planar 

anisotropy dominates axial anisotropy. 
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Figure 4.5. Plots of H NMR shifts % error vs temperature showing the importance of 

higher terms in [Pc2Ln]~TBA. Each grey line, small dash and big dash represents the 

chemical shift calculated from CONDON, % error in chemical shifts using C3 and C2 

terms respectively relative to CONDON values at temperature range from 300-500 K. 
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Ln(trensal) - Another example, which was selected to verify our approach 

towards the T~3 term is a set of Ln(trensal) (where trensal = 2,2',2"-

tris(salicylideneimino)triethylamine) with known crystal field parameters as shown in 

Figure 4.6.48 Syntheses and X-ray details of these compounds were reported earlier.54'55 

The trensal ligand is a tripodal heptadentate ligand, which forms a isomorphous and 

isostructural series of trivalent lanthanide complexes using trivalent lanthanide metal 

ions (Ce-Yb). All these Ln(trensal) compounds have C3 symmetry, and except for the 

Ce, Gd and Yb compounds all require B20, .640, S43, #60, #63 and Bee- While the Gd 

complex showed no absorption bands in IR-spectra in 0-25000 cm"1, the Ce and Yb 

complexes showed small number of transitions, which could not be used to generate the 

parameters required for C3 symmetry complexes. 

Figure 4.6. Schematic diagram of Ln(trensal) where Ln = Ce-Yb. 

As in the first example, the Ln(trensal) complexes also displayed a strong 

dependence of the pseudocontact shifts on the T~ and other higher temperature 

dependent terms. The results demonstrated that, for a series of isostructural trivalent 

lanthanide complexes with larger than C2 molecular symmetry, higher rank crystal field 
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parameters (i?4'S and B(,*s) are also require to determine the magnetic anisotropy. The 

graphical representations shown in Figure 4.7 reveal that the presence of the T~ term 

alone gave an enormous error in calculating magnetic anisotropy, which can be reduced 

by the introduction of the T~3 and sometimes higher terms. These results also confirmed 

the contribution of the T3 and higher order terms to around 14-82 % of the r~2term at 

room temperature. The trivalent Ho(trensal) complex show an exceptionally high 

percentage of higher temperature dependent terms (146-245 % ) of the 7 ^ term. 
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Figure 4.7. Comparison plot of temperature dependent magnetic anisotropics (Ax) 

calculated from Bleaney's (big dashed line), McGarvey's equation's (small dashed line) 

and CONDON (grey line) vs temperature (T) for Ln(trensal) from temperature 300-500 

K. 

Results obtained by calculating (C3/C2T) as shown in Table 4.3 reveal that at 

room temperature the magnitude of the C3 and higher terms are almost 25-244 % of the 

Ci term, which also proves their significant contribution in pseudocontact shifts. 

However, Ho(trensal) showed an exceptionally high contribution of higher terms due to 

the result of a higher C3 and a very low C2 value. 
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Table 4.3. For Ln3+ in Ln(trensal), calculated C3/C2T for the given crystal field 
parameters at 300 K. 

Ln 

TbJ+ 

DyJ+ 

HoJ+ 

ErJ+ 

TmJ+ 

B20 

-617 

-671 

-316 

-720 

-952 

B40 

92 

-186 

-186 

-44 

86 

B43 

-1928 

-2153 

-1910 

-2121 

-1780 

B60 

1582 

1241 

1146 

988 

1168 

B63 

719 

439 

732 

353 

143 

B66 

1103 

660 

460 

545 

801 

%Ratio 
(C3/C2T)xl00 

-23.38 

-27.75 

-243.97 

80.96 

25.60 

% Error Relative 
to CONDON 

c2 c3 

6.5 

60.8 

51 

132 

15 

16 

17.3 

168 

320 

43 

Calculations for % error between the computational values and the anisotropics 

calculated from Bleaney's and McGarvey's methods, showed the closer correspondence 

of the values calculated using additional higher terms (C3 term) with the computational 

values. The dependency of temperature on anisotropic components (Figure 4.8) shows 

that in case of Tb(trensal) and Dy(trensal), planar anisotropy dominates over axial 

anisotropy at room temperature, whereas Er(trensal) and Tm(trensal) show higher axial 

anisotropy at room temperature. Although Ho(trensal) also shows the greater value of 

axial anisotropy at room temperature, the difference between the value of Xzz and %xx is 

very small. 
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Figure 4.8. Plots of temperature dependent anisotropic components (XxxT/̂ zzT) versus 

temperature for Ln(trensal) using CT, and higher terms, where XxxT (small dash), XzzT 

(big dash). 

[Ln(dipic)3J ~~ - The example of recently reported isostructural lanthanide 

complexes [N(C2H5)4]3[Ln(dipic)3]«H20, where Ln = Tb, Dy, Ho, Er, Tm or Yb and 

dipic = pyridine-2,6-dicarboxylate, were also used in this study to verify the importance 

of McGarvey's higher terms.49 As shown in Figure 4.9, the isostructural nine coordinate 
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complexes exhibit D3 symmetry, which contain six crystal field parameters covering the 

second, third and forth rank (Brs, 5 4 s and Bvs). 

Figure 4.9. Nine coordinate [Ln(dipic)3]3 , where Ln = Tb, Dy, Ho, Er, Tm or Yb. 

Magnetic anisotropy calculations for all the metal complexes using T~ , T~ and 

CONDON, as shown in Figure 4.10, illustrate that the higher order temperature 

dependent terms are important and give values closer to the CONDON values. While the 

T~ term is important at extremely high temperatures (above 500 K), significant 

contribution of the higher terms can be observed at low temperatures (300-500 K). 

Similar to [Pc2Yb]~, [Yb(dipic)3]~3 also shows a change in the direction of magnetic 

susceptibility at room temperature. 

The detailed study of the importance of higher terms over the T~2 revealed that 

except for the Dy complex, all other complexes show the presence of additional higher 

temperature terms such as T~* and higher at low temperatures (below 300 K). To check 

the significance of each crystal field parameter on the magnetic anisotropy, calculations 
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were done using each parameter independently, which resulted in the finding that similar 

to second order crystal field, higher crystal field parameters such as fourth and sixth 

rank are also important. 

* 

< 

T(K) 

Figure 4.10. Comparison plot of temperature dependent magnetic anisotropics (Ax) 

calculated from Bleaney's equation (big dashed line), McGarvey's equation (small 

dashed line) and CONDON (grey line) vs temperature (T) for [Ln(dipic)3]~3. 
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Ln(btmsa)3- It has been reported earlier that tris(fais(trimethylsuyl)amido)lanthanide 

complexes (Ln(btmsa)3, where Ln = Dy, Ho, Er and Yb) showed C^ symmetry and 

required #20, -#40. £43, #60 ^63 and i?66-50'56 Crystal field parameters of these complexes 

were obtained from the low and room temperature absorption and luminescence 

spectra.56 As reported earlier, crystal structures of these complexes showed the center 

metal ion surrounded by three nitrogen atoms of the amido ligand. Calculated values of 

(CyC2T)xl00 for these systems showed that the magnitude of higher terms, mainly T~ > 

is with in the range from 9-80 % of the T~ term at room temperature. Similar to other 

examples, these complexes also verified the presence of other higher terms, such as 71-4 

below 250 K (Figure 4.11). 
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Figure 4.11. Comparison plot of temperature dependent magnetic anisotropics (Ax) 

calculated from Bleaney's (big dashed line), McGarvey's methods (small dashed line) 

and CONDON (grey line) vs temperature (T) for [Ln(btmsa)3]. 
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LnOCl - The present example is based on the crystal field parameters of axial 

symmetric lanthanide complexes given in the literature, which were used for the 

calculation of magnetic anisotropies using Ci and C3 terms.57 Reported lanthanide 

oxychlorides are a set of the complexes that contain C^ symmetry and posses five non­

zero crystal field parameters (#20, B40, #44, #60 and B^) obtained from their optical 

spectra.57 Unlike compounds with C-$v symmetry, C^ systems require additional B44 and 

#64 parameters instead of 543 and 563 crystal field parameters. As shown in Figure 4.12, 

all four complexes show the dominating higher temperature dependent terms below 250 

K and the major contribution of T~2 term at relatively high temperature (Figure 4.13). 

Below 300 K, T^ and higher terms contributions are also noticeable in all these 

complexes. Study of individual parameters showed the negligible contribution of 564 

term in these complexes. 
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Figure 4.12. Comparison plot of temperature dependent magnetic anisotropics (A^) 

calculated from Bleaney's (big dashed line), McGarvey's methods (small dashed line) 

and CONDON (grey line) vs temperature (T) for LnOCl (Ln = Tb, Ho, Er or Tm). 
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Figure 4.13. Comparison plot of temperature dependent magnetic anisotropics (Ax) 

calculated from Bleaney's (big dashed line), McGarvey's methods (small dashed line) 

and CONDON (grey line) vs temperature (T) for LnOCl (Ln = Tb, Ho, Er or Tm) at 

temperature range from 300-500 K. 
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R2Fen - A system containing lanthanide complexes of type R^Fen (R = 

lanthanides) crystallized in two different manners, i.e., hexagonal and rhombohedral, 

after their crystallization in ThiNi^ and in Th^Znn, respectively.51 Four crystal field 

parameters (B20, ̂ 40, #60 anc^ ^66) w e r e obtained for the reported complexes. The 

complexes showed weaker R-R if-f) interactions related to Fe-Ln (d-f) metal 

interactions. As shown in Figure 4.14, except E^Fe^ and Tn^Fen, all other metal 

complexes show the presence of the T^ and higher terms at low temperature, due to 

relatively lower B^ B^ values. 
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Figure 4.14. Comparison plot of temperature dependent magnetic anisotropics (A%) 

calculated from Bleaney's (big dashed line), McGarvey's methods (small dashed line) 

and CONDON (grey line) vs temperature (T) for R.2Fei7 (R = Tb, Dy, Ho, Er or Tm). 

