
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2009

TCP/IP Control Server for a Multi-Drop Test Bench Network TCP/IP Control Server for a Multi-Drop Test Bench Network

Christopher Rennick
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Rennick, Christopher, "TCP/IP Control Server for a Multi-Drop Test Bench Network" (2009). Electronic
Theses and Dissertations. 8203.
https://scholar.uwindsor.ca/etd/8203

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8203&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8203?utm_source=scholar.uwindsor.ca%2Fetd%2F8203&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

TCP/IP Control Server for a Multi-Drop Test Bench Network

By
Christopher Rennick

A Thesis

Submitted to the Faculty of Graduate Studies
Through the Department of Electrical and Computer Engineering

In Partial Fulfillment of the Requirements for
The Degree of Master ofApplied Science at the

University of Windsor

Windsor, Ontario, Canada
2009

?F? Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliothèque et
Archives Canada

Direction du
Patrimoine de l'édition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre référence
ISBN: 978-0-494-70580-3
Our file Notre référence
ISBN: 978-0-494-70580-3

NOTICE:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

AVIS:

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans le
monde, à des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse. Ni
la thèse ni des extraits substantiels de celle-ci
ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thèse.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1*1

Canada

© 2009 Christopher Rennick
All Rights Reserved. No part of this document may be reproduced, stored, or otherwise

retained in a retrieval system or transmitted in any form, on any medium by any means without
prior written permission of the author.

Co-Authorship Declaration

I hereby declare that this thesis incorporates material that is result of joint
research, as follows:

This thesis also incorporates the outcome of a joint research undertaken in
collaboration with Stephen Fox under the supervision of Dr. Roberto Muscedere. The

details of the collaboration is covered in Chapter 2 of the thesis. In all cases, the key
ideas, primary contributions, experimental designs, data analysis and interpretation,
were performed by the author.

I am aware of the University of Windsor Senate Policy on Authorship and I certify
that I have properly acknowledged the contribution of other researchers to my thesis,
and have obtained written permission from each of the co-author(s) to include the
above material(s) in my thesis.

I certify that with the above qualification, this thesis, and the research to which it

refers is the product of my own work.

Abstract

This thesis describes the design, construction and verification process in full for
the test server portion of the second generation of an automated testing network. The
system was built for, and with, AMD/ATI of Markham, Ontario and will be used to test

large batches of their graphics processing units (GPU's). The final test system has the
capability to simultaneously test and control several parameters on a large number of
test nodes.

The TCP/IP Control Server for a Multi-Drop Test Bench Network was designed to
test and control a network of 256 test nodes over an RS-485 network. The contents of

this thesis will describe the test server hardware in full, while the test nodes are

described in Stephen Fox's thesis. The test server consists of an Ethernet-enable MCU,
an Altera Cyclone Il FPGA and a custom RS-485 transceiver board used to communicate
with the test nodes.

?

To my family and friends, thanks for being there and for providing distractions when I
needed them.

To Sandra, thanks for ten years of your love and support.

vi

Acknowledgements

I would like to sincerely thank Dr. Muscedere for his invaluable assistance and

guidance on this project, and for providing me the opportunity to work on such an
interesting project with such a reputable industrial partner.

To my committee members, Dr. Khalid and Dr. Kent, I appreciate your time and
energy spent on me and this research.

I would like to thank my colleague on this project, Stephen Fox, for his individual
contributions to this project and for any aid he provided me.

I would also like to thank Advanced Micro Devices (AMD)/ATI for their funding of
this research as well as NSERC for their contributions to the project.

Finally, I would like to thank my parents for their seemingly endless guidance and
assistance, without you, this would not have been possible.

ViI

Table ofContents

CO-AUTHORSHIP DECLARATION IV
ABSTRACT V
DEDICATION Vl
ACKNOWLEDGEMENTS VII

LISTOFTABLES ?
LIST OF FIGURES Xl

LIST OF ABBREVIATIONS XHI
CHAPTERl. INTRODUCTION 1

1.1 Project Overview 2
1.2 Thesis Organization 3

CHAPTER 2. TEST SERVER OVERVIEW 5
2.1 History of ATE Systems 5
2.2 Currently Available ATE Systems 6
2.3 Test System, Generation One 7
2.4 Proposed Solution g

2.4.1 Test Node Overview j2
2.4.2 Description of RS-485 14

CHAPTER 3. HARDWARE AND SOFTWARE SELECTION 17
3.1 Hardware Selection 17

3.1.1 Microcontroller Selection ??
3.1.2 Microprocessor Development Kit Selection 19
3.1.3 FPGA Selection ig
3.1.4 FPGA Development Kit Selection 2I
3.1.5 RS-485 Transceiver Selection 21

3.2 Software Selection 22
3.2.1 MCU Compiler and Programmer Selection 22
3.2.2 FPGA Synthesizer and Programmer Selection 23
3.2.3 Electrical Schematic Editor Selection 23

CHAPTER 4. VHDL DESIGN AND VERIFICATION OF FPGA-BASED MULTI-PORT UART 24
4.1 VHDL Design -Server 25
4.2 VHDL Design -MCU_to_485 Module 28

4.2.1 VHDL Design -MCU_buf Module 30
4.2.2 VHDL Design -FIFO Module 30
4.2.3 VHDL Design - RS485_output Module 33

4.3 VHDL Design - RS485_to_MCU Module 33
4.3.1 VHDL Design - MCU_output Module 36
4.3.2 VHDL Design -RS485Jifo Module 36
4.3.3 VHDL Design - Arbiter Module 37
4.3.4 VHDL Design -RS485_buf Module 3g

vii i

4.4 VHDL Design -Server Test Module 39

CHAPTER 5. DEVELOPMENT OF C CODE FOR TEST SERVER EMBEDDED MICROCONTROLLER 41
5.1 Initialization Procedures 42
5.2 Main Processing Loop 43

5.2.1 Stack Operations 44
5.2.2 Accept and Store Packet 44
5.2.3 Communication with FPGA 45

CHAPTER 6. PC CLIENT DESIGN 46

6.1 TCP Versus UDP 46
6.2 PC Client Operation 48

6.2.1 Packet Sort Algorithm 43
6.3 Changes to Adapt Client.c Code to Unix/Linux 51

CHAPTER 7. CONCLUSION 53
7.1 Test Server Limitations 55
7.2 Thesis Contributions 55
7.3 Test Server Verification and Final Results 57
7.4 Future Work 57

REFERENCES 60
APPENDIX A. SCHEMATICS AND BILL OF MATERIALS 62

A.l Schematics 52
A.2 Bill of Materials 69

A.2.1 Bill of Materials - Prototyping Stage 69
A.2.2 Bill of Materials - Final Test Server 63

APPENDIX B. TEST SERVER VHDL CODE 75
B.lSERVER.VHD 75
B.2 mcu_to_485.vhd 76

B.2.1 mcu_buf_mem.vhd '. 76
B.2.2 rs485_output.vhd ??
B.2.3 fifo.vhd 79
B.2.4 mcubuf.vhd g_2

B.3 rs485_to_mcu.vhd 83
B.3.1 rs485buf_mem.vhd #4
B.3.2 mcu_output.vhd #5
B.3.3 rs485Jifo.vhd 87
B.3.4 arbiter.vhd g8
B.3.5 rs485_buf.vhd 89

B.4 Server_test.vhd 92
APPENDIX C. TEST SERVER C CODE 95
APPENDIX D. PC CLIENT C CODE log
VITA AUCTORIS 125

Listo/ Tables

Table 2.1. Test Server Component Summary 11

Table 2.2. Summary of Packet Structure 12

Table 3.1. Microcontroller Summary 18
Table 3.2. Summary of Chosen MCU [11] 18

Table 3.3. Summary of Available MCU Development Kits [12] [13] 19
Table 3.4. Available FPGA Summary [14] 20
Table 3.5. Summary of Chosen FPGA 20

Table 3.6. Summary of Available FPGA Development Kits [15] 21
Table 3.7. Summary of Selected RS485 Transceiver [16] 22

Table 6.1. Acknowledge Values and Their Meaning 48
Table 6.2. Header Differences, Unix vs. Windows [19] 51
Table 6.3. Socket Initialization Differences, Unix vs. Windows [20] 51
Table 6.4. Socket Application Shutdown Differences, Unix vs. Windows [20] 52
Table 6.5. Socket Error Reporting Differences, Unix vs. Windows [20] 52
Table 6.6. Conditional Group C Code Example - Header Calls 52
Table A.l. Bill of Materials - Prototyping Stage 69

?

List ofFigures

Figure 1.1. System Overview 2

Figure 2.1. Visualization of Star Topology 8

Figure 2.2. Proposed System Overview 9

Figure 2.3. Test Server Layout Overview 11

Figure 2.4. Test Node Overview 13

Figure 2.5. Length of Cable vs. Data Rate of an RS-485 Network [6] 15
Figure 2.6. Daisy Chain Topology 16

Figure 4.1. VHDL Design Flow 25

Figure 4.2. Block Diagram of Server Module 26
Figure 4.3. Waveform of Data Transfer From MCU to FPGA 27

Figure 4.4. Waveform of Data Transfer From FPGA to MCU 27

Figure 4.5. Block Diagram of MCU_to_485 Module 29
Figure 4.6. Waveform of Reading From Dual-Port RAM Module 32

Figure 4.7. Waveform of Writing To Dual-Port RAM Module 32

Figure 4.8. Block Diagram of RS485_to_MCU Module 35

Figure 4.9. Flowchart of Arbiter Operation 38

Figure 5.1. Flowchart of MCU Main Processing Loop Operation 43
Figure 6.1. Flowchart of UDP Operation [17] 47

Figure 6.2. Flowchart of TCP Operation [17] 47
Figure 6.3. Flowchart of Packet Sort Algorithm 50
Figure A.l. Test Server MCU Schematic 62

Figure A.2. Test Server MCU Schematic - Ethernet, ICSP, LCD, LEDs, Oscillator, and
Power 63
Figure A.3. Test Server FPGA Schematic 64

Figure A.4. Test Server FPGA Schematic - LEDs, Oscillator, Power, and Reset 65
Figure A.5. RS485 Transceiver Network (First 8) Schematic 66

xi

Figure A.6. RS485 Transceiver Network (Second 8) Schematic 67

Figure A.7. RS485 Transceiver Network Schematic- Power 68

XIl

List ofAbbreviations

A/D Analog to Digital
ASIC Application-Specific Integrated Circuit
ATE Automated Test Environment/Equipment
D/A Digital to Analog
?-Pot Electric Potentiometer

FPGA Field Programmable Gate Array
FIFO First In First Out

GP I/O General Purpose Input/Output
GPU Graphics Processing Unit or Graphics Card
HTTP Hypertext Transfer Protocol

I/O Input/Output
IC Integrated Circuit

ICSP In-Circuit Serial Programming
MAC Media Access Control

MCU Microcontroller

MPU Microprocessor

MSI Medium Scale Integration
PC Personal Computer
PCB Printed Circuit Board

PCI Peripheral Component Interconnect
RAM Random Access Memory
ROM Read-Only Memory
SNMP Simple Network Management Protocol
TCP/IP Transmission Control Protocol/Internet Protocol
UART Universal Asynchronous Receiver/Transmitter
UDP User Datagram Protocol

xiii

VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuits

VLSI Very Large Scale Integration

XlV

Chapter 1. Introduction
^t -<«_» » ? -sr ^ vit»i -?' ? 'i. ·¦ a«i- > =* istr- pssrajs* ja. v~ *¦ _i» t¡ señan

In modern industrial research and development, the time to market, or the
length of time that it takes to fully design and test a product and offer it for sale to the
general public, needs to be as short as possible, while still maintaining all previous
quality control standards. There are many steps in this process, including but not
limited to, determining customer wants/desires in a new product, initial design phases
outlining the overall functionality of the product, development of any new technologies
to enable this product to come to market (if necessary), design of the product in full,
complete testing of all features of the new product, final marketing and finally, the sale
of the product. Any of these stages can be shortened to quicken the overall time to
market, though this thesis is mainly concerned with only one of these stages of
development, the testing.

Testing of new products is a very complicated and time consuming process, and
just because a certain test on one machine in particular performed flawlessly, does not
mean that the same test on a different machine will perform the same way. In other
words, when components from outside parties are used in a system, they need to be
verified in several different systems to ensure that they are functioning correctly in the
system as a whole. This then requires that large batches of a new machine or product
need to be tested to make sure that manufacturing and design tolerances do not factor
into overall product robustness. If one were to test large batches of machines with a
complicated testing procedure one at a time, the testing process would be prohibitively
long, thus it is desired to have the ability to test large batches of a new product
simultaneously with as little human input as possible.

