University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2009

TCP/IP Control Server for a Multi-Drop Test Bench Network

Christopher Rennick
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Rennick, Christopher, "TCP/IP Control Server for a Multi-Drop Test Bench Network" (2009). Electronic
Theses and Dissertations. 8203.

https://scholar.uwindsor.ca/etd/8203

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8203&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8203?utm_source=scholar.uwindsor.ca%2Fetd%2F8203&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

TCP/IP Control Server for a Multi-Drop Test Bench Network

By
Christopher Rennick

A Thesis
Submitted to the Faculty of Graduate Studies
Through the Department of Electrical and Computer Engineering
In Partial Fulfillment of the Requirements for
The Degree of Master of Applied Science at the
University of Windsor

Windsor, Ontario, Canada
2009

Library and Archives Bibliothéque et
Canada Archives Canada
Published Heritage Direction du

Branch Patrimoine de I'édition

395 Wellington Street
Ottawa ON K1A ON4

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-70580-3
Our file Notre référence
ISBN: 978-0-494-70580-3
NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L’auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par 'Internet, préter,
distribuer et vendre des theéses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

L’auteur conserve la propriété du droit d’auteur
et des droits moraux qui protége cette thése. Ni
la thése ni des extraits substantiels de celle-ci
ne doivent étre imprimés ou autrement
reprodulits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Canad;

Conformément a la loi canadienne sur la
protection de la vie privée, quelques

formulaires secondaires ont été enlevés de

cette thése.

Bien que ces formulaires aient inclus dans
la pagination, il n’y aura aucun contenu
mangquant.

© 2009 Christopher Rennick
All Rights Reserved. No part of this document may be reproduced, stored, or otherwise
retained in a retrieval system or transmitted in any form, on any medium by any means without
prior written permission of the author.

Co-Authorship Declaration

| hereby declare that this thesis incorporates material that is result of joint

research, as follows:

This thesis also incorporates the outcome of a joint research undertaken in
collaboration with Stephen Fox under the supervision of Dr. Roberto Muscedere. The
details of the collaboration is covered in Chapter 2 of the thesis. In all cases, the key
ideas, primary contributions, experimental designs, data analysis and interpretation,

were performed by the author.

I am aware of the University of Windsor Senate Policy on Authorship and | certify
that | have properly acknowledged the contribution of other researchers to my thesis,
and have obtained written permission from each of the co-author(s) to include the

above material(s) in my thesis.

I certify that with the above qualification, this thesis, and the research to which it

refers is the product of my own work.

Abstract

This thesis describes the design, construction and verification process in full for
the test server portion of the second generation of an automated testing network. The
system was built for, and with, AMD/AT! of Markham, Ontario and will be used to test
large batches of their graphics processing units (GPU’s). The final test system has the
capability to simultaneously test and control several parameters on a large number of
test nodes.

The TCP/IP Control Server for a Multi-Drop Test Bench Network was designed to
test and control a network of 256 test nodes over an RS-485 network. The contents of
this thesis will describe the test server hardware in full, while the test nodes are
described in Stephen Fox’s thesis. The test server consists of an Ethernet-enable MCU,
an Altera Cyclone Il FPGA and a custom RS-485 transceiver board used to communicate

with the test nodes.

To my family and friends, thanks for being there and for providing distractions when |
needed them.

To Sandra, thanks for ten years of your love and support.

vi

Acknowledgements

I would like to sincerely thank Dr. Muscedere for his invaluable assistance and
guidance on this project, and for providing me the opportunity to work on such an

interesting project with such a reputable industrial partner.

To my committee members, Dr. Khalid and Dr. Kent, | appreciate your time and

energy spent on me and this research.

I' would like to thank my colleague on this project, Stephen Fox, for his individual

contributions to this project and for any aid he provided me.

I would also like to thank Advanced Micro Devices (AMD)/ATI for their funding of

this research as well as NSERC for their contributions to the project.

Finally, I would like to thank my parents for their seemingly endless guidance and

assistance, without you, this would not have been possible.

vii

Table of Contents

CO-AUTHORSHIP DECLARATIONccuueiiiireiirsriieesissssssessssnsseserssssessessssssssssesssnsnnnmesssssessssssssssnnssossssssssssssnns v
ABSTRACTottttieiirisisssennssiiicisnnerossasssssstneesessssssseettsssssssrsssssssssssssnsssossesssssssessnnsnsssnsssesesserssssssssnsssssessossans \'}
DEDICATION......oiviruirireinrnreesesasseenserssssnssssassssssssensrasss sesasssse sassnssnsssanenssssss seessensesssnssnnssns Vi
ACKNOWLEDGEIMENTScuooiiiniininsiienssnersssrsesesssssesssssassessssssessssasssssesssassssssnrs sessssanessesssnnnsssasassssssnsssessons Vii
LIST OF TABLESoeiiiivicnniininiisiensesssessissssterissasessssssessessassesssassessassesssssssssss sessssserasssnsasessssnsessssssssnssonnessne X
LIST OF FIGUREScvceiisnniiisniinininensseneresssscessssnssssnsressssasssssssstssssssssassssesensassstseessessnsnnssassssnsssssnsmesrssssssens X1
LIST OF ABBREVIATIONScvvtiiteerensneersvssarerersnsessssssserssssssssssssessssesssessossessssssansssssssnsssssssnsasasessssesresssns Xl
CHAPTER 1. INTRODUCTION ...cooiiiiiisvntenerensessenerstescesrsssnsesesessossensssssassesssssssssssnsssssssssssssesssnsensenseressss 1
1.1 PROJECT OVERVIEW ...covetiiieieriecntieeiaessessisreesssesssssesasteesneeeaeesassessesssseasesssasssssessssssenssesasessessssssssetessseesenees 2
1.2 THESIS ORGANIZATION.....ccrueeereirrrreearereueesereesiesesreessetesstessesssseesssesseasesaesessessssnssassssssassessssssssssssssssssssssesss 3
CHAPTER 2. TEST SERVER OVERVIEW.cccuummmmeiiiriicirnncnreesressssnesasisssssssssssssussssssessssssssssssssnnensressssssssnnes 5
2.1 HISTORY OF ATE SYSTEMS....ctetettriestesieetietsstserestestreseseessteeseseaseesssseesessssseeseasasesssssssasssssssmssnsssssssssesesesesesas 5
2.2 CURRENTLY AVAILABLE ATE SYSTEMS.....viuvventiinrieseiastetessesseeseeesseesaesseaseaeeeesssassessessseesseseesesseesseesseesseeese e 6
2.3 TEST SYSTEM, GENERATION ONEcveriretietieteeeiesreseeseieseseeseseeeseesseseetseesesessesesseees e sesssessessesssssssssssseeeesssesee s 7
2.4 PROPOSED SOLUTION ...uvietemrresiretrenieneestesseensensssstssaseensenesseeesssesesessrsssssessassssssensssnsssesssosseseseeseeeses e 9

4.2.1 VHDL DeSign — MCU_DUS MOGUIEoeeeeeireeeeerreeeeeeeeeeeerevaeeeeaeees e eseeset oo

4.2.2 VHDL Design — FIFO MOGUIecooooereeeemeeerrereereeereerseeersone *

4.2.3 VHDL Design — RS485_output Module
4.3 VHDL DESIGN = RS485_TO_MCU MODULE «..c.cveveecrreeesetceeeseeeee ettt sen s ssee e s s s

4.3.2 VHDL DeSign — RS485_FifO MOGUICveveeereeeeeeeeeeeeeenireeieeeeeeeeeeeeeeee s e s s eresesesee e
4.3.3 VHDL DeSiGn — ArDIter MOGUIEcu.ecevveeeeeeeeeeeeeeee st eeeeeseser e e sessseteta oo sessseaes

4.4 VHDL DESIGN = SERVER_TEST IMODULEcueeuieitetrerestesseesesereeeneeseiasessssesseeeeseeseesseseeesesassaseasesmseeeseesssessen 39

CHAPTER 5. DEVELOPMENT OF C CODE FOR TEST SERVER EMBEDDED MICROCONTROLLER 41
5.1 INITIAUZATION PROCEDURES.......c.ucouitieueariearietetesessessestsessestenssseasssnsonsensaessesenssaesssesseasessesssssesssssssssssessesos 42
5.2 MAIN PROCESSING LOOPc.ooiiniiuietiiceietcetesteseseseas s stesneenrenssstessaseons et eseseassaesreseseseseeseenseensasesensesanas 43

5.2.1 STACK OPEIGUIONScoccoueeuiivereereieiiriereieseeaeeeseserese et eseersstatesttsasisaeseeesenresseasassessesssasassesssessssenes 44
5.2.2 ACCEPTL AN STOTE PUCKEL......cooeveeeetiieieieeveeneceeeeecteseeeeosesereatsereveas et ssesseraseeaeersaesaseesesesreesseesans 44
5.2.3 CommuUNICAION WIth FPGAoomvieieiieeeteeeeeeevereeseeeeeteaveeteeeeresaessssesestsssseseseessessesesessssisses 45

CHAPTER 6. PC CLIENT DESIGN...cccivceiiiiiuiiiininnnirisceeresessassressnmessnsesssssssesssssssesssasessessensesssasersesne 46
B.LTCP VERSUS UDP ..ottt ettt ettt ettt s e st e st s e et s et e eas e et eeeassessssnseseesnnsssssssns 46
6.2 PCCLIENT OPERATIONcotiteretenintenreestestestatestatesteseeseteeessstsststaststesesmsaeeseseeseessssessesesseasensesessesssesseseeons 48

6.2.1 PACKET SOIT AIGOTTERM........coiitieirtiristetsecsseiete e tetes s easeres et e e senesn s s ensessesas e s s 49
6.3 CHANGES TO ADAPT CLIENT.C CODE TO UNIX/LINUX ...ccviurenereeireeeteeserasteseeteeeeseeseeeesaseseseeesstessessenssesesseseassens 51

CHAPTER 7. CONCLUSIONcoriiisinnteeiinnsiisnesessorssssssssancessessssssnsesssssasosssssssnsssasesssanssnssnssans osssaresss 53
7.1 TEST SERVER LIMITATIONSctuieerereenientenirnesretesenseesseseeresseesesstssesseasenstessessentesssssensessensesnsssessssssassessons 55
7.2 THESIS CONTRIBUTIONScvuiieimeuieteteueenrseseasesessseesseanssessssesesssmssssssaesssssssasssessnsonnssssasesnnsassssasasessssesssseses 55
7.3 TEST SERVER VERIFICATION AND FINAL RESULTS ...v.vcverreeceieterereeessistesescseseseeeneseseneesesansessenesessessesessnsens 57
TAFUTURE WORK.....ooiiiiiciciteieee ettt sesteste s staase s etastsresesnssesesssstesesso st et et saesesateaest et eseseassssntesesessenssessrssenns 57

REFERENCES ...cooiuiiiiiiiiiuiiniieniniinisesssnissescesstnssnnerssesssssesssnsossssessiressressassssssesssssossanssstsssnnesssnnesssaseesasssas 60

APPENDIX A. SCHEMATICS AND BILL OF MATERIALScccvvveiscterenrirneessesesasssessessnsssssessssesssnsessnsessssosenss 62
AL STHEMATICS coveevevriiti et ee sttt ettt et e et st s s eteeseaeetessetssee e eeeansaeeneesseseeesenseseasaesenressesessesseesosssnos 62
A2 BILLOF MATERIALS «..cocvvvitiieiseeneeeetereetesestest et e ssteasessesessenestsstentstsstemeesensenentsesasnssesasesansanseneassassasessenssos 69

A.2.1 Bill of Materials — PrOtOYDING SEAGEc.ocveveeeeeeeercrreeeeereeeeeeeeevevarsessssesssseseseeeeseesesssssesssson 69
A.2.2 Bill Of MAterials — FINOI TESE SEIVEToeveeveeeieeeeeeeeeeereeeeeeeeeveerevere e sevesas e sesseeseseesssssesse e 69

APPENDIX B. TEST SERVER VHDL CODE.......ccctereerrercrnrseesiessnsessaeesesssessesssssssorssessssssesnssssssessesnnsssssesssssses 75
BLLSERVER.VHD. c...voeetctcecet it ete st ee et et ee et sttt e s s nsemeassee et tees e se s s e eee et esesseremesssenaeae 75
B.2MCU_TO_85.VHD ...ttt sttt st eee e e s et e sesae et e ee s eesees e s e e s s e 76

B.2.1 MCU_DUF_MEIMLVA. ..ottt se v st e et amatese e s s e st eeoe e 76
B.2.2 ISA85_OULPULVAU ...ttt er st eveveva et s e sr s e e s enseeeeeseess s 77
B.2.3JIfO.VRM ...ttt ettt r et 79
B2 MU _DUFVA...........ooiic ettt ee vt s s et et ee et eoe oo 81

B.3 RSABS_TO_MCOU.VHD oottt st sttt e et ae et neseeseneees s o ses s sas e s sesen et st ensens 83
B.3.1 rSABSDUS MEMLVAGooiiiiseete ettt evevseeeeeeeeta e te e e e e e s s s esesee e 84
B.3.2 MCU_OUIPULVAG ...ttt se et aeeeeseses s s st esasasese e se e s e e ee oo 85
B.3.31SA8S5_fifO.VAA ...ttt ee et s et a e e et 87
B.3.4OIDIEOI. VA ...ttt ee e et ev e e v e e et s e 88
B.3.5 1SAB5 _BUF.VAG. ...ttt eev s es s eee e e s s tn st e s e s s es et seese s 89

B.4 SERVER_TEST.VHD ...v.vviecucnencniecicsentnestntnmstetese bt semsessssse s s ssesesesoesenensssessesesesassesesensssesessses e seesssse s 92
APPENDIX C. TEST SERVER € CODE......cccorcemurreernsarsserassessissereesssssssessssensasssnsnseseesssresanesesssssssesseseesesseseeses 95
APPENDIX D. PC CLIENT € CODE......ccccviminuereeneserrresressssescossseenseseonssecsasessssssnsssessesesssssessnssssesssssssssessses 109

List of Tables

Table 2.1.
Table 2.2.
Table 3.1.
Table 3.2.
Table 3.3.
Table 3.4.
Table 3.5.
Table 3.6.
Table 3.7.
Table 6.1.
Table 6.2.
Table 6.3.
Table 6.4.
Table 6.5.
Table 6.6.
Table A.1.

Test Server Component SUMMAIYccooviviiiiiieere e 11
Summary of Packet STrUCTUIEc.eoivieciiceeeceeeeeeeceee e 12
Microcontroller SUMMANYccoociiiiiiiiecececeee et eeeaeens 18
Summary of Chosen MCU [11]....cccoviiiiiieieiieeecre et e et e ea e eeane 18
Summary of Available MCU Development Kits [12] [13]...coceeveeereeeereeirenen. 19
Available FPGA SUMMArY [14]......ooii it e eeeae e e s reeeae e 20
SUMMAry Of ChOSEN FPGA.........coviieiieiectieeeeceeet e e e s eees e s seeenann 20
Summary of Available FPGA Development Kits [15].......cccoeeeeeveveeioerereereennn 21
Summary of Selected RS485 Transceiver [16]ccoovvvevvereeeereeeeeereeeeeeenenen. 22
Acknowledge Values and Their Meaning..........cc.oocoveveeeiivceeineeeeeeeeeeeeeen 48
Header Differences, Unix vs. Windows [19]ccoooiieeeenereeeeeeeresseeeesnens 51
Socket Initialization Differences, Unix vs. Windows [20].........cocevveveevevueennnnn. 51
Socket Application Shutdown Differences, Unix vs. Windows [20]................. 52
Socket Error Reporting Differences, Unix vs. Windows [20]c.ccceeevvvenn.... 52
Conditional Group C Code Example - Header Calls............ccooeeeeveeeeeeererennn. 52
Bill of Materials - Prototyping Stage.........cocveeeiieviieiiieeeeese s eeeve s 69

List of Figures

Figure 1.1.
Figure 2.1.
Figure 2.2.
Figure 2.3.
Figure 2.4.
Figure 2.5.
Figure 2.6.
Figure 4.1.
Figure 4.2.
Figure 4.3.
Figure 4.4,
Figure 4.5.
Figure 4.6.
Figure 4.7.
Figure 4.8.
Figure 4.9.
Figure 5.1.
Figure 6.1.
Figure 6.2.
Figure 6.3.
Figure A.1.
Figure A.2.

Figure A.3.
Figure A.4.

Figure A.5.

SYSTEM OVEIVIEW ..ottt ettt e e senae s 2
Visualization of Star TOPOIOZYccoveveeevieieicieciecctreeeeeeece et 8
Proposed SyStem OVEIVIEWccvevuieieiiiieeeeieeciteecee et cere st et estaesas e e eeenas 9
Test Server Layout OVEIVIEWoooviieiiiiieiirieeeeerete e s e eeeeeeeeeeseaaaea 11
TeSt NOAE OVEIVIEW.......c.ccerueiiiriiriereesrece ettt ettt cee e et eeeaeene 13
Length of Cable vs. Data Rate of an RS-485 Network [6]coccveeveveeeeennen, 15
Daisy Chain TOPOIOGYc..ccvureiieieitieiecie ettt ettt st eeneees 16
VHDL DESIBN FIOW ...ttt sttt e e e s e 25
Block Diagram of SErver ModuUIEoveveeeiiiiieectieceeee e eeee e rereene e 26
Waveform of Data Transfer From MCU to FPGA..........c.cooceveiveveeereeeeeenes 27
Waveform of Data Transfer From FPGA to MCU..........cccoovvvvemvviieneeceennen. 27
Block Diagram of MCU_to_485 Module........c.cccoeeemreieiieieiteeeeeseeeen, 29
Waveform of Reading From Dual-Port RAM Modute........ccceeevvvvevveeeeenannnn, 32
Waveform of Writing To Dual-Port RAM Modulecccoevveceeveeeeereeeeennnn. 32
Block Diagram of RS485_t0_MCU MOAUIEvverereeeeeeeeoeoeeeoeoooeoooo 35
Flowchart of Arbiter Operationcceeveiiieeereniieeeeeeeeeeeeeeeeee e e seenen, 38
Flowchart of MCU Main Processing Loop Operationcceecveveeeeeevennnn. 43
Flowchart of UDP Operation [17]ccoevivveeiieereeeeeeeeeeeeeeveeeeeeeeeeeee e 47
Flowchart of TCP Operation [17]cccevieveeieeereereeeeeeeeeereeeeeeeeeeseeseeeseessneans 47
Flowchart of Packet Sort Algorithm............c.ceueeiiuieieveereeeeee oo 50
Test Server MCU SChematiC ..c.ccoveviiiiieeiece et 62
Test Server MCU Schematic — Ethernet, ICSP, LCD, LEDs, Oscillator, and

... 63
Test Server FPGA SChematiC.....c.ccovvviviirieriicieeceeeccceesecee s 64
Test Server FPGA Schematic - LEDs, Oscillator, Power, and Reset................. 65
RS485 Transceiver Network (First 8) SchematiC.......cc.ocvveveeeeeeeeeeereeceserennn 66

Xi

Figure A.6. RS485 Transceiver Network (Second 8) Schematic.........cceeeevvvveeeveeeeeresnnnnn, 67

Figure A.7. RS485 Transceiver Network Schematic — POWEr...........oooeeeveeeeeeeeeeeeenenn, 68

xii

List of Abbreviations

A/D
ASIC
ATE
D/A
E-Pot
FPGA
FIFO
GP1/0
GPU
HTTP
1/0

ICSP
MAC
MCU
MPU
MSI
PC
PCB
PCI
RAM
ROM
SNMP
TCP/IP
UART
ubpP

Analog to Digital

Application-Specific Integrated Circuit
Automated Test Environment/Equipment
Digital to Analog

Electric Potentiometer

Field Programmable Gate Array

First In First Out

General Purpose Input/Output

Graphics Processing Unit or Graphics Card
Hypertext Transfer Protocol

Input/Output

Integrated Circuit

In-Circuit Serial Programming

Media Access Control

Microcontroller

Microprocessor

Medium Scale Integration

Personal Computer

Printed Circuit Board

Peripheral Component Interconnect
Random Access Memory

Read-Only Memory

Simple Network Management Protocol
Transmission Control Protocol/Internet Protocol
Universal Asynchronous Receiver/Transmitter

User Datagram Protocol

xiii

VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuits
VLSI Very Large Scale Integration

Xiv

Chapter 1. Introduction

In modern industrial research and development, the time to market, or the
length of time that it takes to fully design and test a product and offer it for sale to the
general public, needs to be as short as possible, while still maintaining al! previous
quality control standards. There are many steps in this process, including but not
limited to, determining customer wants/desires in a new product, initial design phases
outlining the overall functionality of the product, development of any new technologies
to enable this product to come to market (if necessary), design of the product in full,
complete testing of all features of the new product, final marketing and finally, the sale
of the product. Any of these stages can be shortened to quicken the overall time to
market, though this thesis is mainly concerned with only one of these stages of
development, the testing.

Testing of new products is a very complicated and time consuming process, and
just because a certain test on one machine in particular performed flawlessly, does not
mean that the same test on a different machine will perform the same way. »In other
words, when components from outside parties ére used in a system, they need to be
verified in several different systems to ensure that they are functioning correctly in the
system as a whole. This then requires that large batches of a new machine or product
need to be tested to make sure that manufacturing and design tolerances do not factor
into overall product robustness. If one were to test large batches of machines with a
complicated testing procedure one at a time, the testing process would be prohibitively
long, thus it is desired to have the ability to test large batches of a new product
simultaneously with as little human input as possible.

This thesis and the joint research performed by Stephen Fox, is concerned with
the development of an automated test environment (ATE) with the capability to test

several key performance criteria on up to 256 separate computers simultaneously.

1.1 Project Overview

This project has two main deliverables: the test server and the test nodes. This
thesis will describe the design and construction of the test server, whereas the thesis of
my colleague, Stephen Fox, will describe the design and construction of the test nodes.
The test server has the ability to control, and communicate with, a maximum of 16
buses, each with a maximum of 16 nodes for a total maximum node count of 256. The
nodes in each bus are in a daisy chain configuration, which was chosen for its simplicity
and for its affinity to the RS485 electrical standard which is our chosen communication

medium. The basic physical layout of the system is shown in Figure 1.1.

Test Server
MCU Ethernet Linux |
(TCP/IP) Client
— }
FPGA
RS485
Transceivers
e X K
RS-485
(phys.ci/
/ \A/
Test Node Testing Testing
= Node Node
i o}
X
° L _| | Testing Testing
)
o Node Node
=+ r
@ 2}
© Testing Testing Testing
T Node Node Node
Testing Testing _1_'esting i
Node Node Node

Figure 1.1. System Overview

The system functions as follows: the client reads in a file of 30 byte long packets,
which are in hexadecimal format, orders the packets in a manner such that any
possibility for contention on a bus is eliminated, and transmits them, one at a time, over
the TCP/IP socket to the test server microcontroller. The test server then calculates a
CRC-16 checksum number and adds it to the end of the packet, making a packet length
of 32 bytes. The checksum is needed to ensure that noise or other external factors did
not alter the data during transmission to the node. The test server FPGA will then send
the packet out to the correct bus based on the address byte in the packet. The test
node that the packet is addressed to will then act on the command passed to it in the
“command” field of the packet and will send back any data that is requested. The test
server, on receipt of the data from the test node, will re-calculate the CRC and make
sure there were no transmission errors; it will then forward the reply over the TCP/IP
socket back to the PC client software which is maintaining control and safe operation of

the entire system.

1.2 Thesis Organization

This thesis describes the design and construction of the test server for a custom
automated test environment (ATE). Chapter 2 will provide an overview of the test
server and its capabilities as well as review the structure of the test nodes as designed
by my colleague Stephen Fox. Chapter 3 will describe the various pieces of hardware
that make up the test server and the associated software tools that were used in the
project’s development. This chapter will describe the pieces of hardware currently being
used in the prototype of the test server and will give recommendations for the
hardware that should be used in the production of the server. Chapter 4 will describe
the development and design of the VHDL code for the MCU_to_485 and RS485_to_MCU

FPGA modules. Chapter 5 will discuss the PIC microcontroller that was chosen for this

project in detail and will also discuss the C code that was written for its operation.
Chapter 6 will discuss the design of the PC client software, written in the C programming
language, which is controlling the system as a whole. Finally, Chapter 7 will conclude
the thesis and will discuss suggestions for future work.

The content of the appendices is as follows: Appendix A consists of the
schematics of the test server hardware and the Bill of Materials, Appendix B contains
the VHDL code for the test server FPGA, Appendix C contains the C code for the test

server microcontroller and Appendix D contains the C code for the PC client.

Chapter 2. Test Server Overview

2.1 History of ATE Systems

ATE systems have had a relatively short life and have developed hand in hand
with commercial computers. The first automatic test devices were created in the 1950’s
by the United States’ Department of Defense (DOD), primarily to test missile systems
and other military electronics. It should be noted that this development coincides with
the increasing availability of digital logic and commercial computers. The U.S. DOD
realized that a more repeatable and consistent method of testing new military
electronics was needed, and thus a need for automated testing equipment was born.
The first ATE systems were created primarily of existing manual instruments which had
custom designed digital logic added to allow them to be programmable. This was
certainly not an ideal situation, and the end goal was to move to more universal test
equipment [1].

A system was desired that had a full set of programmable instruments which
could be configured and reconfigured at will, as quickly and easily as possible. The first
of these systems was created between 1968 and 1972 and it was called the Versatile
Avionics Shop Test (VAST) and it consisted of a test station, a computer and a data
transfer unit. It was created to test the avionics systems on F-14A and S-3A aircraft and
was deployed on aircraft carriers starting in 1974. The VAST Systems eliminated some
special support equipment and reduced the number of technicians required to test and
maintain the avionic systems, and thus were, at least partially, successful at what it set
out to do. A test program set was created to test each individual system, but
unfortunately, it could only test one avionic system at a time [2].

As computers continued to improve, so too did the automated test

environments, by the mid 1970’s, they were capable of testing medium scale integration

circuits (MSI) that had hundreds of transistors per chip. During the 1970’s another
important development happened: buses were introduced which greatly enhanced
interfacing between components. This led to the development by Hewlett-Packard of
the Hewlett-Packard Interface Bus (HPIB), also referred to as the General Purpose
Interface Bus (GPIB). This bus was standardized by the IEEE in 1975 into IEEE 488.1 and
it is still widely used to this day, though the standard has been upgraded by the IEEE in
the past 30 years. In the early 1980’s, the automated test environments started to
include more modern embedded systems, including embedded microprocessors, this
allowed the systems to become “smarter” and more customizable [1].

The late 1980’s and into the 1990’s saw the further development of ATE systems,
which included standardizing the communication bus to allow multiple vendor’s
components to communicate easily with each other, and the introduction in the 1990’s
of “plug and play”, which functioned very similar to USB in that components could be
plugged in and the system handled installing any drivers to allow that component to

work in the system as a whole.

2.2 Currently Available ATE Systems

There are currently several large vendors of off the shelf ATE systems. These
include National Instruments, Northrop Grummah, and Teradyne [3] [4]. Prices on
individual modules from these vendors range in price from $1,000 to more than $18,000
depending on the module and many of these ATE systems are the size of a refrigerator.
These systems can test virtually alf aspects of a custom VLS| design as the modules
include A/D converters, D/A converters, signal generators, variable power supplies,
signal analyzers, multimeters and radio frequency and high frequency devices.