C3h symmetric lanthanide systems- Another system reported earlier with Cih 

symmetry consist of the examples of Tb, Dy, Er and Tm-complexes, which posses four 

crystal field parameters, including B20, #40, #60 and B^.52' 58 The graphical 

representation, shown in Figure 4.15, demonstrates that higher order temperature terms 

make a significant contribution in magnetic anisotropics, which make the calculated 

values closer to the values obtained from CONDON around 300-500 K. The diversion of 
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the magnetic anisotropy calculated from McGarvey's method below 250 K predicts the 

presence of other higher terms, contribution of which create a difference between 

CONDON values and the values calculated from McGarvey's method. While 

contribution of the J1-4 and higher terms can be noticed in the Tb and Er complexes 

below 250 K, the Dy and Tm complexes provide evidence for negligible T^ 

contribution. 
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Figure 4.15. Comparison plot of temperature dependent magnetic anisotropics (Ax) 

calculated from Bleaney's (big dashed line), McGarvey's methods (small dashed line) 

and CONDON (grey line) vs temperature (T) for the C^h symmetric lanthanide system. 
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.3+ Ln doped in LaCb - Most of the lanthanide complexes reported in the 

literature for determining the crystal field parameters are trivalent lanthanide ions doped 

either in ethyl sulfates, nitrates or in LaCl3.44 Study of these complexes also verified the 

presence of higher temperature dependent terms such as 71-3 in between 300-500 K, and 

in case of Er-complexes, significant contribution of the IT-4 term, which was completely 

neglected earlier (Figure 4.16). 
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Figure 4.16. Comparison plot of temperature dependent magnetic anisotropics (A%) 

calculated from Bleaney's (big dashed line), McGarvey's methods (small dashed line) 

3+. and CONDON (grey line) vs temperature (T) for Ln doped in LaCi3 
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For the ethyl sulfates doped lanthanide ions, reported crystal field parameters 

produced the values of (C3/C2T)xl00 = 13-26 %, which confirmed the importance of C3 

and higher terms at room temperature (Table 4.4). 

Table 4.4. For LnJ doped in La(C2H5S04)3(H20)9 crystals, calculated C3/C2T for the 

given crystal field parameters at 300 K. 

Ln 

lbi+ 

DyJ+ 

Hoj+ 

ErJ+ 

Tmj+ 

YbJ+ 

B20 

-220 

240 

250 

238 

259.6 

200 

B40 

-600 

-632 

-632 

-592 

-568 

^ 4 0 

B60 

-544 

^180 

^ 8 0 

-480 

^157.6 

-560 

B66 

490 

526 

412 

396 

455.6 

537 

%Ratio 
(C3/C2T)xl00 

22.5 

-23.80 

13.16 

-16.00 

25.95 

-18.62 

% Error Relative to 
CONDON 

c2 c3 

16.9 

43.5 

13.7 

13.5 

14.9 

28.5 

1.8 

9.3 

2.3 

4.7 

7.2 

4.6 

Ln at S4 symmetry sites in L1YF4 - Crystal field parameters of trivalent 

lanthanide complexes containing tetragonal S4 symmetry sites in LiYF4 were also used to 

examine the effect of T~ and higher terms on anisotropics. 53 These complexes were 

principally studied for the fd energy levels of heavy lanthanide complexes and showed 

the presence of both spin-forbidden and spin-allowed fd transitions. For this study 

trivalent lanthanide ions were incorporated in a LiYF4 host lattice to observe the higher 

energyy# excitation bands. Among all the examples used in this study, the present set of 

lanthanide complexes exhibit low symmetry features and also require imaginary terms in 

crystal field parameters. Due to inadequate absorption data, no crystal field parameters 

were reported for the Yb-complex. 

159 References begin on page 170 



Chapter-4: Effect of Temperature on Pseudocontact Shifts of Paramagnetic Lanthanide Complexes 

The results shown in Table 4.5 represent the anisotropics calculated by 

temperature dependencies in equation (4.3) and (4.5). These anisotropics were then 

compared with the calculated values obtained from CONDON to show the relative 

errors or difference between the T~ and higher terms. The calculated values of C3/C2T 

given in Table 4.5 illustrate that the magnitude of the 71-3 term is between 5-36 % of the 

T~ term at room temperature. 

Table 4.5. For Ln at S4 symmetry sites in LiYF4, calculated C3/C2T and relative 

anisotropics for the given crystal field parameters at 300 K using CONDON, 

McGarvey's (C3) and Bleaney's (C2) terms. 

Ln 

TbJ+ 

D / + 

HoJ+ 

ErJ+ 

TmJ+ 

# 2 0 

400 

340 

408 

352 

348 

^ 4 0 

-802 

-784 

-629 

-820 

-639 

^ 6 0 

- 5 7 

- 7 

- 1 8 

-134 

-182 

%Ratio (C3/C2T) 

36.64 

-6.51 

-5.47 

-9.54 

-9.79 

(Ax) 
CONDON 

0.024740 

0.016172 

0.008282 

-0.005597 

-0.0104918 

(Ax) C2 

0.018891 

0.018487 

0.008717 

-0.006201 

-0.0099424 

(Ax)C3 

0.025811 

0.017283 

0.008239 

-0.005609 

-0.010916 

Trivalent Lanthanide Complexes Containing Lighter Lanthanide Metal 

Ions - Other than heavy lanthanide complexes, examples of lighter lanthanide (Ce, Pr 

and Nd) complexes 44 were also studied to examine the contributions of the C3 term on 

magnetic anisotropy calculation or in pseudocontact shifts. Results obtained from the 

graphs given in Figure 4.17 suggest that calculation for magnetic anisotropics cannot be 
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obtained without including higher temperature dependent terms, which at room 

temperature contributed 13-25% of the C2term. 
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Figure 4.17. Comparison plot of temperature dependent magnetic anisotropics (Ax) 

calculated from Bleaney's (big dashed line), McGarvey's methods (small dashed line) 

and CONDON (grey line) vs temperature (T) for Ln3+ (Ln = Ce, Pr or Nd) doped in 

LaCl3. 

Another example of early lanthanide ions (Ce3+, Pr3+ and Nd3+) was a set of early 

lanthanide ions doped in ethyl sulfate crystals.44 These reported trivalent lanthanide ions 

contain Djh symmetry with four crystal field parameters, such as B20, #4o, #60 and Re­

calculations of anisotropics using these parameters show the presence of significant 

amounts of the C3 and higher terms (Figure 4.18). While interference of the T^term can 
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be noticed in both Ce and Pr-complexes, no sign of higher temperature dependent terms 

such as T^ was observed in Nd-complexes below 250 K. 
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Figure 4.18. Comparison plot of temperature dependent magnetic anisotropics (Ax) 

calculated from Bleaney's (big dashed line), McGarvey's methods (small dashed line) 

and CONDON (grey line) vs temperature (T) for Ln3+ (Ln = Ce, Pr or Nd) doped in 

La(C2H5S04)3(H20)9. 

The overall study of these complexes revealed that the ratio of (C3/C2T)xlOO, 

which calculated the importance of the higher terms, increased with the decrease in 

temperature. At low temperatures a higher percentage ratio sometimes also represents 

the presence of J1-4 and higher terms. Although no trend was observed in the lanthanide 

series, it was found that at low temperatures, larger CT, is due to the contribution of r - 4 

and higher terms (Table 4.6). 
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Ĵ 
^ 

in 
O 
*̂  

00 
ON 

CN 
ON 

Tf 
00 
ro 
• 

1 

CO 
O 
00 
O 

T 

0 0 
^H' 
r̂ i 
1 

1 
ON 
ON 
O 

t 
t~-
CN 
CN 
in 
• 

1 
r̂ 
r~̂  
in 

T 
NO 
NO 
O 

T 
ON 

in 
NO 

1 

CN 
m 
• 

1 
ON 
'3: 
O 

1 
in 
Ĵ 
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Chapter-4: Effect of Temperature on Pseudocontact Shifts of Paramagnetic Lanthanide Complexes 

4.3 Summary and Conclusions 

The crystal field parameters of a series of isostructural trivalent lanthanide 

complexes reported in the literature were used to demonstrate the temperature 

dependencies of pseudocontact shifts. It has been reported earlier that the pseudocontact 

shifts depend only on the T~2 term with second rank crystal field parameters (L = 2). 

While McGarvey reported that for pseudocontact shifts the T~ term contributed 10-20 % 

of the T~2 term, our study underlines the importance of the higher temperature dependent 

terms showing that at room temperature these terms contribute from 20-90 % of the T~ 

term. We also demonstrated that not only the T~ term but contribution of the I"4 and 

higher terms can also be noticed at low temperatures (below 250 K); these terms have 

been completely ignored. Change in the sign of anisotropy observed in [Pn2Yb]~ using 

the Cj term supported Ishikawa's results and revealed the importance of higher terms. 

Similar to McGarvey's prediction, it can also be concluded that the four and six term 

crystal field parameters are also important to predict the sign as well as the magnitude of 

higher temperature terms; this is impossible using only second term crystal field 

parameters. Magnetic anisotropics calculated over 100-500 K provide evidence of the 

major participation of the T~ term at extremely high temperature (>500 K) rather than at 

room temperature. Thus, the current study confirms that McGarvey's higher terms, such 

as T~3 and ^ play significant roles in pseudocontact shifts of paramagnetic lanthanide 

complexes. 
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CHAPTERS 

Determination of Crystal Field 
Parameters of Trivalent Lanthanide 

Amido Complexes by Variable 
Temperature NMR Spectroscopy 

5.1 Introduction 

Paramagnetic lanthanide complexes have become an essential tool in a variety of 

chemical and biochemical applications due to their unique magnetic properties, such as 

large magnetic moments and large magnetic anisotropics.1"4 Magnetic properties of 

lanthanide complexes depend on their large unquenched orbital angular momentum. 

Other than gadolinium, the rest of the lanthanides possess orbitally degenerate ground 

states, which can be raised up to lO'-lO2 cm"1 by the supporting ligands. These 
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supporting ligands are also responsible for crystal field splitting and therefore their 

selection plays a significant role in the applications of lanthanide complexes. Although 

the sublevel structure of ground state multiplets of the lanthanide complexes is an 

important feature in understanding the magnetic properties of lanthanides, the lack of 

information makes it difficult to determine these sublevel states. 

One of the traditional ways to determine these crystal field parameters is via 

optical spectroscopy methods, such as low-temperature absorption and luminescence." 

A few of these methods involve the doping of trivalent lanthanides into single crystal 

ions exhibiting a narrow band structure to show the transitions between ground and 

excited state multiplets. Due to the insufficient participation from the 4/" electrons in 

chemical bonding, each f-f spectral band appears as sharp lines, which can be 

differentiated from each other. Although these lines are considered as the ligand field 

splitting between the ground state and the upper state energy levels, in cases where there 

are no line-like absorption and emission, determining sublevel structure information is 

an impossible task. In the past decades, the interactions between the energy levels of the 

^block elements have been studied by optical spectroscopic methods using a 

Hamiltonian model. In general, the crystal field parametric Hamiltonian H can be 

expressed by equation (5.1) as given below. 

H = HF + V (5.1) 

Hf = Hamiltonian for free lanthanide ions 

V = Potential provided by crystal environment 
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Depending upon the symmetry of the complex, the crystal field Hamiltonians of 

lanthanide ions contain up to 27 crystal field parameters. For unperturbed free ions and 

symmetrical complexes, the expansion of potential V caused by crystal fields can be 

written as shown in equation (5.2). In the literature, these parameters are denoted by 

different numerical factors and Wybourne expressed them using 5kq's as in equation 

(5.2), where the crystal field Hamiltonian can be expanded using tensor operator Ckq. 