This thesis and the joint research performed by Stephen Fox, is concerned with
the development of an automated test environment (ATE) with the capability to test
several key performance criteria on up to 256 separate computers simultaneously.

1

1.1 Project Overview

This project has two main deliverables: the test server and the test nodes. This

thesis will describe the design and construction of the test server, whereas the thesis of
my colleague, Stephen Fox, will describe the design and construction of the test nodes.
The test server has the ability to control, and communicate with, a maximum of 16
buses, each with a maximum of 16 nodes for a total maximum node count of 256. The
nodes in each bus are in a daisy chain configuration, which was chosen for its simplicity
and for its affinity to the RS485 electrical standard which is our chosen communication
medium. The basic physical layout of the system is shown in Figure 1.1.

Test Server

MCU
(TCP/IP)

f=] cììì;

FPGA

5S
RS485

Transceivers

Ethernet Linux
Client

RS-485
(Physical) Bus Extender

Test Node

Tc
m
X

T3

Tl
O

«Ö I/O

MCU

H
RS232
H
PC

?-pot y Relay

Testing
Node

Testing
Node

Testing
Node

Testing
Node

Testing
Node

Testing
Node

Testing
Node

Testing
Node

Testing
Node

PSU Testing
Node

Testing
Node

Testing
Node

Figure 1.1. System Overview

The system functions as follows: the client reads in a file of 30 byte long packets,
which are in hexadecimal format, orders the packets in a manner such that any
possibility for contention on a bus is eliminated, and transmits them, one at a time, over
the TCP/IP socket to the test server microcontroller. The test server then calculates a

CRC-16 checksum number and adds it to the end of the packet, making a packet length
of 32 bytes. The checksum is needed to ensure that noise or other external factors did

not alter the data during transmission to the node. The test server FPGA will then send

the packet out to the correct bus based on the address byte in the packet. The test
node that the packet is addressed to will then act on the command passed to it in the
"command" field of the packet and will send back any data that is requested. The test
server, on receipt of the data from the test node, will re-calculate the CRC and make

sure there were no transmission errors; it will then forward the reply over the TCP/IP
socket back to the PC client software which is maintaining control and safe operation of
the entire system.

1.2 Thesis Organization

This thesis describes the design and construction of the test server for a custom

automated test environment (ATE). Chapter 2 will provide an overview of the test
server and its capabilities as well as review the structure of the test nodes as designed
by my colleague Stephen Fox. Chapter 3 will describe the various pieces of hardware
that make up the test server and the associated software tools that were used in the

project's development. This chapter will describe the pieces of hardware currently being
used in the prototype of the test server and will give recommendations for the
hardware that should be used in the production of the server. Chapter 4 will describe
the development and design of the VHDL code for the MCU_to_485 and RS485_to_MCU
FPGA modules. Chapter 5 will discuss the PIC microcontroller that was chosen for this

3

project in detail and will also discuss the C code that was written for its operation.
Chapter 6 will discuss the design of the PC client software, written in the C programming
language, which is controlling the system as a whole. Finally, Chapter 7 will conclude
the thesis and will discuss suggestions for future work.

The content of the appendices is as follows: Appendix A consists of the
schematics of the test server hardware and the Bill of Materials, Appendix B contains
the VHDL code for the test server FPGA, Appendix C contains the C code for the test
server microcontroller and Appendix D contains the C code for the PC client.

Chapter 2. Test Server Overview

2.1 History of ATE Systems

ATE systems have had a relatively short life and have developed hand in hand
with commercial computers. The first automatic test devices were created in the 1950's
by the United States' Department of Defense (DOD), primarily to test missile systems
and other military electronics. It should be noted that this development coincides with
the increasing availability of digital logic and commercial computers. The U.S. DOD
realized that a more repeatable and consistent method of testing new military
electronics was needed, and thus a need for automated testing equipment was born.
The first ATE systems were created primarily of existing manual instruments which had
custom designed digital logic added to allow them to be programmable. This was
certainly not an ¡deal situation, and the end goal was to move to more universal test
equipment [I].

A system was desired that had a full set of programmable instruments which
could be configured and reconfigured at will, as quickly and easily as possible. The first
of these systems was created between 1968 and 1972 and it was called the Versatile
Avionics Shop Test (VAST) and it consisted of a test station, a computer and a data
transfer unit. It was created to test the avionics systems on F-14A and S-3A aircraft and
was deployed on aircraft carriers starting in 1974. The VAST systems eliminated some
special support equipment and reduced the number of technicians required to test and
maintain the avionic systems, and thus were, at least partially, successful at what it set
out to do. A test program set was created to test each individual system, but
unfortunately, it could only test one avionic system at a time [2].

As computers continued to improve, so too did the automated test
environments, by the mid 1970's, they were capable of testing medium scale integration

5

circuits (MSI) that had hundreds of transistors per chip. During the 1970's another
important development happened: buses were introduced which greatly enhanced
interfacing between components. This led to the development by Hewlett-Packard of
the Hewlett-Packard Interface Bus (HPIB), also referred to as the General Purpose
Interface Bus (GPIB). This bus was standardized by the IEEE in 1975 into IEEE 488.1 and
it is still widely used to this day, though the standard has been upgraded by the IEEE in
the past 30 years. In the early 1980's, the automated test environments started to

include more modern embedded systems, including embedded microprocessors, this
allowed the systems to become "smarter" and more customizable [I].

The late 1980's and into the 1990's saw the further development of ATE systems,
which included standardizing the communication bus to allow multiple vendor's
components to communicate easily with each other, and the introduction in the 1990's

of "plug and play", which functioned very similar to USB in that components could be
plugged in and the system handled installing any drivers to allow that component to
work in the system as a whole.

2.2 Currently Available ATE Systems

There are currently several large vendors of off the shelf ATE systems. These
include National Instruments, Northrop Grumman, and Teradyne [3] [4]. Prices on
individual modules from these vendors range in price from $1,000 to more than $18,000
depending on the module and many of these ATE systems are the size of a refrigerator.
These systems can test virtually all aspects of a custom VLSI design as the modules
include A/D converters, D/A converters, signal generators, variable power supplies,
signal analyzers, multimeters and radio frequency and high frequency devices.
However, many of these systems are designed to test one chip at a time. Clearly the
cost, size and the inability to test many systems at once is a large drawback of these
devices.

6

There is also a large number of competing standards as to how these units

should communicate with each other. There are currently several standard instrument
types including using PC standard input/output (I/O) such as USB and Ethernet as well as
RS-232 serial connections and also add-in cards like ones which used the GPIB interface.

There are also some custom instrument types including VME extensions for Instruments
(VXI) components which was development in the 1980's, primarily for use by the U.S.
military, PCI extensions for Instruments (PXI), which was created by National
Instruments in 1997 and is based off the Compact PCI bus, and finally LAN extensions

for Instrumentation (LXI) which uses high-speed LAN as the backplane of the ATE [5].

2.3 Test System, Generation One

Approximately three years ago, AMD/ATI realized that the currently available,
off-the-shelf ATE systems were not ideal for testing the functionality and performance
of their graphics cards when deployed in a motherboard, so they set out to create their
own system. This first generation of the project consisted of similar hardware to

generation 2, however, to save on the development time, some off-the-shelf
components were used that were not an ideal solution for the manner in which they
were going to be used.

Generation one consisted of a National Instruments digital I/O board that was
connected to a host PC that controlled the entire system. The digital I/O board ran
direct connections to each of the test nodes and sent them the control signals directly
using a serial connection. This created several problems, but was deemed at the time to
be the ideal solution as it could be deployed quickly. The first issue with the system is
the increased cost of the National Instruments board as compared to a custom built
control board. The cost of a custom board with an FPGA and a microcontroller, similar
to what is used in the solution that will be described in this paper, is considerably less
than the cost of the National Instruments board. The second major issue is that the

7

overall system had a very large quantity of cabling that was necessary to connect
everything; this was mainly due to the topology that was used in deploying the network.
When creating a system with one central server which has an output that connects to
each individual node, you generally end up with a star network topology as shown in
Figure 2.1. The problem with a star is that as nodes get farther away from the server,
the cable length to connect them also increases in size. The third problem was due to
the communication medium they used to talk to the nodes; they used a common serial
connection that used ground as a signal reference, which led to galvanic isolation
problems. The problem with this, and it was a large problem that is not easy to
overcome, is that "ground" is a relative measurement. There can be a difference in the
voltage levels of ground between the different nodes as they are spaced around the
room in which the system is deployed and this difference in ground level can cause one
node to think a digital T is a ?' or a ?' is a T.

JCI VC

Figure 2.1. Visualization of Star Topology

With these difficulties in mind, generation two of the test network was deemed
the next step in development. The proposed solution for the second generation of this
project must then meet several criteria. First of all, it needs the ability to test and
control multiple parameters of multiple nodes simultaneously. Secondly, it needs to
communicate with these nodes in such a manner that cabling length and complexity is
reduced from the first generation and the effects of external noise and differences in
ground levels between nodes needs to be eliminated from the system. The system must
also be easily upgradeable, as it is impossible to determine what parameters will need

8

to be tested or controlled in the future. Lastly, it needs to be deployed as cheaply and
easily as possible.

2.4 Proposed Solution

With the criteria and problems defined, as stated in the previous section, the
second generation of the system could be designed. We desired the system as a whole
to have Ethernet communication to a Linux client as well as the capability to test up to
256 test nodes simultaneously. The decided upon layout of the system can be seen in
Figure 2-2. The test network will consist of a test server that can communicate over

Ethernet to the client on one side and on the other it needs to communicate to 16 buses

of 16 nodes each, laid out in a daisy chain topology which was chosen for its simplicity.
Thus the system provides an overall count of 256 nodes.

Linux Client

Ethernet
Connection

Test Server

T^

Rj-45
Connector

4 ?

Embedded
Controller Hardware

Test
Node

Test
Node

... X 16

^¿L

RS-485 Bus to Connect to
FPGA Test Nodes

(Stephen's systems)

x 16

? 16

Figure 2.2. Proposed System Overview

From the above figure, it is apparent that there are three main components to
the system as a whole: the Linux client, the test server and the test nodes. This thesis

will describe the development of the test server and the Linux client in detail, the design
of the test nodes can be seen in Stephen Fox's thesis.

From this abstract design of the system, the functionality of the test server could
be determined:

1. It needs to be Ethernet capable

2. It needs to have enough I/O to communicate effectively with 16 buses of test
nodes

3. It needs the computing power to handle processing a large throughput of
data from the Linux client to the test nodes.

From this early stage it was realized that we would not be able to find a

microcontroller that had the I/O capabilities and processing power needed to
communicate with 16 buses of test nodes as well as having the ability to communicate
over an Ethernet connection, an FPGA of some kind would be needed in the test server

to handle the large amount of I/O to the test nodes. Alternatively, an FPGA is not an
ideal solution on its own as the nature of the test server lends itself better to being
deployed on a microcontroller, and the cost of a microcontroller is significantly less than
that of a FPGA, thus both a microcontroller and an FPGA are to be used in the test
server. The microcontroller would be used to communicate over the Ethernet

connection with the Linux client and the FPGA would be used as a multi-port UART to
communicate with the test node network. The layout of the test server can be seen in
Figure 2-3.

The final criteria that the system needed to meet was that the effects of the
different levels of ground between the nodes and the external electronic "noise"
present in the test server be eliminated. This was accomplished with the choice of RS-
485 as the communication medium for the test node network and with standard

Ethernet cabling terminated with RJ45 connectors, or, more officially, CAT-5e cabling, as
the physical transmission medium. RS-485 is a half-duplex, differential electrical

standard that is ¡deal for a multi-drop communication link (a multi-drop communication
link is one in which a single bus has multiple devices connected to it). Though RS-485 is
a half-duplex communication medium, it can be made to be full-duplex by using one
transceiver for transmitting and another for receiving; this is how RS-485 is
implemented in this system. The choice of RS-485 and CAT-5e cabling will be described
in more detail in Chapter 3.

Linux
Server

Ethernet
Connection ?