However, many of these systems are designed to test one chip at a time. Clearly the
cost, size and the inability to test many systems at once is a large drawback of these

devices.

There is also a large number of competing standards as to how these units
should communicate with each other. There are currently several standard instrument
types including using PC standard input/output (I/0) such as USB and Ethernet as well as
RS-232 serial connections and also add-in cards like ones which used the GPIB interface.
There are also some custom instrument types including VME eXtensions for Instruments
(VX1) components which was development in the 1980’s, primarily for use by the U.S.
military, PCl eXtensions for Instruments (PXI1), which was created by National
Instruments in 1997 and is based off the Compact PCl bus, and finally LAN eXtensions
for Instrumentation (LXI) which uses high-speed LAN as the backplane of the ATE [5].

2.3 Test System, Generation One

Approximately three years ago, AMD/ATI realized that the currently available,
off-the-shelf ATE systems were not ideal for testing the functionality and performance
of their graphics cards when deployed in a motherboard, so they set out to create their
own system. This first generation of the project consisted of similar hardware to
generation 2, however, to save on the devglopment time, some off-the-shelf
components were used that were not an ideal solution for the manner in which they
were going to be used.

Generation one consisted of a National Instruments digital 1/O board that was
connected to a host PC that controlled the entire system. The digital /0 board ran
direct connections to each of the test nodes and sent them the control signals directly
using a serial connection. This created several problems, but was deemed at the time to
be the ideal solution as it could be deployed quickly. The first issue with the system is
the increased cost of the National Instruments board as compared to a custom built
control board. The cost of a custom board with an FPGA and a microcontroller, similar
to what is used in the solution that will be described in this paper, is considerably less

than the cost of the National instruments board. The second major issue is that the

overall system had a very large quantity of cabling that was necessary to connect
everything; this was mainly due to the topology that was used in deploying the network.
When creating a system with one central server which has an output that connects to
each individual node, you generally end up with a star network topology as shown in
Figure 2.1. The problem with a star is that as nodes get farther away from the server,
the cable length to connect them also increases in size. The third problem was due to
the communication medium they used to talk to the nodes; they used a common serial
connection that used ground as a signal reference, which led to galvanic isolation
problems. The problem with this, and it was a large problem that is not easy to
overcome, is that “ground” is a relative measurement. There can be a difference in the
voltage levels of ground between the different nodes as they are spaced around the
room in which the system is deployed and this difference in ground level can cause one

node to think a digital ‘1’ isa ‘0’ ora ‘0’ isa ‘1’.

Cvote | (e) [)

(wote | [wode) [woae)

Figure 2.1. Visualization of Star Topology

With these difficulties in mind, generation two of the test network was deemed
the next step in development. The proposed solution for the second generation of this
project must then meet several criteria. First of all, it needs the ability to test and
control multiple parameters of multiple nodes simultaneously. Secondly, it needs to
communicate with these nodes in such a manner that cabling length and complexity is
reduced from the first generation and the effects of external noise and differences in
ground levels between nodes needs to be eliminated from the system. The system must

also be easily upgradeable, as it is impossible to determine what parameters will need

to be tested or controlled in the future. Lastly, it needs to be deployed as cheaply and

easily as possible.

2.4 Proposed Solution

With the criteria and problems defined, as stated in the previous section, the
second generation of the system could be designed. We desired the system as a whole
to have Ethernet communication to a Linux client as well as the capability to test up to
256 test nodes simultaneously. The decided upon layout of the system can be seen in
Figure 2-2. The test network will consist of a test server that can communicate over
Ethernet to the client on one side and on the other it needs to communicate to 16 buses
of 16 nodes each, laid out in a daisy chain topology which was chosen for its simplicity.

Thus the system provides an overall count of 256 nodes.

(Stephen’s systems)

Linux Client
y W —————.
' Ethernet 5
i Connection !
:"""""'“"""": Z N\
L __Test Ser_v_er !
v
{? Embedded
R85 |y Controller Hardware e mm ey,
ccnjnector ! RS-485 Bus to Connectto
: FPGA Test Nodes E
1
1 1
1

Figure 2.2. Proposed System Overview

From the above figure, it is apparent that there are three main components to
the system as a whole: the Linux client, the test server and the test nodes. This thesis
will describe the development of the test server and the Linux client in detail, the design
of the test nodes can be seen in Stephen Fox’s thesis.

From this abstract design of the system, the functionality of the test server could
be determined:

1. It needs to be Ethernet capable

2. It needs to have enough I/0 to communicate effectively with 16 buses of test

nodes

3. It needs the computing power to handle processing a large throughput of

data from the Linux client to the test nodes.

From this early stage it was realized that we would not be able to find a
microcontroller that had the I/O capabilities and processing power needed to
communicate with 16 buses of test nodes as well as having the ability to communicate
over an Ethernet connection, an FPGA of some kind would be needed in the test server
to handle the large amount of /0 to the test nodes. Alternatively, an FPGA is not an
ideal solution on its own as the nature of the test server lends itself better to being
deployed on a microcontroller, and the cost of a microcontroller is significantly less than
that of a FPGA, thus both a microcontroller and an FPGA are to be used in the test
server. The microcontroller would be used to communicate over the Ethernet
connection with the Linux client and the FPGA would be used as a multi-port UART to
communicate with the test node network. The layout of the test server can be seen in
Figure 2-3.

The final criteria that the system needed to meet was that the effects of the
different levels of ground between the nodes and the external electronic “noise”
present in the test server be eliminated. This was accomplished with the choice of RS-
485 as the communication medium for the test node network and with standard
Ethernet cabling terminated with RJ45 connectors, or, more officially, CAT-5e cabling, as

the physical transmission medium. RS-485 is a half-duplex, differential electrical

standard that is ideal for a multi-drop communication link (a multi-drop communication
link is one in which a single bus has multiple devices connected to it). Though RS-485 is
a half-duplex communication medium, it can be made to be full-duplex by using one
transceiver for transmitting and another for receiving; this is how RS-485 is
implemented in this system. The choice of RS-485 and CAT-5e cabling will be described

in more detail in Chapter 3.

Linux
Server
A
Ethernet :
Connection / 0\
v :"'""""""""""'""""'"""":
St i| Micro- FPGA | !
Ri-45 | iy| controller [g > -
Connector ; (TCP/'P < > é
Hardware E_“_ %F?F_k_) ____________________________ E
Reset Embedded Controlier
Button .

RS-485 Bus to Connect to
FPGA Test Nodes
(Stephen’s systems) % /

Figure 2.3. Test Server Layout Overview

After finalizing the above general layout of the test server hardware, a
component list can be created that will outline all hardware needed to construct the

test server. This component list is summarized in Table 2-1.

Table 2.1. Test Server Component Summary

Component Manufacturer Quantity Needed
Microcontroller Microchip

FPGA Altera 1
RS485 Transceiver Linear Technology 32
RJ45 Female Connector | Tyco Electronics 17

One final decision that had to be made was the format of the packet. It was

deemed the best solution to use a packet length that is a factor of two, and since many

of the packets that are going to be transmitted are quite short, a smaller packet size is

ideal. The chosen packet length is 32 bytes, including the CRC-16 check bytes at the end

of the packet. The structure of a packet is shown in Table 2.2.

Table 2.2. Summary of Packet Structure

Byte(s):

1

2

3

4

5-30

31-32

Field:

Address

Command

Acknowledge

Length

Data

CRC-16

2.4.1 Test Node Over}{iqyy_

Each test node consists of a PIC microcontroller with in-circuit serial
programming ability (ICSP), a power relay board, an external temperature sensor, an
analog to digital converter (A/D converter), RS-232, RS-485 and 1°C communication, and
an electric potentiometer (E-Pot). An overview of the test nodes can be seen in Figure
2.4. The in-circuit serial programmer is used for updating the program in the MCU, the
power relay board is used for cutting the power to the PC under test and is only used in
emergency situations (similar to unplugging the machine from the wall outlet).

The test nodes are capable of controlling and monitoring several different
aspects of the PC under test. The nodes can turn the PC under test on/off, cut the
power to the PC using a relay board, set and monitor the temperature of the PC under
test, and set and monitor the voltage on the 12V and 3.3V voltage rails. The nodes can
also communicate with both the PC under test and the GPU in the PC, and finally the
node can update its own program using the bootloader mode that has been
programmed into the microcontroller. Also, the nodes were designed with
expandability in mind; they can be expanded to add extra functionality to each of the

individual test nodes.

ICSP Test

N N

RS-485
'd) s)
Expansion
PC Power
; ; ; ; Ports
\ < _ : Y,
4 4 N\
Motherboard Power Pe
Power Control MCU GPU
\ < . J
0) .)
Heater 7\ Temperature
9) D X Sensor J
RS-232
Voltage PC Power
‘ Supply
PC Under
Test

Figure 2.4. Test Node Overview

The external temperature sensor is used to monitor the temperature of the PC
under test and the A/D converter is used to monitor the system voltages. The external
temperature sensor has a built-in A/D converter while the one used for monitoring the
system voltages is embedded in the MCU. The external temperature sensor is part of
the feedback on the temperature control of the system. The final system, when
executed at the offices of AMD/ATI in Markham will have a heater element at each node
that will allow the user to increase the ambient operating temperature of the test node.
The external heating element is controlled by an external relay to the MCU. The RS-232
communication is used to communicate with the PC under test, the RS-485 is used to

communicate with the test server, and the 1°C bus is used to communicate with the

GPU, communicate with the temperature sensor, and also for future expansion of the

test node. Finally, the E-Pot is used to alter the voltage from the PC power supply.

2.4.2 Description of RS-485

As mentioned in the previous sections, the test node network is implemented
using the RS-485 electrical specification. Though RS-485 does not contain a
communication protocol as part of the specification, and thus a custom protocol had to
be developed for the system, RS-485 as a physical transmission standard solved many of
the problems that affected the first version of this test network. RS-485 was
standardized by the Electronic Industries Alliance (EIA) in association with the
Telecommunications Industry Alliance (TIA) and thus the official name of the standard is
TIA/EIA-485-A. The last revision of the standard was in 1998 [6].

The RS-485 electrical standard is described as a half-duplex, differential signal,
hulti-nodal, serial communication medium. Half-duplex refers to the fact that
communication can only happen in one direction at any point in time, for example,
point A can send a message to point B or B can send a message to A, but A cannot send
a message to B while B is sending a message to A. A typical example of half-duplex
communication is a common “walkie-talkie”. Differential signaling means that both the
signal itself, and its digital logic inverse, are sent at the same time over two separate
wires from the sender to the receiver, these wires are often referred to as a twisted
pair, as in reality, the pair of wires is usually physically “twisted” together. In differential
signaling, the signal is determined at the receiver by taking the difference between the
two signals that are sent by the receiver. This property means that any noise that is
introduced to one wire during transmission is introduced to both, and when the
difference between the wires is taken at the receiver, the noise is removed from the
signal. Finally, a serial signal is one in which each bit of the message is sent one at a

time from the sender to the receiver.

RS-485 as a standard is designed to support up to 32 nodes on one bus with a
maximum fength and data transmission rate that are inversely proportionate to one
another. In other words, as the data transmission rate increases, the maximum length
of the cable between the sender and receiver decreases, and inversely, as the length of
the cable increases, the maximum data transmission rate decreases. Theoretically, the
standard can support up to 10Mbit/s for a cable up to 10m or 100kbit/s for a cable
length of 1200m. If the user wishes to increase the length of the cable at a given
transmission rate, or the number of nodes on the bus, an rs-485 repeater is needed to

increase the strength of the signal. This tradeoff is shown in Figure 2.5.

100 mbps

10 mbps

1 mbps

Pata
rate

100 kbps

10 kbps

1 kbps

10 100 1k 6K 10K
Length of cable
in feet

Figure 2.5. Length of Cable vs. Data Rate of an RS-485 Network [6]

In the implementation of RS-485 in this project, several things need to be
mentioned. The first is that although RS-485 is defined in its standard as a half-duplex
communication, this project has executed it as full-duplex by running a second twisted
pair of wires for communication and thus an extra transceiver is needed at each end of

the communication. The second is that even though RS-485 is a differential

communication standard, there can exist a difference in the voltage level of ground
between a transmitter and a receiver, thus a wire is needed to connect the ground
signals between the transmitter and receiver to alleviate this issue. In this
implementation, we are using Cat-5e cable as the physical transmission medium, and
thus have access to 4 twisted pairs, or 8 wires total. Wires 1 and 2 are used for
transmission from the test server to the test nodes, where wire 1 is the positive signal
and wire 2 is the negative signal. Wires 3 and 6 are used for transmitting from the test
nodes to the test server, thus implementing a full-duplex communication, where wire 3
is for the positive signal and wire 6 is the negative signal. Finally, wire 8 is used for the
ground signal which connects all ground pins of all nodes on the RS-485 bus together.
The last thing that needs to be mentioned in regards to our implementation of an RS-
485 network is the topology of the network. Though many topologies exist including
star networks, networks with a backbone, ring networks, etc..., we chose to use the
daisy-chain topology as shown in Figure 2.6. The main reason to use a daisy-chain
configuration is to reduce the reflection of the signal that is present in the physical wire
that is transmitting the signal. This reflection is further reduced by adding a termination

resistor at either end of the communication network.

N NS

Test Test Test
Node Node Node

Test
Server

Figure 2.6. Daisy Chain Topology

Chapter 3. Hardware and Softwai'e Selection

3.1 Hardware Selection

3.1.1 Microcontroller Selection

After the realization that a microcontroller on its own would not be sufficient to
implement both Ethernet functionality and output to the 16 buses of test nodes, a more
detailed specification list was arrived at for the microcontroller hardware. The system
needs to be able to communicate both with the client computer over an Ethernet
connection and the FPGA over some custom direct communication protocol and it
needs the processing power and internal data memory to handle the large throughput
of data while still being able to do checks and calculations for the checksum digits and
any other calculations that may be needed to maintain full functionality of the system.

The need for Ethernet connectivity with the microcontrolier created two options:
use a microcontroller with built-in Ethernet capability, or run an external Ethernet
controller. An external Ethernet controller would pull ali TCP/IP stack functionality out
of the main microcontroller and thus would save the internal data memory of the MCU
for user programming. Unfortunately, running an external Ethernet controller adds
complexity to the final board layout and it creates a bottleneck in the communication
between the Ethernet controller and the microcontroller which is in control of the
system as a whole. Thus it was decided that a microcontroller with built-in Ethernet
functionality would be the more desirable solution for the test server. This decision
instantly reduced the number of possible microcontroller vendors down to a very small
group. These vendors include Microchip, the manufacturers of PIC microcontrollers (71,

Freescale Semiconductor [8], Digi International, manufacturer of ARM based

microcontrollers [9] and Atmel [10]. A summary of these products can be seen in Table

3.1.
Table 3.1. Microcontroller Summary
Company Microchip Freescale | Digi Atmel
Microprocessor PICI8FXXjXX | MCF532X | NSXXXX | AVR32
Max Processing Speed 41.667 MHz | 240 MHz | 200 MHz | 66 MHz
Architecture Word Length 8 bits 32 bits 32 bits 32 bits
Program Memory 128 KB 128 KB 8 KB 512 KB
RAM (Bytes) 3,808 32K 4K 64K
Max Pin Count 80 256 388 144
Average Cost $7.76 $40 Unknown | $15.17
TCP/IP Stack Software Support Yes Yes Yes Yes
Development Kit Available Yes Yes Yes Yes

All listed microcontroller architectures meet the base requirements for the
microcontroller in the test server, so other factors were used to choose the ideal
microcontroller for the project. Cost is a large concern for this project; costs need to be
kept as low as possible or one of the advantages of building a system from scratch is lost
to an off-the-shelf system, thus the Freescale chip was deemed too costly. The Digi
microcontroller proved difficult to find a vendor that sold the microcontroller separately
from a development board and it thus was ruled out as the final deliverable of the
project will consist of a custom PCB with the microcontroller mounted on the same
board as the RS485 transceivers and the chosen FPGA. The Atmel microcontroller and
the PIC microcontroller were the two remaining candidates, but with the PIC
microcontrollers reduced cost, the availability of already licensed software compilers at
the University and previous experience with the PIC microprocessor; the Microchip
PIC18F97160 microcontroller was chosen as the ideal option. Table 3.2 shows a

summary of the PIC18F97)60 MCU.

Table 3.2. Summary of Chosen MCU [11]

PIC18F97J60
Flash Program Memory (bytes) 128K
SRAM Data Memory (bytes) 3,808
Ethernet Buffer (bytes) 8192
/0 70

With the choice of the PIC microcontroller as the chosen device for the test
server, a development kit needed to be found for the prototyping stage of
development. There are two main vendors of PIC based development kits, Microchip

and CCS. A comparison between the two development kits is shown in Table 3.3.

Tabie 3.3. Summary of Available MCU Development Kits [12] [13]

Company CCS Microchip

MCU Used PIC18F67)60 PIC18F97)60
Program Memory 128K 128K

1/0 Pins available 20 70
Access to all MCU Pins? | No Yes

Available Buttons 1 4
Available LED's 3 8
Includes Programmer? | Yes No
Cost ' $149US=$162 CDN $194.06

Communication with the FPGA requires exactly twenty pins; 8 pins for data to
the FPGA, 8 pins for data from the FPGA and 4 pins for request and acknowledge lines,
therefore, even though the CCS board has 20 1/0 pins available, choosing this board and
MCU would eliminate the possibility of any further expansion of the test server MCU.
The Microchip development kit, therefore, is the board that was chosen for the

prototyping of the test server hardware.

3.1.3 FPGA Selection

Much of the decision on which FPGA to use is based on past experience and on
keeping costs as low as possible. Since | have had quite a bit of past experience with
Altera’s FPGAs and their development environment, Quartus Hi, it would speed up
development time to use an Altera FPGA for the test server. The next major
consideration was in finding a low cost FPGA that meet our requirements of running at

25MHz with enough memory bits and logic elements to contain the entire test server

hardware. Since the number of logic elements required is not something that can be
determined prior to synthesizing the design as a whole, the decision had to be made on
clock speed, cost and available internal memory bits. A summary of available Altera

devices is shown in Table 3.4.

Table 3.4. Available FPGA Summary [14]

FPGA family Stratix Ill Stratix || Cyclone I Cyclone il
Available Speed Grades * 2,3,4 3,4,5 6,7,8 6,7,8
Available Memory bits 2.1M-16.2G | 419K-9.4M 424K-8.2M 120K-1.1M

, 47.5K-
Available Logic Elements 337.5K 15.6K-180K 5K-200K 4.6K-68.4K
Available User I/O 296-1120 366-1170 182-413 158-622
FPGA Cost $540-13500 | $223-13800 | $31.40-740 $40-500
Min. Cost that meets Specs $540 $223 $52 $49
Dev. Kit Cost $3,000 | $1100-3500 | $234-4100 $176-1700
* Speed grade refers to delay in ns through a macrocell in device, lower equates to faster

Upon reviewing the available options for FPGA’s from Altera, the Stratix family of
devices are too costly, thus the Cyclone family of FPGA’s will be the target device. From
synthesizing the complete VHDL code that is targeted to the FPGA, the system will need
11,520 logic elements, 68 1/0 pins, it must be speed grade 7 or faster and it needs
90,112 of memory bits. The cheapest device in the cyclone Il and Il families that
matches these specifications, and is successfully “fitted” by Altera’s Quartus Il software,
is the EP2C15AF256C7N Cyclone Il FPGA. A summary of this device is shown in
Table 3-5.

Table 3.5. Summary of Chosen FPGA

EP2C15AF256C7N
Total Logic Elements 14,448
Total Memory Bits 239,616
Embedded Multipliers 52
Speed Grade 7
Functional Temperature Range 0-85°C

3.1.4 FPGA Development Kit Selection

After coming to the conclusion that an Altera Cyclone |l device would be the best
choice for the FPGA in the test server, a suitable development kit needed to be found.
When the search began for a development kit for this system, the total resource count
needed for the VHDL code on the FPGA was unknown. Thus a development kit had to
be found that provided more than enough memory bits and logic elements, and access
to 52 1/0 pins to communicate with the MCU and the RS485 transceiver board. The two
main vendors for Altera FPGA based development kits are Altera and Terasic. A

summary of their available Cyclone Il development kits is shown in Table 3.6.

Table 3.6. Summary of Available FPGA Development Kits [15]

Altera Terasic
Development Kit Cyclone |l Starter Kit | DE2 DE2-70
FPGA Used EP2C20F484C7 EP2C35 EP2C70F896C6
Logic Elements Available 18,752 33,216 68,416
Memory Bits Available 239,616 483,840 1,152,000
I/0 available 315 475 422
Price $187.45 $582 $704

With these kits available, the DE2-70 kit was chosen as it was deemed better to
err on the side of caution as far as size goes, or in other words, as only one of these
development kits need to be purchased for the entire life of the project, it is better to
get the larger board at the beginning to ensure that we will not have to purchase

another one due to an underestimate of logic elements needed.

3.1.5 RS-485 Transceiver Selection

For the selection of RS-485 transceiver, there were just a couple criteria that the
selected IC needed to meet. The transceiver had to be low power, as 32 of them would
be needed in the test server alone, and it needed to be available in both a surface

mount and DIP package; surface mount for final PCB manufacture and DIP package for

prototyping. The selected device is the LTC485 IC manufactured by Linear Technologies.

Table 3.7 has a summary of the major electrical specifications of the device.

Table 3.7. Summary of Selected R$485 Transceiver [16]
LTC485
Max Supply Voltage 12v
Recommended Supply Voltage 5v
Driver Output/Receiver Input Voltage 141V

Driver Input/Receiver Output Voltage | — 0.5Vt V.. +0.5V
Operating Temperature Range 0-70°C

3.2 Software Selection

3.2.1 MCU Compiler and Programmer Selection

For any microcontroller, the first choice that must be made is whether to
program in C or in the microcontroller assembly language. For this project, the decision
was made for me as the TCP/IP stack that is provided by Microchip for their Ethernet-
enabled MCU’s was written in C, thus a C compiler is needed to create the rest of the
code for the MCU. There are a couple vendors that make a C compiler for the Microchip
PIC microcontrollers, though the University currently only has licenses for two of them,
the CCS compiler and Microchip’s MPLab software.

MPLab v8.33 and Microchip’s C18 were chosen as the development software
and C compiler and CCS’s ICD-U40 programmer and CCS load software were chosen to
load the program on the MCU. MPLab v8.33 was the newest version of the software
upon starting development of the MCU C code. MPLab and the C18 compiler were
chosen over the CCS compiler environment as the TCP/IP Stack software was written
with Microchip’s MPLab software in mind, thus the beginning development of the board
would be easier on MPLab than it would in the CCS C compiler as much of the work is
done for me by the TCP/IP Stack software. The ICD-U40 programmer and CCS load

software were chosen as my partner on this project, Stephen Fox, had already

purchased the programmer for his half of this project, thus to save from buying two

programmers, the same programmer was used for the test server as for the test nodes.

3.2.2 FPGA Synthesizer and Programmer Selection

For the VHDL synthesizer and programmer, Altera’s free Quartus Il Web Edition
Software Version 7.2 was used. Quartus Il was chosen as the synthesizer over more
expensive products from vendors such as Cadence or Synopsys as the only software
capable of loading the Cyclone Il FPGA is the Quartus Il fitter and programmer. | have
also had a substantial amount of prior experience with using the Quartus Il software for
development, simulation and verification and thus it was any easy choice to use Quartus

Il for all necessary VHDL synthesizing, simulating and programming of the FPGA.

3.2.3 Electrical Schematic Editor Selection

CadSoft Eagle v5.3 was used for all electrical schematics. Eagle has the capability
to convert your electrical schematics into a layout for PCB manufacture. It also has a
built-in components list that includes most popular components which greatly speeds
up development time. Eagle is available for Linux, Windows or Mac based computers

and the University already had a license for Eagle.

Chapter 4. VHDL Design and Verification of FPGA-

Based Multi-Port UART

An early decision that had to be made was the division of processing and checking
tasks that are handled by the FPGA, the MCU, and the client, respectively. To keep the
costs down on the FPGA chip itself, as it is the most expensive single component in the
test server, it was deemed best to keep the design of the FPGA hardware as simple as
possible and leave the processing and checking tasks to the more capable, and less
costly, MCU and client. As the slowest portion in the pipeline of the test server is the
communication to the nodes over the RS485 connection, which is operating at a speed
of 100K Baud as compared to the system clock of 25MHz, the FPGA needs to be able to
buffer packets that are waiting to be sent to the nodes as the MCU is not capable of
buffering data with its overall lack of data memory. Thus the functionality of the FPGA
is essentially to be a multi-port UART with buffering capability;

The design of the hardware for the FPGA was done in a top-down manner in VHDL.
Thus the design process began with the largest component, the server itself, and
determined what it needed for inputs and outputs and what its general functionality
needed to be. The task was then subdivided into two halves: the first will handle data
coming in from the MCU and being sent out to the R5485 network. This module is called
MCU_to_485.vhd, it is described in detail in Section 4.2, and its code can be seen in
Appendix B. The second half of the server will handle data coming in from the RS-485
network and being sent out to the MCU, and this module is called rs485_to_MCU.vhd, it
is described in detail in Section 4.3, and its code can also be seen in Appendix B. These
two halves are then subdivided into smaller modules as was deemed necessary. The

design flow of each module in the system can be seen in Figure 4.1.

v
Create New Write VHDL _| Design Sample

A4

™ Module Code "] Input for
Testing System
A 4 A 4
Determine Design Sample v
Module Inputs Input for Testing Simulate in
Quartus Hi
A4 A4
Determine Simulate in \ 4

Module Outputs Quartus i Did module no
function correctly?

A 4 A 4

Create Module no Did module L Ad
Block Diagram function correctly? / Is System \K_’E

- 5
] yes finished?
yes Are any blocks o Integrate v Yes
s€— large enough to be\— Module into — Download to
their own module? FPGA and Test

Figure 4.1. VHDL Design Flow

4.1 VHDL Design - Server

The first portion of the server.vhd code that had to be determined was the system
inputs and system outputs, and consequently, the communication protocol with the
MCU also had to be designed. Since FPGA’s are hardware, and they operate in parallel,
as opposed to the MCU which is a serial device (it executes one command at a time
from the start of its program to the finish), some kind of arbitration was needed
between the two halves of the FPGA and the MCU, or they may both try to speak to the

MCU at the same time. There are two methods of doing this, have the two halves of the

FPGA talk to each other so that they can never communicate to the MCU at the same
time, or have all arbitration handled by the MCU. The first method was attempted
originally, but after simulating the hardware, the better solution was to have the MCU
handle all arbitration. Thus four handshake lines are needed, one request and one
acknowledge line for each half of the server hardware, plus the 8 bit wide data bus from
the MCU to the FPGA and the 8 bit wide data bus from the FPGA to the MCU giving a
total of 20 communication lines between the MCU and the FPGA. The outputs of the

server module were simple, one 16 bit wide bus for sending data out over the RS-485

Mcu data in ackl reql Reg2 ack2 Mcu_data_out
Ar Ar A
8
/ 8
4 4 v
Server
Mcu_to_485 Module 485 to_mcu
A 4 A& 44 Ar

v vy Xx16 vy VYYy x16

rs485_data_out (0-15) rs485_data_in (0-15)

Figure 4.2. Block Diagram of Server Module

network and one 16 bit wide bus for receiving data from the RS-485 network. Thus the

server module appears as in Figure 4.2.
For communication from the MCU to the FPGA, the MCU readies the data to be sent

and asserts the Req line, and when the FPGA asserts the ACK line, the data has been

successfully received. The MCU then de-asserts REQ and removes the data from the bus
and waits for the FPGA to de-assert the ACK line signifying that it is ready to receive
again. If the MCU has more data to send, this process is repeated. A waveform diagram

of this handshake process is shown in Figure 4.3.