F = I£k q(Ck q)i (5.2) 

Lanthanide complexes containing C^ symmetry require a total of six crystal field 

parameters and, according to Wybourne, their crystal field potential can be expressed as 

shown in equation (5.3). The crystal field parameters of the lanthanides can also be used 

to generate the paramagnetic NMR shift and the temperature dependent magnetic 

anisotropy. ' 

V = B20C20 + B40C40 + BA3(C4_3 - C43) + B60C60 + B3 (C6_3 - C63) + B66 (C6_6 + C66) (5.3) 

B2'S, B4'S and B6-s = crystal field parameters of rank 2, 4 and 6 respectively 

NMR shifts obtained from paramagnetic lanthanide complexes are the combined 

effect of contact and pseudocontact shifts (equation 5.4). While the contact shift is due 

to the derealization of metal unpaired electron density to the ligand nuclei (contact or 

Fermi-contact), the pseudocontact shift is due to the through-space coupling between the 

metal centre and each nucleus of the participating ligand. 

A5 = 5 C + 5 P C (5.4) 
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The pseudocontact shifts in paramagnetic lanthanides are also responsible for the 

large chemical shifts due to the dipolar contribution, and provide the structural 

information of the related lanthanide complex. This information can be utilized to 

calculate the magnetic anisotropy of the corresponding complex, as given in equation 

(5.5). 

. . (3cos26>-l) , ( 5 5 ) 

IK 

A5 = chemical shifts 

R = distance between lanthanide metal and substrate nuclei 

6 = angle between lanthanide metal and substrate nuclei 

The presence of certain unique magnetic properties have increased the demand 

of trivalent lanthanide complexes in the application of magnetic materials.1'u They have 

been used for synthesizing single molecule magnets (SMM) such as mononuclear 

bis(phthalocyanato)Tb~ and bis(phthalocyanato)Dy~ complexes, which behave as SMM 

1 9 

above 20 K. In paramagnetic lanthanide complexes, the large orbital momentum and 

weak crystal field splitting are responsible for the larger magnetic anisotropy, which 

allows the alignment of the related complex in the external magnetic field.13 The 

pseudocontact shift induced from the large magnetic anisotropy make these complexes 

useful as shift reagents and contrast agents for the study of protein structures and in 

MRI, respectively.14"16 In protein structure studies, calcium ions bound to the protein 

molecule are replaced by paramagnetic lanthanides due to the similar ionic radii and 

similar nature of bonding in biological systems.17'' In addition , lanthanide complexes 
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have been used as luminescent probes for the study of various biochemical systems in 

plants and animal tissues.19 Large magnetic anisotropy also depends on the ligand field 

strength and crystal-field splitting of the compound's ground state multiplets. In the case 

of dinuclear lanthanide complexes, large magnetic anisotropy is a desirable property 

because it increases the possibilities of through-space metal-metal coupling and thus is 

useful for molecular wires and molecular chains. In^block systems, crystal field or 

exchange interactions are usually very strong and thus play an important role in the 

physical properties of lanthanide complexes. 

Crystal field parameters of lanthanide complexes are generally studied at low 

temperatures using optical spectroscopic methods due to the presence of only a few 

thermally populated crystal-field levels, which are responsible for an increase in 

magnetic anisotropy. Low temperature optical studies provide the information about the 

/ /bands , which can be used to determine the crystal field splitting of ground and excited 

state multiplets. Excluding the special cases, where these bands are sharp enough to 

separate from each other, obtaining information regarding the crystal-field splitting is 

not an easy task. Recently, Ishikawa provided a new method to calculate the crystal-field 

parameters and the electronic structures of lanthanide complexes. 

As mentioned earlier, the chemical shifts of paramagnetic lanthanide complexes 

are comprised of an isotropic contact term and the anisotropic pseudocontact term, and 

the contribution of these terms depends on the spin state and magnetic anisotropy of the 

metal ions. In principle, separation of contact and pseudocontact terms are based on their 

dependency on temperature, and hence on magnetic anisotropy. As explained in Chapter 

4, Bleaney proposed that the anisotropy of the lanthanide complexes containing a second 
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term crystal field parameter and the T2 temperature dependent term can be calculated, as 

shown in equation (5.6).9'22 

ZH-Z±=jra2o (5-6) 

Later, McGarvey expanded temperature dependent magnetic anisotropy using 

higher terms such as T3, T4 with all other crystal field parameters.9 Compounds with C3 

symmetry require six crystal field parameters and according to McGarvey magnetic 

anisotropy of C3 symmetry complexes can be written as given in equation (5.7). 

C3 =^2/315)g3/?2Hj(y+l)(2^^ (5.7) 

In the above equation kn represents the constants with different values for each 

lanthanide and thus verify the dependencies of magnetic anisotropy of each lanthanide 

on different crystal field parameters. The sign of any two different trivalent lanthanide 

ions from these two groups can not be the same (as described earlier in Chapter 4). 

Based on the assumption that in the case of higher lanthanides (Tb3+ to Yb3+), crystal 

field parameters vary linearly, it should be possible to utilize the variable temperature 

NMR shifts to determine the crystal field parameters. Thus for the C3 symmetric 

complexes, it should be possible to fit all the variable temperature NMR shifts of the 

entire series of heavy lanthanides to 12 variables. 

As NMR spectroscopy is an important tool for the characterization of chemical 

and biochemical compounds, magnetic analysis based on NMR data will be a boon to 

synthetic chemists, who do not have access to low temperature optical spectroscopy or 
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SQUID (superconducting quantum interference device) magnetometers to determine the 

crystal-field parameters/magnetic susceptibility. In this chapter, we are proposing a new 

method, which can be used to determine the crystal field parameters using only variable 

temperature NMR data. Magnetic anisotropy of lanthanide complexes containing more 

than C2 symmetry can also be measured from their pseudocontact shifts. In addition, we 

are introducing a series of isostructural trivalent lanthanide complexes [P(CH2NC6H4-2-

CC>2Me)3Ln] with Cj molecular symmetry and utilizing their chemical shifts for the 

calculation of crystal field parameters. The mononuclear trivalent lanthanide complexes 

described in this chapter possess four different proton environments that were observed 

in *H NMR spectra and require six crystal field parameters, denoted as B20, B40, Beo, #43, 

563 and Bee-

5.2 Result and Discussion 

5.2.1 Syntheses of Trivalent Lanthanide Complexes 

All the trivalent lanthanide complexes were prepared in a similar manner, which 

involve the mixing of 1 equivalent of ligand precursor (13) with 1 equivalent of 

Ln[N(SiMe3)2]3 (Ln = Tb, Dy, Ho, Er and Tm) in toluene solution. After 5 h, the 

solution mixture was precipitated in the form of a yellow crystalline solid as shown in 

equation (5.8). 
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MeO 
/OMe 

Toluene HC<^ \\ "̂  /K 
P(CH2NC6H4C02Me)3H3 + Ln[N(SiMe3)2]3 • \ \\ J-^„ 

Toluene . H c / ^ Y \ ^ V " ^ H (5-8) 

-3HN(SiMe3)2 U ^ y ^ N T >£ . 

Ln = Tb(22), Dy(23), Ho(24), Er(25), Tm(26), and Yb(27) 

The resultant trivalent lanthanide complexes contain C3 symmetry in solid as well 

as in solution form, in which each metal center is chelated by three amido nitrogen 

donors and three ester functionality oxygens. Despite getting X-ray quality crystals, the 

molecular structure of these trivalent lanthanide complexes (22-26) could not be solved 

because of the difficulties in solving the twinned structures. 

5.2.2 Magnetic Studies of Trivalent Lanthanide Complexes 

Magnetic susceptibilities of these complexes (22-26) were measured over the 

temperature range of 300 to 2 K using the powdered sample immobilized in eicosane 

(C2oH42) chemically inactive, part of paraffin group, and use to cover air-sensitive 

samples) . The room temperature XMT values (product of magnetic susceptibility and 

temperature) of these complexes (22-26) correspond to the expected value of their free 

ions at room temperature as shown in Figure 5.1. For example ^MT = 11.81 cm K mol" 

for Tb3+, 14.18 cm3 K mol"1 for Dy3+, 14.07 cm3 K mol"1 for Ho3+, 11.48 cm3 K mol"1 for 

Er + and 7.15 cm K mol' for Tm +. In the case of complex 22, lowering the 

temperature to 2 K, decreases the magnitude of ^MT to 4.93 cm3 K mol"1. The XMT 

~i 1 ^ 1 

values of complex 23 and 24 also decrease to 9.17 cm K mol"1 and 6.10 cm K mol" 

respectively. While lowering the temperature to 40 K decreases the ^MT value of 
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complex 25 to 8.88 cm3 K mol"1, further decrease in the temperature to 2 K increases the 

value to 9.91 cm3 K mol"1. Similar to the other complexes, complex 26 also shows a 

decrease of XMT value to 3.84 cm3 K mol"1 at 2 K. 
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Figure 5.1. Plots of xmT versus T for P[CH2NC6H4-2-C02Me]3Ln (Ln = Tb, Dy, Ho, Er 

and Tm) (•), and the broken line is the XmT value of the corresponding free ion at room 

temperature. 
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5.2.3 NMR Spectra ofTrivalent Lanthanide complexes 

As given in Table 5.1, trivalent lanthanide complexes showed large 

paramagnetic shifts (8) in 31P{'H}NMR with the chemical shift range from -700 to 700 

ppm, due to the dipolar shifts. In this study NMR chemical shifts (AS) are the relative 

shifts of paramagnetic lanthanides with respect to the diamagnetic yttrium complex. As 

also stated in Chapter 3, each lanthanide complex contains four proton environments, 

which were assigned by *H NMR spectra. Depending upon the closeness of these four 

protons to the center metal ion, they were labelled as Ha, Hb, He and Hd, respectively. 

On the basis of the sign of 3IP{'H}NMR shifts, all the trivalent lanthanides complexes 

were divided into two categories, according to which Tb, Dy and Ho showed negative 

shifts in phosphorus NMR (-5), whereas Er, Tm, and Yb showed positive NMR shifts 

"X1 1 

(+5). Complex 22 showed the largest paramagnetic shift with a negative sign in P{ H} 

NMR. Failed attempts of finding the phosphorus shift of P[CH2NC6H4C02Me]3Tm (26) 

could be due to the result of the large line broadening or relaxation time. 

Table 5.1.3,P{1H}NMR shifts of P[CH2NC6H4C02Me]3Ln (Ln = Y, Tb, Dy, Ho, Er, 
Tm and Yb) 

LnJ+ 

Y(14) 

Tb(22) 

Dy(23) 

Ho(24) 

Er(25) 

Tm(26) 

Yb(27) 

J1P{'H}NMR shifts (ppm) 

-57.0 

-689.3 

-581.0 

-375.0 

322.3 

Non-observable 

191.7 
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One of the approaches to check the nature of the chemical shifts involves the 

constant ratio of different shifts of the same lanthanide complex over the range of 

temperature using equation (5.5). The required bond distance (R), and bond angle 

required can be calculated from the crystal structures. The constant ratio thus obtained 

from the chemical shifts implies the presence of dipolar shifts with no contribution of 

the contact term in the paramagnetic shift.10 Another approach to calculate the constant 

ratio involves the A8 ratios of the similar peaks of different lanthanide complexes. The 

constant value obtained from these ratios also confirms the presence of only dipolar 

contributions. As shown in Table 5.2, due to the largest chemical shift in each lanthanide 

complex, Hd was selected as a reference for calculating the shift ratios. The constant 

ratio (1.29) was obtained from A8Hd and A5Hc in an isostructural lanthanide series at all 

temperatures, confirming the presence of a dipolar contribution to paramagnetic shifts. 