^L
Rj-45

Connector

Hardware
Reset

Button

Micro-
controller

(TCP/IP
Stack)

FPGA

Embedded Controller

RS-485 Bus to Connect to
FPGA Test Nodes

(Stephen's systems) V
Figure 2.3. Test Server Layout Overview

After finalizing the above general layout of the test server hardware, a
component list can be created that will outline all hardware needed to construct the

test server. This component list is summarized in Table 2-1.
_______________Table 2.1. Test Server Component Summary

Component
Microcontroller
FPGA

RS485 Transceiver
RJ45 Female Connector

Manufacturer

Microchip
Altera

Linear Technology
Tyco Electronics

Quantity Needed

32

17

One final decision that had to be made was the format of the packet. It was
deemed the best solution to use a packet length that is a factor of two, and since many
of the packets that are going to be transmitted are quite short, a smaller packet size is
ideal. The chosen packet length is 32 bytes, including the CRC-16 check bytes at the end
of the packet. The structure of a packet is shown in Table 2.2.

Table 2.2. Summary of Packet Structure

Byte(s):
Field: Address Command Acknowledge Length

5-30

Data

31-32

CRC-16

2.4.1 Test Node Overview

Each test node consists of a PIC microcontroller with in-circuit serial

programming ability (ICSP), a power relay board, an external temperature sensor, an
analog to digital converter (A/D converter), RS-232, RS-485 and I2C communication, and
an electric potentiometer (?-Pot). An overview of the test nodes can be seen in Figure
2.4. The in-circuit serial programmer is used for updating the program in the MCU, the
power relay board is used for cutting the power to the PC under test and is only used in
emergency situations (similar to unplugging the machine from the wall outlet).

The test nodes are capable of controlling and monitoring several different
aspects of the PC under test. The nodes can turn the PC under test on/off, cut the
power to the PC using a relay board, set and monitor the temperature of the PC under
test, and set and monitor the voltage on the 12V and 3.3V voltage rails. The nodes can
also communicate with both the PC under test and the GPU in the PC, and finally the
node can update its own program using the bootloader mode that has been
programmed into the microcontroller. Also, the nodes were designed with
expandability in mind; they can be expanded to add extra functionality to each of the
individual test nodes.

12

PC Power

Motherboard
Power

Heater

Voltage

ICSP Test

~7\ Z\
RS-485

%2—Sz
Power

Control MCU

Z\
RS-232

PC Under
Test

Figure 2.4. Test Node Overview

Expansion
Ports

GPU

Temperature
Sensor

PC Power

Supply

The external temperature sensor is used to monitor the temperature of the PC
under test and the A/D converter is used to monitor the system voltages. The external
temperature sensor has a built-in A/D converter while the one used for monitoring the
system voltages is embedded in the MCU. The external temperature sensor is part of
the feedback on the temperature control of the system. The final system, when
executed at the offices of AMD/ATI in Markham will have a heater element at each node

that will allow the user to increase the ambient operating temperature of the test node.
The external heating element is controlled by an external relay to the MCU. The RS-232
communication is used to communicate with the PC under test, the RS-485 is used to
communicate with the test server, and the I2C bus is used to communicate with the

13

GPU, communicate with the temperature sensor, and also for future expansion of the
test node. Finally, the ?-Pot is used to alter the voltage from the PC power supply.

2.4.2 Description ofRS-485

As mentioned in the previous sections, the test node network is implemented

using the RS-485 electrical specification. Though RS-485 does not contain a

communication protocol as part of the specification, and thus a custom protocol had to

be developed for the system, RS-485 as a physical transmission standard solved many of
the problems that affected the first version of this test network. RS-485 was

standardized by the Electronic Industries Alliance (EIA) in association with the

Telecommunications Industry Alliance (TIA) and thus the official name of the standard is

TIA/EIA-485-A. The last revision of the standard was in 1998 [6].
The RS-485 electrical standard is described as a half-duplex, differential signal,

multi-nodal, serial communication medium. Half-duplex refers to the fact that
communication can only happen in one direction at any point in time, for example,
point A can send a message to point B or B can send a message to A, but A cannot send
a message to B while B is sending a message to A. A typical example of half-duplex
communication is a common "walkie-talkie". Differential signaling means that both the

signal itself, and its digital logic inverse, are sent at the same time over two separate
wires from the sender to the receiver, these wires are often referred to as a twisted

pair, as in reality, the pair of wires is usually physically "twisted" together. In differential
signaling, the signal is determined at the receiver by taking the difference between the
two signals that are sent by the receiver. This property means that any noise that is
introduced to one wire during transmission is introduced to both, and when the
difference between the wires is taken at the receiver, the noise is removed from the

signal. Finally, a serial signal is one in which each bit of the message is sent one at a
time from the sender to the receiver.

RS-485 as a standard is designed to support up to 32 nodes on one bus with a
maximum length and data transmission rate that are inversely proportionate to one
another. In other words, as the data transmission rate increases, the maximum length
of the cable between the sender and receiver decreases, and inversely, as the length of
the cable increases, the maximum data transmission rate decreases. Theoretically, the
standard can support up to 10Mbit/s for a cable up to 10m or 100kbit/s for a cable
length of 1200m. If the user wishes to increase the length of the cable at a given
transmission rate, or the number of nodes on the bus, an rs-485 repeater is needed to
increase the strength of the signal. This tradeoff is shown in Figure 2.5.

100 mbps BSflSPSite'fflfflW
a^a¡ !

pipili
¦ mm

1
?1 0 mbps m

ï

h WËB

llililï »

¦?1 mbps I HÜData ? ¦HWm
raie

H I
1!

100 kbps
—

«ilH

¡mi
1 0 kbps

I
!

IHl
m ?

1 kbps ?

10 100 1k Sk 10k

Length of cable
in feet

Figure 2.5. Length of Cable vs. Data Rate of an RS-485 Network [6]

In the implementation of RS-485 in this project, several things need to be
mentioned. The first is that although RS-485 is defined in its standard as a half-duplex
communication, this project has executed it as full-duplex by running a second twisted
pair of wires for communication and thus an extra transceiver is needed at each end of
the communication. The second is that even though RS-485 is a differential

15

communication standard, there can exist a difference in the voltage level of ground
between a transmitter and a receiver, thus a wire is needed to connect the ground
signals between the transmitter and receiver to alleviate this issue. In this

implementation, we are using Cat-5e cable as the physical transmission medium, and
thus have access to 4 twisted pairs, or 8 wires total. Wires 1 and 2 are used for

transmission from the test server to the test nodes, where wire 1 is the positive signal
and wire 2 is the negative signal. Wires 3 and 6 are used for transmitting from the test
nodes to the test server, thus implementing a full-duplex communication, where wire 3
is for the positive signal and wire 6 is the negative signal. Finally, wire 8 is used for the
ground signal which connects all ground pins of all nodes on the RS-485 bus together.
The last thing that needs to be mentioned in regards to our implementation of an RS-
485 network is the topology of the network. Though many topologies exist including
star networks, networks with a backbone, ring networks, etc., we chose to use the
daisy-chain topology as shown in Figure 2.6. The main reason to use a daisy-chain
configuration is to reduce the reflection of the signal that is present in the physical wire
that is transmitting the signal. This reflection is further reduced by adding a termination
resistor at either end of the communication network.

Server

Figure 2.6. Daisy Chain Topology

16

Chapter 3. Hardware and Software Selection

3.1 Hardware Selection

3.1.1 Microcontroller Selection

After the realization that a microcontroller on its own would not be sufficient to

implement both Ethernet functionality and output to the 16 buses of test nodes, a more
detailed specification list was arrived at for the microcontroller hardware. The system
needs to be able to communicate both with the client computer over an Ethernet
connection and the FPGA over some custom direct communication protocol and it
needs the processing power and internal data memory to handle the large throughput
of data while still being able to do checks and calculations for the checksum digits and
any other calculations that may be needed to maintain full functionality of the system.

The need for Ethernet connectivity with the microcontroller created two options:
use a microcontroller with built-in Ethernet capability, or run an external Ethernet
controller. An external Ethernet controller would pull all TCP/IP stack functionality out
of the main microcontroller and thus would save the internal data memory of the MCU
for user programming. Unfortunately, running an external Ethernet controller adds
complexity to the final board layout and it creates a bottleneck in the communication
between the Ethernet controller and the microcontroller which is in control of the
system as a whole. Thus it was decided that a microcontroller with built-in Ethernet

functionality would be the more desirable solution for the test server. This decision
instantly reduced the number of possible microcontroller vendors down to a very small
group. These vendors include Microchip, the manufacturers of PIC microcontrollers [7],
Freescale Semiconductor [8], Digi International, manufacturer of ARM based

microcontrollers [9] and Atmel [10]. A summary of these products can be seen in Table
3.1.

_________________________Table 3.1. Microcontroller Summary
Company
Microprocessor
Max Processing Speed
Architecture Word Length
Program Memory
RAM (Bytes)
Max Pin Count

Average Cost
TCP/IP Stack Software Support
Development Kit Available

Microchip
PIC18FXXJXX
41.667 MHz

8 bits
128KB

3,808
80

$7.76
Yes

Yes

Freescale
MCF532X

240MHz

32 bits
128KB

32K

256

$40
Yes

Yes

Digi
NSXXXX

200 MHz

32 bits
8KB

4K

388

Unknown
Yes

Yes

Atmel
AVR32

66MHz
32 bits
512KB

64K

144

$15.17
Yes

Yes

All listed microcontroller architectures meet the base requirements for the
microcontroller in the test server, so other factors were used to choose the ideal

microcontroller for the project. Cost is a large concern for this project; costs need to be
kept as low as possible or one of the advantages of building a system from scratch is lost
to an off-the-shelf system, thus the Freescale chip was deemed too costly. The Digi
microcontroller proved difficult to find a vendor that sold the microcontroller separately
from a development board and it thus was ruled out as the final deliverable of the

project will consist of a custom PCB with the microcontroller mounted on the same

board as the RS485 transceivers and the chosen FPGA. The Atmel microcontroller and

the PIC microcontroller were the two remaining candidates, but with the PIC
microcontrollers reduced cost, the availability of already licensed software compilers at
the University and previous experience with the PIC microprocessor; the Microchip
PIC18F97J60 microcontroller was chosen as the ideal option. Table 3.2 shows a
summary of the PIC18F97J60 MCU.

________Table 3.2. Summary of Chosen MCU [11]
PIC18F97J60

Flash Program Memory (bytes)
SRAM Data Memory (bytes)
Ethernet Buffer (bytes)
I/O

128K

3,808
8192

70

3.1.2 Microprocessor Development Kit Selection

With the choice of the PIC microcontroller as the chosen device for the test

server, a development kit needed to be found for the prototyping stage of
development. There are two main vendors of PIC based development kits, Microchip
and CCS. A comparison between the two development kits is shown in Table 3.3.

Table 3.3. Summary of Available MCU Development Kits [12] [13]
Company
MCU Used

Program Memory
I/O Pins available
Access to all MCU Pins?
Available Buttons
Available LED's

Includes Programmer?
Cost

CCS

PIC18F67J60

128K

20

No

Yes

$149US=$162 CDN

Microchip
PIC18F97J60

128K

70

Yes

No

$194.06

Communication with the FPGA requires exactly twenty pins; 8 pins for data to

the FPGA, 8 pins for data from the FPGA and 4 pins for request and acknowledge lines,
therefore, even though the CCS board has 20 I/O pins available, choosing this board and
MCU would eliminate the possibility of any further expansion of the test server MCU.
The Microchip development kit, therefore, is the board that was chosen for the
prototyping of the test server hardware.

3.1.3 FPGA Selection

Much of the decision on which FPGA to use is based on past experience and on
keeping costs as low as possible. Since I have had quite a bit of past experience with
Altera's FPGAs and their development environment, Quartus II, it would speed up
development time to use an Altera FPGA for the test server. The next major
consideration was in finding a low cost FPGA that meet our requirements of running at
25MHz with enough memory bits and logic elements to contain the entire test server

hardware. Since the number of logic elements required is not something that can be
determined prior to synthesizing the design as a whole, the decision had to be made on
clock speed, cost and available internal memory bits. A summary of available Altera
devices is shown in Table 3.4.