Begin Sending Data All Data Received Ready to Accept More Data

1
1
1
]
i
]
1
1

REQ . , .

Ack f ; ; .

Data —< >
Request Asserted De-Assert REQ

Figure 4.3. Waveform of Data Transfer From MCU to FPGA
For communication from the FPGA to the MCU, the FPGA readies the data to be
sent and asserts the ACK line. When the MCU has received the data, it asserts the REQ
line and the FPGA de-asserts the ACK line and removes the data from the bus. The MCU
will then de-assert the_a REQ line and the process is repeated if there is more data to

send. A waveform diagram of this process is shown in Figure 4.4.

Begin Sending Data All Data Received Ready to Accept More Data

REQ E |
ACK] L
pata ——K__| D

ACK asserted De-Assert REQ

Figure 4.4. Waveform of Data Transfer From FPGA to MCU

4.2 VHDL Design - MCU_to_485 Module

The MCU_to_485 modaule, as stated previously, accepts the 8 bit wide data from
the MCU, using a handshake protocol with an acknowledge and a request line, buffers it
in a FIFO block and outputs it on the proper RS-485 bus, based on the high order 4 bits
of the address byte of the packet. Thus it needs one module to accept the input from
the MCU, one module to output the packet serially over the RS-485 connection, and one
module to buffer the data. A block diagram of the MCU_to_485 module can be seen in
Figure 4.5.

There is only a small amount of communication needed between the modules
within the MCU_to_485 module. Between the MCU_buf module, which accepts the
data from the MCU, and the FIFO module, which buffers all incoming data until it can be
sent out; there is an 8 bit wide data bus, the FIFO_full signal and an enable line. When
the MCU_buf module wants to send data to the FIFO, the EN line is asserted and the
data is sent. When the difference between the point in memory that is being written
to, and the point in memory that is being read from, is greater than 2048, which is one
quarter of the FIFO memory, the FIFO_full signal is asserted. When it is asserted, the
MCU_buf will not accept any new data until it is de-asserted. It can only be de-asserted
by advancing the read address pointer which happens when the rs485_output module
reads data from the FIFO to be sent to the test nodes.

Between the MCU_buf and RS485_output module there is only one line common
to both and that is the WR /busy signal. When the rs485_output is ready to accept new
data from the FIFO, it de-asserts the WR line and data is sent from the FIFO over an 8 bit
wide bus to the RS485_output module. The WR signal is continuously checked by the
MCU_buf module and when it is logic 1, the MCU_buf is able to output to the FIFO,
when it is logic 0, the MCU_buf cannot write to the FIFO, thus ensuring that the same
position in memory is not written to and read from simultaneously. The final signal that
connects the modules together is the data_avail signal. The FIFO asserts this signal

when the difference between the read and write address pointers is 32 or greater. This

signifies to the rs485_output module that there is data waiting in the FIFO to be sent
out to the RS-485 network.

Mcu_data_in ackl reql
A
8
A
MCU to 485 All devices have
CLK and RES inputs
that were
Mcu_in ack req removed for
clarity
> bUSV MCU_BUf Mem_en
FIFO_full data_out
4
A &
Y
FIFO_full data_in EN
FIFO
Data_avail
> WR data_out
A 8
y
data_in Data_avail
RS485 output
< WR
x16
y y
x16 J
\ A vy YY
rs485_data_out (0-15)

Figure 4.5. Block Diagram of MCU_to_485 Module

4.2.1 VHDL Design - MCU_buf Module

The MCU_buf module serves three main functions: communicate with the MCU
through the handshaking protocol described previously, accept incoming packets one
byte at a time, and write the packet, one byte at a time, to the FIFO module. It
accomplishes this by utilizing 4 internal 32 byte long buffers that store one packet each.
There are two internal pointers that indicate which buffer to use for reading in a new
packet and for writing out the last packet to the FIFO, called switch and writing
respectively. Switch is incremented when a packet is read in full from the MCU and
writing is incremented when a packet is written in full to the FIFO. The module can thus
both read in a new packet and write one to the FIFO at the same time. This functionality
is desirable as the FIFO module can become unavailable for writing if it is being written
to by the RS485_output module and it is desirable that communication with the MCU
not be disrupted in such a case as the MCU has very limited time to output the full

packet to the FPGA.

4.2.2 VHDL Design - FIFO Module

The FIFO module consists of a dual-port RAM megafunction, with storage of
8192 bytes, created by the Quartus Il software to my specifications and a custom
addressing, “wrapper” module that handles turning the RAM block into a FIFO block.
This “wrapper” module allows the FIFO to have very simple inputs as all addressing is
handled internally. The only input needed to write to the FIFO is to assert the EN line,
and the only input needed to read from the FIFO is to de-assert the WR line.

The term FIFO describes the operation of the module, as FIFO is short for First In,
First Out and thus the FIFO operates as follows. When a new byte of data is written to
the module, the write_addr pointer is incremented by one and when a byte of data is

read from the module, the read_addr pointer is incremented by one. Since both

pointers are initialized to 0 by a hardware reset, the first byte of data written in is the
first byte of data read out, thus First In, First Out, or FIFO.

The FIFO module also has two status flags, data_avail and FIFO_full. Data_avail
is asserted when there is a difference of 32 or more between the write_addr pointer
and the read_addr pointer. This signifies that there is a packet that has been written to
the FIFO that hasn't been read from the FIFO module. The FIFO_full flag is asserted
when the difference between the write_addr pointer and the read_addr pointer is more
than 2048. Since the total storage capability of the module is 8192 bytes (or 256
packets), this signifies that the FIFO is one quarter full. When this line is asserted, the
MCU_buf module will not accept any new data until some data is read from the FIFO.
This line was necessary to ensure that the data is not being written to the FIFO faster
than it is being read from the FIFO.

As previously stated, the FIFO also contains a dual-port RAM megafunction that
was created by Quartus to my specifications. The benefit of a dual-port RAM block as
opposed to a single-port RAM block is that it can be written to and read from at the
same time. This RAM module has two input ports and two output ports labeled port A
and port B, and thus also has two address buses, two data input and output buses, and
two enable lines. The RAM block was set up to write to the module only using port A
and to read from the module only using port B. Thus the port B data input bus and the
Write enable signal {(wren_b) can both be set to 0, and also since data is never read from
port A, the data output of port A is disregarded. Finally, when data needs to be written
to, or read from, the RAM module, the “wrapper” module simply sets the port A address
to write_addr and the port B address to read_addr, respectively. The waveform for
reading from the dual-port RAM block can be seen in Figure 4.6 and the waveform for

writing to the dual-port RAM block can be seen in Figure 4.7.

Figure 4.7. Waveform of Writing To Dual-Port RAM Module

The RS485_output module serves two main functions, to read in a packet of data
from the FIFO, one byte at a time and to write this data serially at a 100K baud
transmission rate, to the RS-485 bus that matches the high order 4 bits of the address
byte of the packet being sent out. Its operation is thus quite similar to the MCU_buf
module; however, the RS485_output module performs its function with only one 32
byte internal buffer instead of four.

The RS485_output module first reads in the packet from the FIFO module by de-
asserting the WR line and storing each byte as they arrive in the correct place in the
output buffer (named outbuff in the VHDL code of the module), it then switches to the
sending state of the module. In the sending state, since the system clock is running at
25MHz and the output Baud rate is 100K Baud, the clock needs to be divided by a factor
of 250. After the clock is divided, the module examines the high order 4 bits of the first
byte of the packet to determine the correct bus to output the data to, it then writes the
packet data serially to that particular output port of the module at the correct
transmission rate. It should be noted that even though the system is outputting at 100K
Baud, the system does not have a data throughput rate of 100Kbps (bits per second) as
there is a start bit of logic 0 and a stop bit of logic 1 and the start and finish of each byte,

respectively. Thus the effective throughput of the system is actually 80Kbps.

4.3 VHDL Design - RS485_to_MCU Module

The RS485_to_MCU module functions very similarly to the MCU_to_485 module,
but it does the reverse task. The RS485_to_MCU module accepts serial data over the
R5485 test node network, saves it as a 32 byte wide packet, and buffers it temporarily in
a FIFO Ram buffer until it can be transmitted back to the MCU using the same

handshake protocol as the MCU_to_485 module, as described in Section 4.1. The

RS485_to_MCU module, however, is made up of a significantly larger number of smaller
modules as compared to the MCU_to_485 module. Contained within the
RS485_to_MCU module are a module for outputting to the MCU, named
MCU_output.vhd, a FIFO module named RS485_fifo.vhd, 16 modules named
RS485_buf.vhd which buffer the serial data from each of the 16 RS-485 buses before
outputting that data to the FIFO, and finally a module named arbiter.vhd which handles
the arbitration between the 16 RS485_buf modules and the R$485_fifo module. A block
diagram of the RS485_to_MCU module can be seen in Figure 4.8.

As there are more modules making up the R$485_to_MCU module, there is also
more communication between these modules as compared to the MCU_to_485
module. Between the RS485_fifo module and the MCU_output module, there is an 8-
bit wide data bus for transmitting data from the FIFO to the MCU_output module, a
data_avail signal to indicate to the MCU_output module that the FIFO has at least one
unread packet stored within, and a WR signal that is held high by the MCU_output
module until it is ready to read data, upon which the signal is de-asserted and the FIFO
outputs the packet data one byte at a time to the MCU_output module.

The communication between the R5485_buf modules and the arbiter is slightly
more complicated. Each RS485_buf module has a data_avail line output and a busy
input connected to the arbiter. When the RS485_buf module has received a complete
package from the RS-485 network of test nodes, it asserts the data_avail line. The
arbiter will assert the busy line for that particular RS485_buf module when it is its turn.
The arbiter is also watching the status of the WR input line to the FIFO and when it is de-
asserted to logic O, the arbiter will not allow any RS485-buf module to communicate
with the FIFO. This is to ensure that it is impossible for the same address to be written
to and read from at the same point in time. The arbiter is a fairly simple rotating priority
arbiter, and its operation is described more fully in Section 4.3.3.

The last inter-communication between the modules within the RS485_to_MCU
module is between the RS485_buf modules and the RS485_fifo module. Each of the

RS485_buf modules has a tri-state logic mem_en line that is asserted to logic 1 when it

wishes to write to the FIFO and is in a high-impedance state otherwise. This allows all
mem_en lines to form a tri-state bus that connects to the EN input on the RS485_fifo

module. The RS485_buf modules also have an 8-bit wide, tri-state logic data_out bus

req2 ack2 Mcu_data_out
A A
8
\ 4
A A
RS485 v
req ack Mcu_out All devices
tO_MCU have CLK and
< WR Mcu_output RES inputs
data_in Data_avail
A A
R
data_out
Rs485_fifo)
Data_avail >
Y P WR data_in EN <
A T T x16
) 8
x16
M 8 8
em_en / A8
&
\ 4
Data_avail busy Data_avail Mem_en
d " Pata_ arbiter Data_ X8 .
ata_out x8 i i1e- data_out
vail0:7 Avail8:15
RS485_buf RS485_buf
- i ENO:EN15 i -
| busy \ 4 v \ 4 busy
data in data in
4 %16 A
A
x16 T
rs485_data_in (0-15)

Figure 4.8. Block Diagram of R$485_to_MCU Module

that is used for sending data to the RS485_fifo module and is set to a high-impedance
state when not in use. This allows the data_out buses from each RS485_buf module to

form a tri-state bus going to the rs485_buf module.

The MCU_output module has two main functions, to read data from the
RS485_fifo module and to output this data over the 8 bit wide data bus to the MCU
using the handshaking protocol previously described. When the MCU_output module is
not in its sending, or output, stage, it is checking the data_avail flag from the RS485 _fifo
module, if the flag is high, data is waiting to be read and the module goes into its read
state. For as long as the module is in its read state, it holds the WR line to a logic 0 and
accepts the data from the RS485_fifo module one byte at a time. When the module has
accepted an entire packet from the FIFQ, it switches into its sending state. While in its
sending state, the module asserts the ACK line and places the data onto the output bus
(named data_out in the VHDL code). When the MCU asserts the REQ line to say that it
received the data, the send_count signal is incremented and ACK is de-asserted. The
module continues this operation until send_count reaches 32, at which point it stops
asserting ACK and switches out of its sending state and begins checking for the

data_avail flag again.

4.3.2 VHDL Design - RS485_fifo Module

This module functions exactly the same as the FIFO in the MCU_to_485 module,
with a few exceptions. The first difference is that the size of the RAM in the RS485_fifo
module is only 1024 bytes, or 32 packets. This RAM block can be smaller because data

will be coming in much slower over the RS485 connection as compared to the

connection between the MCU and the MCU_buf module. The second difference is that
this module does not have a FIFO_full signal. The reasoning for this is the same as for
why the RAM block can be smaller; since the data is coming in much slower, the data
can be read out of the FIFO fast enough that the possibility of overflowing the FIFO is

very low.

4.3.3 VHDL Design - Arbiter Module

The arbiter module is a fairly simple rotating priority design that handles the
arbitration of the rs485_buf modules in their communication with the rs485_fifo
module. The module has 16 data_in inputs, one from each rs485_buf module, which is
used to tell the arbiter that the particular buffer in question has data waiting to be sent
to the FIFO module. There are also 16 EN outputs from the arbiter that connect to each
of the rs485_buf modules to tell that particular module that it may now speak to the
FIFO module. There is an internal 16 bit array, called en_array, which has only one bit
set fo logic 1 at a time; it is used as a pointer to keep track of which buffer is the one to
speak to the FIFO. When a full packet has been sent to the FIFO or if the buffer module
that the en_array is pointing at has no data to send, then the en_array is rotated left by
one bit to aIIoW the next buffer to speak. The operation of the arbiter in flowchart form

is shown in Figure 4.9.

Is enable array yes Enable the bufferto |

pointing at a send data to FIFO
buffer with data?
no v
v

Increment count

Rotate enable array to
point at next buffer

\ 4

/ Is count>34? \vﬂ‘o‘

es
v’

Rotate enable array to
point at next buffer

A

Set count=0

Figure 4.9. Flowchart of Arbiter Operation

4.3.4 VHDL Design - RS485_buf Module

The RS485_buf module is one of the more complicated modules in the system; it
contains a small 128 byte (4x32 byte packet capacity) two-port RAM block megafunctibn
created by Quartus Il to my specifications, and a “wrapper” that controls both the RAM
block and the module as a whole. The module functions similarly to the MCU_buf
module, there are two states the system can be in, it is either waiting for, or accepting, a
packet over the RS-485 connection or it is sending the packet, one byte at a time to the
rs485_fifo module.

When the rs485_buf module is waiting for a packet to begin transmitting over
the RS485 connection, it is waiting for the line to be driven low. This signifies the start
bit of the packet transmission, and the modules clock is synchronized to the moment it
arrives so that it is ready to accept each bit of the packet every 250 clock cycles after
that. The module uses a running “average” to determine what each bit of the

transmission is. It does this as the line may have some noise present and there may be a

certain amount of “bounce” to the signal. The module, obviously, must not confuse a
temporary fluctuation of the signal from 0 to 1 or from 1 to 0, with the actual value;
thus, for every bit of the transmission, the module samples the input signal 10 times and
determines the value of the bit based on the average of these ten values. Once a byte
of data is received, the packet byte count is incremented by 1 and the byte is stored in
the internal RAM module. When the entire packet has been received, the system
switches to its sending state and awaits the signal from the arbiter to begin sending to
the rs485_fifo module.

When the arbiter signals to the buffer module that it may begin sending the data
to the FIFOQ, it starts pulling the data out of the internal RAM module and sends it to the
FIFO module. The timing is a little more complicated as compared to the MCU_buf
module as the delay of the internal RAM block and the delay of the FIFO module need to
be taken into account; both of these RAM modules have latched inputs, and thus the

signals need one clock period before the data is actually saved.

4.4 VHDL Design - Server_Test Module

It quickly became apparent that to simulate or test the VHDL code for the server
module, a test bench “wrapper” module would need to be created. This test bench had
to simulate the server module being connected to the MCU. Without the test bench
simulating the connection to the MCU, nothing would happen with the server rﬁodule as
there would be no REQ signals or data coming in to start the server module running.

The server_test module has two main states, the first is used to send packets to
the server module and the second is used to accept data from the mcu_out bus of the
server module. For physical testing purposes, the packets that were sent to the server
module would instruct the test node to turn on the external power relay for the
motherboard power and then to turn off the relay. These packets were used as the

results of their successful operation are very obvious to the naked eye. Not only can the

motherboard clearly be seen to have power, but the relay “clicks” when it is toggled on
or off.

The second state of the server_test module simulates the REQ signal response
the MCU would provide if the server module were to send data to it. Nothing is done
with the data that the server module outputs, but without toggling the REQ signal, the

mcu_output module would simply freeze until the signal is asserted.

Chapter 5. Development of C Code for Test Server

Embedded Microcontroller

As described in Chapter 3, this project requires the use of a microcontroller with

built-in Ethernet capability. The microcontroller that was chosen for this project is

made by Microchip and is part number PIC18F97J60. The PIC18F97J60 microcontroller

has the following specifications [11]:

100 Pin microcontroller with 70 1/0 pins
128Kbytes of Flash Program Memory
3808 bytes of SRAM Data Memory

2.778 to 41.667 MHz Clock Speed

5 Timers

4 External Interrupt Pins

2 Enhanced USART modules

10-Bit, 16 Channel A/D Converter Module

~ |IEEE 802.3 Compatible Ethernet Controller that Supports One 10Base-T Port

8-Kbyte Transmit/Receive Packet Buffer SRAM

The functionality of the MCU needs to be broken into small, manageable sections of

code so that the MCU has enough time to handle all processing that is required of it.

Thus the MCU, after initialization procedures have been completed, enters an infinite

loop that contains all processing steps that it must complete in each cycle of the MCU

code. This infinite loop contains the following functions which will be described in more

detail in the following sections: StackTask and StackApplications, which were part of

Microchip’s TCPIP Stack software and are required to handle communication over the

Ethernet connection, BerkeleyTCPServer which was developed by Microchip and then

altered to provide the needed functionality of this project. This loop must also execute

CRC16, which is used to calculate the CRC check value, FPGA_transmit, which handles

sending data to the FPGA using the previously described handshaking protocol,
FPGA_receive, which receives data from the FPGA and checks the CRC value, and finally
a routine to check the MCU board IP address and display it on the development kit LCD

display.

5.1 Initialization Procedures

The initialization procedure for setting up the MCU is quite a long procedure that
involves initializing 5 separate aspects of the MCU. The first initialization is contained
within a function that was part of the Microchip TCPIP Demo App and is used to
configure settings on the MCU board. The function is called InitializeBoard() and is used
to initialize the LEDs on the MCU board, the Phase Lock Loop (PLL) for the main system
clock, the USART module, and the Baud rate for transmissions. This function also
enables interrupts and sets up the external memory chips. The second initialization is
contained within the function Initialize() and is used to set up the data direction on
ports B, C and D which are used for the ACK and REQ signals, outputting to the FPGA and
accepting inputs from the FPGA, respectively. The next initialization is to set up the LCD
display on the development kit board and is used to display the version of Microchip’é
stack software currently in use as well as the IP address of the MCU.

The remaining initialization procedures were part of the TCP/IP stack software
provided by Microchip, and perform several key tasks to set up the TCP/IP stack.

Ticklnit initializes the Tick.c functions which provide the TCP/IP stack with a large scale
timer capable of keeping track of anything from a few microseconds to a few hours.
InitAppConfig initializes stack and application variables which are necessary for stack
operation. These include the IP address, DNS Server values and SNMP server
initialization. The next process initializes the development kit reset buttons, and the
final function, Stacklinit, initializes the core stack layers such as MAC, TCP, UDP and

application modules such as HTTP and SNMP.

5.2 Main Processing Loop

The main processing loop of the MCU C code executes the core tasks given to the
MCU. The main loop handles accepting and sending packets over the TCP/IP socket to
the PC client. It also communicates with the FPGA, both sending packets to the FPGA
and accepting packets from the FPGA. This communication is using the handshaking
protocol described in Chapter 4. All CRC check values are calculated in the main loop,
both before sending to the test nodes, and upon receipt of a package from the test
nodes to ensure that no data corruption occurred during the transmission from the
node to the server. The main loop must also handle all other TCP/IP stack related tasks
as required to allow the Ethernet communication to function properly. A flowchart of

the main processing loop operation is shown in Figure 5.1.

loop
Initialize Board, MCU, StackTask() checks for Calculate CRC on new
and /O Ports incoming packets packet
4 L 4 v
Write to LCD Display StackApplications{) invokes Send packet to FPGA
core stack applications
4 \ 4
Initialize TCP/IP Stack \ 4 Receive any waiting
application layers Listen on TCP/IP Socket, accept packets from FPGA
transmission from client, save
v packet
\ 4
Check CRC

A 4

Send packet over socket to
client

Figure 5.1. Flowchart of MCU Main Processing Loop Operation

5.2.1 Stack Operations

The first function calls of the main MCU processing loop are functions that came
as a part of Microchip’s free TCP/IP software: stacktask() and stackapplications(). The
stacktask() function is contained within StackTsk.c file that came with the TCP/IP stack.
When stacktask() is called, the function fetches a packet and throws away any old ones,
and then transfers the packet to the appropriate handler to begin processing the various
layers that are added to a data packet as it passes through the TCP/IP protocol to the
MAC, and then onto the Ethernet connection. This function also checks the incoming
address on the packet to ensure that it is meant for this particular IP address.

The stackapplications() function is also found in the StackTsk.c file and is used
after initializing the stack with the Stackinit() function. Stackapplications() loads all
application modules that the user chose to include in the TCPIPConfig.h header file
which was created by Microchip’s TCP/IP Configuration Wizard program. These
application modules include, but are not limited to, the HTTP server application, FTP
server application, SNMP server application, Telnet server application, Reboot server

application, and several others.

5.2.2 Accept and Store Packet

After initialization routines have been executed and all necessary stack
operations have been taken care of, the next function that the MCU needs to perform is
to accept the data packet from the client over the TCP/IP socket. Two functions are
needed for retrieving the data packet, storing the data array and calculating the CRC16
value titled BerkeleyTCPServer()and crc16(). The BerkeleyTCPServer() function was part
of Microchip’s free TCP/IP stack software, though its functionality was to merely echo
the data received back to the client. Thus several changes needed to be made so that

the function did not merely echo the recently arrived data, but instead stored it in

memory, and also, so that the data sent back to the client is not only an echo of the
received data, but is also any data that was received from the FPGA on the previous
cycle that is waiting to be sent back to the client program. Since the data sent over the
TCP/IP socket is raw binary data, no type conversions are needed before the data can be
processed. Finally, the crc16 function does exactly what its name implies, it is sent the
packet one byte at a time and it calculates the 2 byte long CRC-16 value of the packet
and adds it to the end of the packet.

5.2.3 Communication with FPGA

Two functions are required for communication with the FPGA: FPGA_transmit()
and FPGA_receive(). FPGA_transmit() handles the handshaking protocol needed to send
data to the FPGA one byte at a time. Since FPGA_transmit requires the CRC value,
before FPGA_transmit() can be called, the CRC needs to be calculated by the crc16()
function. After a packet has been transmitted to the FPGA, FPGA_receive is called to
see if there is any reply packet data waiting to be sent from the FPGA to the MCU, if
there is, it applies the previously described handshake protocol and accepts the data
one byté at a time. The function then internally calls crc16() to calculate the CRC value,
compares it to the one that is attached to the packet, and if they don’t match, it
overwrites the ACK value of the packet with 170 in decimal (or 10101010 in binary). If
the ACK line from the FPGA is not asserted upon immediate execution of the function, it

will wait for a count of 256 before leaving to execute the MCU’s other functionality.

Chapter 6. PC Client Design

This section details the design process and methodologies used for creating the PC
client software that is running the entire system. The PC client is used to input the hex
file of input packets, keep track of whether a node responds to a sent packet and re-
send any packets that were not responded to. If there is a problem with the CRC, either
when the node receives the packet, or when the test server does, the client code will re-
transmit that packet. The PC client also sorts the outgoing packets to ensure that the
same bus does not receive a packet in consecutive transmissions, thus reducing the
likelihood of bus contention issues when the nodes reply.

The client code is written for, and on, a Windows-based PC, and thus if the end
user wishes to use a different platform, some modifications to the client code are
needed. These changes are outlined in Section 6.3. Also, the client is written for I1Pv4,
and modifications will need to be made to the socket code if the user wishes to have the

system be IPv6 compatible.

6.1 TCP Versus UDP

Though it was requested by AMD/ATI to use the TCP protocol to communicate to
the test server, a comparison of TCP with its alternative, UDP is necessary for a full
understanding of the TCP protocol and why it was chosen for this project.

The User Datagram Protocol (UDP) is a connectionless protocol, or in other
words, it does not require a direct connection from client to server. With UDP, a single
socket can send and receive packets to many computers without any handshaking
taking place. The lack of handshaking means that the reliability of the transmission, the
order of the data sent out and the data integrity are not guaranteed. Thus the data, or

datagram, sent out using UDP can arrive out of order, appear duplicated or not arrive at

all [17]. The process for sending data over a socket using UDP is shown in Figure 6.1 and

the process for sending data over a socket using TCP is shown in Figure 6.2.

Server Client

. ind
bind() —bo;:io(n)al

" Blotks witil date
receiwved
Data({request)

Datalreply}

[_close)

Figure 6.1. Flowchart of UDP Operation [17]

Server

bind{()]
I listen{) ,

Client

accept ()

block Comnection
until establishment
there are. connect () |
acomnection 1 fvisintohadl
from
client

|

Data (request)

read () rl’. 1 write)

1

Process
request
Data (reply)
write{} f 7]‘1 read{}

close ()] close () I

Figure 6.2. Flowchart of TCP Operation [17]

To effectively use UDP, the application must handle the task of ensuring good

communication. This transfer of responsibility allows the header on a datagram to be

very small and thus it is more efficient {18]. An analogy to the UDP protocol would be

the standard mail service. You can send out as many letters you want to as many places
you want, but there is no guarantee they will ever arrive at their respective destinations,
or the order in which they will arrive [19]. Therefore, due to the unreliability of the UDP

protocol, the TCP protocol is the one chosen for this project.

6.2 PC Client Operation

The client program, which is in control of this entire test system, must perform
several tasks. First of all, it needs to send the data packets over the TCP/IP socket to the
microcontroller on the test server hardware. The client also needs to accept replies
from the microcontroller over the socket, save the replies in an output file, and examine
their contents. Specifically, the client program needs to examine the acknowledge byte
of the packet to determine if there were any communication issues between the test
server and the test node, this includes non-matching CRC value at the test node, non-
matching CRC value at the test server and also non-existing command given to the test

node. The pertinent ACK values are outlined in Table 6.1.