Table 5.2. Assignments of 'H NMR shifts (5) and paramagnetic shifts (A5) for 

Ln 

Y(14) 

Tb(22) 

PK23) 

Ho(24) 

B(25) 

Tm(26) 

Yb(27) 

8(Ha) 

6.78 

26.28 

24.88 

18.88 

-7.80 

-7.62 

-4.23 

8(Hb) 

7.27 

32.37 

24.97 

19.47 

-8.13 

-31.23 

-7.27 

5(Hc) 

6.48 

49.28 

46.41 

27.28 

-8.22 

-37.62 

-8.92 

5(Hd) 

8.11 

63.54 

54.62 

35.21 

-11.19 

-48.29 

-10.67 

A5(Ha) 

19.5 

18.1 

12.1 

-14.58 

-14.4 

-11.01 

A6(Hb) 

25.1 

17.7 

12.2 

-15.4 

-38.5 

-14.54 

A8(Hc) 

42.8 

35.2 

20.8 

-14.7 

-44.1 

-15.4 

A5(Hd) 

55.5 

46.51 

27.1 

-19.3 

-56.5 

-18.78 

A8(Hd)/ 

A8(Hc) 

1.29 

1.29 

1.30 

1.31 

1.29 

1.22 

184 
References begin on page 193 



Chapter-5: Determination of Crystal Field Parameters ofTrivalent Lanthanide amido Complexes by 
Variable Temperature NMR Spectroscopy 

5.2.4 Determination of Crystal Field Parameters 

To determine the set of crystal field parameters for each complex, ranges of 

earlier reported crystal parameters given for C^ symmetric trivalent lanthanide 

complexes were used. Based on the assumption that for the isostructural series of 

trivalent lanthanide complexes, crystal field parameters vary linearly with the atomic 

number, crystal field parameters (CFP's) were used with the set of slopes, which can be 

expressed as written in equation 5.9. 

CFP's = B20B20s + B40B40s + B43B43s + B60B60s + B63B63s + B66B66s (5.9) 

These ranges of parameters were then used to search for the best set of crystal 

field parameters for the present lanthanide complexes using magnetic anisotropy 

calculated from the *H NMR paramagnetic shifts. To this end we have so far developed 

a method in which a computer program called DLAN was used for the optimization of 

set of the crystal-field parameters. The best set of crystal field parameters was selected 

on the basis of their ability to reproduce the temperature dependent magnetic anisotropy 

(Figure 5.2). 
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Figure 5.2. Comparison of temperature dependent magnetic anisotropics (grey squares) 

obtained from calculated crystal field parameters and the experimental data (black 

squares) obtained from !H NMR spectra. 

To check the linearity assumption, a separate calculation was done without using 

any slopes (Figure 5.3). The results acquired from the calculation suggested that crystal 

field parameters vary linearly with^electrons in lanthanide series. 
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Figure 5.3. Test for the trend in crystal field parameters showing relative magnetic 

anisotropics obtained from the non-linearity assumption (without slopes). Experimental 

magnetic anisotropy represented in black squares and the calculated anisotropy in grey 

squares. 

Results obtained from the calculations suggested the dominating contribution of 

the second term crystal field parameter, i.e., B20, with a negative value. In addition, 

results also revealed that although signs of #43, #60, B& an(^ ^66 are not important, the 
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signs of B20 and Aw make a significant change in the calculation of crystal field 

parameters. For the current trivalent lanthanide complexes #20 and £40 required the 

negative values. Authenticity of these calculated parameters can also be further tested by 

using them for the calculation of magnetic susceptibility. A computer program called 

CONDON can be used for such calculations as well as for the calculation of electronic 

structure of the trivalent lanthanide complexes. 

Crystal field parameters given in Table 5.3 are the best fit parameters obtained 

from NMR data. These parameters can be further used to determine the electronic 

structure of the present trivalent lanthanide complexes and thus the magnetic properties 

of these complexes. 

Table 5.3 Crystal-field Parameters for P[CH2NC6H4C02Me]3Ln 

Ln 

Tb 

Dy 

Ho 

Er 

Tm 

Yb 

^20 

-312 

-324 

-336 

-348 

-360 

-372 

#»o 

-37.12 

-42.85 

-151.42 

24.28 

-44.28 

-405.71 

^43 

1200 

1011.11 

1422.22 

1500 

1900 

888.89 

#60 

28.57 

119.52 

42.85 

-24.28 

-60.95 

-64.28 

#63 

133.33 

633.33 

400 

-500 

-66.67 

3366.36 

#66 

300 

400 

-371.42 

-371.42 

-200 

-500 

5.3 Summary and Conclusions 

The reactions of equivalent amounts of tripodal amido ligand 

P[CH2NHC6H4C02Me]3 and LnrN(SiMe3)2]3 (Ln3+ = Tb-Yb) afford the trivalent 

hexadentate lanthanide complexes (P[CH2NC6H4C02Me]3Ln). Calculations from the 

188 
References begin on page 193 



Chapter-5: Determination of Crystal Field Parameters ofTrivalent Lanthanide amido Complexes by 
Variable Temperature NMR Spectroscopy 

large *H NMR shifts of these complexes verified the presence of only dipolar 

(pseudocontact) contributions. These chemical shifts, were used to estimate the magnetic 

anisotropics using geometrical parameters obtained from the crystal structures of the 

present trivalent complexes. A set of crystal-field parameters for the isostructural 

trivalent lanthanide complexes were determined from these anisotropics. The best set of 

the parameters were chosen by comparing the modelled anisotropy with the 

experimental anisotropy. 

5.4 Experimental 

General Techniques- Unless otherwise stated, all experiments were performed 

under an inert atmosphere of nitrogen using either using Schlenk techniques or an 

MBraun glove box. Dry oxygen-free solvents were used throughout. Anhydrous pentane 

and toluene were purchased from Sigma Aldrich, sparged with nitrogen and passed 

through activated alumina under a positive pressure of nitrogen gas; toluene and 

pentanes were further deoxygenated using Ridox catalyst columns.24 Deuterated toluene 

was dried by heating at reflux over Na/K in a sealed vessel under partial pressure, then 

trap-to-trap distilled, and freeze-pump-thaw degassed three times. 

Instrumentation- *H and 31P{'H}NMR spectra were recorded from Bruker 

AMX (300 MHz) or Bruker AMX (500 MHz) spectrometer. All chemical shifts are 

reported in ppm, and all NMR coupling constants (J) are in Hz. *H NMR spectra were 

referenced to residual protons (C7D7H, 8 2.09) with respect to trimethylsilane at 8 0.0. 

13C{1H} spectra were referenced relative to solvent resonances (C7D8, 8 20.4).31P{'H} 
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NMR spectra referenced to external 85 % H3PO4 at 5 0.0. Magnetizations were 

measured with a Quantum Design MPMS-XL system at Simon Fraser University. 

Unless otherwise noted, magnetizations were measured at 100 G with a Quantum 

Design Evercool MPMS-XL system. Corrections for the diamagnetic contributions of 

compounds were made using Pascal's constants. Samples were run in a PVC holder 

specially designed to possess a constant cross-sectional area. Elemental analyses were 

performed by the Centre for Catalysis and Materials Research (CCMR) at the University 

of Windsor. 

Computer Programme- The program Dlan was used to determine the crystal 

field parameters. 

Chemicals- The compounds tris(hydroxymethyl)phosphine and methyl 

anthranilate, were purchased from Aldrich. Anhydrous TbCb, DyC^, TmC^, ErCb, 

YbCh and H0CI3 were purchased from Strem. All the reagents were used without 

further purification and all lanthanide amides (Ln[N(SiMe3)2]3) {Ln = Tb, Dy, Ho, Er, 

Tm, and Yb} were synthesized via literature method.25'26 Ligand precursor 

P(CH2NHC6H4-2-C02Me)3 was prepared according to the method described in Chapter 

3 and will be labelled as 13. 

Synthesis of P[CH2NC6H4C02Me]3Tb (22). A mixture of 13 (600 mg, 0.955 

mmol) and Tb[N(SiMe3)2J3 (720 mg, 0.955 mmol) was stirred in 30 mL of toluene for 5 

h. The resultant yellow crystalline precipitate was isolated by filtration, rinsed with 50 

mL pentane and dried for 4 h (500 mg, 73 %). X-ray quality crystals were obtained from 

slow evaporation of toluene at room temperature. *H NMR (C7D7H, 300 MHz, 298 K): 8 
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26.28 (s, 3H, Ax-H), 32.37 (s, 3H, Ai-H), 49.28 (s, 3H, Ai-H), 63.54 (s, 3H, Ar-H), 

-129.91 (s, 9H, CH3), -234.18 (s, 6H, ?-CH2).
 3l?{lU} NMR (C7D7H, 121.5 MHz, 298 

K): 5 -689.26. Anal. Calcd. for C21H2i^06?Tb: C, 47.73; H, 4.01; N, 6.18 Found: C, 

47.42; H, 3.99; N, 6.22. 

Synthesis of P[CH2NC6H4-2-C02Me]3Dy (23). A mixture of 13 (600 mg, 0.955 

mmol) and Dy[N(SiMe3)2]3 (724 mg, 0.955 mmol) was stirred in 30 mL of toluene for 5 

h. The resultant yellow crystalline precipitate was isolated by filtration, rinsed with 50 

mL pentane and dried for 4 h (500 mg, 70 %). X-ray quality crystals were obtained from 

slow evaporation of toluene at room temperature. lU NMR (C7D7H, 300 MHz, 298 K): 5 

24.88 (s, 3H, Ai-H), 24.97 (s, 3H, Ar-H), 54.6 (s, 3H, Ai-H), 46.41 (s, 3H, Ar-H), -77 

(s, 9H, CH3), -145 (s, 6H, P-C//2).
 31P{'H} NMR (C7D7H, 121.5 MHz, 298 K): 6 -581. 

Anal. Calcd. for C27H27N306PDy: C, 47.48; H, 3.98; N, 6.15 Found: C, 47.21; H, 3.74; 

N, 6.19. 