____________________________Table 3.4. Available FPGA Summary [14]
FPGA family
Available Speed Grades

Stratix I

2,3,4
Stratix Il

3,4,5
Cyclone
6,7,8

Cyclone Il
6,7,8

Available Memory bits 2.1M-16.2G 419K-9.4M 424K-8.2M 120K-1.1M

Available Logic Elements
47.5K-
337.5K 15.6K-180K 5K-200K 4.6K-68.4K

Available User I/O 296-1120 366-1170 182-413 158-622
FPGA Cost $540-13500 $223-13800 $31.40-740 $40-500
Min. Cost that meets Specs $540 $223 $52 $49
Dev. Kit Cost $3,000 $1100-3500 $234-4100 $176-1700

Speed grade refers to delay in ns through a macrocell in device, lower equates to faster

Upon reviewing the available options for FPGA's from Altera, the Stratix family of
devices are too costly, thus the Cyclone family of FPGA's will be the target device. From
synthesizing the complete VHDL code that is targeted to the FPGA, the system will need
11,520 logic elements, 68 I/O pins, it must be speed grade 7 or faster and it needs
90,112 of memory bits. The cheapest device in the cyclone Il and III families that
matches these specifications, and is successfully "fitted" by Altera's Quartus Il software,
is the EP2C15AF256C7N Cyclone Il FPGA. A summary of this device is shown in
Table 3-5.

________Table 3.5. Summary of Chosen FPGA
EP2C15AF256C7N

Total Logic Elements
Total Memory Bits
Embedded Multipliers
Speed Grade
Functional Temperature Range

14,448
239,616

52

0-850C

20

3.1.4 FPGA Development Kit Selection

After coming to the conclusion that an Altera Cyclone Il device would be the best
choice for the FPGA in the test server, a suitable development kit needed to be found.
When the search began for a development kit for this system, the total resource count
needed for the VHDL code on the FPGA was unknown. Thus a development kit had to
be found that provided more than enough memory bits and logic elements, and access
to 52 I/O pins to communicate with the MCU and the RS485 transceiver board. The two

main vendors for Altera FPGA based development kits are Altera and Terasic. A

summary of their available Cyclone Il development kits is shown in Table 3.6.
Table 3.6. Summary of Available FPGA Development Kits [15]

Development Kit
FPGA Used

Logic Elements Available
Memory Bits Available
I/O available
Price

Altera

Cyclone Il Starter Kit
EP2C20F484C7

18,752
239,616

315

$187.45

Terasic

DE2

EP2C35

33,216
483,840

475

$582

DE2-70

EP2C70F896C6

68,416
1,152,000

422

$704

With these kits available, the DE2-70 kit was chosen as it was deemed better to

err on the side of caution as far as size goes, or in other words, as only one of these
development kits need to be purchased for the entire life of the project, it is better to
get the larger board at the beginning to ensure that we will not have to purchase
another one due to an underestimate of logic elements needed.

3.1.5 RS-485 Transceiver Selection

For the selection of RS-485 transceiver, there were just a couple criteria that the
selected IC needed to meet. The transceiver had to be low power, as 32 of them would
be needed in the test server alone, and it needed to be available in both a surface

mount and DIP package; surface mount for final PCB manufacture and DIP package for

prototyping. The selected device is the LTC485 IC manufactured by Linear Technologies.
Table 3.7 has a summary of the major electrical specifications of the device.

__________Table 3.7. Summary of Selected RS485 Transceiver [16]
LTC485

Max Supply Voltage
Recommended Supply Voltage
Driver Output/Receiver Input Voltage
Driver Input/Receiver Output Voltage
Operating Temperature Range

12V
5V
+ 14K

¦0.5V to Vcc +0.5V
0-700C

3.2 Software Selection

3.2.1 MCU Compiler and Programmer Selection

For any microcontroller, the first choice that must be made is whether to

program in C or in the microcontroller assembly language. For this project, the decision
was made for me as the TCP/IP stack that is provided by Microchip for their Ethernet-
enabled MCU's was written in C, thus a C compiler is needed to create the rest of the
code for the MCU. There are a couple vendors that make a C compiler for the Microchip
PIC microcontrollers, though the University currently only has licenses for two of them,
the CCS compiler and Microchip's MPLab software.

MPLab V8.33 and Microchip's C18 were chosen as the development software
and C compiler and CCS's ICD-U40 programmer and CCS load software were chosen to
load the program on the MCU. MPLab v8.33 was the newest version of the software

upon starting development of the MCU C code. MPLab and the C18 compiler were
chosen over the CCS compiler environment as the TCP/IP Stack software was written

with Microchip's MPLab software in mind, thus the beginning development of the board
would be easier on MPLab than it would in the CCS C compiler as much of the work is
done for me by the TCP/IP Stack software. The ICD-U40 programmer and CCS load
software were chosen as my partner on this project, Stephen Fox, had already

22

purchased the programmer for his half of this project, thus to save from buying two
programmers, the same programmer was used for the test server as for the test nodes.

3.2.2 FPGA Synthesizer and Programmer Selection

For the VHDL synthesizer and programmer, Altera's free Quartus Il Web Edition

Software Version 7.2 was used. Quartus Il was chosen as the synthesizer over more
expensive products from vendors such as Cadence or Synopsys as the only software
capable of loading the Cyclone Il FPGA is the Quartus Il fitter and programmer. I have
also had a substantial amount of prior experience with using the Quartus Il software for
development, simulation and verification and thus it was any easy choice to use Quartus
Il for all necessary VHDL synthesizing, simulating and programming of the FPGA.

3.2.3 Electrical Schematic Editor Selection

CadSoft Eagle v5.3 was used for all electrical schematics. Eagle has the capability
to convert your electrical schematics into a layout for PCB manufacture. It also has a
built-in components list that includes most popular components which greatly speeds
up development time. Eagle is available for Linux, Windows or Mac based computers
and the University already had a license for Eagle.

23

Chapter 4. VHDL Design and Verification ofFPGA-
Based Multi-Port UART

An early decision that had to be made was the division of processing and checking

tasks that are handled by the FPGA, the MCU, and the client, respectively. To keep the

costs down on the FPGA chip itself, as it is the most expensive single component in the

test server, it was deemed best to keep the design of the FPGA hardware as simple as

possible and leave the processing and checking tasks to the more capable, and less

costly, MCU and client. As the slowest portion in the pipeline of the test server is the

communication to the nodes over the RS485 connection, which is operating at a speed
of 100K Baud as compared to the system clock of 25MHz, the FPGA needs to be able to

buffer packets that are waiting to be sent to the nodes as the MCU is not capable of

buffering data with its overall lack of data memory. Thus the functionality of the FPGA
is essentially to be a multi-port UART with buffering capability.

The design of the hardware for the FPGA was done in a top-down manner in VHDL

Thus the design process began with the largest component, the server itself, and

determined what it needed for inputs and outputs and what its general functionality
needed to be. The task was then subdivided into two halves: the first will handle data

coming in from the MCU and being sent out to the RS485 network. This module is called

MCU_to_485.vhd, it is described in detail in Section 4.2, and its code can be seen in

Appendix B. The second half of the server will handle data coming in from the RS-485
network and being sent out to the MCU, and this module is called rs485_to_MCU.vhd, it
is described in detail in Section 4.3, and its code can also be seen in Appendix B. These
two halves are then subdivided into smaller modules as was deemed necessary. The
design flow of each module in the system can be seen in Figure 4.1.

24

yes

Create New
Module

Determine
Module Inputs

Determine

Module Outputs

Create Module

Block Diagram

Are any blocks
'large enough to beV
their own module?

no

Write VHDL
Code

Design Sample
Input for Testing

Simulate in
Quartus Il

Did module

function correctly?^
yes

Integrate
Module into

Figure 4.1. VHDL Design Flow

4.1 VHDL Design - Server

Design Sample
Input for

Testing System

I
Simulate in
Quartus Il

Did module

function correctly?
yes

Is System
finished?

no

yes

Download to
FPGA and Test

The first portion of the server.vhd code that had to be determined was the system
inputs and system outputs, and consequently, the communication protocol with the
MCU also had to be designed. Since FPGA's are hardware, and they operate in parallel,
as opposed to the MCU which is a serial device (it executes one command at a time

from the start of its program to the finish), some kind of arbitration was needed
between the two halves of the FPGA and the MCU, or they may both try to speak to the
MCU at the same time. There are two methods of doing this, have the two halves of the

FPGA talk to each other so that they can never communicate to the MCU at the same

time, or have all arbitration handled by the MCU. The first method was attempted
originally, but after simulating the hardware, the better solution was to have the MCU

handle all arbitration. Thus four handshake lines are needed, one request and one
acknowledge line for each half of the server hardware, plus the 8 bit wide data bus from
the MCU to the FPGA and the 8 bit wide data bus from the FPGA to the MCU giving a
total of 20 communication lines between the MCU and the FPGA. The outputs of the
server module were simple, one 16 bit wide bus for sending data out over the RS-485

Mcu data in ackl reql Req2 ack2

A
V

Mcu to 485

t t t xl6 * *

Server
Module

Mcu_data_out

X*

485 to mcu

A *

rs485_data_out (0-15)

xl6

rs485_data_in (0-15)

Figure 4.2. Block Diagram of Server Module

network and one 16 bit wide bus for receiving data from the RS-485 network. Thus the
server module appears as in Figure 4.2.

For communication from the MCU to the FPGA, the MCU readies the data to be sent

and asserts the Req line, and when the FPGA asserts the ACK line, the data has been

successfully received. The MCU then de-asserts REQ and removes the data from the bus

and waits for the FPGA to de-assert the ACK line signifying that it is ready to receive

again. If the MCU has more data to send, this process is repeated. A waveform diagram
of this handshake process is shown in Figure 4.3.

Begin Sending Data All Data Received Ready to Accept More Data

REQ

Ack

Data K >

Request Asserted De-Assert REQ

Figure 4.3. Waveform of Data Transfer From MCU to FPGA

For communication from the FPGA to the MCU, the FPGA readies the data to be

sent and asserts the ACK line. When the MCU has received the data, it asserts the REQ
line and the FPGA de-asserts the ACK line and removes the data from the bus. The MCU

will then de-assert the REQ line and the process is repeated if there is more data to

send. A waveform diagram of this process is shown in Figure 4.4.

Begin Sending Data All Data Received Ready to Accept More Data

REQ

ACK

Data >

ACK asserted De-Assert REQ

Figure 4.4. Waveform of Data Transfer From FPGA to MCU

4.2 VHDL Design - MCU_to_485 Module

The MCU_to_485 module, as stated previously, accepts the 8 bit wide data from
the MCU, using a handshake protocol with an acknowledge and a request line, buffers it
in a FIFO block and outputs it on the proper RS-485 bus, based on the high order 4 bits
of the address byte of the packet. Thus it needs one module to accept the input from
the MCU, one module to output the packet serially over the RS-485 connection, and one
module to buffer the data. A block diagram of the MCU_to_485 module can be seen in
Figure 4.5.

There is only a small amount of communication needed between the modules

within the MCU_to_485 module. Between the MCU_buf module, which accepts the
data from the MCU, and the FIFO module, which buffers all incoming data until it can be
sent out; there is an 8 bit wide data bus, the FIFO_full signal and an enable line. When
the MCU_buf module wants to send data to the FIFO, the EN line is asserted and the
data is sent. When the difference between the point in memory that is being written
to, and the point in memory that is being read from, is greater than 2048, which is one
quarter of the FIFO memory, the FIFOJuII signal is asserted. When it is asserted, the
MCU_buf will not accept any new data until it is de-asserted. It can only be de-asserted
by advancing the read address pointer which happens when the rs485_output module
reads data from the FIFO to be sent to the test nodes.

Between the MCU_buf and RS485_output module there is only one line common
to both and that is the WR /busy signal. When the rs485_output is ready to accept new
data from the FIFO, it de-asserts the WR line and data is sent from the FIFO over an 8 bit
wide bus to the RS485_output module. The WR signal is continuously checked by the
MCU_buf module and when it is logic 1, the MCU_buf is able to output to the FIFO,
when it is logic 0, the MCU_buf cannot write to the FIFO, thus ensuring that the same
position in memory is not written to and read from simultaneously. The final signal that
connects the modules together is the data_avail signal. The FIFO asserts this signal
when the difference between the read and write address pointers is 32 or greater. This

28

signifies to the rs485_output module that there is data waiting in the FIFO to be sent
out to the RS-485 network.