Table 6.1. Acknowledge Values and Their Meaning
Acknowledge Value
Decimal | Binary Meaning

255 |1 11111111 | CRC Matched, command was processed
0 | 0000 0000 | CRC did not match at node
15 | 0000 1111 | Command was unknown
240 | 1111 0000 | Super-User condition invoked
3) 00000011 | Reset was triggered by node MCU timer
170 | 1010 1010 | CRC did not match at server

The client program must also keep track of the time in which packets were
transmitted, to know if a reply should have been received at a certain point in time. The

client must keep track of whether a reply has been received for a particular packet that

was transmitted, and if the node cannot be reached by 4 transmission retries, the node
is officially recorded as not being connected to the network.

The final task of the client is to sort the outgoing packets in the queue to ensure
that the possibility of a bus contention on one of the test node buses is reduced as
much as possible. This is handled entirely by the SortPackets() function in the client.c
program and its operation is described more fully in Section 6.2.1.

The final thing that should be mentioned is that the client program was
developed on a windows based PC, and thus some changes must be made to the code
to get it to operate on a Unix/Linux based machine. These changes are outlined in

Section 6.3.

6.2.1 Packet Sort Algorithm

The packet sort algorithm is very important to the functionality of the client code
as it is the only measure in place that limits the possibility of bus contention problems
with the test nodes. Though the nodes cannot initiate communication with the test
server, per the communication protocol in use in this project, the delay in the response
from the node is somewhat of an unknown. Thus if two consecutive packets were sent
out to the same bus, let alone the same node, the two nodes could have their response
communication overlap for a certain amount of time, causing a bus contention and
possibly data corruption. The packet sort algorithm is thus in place to reduce this
possibility by sorting the outgoing packets such that there is at least a three packet
transmission delay between transmissions to the same bus. A flowchart describing the
functionality of the packet sort algorithm is shown in Figure 6.3.

The packet sort function operates by keeping track of the last 4 buses that were
communicated to, as well as, with the help of the function nodelastcommto(), the
record of which nodes in the system have recently been communicated to. Any
outgoing packet has its address field checked against the last 3 buses that were

communicated to, and if it matches one of those three, it is swapped in the outgoing

packet queue with a packet that is destined for a different bus. The 4" last bus
communicated to is kept for the nodelastcommto() function. If all nodes have been
recently communicated to, the 0™ node on the 4™ last bus communicated to is sent a

“check” packet, and the record of which nodes have been recently communicated to is

re-initialized.
Send packet to all L4 }
nodes to see who's Are there packets no Mark packet as
connected waiting? having been sent
\ 4
l yes| Send check
v packet to node y
Sezgfrzazknm';h :0 1 Read in packet from all last comm. to Update
P g marked as having not been bus_last_sent_to

present nodes

sent and examine address

: |

A\ 4

h 4

' Write a ‘0’ into
Copy mask into] corresponding place
last_comm_to matrix Same bus as either of no in fast_comm_to
last 3 times? matrix
yes
v I y \ 4
Check for presence ; no
of an chets Put packet in Is matrix empty?
Y P Is there a packet queue to be
waiting to be waiting to be senton a sent to FPGA
ordered different bus? yes -
A4
Copy mask into
v ves v no last_comm_to matrix
Swap Packets in Send check
Queue packet to node
last comm. to
v L 4 y
\ 4

Figure 6.3. Flowchart of Packet Sort Algorithm

6.3 Changes to Adapt Client.c Code to Unix/Linux

The client code was written in C on, and for, a Windows-based PC environment.
There are several changes that must be made to the code to get it to function properly
in a Linux-based environment. The changes that must be made are only to the socket
operations of the client, and are fairly simple to make. The differences between the two
environments will be shown by performing a side by side comparison of the UNIX/Linux
code to the code for a Windows system.

The first difference is in the header files of the code and is shown in Table 6.1.
The include file for sockets in Windows is winsock.h, whereas for Unix, 4 different

header files need to be included.

Table 6.2. Header Differences, Unix vs. Windows [19]
Unix Windows

#include <sys/socket.h> | #include <winsock.h>
#include <sys/types.h>
#include <arpa/inet.h>
#include <netinet/in.h>

The next difference is due to the fact that the winsock needs to be initialized

using WSAStartup(). The associated code is shown in Table 6.2.

Table 6.3. Socket Initialization Differences, Unix vs. Windows [20]

Unix Windows
int main(int argc, char *argv[]) | int main(int argc, char *argv[))
{ {
Variable Initializations *Variable Initializations*
WSADATA wsaData;
serviP=argv[1}; serviP=argv[1];
dataServPort=atoi(argv(2]); dataServPort=atoi(argv{2]);
if (WSAStartup(MAKEWORD(2,0), &wsaData) = 0)
fprintf(stderr, "WSAStartup() failed");

The last difference is in regards to the shutdown of the socket application. The

side by side comparison of the code is shown in Table 6.3.

Table 6.4. Socket Application Shutdown Differences, Unix vs. Windows [20]

Unix Windows
close(sock); closesocket(sock);

WSACleanup();
exit(0); exit(0);

A more minor detail, but worth mentioning, is the difference in socket function

error reporting. The side by side comparison is shown in Table 6.4.

Table 6.5. Socket Error Reporting Differences, Unix vs. Windows [20]

Unix Windows
void DieWithError(char *errorMessage) | void DieWithError(char *errorMessage)
{ {
fprintf(stderror, "%s: %d\n", erorrMessage,
perror(errorMessage); WSAGetLastError());
exit(1); exit(1);
} }

All other socket functions perform in exactly the same way whether you are
programming on a Windows or Unix machine. An alternative method exists, however,
where conditional groups are used to make the code run on either system. This is
implemented in the client.c code for this project. An example of this, executed with the

socket header calls, is shown in Table 6.6.

Table 6.6. Conditional Group C Code Example - Header Calls
//if Windows system
#ifdef WIN32

#include <winsock.h>
//if Linux/Unix system
#else

#include <sys/socket.h>

#include <sys/types.h>

#include <arpa/inet.h>

#include <netinet/in.h>
#endif

Chapter 7. Conclusion

This thesis described the design and construction of the test server for a custom
automated test environment that is capable of testing up to 256 motherboard/GPU test
nodes. The test server hardware consists of an Ethernet-enabled MCU, an Altera
Cyclone Il FPGA and an RS-485 transceiver network. The system as a whole will consist
of one test server which has the capability to have 16 buses of 16 test nodes each,
connected to it. A custom C client program was also created to provide the data packets
that will be sent to the node network.

The basic functionality of the project is as follows:

1. Client software either creates, or reads from a file, a list of data packets, sorts
them to reduce bus contention, and sends them over a TCP/IP socket to the
MCU

2. The MCU converts the data packet from a character string with numbers
encoded in hexadecimal to an array of integers and calculates a CRC-16 check
value for the packet

3. The MCU ad.ds the CRC-16 value to the end of the packet, making a total of 32

bytes and transmits the packet one byte at a time to the FPGA

4. The FPGA accepts the packet using a simple handshake communication protocol

and buffers it until it is ready to transmit to the RS-485 node network

5. The FPGA will then transmit the packet over the RS-485 network to the

appropriate node as given by the address byte of the data packet

6. The FPGA waits for a response from the node, accepts it when it arrives, and

buffers the response packet until it can transmit it to the MCU

7. The MCU accepts the packet from the FPGA, checks the CRC value for any errors

and transmits it back over the TCP/IP socket to the client program

8. The client accepts the response packet, if the ACK field checks out ok (i.e. The

CRC was verified correct at both ends of the RS-485 transmission), it finds the

original packet and marks that a response has been received. If the ACK does
not check out, the original packet is re-sent over the socket

9. The client then checks all of the original packets to see if there are some that

never received a response. If there are, it will re-transmit those packets over the
socket to the MCU

The first step in developing the project was to come up with a list of specifications
for the system as a whole. These were provided, in large, by AMD/ATI, as the system
will be utilized by them to functionally test their GPU’s. From the specifications of the
system, the components for the project could be chosen to meet those specifications.
For the prototyping of the system, development kits were utilized instead of custom PCB
layouts of the test server and test node boards, mainly due to the cost, both in terms of
time and money, of getting custom PCBs manufactured. Once the components were
chosen, the longest step in the process could take place. This consisted of designing and
writing VHDL code for the FPGA test server module, designing and writing C code for the
MCU, designing and creating the RS-485 transceiver board, designing and writing C code
for the client program, and testing and verifying each of these components individually,
and together as a system.

This version is the second iteration of the project, and was designed to correct the
shortcomings of the original project, as well as expand its capabilities. There were
several problems with the first version of the project, and the choice of components,
transmission media and protocols has successfully dealt with these issues. The choice of
a differential signaling communication standard (RS-485) removed the inherent galvanic
isolation problems with the first generation of the project. The design of a custom test
server using low-cost components has reduced the high cost and complexity of the off-
the-shelf digital I/O board, which was in use for the first generation, as well, the system
flexibility has been greatly improved. Finally, the choice of a daisy-chain network
topology reduced the amount and length of cabling that is needed to implement the full

network.

7.1 Test Server Limitations

One final, important consideration is in regards to the inherent limitation of the

number of test nodes connected to the test server. Though the packet structure only

allows for one byte of data for the address of the test node, and thus only 256 addresses

are available, if the final user of the system wished to add more nodes to the test server,

the packet structure is not the only portion of the project that would have to be altered.
The nature of the communication between the FPGA and the MCU would likely also
need to be re-examined if there were more nodes on the network. This is due to the
fact that the acknowledge line from the FPGA that lets the MCU know that there is data
to be sent back to the client is not on an interrupt pin of the MCU. The MCU merely
polis the ACK2 pin once every iteration of the main processing loop, waits for a count of
256, and if the ACK2 pin is not asserted, it leaves the function and does other tasks. If
the number of nodes was increased beyond 256, however, this would likely have to be
altered in some way, most likely by placing the ACK2 pin on an I/O port of the MCU with
interrupt capability. As the number of nodes increases, the number of packets that
need to be sent back to the client will also increase, and at some point the polling
functionality of the MCU will not be fast enough to service the number of requests to
send data. This would likely cause the loss of data that is intended to be sent back to
the client. Thus, if the end user wishes to increase the number of nodes under test, the

easiest method of accomplishing this is to simply add a second test server.

7.2 Thesis Contributions

The final deliverable of this project is a novel solution to a complicated problem.
Though the idea of an automated test environment is not a new one, they have been
around in one iteration or another for aimost 50 years, the implementation of a low-
cost, fully programmable and upgradeable system to test large batches of ASICs is not

frequently seen, at least in the public domain. Though the implementation of the test

server did not use any methodologies that were new, the combination of using a
microcontroller with built in Ethernet capability to communicate through a custom
UART module implemented on an FPGA to a network based on the RS-485 electrical
specification is entirely new.

Based on the relatively small availability of different Ethernet-enabled
microcontrollers, the market penetration of Ethernet microcontrollers in industry is still
fairly small. Thus, the use of one in this project, as opposed to en external Ethernet
controller, or some other communication medium all together such as USB, or even
wireless communication like Bluetooth or something similar, is also something that has
not been done much in the past.

By getting this system on-line, and by allowing the nodes to be remotely
upgradeable through the bootloader program, this project has also almost completely
removed the need of having a person in the same room as the running test network.
Once the system has been “plugged in”, the system will only need hands on attention if
one of the nodes detects a critical failure that leads to out of control temperature
increases or voltage swings.

The final goal of this system, however, where the test network is completely
configurable, giving it the ability to functionally test any piece of electronic equipment,
is the most novel idea presented in this thesis. Much of the design of such a system is
performed here, though future work is definitely required. For instance, the hardware
of the test server, and by that | mean the MCU, FPGA and transceiver network, does not
care what type of data passes through it. The only pertinent fact that the test server is
concerned with in relation to the data packets, is their length in bytes. The only change
that is needed to the test server to get it to control any kind of test node is to alter the
“babysitting” portions of the client code. These portions of code are the ones that verify
that responses were received from the nodes and that the responses, and acknowledge

fields in the responses, are formatted properly.

7.3 Test Server Verification and Final Results

As of this writing, all C and VHDL code has been completed and several stages of
final testing have been performed. The PC client software has been tested extensively
communicating with the MCU and the communication over the TCP/IP socket to the
MCU is functioning properly and all “babysitting” logic of the client software is
functioning properly. In addition to this, the RS485 transceiver prototyping board has
also been extensively tested and functions flawlessly. The VHDL code running on the
FPGA has been simulated and functions properly, and when using the test server test
bench (server_test.vhd) implemented on the FPGA, data is being transmitted over the
RS485 network at the proper Baud rate to the test node, though some bugs need to be
worked out of the system. Finally, the MCU C code is functioning properly, though the
development kit has a shortage of available input/output pins that are not tied to other
functions implemented on the board. This causes problems with the communication to

the FPGA and also needs more work if it is to function at full capacity.

7.4 Future Work

Future work on this project could move in three different directions. The first
would be to make a more user-friendly front-end client program with a graphical
depiction of the status of the test nodes, the second would be to design the system to
be totally auto-configurable, allowing it to test any electronic system, instead of the
motherboard/GPU test node that is implemented in this version. Finally, the last area of
future work would be to implement functionality to the test server such that the test
server MCU could update the test server FPGA hardware.

As of this writing, the user interface of the client program is extremely simple.
The end-user simply creates a text file of data packets, written in hexadecimal, that they

would like executed by the test nodes and then feeds this file into the client program.

The client program is then automated to handle outputting these packets to the test
network. Unfortunately, with this setup, there is no easy way to suddenly add a new
packet to be transmitted to the test node network.

The client program would also benefit from a graphical depiction of the status of
the test network. This could be executed by having the client render a graphical
depiction of the network on the screen, with appropriate displays of temperature,
voltage and peripherals available for each test node, as opposed to outputting the
received packets from the test network to a text file that then must be interpreted.

The second area of future work with this project, turning the system into one
that is configurable by the end user, is a much more ambitious undertaking, and should
be the ultimate end goal of a project such as this. The expansion of this system to one
that is completely configurable to allow it to test any electronic system was described
briefly in the previous section on thesis contributions, but more discussion on the topic
is needed here. As stated in the above section, the hardware of the test server does not
examine the contents of the packets that are passed through it, and thus any data can
be transmitted over the network to the test nodes. The only pertinent information that
the server hardware examines, and in fact, depends on, is that the length of the packets
is 32 bytes long. The ability to include any information in the packet, in any format,
means that any test node can be plugged into the network and the information passed
to the server by the client will, with absolute certainty, be passed along to the test node.

The only changes to this system that would be needed, to accompany a change
to the test node, are to the client software. The client software is continuously
examining the second byte of the received packets to see if the acknowledge byte is an
acceptable value, and if it is not, it re-transmits the packet. Also, in this configuration of
the system, some commands are known to take more time to execute, for instance, the
process of turning off the motherboard by using the opto-coupler can take several
seconds to execute, and thus the client software needs to give it enough time to
execute before it tries to communicate with that node again. Thus, if a test node was

introduced to the test server that had packets with the acknowledge byte as the third

byte, or if some functions of the test node required large amounts of time to execute,
the client software would have to be updated to include these new specifications.

One way to implement such a configurable system is to have a file that is loaded
upon initial client start-up with all pertinent node specifications included within. This
file would instruct the client program as to the packet structure and to such special
cases as the ones mentioned above where a node needs a long period of time to
perform a function.

The final area of future work could potentially save much time in the future
incarnations of the project, as well as help aid this system to be more auto-configurable.
This area is to provide the test server MCU with the ability to update the hardware on
the test server FPGA. A new command would have to be created in the packet structure
command set that would tell the MCU that the incoming packets are intended for re-
writing the hardware currently installed on the FPGA chip. An external RAM would
likely also be necessary to store all the reconfiguration data until it is all received at the
MCU as the file could potentially be quite large. The MCU would thus also need the
ability to interface with the programming pins of the FPGA to place it in programming
mode and to allow the new data to be passed into the FPGA.

With these areas of future work set aside, the system in its current configuration
has full functionality and performs to all specifications outlined to us by the end-user,
AMD/ATI of Markham. The system also includes enough expandability and flexibility to
provide them with the ability to test just about anything that can communicate with

digital logic circuitry.

References

1. IEEE. Automated Testing. Aeropsace and Electronic Systems Magazine, IEEE. October
2000, Vol. 15, 10, pp. 125-130.

2. United States Department of the Navy. U.S. General Accounting Office, Staff Study,
Versatile Avionics Shop Test (VAST) System AN/USM-247. Washington, D.C. : United
States General Accounting Office, February, 1973.

3. National instruments. Modular instruments. [Online] National Instruments. [Cited:
September 22, 2009.] http://www.ni.com/modularinstruments/.

4. Teradyne. Semiconductor Test. [Online] Teradyne. [Cited: September 22, 2009.]
http://www.teradyne.com/flex/FLEX.html.

5. Drenkow, G. Future Test System Architectures. Instrumentation & Measurement
Magazine, IEEE. August, 2005, Vol. 8, 3.

6. Perrin, B. The Art and Science of RS-485. Circuit Cellar. [Online] July 1999. [Cited:
September 25, 2009.]
http://www.circuitcellar.com/library/ccofeature/perrin0799/index.asp.

7. Microchip. Ethernet Solutions with Integrated MAC and PHY. Microchip. [Online]
[Cited: September 23, 2009.]
http://www.microchip.com/stellent/idcplg?ldcService=SS_GET_PAGE&nodeld=2504.
8. Freescale Semiconductor. MCF532X: V3 ColdFire Microprocessor with LCD driver,
Ethernet, USB and CAN. Freescale Semiconductor. [Online] [Cited: September 23, 2009.]
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MCF532X&fsrch
=1.

9. Digi International. NET+ARM Microprocessors. Digi International. [Online] [Cited:
September 23, 2009.] '
http://www.digi.com/products/embeddedsolutions/microprocessors.jsp.

10. Atmel. AVR32 32-bit MCU. Atmel. [Online] [Cited: September 23, 2009.]
http://www.atmel.com/products/avr32/uc3/uc3_2.asp?family_id=682.

11. Microchip. PIC18F97J60 Family Data Sheet. U.S.A. : Microchip Technology Inc., 2008.
12. €CSinc. 3.3V Ethernet Controller Development Kit. Custom Computer Services, Inc.
[Online] [Cited: September 23, 2009.]
http://www.ccsinfo.com/product_info.php?products_id=proethkit.

13. Microchip. PICDEM.net 2 Development Board. Microchip. [Online] [Cited:
September 24, 2009.]
http://www.microchip.com/stellent/idcplg?ldcService=SS_GET_PAGE&nodeld=14068&d
DocName=en028217.

14. Altera. Literature: Cyclone Il Devices. Altera. [Online] [Cited: September 23, 2009.]
http://www.altera.com/literature/lit-cyc2.jsp.

15. Terasic. FPGA Systems. Terasic Technologies. [Online] [Cited: September 24, 2009.]
http://www.terasic.com.tw/cgi-
bin/page/archive.pl?Language=English&CategoryNo=39&No=.

16. Linear Technology Corporation. LTC485 Low Power RS485 Interface Transceiver.
Milpitas, CA : Linear Technology Corp., 1994.

17. Linus Socket Part 2: Fundamentals. The Tenouk's C, C++, STL, Win32, Winsock, MFC
and Linux Socket Tutorials. [Online] [Cited: September 29, 2009.]
http://www.tenouk.com/Module39a.html.

18. Kristoff, John. The Trouble with UDP Scanning. [Online] March 11, 2002. [Cited:
October 1, 2009.] http://condor.depaul. edu/~jkristof/papers/udpscanning.pdf.

19. Donahoo, Michael J., Calvert, Kenneth L. TCP/IP Sockets in C. Burlington, MA :
Elsevier Inc, 2009. ISBN: 978-0-12-374540-8.

20. O'steen, Paul. Transitioning from UNIX to Windows Socket Programming. TCP/IP
Sockets in C. [Online] [Cited: September 30, 2009.]
http://cs.ecs.baylor.edu/"'donahoo/practicaI/CSockets/WindowsSockets.pdf.

21. Rafiq, Abdul. Microchip TCP/IP Stack With BSD Socket API for PIC32MX. Microchip
Corporation Web Site. [Online] November 2, 2007. [Cited: September 1, 2009.]
http://www.microchip.com/stellent/idcpIg?lchervice=SS_GET_PAGE&nodeld=1824&ap
pnote=en532885. AN1108.

22. Terasic Technologies. DE2-70 User Manual. s.l. : Terasic Technologies, 2008.

23. Axelson, Jan. Designing RS-485 Circuits. Circuit Cellar. 1999, 107.

24. Digi International. Using RJ45 Adapters to Connect to DB9 Connector. Digi
International. [Online] [Cited: July 30, 2009.]
http://www.digi.com/support/kbase/kbaseresultdetl.jsp?kb=3.

25. Vahid, Frank, Givargis, Tony. Embedded System Design. Hoboken, NJ : John Wiley &
Sons, Inc, 2002. ISBN: 0-471-38678-2.

26. Simmons, M. Ethernet Theory of Operation. Microchip. [Online] [Cited: July 15,
2009.]

http://www.microchip. com/stelIent/ldcplg?lcherwce SS_GET_PAGE&nodeld=1824&ap
pnote=en533903. AN1120.

27. Fox, Stephen. System Nodes for a Multi-Drop Test Bench Network. Windsor, ON :
University of Windsor, 2009.

28. Cyclic Codes for Error Detection. Peterson, W.W., Brown, D.T. Gainesville, Fla. :s.n.,
Jan., 1961. Proceedings of the IRE. Vol. 49, pp. 228-235.

29. Sivakumar, Nishant. Beginning Winsock Programming - Simple TCP-Server. The Code
Project. [Online] February 22, 2002. [Cited: July 10, 2009.]
http://www.codeproject.com/KB/lP/winsockintroOl.aspx.

Appendix A. Schematics and Bill of Materials

A.1 Schematics

H VCC33
ICz
; }.1 ufF
ND R1 3
erppEe 226K 1% =0
222222
00D00D 3
OeOuOuOn(] -
g ’ 8
b= IGND
— —— TPOUT+
FEEEEFEERER . .,.,I_b___IEOUT- 5
8.8 8t 8l 8 of.51 818 ol 8l 8l 8l 5 3 328 BT ¢
ot R R R B e
% ’.1 uF
~NOoOoO@MOM@m OrrNOO ownN - +
N T I U P LS
rSmramsaaetaSe ORBOBHOa D
IIB-—-—-—‘—n.o-NnQ_ gng8g®>ags
KKBDBDQOQQDQU,— &@H > - o
H2 g0 x2? Do ©
eoEB3L3553% g5
§mmmz§§mggg; &2
o 4 < s 95
¢ : bl] RHzAts P :2,:2 8 VDDRX |—L5e 4
i WPt RMI/A19 = gn F TPIN+ o TPIN+ _1C4
GN a7k L 1 1 we3 | REV/ADIWRIP2C 2 @ TPIN- o 3IPIN- -~ o
< BREQ | we, REOIADB/RD/P2D/T VSSRX o £ fl
e R3s5 1K wf-2— RBOINTOFLTO RGO/ECCP3/P3A S Ju #
SR S ReTANTS RG1/TX2/CK2 je w0 GND ND
< E 2 whrg] RB2INT2 RB4/KBI0 [-S3we __MCUBUF
= i, RB3/INTI/ECCP2/P2A Res/ikpl (58w REQ MCUBUF
© i wepad { NG REG/KBIZPGC |—8ies ACK MCUOUT
-, c12 ws 10 PO [66ime Ri2
o —— mg 7 RG6 2/WRL —EaRe . o
H 7 bl { Res vss —io——MJ—{Z
g1 w12 | rroaNs oscaiciko [Sige _0SC2 o
b L"3~4 WCIR OSCAICLKI se C1 B
£33 1 RearccrsPID VDD
%} s 2pwe 181 vss RISWRA |2 _1cs
o 37| VDDCORENVCAP3 VSS
ii- voo vop |2
18 | RrF7/5ST RiGME (—SYeRlE
19| RFe/ANT) RB7/KBI3IPGD | o
RFFER uF R P—1— RFS/AN10/CVREF RCS/SDO1 |2 INS
HN e RF4/AN9 RC4/SDI/SDA1
""!‘— RF3/ANS RCI/SCK1/SCLA 5
RF2/ANT/C10UT RC2/ECCP1P1A -
"“P RH7/AN15/P18 RG2/RX2/DT2 -
RHE/AN14/P1C < RG3/CCP4/P3D
g
o -
S5
5 tudcg g2
ggy Béss g5zt
580 2R3 23388
zz28 2288 28995xx w
EEET PR E4p B ZPECEE B
21.25%233888858235388% 5
PIC18FS7J6Q "1‘”!"’ | l
=yl o)
IR RAN A MYy .‘Y.ii)
Q £l £l sl @ @ ¢ 2 ¢
IGND
-
University of Windsor
Department of Electrical and Computer Engineering
TITLE: TestServerU2
Document Number: REV:
Test Server MCU - 1
Date: 21/10/200S8 12:48:08 AM ISheet: 1/7

Figure A.1. Test Server MCU Schematic

470 N
R9 wLED:! . Ic3
] 7 T470 T N P$2
S3pF p33eF R1D LED4 e
4 L g sy e | ps3
D 0 470 N Ps4
R36 LEDS P36
N e | pee
470 N
R37 LED6 P$o
wg pamia] ss | o
470 ™
R38 LED7 PS8
o g3 p Ru e 4 P$7
‘,g% LEDs BO-1X1T-36-F
BTy Ao 4 EDA
470 - H
() 5:“’(MM
L 80
GND & Rest
DIS1 TUXGR_16X2_R2

ICD Connector

LCD DISPLAY 16x2

GND

., .20hm1%

C6
REG1117F

LEDS

3 VN YouT 2 »wo; > VCC33 GND
F3 c1 P gbzz
n A uF3 o 47 uF
Ics P No &N
REG1117F GND
VI VCCS

IN gOUT 2 ’
2 F F
c24 P Peas

GND

University of Windsor

Department of Electrical and Computer Engineering

TITLE: TestServerU2

Document Number:

Test Server MCU - 2

REU

Date: 21/10/2089 12:48:08 AM

ISheet: 2/7

Figure A.2. Test Server MCU Schematic — Ethernet, ICSP, LCD, LEDs, Oscillator, and Power

2 T 3 I 4 1 7 T 8 9
ICCINT
..Aw A
B8
9
S
— g
£
)]
L
[v}
(7]
<
¢
[-%
.
S
[T}
>
£ <3
— @
v
EPZC15AF256]
U
-
o
P<
Q
L
=
.0
[
E
University of Windsor
Department of Electrical and Computer Enginsering ﬂ

TITLE: TestServerU2

Document Number: iREU:

Test Server FPGA - 1

Date: 21/18/2009 12:48:08 AN _mrmmz u\v

k¢
L[HuF 1uF tuF

‘:~

LG T679-E1F1 1

LED10

"330 N
LG_T679-E1F1-1

EDR ooy R99 LED1T ,

330 Y
LG_T679-E1F1-1
R60 LED12

330 N
LG_T679-E1F1-1

) R61 LED13

330 ™

LG_T679-E1F1-1
R62 LED

7330 N
LG T679-E1F1-1
. R63 LED15 "
330 N
LG§T679-E1 F1-1

EDR o, RB4 LEDIG
330 N
LG_T679-E1F1-1

R65 LED1

a3, 3 6o wso L

330 53
LG T679-E1F1 1
vy 66 LEDI8
7330 .
LG_T679-E1F1-1
R67 LED13

Pay aen L

330 N~
LG_T679-E1F1-1
R68 D20

‘E !R]l P D/Ah”‘ QLEE %ﬂ"
73300 T
LG§T679-E1F1-1

EDR o, R77 - LED2T

330 ~
LG_T679-E1F1-1
R78 ~LED22
330 ™
LG_T679-E1F1-1
R7o ~ LED23
330 «
LG_T679-E1F1-1
Ra0 LED24
330 ™
LG_T679-E1F1-1
Rt LED2S
330 W~
LG_T679-E1F1-1
R82 LED26
330 ™
LG_T679-E1F1-1

R83
330

8
-
m
Q
&
&

4

Y

[
I

]
4
o

AuF 1uF AuF AuF AuF

GND

LG_T679-E1F1-1
oy 69 LED27 .