Synthesis of P[CH2NC6H4-2-C02Me]3Ho (24). A mixture of 13 (700 mg, 1.33 

mmol) and Ho[N(SiMe3)2]3 (862 mg, 1.33 mmol) was stirred in 70 mL of toluene for 5 

h. The resultant yellow crystalline precipitate was isolated by filtration, rinsed with 50 

mL pentane and dried for 4 h (620 mg, 67 %). X-ray quality crystals were obtained from 

slow evaporation of toluene at room temperature. 'H NMR (C7D7H, 300 MHz, 298 K): 5 

18.88 (s, 3H, Ai-H), 19.47 (s, 3H, Ar-H), 27.28 (s, 3H, Ar-H), 35.21 (s, 3H, Ar-H), 

-57.15 (s, 6H, P-C//2), -102.5 (s, 9H, CH3).
 31P {!H} NMR (C7D7H, 121.5 MHz, 298 

K): 6 -375.0. Anal. Calcd. for C27H27N306PHo: C, 47.31; H, 3.97; N, 6.13, Found: C, 

47.33; H, 4.01; N, 6.08. 
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Synthesis of P[CH2NC6H4-2-C02Me]3Er (25). A mixture of 13(600 mg, 1.14 

mmol) and Er[N(SiMe3)2]3 (740.8 mg, 1.14 mmol) was stirred in 70 mL of toluene for 5 

h. The resultant yellow crystalline precipitate was isolated by filtration, rinsed with 50 

mL pentane and dried for 4 h (532 mg, 67 %). X-ray quality crystals were obtained from 

slow evaporation of toluene at room temperature. 'H NMR (C7D7H, 300 MHz, 298K): 8 

-7.8 (s, 3H, Ax-H), -8.13 (s, 3H, Ax-H), -8.22 (s, 3H, Ax-H), -11.19 (s, 3H, Ax-H), 51.2 

(s, 6H, P-C//2), 322.25 (s, 9H, CH3).
 31P{'H} NMR (C7D7H, 121.5 MHz, 298K): 8 

322.25. Anal. Calcd. for C27H27N306PEr: C, 47.15; H, 3.96; N, 6.11 Found: C, 47.10; H, 

3.93; N,6.20. 

Synthesis of P[CH2NC6H4-2-C02Me]3Tm (26). A mixture of 13 (500 mg, 

0.955 mmol) and Tm[N(SiMe3)2]3 (620 mg, 0.955 mmol) was stirred in 70 mL of 

toluene for 5 h. The resultant yellow crystalline precipitate was isolated by filtration, 

rinsed with 50 mL pentane and dried for 4 h (650 mg, 66 %). X-ray quality crystals were 

obtained from slow evaporation of toluene at room temperature. !H NMR (C7D7H, 300 

MHz, 298 K): 8 -7.62 (s, 3H, Ai-H), -31.23 (s, 3H, Ai-H), -37.92 (s, 3H, Ax-H), 

-48.29 (s, 3H, Ar-H), 150.16 (s, 9H, CH3), 255 (s, 6H, ?-CH2). Anal. Calcd. for 

C27H27N306PTm: C, 47.04; H, 3.95; N, 6.09 Found: C, 46.98; H, 3.94; N, 6.06. 

Synthesis of P[CH2NC6H4-2-C02Me]3Yb (27). A mixture of 13 (600 mg, 1.02 

mmol) and Yb[N(SiMe3)2]3 (745 mg, 1.02 mmol) was stirred in 70 mL of toluene for 5 

h. The resultant yellow crystalline precipitate was isolated by filtration, rinsed with 50 

mL pentane and dried for 4 h (638 mg, 68 %). X-ray quality crystals were obtained from 

slow evaporation of toluene at room temperature. 'H NMR (C7D7H, 300 MHz, 298 K): 8 
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-4.23 (s, 3H, Ax-H), -1.21 (s, 3H, Ar-H), -8.92 (s, 3H, Ai-H), -10.67 (s, 3H, Ai-H), 

27.8 (s, 9H, CH3), 50.71 (s, 6H, ?-CH2).
 31P{'H} NMR (C7D7H, 121.5 MHz, 298K): 5 

191.7. Anal. Calcd. for C^F^NaC^PYb: C, 46.76; H, 3.92; N, 6.06 Found: C, 46.52; H, 

3.76; N, 6.01. 
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CHAPTER-6 

Summary, Preliminary Results 
and Future Work 

6.1 Summary 

In summary, this PhD thesis makes a significant contribution to the study and 

characterization of the trivalent lanthanide complexes and their heteronuclear magnetic 

complexes. Due to the advantages of the magnetic properties of lanthanides, their complexes 

have been utilized for heterodinuclear complexes or clusters, where two metal centers can 

couple to each other magnetically. " While the first half of the thesis emphasized on the 

through-space exchange-coupling between two metal ions in heterodinuclear d-f metal 

complexes, the later chapters examine the details of crystal field dependent magnetic properties, 

which also depend on the temperature dependent pseudocontact shifts of lanthanides. Although 
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the magnetic properties of lanthanide complexes are theoretically very well understood, in 

practice it is not an easy task and requires a low temperature optical spectrometer. Using 

variable temperature NMR spectra, we are proposing a method, which would be helpful to 

determine the crystal field parameters without the use of the expensive optical instruments and 

SQUID magnetometer. 

6.1.1 Syntheses and Characterization of Heterodinuclear {d-f) Complexes 

This thesis work started with the syntheses of mononuclear trivalent lanthanide 

complexes prepared by using tripodal amido-phosphine ligands P(CH2NHArR)3 [ArR = C^s, 

3,5-Me2C6H3 and 3,5-(CF3)2C6H3]. These ligands contain two binding sites suitable to bind two 

different types of metal ions (d-f) in order to make heterodinuclear complexes. Due to the 

tendency of making higher coordination compounds, the six coordinate trivalent lanthanide 

complexes used in Chapter 2 required external donor molecules such as THF or a 

tris(pyrazolyl)borate salt.13"21 To observe the metal-metal interaction between d and /metals, 

initially, varieties of late transition metal complexes such as PtMe2(COD) (where COD = 

cyclooctadiene), Ni(acac)2 (where (acac)2 = acetylacetonate), and TPPcobalt(II) (where TPP = 

5, 10, 15, 20-tetrakis(4-methoxyphenyl)porphinato) were used to bind the phosphine donor site 

of the tripodal amido donor ligands as shown Scheme 6.1. 
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Scheme 6.1 

2[P(CH2NArR)Y](THF)3 

Ar = C6H5 

= 3,5-Me2C6H3 

= 3,5-(CF3)2C6H3 

PtMe2(COD) 

Ni(acac)2 

TPPCo(ll) 

As shown in Scheme 6.2, the TPPCo(II) complex was further used in Chapter 3 

where, after reaction with mononuclear trivalent yttrium and gadolinium complexes, 

heterodinuclear complexes P(CH2NC6H4-2-C02Me)3LnTPPCo (Ln = Y, Gd) were produced. 

The phosphine donor abilities of these complexes were measured by the reaction of 4 

equivalents of mononuclear trivalent lanthanides with 1 equivalent of [Rh(//-Cl(CO)2]2-

Although the phosphine lone pair is directing away from the mononuclear metal centre the 

results showed that the large gadolinium metal possess stronger donor ability than the smaller 

yttrium metal. 

Magnetic and EPR studies of P(CH2NC6H4-2-C02Me)3Ln (Ln = Y, Gd) demonstrated 

the through-space antiferromagnetic coupling between Gd and Co metal ions, which is contrary 

to what is typically observed in d-f metal complexes. This coupling is mediated by the 

derealization of the spin-density of the cobalt centre onto the phosphine donor, which allows 

direct overlap of the magnetic orbital associated with Co(II) with the/-electrons on the Gd(III) 

centre. 
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Scheme 6.2 

MeO 
'OMe 

P[CH2NC6H4-2-C02Me]3Ln 

Ln = Y or Gd 

ArR = C6H4-4-OMe 

6.1.2 Temperature Dependent Pseudocontact Shifts and Crystal Field Parameters of 

Paramagnetic Lanthanides 

It has been reported earlier that the pseudocontact shifts of lanthanide complexes are 

temperature dependent and required only second term crystal field parameters for the 

calculation of magnetic anisotropy as shown in equation (6.1).7 While the T2 term is the major 

temperature dependent term in pseudocontact shifts, additional term such as T3 also contribute 

10-20 % of the 7" term.0 In our studies, we have provided the evidence that not only fourth and 

sixth rank crystal field parameters (i?4'S and B(,>s) but higher temperature dependent terms (T3,T 

) are also required in addition to the #20 and T2 temperature dependent terms for pseudocontact 

shifts (equation 6.2). 

Z,-ZX=JTBX (6.1) 

Xll-Xi = d r ' + c2r2 + c3r3 (6-2) 
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To determine the crystal field parameters of trivalent lanthanides complexes, we have 

synthesized a series of isostructural lanthanide complexes P(CH2NC6H4-2-C02Me)3Ln (Ln =. 

Tb, Dy, Ho, Er and Tm) which contain C3 symmetry. These complexes are based on a new 

tripodal amido ligand, which includes ester functionality oxygen atoms and showed rigid 

chelate rings with four proton environments observed in the !H NMR spectra. Using only 

variable temperature NMR data, we have proposed a method to determine the crystal field 

parameters of lanthanide complexes. 31P{'H} NMR spectra of these complexes showed that the 

large chemical shifts from 700 to -1200 ppm due to the dipolar shift and can be used to measure 

the magnetic anisotropy as shown in equation (6.3).9 

AC (3Cos26Ll) f - , „ „ N 

A5 = -i — ' - (Xzz-X) (6.3) 
2R3 

As shown in equation (6.4), according to Wybourne, C3 symmetric complexes require 6 

crystal field parameters, which can be written as #20, #40, #«, -#60, #63 and i?6610 In future the 

crystal parameters resolved by using NMR spectra can be further utilized to obtain energies of 

the mj substates. 

V = B20CW + B40C40 + BA3(C4_3 - C43) + B60C60 + B3 (C6_3 - C63) + B66 (C6_6 + C66) (6.4) 
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6.2 Future Work 

6.2.1 Future Study of Anionic K+{[(CH2NArR)3YTpMe]" Complexes 

Mononuclear trivalent lanthanide complexes, which are based on tripodal amido 

phosphine ligands can also be used as building blocks for multinuclear complexes or clusters. 