Mcu data in ackl

X
reql

MCU to 485

Mcujn ack req

busy Mcu Buf Mem en

FIFO full data out

?
V

FIFO full data in

FIFO

EN

Data avail

WR data out

?
V

data in Data avail

RS48S output

WR

* ? +

xl6

* + ?

xl6

rs485_data_out (0-15)

All devices have
CLK and RES inputs
that were
removed for
clarity

Figure 4.5. Block Diagram of MCU_to_485 Module

4.2.1 VHDL Design - MCU_bufModule

The MCU_buf module serves three main functions: communicate with the MCU

through the handshaking protocol described previously, accept incoming packets one
byte at a time, and write the packet, one byte at a time, to the FIFO module. It
accomplishes this by utilizing 4 internal 32 byte long buffers that store one packet each.
There are two internal pointers that indicate which buffer to use for reading in a new
packet and for writing out the last packet to the FIFO, called switch and writing
respectively. Switch is incremented when a packet is read in full from the MCU and
writing is incremented when a packet is written in full to the FIFO. The module can thus

both read in a new packet and write one to the FIFO at the same time. This functionality
is desirable as the FIFO module can become unavailable for writing if it is being written
to by the RS485_output module and it is desirable that communication with the MCU

not be disrupted in such a case as the MCU has very limited time to output the full
packet to the FPGA.

4.2.2 VHDL Design - FIFO Module

The FIFO module consists of a dual-port RAM megafunction, with storage of
8192 bytes, created by the Quartus Il software to my specifications and a custom
addressing, "wrapper" module that handles turning the RAM block into a FIFO block.
This "wrapper" module allows the FIFO to have very simple inputs as all addressing is
handled internally. The only input needed to write to the FIFO is to assert the EN line,
and the only input needed to read from the FIFO is to de-assert the WR line.

The term FIFO describes the operation of the module, as FIFO is short for First In,
First Out and thus the FIFO operates as follows. When a new byte of data is written to
the module, the write_addr pointer is incremented by one and when a byte of data is
read from the module, the read_addr pointer is incremented by one. Since both

pointers are initialized to 0 by a hardware reset, the first byte of data written in is the

first byte of data read out, thus First In, First Out, or FIFO.

The FIFO module also has two status flags, data_avail and FIFO_full. Data_avail
is asserted when there is a difference of 32 or more between the write_addr pointer
and the read_addr pointer. This signifies that there is a packet that has been written to

the FIFO that hasn't been read from the FIFO module. The FIFO_full flag is asserted
when the difference between the write_addr pointer and the read_addr pointer is more

than 2048. Since the total storage capability of the module is 8192 bytes (or 256
packets), this signifies that the FIFO is one quarter full. When this line is asserted, the

MCU_buf module will not accept any new data until some data is read from the FIFO.

This line was necessary to ensure that the data is not being written to the FIFO faster
than it is being read from the FIFO.

As previously stated, the FIFO also contains a dual-port RAM megafunction that

was created by Quartus to my specifications. The benefit of a dual-port RAM block as
opposed to a single-port RAM block is that it can be written to and read from at the

same time. This RAM module has two input ports and two output ports labeled port A
and port B, and thus also has two address buses, two data input and output buses, and
two enable lines. The RAM block was set up to write to the module only using port A
and to read from the module only using port B. Thus the port B data input bus and the
write enable signal (wren_b) can both be set to 0, and also since data is never read from

port A, the data output of port A is disregarded. Finally, when data needs to be written
to, or read from, the RAM module, the "wrapper" module simply sets the port A address
to write_addr and the port B address to read_addr, respectively. The waveform for
reading from the dual-port RAM block can be seen in Figure 4.6 and the waveform for
writing to the dual-port RAM block can be seen in Figure 4.7.

addres;s__a

sddress_b

' q..

meaoryO

ftemoryl

memory 2

mcmpyy 3'

memory 4

0000

a?a? 3d
C (JO Ì"

0003 }Q
3002

0002

rUTj
m

b 530

FO

FO:

I

-4

?; •0001

????-

ä

1
FO

IfI

F3

F4

¥2

F2

m
rLTLj

F3

Fl

Figure 4.6. Waveform of Reading From Dual-Port RAM Module

; -. . clock

data_a·

... ". deta„b

irrett_a ,

¦ · ?_*

- - [çuh
. JieaorvÛ

»e»ory3

?pß?????'5?4

0000

IX

OßflP

00

OQ

_£Ö X

. FO

Fl

"¡ OtJOl/.

^ ; , 0003

X

go "f, - oo;·- y
_, .

XI

?? ?;
03 ?:

00

F2

ß»

X

02.

'.0-2

F3

F4

WS*i

''WSi

02

OO

OU

I

?

Wl

0003-

0001

03

X Fr f" 02 ? ci

X -? X MK

Figure 4.7. Waveform of Writing To Dual-Port RAM Module

4.2.3 VHDL Design - RS485_output Module

The RS485_output module serves two main functions, to read in a packet of data
from the FIFO, one byte at a time and to write this data serially at a 100K baud
transmission rate, to the RS-485 bus that matches the high order 4 bits of the address

byte of the packet being sent out. Its operation is thus quite similar to the MCU_buf
module; however, the RS485_output module performs its function with only one 32
byte internal buffer instead of four.

The RS485_output module first reads in the packet from the FIFO module by de-
asserting the WR line and storing each byte as they arrive in the correct place in the
output buffer (named outbuff in the VHDL code of the module), it then switches to the
sending state of the module. In the sending state, since the system clock is running at
25MHz and the output Baud rate is 100K Baud, the clock needs to be divided by a factor
of 250. After the clock is divided, the module examines the high order 4 bits of the first
byte of the packet to determine the correct bus to output the data to, it then writes the
packet data serially to that particular output port of the module at the correct
transmission rate. It should be noted that even though the system is outputting at 100K
Baud, the system does not have a data throughput rate of 100Kbps (bits per second) as
there is a start bit of logic 0 and a stop bit of logic 1 and the start and finish of each byte,
respectively. Thus the effective throughput of the system is actually 80Kbps.

4.3 VHDL Design - RS485_to_MCU Module

The RS485_to_MCU module functions very similarly to the MCU_to_485 module,
but it does the reverse task. The RS485_to_MCU module accepts serial data over the
RS485 test node network, saves it as a 32 byte wide packet, and buffers it temporarily in
a FIFO Ram buffer until it can be transmitted back to the MCU using the same
handshake protocol as the MCU_to_485 module, as described in Section 4.1. The

33

RS485_to_MCU module, however, is made up of a significantly larger number of smaller

modules as compared to the MCU_to_485 module. Contained within the

RS485_to_MCU module are a module for outputting to the MCU, named
MCU_output.vhd, a FIFO module named RS485_fifo.vhd, 16 modules named

RS485_buf.vhd which buffer the serial data from each of the 16 RS-485 buses before

outputting that data to the FIFO, and finally a module named arbiter.vhd which handles

the arbitration between the 16 RS485_buf modules and the RS485_fifo module. A block

diagram of the RS485_to_MCU module can be seen in Figure 4.8.
As there are more modules making up the RS485_to_MCU module, there is also

more communication between these modules as compared to the MCU_to_485

module. Between the RS485_fifo module and the MCU_output module, there is an 8-

bit wide data bus for transmitting data from the FIFO to the MCU_output module, a
data_avail signal to indicate to the MCU_output module that the FIFO has at least one

unread packet stored within, and a WR signal that is held high by the MCU_output
module until it is ready to read data, upon which the signal is de-asserted and the FIFO

outputs the packet data one byte at a time to the MCU_output module.

The communication between the RS485_buf modules and the arbiter is slightly
more complicated. Each RS485_buf module has a data_avail line output and a busy
input connected to the arbiter. When the RS485_buf module has received a complete
package from the RS-485 network of test nodes, it asserts the data_avail line. The
arbiter will assert the busy line for that particular RS485_buf module when it is its turn.
The arbiter is also watching the status of the WR input line to the FIFO and when it is de-
asserted to logic 0, the arbiter will not allow any RS485-buf module to communicate
with the FIFO. This is to ensure that it is impossible for the same address to be written
to and read from at the same point in time. The arbiter is a fairly simple rotating priority
arbiter, and its operation is described more fully in Section 4.3.3.

The last inter-communication between the modules within the RS485_to_MCU
module is between the RS485_buf modules and the RS485_fifo module. Each of the
RS485_buf modules has a tri-state logic mem_en line that is asserted to logic 1 when it

wishes to write to the FIFO and is in a high-impedance state otherwise. This allows all

mem_en lines to form a tri-state bus that connects to the EN input on the RS485_fifo
module. The RS485_buf modules also have an 8-bit wide, tri-state logic data_out bus

req2 ack2 Mcu_data_out

RS485_
to_MCU
<

/'

req ack Mcu out

WR Mcu_output

data in Data avail

? I

All devices
have CLK and
RES inputs

WR

data out

Rs485 fifo

data in

Data avail

EN

Mem_en Jr, ?

Data avail

p xl6

xl6

data_out

RS485_buf

data in

x8 pata_kva¡IO:7

busy

arbiter Data_
Avail8:15

busy
T EN0:EN15

xl6

T

?

Data avail

?V.

x8

busy

Memi en

data_out

RS485_buf

data in

xl6

rs485_data_in (0-15)

Figure 4.8. Block Diagram of RS485_to_MCU Module

that ¡s used for sending data to the RS485_fifo module and is set to a high-impedance

state when not in use. This allows the data_out buses from each RS485_buf module to

form a tri-state bus going to the rs485_buf module.

4.3.1 VHDL Design - MCU_output Module

The MCU_output module has two main functions, to read data from the

RS485_fifo module and to output this data over the 8 bit wide data bus to the MCU

using the handshaking protocol previously described. When the MCU_output module is

not in its sending, or output, stage, it is checking the data_avail flag from the RS485_fifo
module, if the flag is high, data is waiting to be read and the module goes into its read

state. For as long as the module is in its read state, it holds the WR line to a logic 0 and

accepts the data from the RS485_fifo module one byte at a time. When the module has

accepted an entire packet from the FIFO, it switches into its sending state. While in its

sending state, the module asserts the ACK line and places the data onto the output bus
(named data_out in the VHDL code). When the MCU asserts the REQ line to say that it
received the data, the send_count signal is incremented and ACK is de-asserted. The

module continues this operation until send_count reaches 32, at which point it stops
asserting ACK and switches out of its sending state and begins checking for the
data_avail flag again.

4.3.2 VHDL Design - RS485_flfo Module

This module functions exactly the same as the FIFO in the MCU_to_485 module,
with a few exceptions. The first difference is that the size of the RAM in the RS485_fifo
module is only 1024 bytes, or 32 packets. This RAM block can be smaller because data

will be coming in much slower over the RS485 connection as compared to the

connection between the MCU and the MCU_buf module. The second difference is that

this module does not have a FIFO_full signal. The reasoning for this is the same as for
why the RAM block can be smaller; since the data is coming in much slower, the data
can be read out of the FIFO fast enough that the possibility of overflowing the FIFO is
very low.

4.3.3 VHDL Design - Arbiter Module

The arbiter module is a fairly simple rotating priority design that handles the
arbitration of the rs485_buf modules in their communication with the rs485_fifo
module. The module has 16 data_in inputs, one from each rs485_buf module, which is
used to tell the arbiter that the particular buffer in question has data waiting to be sent
to the FIFO module. There are also 16 EN outputs from the arbiter that connect to each
of the rs485_buf modules to tell that particular module that it may now speak to the
FIFO module. There is an internal 16 bit array, called en_array, which has only one bit
set to logic 1 at a time; it is used as a pointer to keep track of which buffer is the one to
speak to the FIFO. When a full packet has been sent to the FIFO or if the buffer module

that the en_array is pointing at has no data to send, then the en_array is rotated left by
one bit to allow the next buffer to speak. The operation of the arbiter in flowchart form
is shown in Figure 4.9.

'Is enable array
pointing at a
buffer with data?

yes

no

Rotate enable array to
point at next buffer

Enable the buffer to
send data to FIFO

Increment count

Is count>34? _no_

yes

Rotate enable array to
point at next buffer

Set count=0

Figure 4.9. Flowchart of Arbiter Operation

4.3.4 VHDL Design - RS485_bufModule

The RS485_buf module is one of the more complicated modules in the system; it
contains a small 128 byte (4x32 byte packet capacity) two-port RAM block megafunction
created by Quartus Il to my specifications, and a "wrapper" that controls both the RAM
block and the module as a whole. The module functions similarly to the MCU_buf
module, there are two states the system can be in, it is either waiting for, or accepting, a
packet over the RS-485 connection or it is sending the packet, one byte at a time to the
rs485_fifo module.