330 N
LG_T679-E1F1-1
R70 LED28

Pay 23 g Re: cRas0 L

"330 5.
LG_T679-E1F1-1
R71 LED29

ray 50 R w0 L

330)
LG_T679-E1F1-1

EDG3 _ _Rr2 LED30 y

330 A
LG_T679-E1F1-1
R73 LED31

eas 30 i wp L

330 N~
LG_T679-E1F1-1

R74 LED32

330 RNy

LG_T679-E1F1-1
R75 LED33

330 N~
LG_T679-E1F1-1
R76 LED34

Par,

330 N

IC8

e10 4

Qo &
&l

VCC33

g 4

REG1117
VIN EOUT

Z
O

10m
R87

2 quq .AICC12 AMA,

fusy

R88
Fasi AAMA
VVVy

Rust

VCCINT

8ot -

’csa g 10m

G

D

guF ?uF

L AAA B

7(:41

é 100uf § 100uf

University of Windsor

Department of Electrical and Computer Engineering

TITLE:

TestServerU2

Document Number:

Test Server FPGA - 2

REU:

Date: 21/10/20089 12:48:08 AM

[Sheet: 4/7

Figure A.4. Test Server FPGA Schematic - LEDs, Oscillator, Power, and Reset

VCCS

TRANS1

RO VCC g
RE A

RS4850UT0

7400

VCCS

‘%0
0

YCCS

S,

S0

LTC485N

REC2

RO vCC

e’u

RE

A

DE

2]

B
GND

LTC485N

RS4850UT2

a5 7
a8 1

100

PORT1A1

44520-0001

PORT1A2

PORT181

10
l D{n'l
100
REC4 e
RO voc [Boye) 100
RE A 6,500
DE B 7500 an.
D GND PPESe4]
LTC485N &
100

REC5

W ro vee [Beye
e a los
oE B {3

Bas ™ AAAA _(RaLt 3-) 10

YV,

RO vce [

DI GND P

LTC485N

RS4850UTS

oupt

ing:

- mp 3
7

R1

&Y

RO VCC g o
RE A pE &
DE B |cRe

D GOND PSe
LTC485N

100

REC7

R1

EN

LTC485N 100

oupt

T
i R141
o

vas g pAAA,_(Haslt
YV¥Vv

my

g 3]

University of Windsor

Department of Electrical and Computer Engineering

mp= !

Bas

| oo

)
ND

Q

LTC485N

GND

TITLE:

TestServerU2

Document Number:

RS485 Board 1

REV:

Date: 21/16/20039 12:48:08 AM

[s

heet: 5/7

Figure A.5. RS485 Transceiver Network (First 8) Schematic

]
g
TRANS9 g

VCC5

231

NPORTS

L TC485S

a
m
[9]
©

s i

100 R120

oupt
=
wp=2|

RO vCC

3
o

R89
00

ves,

A

oy 3

£
o
m
[e:]

O~

ZNE

54 b onD X

RS0
100

a3t

s

INPORT9 N

oupal

ro vce [Bess
w20 o

2
Sonl1

.mr_

sA3|8 || ¢
3|8
(4]

o

R

03

R92
100

e

GND {35

o
-
6“9
'S
o
9
]

1

RS4850UT]10"

NPORT 104
q

SRA
7R3
m)§)

o

3
T

RS4850UT]
NPORT11

a
m
[¢]
pis
N

oap 1
2)

RO vCC

03]

R

R

2]}

e

>

o
PEET

GND

r‘
49
(e}
p e
=3
o
7]

EERERER

X1C1
1

X1C2
1
G2

R97
100

RS4850UT]
NPORT 12

Y

REC13
ro voc [%

gy
<2

A

>
[~ [
8

>
ng=3

o
m
@

[
e

N
R

2]
=
o

,_
-
Q
&~
i3
o
(72

03 1

RS4850U1[13

NPORT13§

P>

REC14

osp M RO vee g_

ug 2 pe A 0.

R99
100

3

a9 1

3

ng=3| e Eee

jo
m

R100
100

Y o onp PSS

5
[e]
&
o
(%]

981

R101
100

RS4850UT]|

NPORT14:

R
R12T

REC15

ol

RO VEC g_
A

n

Pas 24

38 1

1

ng=3]

o
m

8

"Gﬂ‘ B GND S

L
gl_fﬁ
&

)|

R102
100

as 1

R103
100

15 M-S]

oup~t

ngid

g3

s

LTC4855

GND

cas

s

University of Windsor

Department of Electrical and Computer Engineering

TITLE: TestServerU2

Document Number:

RS485 Board 2

REUV:

Date: 21/18/20039 12:48:88 AM

J Sheet: 6/7

Figure A.6. RS485 Transceiver Network {Second 8) Schematic

rccs

M oo
Y

Pt

‘cas J’me Qoso Pes1 g Pesy
M~ T~ A~ - T~

| 1ufF . AuF o f L tF . [1uF
) q 0 P @ b

st

CCS
Jfose feeo et Hom oes foes Poss fees
T~ T~ -~ T~ T~ T~ T~ T~ ~
1. | AuF AuF o L tuF AuF AuF - 1uF tuF AuF
g O R A A R A
GN

University of Windsor

Department of Electrical and Computer Engineering

TITLE: TestServerU2

REU:

Document Number: RS485 Board 3

Date: 21/10/2003 12:48:08 AN JSheet: /7

Figure A.7. RS48S Transceiver Network Schematic — Power

A.2 Bill of Materials

A.2.1 Bill of Materials - Prototyping Stage

Table A.1. Bill of Materials - Prototyping Stage

Part List
Name Digikey Part Number | Manufacturer | Quantity Used
Ethernet Microcontroller Dev Kit DM163024-ND Microchip 1
Power Supply for MCU Kit AC162039-ND Microchip 1
FPGA (UART) Dev Kit PO304A-ND Terasic 1
RS485 Transceiver LTC485CN8#PBF-ND | Linear 8
RJ45 Connectors A31451-ND Tyco 1
100 ochm Terminating Resistors 100H-ND Yageo 8
.1 uF Capacitors 399-4454-1-ND Kemet 8
Prototyping Board V1256-ND Vector 1
A.2.2 Bill of Materials - Final Test Server
Part Value Device Package Library Sheet

c1 1uf C-US025-024X044 (025-024X044 resistor 1

c2 Auf C-US025-024X044 C025-024X044 resistor 1

a AuF C-US025-024X044 C025-024X044 resistor 1

c4 .1 uF C-US025-024X044 C025-024X044 resistor 1

cs AuF C-US025-024X044 C025-024X044 resistor 1

c6 AuF C-US025-024X044 C025-024X044 resistor 1

c7 AuF C-US025-024X044 C025-024X044 resistor 1

c8 AuF C-US025-024X044 (025-024X044 resistor 1

9 A uF C-US025-024X044 C025-024X044 resistor 1

c10 A uF C-US025-024X044 C025-024X044 resistor 1

c11 AuF C-US025-024X044 C025-024X044 resistor 1

c12 AuF C-US025-024X044 C025-024X044 resistor 1

c13 AuF C-US025-024X044 C025-024X044 resistor 1

c14 33pF C-US025-024X044 C025-024X044 resistor 2

c15 33 pF C-US025-024X044 C025-024X044 resistor 2

C16 AuF C-US025-024X044 C025-024X044 resistor 2

Cc17 1 uF C-US025-024X044 C025-024X044 resistor 2

c18 AuF C-US025-024X044 C025-024X044 resistor 2

c19 AuF C-US025-024X044 C025-024X044 resistor 2

c20 220 uF C-US025-024X044 C025-024X044 resistor 2

c21 AuF C-US025-024X044 C025-024X044 resistor 2

€22 A7 uF C-US025-024X044 C025-024X044 resistor 2

c23 47 uf C-US025-024X044 C025-024X044 resistor 2

c24 AuF C-US025-024X044 C025-024X044 resistor 2

€25 JAuF C-US025-024X044 C025-024X044 resistor a

C26 LuF C-US025-024X044 C025-024X044 resistor a

c27 1uf C-US025-024X044 ©025-024X044 resistor 4

c28 AuF C-US025-024X044 C025-024X044 resistor 4

c29 AuF C-US025-024X044 C025-024X044 resistor 4

C30 AuF C-US025-024X044 C025-024X044 resistor 4

c31 Auf C-US025-024X044 C025-024X044 resistor 4

€32 uF C-US025-024X044 C025-024X044 resistor 4

Part

33
C34
C35
C36
c37
C38
C39
C40
C41
Ca2
Ca3
Caq
Cas
Ca6
ca7
C48
C49
C50
C51
C52
C53
C54
C55
€56
C57
Cs58
C59
C60
c6l
€62
Ce3
C64
C65
Ce6
C67
c68
c69
Cc70
C71
Cc72
C73
D1
DIs1
IC1
1C2
IC3
IC4
ICS
IC6
IC7
IC8
i

L1
LED1
LED2
LED3
LED4
LEDS
LEDG
LED7
LED8

Value

.1uF

.1uF
100uF
1uF

.1uF

uF

1uF
100uF
100uF
uf

1uF

JduF

.1uf

.1uF

JuF

.1uF

3uF

1uF

.1uF

duf

1uF

AuF

1uF

JduF

.1uF

.1uF

.1uF

QuF

.1uF

.1uF

1uF

.1uF

.1uF

.1uF

duF

.1uF

AuF

JAuF

uF

.1uF

.1uF
1N4004
TUXGR_16X2_R2
PIC18F97J60
EP2C15AF256
MAGICIACK
RJ11
REG1117F
REG1117F
4010D
REG1117

Device

C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024%X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024%044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024%X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024%X044
1N4004
TUXGR_16X2_R2
PIC18F97160
EP2C15AF256
MAGICIACK

RI11

REG1117F
REG1117F

4010D

REG1117
JACK-PLUGO
WE-CBF_0805
LED

LED

LED

LED

LED

LED

LED

LED

Package

€025-024X044
€025-024X044
€025-024X044
€025-024X044
€025-024X044
€025-024X044
€025-024X044
€025-024X044
€025-024X044
€025-024X044
€025-024X044
€025-024%044
€025-024X044
€025-024X044
€025-024X044
€025-024X044
€025-024X044
€025-024X044
€025-024X044
€025-024X044
€025-024%044
€025-024X044
€025-024X044
€025-024X044
€025-024X044
€025-024%044
€025-024X044
€025-024X044
€025-024X044
€025-024X044
€025-024X044
€025-024X044
€025-024X044
€025-024%044
€025-024X044
€025-024X044
€025-024X044
€025-024X044
€025-024X044
€025-024X044
€025-024X044
D041-10
TUXGR_16X2_R2
TQFP100
FBGA256
MAGJACK

RI11

DD-3

DD-3

5016

SOT223
SPC4077

0805
SMARTLED-TTW
SMARTLED-TTW
SMARTLED-TTW
SMARTLED-TTW
SMARTLED-TTW
SMARTLED-TTW
SMARTLED-TTW
SMARTLED-TTW

Library

resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
diode
display-lcd
microchip
altera-cyclone-ii
magicjack
magjack
burr-brown
burr-brown
40xx
burr-brown
con-jack
wuerth-elektronik
led

led

led

ted

led

led

led

led

Sheet

NNNVNNMNNNNMNMNNNBABNNNNMNWRNNMNSNSNSNSNSNSNSNSNSNSNSNSNSNSNNSNNSNNSNSNNNNNNSNSNSNSNNSNAIDEAEA_LPWSASD

Part

LEDS
LED10
LED11
LED12
LED13
LED14
LED1S
LED16
LED17
LED18
LED19
LED20
LED21
LED22
LED23
LED24
LED2S
LED26
LED27
LED28
LED29
LED30
LED31
LED32
LED33
LED34
LED3S
LED36
PORT1
Ql
Q2

R1

R2

R3

R4

RS

R6
R7

R8

R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30

Value

LG_T679-€1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-£1F1-1
LG_T679-E1F1-1
LG_T679-E1Fi-1
LG_T679-E1F1-1
LG_T679-E1F1-1
1G_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1

44520-0001
25 MHz
ASF1
2.26K 1%
1K
4.7K
1K
4.7K
iMm
470
470
470
470
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
330
100
100
100

Device

LED
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LED
44520-0001
CRYSTALSM49
ASF1
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2v
R-US_0204/2V
R-US_0204/2V
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/2V
R-US_0204/5
R-US_0204/5
R-US_0204/5

Package

SMARTLED-TTW
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
pPLCC2
SMARTLED-TTW
44520-0001
SMA49
ASF
0204v
0204v
0204v
0204V
0204V
0204V
0204v
0204V
0204V
0204v
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204V
0204/5
0204/5
0204/5

Library

led

led

led

led

ted

led

led

led

led

led

led

led

led

led

led

led

led

led

led

led

led

led

led

led

led

led

led

led
con-molex
crystal
crystal
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor

Sheet

mmmﬂmmmmmmmmmmmmmmmlﬂr\)t\)NNNI—'HD—'HI—'&NU’!\J&#bbbbbbhbbbb&bbhbbbbbbbb&l\)

Part

R31
R32
R33
R34
R35
R36
R37
R38
R39
R40
R41
R42
R43
R44
R45
R46
R47
R48
R49
R50
R51
R52
R53
R54
R55
R56
R57
R58
R59
R60
R61
R62
R63
R64
R65
R66
R67
R68
R69
R70
R71
R72
R73
R74
R75
R76
R77
R78
R79
R80
R81
R82
R83
R84
R85
R86
R87
R88
R89
R90
RI1

Value

100
100
100
100
100
470
470
470
470
49.9
49.9
49.9
49.9
180
180
0

0
100
2 ohm 1%
2ohm 1%
2 ohm 1%
DNI
DNt
1K
1K
0

0
330
330
330
330
330
330
330
330
330
330
330
330
330
330
330
330
330
330
330
330
330
330
330
330
330
330
100K
100K
100K
10m
10m
100
100
100

Device

R-US_0204/5

R-US_0204/5

R-US_0204/5

R-US_0204/5

R-US_0204/5

R-US_0204/2v
R-US_0204/2V
R-US_0204/2v
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2v
R-US_0204/2V
R-US_0204/2V
R-US$_0204/2v
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2v
R-US_0204/2V
R-US_0204/2v
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2v
R-US_0204/2v
R-US_0204/2v
R-US_0204/2V
R-US_0204/2v
R-US_0204/2v
R-US_0204/2v
R-US_0204/2v
R-US_0204/2v
R-US_0204/2v
R-US_0204/2v
R-US_0204/2v
R-US_0204/2v
R-US_0204/2V
R-US_0204/2v
R-US_0204/2v
R-US_0204/2v
R-US_0204/2v
R-US_0204/2V
R-US_0204/2V
R-US_0204/2v
R-US_0204/2V
R-US_0204/2v
R-US_0204/2v
R-US_0204/2v
R-US_0204/2v
R-US_0204/2v
R-US_0204/2v

Package

0204/5
0204/5
0204/5
0204/5
0204/5
0204v
0204v
0204v
0204v
0204v
0204v
0204v
0204V
0204V
0204v
0204v
0204v
0204v
0204V
0204V
0204V
0204v
0204v
0204V
0204v
0204v
0204V
0204v
0204v
0204V
0204V
0204v
0204v
0204v
0204v
0204V
0204v
0204V
0204v
0204V
0204V
0204v
0204v
0204v
0204v
0204v
0204V
0204V
0204v
0204v
0204v
0204V
0204V
0204v
0204V
0204V
0204v
0204v
0204V
0204v
0204v

Library

resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor

(%]
=
1]
o]
-

mmm#&h&héhb&bhhhbhhbbbhbbbbhbb-b«b-hbwwwwWWNNNNNNNNNNNNNNMNU!MU!U'\U'i

Part

R92

R93

R94

R95

R96

R97

R98

R99

R100
R101
R102
R103
R104
R105
R106
R107
R108
R109
R110
R111
R112
R113
R114
R115
R116
R117
R118
R119
R120
R121
R122
R123
R124
R125
R126
R127
R128
R129
R130
R131
R132
R133
R134
R135
R136
R137
R138
R139
R140
R141
R142
R143
R144
REC1
REC2
REC3
REC4
REC5
REC6
REC7

Value

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
200
200
200
200
200
200
200
200
100
100
100
100
100
200
200
200
200
200
100
100
100
200
200
200
LTC485N
LTC485N
LTC485N
LTC485N
LTC485N
LTC485N
LTC485N

Device

R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2v
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2v
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2v
R-US_0204/2V
R-US_0204/2v
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2v
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2v
R-US_0204/2v
R-US_0204/2v
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2v
R-US_0204/2V
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
LTC485N
LTC485N
LTC485N
LTC48SN
LTCA85N
LTC48SN
LTC485N

Package

0204v
0204v
0204v
0204V
0204V
0204v
0204v
0204v
0204v
0204v
0204V
0204v
0204V
0204v
0204V
0204v
0204V
0204v
0204V
0204V
0204V
0204V
0204V
0204v
0204v
0204v
0204V
0204v
0204V
0204v
0204V
0204v
0204v
0204v
0204v
0204v
0204V
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
SOIC8
SOIC8
SOIC8
SOIC8
SOIC8
SOIC8
SOIC8

Library

resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
rasistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology

wn
=
o
@
~

unorounouununonuuunununununuunuununoununuuuunooaNNNTNANNTNDTNADITNANANNTNINDNNNNNAANONAONINADNAN OO

REC8
REC9
REC10
REC11
REC12
REC13
REC14
REC15
REC16

S1

S2

S3

S4
TRANS1
TRANS2
TRANS3
TRANS4
TRANSS
TRANS6
TRANS7
TRANS8
TRANS9
TRANS10
TRANS11
TRANS12
TRANS13
TRANS14
TRANS15
TRANS16
X1

Value

LTC485N
LTC485S
LTC485S
LTC485S
LTC485S
LTC485S
LTC485S
LTC485S
LTC485S
PVAL
PVAL
PVAL
PVA2F
LTC485N
LTC485N
LTC485N
LTC485N
LTC485N
LTC485N
LTC485N
LTC485N
LTC485S
LTC485S
LTC485S
LTC485S
LTC485S
LTC485S
LTC485S
LTC485S
44520-0001

Device

LTC485N
LTC485S
LTC4855
LTCA485S
LTCA85S
LTC4855
LTC485S
LTC48SS
LTCA485S
PVAL
PVA1
PVAL
PVA2F
LTC485N
LTCA485N
LTC485N
LTC485N
LTC485N
LTC485N
LTC485N
LTC485N
LTCA8SS
LTCA85S
LTC4855
LTCA85S
LTCA8SS
LTC485S
LTCA85S
LTCA485S
44520-0001

Package

Nelle]
SOIC8
SOIC8
Nelle]
SOIC8
SOIC8
SOIC8
SOIC8
SOIC8
PVALF
PVA1F
PVAILF
PVA2F
SOIC8
SOIC8
SOIC8
SOIC8
SOIC8
SOIC8
SOiC8
SOIC8
SOIC8
Neller:}
SOIC8
SOIC8
SOIC8
SOIC8
SOIC8
SOIC8
44520-0001

Library

linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
tinear-technology
linear-technology
linear-technology
linear-technology
switch-misc
switch-misc
switch-misc
switch-misc
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
con-molex

(%)
=
®
®
-

oo U NN U R RO OO0V

Appendix B. Test Server VHDL Code

B.1 server.vhd

--File Name: server.vhd
--Description: Test Server Module
--Author: Christopher Rennick
--Date: April 30, 2009
--Simulator: Altera Quartus i

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity server is

port(CLK, RESET: in std_logic;

req_mcu_buf, req_mcu_output: in std_logic; --req signals from MCU
MCU_IN: in std_logic_vector(7 downto 0); --input from MCU

in_port: in std_logic_vector(15 downto 0); --input from rs485 network
ack_mcu_buf, ack_mcu_output: out std_logic; --ack signals to MCU
rs4850ut: out std_logic_vector(15 downto 0); --output to rs485 network
MCU_OUT: out std_logic_vector(7 downto 0}; --output to MCU

LEDG: out std_logic_vector(7 downto 0); --LED signals for dev. kit

LEDR: out std_logic_vector(17 downto 0));

end server;

architecture behavioural of server is
signal div_CLK: std_logic;

begin

--instantiation of rs485 to MCU
rs485_to_mcu_entity: entity work.rs485_to_mcu
port map(CLK => div_CLK, RESET => not(RESET),
req => req_mcu_output,

in_port => in_port,

ack => ack_mcu_output,

data_out => MCU_OUT,

LEDR => LEDR(8 downto 0));

--instantiation of MCU to rs485
mcu_to_485_entity: entity work.mcu_to_485
port map(CLK => div_CLK, RES => not(RESET),
data_in => MCU_IN,

req => req_mcu_buf,

ack => ack_mcu_buf, rs4850ut => rs485out,
LEDG => LEDG, LEDR => LEDR(17 downto 9));

--The following is a clock divider to get the Dev. Kit clock speed of SOMHz
-- down to the desired speed of 25MHz
process(CLK, RESET)
begin
if (RESET="0"}) then
div_CLK<='0";
elsif (CLK'event and CLK="1") then
div_CLK<=not(div_CLK);
end if;
end process;

end behavioural;

B.2 mcu_to_485.vhd

--File Name: mcu_to_485.vhd

--Description: Test Server Module that takes parallel MCU data in
--and outputs the RS485 serial data

--Author: Christopher Rennick

--Date: April 29, 2009

--Simulator: Altera Quartus 1l

library ieee;
use ieee.std_logic_1164.ali;
use ieee.std_logic_unsigned.all;

entity mcu_to_485is
port(CLK, RES: in std_logic;
data_in: in std_logic_vector(7 downto 0);
req: in std_logic;
ack: out std_logic;
rs485out: out std_logic_vector(15 downto 0);
LEDG: out std_logic_vector{7 downto 0});
LEDR: out std_logic_vector(8 downto 0});

end mcu_to_485;

architecture behavioural of mcu_to_485 is
signal mem_wr, mem_en, data_availl: std_logic;
signal data_bus: std_logic_vector(7 downto 0);
begin

--instantiation of mcu_buf_mem module

mcu_buf_mem1.: entity work.mcu_buf _mem

port map(CLK => CLK,

RESET => RES,

req => req,

busy => mem_wr,

MCU_in => data_in,

mem1_en =>mem_en,

data_avail => data_availl,

ack => ack,

data_out => data_bus,

LEDG => LEDG,

LEDR => LEDR({8 downto 5})};

--instantiation of rs485_output module
rs485_outputl: entity work.rs485_output
port map{CLK => CLK,
RESET => RES,
data_avail => data_availl,
data_in => data_bus,
WR => mem_wr,
rs485out => rs485out,
LEDR => LEDR(4 downto 0));
end behavioural;

B.2.1 mcu_buf mem.vhd

--File Name: mcu_buf_mem.vhd

--Description: Test Server Module that takes parallel MCU data in
--and stores it in a FIFO RAM buffer

--Author: Christopher Rennick

--Date: March 25, 2009

--Simulator: Altera Quartus Ii

--input from MCU

--output to rs485 network

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity mcu_buf_memis
port(CLK, RESET, req: in std_logic;
busy: in std_logic;
MCU_IN: in std_logic_vector(7 downto 0); --input from MCU
mem1_en: inout std_logic;
data_avail: out std_logic;
ack: out std_logic;
data_out: out std_logic_vector(7 downto 0); --output to rs485_output module
LEDG: out std_logic_vector(7 downto 0);
LEDR: out std_logic_vector(3 downto 0)};
end mcu_buf_mem;

architecture behavioural of mcu_buf_memis
signal mem1_wr, mem31_busy, FIFO_full_sig: std_logic;
signal mem1_datain, mem1_dataout: std_logic_vector(7 downto 0);
begin
--instantiation of memory for incoming MCU and outgoing MCU data
mem1: entity work.fifo
port map(CLK => CLK,
RES => RESET,
EN =>mem1l_en,
WR => busy,
data_in => mem1_datain,
data_avail => data_avail,
FIFO_full => FIFO_full_sig,
data_out => data_out,
LEDR => LEDR(1 downto 0));

--instantiation of input buffer for MCU data
-- ***busy signal is tied to WR for mem1: if WR is O it is busy,
- ¥R GEWR s 1, itis free***
inmcu_buf: entity work.mcu_buf
port map(CLK => CLK,
RESET => RESET,
req =>req,
busy => busy,
FIFO_full => FIFO_full_sig,
MCU_IN => MCU_IN,
ack => ack,
mem_en => mem1_en,
data_out => mem1_datain,
LEDR => LEDR(3 downto 2),
LEDG => LEDG);
end behavioural;

B.2.2 rs485_output.vhd

--File Name: rs485_output.vhd

--Description: Test Server Module that outputs RS485 Serial Data
--Author: Christopher Rennick

--Date: April 14, 2009

--Simulator: Altera Quartus Il

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity rs485_output is

port(CLK, RESET, data_avail: in std_logic;

data_in: in std_logic_vector(7 downto 0); --input from FIFO module
WR: out std_logic;
rs485out: out std_togic_vector(15 downto 0); --output to RS485 network

LEDR: out std_togic_vector(4 downto 0));
end rs485_output;

architecture behavioural of rs485_output is

type mem_type is array (0 to 31) of std_logic_vector(7 downto 0);

signal outbuff: mem_type; --output buffer
signal addr: std_logic_vector (3 downto 0); --used to determine the bus to transmit to

--flags used to determine whether the module is reading, writing or sending the first byte of the packet
signal reading, sending, firstsend: std_logic;

signal clock_div, in_count: integer; --signal for clock divider and input counter
signal send_countl, send_count2: integer; —-counters for sending packet bytes
begin

process (CLK, RESET)
begin
if (RESET="1") then
LEDR<="00000";
in_count<=0;
clock_div<=0;
WR<="1"; --memory WR signal
send_count1<=0;
send_count2<=0;
reading<="0";
sending<='0";
firstsend<='0";
rs4850ut<="1111111111111111"; --initializing all buses to '1'
addr<="0000";
elsif (CLK'event and CLK="1') then
--checking if module is sending
if (sending="0’) then
--check to see if memory contains any data

if (data_avail="1") then
reading<='1";
end if;

if (reading="1") then

—inputting data from FIFO module

if (in_count>=0 and in_count<30) then
outbuff(in_count-3)<=data_in;
--when reading from memory, WR is ‘0
WR<='0";
in_count<=in_count+1;
reading<='1";

elsif (in_count>=30 and in_count<=32) then
WR<="1";
outbuff(in_count-3)<=data_in;
LEDR<="10000";
in_count<=in_count+1;
reading<="1";

elsif (in_count>32) then
WR <="'0%
firstsend<='1";
in_count<=0;
sending<='1";
reading<="0";
addr<=outbuff(0){7 downto 4);

end if;
end if;

elsif (sending ='1') then --now sending data

78

WR<="1";

clock_div<=clock_div+1;