Therefore, mononuclear trivalent lanthanide complexes K+[P(CH2NArR)3YTpMe]~ (where ArR = 

C6H5, 3,5-Me2CeH3 and 3,5-(CF3)2C6H3 and Tp = Tris(pyrazolyl)borate potassium salt) 

synthesized in Chapter 2 can be further used to react with transition metal complexes, to form 

polynuclear clusters or complexes. The preliminary experiments performed in Chapter 2 

suggested that only ligand-exchange resistant transitional metal complexes, which have a 

tendency to accept phosphine as a donor molecule, can be used to react with these trivalent 

lanthanide complexes. For example, as shown in Scheme 6.3, paramagnetic (Mes)2Cr(PR.3)2 can 

be used to react with K+[(P(CH2NArR)3YTpMT to form dinuclear (1:1) or trinuclear (2:1) 

complexes. In the trinuclear complex, (Mes)2Cr(PR.3)2 can act as bridging complex between two 

lanthanide complexes K+[P(CH2NArR)3YTp]~. 
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Scheme 6.3 

Me 
Me ^ _ 

' L n > L ' / , ^ - A f R + (Mes)2Cr(PR3)2 * - Mes Cr Mes 
I 
Cr 

t 
R = Me, Et, OMe r\ 

eH5 TR^N/>S - / " A r R 

_ . . _ . . A r " ^ ' ' I n 3,5-Me2C6H3 ^ Ln 

3,5-(CF3)2C6H3 Me /LJ\ e 
Me 

V^u^^f 
Me 

H 

Ln = Y, Tb, Gd, Dy, Ho, Er, Tm or Yb 

Another example of trinuclear M'-M-IVF species involve the reaction of 1 equivalent of 

tris(pyrazolyl)phosphine (TpMeP) with a similar amount of P(CH2NArR)3Ln(THF)3 (Ln = Y, Tb, 

Dy, Gd, Ho, Er, Tm or Yb) followed by their reaction with 2 equivalents of TPPCo(II), as 

shown in Scheme 6.4. As a long term goal, these heteronuclear complexes can be utilized for 

magnetic materials, or wires, or 2-D and 3-D networks, due to through-space exchange coupling 

or metallic interactions.''23'24 

202 
References begin on page 211 



Chapter-6: Summary, Preliminary Results and Future Work 

Scheme 6.4 

6.2.2 Study of Heterodinuclear Complexes Containing d-d Metal Complexes 

Similar to paramagnetic heterodinuclear (d-f) complexes reported in this thesis, these 

tripodal amido-phosphine ligands can be also utilized to form heterodinuclear complexes 

containing d-d metal ions.15 Some preliminary reactions performed in this manner involve the 

formation of mononuclear paramagnetic vanadium complexes, followed by their reactions with 

TPPCo(II). 
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Paramagnetic tetravalent vanadium complexes (28-30) (Scheme 6.5) were prepared by 

mixing equivalent amount of ligand precursors (la-lc) and V(N(Me2)4 in toluene solution. 

Violet color crystals of the resultant complexes [P(CH2NArR]3VNMe2 were obtained after 

cooling the saturated toluene solution. As reported in the literature, dark violet color crystals 

confirm the synthesis of tetravalent vanadium associated phosphine donors. Formation of the 

ligand associated tetravalent vanadium complexes were confirmed by their crystal structures, 

EPR spectra and elemental analysis. 

Scheme 6.5 

Me. Me 
N 

THF v A R 
[P(CH2NA^]3H3 + V(NMe2)4 _3 » ^ / W * * " 

1a-c 

Ar = C6H5 

= 3,5-Me2C6H3 ^ p 
= 3,5-(CF3)2C6H3 • • 

28-30 

The solid-state molecular structure of [P(CH2NC6H5]3VNMe2 was determined by X-ray 

crystallography and the ORTEP depiction of the molecular structure is given in Figure 6.1. As 

anticipated, the structure shows the amido nitrogen chelated vanadium center and the phosphine 

donor pointing away from the metal ion. The sum of C-P-C angles is 311.58(10)°, which is 

slightly smaller than what was observed in the case of complex 2a. The sum of C-P-C angles of 

complex la (299.5(2)°) increased after introducing the vanadium metal ion, which should also 

affect the donor ability of the corresponding phosphine complex. Although the typical V-P bond 

distances are 2.5-2.7 A, the distance between V(l)-P(l) as shown in Figure 6.1, is 2.8646(8) A, 
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which is almost 9 % larger than the average reported vanadium-phosphorus bond length 

(2.622(2) A).26 

Figure 6.1. ORTEP depiction of the solid-state molecular structure of [P(CH2NC6H5]3VNMe2 

(28). Hydrogen atoms are omitted for clarity. Selected distances (A): V(l)-N(4), 1.9054(18); 

V(l)-N(l), 1.8184(19); V(l)-N(2), 1.8834(18); V(l)-N(3), 1.9054(18); V(l)-P(l), 2.8646(8). 

Selected bond angles (°): C(l)-P(l)-C(2), 103.18(10); C(l)-P(l)-C(3), 103.02(10); C(2)-P(l)-

C(3), 105.38(10). 

The X-band EPR spectra of liquid samples of vanadium complexes (28-30) (/ = 7/2) 

were obtained at room temperature as well as at 77 K. While the spectra acquired at room 

temperature provided the equally spaced eight line pattern, anisotropy was observed in the 

spectra of frozen samples (Figure 6.2, complex 28). The EPR spectra of the frozen samples 

showed the overlapping of two sets of eight lines in which one set refers to the parallel and the 

other set refers the perpendicular direction. The EPR spectra as well as the crystal structure 
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confirmed the presence of mononuclear vanadium molecule. The spectrum of complex 28, also 

confirms the presence of axial symmetry with g± > g\\. The spectrum was adequately modeled 

using A || value of 134 G, andy4iof 21 G with the g values ofg|| = 1.955 andgi= 1.989. The g 

values are close to the values reported in the literature for V(NEt2)4. The parameters were 

obtained from the experimental EPR spectra by comparing the distances between the adjacent 

parallel or perpendicular lines, where these can be easily differentiated from each other. 

However, the middle region where both lines overlap each other, calculation for the parameters 

is trivial. The g values and the hyperfine coupling constant provide the information related to 

the energy levels. It has been shown earlier for the related tetravalent vanadium complexes that 

the lowest energy d orbital can not be d^ due to the fact that gj| is not close to 2.0023.27 Thus 

for square planar vanadium amide complex ([P(CH2NC6Hs]3VNMe2), dX2-y2 will act as a ground 

state orbital. 

Due to the overlapping of the two sets of eight lines mainly in the middle region, the 

attempts to fit these parameters did not produce a significantly better model of the experimental 

data. More significant improvements in fit were obtained by modeling the line widths 

anisotropically. 
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I 1 1 1 1 1 

2900 3050 3200 3350 3500 3650 3800 3950 

Magnetic Field (Gauss) 

Figure 6.2 EPR spectrum of frozen ([P(CH2NArR)3VNMe2] (28) sample at 77 K (solid line) 

and a simulated spectrum (dotted grey line) obtained using g\\ = 1.955, g±= 1.989, A\\ = 134 G, 

A±=2\G. 

It is expected that similar to lanthanide complexes, after the reaction with TPPCo(II), 

mononuclear tetravalent vanadium complexes should also generate heterodinuclear d-d 

complexes. Diamagnetic Ti-complex [P(CH2NC6H5)3TiNMe2] was selected as a model for this 

study and reacted with one equivalent of TPPCo(II). The preliminary results obtained from *H 

NMR spectra verified the presence of a heterodinuclear (d-d) complex (Scheme 6.6). 
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Scheme 6.6 

OMe H4Cff 

Q i_| OMe 
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M = Ti or V 

Ar = C6H5 

= 3,5-Me2C6H3 
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C 6 H 4
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For future studies, these paramagnetic mononuclear vanadium complexes 

([P(CH2NArR)3VNMe2] will be reacted with another transition metal complex such as 

TPPCO(II), to form heterdinuclear d-d complex [P(CH2NArR)3VNMe2TPPCo]. These 

heteronuclear complexes will be further used for polynuclear complexes or magnetic 

materials 16,17 

6.3 Experimental 

Unless otherwise stated, all experiments were performed under an inert atmosphere 

of nitrogen using either using Schlenk techniques or an MBraun glove box according to Section 

2.4. The compounds anhydrous VCU and TiCU were purchased from Aldrich used without 

further purification. The compound V(NMe2)4 was prepared from VCI4 and LiNMe2 and 

sublimed prior to the use.28 The complex [P(CH2NC6H5)3TiNMe2] was prepared from the 

reaction of Ti(NMe2)4 and [P(CH2NHC6Hs)3, as reported earlier.29 
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Synthesis of P(CH2NC6Hs)3VNMe2 (28). Small portions of V(NMe2)4 (478 mg, 

0.00215 mol) were added to the solution of P(CH2NHC6H6)3 (750 mg, 0.00215 mol) in 20 mL 

of toluene at -78 °C and stirred for 30 min. stirring the solution for 24 h at room temperature, 

solvent was evaporated to dryness and the residue was rinsed with pentane (67 %, 635 mg). The 

violet colour crystals were obtained from the saturated toluene solution kept in the for 2 days 

overnight. Anal. Calcd for C23H27N4PV: C, 62.58; H, 6.17; N, 12.69. Found: C, 62.54; H, 6.47; 

N, 12.60. 

Synthesis of P(CH2N-3,5-Me2C6H3)3VNMe2 (29). Small portions of V(NMe2)4 (522 

mg, 0.0023 mol ) was added slowly to the solution of P(CH2NH-3,5-Me2C6H3)3 (1 g, 0.0023 

mol) in 20 mL of toluene at -78 °C and stirred for 30 min. After stirring the solution for 24 h at 

room temperature, solvent was evaporated to dryness and the residue was rinsed with pentane 

(65 %, 785 mg). Anal. Calcd for C29H39N4PV: C, 66.27; H, 7.48; N, 10.66. Found: C, 66.00; H, 

7.47; N, 10.69. 

Synthesis of P(CH2N-3,5-(CF3)2C6H3)3VNMe2 (30). Small portions of V(NMe2)4 

(600 mg, 0.00938 mol ) was added slowly to the solution P(CH2NH-3,5-Me2C6H3)3 (500 mg, 

0.938 mmol) in 20 mL of toluene at -78 °C and stirred for 30 min. After stirring the solution for 

24 h at room temperature, solvent was evaporated to dryness and the residue was rinsed with 

pentane (65 %, 625 mg). Anal. Calcd for C29H2iFi8N4PV: C, 41.01; H, 2.49; N, 6.60. Found: C, 

40.7 H, 2.47; N, 6.67. 

Synthesis of {P(CH2NC6H5)3TiNMe2}TPPCo(II) (31). Mixture of 

P(CH2NC6H6)3TiNMe2 (300 mg, 0.684 mmol) and TPPCo(II) (460 mg, 0.684 mmol) was 

stirred in toluene for 2 h. The solvent was then dried under vacuum and the reddish purple 

residue was rinsed with 10 mL of pentane and further dried for 3 h (70 %, 385 mg). 2H NMR 
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(C6D6, 300 MHz, 298 K): 8 3.32 (br, 15 H total, TiN(Ctf3)2 and C02CH3), 4.21 (br, 18 H total,-

OC//3 and PC//2), 6.82 (br, 6H, o-Ph), 6.91 (br, 3H,/?-Ph), 7.26 (br, 6H, m-Ph), 8.85 (br, 8H, 

IVV-m-H), 11.54 (v br, 8H, TPP-o-H), 15.23 (v br, 8H, pyrrole-#). 