When the rs485_buf module is waiting for a packet to begin transmitting over
the RS485 connection, it is waiting for the line to be driven low. This signifies the start
bit of the packet transmission, and the modules clock is synchronized to the moment it
arrives so that it is ready to accept each bit of the packet every 250 clock cycles after
that. The module uses a running "average" to determine what each bit of the
transmission is. It does this as the line may have some noise present and there may be a

38

certain amount of "bounce" to the signal. The module, obviously, must not confuse a

temporary fluctuation of the signal from 0 to 1 or from 1 to 0, with the actual value;
thus, for every bit of the transmission, the module samples the input signal 10 times and
determines the value of the bit based on the average of these ten values. Once a byte
of data is received, the packet byte count is incremented by 1 and the byte is stored in
the internal RAM module. When the entire packet has been received, the system
switches to its sending state and awaits the signal from the arbiter to begin sending to
the rs485_fifo module.

When the arbiter signals to the buffer module that it may begin sending the data
to the FIFO, it starts pulling the data out of the internal RAM module and sends it to the

FIFO module. The timing is a little more complicated as compared to the MCU_buf
module as the delay of the internal RAM block and the delay of the FIFO module need to
be taken into account; both of these RAM modules have latched inputs, and thus the
signals need one clock period before the data is actually saved.

4.4 VHDL Design - Server_Test Module

It quickly became apparent that to simulate or test the VHDL code for the server

module, a test bench "wrapper" module would need to be created. This test bench had
to simulate the server module being connected to the MCU. Without the test bench
simulating the connection to the MCU, nothing would happen with the server module as
there would be no REO signals or data coming in to start the server module running.

The server_test module has two main states, the first is used to send packets to
the server module and the second is used to accept data from the mcu_out bus of the
server module. For physical testing purposes, the packets that were sent to the server
module would instruct the test node to turn on the external power relay for the
motherboard power and then to turn off the relay. These packets were used as the
results of their successful operation are very obvious to the naked eye. Not only can the

motherboard clearly be seen to have power, but the relay "clicks" when it is toggled on
or off.

The second state of the server_test module simulates the REQ signal response
the MCU would provide if the server module were to send data to it. Nothing is done
with the data that the server module outputs, but without toggling the REQ signal, the
mcu_output module would simply freeze until the signal is asserted.

Chapter 5. Development ofC Codefor Test Server
Embedded Microcontroller

As described in Chapter 3, this project requires the use of a microcontroller with

built-in Ethernet capability. The microcontroller that was chosen for this project is
made by Microchip and is part number PIC18F97J60. The PIC18F97J60 microcontroller
has the following specifications [H]:

• 100 Pin microcontroller with 70 I/O pins

• 128Kbytes of Flash Program Memory

• 3808 bytes of SRAM Data Memory

• 2.778 to 41.667 MHz Clock Speed
• 5 Timers

• 4 External Interrupt Pins
• 2 Enhanced USART modules

• 10-Bit, 16 Channel A/D Converter Module

• IEEE 802.3 Compatible Ethernet Controller that Supports One 10Base-T Port
• 8-Kbyte Transmit/Receive Packet Buffer SRAM

The functionality of the MCU needs to be broken into small, manageable sections of
code so that the MCU has enough time to handle all processing that is required of it.
Thus the MCU, after initialization procedures have been completed, enters an infinite
loop that contains all processing steps that it must complete in each cycle of the MCU
code. This infinite loop contains the following functions which will be described in more
detail in the following sections: StackTask and StackApplications, which were part of
Microchip's TCPIP Stack software and are required to handle communication over the
Ethernet connection, BerkeleyTCPServer which was developed by Microchip and then
altered to provide the needed functionality of this project. This loop must also execute
CRC16, which is used to calculate the CRC check value, FPGAjransmit, which handles

sending data to the FPGA using the previously described handshaking protocol,
FPGA_receive, which receives data from the FPGA and checks the CRC value, and finally
a routine to check the MCU board IP address and display it on the development kit LCD
display.

5.1 Initialization Procedures

The initialization procedure for setting up the MCU is quite a long procedure that
involves initializing 5 separate aspects of the MCU. The first initialization is contained

within a function that was part of the Microchip TCPIP Demo App and is used to
configure settings on the MCU board. The function is called InitializeBoardQ and is used
to initialize the LEDs on the MCU board, the Phase Lock Loop (PLL) for the main system
clock, the USART module, and the Baud rate for transmissions. This function also

enables interrupts and sets up the external memory chips. The second initialization is
contained within the function lnitialize() and is used to set up the data direction on
ports B, C and D which are used for the ACK and REQ signals, outputting to the FPGA and
accepting inputs from the FPGA, respectively. The next initialization is to set up the LCD
display on the development kit board and is used to display the version of Microchip's
stack software currently in use as well as the IP address of the MCU.

The remaining initialization procedures were part of the TCP/IP stack software
provided by Microchip, and perform several key tasks to set up the TCP/IP stack.
Ticklnit initializes the Tick.c functions which provide the TCP/IP stack with a large scale
timer capable of keeping track of anything from a few microseconds to a few hours.
InitAppConfig initializes stack and application variables which are necessary for stack
operation. These include the IP address, DNS Server values and SNMP server

initialization. The next process initializes the development kit reset buttons, and the
final function, Stacklnit, initializes the core stack layers such as MAC, TCP, UDP and
application modules such as HTTP and SNMP.

5.2 Main Processing Loop

The main processing loop of the MCU C code executes the core tasks given to the
MCU. The main loop handles accepting and sending packets over the TCP/IP socket to

the PC client. It also communicates with the FPGA, both sending packets to the FPGA

and accepting packets from the FPGA. This communication is using the handshaking
protocol described in Chapter 4. All CRC check values are calculated in the main loop,
both before sending to the test nodes, and upon receipt of a package from the test

nodes to ensure that no data corruption occurred during the transmission from the
node to the server. The main loop must also handle all other TCP/IP stack related tasks

as required to allow the Ethernet communication to function properly. A flowchart of
the main processing loop operation is shown in Figure 5.1.

loop

Initialize Board, MCU,
and I/O Ports

Write to LCD Display

Initialize TCP/IP Stack
application layers

StackTask() checks for
incoming packets

StackApplications() invokes
core stack applications

Listen on TCP/IP Socket, accept
transmission from client, save

packet

Calculate CRC on new
packet

Send packet to FPGA

Receive any waiting
packets from FPGA

Check CRC

Send packet over socket to
client

Figure 5.1. Flowchart of MCU Main Processing Loop Operation

5.2.1 Stack Operations

The first function calls of the main MCU processing loop are functions that came
as a part of Microchip's free TCP/IP software: stacktask() and stackapplicationsQ. The
stacktaskQ function is contained within StackTsk.c file that came with the TCP/IP stack.
When stacktaskQ is called, the function fetches a packet and throws away any old ones,
and then transfers the packet to the appropriate handler to begin processing the various
layers that are added to a data packet as it passes through the TCP/IP protocol to the
MAC, and then onto the Ethernet connection. This function also checks the incoming
address on the packet to ensure that it is meant for this particular IP address.

The stackapplications() function is also found in the StackTsk.c file and is used

after initializing the stack with the StacklnitQ function. Stackapplications() loads all
application modules that the user chose to include in the TCPIPConfig.h header file
which was created by Microchip's TCP/IP Configuration Wizard program. These
application modules include, but are not limited to, the HTTP server application, FTP
server application, SNMP server application, Telnet server application, Reboot server
application, and several others.

5.2.2 Accept and Store Packet

After initialization routines have been executed and all necessary stack
operations have been taken care of, the next function that the MCU needs to perform is
to accept the data packet from the client over the TCP/IP socket. Two functions are
needed for retrieving the data packet, storing the data array and calculating the CRC16
value titled BerkeleyTCPServerQand crcl6(). The BerkeleyTCPServer() function was part
of Microchip's free TCP/IP stack software, though its functionality was to merely echo
the data received back to the client. Thus several changes needed to be made so that
the function did not merely echo the recently arrived data, but instead stored it in

memory, and also, so that the data sent back to the client is not only an echo of the

received data, but is also any data that was received from the FPGA on the previous
cycle that is waiting to be sent back to the client program. Since the data sent over the

TCP/IP socket is raw binary data, no type conversions are needed before the data can be
processed. Finally, the crcl6 function does exactly what its name implies, it is sent the

packet one byte at a time and it calculates the 2 byte long CRC-16 value of the packet
and adds it to the end of the packet.

5.2.3 Communication with FPGA

Two functions are required for communication with the FPGA: FPGA_transmit()
and FPGA_receive(). FPGA_transmit() handles the handshaking protocol needed to send
data to the FPGA one byte at a time. Since FPGA_transmit requires the CRC value,
before FPGA_transmit() can be called, the CRC needs to be calculated by the crcl6()
function. After a packet has been transmitted to the FPGA, FPGA_receive is called to
see if there is any reply packet data waiting to be sent from the FPGA to the MCU, if
there is, it applies the previously described handshake protocol and accepts the data
one byte at a time. The function then internally calls crcl6() to calculate the CRC value,
compares it to the one that is attached to the packet, and if they don't match, it
overwrites the ACK value of the packet with 170 in decimal (or 10101010 in binary). If
the ACK line from the FPGA is not asserted upon immediate execution of the function, it
will wait for a count of 256 before leaving to execute the MCU's other functionality.

Chapter 6. PC Client Design

This section details the design process and methodologies used for creating the PC
client software that is running the entire system. The PC client is used to input the hex
file of input packets, keep track of whether a node responds to a sent packet and re-
send any packets that were not responded to. If there is a problem with the CRC, either
when the node receives the packet, or when the test server does, the client code will re-

transmit that packet. The PC client also sorts the outgoing packets to ensure that the

same bus does not receive a packet in consecutive transmissions, thus reducing the
likelihood of bus contention issues when the nodes reply.

The client code is written for, and on, a Windows-based PC, and thus if the end

user wishes to use a different platform, some modifications to the client code are

needed. These changes are outlined in Section 6.3. Also, the client is written for IPv4,
and modifications will need to be made to the socket code if the user wishes to have the

system be IPv6 compatible.

6.1 TCP Versus UDP

Though it was requested by AMD/ATI to use the TCP protocol to communicate to
the test server, a comparison of TCP with its alternative, UDP is necessary for a full
understanding of the TCP protocol and why it was chosen for this project.

The User Datagram Protocol (UDP) is a connectionless protocol, or in other
words, it does not require a direct connection from client to server. With UDP, a single
socket can send and receive packets to many computers without any handshaking
taking place. The lack of handshaking means that the reliability of the transmission, the
order of the data sent out and the data integrity are not guaranteed. Thus the data, or
datagram, sent out using UDP can arrive out of order, appear duplicated or not arrive at

all [17]. The process for sending data over a socket using UDP is shown in Figure 6.1 a
the process for sending data over a socket using TCP is shown in Figure 6.2.

_____Server

bind()

ijJiflliMMil

seadto ()

I closep

Client

socket () I

bind()
- optional

Blocks until data
received

Data! request)

Data (reply)

gendfrB {")

^ LccytKômX]

I closed

Figure 6.1. Flowchart of UDP Operation [17]

Server

bindQ

I listen^T

I accept ()
block
until

there are ^
rOnnect-á an

from
client

1
read Q ~\é-
Pr ocess
request

write ()

close () I

Connection
estabIi shment

Data (request)

Data (reply)

Client.

socket () ~|

J connect () |

-|- wf ita Q

»| read()~~|

close ()

Figure 6.2. Flowchart of TCP Operation [17]

To effectively use UDP, the application must handle the task of ensuring good
communication. This transfer of responsibility allows the header on a datagram to be

very small and thus it is more efficient [18]. An analogy to the UDP protocol would be
the standard mail service. You can send out as many letters you want to as many places
you want, but there is no guarantee they will ever arrive at their respective destinations,
or the order in which they will arrive [19]. Therefore, due to the unreliability of the UDP
protocol, the TCP protocol is the one chosen for this project.

6.2 PC Client Operation

The client program, which is in control of this entire test system, must perform
several tasks. First of all, it needs to send the data packets over the TCP/IP socket to the
microcontroller on the test server hardware. The client also needs to accept replies
from the microcontroller over the socket, save the replies in an output file, and examine
their contents. Specifically, the client program needs to examine the acknowledge byte
of the packet to determine if there were any communication issues between the test
server and the test node, this includes non-matching CRC value at the test node, non-
matching CRC value at the test server and also non-existing command given to the test
node. The pertinent ACK values are outlined in Table 6.1.