--firstsend i

is used so there is no wait to send the first byte of the packet

if (firstsend = '1' or clock_div=249) then

send_count1);

end if;
end if;
end if;
end process;
end behavioural;

B.2.3 fifo.vhd

clock_div<=0;

firstsend<="0";

if (send_count1=0) then
rs485out(to_integer(unsigned{addr)})) <= '0';

elsif (send_countl > 0 and send_countl <=8} then
rs485out(to_integer(unsigned(addr))) <= outbuff(send_count2)(8-

elsif (send_count1 = 9) then
rs485out(to_integer(unsigned{addr))) <="'1';

end if;

if {(send_count1=9) then --increase the counters appropriately
send_count1<=0; --send_countl counts bits/byte
LEDR(2)<="0";

if (send_count2 = 31) then
--send_count2 counts bytes/packet
send_count2<=0;

sending<='0";
LEDR(3)<="1";
else
send_count2<=send_count2+1;
sending<='1";
LEDR(3)<='0";
end if;

elsif (send_count1>3 and send_count1<8) then
LEDR(2)<="1";
send_cdunt1<=send_count1+1;

else
send_countl<=send_countl+1;
LEDR(2)<="0";

end if;

--File Name: fifo.vhd

--Description: Test Server Module that stores parallel data that

--came in from the MCU
--Author: Christopher Rennick
--Date: April 14, 2009
--Simulator: Altera Quartus Il

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

-- memory size is based on an assumption of 32 byte pa

entity FIFO is
port{CLK, RES, EN, WR: in std_logic;
data_in: in std_logic_vector(7 downto 0);
data_avail, FIFO_full: out std_logic;
data_out: out std_logic_vector(7 downto 0);

ckets

--input from MCU_buf module

--output to RS485_output module

LEDR: out std_logic_vector(1 downto 0));

end FIFO;

architecture behavioural of FIFO is
signal read_addr, write_addr: std_logic_vector{39 downto 0);
signal address_a_sig, address_b_sig: std_logic_vector(12 downto 0);

signal wren_a_sig: std_logic;

signal g_a_sig: std_logic_vector(7 downto 0);

begin

--instantiation of dual port RAM megafunction created by MegaWizard in Quartus
fifo_ram_inst : entity work.fifo_ram

PORT MAP (
address_a
address_b
clock
data_a
data_b
wren_a
wren_b
q_a
qb

%

process (CLK, RES)
begin

=> address_a_sig,
=>address_b_sig,
=> CLK,
=>data_in,
=>"00000000",
=>wren_a_sig,
=>'0',
=>q_a_sig,

=> data_out

if (RES='1") then

read_addr<=X"0000000000";
write_addr<=X"0000000000";
address_a_sig<="0000000000000";
data_avail<='0";

wren_a_sig<="0';

LEDR<="00";

FIFO_fullk='0";

elsif (CLK'event and CLK="1") then

--setting the data_avail flag to show if there is data available in the FIFO

if {(to_integer{unsigned(write_addr))-to_integer(unsigned(read_addr)}}>=32) then
data_availc="1";

else
data_avail<='0";

end if;

--this is used to set the FIFO_full flag if the write pointer is more than % of the max
-—-memory space ahead of the read pointer
if{{to_integer(unsigned(write_addr))-to_integer(unsigned(read_addr)))>=2048) then
FIFO_full<="1";
else
FIFO_full<='0";
end if;

--writing to the FIFO
if (EN='1') then
address_a_sig<=write_addr(12 downto 0);
wren_a_sig<="1";
LEDR(0)<="1";
write_addr<=std_logic_vector(to_unsigned((to_integer{unsigned(write_addr))+1),40));

else
wren_a_sig<="0";
address_a_sig<="0000000000000";
LEDR(0)<="0";
write_addr<=write_addr;

end if;

--reading from the FIFO
if (WR='0') then
address_b_sig<=read_addr(12 downto 0);

LEDR(1)<="1";
read_addr<=std_logic_vector{to_unsigned((to_integer(unsigned(read_addr))+1),40));

else
LEDR(1)<='0";
address_b_sig<="0000000000000";
read_addr<=read_addr;

end if;

end if;
end process;
end behavioural;

B.2.4 mcu_bufvhd

--File Name: mcu_buf.vhd

--Description: Test Server Module that buffers parallel data that
--came in from the MCU before sending it to the FIFO RAM
--Author: Christopher Rennick

--Date: April 14, 2009

--Simulator: Altera Quartus i

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all;

entity mcu_buf is
port(CLK, RESET, req: in std_logic;
busy, FIFO_full: in std_logic;

MCU_IN: in std_logic_vector(7 downto 0}; --input from MCU
ack, mem_en: out std_logic;
data_out: out std_logic_vector{7 downto 0); --output to FIFO module

LEDR: out std_logic_vector(1 downto 0);
LEDG: out std_logic_vector(7 downto 0));
end mcu_buf;

architecture behavioural of mcu_buf is
type buf_type is array(0 to 31) of std_logic_vector(7 downto 0);
type mem_type is array(0 to 3) of buf_type;

signal buff: mem_type;

signal int_ack, write_sig: std_logic;

signal switch, writing: std_logic_vector(1 downto 0);
signal count, send_count: integer;

begin
process{CLK, RESET, req)
begin
if (RESET="1") then

ack <='0"; --ack signal to MCU
int_ack <='0"; --copy of ack signal
count<=0; --counts incoming bytes from MCU
switch <= "00"; --stores which buffer is being written to
writing <= "00"; --stores which buffer is being read from
send_count<=0; —counts the bytes being sent to the FIFO
mem_en <="'0"; --signal to FIFQ
LEDR<="00"; --LED control for dev, kit

LEDG <="00000001";
elsif (CLK'event and CLK='1") then
LEDG<="00000000";
--ack signal must be brought low after every byte is received
if (int_ack="1') then
LEDG(7)<="1";
ack<='0";

int_ack<='0";
elsif {(int_ack='0") then
LEDG(7)<="0";
--if req=1 then MCU has data to send
if (req="1") then
--checking whether a full packet has been received
if {count>=0 and count <32) then
--if FIFO is full, do not accept data from MCU
if (FIFO_full ='0') then
buff(to_integer(unsigned(switch))){count) <= MCU_IN;
count<=count+1;

ack<='1";

int_ack<="'1";
else

LEDG{6)<="1";

ack<="0";

int_ack<='0";
end if;

--when a full packet has been received, switch input buffer pointer
--and set write buffer pointer to last input buffer
elsif (count=32) then
LEDR<="10";
switch<=std_logic_vector{to_unsigned({to_integer(unsigned(switch))+1),2)};
count<=0;
write_sig<="1";
end if;

--if there is no data to be sent, keep ack low
elsif (req="0') then
ack <='0%;
int_ack<='0";
end if;
end if;

--after a packet has been received, switch to next buffer and start
--sending first buffer to FIFO
if {(write_sig="1") then
--if memory is not busy (busy=1), start sending data
if (busy="1') then
--sending data
if (send_count=0) then
mem_en<='1";
send_count<=send_count+1;
LEDR<="00";
write_sig<="1";
elsif (send_count<32 and send_count>0) then
mem_en<="1";
data_out<=buff(to_integer(unsigned(writing}))(send_count-1);
send_count<=send_count+1;
LEDR<="00";
write_sig<="1";
--when done sending, turn off mem1 enable
elsif (send_count=32) then
data_out<=buff(to_integer(unsigned(writing))}(send_count-1);
send_count<=send_count+1;
mem_en<='0';
LEDR<="01";
write_sig<="1";
else
send_count<=0;
mem_en<="0";
LEDR<="00";
write_sig<="0";
writing<=std_logic_vector(to_unsigned((to_integer(unsigned(writing))+1),2));

end if;

else
mem_en<='0'";
LEDR<="00";
write_sig<=write_sig;
send_count<=send_count;
writing<=writing;

end if;

end if;
end if;
end process;
end behavioural;

B.3 rs485_to_mcu.vhd

--File Name: rs485_to_mcu.vhd

--Description: Test Server Module that accepts data from the RS485
--network, buffers it, and sends it to the MCU

--Authar: Christopher Rennick

--Date: April 28, 2009

--Simulator: Altera Quartus Il

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rs485_to_mcu is
port{CLK, RESET, req: in std_logic;

in_port: in std_logic_vector(15 downto 0); --input from RS$485 network
ack: out std_logic;
data_out: out std_logic_vector(7 downto 0); --output to MCU

LEDR: out std_logic_vector(8 downto 0));
end rs485_to_mcu;

architecture behavioural of rs485_to_mcu is

signal busy_sig, data_avail_sig: std_logic;

signal data_out_sig: std_logic_vector(7 downto 0);

begin
--instantiation of rs485_buf_mem module
in485_buf_mem: entity work.rs485_buf_mem
port map(CLK => CLK, RESET => RESET,
busy => busy_sig,
in0 =>in_port(0), in1=> in_port(1), in2=>in_port(2), in3=> in_port(3),
ind=> in_port(4), in5=> in_port(5), in6=> in_port(6), in7=> in_port(7),
in8=> in_port(8), in9=> in_port(9), in10=> in_port(10), in11=> in_port(11),
in12=> in_port(12), in13=> in_port(13), in14=> in_port(14), in15=> in_port(15),
data_avail => data_avail_sig,
LEDR => LEDR(4 downto 0),
data_out => data_out_sig);

--instantiation of mcu_output module
mcu_output_inst: entity work.mcu_output
port map(CLK => CLK, RESET => RESET,
data_avail => data_avail_sig,
req => req, data_in => data_out_sig,
WR => busy_sig, ack => ack,
LEDR => LEDR(8 downto 5),
data_out => data_out);

end behavioural;

--File Name: rs485_buf_mem.vhd

--Description: This module consists of the 16 rs485_buf
-- Modules Combined With the FIFO RAM Block
--Author: Christopher Rennick

--Date: April 13, 2009

--Simulator: Altera Quartus Il

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rs485_buf_mem is

port(CLK, RESET, busy: in std_logic;

in0, in1, in2, in3, in4, in5, in6, in7: in std_logic; --inputs from RS485 network
in8, in9, in10, in11, in12, in13, in14, in15 : in std_logic;

data_avail: out std_logic;

LEDR: out std_logic_vector(4 downto 0);

data_out: out std_logic_vector(7 downto 0)); --output to mcu_output module

end rs485_buf_mem;

architecture behavioural of rs485_buf memis

signal mem2_wr, mem2_en: std_logic;

signal mem2_datain, mem2_dataout: std_logic_vector(7 downto 0);
signal data_avail_sig: std_logic_vector(15 downto 0);

signal EN_sig: std_logic_vector{15 downto 0);

begin

—-instantiation of memory for incoming and outgoing test node data

mem2: entity work.rs485_fifo

port map(CLK => CLK, EN =>mem2_en, WR => busy, RES => RESET, data_in => mem2_datain,
data_avail => data_avail, LEDR => LEDR(4 downto 2), data_out => data_out);

--instantiation of rotating priority arbiter

arbl: entity work.arbiter

port map(CLK => CLK, RES => RESET, busy => busy, data_avail => data_avail_sig,
LEDR => LEDR(1 downto 0), EN => EN_sig);

--instantiation of 16 input buffers for RS485 serial inputs

in485_buf0: entity work.rs485_buf

port map(CLK => CLK, RESET => RESET, busy => EN_sig(0), data_in => inQ,

data_avail => data_avail_sig(0), mem_en => mem2_en, data_out => mem2_datain);

in485_buf1l: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(1), data_in => in1,
data_avail => data_avail_sig(1), mem_en => mem2_en, data_out => mem2_datain);

in485_buf2: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(2), data_in => in2,
data_avail => data_avail_sig(2), mem_en => mem2_en, data_out => mem2_datain);

in485_buf3: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(3), data_in => in3,
data_avail => data_avail_sig(3), mem_en => mem2_en, data_out => mem2_datain);

in485_buf4: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(4), data_in => in4,
data_avail => data_avail_sig(4), mem_en => mem2_en, data_out => mem2_datain);

in485_bufS: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(5), data_in => in5,
data_avail => data_avail_sig(5), mem_en => mem2_en, data_out => mem2_datain);

in485_buf6: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(6), data_in => in6,
data_avail => data_avail_sig(6), mem_en => mem2_en, data_out => mem2_datain);

in485_buf7: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(7), data_in =>in7,
data_avail => data_avail_sig(7), mem_en => mem2_en, data_out => mem2_datain);

in485_buf8: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(8), data_in => in8,
data_avail => data_avail_sig(8), mem_en => mem2_en, data_out => mem?2_datain);

in485_buf9: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(9), data_in => in9,
data_avail => data_avail_sig(9), mem_en => mem2_en, data_out => mem2_datain);

in485_buf10: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(10), data_in =>in10,
data_avail => data_avail_sig(10), mem_en => mem?2_en, data_out => mem2_datain);

in485_bufl11: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(11), data_in => in11,
data_avail => data_avail_sig(11), mem_en => mem?2_en, data_out => mem?2_datain);

in485_buf12: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(12), data_in =>in12,
data_avail => data_avail_sig(12), mem_en => mem2_en, data_out => mem2_datain);

in485_buf13: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(13), data_in =>in13,
data_avail => data_avail_sig(13), mem_en => mem2_en, data_out => mem2_datain});

in485_buf14: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(14), data_in => in14,
data_avail => data_avail_sig{14), mem_en => mem2_en, data_out => mem2_datain);

in485_buf15: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(15), data_in =>in15,
data_avail => data_avail_sig(15), mem_en => mem2_en, data_out => mem2_datain);

end behavioural;

B.3.2 mcu_output.vhd

--File Name: mcu_output.vhd

--Description: Output Module for Sending Paraliel Data to MCU
--Author: Christopher Rennick

--Date: April 10, 2009

--Simulator: Altera Quartus Il

fibrary ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.alt;

entity mcu_output is

port{CLK, RESET: in std_logic;

data_avail, req: in std_logic;

data_in: in std_logic_vector(7 downto 0); --data from FIFO
WR: out std_logic;

ack: out std_logic;

LEDR: out std_logic_vector(3 downto 0);

data_out: out std_logic_vector(7 downto 0)); --data going to MCU

end mcu_output;

architecture behavioural of mcu_output is

type mem_type is array (0 to 31) of std_logic_vector(7 downto 0);
signal outbuff: mem_type;
signal reading, sending, once: std_logic;
signal send_count, in_count: integer;
begin

process (CLK, RESET)

begin

if (RESET="1") then

--check bit to make sure that send_count is only incremented once per byte sent (req may be asserted for more than one clock
cycle)

once<='0";

in_count<=0; --counter for inputting the 100 bytes to outbuff
send_count<=0; --counting the number of bytes sent to MCU so far
ack<='0"; --ack pin to MCU

WR<="1"; --write/read bit for FIFO

reading<='0"; --signals that data is currently being read in from FIFO
sending<="0"; --signals that data is in outbuff waiting to be sent

LEDR(2 downto 0}<="000";
LEDR(3)<='1";
elsif (CLK'event and CLK='1") then
LEDR(3)<='0";
--not sending mode
if (sending="0") then
if (data_avail='1") then

reading<="1";

LEDR(0)<="1";
else

reading<="0";

LEDR(0)<='0";
end if;

--reading mode (from FIFO)
if (reading="1") then
if (in_count>=0) then
WR<='0";
else
WR<='1";
end if;

if (in_count>=0 and in_count<=31) then
outbuff{in_count)<=data_in;
in_count<=in_count+1;

reading<='1";
sending<="0";
LEDR(0}<="1";
else
in_count<=0;
sending<="1";
reading<='0";
LEDR(0)<="0";
end if;
end if;
--sending mode
elsif (sending ='1') then
WR<="1";
if (send_count<=31) then
LEDR(1)<="1";
if (req ='1") then
once<='1";

if (once='0') then
send_count<=send_count+1;

end if;

ack<="0";

LEDR(2)<="0";

else
once<='0";
ack<='1";
LEDR(2)<='1";
data_out<=outbuff(send_count);
end if;
--when done sending, turn off ack
elsif(send_count>31) then
send_count<=0;
ack<='0"
LEDR(2)<="0";
sending<="0";
LEDR(1)<="0";
end if;
end if;
end if;
end process;
end behavioural;

B.3.3rs485_fifo.vhd

--File Name: rs485_fifo.vhd

--Description: FIFO RAM Module for the RS485 Buffers
--Author: Christopher Rennick

--Date: April 12, 2009

—Simulator: Altera Quartus il

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

-- memory size is based on an assumption of 100 byte packets
-- capability to store 128 packets is desired

entity rs485_fifo is
port(CLK, EN, WR, RES: in std_logic;
data_in: in std_logic_vector(7 downto 0); --data in from rs485_buf modules
data_avail: out std_logic;
LEDR: out std_logic_vector(2 downto 0);
data_out: out std_logic_vector(7 downto 0)); --data output to the mcu_output module
end rs485_fifo;

architecture behavioural of rs485_fifo is
--the current address being read from and written to
signal read_addr, write_addr: std_logic_vector(39 downto 0);

--the signals for the address lines going to the RAM megafunction
signal address_a_sig, address_b_sig: std_logic_vector(9 downto 0);

signal wren_a_sig: std_logic; --the write enable function for the 'a' port of the RAM megafunction
--the 'a’ output port of the RAM megafunction

signat q_a_sig: std_logic_vector(7 downto 0);
begin
--instantiation of Quartus Il derived dual-port RAM megafunction
fifo_ram_inst : entity work.rs485_fifo_ram
PORT MAP (
address_a =>address_a_sig,
address_b =>address_b_sig,

clock =>CLK,

data_a =>data_in,
data_b =>"00000000",
wren_a =>wren_a_sig,
wren_b =0,

q_a =>(q_a_sig,

q_b
)

process (CLK, RES)
begin

=> data_out

if (RES="1") then
--the reset command instructions

read_addr<=X"0000000000";
write_addr<=X"0000000000";
address_a_sig<="0000000000";
data_avail<="0";
wren_a_sig<='0";

LEDR<="000";

elsif (CLK'event and CLK="1'} then

--determines if the data_avail flag should be set or not

if ((to_integer(unsigned(write_addr))-to_integer(unsigned(read_addr))}>=32) then

data_avail<="1";

LEDR(2)<="1";
else

data_avail<='0";

LEDR(2)<="0";
end if;
--write

if (EN='1") then

address_a_sig<=write_addr(9 downto 0);

wren_a_sig<="1";
write_addr<=std_logic_vector(to_unsigned{{to_integer(unsigned{write_addr)}+1),40))

LEDR(1 downto 0)<="01";

else

wren_a_sig<='0";

address_a_sig<="0000000000";

end if;

--read
if (WR='0') then

address_b_sig<=read_addr(9 downto 0);

read_addr<=std_logic_vector({to_unsigned((to_integer{unsigned{read_addr)}+1),40));

LEDR(1 downto 0)<="10";

end if;
end if;

end process;
end behavioural;

B.3.4 arbiter.vhd

[

--File Name: arbiter.vhd

--Description: Rotating Priority Arbiter Module
--Author: Christopher Rennick

--Date: April 12, 2009

--Simulator: Altera Quartus Il

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity arbiter is
port(CLK, RES, busy: in std_fogic;
data_avail: in std_logic_vector{15 downto 0);
LEDR: out std_logic_vector(1 downto 0};
EN: out std_logic_vector(15 downto 0));

--data_avail signals from rs485_buf modules

--EN bus output to rs485_buf modules

end arbiter;

architecture behavioural of arbiter is
signal en_array: bit_vector(15 downto 0);
signal count: integer;

begin
process(CLK, RES)
begin
if (RES="1") then
count<=0;
en_array<=X"0001";
LEDR<="00";

elsif (CLK'event and CLK="1') then
—busy is tied to WR signal of rs485_fifo module, if busy=0, the module is being read from
if (busy="1") then
--checking if no one has data available to send to fifo, rotate en_array
if {(en_array and To_bitvector{data_avail))=X"0000") then

count<=0;
EN<=X"0000";
en_array<=en_array rol 1;
else
--when count>34, disable any active rs485_buf modules
if (count>34) then
count<=0;
EN<=X"0000";
en_array<=en_array rol 1;
--enable appropriate rs485_buf module
else
count<=count+1;
en_array<=en_array;
EN<=To_StdlLogicVector(en_array and To_bitvector(data_avail});
end if;
end if;
--if rs485_fifo module is busy, do nothing
else
EN<=X"0000";
en_array<=en_array;
count<=count;
end if;

end if;
end process;
end behavioural;

B.3.5 rs485_buf.vhd

--File Name: rs485_buf.vhd

--Description: This Module Buffers Serial Data From The RS485
--Connection Before Sending It To The FIFO RAM Block
--Author: Christopher Rennick

--Date: March 17, 2009

--Simulator: Altera Quartus I}

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all;

entity rs485_buf is
port{CLK, RESET: in std_logic;
busy: in std_logic;
data_in: in std_logic; --input from one of the rs-485 network buses
data_avail: out std_logic;
mem_en: out std_logic;

data_out: out std_logic_vector(7 downto 0)}; —-tri-state output to the rs485_fifo module
end rs485_buf;)

architecture behavioural of rs485_buf is

signal buff: std_logic_vector(7 downto 0);

signal go_clk, data_avail_sig: std_logic;

signal buffswitch, send_buffswitch: std_logic_vector({1 downto 0});
signal clock_div, clock_div_count: integer;

signal count, countl, send_count: integer;

signal data_a_sig, q_a_sig, q_b_sig: std_logic_vector(7 downto 0);
signal address_a_sig, address_b_sig: std_logic_vector(6 downto 0);
signal wren_a_sig: std_logic;

sighal check: integer;

begin

--instantiation of RAM megafunction with 128 byte capacity (4 32 byte packages)
rs485_ram_inst : entity work.rs485_ram
PORT MAP {

address_a => address_a_sig,

address_b =>address_b_sig,

clock =>CLK,

data_a =>data_a_sig,
data_b =>"00000000",
wren_a =>wren_a_sig,
wren_b =0,

q.a =>q_a_sig,

q_b =>q_b_sig

)

process(CLK, RESET, data_in)

begin
if (RESET="1') then

send_buffswitch<="00"; --dictates which half of memory is being read from
buffswitch<="00"; --dictates which half of memory are being written to
--used to calculate an average of all sampled inputs to ensure no bounces in signal were read
check<=0;
go_clk <="'0"; --used to indicate we're looking for the middle of the incoming data pulse
countl <=0; --counting out incoming bits being saved to 8 bit buffer
count <= 0; --counting bytes being saved to 100 byte packet buffer
send_count <=0; --counter for sending data out of module to FIFO
clock_div <=0; --clock divider for syncing with incoming RS485 signal
data_avail <='0"; --signal to arbiter to say data is ready to be sent to FIFO

data_avail_sig <="0";
data_out<="22227777";
mem_en <='Z";
clock_div_count<=0;

--the following are for testing memory write performance in simulation to save time
--count <=29;

elsif (CLK="1"' and ClK'event) then
if (data_in="0" or go_clk="1" or clock_div_count=10) then
--Baud rate is 100K Baud
--Examining 10 divisions of 25 clock cycles, find average value
--of these to ensure it wasn't triggered by a 'bounce’
if (count<32) then
wren_a_sig<="'0";
if (clock_div=24) then
clock_div<=0;
clock_div_count<=clock_div_count+1;
if (data_in="1") then
--count of ‘ones' in the input data stream
--used to find the "average" value of data_in
check<=check+1;
end if;

mgam

elsif (clock_div_count/=10 or go_clk="1') then
clock_div<=clock_div+1;
end if;

--clock_div_count=10 when we reach a full 250 cycles (10*25)
if {clock_div_count=10) then
clock_div_count<=0;

--go_clk=0 when we are looking at the start bit, for all other data
--bits, go_clk=1
if (go_clk='0"} then

buff<="00000000";

if (check<5) then --check if average value is 0
go_clk<="1";
check<=0;
end if;
else
--checking if we are still looking at a data bit or the
--stop bit
if (count1<=7) then
if (check<4) then
--average input value is 0
buff(7-count1) <='0";
check<=0;
else
—average input value is 1
buff(7-count1) <='1";
check<=0;
end if;
countl<=countl+l;
else
--we are now at the stop bit
check<=0;
go_clk<='0";
address_a_sig<=buffswitch &
std_logic_vector(to_unsigned{count,5));
wren_a_sig<='1";
data_a_sig<=buff;
countl<=0;
count<=count+1;
end if;
end if;
end if;
else
count<=0;

data_avail<='1";
data_avail_sig<="1";
wren_a_sig<='0";
data_a_sig<="00000000";
buffswitch<=std_logic_vector(to_unsigned((to_integer{unsigned(buffswitch)}+1),2));
end if;
end if;

--this is to send the data serially, byte by byte to the FIFO RAM block
if (busy='1') then
if (send_count =0) then
address_b_sig<=send_buffswitch & std_logic_vector{to_unsigned{send_count,5));
send_count<=send_count+1;
elsif {send_count =1) then
send_count<=send_count+1;
mem_en<='1";
address_b_sig<=send_buffswitch & std_logic_vector(to_unsigned(send_count,5));
elsif (send_count >1 and send_count<=31) then
mem_en<="1";
address_b_sig<=send_buffswitch & std_logic_vector{to_unsigned{send_count,5)};
data_out<=q_b_sig;

send_count<=send_count+1;

elsif (send_count >31 and send_count<=32) then

data_out<=q_b_sig;
mem_en<='1’;
send_count<=send_count+1;

elsif (send_count=33) then

else

data_out<=q_b_sig;
mem_en<='Z";
send_count<=send_count+1;
--done sending, get everything ready for next packet
send_count<=0;
count<=0;
mem_en<="0'";
data_avail<="Z';
data_avail_sig<="0";
data_out<="227222777";
send_buffswitch<=std_logic_vector(to_unsigned((to_integer(unsigned

(send_buffswitch))+1),2));

end if;
end if;
end if;
end process;
end behavioural;

B.4 Server_test.vhd

--File Name: server_test.vhd
--Description: Test Server Verification Wrapper Module

--This Module Simulates The Server Being Connected To The MCU

--Author: Christopher Rennick
--Date: May 10, 2009
--Simulator: Altera Quartus Il

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity server_test is
port(CLK, RESET: in std_logic;
in_port: in std_logic_vector{15 downto 0);

rs485out: out std_logic_vector(15 downto 0);
MCU_OUT: out std_logic_vector(7 downto 0);

LEDG: out std_logic_vector(7 downto 0);
LEDR: out std_logic_vector(17 downto 0));
end server_test;

architecture behavioural of server_test is

signal req_mcu_buf_sig, req_mcu_output_sig, ack_mcu_buf_sig, ack_mcu_output_sig: std_logic;

signal addr: std_logic_vector (3 downto 0);
signal sending, firstsend: std_logic;

signal send_count1, send_count2: integer;

type mem_type is array (0 to 31) of std_logic_vector(7 downto 0);

signal outbuff: mem_type;

signal data_in: std_logic_vector(7 downto 0);
signal reading: std_logic;

signal read_count: integer;

signal switch: std_logic;

signal DCLK: std_logic;

signal clock_div: integer;

begin
server_entityl: entity work.server
port map(CLK => CLK, RESET => RESET, req_mcu_buf => req_mcu_buf_sig,
req_mcu_output => req_mcu_output_sig, MCU_in => data_in,
in_port =>in_port,
ack_mcu_buf => ack_mcu_buf_sig, ack_mcu_output => ack_mcu_output_sig,
rs485o0ut => rs485out,
MCU_OUT => MCU_OUT,
LEDG => LEDG, LEDR => LEDR);

process(CLK, RESET)
begin
if (RESET="0") then
DCLK<='0";
clock_div<=0;
elsif (CLK'event and CLK="1'} then
DCLK<=not(DCLK);