Selected crystallographic data of P(CH2NC6H6)3VNMe2 are shown in Table 6.1. 

Table 6.1. Selected X-ray Crystallographic Data of P(CH2NC6H6)3VNMe2 (28) 

Empirical formula 

ssFormula weight 

Crystal system 

a (A) 

b(A) 

c(A) 

a(deg) 

P(deg) 

Y(deg) 

V(A3) 

Space group 

Z 

Density (g/cm3) 

/i(MoKa)(mm"') 

Temperature (K) 

Total no. of reflection 

Residuals: Ri; wR2 

C23H27N4PV 

441.40 

Monoclinic 

12.153(2) 

14.282(2) 

12.654(2) 

90.00 

92.24(2) 

90.00 

2194.9(6) 

P2(l)/n 

4 

1.336 

0.541 

173 

4966 

0.0476; 0.1116 
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Appendix One: X-ray Crystal Structure Data 

Table A 1.1. Positional parameters and U(eq) for [P(CH2N-3,5-Me2C6H3)3]Y(THF)3 (2b) 

x y z U(eq) 

O(l) 

C(l) 

C(8) 

C(13) 

C(ll) 

C(12) 

C(10) 

0(2) 

C(14) 

C(15) 

P(l) 

Y(l) 

C(2) 

C(6) 

C(3) 

N(l) 

C(9) 

C(7) 

C(5) 

C(4) 

5367(3) 

5161(5) 

1878(7) 

4500(5) 

4151(11) 

3991(7) 

5186(8) 

3333 

3810(30) 

4150(20) 

6667 

6667 

3752(4) 

1649(5) 

3404(5) 

4934(4) 

690(7) 

2836(5) 

1346(5) 

2214(6) 

1597(3) 

3066(5) 

2114(8) 

427(5) 

149(8) 

-549(7) 

1431(7) 

-3333 

-2200(30) 

-2800(30) 

3333 

3333 

2725(4) 

2374(6) 

2548(5) 

2954(4) 

2268(10) 

2648(5) 

2192(5) 

2277(5) 

29(2) 

-2434(3) 

612(4) 

-376(4) 

1007(5) 

283(5) 

872(4) 

-2515(11) 

-1980(18) 

-1330(12) 

-2863(1) 

-881(1) 

-1361(3) 

-1641(4) 

-540(3) 

-1572(2) 

-2271(6) 

-1902(3) 

-838(4) 

-286(4) 

62(1) 

58(1) 

107(2) 

73(2) 

148(4) 

106(2) 

103(2) 

187(6) 

228(9) 

205(9) 

54(1) 

45(1) 

50(1) 

74(2) 

62(1) 

51(1) 

129(3) 

65(1) 

76(2) 

74(2) 
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Table A 1.2. Positional parameters and U(eq) for [P(CH2N-3,5-Me2C6H3)2C"-N-3,5-Me2-

C6H3)Y(THF)]2 (2b') 

x y z U(eq) 

Y(001) 

P(002) 

0(004) 

N(002) 

N(003) 

N(001) 

C(030) 

C(010) 

C(03) 

C(06) 

C(01) 

C(012) 

C(024) 

C(015) 

C(025) 

C(09) 

C(019) 

C(020) 

C(011) 

C(04) 

C(02) 

C(013) 

5846(2) 

1044(5) 

4696(11) 

3758(14) 

7876(15) 

6584(15) 

4370(20) 

2217(17) 

3960(20) 

5531(17) 

4187(18) 

6978(19) 

7924(17) 

9669(19) 

5870(20) 

9108(17) 

5352(18) 

3310(20) 

8140(20) 

5390(20) 

3413(19) 

7130(20) 

9837(1) 

9593(2) 

9517(5) 

9608(5) 

9386(6) 

10603(6) 

10834(8) 

9689(7) 

8075(7) 

8984(8) 

9071(6) 

8499(8) 

10796(7) 

8057(8) 

10915(7) 

9698(7) 

9539(9) 

9282(10) 

8856(8) 

8026(8) 

8600(7) 

7976(8) 

6249(1) 

3958(4) 

7518(9) 

5114(10) 

6612(12) 

7068(11) 

7680(13) 

5111(14) 

5046(16) 

4784(13) 

5013(12) 

7143(15) 

6919(12) 

7431(14) 

7667(13) 

6504(14) 

8593(14) 

7552(17) 

6923(15) 

4828(11) 

5140(12) 

7463(14) 

26(1 

34(1 

38(3 

22(3 

40(4 

36(4 

38(5 

33(5 

51(6 

33(4 

27(4 

44(5 

30(4 

38(5 

37(5 

33(5 

44(5 

67(8 

43(5 

36(5 

32(4 

43(5 
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C(018) 

C(08) 

C(016) 

C(029) 

C(05) 

C(028) 

C(026) 

C(07) 

C(014) 

C(023) 

C(032) 

C(027) 

C(017) 

C(022) 

C(031) 

Br(l) 

C(102) 

C(100) 

C(101) 

11090(20) 

3140(20) 

9438(18) 

3560(20) 

6190(20) 

4190(20) 

6390(20) 

7620(20) 

8540(20) 

3250(30) 

2060(20) 

5700(30) 

5870(20) 

4240(30) 

6350(30) 

10180(50) 

9120(30) 

9160(50) 

9900(200) 

7819(8) 

7598(8) 

8613(7) 

11090(9) 

8484(6) 

11470(8) 

11331(7) 

8427(9) 

7775(7) 

9094(13) 

10990(10) 

11593(8) 

7609(9) 

9488(10) 

12024(9) 

187(14) 

206(11) 

-320(20) 

-1060(100) 

7630(16) 

5247(17) 

7129(12) 

8291(18) 

4678(14) 

8906(15) 

8271(14) 

4400(17) 

7623(15) 

8552(15) 

8270(17) 

8897(16) 

7592(18) 

9194(18) 

9554(15) 

7840(50) 

9395(19) 

9200(40) 

9750(190) 

52(6) 

53(6) 

30(4) 

57(6) 

36(5) 

52(6) 

39(5) 

57(6) 

49(6) 

93(11) 

61(7) 

56(6) 

69(7) 

67(7) 

62(7) 

1320(40) 

64(7) 

150(16) 

200(200) 
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Table A 13. Positional parameters and U(eq) for [P(CH2N-3,5-(CF3)2C6H3)3Y(THF)3]2PtMe2 (9) 

x y z U(eq) 

P(l) 

Y(l) 

N(l) 

N(2) 

N(3) 

N(4) 

N(5) 

N(6) 

N(7) 

N(8) 

N(9) 

C(l) 

C(2) 

C(3) 

C(4) 

C(5) 

C(6) 

C(7) 

C(8) 

C(9) 

C(10) 

C(ll) 

C(12) 

4649(1) 

6647(1) 

6740(2) 

4909(2) 

6173(2) 

8281(2) 

7540(2) 

7751(2) 

6815(2) 

9188(2) 

8594(2) 

5788(2) 

4165(3) 

5246(3) 

7432(2) 

7297(2) 

7986(3) 

8855(3) 

9025(3) 

8355(3) 

7763(3) 

9940(3) 

4422(3) 

10119(1] 

9331(i; 

8881(2] 

8849(2; 

11076(2; 

7684(2; 

7696(2; 

9389(2; 

9696(2; 

9344(2; 

9608(2; 

9364(2; 

9304(3; 

11226(2; 

8243(2; 

8053(2; 

7315(2; 

6753(3; 

6969(3; 

7690(3] 

7140(3] 

6352(3] 

8231(3) 

) 6355(1) 

) 7268(1) 

) 6132(2) 

) 7902(2) 

) 6751(2) 

) 8338(2) 

) 7925(2) 

) 8723(2) 

1 8458(2) 

1 7450(2) 

) 6887(2) 

) 5823(2) 

) 7388(2) 

) 6409(2) 

5716(2) 

5034(2) 

4692(2) 

4972(2) 

5626(2) 

5984(2) 

3988(2) 

5955(3) 

8643(2) 

26(1 

24(1 

28(1 

29(1 

29(1 

29(1 

29(1 

30(1 

30(1 

27(1 

27(1 

27(1 

29(1 

28(1 

27(1 

27(1 

29(1 

34(1 

34(1 

32(1 

34(1 

48(1 

30(1 

216 



Appendix one: X-ray Crystal Structure Data 

c{\y 

C(14~ 

C(15^ 

C(16^ 

C(17 

C(18 

C(19 

c(2o; 

c(2i; 

C(22; 

C(23; 

C(24] 

C(25] 

C(26: 

C(27; 

C(28] 

C(29] 

C(30] 

C(31) 
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Appendix one: X-ray Crystal Structure Data 
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Appendix one: X-ray Crystal Structure Data 
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Appendix one: X-ray Crystal Structure Data 

Table A 1.4. Positional parameters 
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Appendix one: X-ray Crystal Structure Data 
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Appendix one: X-ray Crystal Structure Data 

Table A 1.5. Positional parameters and U(eq) for [P(CH2N-3,5-(CF3)2C6H3)3YTpK] (12c) 
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Appendix one: X-ray Crystal Structure Data 
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Appendix one: X-ray Crystal Structure Data 
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Appendix one: X-ray Crystal Structure Data 

C(45) 

C(46) 

C(47) 

C(48) 

C(49) 

C(50) 

C(51) 

C(52) 

K(l) 

11303(5) 

11150(5) 

11811(5) 

12043(5) 

13081(6) 

13889(7) 

13729(9) 

12642(9) 

12581(1) 

2741(6) 

3857(6) 

7297(5) 

7863(4) 

7858(5) 

7291(6) 

6724(7) 

6717(6) 

5490(1) 

8471(4) 

8126(4) 

7224(4) 

6467(4) 

6008(5) 

6283(8) 

7051(8) 

7548(5) 

6253(1) 

92(2) 

98(2) 

79(2) 

81(2) 

113(3) 

139(4) 

137(5) 

113(3) 

62(1) 

225 



Appendix one: X-ray Crystal Structure Data 

Table A 1.6. Positional parameters and U(eq) for [P(CH2NHC6H4-2-C02Me)3] (13) 
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Appendix one: X-ray Crystal Structure Data 
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Appendix one: X-ray Crystal Structure Data 

Table A 1.7. Positional parameters and U(eq) for [P(CH2NC6H4-2-C02Me)3] Y (14) 
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Appendix one: X-ray Crystal Structure Data 

Table A 1.8. Positional parameters and U(eq) for [TPP]CoP(CH2NC6H4-2-C02Me)3Gd (21) 

x y z U(eq) 

C(84) 

C(85) 

C(77) 

C(78) 

C(86) 

C(89) 

C(88) 

C(82) 

C(87) 

C(80) 

C(79) 

C(81) 

C(76) 

C(83) 

Gd(l) 

Co(l) 

P(l) 

N(5) 