____________Table 6.1. Acknowledge Values and Their Meaning
Acknowledge Value
Decimal

255

15

240

170

Binary
11111111

0000 0000

0000 1111

1111 0000
0000 0011
1010 1010

Meaning
CRC Matched, command was processed
CRC did not match at node
Command was unknown

Super-User condition invoked
Reset was triggered by node MCU timer
CRC did not match at server

The client program must also keep track of the time in which packets were
transmitted, to know if a reply should have been received at a certain point in time. The
client must keep track of whether a reply has been received for a particular packet that

48

was transmitted, and if the node cannot be reached by 4 transmission retries, the node
is officially recorded as not being connected to the network.

The final task of the client is to sort the outgoing packets in the queue to ensure
that the possibility of a bus contention on one of the test node buses is reduced as

much as possible. This is handled entirely by the SortPacketsQ function in the client.c
program and its operation is described more fully in Section 6.2.1.

The final thing that should be mentioned is that the client program was
developed on a windows based PC, and thus some changes must be made to the code
to get it to operate on a Unix/Linux based machine. These changes are outlined in
Section 6.3.

6.2.1 Packet Sort Algorithm

The packet sort algorithm is very important to the functionality of the client code
as it is the only measure in place that limits the possibility of bus contention problems
with the test nodes. Though the nodes cannot initiate communication with the test

server, per the communication protocol in use in this project, the delay in the response
from the node is somewhat of an unknown. Thus if two consecutive packets were sent
out to the same bus, let alone the same node, the two nodes could have their response
communication overlap for a certain amount of time, causing a bus contention and
possibly data corruption. The packet sort algorithm is thus in place to reduce this
possibility by sorting the outgoing packets such that there is at least a three packet
transmission delay between transmissions to the same bus. A flowchart describing the
functionality of the packet sort algorithm is shown in Figure 6.3.

The packet sort function operates by keeping track of the last 4 buses that were
communicated to, as well as, with the help of the function nodelastcommtoQ, the
record of which nodes in the system have recently been communicated to. Any
outgoing packet has its address field checked against the last 3 buses that were
communicated to, and if it matches one of those three, it is swapped in the outgoing

packet queue with a packet that is destined for a different bus. The 4th last bus
communicated to is kept for the nodelastcommtoQ function. If all nodes have been
recently communicated to, the 0th node on the 4th last bus communicated to is sent a
"check" packet, and the record of which nodes have been recently communicated to is
re-initialized.

Send packet to all
nodes to see who's

connected

Setup mask with a ?'
corresponding to

present nodes

Copy mask into
last comm to matrix

Check for presence
of any packets
waiting to be

ordered

Are there packets
waiting?

yes

Read in packet from all
marked as having not been
sent and examine address

Send check

packet to node
last comm. to

Same bus as either oP
last 3 times?

yes

Is there a packet
waiting to be sent on a ,

different bus?

Put packet in
queue to be
sent to FPGA

yes

Swap Packets in
Queue

no

Send check

packet to node
last comm. to

Mark packet as
having been sent

Update
bus last sent to

Write a ?' into

corresponding place
in last_comm_to

matrix

\ noIs matrix empty? V——.

yes

Copy mask into
last comm to matrix

Figure 6.3. Flowchart of Packet Sort Algorithm

6.3 Changes to Adapt Cliente Code to Unix/Linux

The client code was written in C on, and for, a Windows-based PC environment.

There are several changes that must be made to the code to get it to function properly
in a Linux-based environment. The changes that must be made are only to the socket

operations of the client, and are fairly simple to make. The differences between the two

environments will be shown by performing a side by side comparison of the UNIX/Linux

code to the code for a Windows system.
The first difference is in the header files of the code and is shown in Table 6.1.

The include file for sockets in Windows is winsock.h, whereas for Unix, 4 different
header files need to be included.

Table 6.2. Header Differences, Unix vs. Windows [19]
Unix

#include <sys/socket.h>
«include <sys/types.h>
«include <arpa/inet.h>
«include <netinet/in.h>

Windows

«include <winsock.h>

The next difference is due to the fact that the winsock needs to be initialized

using WSAStartupQ. The associated code is shown in Table 6.2.
Table 6.3. Socket Initialization Differences, Unix vs. Windows [20]

Unix

int main(int arge, char *argv[])
{
Variable initializations

servlP=argv[l];
dataServPort=atoi(argv[2]);

Windows

int main(int arge, char *argv[])
{
"Variable Initializations1"
WSADATA wsaData;

servlP=argv[l];
dataServPort=atoi(argv[2]);

if (WSAStartup(MAKEWORD(2,0), SwsaData) !=0)
fprintf(stderr, "WSAStartupQ failed");

The last difference is in regards to the shutdown of the socket application. The
side by side comparison of the code is shown in Table 6.3.

Table 6.4. Socket Application Shutdown Differences, Unix vs. Windows [20]
Unix

close(sock);

exit(0);

Windows

closesocket(sock);
WSACIeanupO;

exit(0);

A more minor detail, but worth mentioning, is the difference in socket function
error reporting. The side by side comparison is shown in Table 6.4.

________________Table 6.5. Socket Error Reporting Differences, Unix vs. Windows [20]
Unix

void DieWithError(char *errorMessage)
{

perror(errorMessage);
exit(l);

}

Windows

void DieWithError(char *errorMessage)
{

fprintf(stderror, "%s: %d\n", erorrMessage,
WSAGetLastErrorO);

exit(l);
}

All other socket functions perform in exactly the same way whether you are
programming on a Windows or Unix machine. An alternative method exists, however,
where conditional groups are used to make the code run on either system. This is
implemented in the client.c code for this project. An example of this, executed with the
socket header calls, is shown in Table 6.6.

Table 6.6. Conditional Group C Code Example - Header Calls
//If Windows system
#ifdef WIN32

#include <winsock.h>
//if Linux/Unix system
#else

«include <sys/socket.h>
«include <sys/types.h>
«include <arpa/inet.h>
«include <netinet/in.h>

«endif

Chapter 7. Conclusion
V. *? S, ?_ _ ~? a i< ¿£L ^s -if ^, g \ "sua.*, •**r<Su)Ct¿r*J£¡a3au ÒSMI <iwï&£§S3k> « *3?™&8? Sscfir^v- UA^Jt A ^

This thesis described the design and construction of the test server for a custom

automated test environment that is capable of testing up to 256 motherboard/GPU test
nodes. The test server hardware consists of an Ethernet-enabled MCU, an Altera
Cyclone Il FPGA and an RS-485 transceiver network. The system as a whole will consist
of one test server which has the capability to have 16 buses of 16 test nodes each,
connected to it. A custom C client program was also created to provide the data packets
that will be sent to the node network.

The basic functionality of the project is as follows:
1. Client software either creates, or reads from a file, a list of data packets, sorts

them to reduce bus contention, and sends them over a TCP/IP socket to the
MCU

2. The MCU converts the data packet from a character string with numbers
encoded in hexadecimal to an array of integers and calculates a CRC-16 check
value for the packet

3. The MCU adds the CRC-16 value to the end of the packet, making a total of 32
bytes and transmits the packet one byte at a time to the FPGA

4. The FPGA accepts the packet using a simple handshake communication protocol
and buffers it until it is ready to transmit to the RS-485 node network

5. The FPGA will then transmit the packet over the RS-485 network to the
appropriate node as given by the address byte of the data packet

6. The FPGA waits for a response from the node, accepts it when it arrives, and
buffers the response packet until it can transmit it to the MCU

7. The MCU accepts the packet from the FPGA, checks the CRC value for any errors
and transmits it back over the TCP/IP socket to the client program

8. The client accepts the response packet, if the ACK field checks out ok (i.e. The
CRC was verified correct at both ends of the RS-485 transmission), it finds the

53

original packet and marks that a response has been received. If the ACK does
not check out, the original packet is re-sent over the socket

9. The client then checks all of the original packets to see if there are some that
never received a response. If there are, it will re-transmit those packets over the
socket to the MCU

The first step in developing the project was to come up with a list of specifications
for the system as a whole. These were provided, in large, by AM D/ATI, as the system
will be utilized by them to functionally test their GPU's. From the specifications of the
system, the components for the project could be chosen to meet those specifications.
For the prototyping of the system, development kits were utilized instead of custom PCB
layouts of the test server and test node boards, mainly due to the cost, both in terms of
time and money, of getting custom PCBs manufactured. Once the components were
chosen, the longest step in the process could take place. This consisted of designing and
writing VHDL code for the FPGA test server module, designing and writing C code for the
MCU, designing and creating the RS-485 transceiver board, designing and writing C code
for the client program, and testing and verifying each of these components individually,
and together as a system.

This version is the second iteration of the project, and was designed to correct the
shortcomings of the original project, as well as expand its capabilities. There were
several problems with the first version of the project, and the choice of components,
transmission media and protocols has successfully dealt with these issues. The choice of
a differential signaling communication standard (RS-485) removed the inherent galvanic
isolation problems with the first generation of the project. The design of a custom test
server using low-cost components has reduced the high cost and complexity of the off-
the-shelf digital I/O board, which was in use for the first generation, as well, the system
flexibility has been greatly improved. Finally, the choice of a daisy-chain network
topology reduced the amount and length of cabling that is needed to implement the full
network.

7.1 Test Server Limitations
One final, important consideration is in regards to the inherent limitation of the

number of test nodes connected to the test server. Though the packet structure only
allows for one byte of data for the address of the test node, and thus only 256 addresses
are available, if the final user of the system wished to add more nodes to the test server,
the packet structure is not the only portion of the project that would have to be altered.
The nature of the communication between the FPGA and the MCU would likely also
need to be re-examined if there were more nodes on the network. This is due to the

fact that the acknowledge line from the FPGA that lets the MCU know that there is data

to be sent back to the client is not on an interrupt pin of the MCU. The MCU merely
polls the ACK2 pin once every iteration of the main processing loop, waits for a count of
256, and if the ACK2 pin is not asserted, it leaves the function and does other tasks. If

the number of nodes was increased beyond 256, however, this would likely have to be
altered in some way, most likely by placing the ACK2 pin on an I/O port of the MCU with
interrupt capability. As the number of nodes increases, the number of packets that
need to be sent back to the client will also increase, and at some point the polling
functionality of the MCU will not be fast enough to service the number of requests to
send data. This would likely cause the loss of data that is intended to be sent back to

the client. Thus, if the end user wishes to increase the number of nodes under test, the
easiest method of accomplishing this is to simply add a second test server.

7.2 Thesis Contributions

The final deliverable of this project is a novel solution to a complicated problem.
Though the idea of an automated test environment is not a new one, they have been
around in one iteration or another for almost 50 years, the implementation of a low-
cost, fully programmable and upgradeable system to test large batches of ASICs is not
frequently seen, at least in the public domain. Though the implementation of the test

server did not use any methodologies that were new, the combination of using a
microcontroller with built in Ethernet capability to communicate through a custom
UART module implemented on an FPGA to a network based on the RS-485 electrical

specification is entirely new.

Based on the relatively small availability of different Ethernet-enabled
microcontrollers, the market penetration of Ethernet microcontrollers in industry is still
fairly small. Thus, the use of one in this project, as opposed to en external Ethernet
controller, or some other communication medium all together such as USB, or even
wireless communication like Bluetooth or something similar, is also something that has
not been done much in the past.

By getting this system on-line, and by allowing the nodes to be remotely
upgradeable through the bootloader program, this project has also almost completely
removed the need of having a person in the same room as the running test network.
Once the system has been "plugged in", the system will only need hands on attention if
one of the nodes detects a critical failure that leads to out of control temperature
increases or voltage swings.

The final goal of this system, however, where the test network is completely
configurable, giving it the ability to functionally test any piece of electronic equipment,
is the most novel idea presented in this thesis. Much of the design of such a system is
performed here, though future work is definitely required. For instance, the hardware
of the test server, and by that I mean the MCU, FPGA and transceiver network, does not
care what type of data passes through it. The only pertinent fact that the test server is
concerned with in relation to the data packets, is their length in bytes. The only change
that is needed to the test server to get it to control any kind of test node is to alter the
"babysitting" portions of the client code. These portions of code are the ones that verify
that responses were received from the nodes and that the responses, and acknowledge
fields in the responses, are formatted properly.