--clock divider circuitry used to verify functionality on physical board
--Note: to use clock divider, CLK signal to server_entityl needs to be changed
--to DCLK signal

--clock_div<=clock_div+1;
--if {clock_div=32) then
-- DCLK<=not(DCLK);
- clock_div<=0;
--end if;
end if;
end process;

process(DCLK, RESET)
begin
if (RESET='0') then
req_mcu_buf_sig<='0";
req_mcu_output_sig<='0";
reading<='0";
read_count<=0;
data_in<="00000001"; .
switch<='0";
elsif (DCLK'event and DCLK="1') then
if (reading="0") then
--writing to FPGA and out rs485
if (read_count=33) then
read_count<=0;
if (switch="1' and ack_mcu_output_sig="1') then
reading<='1";
end if;

switch<=not{switch);
req_mcu_buf_sig<='0";
elsif {read_count=0) then
data_in<="00000001";
req_mcu_buf_sig<='1";
read_count<=read_count+1;
end if;

if (ack_mcu_buf_sig="1'} then
if (switch='0') then
--packet to turn on motherboard power
if (read_count=1) then
data_in<="00010000";
read_count<=read_count+1;
elsif (read_count=30) then
data_in<=X"DC";

else

end if;
end if;
end process;
end behavioural;

end if;

else

end if;

read_count<=read_count+1;
elsif (read_count=31) then
data_in<=X"D5";
read_count<=read_count+1;
elsif (read_count=32) then
read_count<=read_count+1;
req_mcu_buf_sig<="0";
else
data_in<="00000000";
read_count<=read_count+1;
end if;

--packet to turn off motherboard power
if (read_count=1) then
data_in<="00010001";
read_count<=read_count+1;
elsif {read_count=30) then
data_in<=X"2C";
read_count<=read_count+1;
elsif (read_count=31) then
data_in<=X"33";
read_count<=read_count+1;
elsif {read_count=32) then
read_count<=read_count+1;
req_mcu_buf_sig<="0";
else
data_in<="00000000";
read_count<=read_count+1;
end if;

--writing from FPGA to MCU
if (ack_mcu_output_sig='1') then
if (read_count=32) then

else

end if;

else

end if;

read_count<=0;
reading<='0";
req_mcu_output_sig<="0";

req_mcu_output_sig<='1";
read_count<=read_count+1;
reading<="1";

req_mcu_output_sig<='0";
read_count<=read_count;
reading<=reading;

Appendix C. Test Server C Code

AR EEEEEEERE RS E SRR ESEE R R E R R R R R R R R R N Y A eI

ack and Test Functionality

* ket at IP address n on LC
«
CRC check value for all cutgoing and incoming
*
* and :pts transmissions from the FPGA
*
* Deno App created by Microchip and
* Stack Scoftware
K KK KKK KK KA KKK KKK R KA KRR KKK Ak K kK K kKK K K A K A A KK AR KA KK K Kk K K

Stack in
Cornrent:

Use:

R L A v

/
/%
/
* O unicquely defi as the main entr
* only he one on in the entir
* v d low.

x/
#define THIS_IS STACK APPLICATION

/7 Inciud headers for any enabled TCPIP Stack functions
#include "TCPIP Stack/TCPIFR.h"

el

/4 Include functions s
#include "Main.h"

to this stack application

s

$include <stdic.h>
#include <string.h>

// Declare AppConfig structure and some other supporting staclk variables
APP_CONFIG AppConfig;
BYTE ANOString(8];

// ise T2 instead of
/7 ser port hardware
#if defined(EXPLORER 16

int _ C30 UART = 2

RT1 for stdout {printf Ffunctions). Explorer 18
on PIC UARTZ module.

fendif

’/'A'xkk'k'k R I i P e P E R R khkkkkhkkhkkkxxkhkrhkhkkxkhkkkkhkddxhikk ﬂ'kxl,’
//initialize constants for B
#define PORTNUM 9764

// Maximum number of simultanous conn
fidefine MAX CLIENT (1)

f#define PACKETLENGTH 30

rkeley Bockets

tions accepted by the server.

/'-L,*.-i.—i.-i.-+*4-4-&.%k&#.+.~':&+,-~'.-+4:&&.&&,i%&-*ﬂ:i%*éﬂ:é«:.—'«.*&éi:!v.*:*.t.i«*.‘-.++t**&+:~**é*~':k&,‘yii-’:ﬁ#%,&.«ti++.<':¢.&/l
I AR R R R R N N R R R T T T e

//These & are the storage for outgoing and incoming packe
#pragma udata my_section 1

unsigned char sending_data buffer([30];

#pragma udata my_section_2

unsigned char receiving data buffer(30];

the hex character string conversion of receiving data buffer

]

//This variable i:

#pragma udata my_section 3
char dataString[PACKETLENGTH];

int CRC_value;

JREKRKKKRKKKREKRS KKKRKR KRR KRR R KRR KRR A RERRK KRR KKK RRK KRR KK I AR KRR KT KKK K KR AH K KKK E KA /

l/r’i(E R R e B I I e R R R R R A O R ks k,,’
// Function declarations.

static void InitAppConfig(void):

static void InitializeBoard(void);

int BerkeleyTCPServer(char *bfr, char *trans bfr, int total):

void Initialize(void);

veoid crclé(unsigned char data):

void FPGA_transmit (void):

void FPGA receive (void):
R R e R R R R E R EEE R I e R R O U R i R I g e o G G e R R R R R R R, Kk ok kS
/ y

/7 PICLI® Interrupt Service Routines
#if defined(__ 18CXX)

#if defined(HI_TECH C)

void interrupt low priority LowISR(void)

#else

#pragma interruptlow LowISR

vold LowISR(void)

fendif

{

TickUpdate () ;
}

#if defined(HI_TECH_C)
void interrupt HighISR(void)
felse
#pragma interruptlow HighISR
void HighISR(void)
#endif
{
#if defined(STACK_USE_UART2TCP BRIDGE)
UART2TCPBridgeISR() ;
#endif

¥if defined(2G_CS_TRIS)
2gEintISR() ;

}

#if !defined(HI_TECH_C)

#pragma code lowVector=0x18

void LowVector(void) {_asm goto LowISR _endasm}
#pragma code highVector=0x8

void HighVector (void) {_asm goto HighISR _endasm}
fpragma code // Return to default code section

fendif

// ©30 and C32 Exception Handlers
/7 If your code gets here, i to read or write
// a NULL pointer, or your agrg ation overflowed the stack
// by having too many local variables or parameters declared.
felif defined(_ C30)
void _ISR __attribute ((_ no_auto_psv__)) _AddressError(void)

{
Nop () ;
Nop () :
}
veid _ISR __attribute_ ((_no_auto _psv_ }) _StackError(veid)
{
Nop () ;
Nop ()
}

#elif defined(_ C32)
void _general exception handler (unsigned cause, unsigned status)

Nop ()
Nop () ;

~

#endif

Jkkkk kAR KRk h kK Ak kAR A KA KR ARKR Ak A A Ak hhakhA A Ao k& kA vk khh hhkdhdhdkhkhhdxkddk kh k&g
I

Function:

the nmain function where all other functions are called from

- None

This function was originally part of the Microchip TCP/IP Stack Software
T I I I I et Sy

vold main (void)
{
static TICK t = 0
static DWORD dwLastIP = 0;
int i;
int total;
char bfr[67];

// Inmitialize application specific hardware

InitializeBoard();
Initialize();

#if defined(USE_LCD)

// Initialize and display the stack version on the LCD

LCDInit ()

DelayMs (100);

strcpypgm2ram((char*)LCDText, "CTCPStack " VERSION " "
" ")i

LCDUpdate () :

#endif

/7 Initia
// requi
TickInit();

stack-related hardware components that may be
e¢d vy the UART configura routines

/7 Initialize Stack and application related NV variables into AppConfigq.
InitAppConfig();

// Initiates board setup process if button is depressed
// on startup

if (BUTTONO IO == Qu)

{
#if defined(EEPROM CS_TRIS) || defined(SPIFLASH CS TRIS)
// Invalidate the EEPRCM contents if BUTTONO is held down for more than 4
//seconds
TICK StartTime = TickGet():;
LED_PUT (0x00) ;

while (BUTTONC IO == Ou)
{
if(TickGet () - StartTime > 4*TICK_SECOND)
{
#if defined(EEPROM_CS_TRIS)
XEEBeginWrite (0x0000) ;
XEEWrite (0XFF);
XEEEndWrite () ;

#elif defined(SPIFLASH CS_TRIS)
SPIFlashBeginWrite (0x0000) ;
SPIFlashWrite (OXFF);

#endif

#if defined(STACK_USE_UART)
putrsUART ("\v\n\r\nBUTTONO held for more than 4
seconds.\r\ni\ri\n");

#endif

LED_PUT (0x0F) ;

while ((LONG) (TickGet () - StartTime) <=
(LONG)(9*TICK_SECOND/2));

LED_PUT (0x00) ;

while (BUTTONO_IO == Qu);

Reset () ;

break;

}

fendif

e core stack layers {(MAC, ARP, TCP, UDP) and
pplilication modules {HTTP, 3SNMP, etc.)
StackInit():

/7 This loop will continuously execute all
/] ste : tasks and a cation functions.

that this is a "co-operative nmult-tasking” mechanism
every task performs its tasks {whether all in one shot
// or part of iti and returns so that other tasks can do their
/7 dob.
/7 It a task needs very

long time to do its job, 1t must be broken

// down into smaller pieces so that other tasks can have CPU time.
total=0;
while (1)
{
// Biink LEDRU {right most one) every second.
if(TickGet () - t >= TICK SECOND/2ul)
{
t = TickGet ();
LEDO_IO "= 1;
} .

/7 This task perfo: tk task including checking
// for incoming i tvpe of packet and calling
// appropriate stack entity to process it.

StackTask () :

ata

// This task invokes each of the core stack application tasks
StackApplications{();

// Pro s applica X > tasks here.
if (PACKETLENGTH-total>0 && (i=
BerkeleyTCPServer (& (receiving data_buffer([totall), & (sending_data_buffer[total]),
(PACKETLENGTH-total)))>0)
total+=i;

if(total==PACKETLENGTH)

CRC_value=0xFFFF;
//Caiculate the CRC value for the outgeoing data
for (i=0;i<=29; i++)
{
crclé(receiving data buffer[i]);

}

//Transmit the outgoing data to the
FPGA_transmit;

/Theck to see if data is waiting to be input from the F

]
&
i

A and

//input any data that is waiting
FPGA_receive;

total=0;

Y4 the local IP address has changed {ex: due to DHCP lease change}
i te the new IP address to the LCD display, UART, and Anncunce
/7 sex

if (dwLastIP != AppConfig.MyIPAddr.val)
{
dwLastIP = AppConfig.MyIPAddr.Val;

#if defined (STACK_USE_UART)
putrsUART ((ROM char*) "\r\n¥ew IP Address: ");
fendif

DisplayIPValue (AppConfig.MyIPAddr);

#1f defined (STACK USE_UART)
putrsUART ((ROM char*)"\r\n");
#endif

¥if defined (STACK_USE_ANNOUNCE)
AnnouncelIP();
#endif

FEXEKAKKEKRRKKXKK I A Ak xh kA hkhhkhkxk ok kK kkhdkdkk* kX khkhhkhhkdhkhkhxhkhxhhkdkhkhkxxkkxk
function:
static void Initialize {(void)

initializes the MCU I/0 port directionality as well
the request lines to 0

Precondi

Returns:

Nane

EREEES k#+*****#*****i**#*++i*ﬁ**Tw&*i+**%**+**%k****+*&***+*?**++%+**ﬁ+**/
void Initialize (void)
{

CRC_value=0;

//In > IC ports for input/output to FPGR

//B4 is ackl, BS is reql, B& is ack?, B7 is reqd

ackl en=1;

ack2_en=1;

reql_en=0;

req2_en=0;

//initialize reguest lines to zero so unwanted data is not transmitted to the ¥

reql=0;
req2=0;

J/PORTC iz used for cutputting the 8 vit
mcu_out_en=0x00;
mcu_out=0x00;

to the FPGA

//PORTD is used for accepting the & bit parallel data from the
mcu_in0_en=1;

’

mcu_inl en=1
mcu_in2_en=1
mcu_in3_en=1
mcu_in4_en=1
mcu_in5_en=1

7

;

’

I

mcu_iné_en=1;
mcu_in7_en=1;

Function:

st

s function CRC1E

T updates the
accepting the

cutput dat at a time

be before

must initialized to

iue

camelers:
Inputs: integer data to pe added t
Cutputs: None

Returns:

NOTIE

kg
one
AR KR K A K K K K K Rk KK K Kk K AR KR KKK KKK K A K Kk K KX KKk KRk KR Kk

i
N

void crclé(unsigned char data)

{

/7o
long y7
int x;
% = (CRC_value >> 8) " data;
X "= x >> 4;
y = (long)x << 4;
// Update the CRC based on the new byte
= Ny << 8) N (y << 1)

CRC_value

(CRC_value << 8)

e g

func

~

e ke o

KKK KE KK KR KK R kR

X7

P

GA transmit{

iption:
This functi
the CRC va
th the

It does this using a si

hardware.

& reaq

econdition:
CRC value nust be determined pefore function ca

None

None

Inputs:

Qutputs:

urns:
0T

If no re: 3e 1s heard
count of 285, the function exits.
t packet and will re-transmit at

PGA one byte at a time,

upon initial setting of the request line after

inciuding
uest/acknowledge handshake

v
id

a
notice nd
ater time.

response was

Fhkrkkdhhhhkkkhdkh kT kkkdhkh kR khkk kA XA hhhh kA hh kb h kA hk ok kd kA hk ok kkhkk *kkx k5% /
7

void FPGA transmit (void)
{

int i;

int count;
short int done;

count=0;
done=0;
i=0;

while (done==0)

{

if none is re

ponse fro
reaches 255, exit func
while (ackl==0 && done==0)

{

if (i==0)
{

count++;
if (count==255)
done=1;

//Transmit the data bytes to the FPGA and de-assert reg
if (i<=29 && done==0)
{

mcu_out=receiving_data_ buffer[i]&255;

reql=0;

i++;

—-—

//transmit the high «
else if (i==30 && done=
{

r byte of the CRC
0)

mcu_out=(CRC_value>>8)&255;
reql=0;
i++;
}
//tranmit the low crder byte of the CRC
else
{
mcu_out=CRC_value&255;
reql=0;
CRC_value=0xFFFF;
done=1;

R AR R R R]

LR R R R R R R R R R R R L R R]

Function:
void FPGA_receive (void)

cepts data from the FPGA using the same acknowlie
handshake method used to transmit data. [ata is accepted one b
and when a:

yte at a
packet data has been received, the CRC value is chectked to

ensure there were no transmission errors anywhere from the test node to here.
170

the CRC does not match, the ACK value of the packet is changed to
2 PLA

Parameters:
Iinputs: MNone
Cutputs: None

Returns:
None

Remarks:

101

leaving the func
d before then that the

This function waits for a count of 256 before

not asser

L A ko *
void FPGA receive (void)
{

int i;
int exit, count;

exit=0;

count=0;

i=0;

/facoept data from FPGA

while (exit=0)
{
if (i<=0)
count++;

//LE

< 1% no d by a count of 256,
else if (i==32 ==256)

exit=1;
else
{
if (ack2)
{

//sending_da

buffer{il=nncu_in;

sending_data_bﬁffer[i]=mcu_in0+(mcu_in1<<1)+(mcu_in2<<2)+(m
cu_in3<<3)+(mcu_ind<<4)+(mcu_in5<<5)+(mcu_in6<<6)+ (mcu_in7<<7);

i++;
req2=1;

/7ini e CRC value

CRC_value=0xFFFF;

//check and cormpare CRC v
if (1==32)
{

ue, if different, set ACK to 170

for (i=0; 1<=29; i++)
{
crclé(sending_data_buffer[i]);
}
it ((CRC_value>>8)&255!= sending data_buffer({30] ||
(CRC_values&255) !=sending_data buffer[31]
(

sending_data_buffer([1]=170;

yTCPServer{char *bfr, char *trans bfr, int total)

1 socket communication with the PC Client program.

Precondition:

Stack and Berkeley

must be initialized prior to function call

Paramaters:
Inputs: None
OGutputs: None

kReturns:

None

Femark

function was criginally part of the Microchip TCP/IP Stack software

ion is called from within after data has

B R T R I R R R R I R P N S i S s

int BerkeleyTCPServer(char *bfr, char *trans bfr, int total)
{
static SOCKET bsdServerSocket;
static SOCKET ClientSock[MAX CLIENT];
struct sockaddr_in addr;
struct sockaddr_in addRemote;
int addrlen = sizeof(struct sockaddr in);
int length;
int i, 3
static enum
{
BSD_INIT = O,
BSD_CREATE_SOCKET,
BSD_BIND,
BSD_LISTEN,
BSD_OPERATION
} BSDServerState = BSD_INIT;

switch (BSDServerState)
{
case BSD INIT

2nt socket handles so that
4 1 PERATION state

for(i = 0; i < MAX CLIENT; i++)

ClientSock[i] = INVALID_SOCKET:

BSDServerState = BSD_CREATE_SOCKET;
// No break needed

case BSD_CREATE_ SOCKET:

// Create a socket for this server to listen and accept

we don't

connections

bsdServerSocket = socket (AF_INET, SOCK_STREAM, IPPROTO_TCP);

if (bsdServerSocket == INVALID SOCKET)
return -1;

BSDServerState = BSD_BIND;
// Wo break needed

case BSD_BIND:
// Bind socket to a local port
addr.sin_port = PORTNUM;
addr.sin_addr.S_un.S_addr = IP_ADDR ANY;
if(bind(bsdServerSocket, (struct sockaddr*)saddr,

return -1;

BSDServerState = BSD LISTEN;
// Mo break needed

cas¢ BSD_LISTEN:
if (listen (bsdServerSocket, MAX CLIENT) == 0)
BSDServerState = BSD_OPERATION;

/ case we shot

/ with normal operation.

case BSD_OPERATION:
for(i=0; i<MAX_CLIENT; i++)

—m"ummdw\mmuu

sten{) returns SCQCKET

/ X_CLYE t to too > of a bac
/ by the und ng TCP socket count ({TCE
/ type socke in TCPIPConftig.h)l. Howev

/ possible that some of the backlog is sti

addrlen

ERROR

e

ion requests, assuning we

208

it

handieable,
try to accept{) connecticns anyway and p

have

)

could be
og than can be
E_BERKELEY

DTOCEsSs

a4 places

on

== SOCKET_ERROR

because
handied

in which

racead

o

103

if(ClientSock([i] == INVALID SOCKET)

ClientSock[i] = accept(bsdServerSocket, (struct sockaddr*)s&addRemote,

&addrlen);

If this socket is not connected then no need to process anything

if(ClientSock[i] == INVALID SOCKET)
continue;

all connected sockets, rece: and send back the data
length = recv(ClientSock[il, bfr, total, 0);

if (length< 0)

{
//close the socket connecticon
closesocket (ClientSock[il)
ClientSock[i] = INVALID_SOCKET;
}
else if(length>0)
{
send(ClientSock([i], trans_bfr, length, 0);
}
return length;
}
break;
default:
return 0;
}
return 0;
}
/’- R R T T R TR R e R T k. g

Ip ADDR IPVal)

ndition:

Preco
Stack rmust be initial

to function call

Cutputs: None
Returns:
None

Remarks:
Th: function was originally part of the Microchip TCP/IP Stack software
"t"r'k***********k***i"r********'k*******xr****i*9(**i**************i**********/

void DisplayIPValue (IP_ADDR IPVal)

{
I printf{"%u.%u.%u.%u", IP 1, IPval.vi2}, IPVal.wi3li;
BYTE IPDigit(4];
BYTE i;
#ifdef USE_LCD
BYTE j;
BYTE LCDPos=16;
fendif

for(i = 0; i < sizeof (IP_ADDR); i++)
{
uitoa((WORD)IPVal.v[i]}, IPDigit);

#if defined (STACK_USE_UART)
putsUART (IPDigit);
fendif

#ifdef USE_LCD

104

for(j = 0; j < strlen{(char*)IPDigit); j++)
{
LCDText [LCDPos++] = IPDigit{j];
))
if(1 == sizeof (IP_ADDR)-1)
break;
LCDText [LCDPos++] = '.!';

felse
1f(i == Sizeof(IP_ADDR)-l)
break;
fendif

#if defined(STACK_USE_UART)
while (BusyUART ()) ;
WriteUART('.");

fendif

}

#ifdef USE_LCD
if (LCDPos < 32u)
LCDText [LCDPos] = 0O;
LCDUpdate () ;
fendif

/*k*******k**x************‘kit*'kx*X*i(ir**********k*******i************k****i****
7

s the hardware. It is a generic initialization
»f the Microchip development boards, using definitions
ofile.h to determine sp initialization.

Retu

None

s function was originally part of the Microchip TCP/IP 3tack soft

AR R A R R R R R e R A T,

static void InitializeBoard(void)
{

/7 LEDs

LEDO_TRIS = 0;
LED1 TRIS = 0;
LED2_TRIS = 0;
LED3_TRIS = 0;
LED4_TRIS = 0;
LED5_TRIS = 0;
LED6_TRIS = 0;
J/#1E ldefined {EYPLORER_16) // Pin ruitiplexed with a button on EYPLCORER_16

LED7_TRIS = 0;
//¥endif
LED_PUT(0x00);

s

// Enable 4x:/5:/96MHz PLL on PICI8F87J10, PICI8FO7JI60, PICi8F87J50, etc.

OSCTUNE = 0x40;

ADCON2 = 0xBE; /7 Right Jjustify, 20TAD ACC time,

s 3 N

// Enable internal PORTR pull-ups
INTCON2bits.RBPU = 0;

i Configqure 338ART

TXSTA = 0x20;
RCSTA = 0x90;

/7 See if we can use the high baud rate setting

#1f ((GetPeripheralClock()+2*BAUD RATE)/BAUD RATE/4 - 1) <= 255
SPBRG = (GetPeripheralClock({()+2*BAUD_ RATE)/BAUD RATE/4 - 1;
TXSTAbits.BRGH = 1;

felse // Use the low vaud rate setting
SPBRG = (GetPeripheralClock()+8*BAUD_RATE)/BAUD RATE/16 - 1;

#endif

RCONbits.IPEN
INTCONbits.GIEH =
INTCONbits.GIEL

// Epable interrupt pricrities

[

#if defined (SPIRAM CS_TRIS)
SPIRAMInit():

fendif

$if defined (EEPROM CS_TRIS)
XEEInit ()

#endif

#if defined(SPIFLASH CS_TRIS)
SPIFlashInit():

#endif

}

/14.41#*&?':.":**Q*?’:‘.*&-*,{'#*i**.‘:‘\'***"zx*‘.f‘:é**ﬁ.’i7'(*******i**k*k*i*****ﬁ&**'k:‘r*.‘:&#

* Function: void InitzZppConfig{void)

* PreCondition: MP 1s already called.

“*

* Input: None

"

* Cutput: Write/Bead non-volatile config variables.
%

¥ Side Effects: None

*

¥ Qverview: None

*

* Note: None

* Renarks: This function was originally part of the Microchip TC

Stack ftware
KRR A AR KKK KR T E A KKK KRR E KA KAk A A F A kxR AR AR A Kk KK ANER T H A AT A XA AL/

/
/

/7 Address Serialization using a MPLAB PM3 Pragrammer and
/7 Bevialized Quick Turn Programming {3QTP}.
// The advantage of using SQTP for programming the MAC Address is it

// allows you to auto-increment the MAC address without recomg
/7 the code f

ling

each unit. To use SQTP, the MAC address must be fixed

> location in progr: erory. Uncomment these two pragmas

ddress . Syntax below is for MPLAB C

Syntax will vary for other compilers.