0(9) 

N(4) 

N(7) 

O(l) 

C(36) 

1005(4; 

1640(4; 

6307(3; 

6888(4; 

1994(4; 

725(4; 

1093(4; 

5902(4; 

1718(4; 

6620(4; 

7043(5; 

6056(4; 

6114(5; 

612(6; 

5555(1] 

2035(i; 

3490(1) 

1244(2] 

2035(2) 

2345(2) 

2699(2) 

7209(2) 

832(2) 

7982(3; 

7851(4; 

) 102(3; 

) -59(3; 

7075(4; 

7238(4; 

) 6434(4; 

) -603(4" 

6379(4; 

> -1561(4; 

> -873(4; 

) -1430(4' 

1005(4; 

8845(4; 

7547(1; 

7444(T 

7470(T 

6772(2; 

12995(1] 

6368(2] 

8118(2) 

7292(2) 

7084(2) 

> 6783(3; 

1 6405(3; 

) 1845(2; 

) 1430(3; 

) 6310(3 

) 7091(3; 

) 6985(3; 

) 2054(3; 

) 6601(3; 

) 1417(4; 

) 1213(3; 

) 1845(4' 

2048(4' 

) 6877(5; 

) 4128(i; 

) 1407(i; 

2603(1; 

1864(1] 

-68(1] 

966(1; 

851(1) 

4278(2; 

2372(2; 

) 62(1 

) 70(1 

) 54(1 

) 66(1 

) 76(2 

) 75(2 

) 72(2 

) 66(1 

) 72(1 

) 82(2 

) 77(2 

) 86(2 

) 91(2 

) 111(2 

I 28(1 

> 17(1 

21(1 

19(1 

I 32(1 

1 20(1 

20(1 

45(1 

21(1 
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N(6) 

0(5) 

C(38) 

0(7) 

C(42) 

0(10) 

C(4) 

C(31) 

C(40) 

0(3) 

C(32) 

C(37) 

0(6) 

C(55) 

C(72) 

C(66) 

N(3) 

C(51) 

C(2) 

C(45) 

C(49) 

N(l) 

0(2) 

C(29) 

C(65) 

C(47) 

1474(2) 

6340(2) 

946(2) 

117(2) 

2118(2) 

5489(2) 

6179(2) 

2028(2) 

1014(2) 

6075(2) 

1422(2) 

700(2) 

6983(2) 

209(2) 

4922(3) 

2844(2) 

4745(2) 

380(2) 

3275(2) 

3690(3) 

82(2) 

5512(2) 

8650(2) 

2965(3) 

1994(2) 

3371(2) 

8517(2) 

8671(2) 

8610(2) 

1872(1) 

9579(2) 

6423(2) 

6461(2) 

5544(2) 

9941(2) 

6742(2) 

5311(2) 

7946(2) 

9874(2) 

8216(2) 

6517(2) 

11887(2) 

8816(2) 

2709(2) 

7036(2) 

8507(2) 

4187(2) 

6855(2) 

6766(2) 

5394(2) 

12171(2) 

6946(2) 

1642(1) 

4958(1) 

2112(2) 

1393(1) 

979(2) 

-1658(1) 

2767(2) 

1024(2) 

1682(2) 

5241(1) 

1415(2) 

2506(2) 

5597(2) 

3044(2) 

-1222(2) 

773(2) 

3558(2) 

1342(2) 

3439(2) 

186(2) 

985(2) 

3008(2) 

4325(2) 

319(2) 

173(2) 

293(2) 
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C(3) 

C(39) 

C(64) 

N(2) 

C(9) 

C(33) 

C(62) 

0(4) 

0(8) 

C(43) 

C(63) 

C(34) 

C(52) 

C(12) 

C(25) 

C(35) 

C(69) 

C(74) 

C(30) 

C(70) 

C(56) 

C(28) 

C(50) 

C(48) 

C(41) 

C(18) 

3902(2) 

655(2) 

1176(2) 

4139(2) 

7240(2) 

1103(2) 

2074(2) 

6364(2) 

-1120(2) 

2702(2) 

1230(2) 

604(2) 

1395(2) 

3923(3) 

5649(3) 

458(2) 

3914(2) 

4948(2) 

2413(3) 

3389(3) 

-817(3) 

2910(2) 

-275(2) 

1083(2) 

1545(2) 

5734(3) 

8598(2) 

9492(2) 

11628(2) 

6842(2) 

6478(2) 

5897(2) 

10494(2) 

5725(2) 

9375(2) 

9004(2) 

10797(2) 

5653(2) 

2895(2) 

6364(2) 

10023(2) 

6386(2) 

6758(2) 

6692(2) 

4943(2) 

6693(2) 

8231(2) 

6287(2) 

3352(2) 

4391(2) 

9339(2) 

6186(2) 

2837(2) 

2132(2) 

-147(2) 

4146(2) 

3205(2) 

1837(2) 

722(2) 

6121(2) 

4417(2) 

770(2) 

133(2) 

2342(2) 

1717(2) 

4665(2) 

4401(2) 

2680(2) 

-231(2) 

56(2) 

622(2) 

-1022(2) 

2798(2) 

522(2) 

965(2) 

1376(2) 

1392(2) 

5537(2) 

28(1) 

26(1) 

26(1) 

28(1) 

34(1) 

21(1) 

24(1) 

51(1) 

58(1) 

23(1) 

27(1) 

26(1) 

30(1) 

28(1) 

34(1) 

27(1) 

24(1) 

31(1) 

30(1) 

35(1) 

37(1) 

22(1) 

34(1) 

23(1) 

21(1) 

35(1) 

231 
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C(26; 

C(67; 

c(2o; 

C(l) 

C(53; 

C(46; 

c(7i; 

C(58] 

C(8) 

C(73] 

C(44] 

C(57] 

C(17] 

C(13] 

C(5) 

C(14] 

C(16) 

C(10) 

C(22) 

C(54) 

C(15) 

C(60) 

C(68) 

C(23) 

C(6) 

C(61) 

) 6317(3 

) 2886(2 

) 4888(2 

4470(2 

) 1736(2 

) 3279(2 

I 3890(3 

1 -729(3 

7902(3 

5448(3 

3332(3; 

-1297(3 

4690(3~ 

2916(3; 

5880(3; 

2702(3; 

4415(4; 

7667(2; 

4459(3; 

-887(3; 

3457(4; 

767(3] 

1180(3] 

5193(3] 

6547(3) 

-2153(3) 

) 9467(3; 

) 11060(2; 

) 9682(2; 

) 6821(2; 

) 3725(2; 

) 7813(2; 

) 6575(3; 

) 8958(2; 

) 6095(3; 

) 6566(2; 

) 9242(2; 

) 8603(3; 

) 5988(2; 

) 6176(2; 

) 5987(2; 

) 5634(3; 

) 5408(2; 

) 6879(2] 

11188(3] 

1628(2) 

5230(3) 

8545(3) 

13313(2) 

11502(3) 

5621(3) 

9585(3) 

) 4986(2] 

) 1044(2] 

) 3703(2] 

) 2453(2] 

) 1725(2] 

) 464(2] 

) -1521(2] 

) 3948(2] 

) 2900(2] 

) -435(2] 

) 369(2] 

) 3240(2] 

) 5331(2] 

) 4580(2] 

) 2053(2] 

) 5065(2] 

I 5795(2] 

3958(2] 

3320(3) 

949(3) 

5673(2) 

3771(2) 

-682(2) 

3991(3) 

1784(2) 

4083(3) 

37(1 

> 29(1 

1 30(1 

26(1 

1 28(1 

23(1 

I 39(1 

39(1 

45(1 

I 32(1 

31(1 

40(1 

33(1 

38(1 

37(1 

49(1 

44(1 

36(1 

48(1 

57(1 

52(1 

42(1 

50(1 

51(1 

44(1 

61(1 
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C(24) 5768(3) 

C(7) 7572(3) 

C(21) 4305(3) 

C(59) 299(3) 

C(75) 4970(4) 

C(ll) 9111(3) 

C(27) 7702(4) 

C(19) 7417(3) 

10929(3) 4513(2) 46(1) 

5688(3) 2204(3) 51(1) 

10318(2) 3184(2) 39(1) 

8915(3) 4220(2) 51(1) 

6372(4) -2467(2) 70(2) 

7150(3) 5082(3) 63(1) 

9335(4) 6162(3) 69(2) 

5908(3) 6321(3) 65(1) 
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Table A 1.9. Positional parameters and U(eq) for [P(CH2NC5H5]3VNMe2 (28) 

x y z U(eq) 

V(l) 

P(l) 

N(l) 

N(3) 

N(2) 

C(10) 

C(2) 

C(9) 

N(4) 

C(4) 

C(8) 

C(3) 

C(16) 

C(l) 

C(12) 

C(ll) 

C(7) 

C(15) 

C(14) 

C(21) 

C(17) 

C(6) 

C(13) 

1735(1) 

675(1) 

366(1) 

1481(1) 

2698(1) 

3778(2) 

2109(2) 

-164(2) 

2320(2) 

-295(2) 

-796(2) 

763(2) 

1940(2) 

-22(2) 

5518(2) 

4481(2) 

-1597(2) 

4180(2) 

5227(2) 

3002(2) 

1384(2) 

-1760(2) 

5899(2) 

2462(1 

2479(1 

1813(1, 

3709(1, 

1971(1] 

1622(1] 

2017(2. 

1668(2' 

2329(1; 

1409(1, 

1268(2] 

3644(2] 

4582(2] 

1729(2] 

1416(2] 

1810(2] 

613(2] 

1069(2) 

686(2) 

4629(2) 

5420(2) 

374(2) 

852(2) 

) 4961(1] 

) 2899(1] 

) 4971(1] 

) 4540(1] 

) 3970(1] 

) 4004(2] 

) 2939(2] 

) 6795(2] 

) 6297(1] 

) 5728(2] 

) 7552(2] 

3583(2) 

4782(2) 

3870(2] 

4968(2) 

4883(2) 

7279(2) 

3192(2) 

3291(2) 

5239(2) 

4564(2) 

6228(2) 

4174(2) 

) 22(1 

) 29(1 

1 27(1 

) 27(1 

) 25(1 

> 25(1 

28(1 

29(1 

28(1 

25(1 

) 33(1 

29(1 

30(1 

30(1 

33(1 

29(1 

35(1 

31(1 

38(1 

42(1 

39(1 

36(1 

37(1 
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C(5) 

C(18) 

C(23) 

C(22) 

C(20) 

C(19) 

•1116(2) 

1886(3) 

2668(2) 

2397(2) 

3486(3) 

2937(3) 

756(2) 

6273(2) 

1413(2) 

3045(2) 

5488(2) 

6306(2) 

5459(2) 

4795(2) 

6690(2) 

7108(2) 

5474(2) 

5242(2) 

30(1) 

57(1) 

42(1) 

44(1) 

60(1) 

65(1) 
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