70

static ROM BYTE SerializedMACAddress[6] = {MY_DEFAULT MAC_ BYTEI, MY DEFAULT MAC BYTEZ2,
MY DEFAULT_MAC BYTE3, MY DEFAULT MAC_BYTE4, MY DEFAULT MAC BYTES, MY DEFAULT_MAC BYTEG6};
/{tpragma romdata

n
U

static void InitAppConfig(void)
{
AppConfig.Flags.bIsDHCPEnabled = TRUE;
AppConfig.Flags.bInConfigMode = TRUE;
memcpypgm2ram ((void*) &AppConfig.MyMACAddr, (ROM void*)SerializedMACAddress,
sizeof (AppConfig.MyMACAddr));

/7 prog address? dress;
,l/ lI/ ~e ~ B S) ;
/ DY, paddy nfig.MyMACAddr, MACAddressAddress,

106

AppConfig.MyIPAddr.val = MY DEFAULT_IP_ADDR_BYTEl | MY DEFAULT IP_ADDR BYTE2<<8ul
| MY_DEFAULT_IP_ADDR BYTE3<<l6ul | MY DEFAULT_ IP ADDR BYTE4<<24ul;
AppConfig.DefaultIPAddr.Val = AppConfig.MyIPAddr.val;
AppConfig.MyMask.Val = MY _DEFAULT_ MASK_BYTEl | MY DEFAULT MASK BYTE2<<8ul |
MY DEFAULT_MASK_BYTE3<<l6ul | MY "DEFAULT _MASK_ BYTE4<<24ul
AppConfig.DefaultMask.val = AppConflg MyMask val;
AppConfig.MyGateway.Val = MY DEFAULT_GATE_BYTEl | MY DEFAULT GATE BYTE2<<8ul |
MY_DEFAULT_GATE_BYTE3<<16ul | MY DEFAULT GATE BYTE4<<24ul;
AppConfig.PrimaryDNSServer.val = MY DEFAULT PRIMARY DNS BYTEl |
MY DEFAULT PRIMARY DNS_BYTE2<<8ul | MY_DEFAULT PRIMARY DNS BYTE3<<l6ul |
MY DEFAULT PRIMARY DNS BYTE4<<24ul;
AppConfig.SecondaryDNSServer.Val = MY_DEFAULT SECONDARY DNS BYTEL |
MY DEFAULT SECONDARY_DNS_BYTE2<<8ul | MY DEFAULT SECONDARY DNS BYTE3<<16ul |
MY_DEFAULT SECONDARY DNS_BYTE4<<24ul;

7 Community String configuration
#1f defined (STACK_USE_SNMP_SERVER)
{

BYTE i;
static ROM char * ROM cReadCommunities[] = SNMP_READ COMMUNITIES;
static ROM char * ROM cWriteCommunities[] = SNMP_WRITE COMMUNITIES;

ROM char * strCommunity;

for(i = 0; i < SNMP_MAX COMMUNITY SUPPORT; i++)
{
/7 Get a pointer to the next community striug
strCommunity = cReadCommunities(i];
if(i >= sizeof(cReadCommunities)/sizeof (cReadCommunities([0]))
strCommunity = "";

/7 Ensure we don't buffer o

of you

. _ 37 are too large.
if(strlenpgm(strCommunity) >= SLAeof(AppConflg readCommunlty[O]))
while (1);

// Copy string into AppConfig
strcpypgm2ram((char*)AppConfig.readCommunity([i], strCommunity) ;

// Get a pointer to the next community string

strCommunity = cWriteCommunities(i];

if(i >= 51zeof(certeCommunltles)/lecof(certeCommunltles[0]))
strCommunity = "";

// Ensure we don't buffer overflow. If your code gets stuck her
g eans your SNMP_CCMMUNITY MAY LEN definition in 7TC sonfig.h
theL foo small or one of your community string lengths
WMP_WRITE_COMMUNITIES) are toc large. ix either.
enpgm(strCommunlty) >= sizeof (AppConfig.writeCommunity[0]))
while(1);

1

/7 Copy string into AppConfiq
strcpypgm2ram((char*)AppConfig.writeCommunity[i], strCommunity);

}
#endif

// Load the default NetBIOS Host Name
memcpypgm2ram (AppConfig.NetBIOSName, (ROM void*)MY DEFAULT_HOST NAME, 16);
FormatNetBIOSName (AppConfig.NetBIOSName) ;

#1f defined(ZG_CS_TRIS)
/¢ Load the default SSID Name
if (sizeof (MY_DEFAULT_SSID_NAME) > sizeof (AppConfig.MySSID))
{
ZGSYS_DRIVER_ASSERT (5, (ROM char *)"AppConfig.MySSID[] too small.\n");
}
mencpypgm2ram(AppConfig.MySSID, (ROM void*)MY DEFAULT_ SSID NAME,
sizeof (MY_DEFAULT SSID NAME));

fendif

‘IR Socket

the € code to run

i Author: Chris Fenni

oy Donahoo, M and

ITles sypden g 453 %
//Header file ¢
/*****i'i‘k**?{***** ****7‘(*7’(******'ﬁ’*’\’***********ﬁ’k***************‘k**********i"k*****‘kt’(*/

/71 Windows system
#ifdef WIN32

#include
nuzx/in

#include <sys/socket.h>
#include /t 3
#include <
#include <netinet/in.h>

e

#endif

#include «<stdio.h>

#include <stying.h>

#include <stdlib.h>

#include <time.h>

/***k‘*k'ﬂi’i—*‘t‘(****** R e e e R g I S T Y ‘k*i‘*"k*‘k*******i‘***’**/

//Define system constants and input/cutput file pointers
(,"A‘ KEKKKKAKKKRKKRKIRKKKRR KRR EKR TR KKK I RIRAAA KT ThRKk Ak hkhkhkhA Kk KThhkhhhkhkhkhhkdkddkidxk kA kkx kKkkxxx)

/

fdefine MAXSENDPACKETS 1048576
#define PACKETLENGTH 30

FILE *packets;

FILE *sorted_packets;
FILE *converted packets;
FILE *received_packets;

i b i ey ¥ ~ Jopn T oo o 3 -~
//GL able declarations
/*** L e e R R R e R R e R R R R R R *i‘x***/’

for data that is received over

//sending date
//to the test nodes

unsigned int sending_data_ buffer [MAXSENDPACKETS] [31];
//read data_buffer is data that has been read from the
//the ethernet connection

unsigned int receiving data buffer [MAXSENDPACKETS] [30];

iting to be

to be sent over

//Thi the array that ho
/4 coun in seconds si y '
time_t sending_data_buffer time[MAXSENDPACKETS];

that a packet was sent

//this is the pointer that handles the address in the data buffer for inputting

//new data fyom the file
int write_pointer sending;

o5

that handles the addr
to the MCU
int read_pointer_ sending;

s the pointer that handles the addre

ing data from the MCU
int write_ pointer_receiving;

//This

i
/laccent

//This is to keep track of when the

int lastSort:

in the scorting func
to another, the bus contention
lastAddr2, lastAddr3,

//These are u
//small sout
int lastAddrl,

also used in the sort function to
) iy n det ined once
int comparisonFull;

Ui

short

//This
short int nodelastComm[l6][16];
short int nodesConnected[16]({16]:;

from the nodes

@

short int IDLE;

//This variable holds the time when the s)
time_t IDLE

G

EETRE

void DieWithError (char *errorMessage);
void Initialize (void);

volid InitializeNetwork(void);

void NoResponseCheck (void);

vold SortPackets (void);

void ConvertandStore (unsigned char *data_in,
int nodelastcommto (void)

void CheckReceived (void) ;

t

i 5

in the data_buffer

35 of the data_buffer

issues don't happen.

lastAddr4;

note that the above three
» track of any nodes that haven't been communicated to in a whil

when the system has no new data to send,
5

for outputting

st sort on the data was performed

n. They are kept glokal so that from one

o

but is

em last went into IDLE state

W ok sk ok bk o ek ko

short int sendread,

% ek kR e e

int size);

VA R R R R R L R *EEKKF KKK [

AR A R R e AR R R R R R R R O R R R A A]
/

Function:
int nain{int argc,

char *argv(])

Prog

ram entry point

including all socket operations.

Ea2turns:
None

code was pted from the
tten by Donahoo, M and C

xample <
2rt, K

~ode from the book

. All other functions

address and port number

.

are called from within

/1P Sockets in C

e i e R P R R A S g KREKIKFTKK [

int main(int argc,

{

char *argv([])

1

int sock, i, Jj, k, 1;

struct sockaddr_in dataServAddr:
unsigned short dataServPort;

char temp{3];

char *servIP;

unsigned char dataString[PACKETLENGTH};
unsigned char dataBuffer [PACKETLENGTH];
char datalél];

int n;

int dataStringlen;

int bytesRcvd, totalBytesRcvd;

#ifdef WIN32
WSADATA wsaData;
#endif

//Coenning output files

packets=fopen ("C:/Users/Chris/Desktop/ATI/C

sorted_packets=fopen ("C:/Users/Chris/Desktop/
dat", "w");

converted_packets=fopen("(:/Jsers/Chris/Desktop/ATI/C Files/text files/converted p
ackets.dat™,"w"):

received_packets=fopen(“C:/Users/Chris/Desktop/ATI/C_Files/text files/received pac
kets.dat","w");

//routine used to initialize global variables

Initialize():

//routine used to send packets to check which nodes are connected
InitializeNetwork();

//set up socket constants for port number and IP address
if (argc>=3)
{

servIP = argv[l];
dataServPort = atoi(argvi{2});
}

#ifdef WIN32
//Initialize Winsock
if (WSAStartup(MAKEWORD(2,0), &wsaData) != 0)
printf (stderr, "WsSAStartup{) failed"):
#endif

//Cpen Socket
if ((sock=socket (PF_INET, SOCK_STREAM, IPPROTO_TCP)) <0)
DieWithError ("Socket {) failed™);

//setup socket constants for IP address and port as well as //the address
memset (&dataServAddr, 0, sizeof(dataServAddr)):

dataServAddr.sin_family = AF _INET;

dataServAddr.sin_addr.s_addr = inet addr(servIP);

dataServAddr.sin_port = htons(dataServPort);

//Connect to Socket
if (connect(sock, (struct sockaddr *) s&dataServAddr, sizeof(dataServAddr)) <0)
DieWithError ("connect () failed");

while (1)
{
//read from the input file until no more data exists in the file
if (!feof(packets))
{
//input the data from the hex file
n=fread(data, 1, sizeof (data),packets);
datalsizeof (data)]l="\0"';
ConvertandStore(data, 0, 60);

//increment the sort counter
lastSort++;

else
{
//if there no rmore data to input from the file,
//start entering IDLE mode
IDLE=1;
IDLE_ time=time (NULL) ;
}

s/

/if there are 50 new data strings, sort and send them
if (lastSort==50 || ((time(NULL)-IDLE time==1) && IDLE==1))
{

IDLE=0;
lastSort=0;
//Check all sent packets to see if a response was ever received

NoResponseCheck () ;

//50 or more packets are waiting to be transmitted, so sort them
SortPackets ()

fprintf(converted packets, "IP address and port number are: %s 3s"
argv[l], argv([2]});
fprintf (converted_packets, "\n Start of data being sent outi\n");

//%end only that data that hasn't been sent before

while (read pointer_sending<write_pointer sending)

{
//store the value of the system clock for current
//transmission packet to verify later that not tco much
//time has past without & response from the node
sending_data buffer time[read pointer sending]=time (NULL);

//convert data back into a hex number character string
for (j=0; j<=29; j++)
datastring(jl=sending_data_buffer([read pointer sending] [j]&255;

read_pointer_ sending++;
dataStringLen = PACKETLENGTH;
//8end dataString over Socket to Server

if (send(sock, dataString,. dataStringLen, 0) !=
dataStringLen)

DieWithError(“"send{) sent a different number of
bytes than eupected”);

totalBytesRcvd = 0;

//Receive data back from Server
printf("%d Received\n", read_pointer_sending):;

//exit=0;
bytesRcvd=0;
while (PACKETLENGTH-bytesRcvd>0 && (n=recv{sock,
dataBuffer+bytesRcvd, PACKETLENGTH-bytesRcvd , 0))>=0)
{
bytesRcvd+=n;
totalBytesRcvd++;
}i

for (j=0; j<PACKETLENGTH; j++)
printf ("%02¥%", dataBuffer(j]);

printf("\n"});

ConvertandStore (dataBuffer, 1, PACKETLENGTH):

$#ifdef WIN32

closesocket {sock) ;

WSACleanup();
felse

close(sock);
#endif

//clogse output fi
fclose (packets);
fclose (converted packets);
fclose (sorted packets);

while (1) ;

¢
This function iz used to initialize glokal variables

Pavan
Inputs: None
Cutputs: None

Return

nNom

KKK KKK KKK KKK EKHEKKKKRKRAKRRKEKAKRKH KRR LA RR AR KKK KK &k ok ok dk kxR odk ok ke ok ok k& k& R K k& &k &k &k ok % k& /

vold Initialize (void)

{
/7inits e data address
write pointer_sending=0;
read_pointer sending=0;
write pointer receiving=0;
//Ini IDLE
IDLE=0;
//inlt &=
lastSort=0;
lastAddrl=0;
lastAddr2=0;
lastAddr3=0;
lastAddr4d=0;
comparisonFull=0;
; ¢ nodesConnected
for (short int i1=0; i<=15; i++)
{
for (short int j=0; j<=15; j++) nodesConnected[i] [j]=1;
}
}

R R R R R R R R R R R R YY"

void Initi etwork{void;}

out a packet to all 256 nodes of the test network.

e

it is used to detect which nodes are cur

ently connected to the network

DIIC

None

Paramet
Inputs: None
Cutputs: None

Returns:
None

Remarks:

ek e A A

b R ok R R Bk b bk ke

void InitializeNetwork (veid)
{

int i, 32

for (i=0; i<=255; i++)
{
for (j=0;3j<=29;j++) sending_data buffer[i])[j]=0;
sending_data_buffer([i] [0]=1i;
sending data buffer{i] [1]=18;
sending_data buffer{i] [3]1=27;

write_pointer_sending++;

(,’k‘k'}c'k KAKKIAKKIIXKKXKKRKKKRKKKKIERKEAXKKKKRKK KK KT xR KKk x Kk ok kK xk kdok xkkhxkdkkkk KK kR K Rk k okok ok koK ok koK

T

void ConvertandStoreichar *data_in, short int sendread, int

function ace

a char format hex file and converts the packet to

in the sending data buffer for output to the FPoa

sendread flag which tells the funct whether it
be sent, or one thatwas received over the socket
converted

a pac
that is curre

- data_in chavacter string which is the string to be converted

- integer size which is the length of the character string to be converted
Cutputs: None

this point, the data still needs to be sorted, which is why it must be in

o o EER

TR

vold ConvertandStore(unsigned char *data_in, short int sendread, int size)
{

short int i;

int temp buffer{size];

int remainder;

int count;

if (sendread==0)
{
for (i=0;i<size;i++)
{
if ((data_in[i]-55)<=2)
temp_buffer{i]=data_in[i]-48;

114

®
=
w0
T

temp_buffer[il=data_in[i]-55;

for (i=0;i<=size; i=i+2)
{
remainder=0;
if (temp buffer([i+1]>=10)
{
temp_buffer[i+1]-=10;
remainder=1;

sending_data_buffer|write pointer sending] [i/2]=(temp buffer[i]*16)+ (remainder*10)

+temp buffer{i+l}];
}

for (i=0; i<=29; i++)
fprintf(converted packets, "3%
",sending_data_buffer{write pointer sending](i]);
fprintf (converted packets, "\n");

write pointer sending++;

return;
}
else if(sendread==1)
{
for (i=0; i<=size; i++)
receiving data buffer[write_pointer receiving][i]=data_in[i];
fprintf (received_packets, "%d ", write_pointer_ receiving);
for (i=0; i<size; i++)
fprintf(received_packets, "302¥ ¥,
receiving_data_buffer|write_ pointer_ receiving] [i]);
fprintf (received_packets, "\n");
write_pointer receiving++;
CheckReceived():
return;
}

B R R T R e e

Function:
int nodelastoomnto {(void)

Drecondition: .
nodelastConm and nodesConnected matrices need to be initialized

Inputs: None
CGutputs: None

Returns:
Returns the integer address of a node that has not been communicated with in

Remarks:

None

on returns the address for a node that hasn't been communicated

a

to in

while

B R R HFEREKKFR T X TR]

int nodelastcommto (void)

{

A

int i, j;
int addr, buff_ addr;
for (i=0; i<=15; i+4+)

{
for (j=0; j<=15; j++)

{
if(i==15 && j==15)
{
for (short int k=0; k<=15; k++)
{
for (short int 1=0; 1<=15; 1++)
nodeLastComm{k] [1]=nodesConnected[k] [1];
}
}
if (nodeLastComm[i] [j]==1)
{
addr=(i*10)+3j;
buff addr=addr>>4;
if (buff_ addr!=lastAddr3 && buff_ addr!=lastAddr2 &s&
buff addr!=lastAddrl)
{
nodeLastComm([i] []]=0;
return addr;
}
}

}
}

return lastAddré4<<4;

R R e R R R R R R R R S e R R R T

Punction:
void ZBortPackets{void}
Des

function ta
a three transnis
in the test node network

> and sorts it so that there is at least
35 bus

Precondition:
Data needs to be present in the sending datae wuffer to be sorted
Paranete
Tnput None
Cutputs: None

% e b b e e

void SortPackets (void)

{

e ke kR kb W kR b b

ok ke

int i, 3, k:

int temp buffer([30];

short int exit=0;

int shift_addrl, shift_addr2;

fprintf (sorted packets, "write pointer:3d read pointer:%d \n",
write_pointer sending, read_pointer_sending);

for (i=read pointer_sending;i<write_pointer sending;i++)

{
shift_addrl=sending data buffer[i] [0]>>4;

n 3 conl

GO not ye id add 5 in them and thus

parison values

//must be
if (comparisonFu

{
//creating lastAddrd
if (i==0)
{

//setting lastAddrd
lastAddré4=shift_addrl;

fprintf(sorted_packets, " i=0 addri: %4\t", shift_addrl);

//update the nodelastComm matrix to reflect the addres
//the outgoing packet

2]

of

nodelastComm[sending data_buffer{i][0]/16] {sending data buffer[i] [0}1%16]=0;

for (k=0; k<=29; k++)
fprintf (sorted_packets,"%d ", sending data buffer[i] [k]):
fprintf(sorted packets,"\n");

}

//compare to lastAddrd and create lastaddr3
else if (i==1}

{

/73if the current address does not match the last address
if (shift_addrl!=lastAddr4)

{
lastAddr3=shift_addrl;
fprintf (sorted packets,"got to i==1 addri: %d\t",
shift_addrl);

}

//This 'else' handies moving a packet if it matched

//lastaddrd

else

{

for (k=0;k<=29;k++)
temp buffer[k]l=sending_data buffer{i] [k];

kets after current packets
//7and find one to trade places
while (exit==0)
{
j++;
shift_addr2=sending data buffer(j][0]>>4;

if (shift_addr2!=lastAddr4)
{
//if no packet exists with an address
//that doesn’t match the last add

ate a ! acket and
it
if (j>=write_pointer sending)

for (k=0;k<=29;k++)
{
sending_data buffer([i] [k]=0;
//move conflicting packet to
//end of queue
sending_data_buffer({write_pointer_sending] [k]=temp buffer[k];
}

sending_data_buffer[i} {0]=nodelastcommto();
sending_data_buffer([i][1]1=18;
sending_data_buffer([i] [3]=27;

shift_addr2=sending_data buffer{i] (0]>>4;

write pointer_sending++;

else

//trade packets with one that
//doesn't match lastaddrd

for (k=0;k<=29;k++)

{

sending_data buffer(i] [k]=sending_data buffer{j] [k];

sending_data_buffer(j] [k]=temp buffer[k]:
}
}
//update lastaddr3 to reflect the new
//traded packet
lastAddr3=shift_addr2;
exit=1;

}

exit=0;
fprintf (sorted_packets,"i=l addrZ: %d\t", shift_addr2);
}

//update the nodelastComm matriz to reflect transmitted
Jipacket

nodeLastComm([sending data_buffer[i] {0]/16] [sending data_buffer[i] [0]1%16]=0;

for (k=0; k<=29; k++)
fprintf(sorted packets,"%d ",sending data buffer([i] [k]):
fprintf (sorted packets, "\n");
}
//conpare to 1
else 1f (i==2)

{

asthAddrd and lastAddr3 and create lasthdddr?

//no conflict with lastaddr3 or 4
if (shift_addrl!= lastAddr3 && shift addrl!=lastAddri4)
{

lastAddr2=shift_addrl;
fprintf (sorted packets,"i=2 add
}
//conflict with either lastaddrl or 4
else

{

3dA\t", shift_addrl);

for (k=0;k<=29;k++)
temp buffer(k]=sending data buffer(i] [k];

j=1i;

//search through all packets after current packets
//and find one to trade places

while (exit==0)

{

J++;
shift_ addr2=sending data_buffer[j] [0]>>4;

if (shift_addr2!=lastAddr3 &&
shift_ addr2!=lastAddr4)

{

2t
//that doesn’t 1

//if no pa ¢ 5 with an address
tch the 1

//then create a filler i

//insert it

if (j>=write_pointer_sending)

{

ast addr
rket and

for (k=0;k<=29;k++)

{

sending_data buffer(i] [k]=0
//move conflicting packet t
//end of queue

’

O

sending_data_buffer[write pointer sending] [k]=temp buffer[k];
}

sending_data_buffer(i] [0Ol=nodelastcommto ()
sending data buffer(i) {1]=18;
sending_data_buffer({i] [3)=27;

shift addr2=sending _data buffer([i] (0]>>4;

write pointer_sending++;

-

)

else

P

//trade packsts with one that
//doesn't match addr3 oxr 4
for (k=0;k<=29;k++)
{

sending_data_buffer(i] [k]l=sending_data_ buffer[j] [k];

sending_data_buffer[j]{k]=temp buffer[k]:
}
}
//update lastaddr? to reflect the new
//traded packet
lastAddr2=shift_addr2;

exit=1;
}
}
exit=0;
fprintf (sorted_packets, "i=2 addr2: %#d\t", shift addr2);

}

//update the nodeLastComm matriv to refliect transmitted
//packet

nodeLastComm[sending_data_buffer[i][0]/16][sending_data_buffer[i][0]%16]=0;
for (k=0; k<=29; k++)

fprintf(sorted_packets,"%d ",sending _data buffer{i] [k]);
fprintf (sorted packets, "\n");

.

~.

‘/compare Lo lastAddrd, lastaddr3, and lastiddr? and create
lastAddri
se 1f (i==3)

;

el
{
//no conflict with lastaddr2, 3 or 4

if (shift_addrl!=lastAddr2 && shift_addrl!= lastAddr3 &&
shift_addrl!=lastAddr4)

{
lastAddrl=shift_ addrl;
fprintf (sorted packets,"got to i==2 addri: %d\t",
shift_addrl);

}

//conflict with one of lastaddr2, 3 or 4

else

{

for (k=0;k<=29;k++)
temp_buffer[k]=sending_data buffer[i] [k];

J=1;
//search through all packets after current packets
//and find one to trade places
while (exit==0)
{
JH+;

shift_addr2=sending data buffer{j] [0]>>4;

119

if (shift_addr2!=lastAddr2 &&
shift addr2!=lastAddr3 && shift addr2!=lastAddr4)
{
//7if no packet exists with an addre
//that dcesn’t match the last add
//then create a filler packet and
nsert it
f (j>=write_pointer sending)

for (k=0;k<=29;k++)
{

sending_data_buffer[i] [k]=0;
//move conflicting
//packet to end of queue

sending_data_buffer(write_pointer_sending] [k]=temp buffer(k];
}

sending_data_buffer(i] [0]=nodelastcommto () ;
sending_data_buffer[i) (1]=18;
sending_data_buffer[i] [3]=27;

shift _addr2=sending data buffer([i] [0]>>4;

write pointer_ sending++;

/- 1

/trade packets with one that
//3oesn't match lastaddrz, 3 or 4
for (k=0;k<=29;k++)

{

sending_data_buffer[i] (k]=sending_data buffer[j] [k]-

sending_data_buffer(j][k]l=temp buffer[k];
}
}
//update lasthddrl to reflect the new
//traded packet
lastAddrl=shift_addr2;
exit=1;

}

exit=0;
fprintf(sorted_packets, "got to i
shift addr2);

=3 addr?2: zd\t",

}
//update the nodeLastComm matrix to reflect transmitted
/ipacket

nodeLastComm({sending_data buffer[i] (0]/16] [sending data buffer[i][0]%16]=0;
for (k=0; k<=29; k++)

fprintf(sorted_packets,"%d ", sending data buffer{i] [k]);
fprintf(sorted packets,"\n"):

.

//all last address values have been set at
comparisonFull=1;

east once

o

}
}
//all lastAddr values have been created, and thus a full comparison and
//sort can take place from this point on
else
{
//no conflict with any lastaddr wvalue
if (shift_addrl!= lastAddr3 && shift addrl!=lastAddr2 &&
shift addrl != lastAddrl)
{

lastAddr4=lastAddr3;
lastAddr3=lastAddr2;
lastAddr2=lastAddrl;
lastAddrl=shift addrl;
fprintf(sorted_packets, "got to i

addri: sd\t", i,
shift_addrl);
}
//current address matched at Least one of the past 3 bus addresses
else
{
for (k=0;k<=29;k++) temp_buffer{k]=sending_data_buffer{i] [k]:

j=1i;

//search through all packets after current packets and find
//one to trade ces

while (exit==0)

{

La

J++;
shift_addr2=sending_data_buffer[j] [0]>>4;

if (shift_addr2!=lastAddr3 && shift addr2t!=lastAddr2
&& shift addr2 != lastAddrl)
{
//1if no packet exists with an address that
//doesn’ £ match the last address
//then create a filler packet and insert it
if (j>=write_pointer_ sending)
{
for (k=0;k<=29;k++)
{
sending_data_buffer{i] [k]=0;
//move conflicting packet to
//end of queue

sending data_buffer[write_pointer_sending] (k]=temp_ buffer{k];

}

sending_data_buffer([i] [0])=nodelastcommto() ;
sending_data_buffer{i] [1]=18;
sending data_buffer[i] [3]=27;

shift_addr2=sending data buffer[i] [0]>>4;

write_pointer sending++;

U
=
tn
v

//trade packets with one that doesn't
//match any lastaddr value

for (k=0;k<=29;k++)

{

sending data buffer{i]{k]=sending data_buffer{j] [k},

sending_data_buffer[j] [k]=temp buffer(k];
}

}
//update last address values
lastAddrd=lastAddr3;
lastAddr3=lastAddr2;
lastAddr2=1astAddrl;
lastAddrl=shift_ addr2;
exit=1;

}

exit=0;

fprintf(sorted packets," i=%d addr2: %d\t", i,
shift addr2);

//update the nodelastComm matriz to reflect transmitted packet
nodeLastComm[sending_data_buffer[i][O]/16][sending_data_buffer[i][0]%16]=0;
for (k=0; k<=29; k++)

fprintf (sorted packets,"%d ", sending data buffer{i] (k]):
fprintf(sorted packets,"\n");

SEREEEREERKE KT AKKEENKKEKRKRKRKKRAKKE KA KKK KRRKKRKKKKKKRRAKRKELEKRKERKKNAKRKAARKR KK KR KR KK KR KRR KKK KK
Function:
vord HoResponseCheaclk{void)

all packets to see if a repiy from the node was ever

The function will re-send a 2t three times before marking that a node is not
connected if no response is ever received.

Jutputs:

Returns:
None

void NoResponseCheck(void)

{

int i, 3j2

//dontt wother starting to check until at least 15 packets have been sent

if (read_pointer sending>16)

{
//check all packets that have been sent more than 15 transmissions ago
for (i=0; i<=read_pointer sending-16; i++)

retry sending packet 3 times
sending_data buffer[i] [30]<=3)

for (j=0; j<=29; j++)

sending_data_buffer[write_pointer_sending][j]=sending_data_buffer[i][j];
sending_data_buffer[i] [30]+=1;
write_pointer sending++;
lastSort++;

//all 3 retries failed, mark the packet as not being
connected
else 1f (sending_data buffer([i] [30]1=4)
nodesConnected[sending_dataﬁbuffer[i][0]/16][sending”data_buffer[i][0]%16]=O;

}
}

return;

e o ok e R ok ok e o e ok

This function checks recently received packets against sent packets to dete

which packet received a response. The function then marks that that sent

veceived a 1 . This function also verifies the ACK field of the returned
packet.

sturns:
1@

»1d CheckReceived(void)

int i, j;

//scan through all sent packets for a ma! to the most z
for (i=0; i<=read_pointer sending; i++)
{

if (receiving_data_buffer(write_pointer_receiving-
1] [0]==sending data buffer([i] [0])
{
if (receiving_data_buffer[write_pointer receiving-
1} [1]==sending data buffer{i][2})
{
if (receiving data_buffer[write_pointer receiving-
1} [3]==sending_data buffer(i] [3])

{
//mark packet as having recei a
sending_data_buffer[i] [30]=8;
if (receiving_data_buffer{write.pointer_ receiving-
11[2]==0 || receiving data buffer[write pointer receiving-1][2]==15 ||
receiving data_buffer(write_pointer receiving-1][2]==170)

({
for (j=0; j<=29; j++)
sending_data_buffer{write_pointer_sending] [j)=sending data buffer[i][j];
write_pointer sending++;
lastSort++;

void Di

WithE

{char *errorMessage!}

De

iption:

functicn used to print any error messages which may arise when creating socket

SLLLOLr nessages

code was originall
ritten by Donahoo, M and Ca

de from the book TCP/IP

-
[
rry

v
[
ot
[al
a8
w
47
D
X
o
=
73
ot
¢
[

& g G ek e A

void DieWithError(char *errorMessage)
{
#ifdef WIN32
fprintf (stderr, "4s: %d\n", errorMessage, WSAGetLastError()):
felse
perror (errorMessage);
fendif
exit (1),

Vita Auctoris

Christopher Rennick was born in Regina, Saskatchewan, Canada. He grew up in
Stratford, Ontario, Canada where he graduated from Stratford Central Secondary School
in 2003. He received his Bachelor of Applied Science in Electrical Engineering from the
University of Windsor in Ontario, Canada in 2007. He is currently a candidate for the
Master’s of Applied Science degree in Electrical Engineering at the University of Windsor
and hopes to be completed his degree at the end of calendar year 2009. His research
interests include custom hardware and embedded system design.

	TCP/IP Control Server for a Multi-Drop Test Bench Network
	Recommended Citation

	ProQuest Dissertations