7.3 Test Server Verification and Final Results

As of this writing, all C and VHDL code has been completed and several stages of
final testing have been performed. The PC client software has been tested extensively
communicating with the MCU and the communication over the TCP/IP socket to the

MCU is functioning properly and all "babysitting" logic of the client software is
functioning properly. In addition to this, the RS485 transceiver prototyping board has
also been extensively tested and functions flawlessly. The VHDL code running on the
FPGA has been simulated and functions properly, and when using the test server test
bench (serverjest.vhd) implemented on the FPGA, data is being transmitted over the
RS485 network at the proper Baud rate to the test node, though some bugs need to be
worked out of the system. Finally, the MCU C code is functioning properly, though the
development kit has a shortage of available input/output pins that are not tied to other
functions implemented on the board. This causes problems with the communication to
the FPGA and also needs more work if it is to function at full capacity.

7.4 Future Work

Future work on this project could move in three different directions. The first

would be to make a more user-friendly front-end client program with a graphical
depiction of the status of the test nodes, the second would be to design the system to
be totally auto-configurable, allowing it to test any electronic system, instead of the
motherboard/GPU test node that is implemented in this version. Finally, the last area of
future work would be to implement functionality to the test server such that the test
server MCU could update the test server FPGA hardware.

As of this writing, the user interface of the client program is extremely simple.
The end-user simply creates a text file of data packets, written in hexadecimal, that they
would like executed by the test nodes and then feeds this file into the client program.

The client program is then automated to handle outputting these packets to the test
network. Unfortunately, with this setup, there is no easy way to suddenly add a new
packet to be transmitted to the test node network.

The client program would also benefit from a graphical depiction of the status of
the test network. This could be executed by having the client render a graphical
depiction of the network on the screen, with appropriate displays of temperature,
voltage and peripherals available for each test node, as opposed to outputting the
received packets from the test network to a text file that then must be interpreted.

The second area of future work with this project, turning the system into one
that is configurable by the end user, is a much more ambitious undertaking, and should
be the ultimate end goal of a project such as this. The expansion of this system to one
that is completely configurable to allow it to test any electronic system was described
briefly in the previous section on thesis contributions, but more discussion on the topic
is needed here. As stated in the above section, the hardware of the test server does not

examine the contents of the packets that are passed through it, and thus any data can
be transmitted over the network to the test nodes. The only pertinent information that
the server hardware examines, and in fact, depends on, is that the length of the packets
is 32 bytes long. The ability to include any information in the packet, in any format,
means that any test node can be plugged into the network and the information passed
to the server by the client will, with absolute certainty, be passed along to the test node.

The only changes to this system that would be needed, to accompany a change
to the test node, are to the client software. The client software is continuously
examining the second byte of the received packets to see if the acknowledge byte is an
acceptable value, and if it is not, it re-transmits the packet. Also, in this configuration of
the system, some commands are known to take more time to execute, for instance, the
process of turning off the motherboard by using the opto-coupler can take several
seconds to execute, and thus the client software needs to give it enough time to
execute before it tries to communicate with that node again. Thus, if a test node was
introduced to the test server that had packets with the acknowledge byte as the third

58

byte, or if some functions of the test node required large amounts of time to execute,
the client software would have to be updated to include these new specifications.

One way to implement such a configurable system is to have a file that is loaded
upon initial client start-up with all pertinent node specifications included within. This
file would instruct the client program as to the packet structure and to such special
cases as the ones mentioned above where a node needs a long period of time to
perform a function.

The final area of future work could potentially save much time in the future
incarnations of the project, as well as help aid this system to be more auto-configurable.
This area is to provide the test server MCU with the ability to update the hardware on
the test server FPGA. A new command would have to be created in the packet structure
command set that would tell the MCU that the incoming packets are intended for re-
writing the hardware currently installed on the FPGA chip. An external RAM would
likely also be necessary to store all the reconfiguration data until it is all received at the
MCU as the file could potentially be quite large. The MCU would thus also need the
ability to interface with the programming pins of the FPGA to place it in programming
mode and to allow the new data to be passed into the FPGA.

With these areas of future work set aside, the system in its current configuration
has full functionality and performs to all specifications outlined to us by the end-user,
AMD/ATI of Markham. The system also includes enough expandability and flexibility to
provide them with the ability to test just about anything that can communicate with
digital logic circuitry.

References

1. IEEE. Automated Testing. Aeropsace and Electronic Systems Magazine, IEEE. October
2000, Vol. 15, 10, pp. 125-130.
2. United States Department of the Navy. U.S. General Accounting Office, Staff Study,
Versatile Avionics Shop Test (VAST) System AN/USM-247. Washington, D.C. : United
States General Accounting Office, February, 1973.
3. National Instruments. Modular instruments. [Online] National Instruments. [Cited:
September 22, 2009.] http://www.ni.com/modularinstruments/.
4. Teradyne. Semiconductor Test. [Online] Teradyne. [Cited: September 22, 2009.]
http://www.teradyne.com/flex/FLEX.html.
5. Drenkow, G. Future Test System Architectures. Instrumentation & Measurement
Magazine, IEEE. August, 2005, Vol. 8, 3.
6. Perrin, B. The Art and Science of RS-485. Circuit Cellar. [Online] July 1999. [Cited:
September 25, 2009.]
http://www.circuitcellar.com/library/ccofeature/perrin0799/index.asp.
7. Microchip. Ethernet Solutions with Integrated MAC and PHY. Microchip. [Online]
[Cited: September 23, 2009.]
http://www.microchip.com/stellent/idcplg?ldcService=SS_GET_PAGE&nodeld=2504.
8. Freescale Semiconductor. MCF532X: V3 ColdFire Microprocessor with LCD driver,
Ethernet, USB and CAN. Freescale Semiconductor. [Online] [Cited: September 23, 2009.]
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MCF532X&fsrch
=1.

9. Digi International. NET+ARM Microprocessors. Digi International. [Online] [Cited:
September 23, 2009.]
http://www.digi.com/products/embeddedsolutions/microprocessors.jsp.
10. Atmel. AVR32 32-bit MCU. Atmel. [Online] [Cited: September 23, 2009.]
http://www.atmel.com/products/avr32/uc3/uc3_2.asp?family_id=682.
11. Microchip. PIC18F97J60 Family Data Sheet. U.S.A. : Microchip Technology Inc., 2008.
12. CCS inc. 3.3V Ethernet Controller Development Kit. Custom Computer Services, Inc.
[Online] [Cited: September 23, 2009.]
http://www.ccsinfo.com/product_info.php?products_id=proethkit.
13. Microchip. PICDEM.net 2 Development Board. Microchip. [Online] [Cited:
September 24, 2009.]
http://www.microchip.com/stellent/idcplg?ldcService=SS_GET_PAGE&nodeld=1406&d
DocName=en028217.

14. Altera. Literature: Cyclone Il Devices. Altera. [Online] [Cited: September 23, 2009.]
http://www.altera.com/literature/lit-cyc2.jsp.
15. Terasic. FPGA Systems. Terasic Technologies. [Online] [Cited: September 24, 2009.]
http://www.terasic.com.tw/cgi-
bin/page/archive.pl?Language=English&CategoryNo=39&No=.

16. Linear Technology Corporation. LTC485 Low Power RS485 Interface Transceiver.
Milpitas, CA : Linear Technology Corp., 1994.
17. Linus Socket Part 2: Fundamentals. The Tenouk's C, C++, STL, Win32, Winsock, MFC
and Linux Socket Tutorials. [Online] [Cited: September 29, 2009.]
http://www.tenouk.com/Module39a.html.
18. Kristoff, John. The Trouble with UDP Scanning. [Online] March 11, 2002. [Cited:
October 1, 2009.] http://condor.depaul.edu/~jkristof/papers/udpscanning.pdf.
19. Donahoo, Michael J., Calvert, Kenneth L TCP/IP Sockets in C. Burlington, MA :
Elsevier Ine, 2009. ISBN: 978-0-12-374540-8.
20. O'Steen, Paul. Transitioning from UNIX to Windows Socket Programming. TCP/IP
Sockets in C. [Online] [Cited: September 30, 2009.]
http://cs.ecs.baylor.edu/~donahoo/practical/CSockets/WindowsSockets.pdf.
21. Rafiq, Abdul. Microchip TCP/IP Stack With BSD Socket API for PIC32MX. Microchip
Corporation WebSite. [Online] November 2, 2007. [Cited: September 1, 2009.]
http://www.microchip.com/stellent/idcplg?ldcService=SS_GET_PAGE&nodeld=1824&ap
pnote=en532885. AN1108.
22. Terasic Technologies. DE2-70 User Manual, s.l. : Terasic Technologies, 2008.
23. Axelson, Jan. Designing RS-485 Circuits. Circuit Cellar. 1999, 107.
24. Digi International. Using RJ45 Adapters to Connect to DB9 Connector. Digi
International. [Online] [Cited: July 30, 2009.]
http://www.digi.com/support/kbase/kbaseresultdetl.jsp?kb=3.
25. Vahid, Frank, Givargis, Tony. Embedded System Design. Hoboken, NJ : John Wiley &
Sons, Ine, 2002. ISBN: 0-471-38678-2.
26. Simmons, M. Ethernet Theory of Operation. Microchip. [Online] [Cited: July 15
2009.]
http://www.microchip.com/stellent/idcplg?ldcService=SS_GET_PAGE&nodeld=1824&ap
pnote=en533903. AN1120.

27. Fox, Stephen. System Nodes for a Multi-Drop Test Bench Network. Windsor, ON :
University of Windsor, 2009.
28. Cyclic Codes for Error Detection. Peterson, W.W., Brown, D.T. Gainesville, FIa. : s.n.,
Jan., 1961. Proceedings of the IRE. Vol. 49, pp. 228-235.
29. Sivakumar, Nishant. Beginning Winsock Programming - Simple TCP Server. The Code
Project. [Online] February 22, 2002. [Cited: July 10, 2009.]
http://www.codeproject.com/KB/IP/winsockintro01.aspx.

Appendix A. Schematics and Bill ofMaterials

A.1 Schematics

3.1 UF

_vcc3a ~pj5

C9 TC11 TC10

S.~ì uf|~Ì URp UF „pjO

R1

Z.26K 1%GND
O.O.O O O O

aaaddddd
GND

IPOUT+
IPOUT

50"»o9o

g££!í¡ÜBggggB
i¿ W -> > ?-
? Q-

d ?
Q. <

RH2/A18
RH3/A19
RE1/AD9/WR7P2C
RE0/AO8/RD/P2Dnr
RBO/INTO/FLTO
RB1/INT1
RB2/INT2
RB3/INT3/ECCP2/P2A
NC
RG6
RG5
RF0/AN5
MCLR
RG4/CCP5/P1D
VSS
VDDC0REWCAP3
VDD
RF7/5ST
RF6/AN11
RF5/AN10/CVREF
RF4/AN9
RF3/AN8
RF2/AN7/C10UT
RH7/AN15/P1B
RH6/AN14/P1C

Ss S a

VDDRX
TPIN+
TPIN-

VSSRX
RG0/ECCP3/P3A

RG1H"X2/CK2
RB4/KBI0
RB5/KBM

RB6/KBI2/PGC
RJ2/WRL

VSS
OSC2/CLKO
0SC1/CLKI

VDD
RJ3/WRR

VSS
VDD

RJ6/CB
RB7/KBI3/PGD

RC5/SD01
RC4/SDI1/SDA1

RC3/SCK1/SCL1
RC2/ECCP1/P1A

RG2/RX2/DT2
RG3/CCP4/P3D

or o: < <

¿zza zza

Q. _
Fa *S- yo 2° H ^ ,-

^: to to yo

stttCe
o;o:ccq:q;q:i£q:

PIC18F97J6

vr.raa GND

GND

alPIN

GND GND
?G.? MCUBUF
RFO MCUBUF
?G.? MCUOUT

QSC2
QSC1

EiBJfi
5ff"RFO_MCUOUT fi , SNb

MCI) IN5
fMr.ll IN4
VtMCU IN3
¦???G,?? IN2

University of Windsor
Department of Electrical and Computer Engineering

TITLE: TestServerU2

Document Number:
Test Server MCU - 1

REU:

Date: 21/10/2009 12:48:08 flM Sheet: 1/7

Figure A.l. Test Server MCU Schematic

OSC7yp YM_gai_CiSC1
1M

Jbis
'pápF

JC14
B3pF

òto
Ir

„ .. R7 LED1

470 w,
„ .. R8 LED2
RJ1'-0 WWtTM (3"

470 ?«
„ .. R9 LED3
RJ2"'o wwcteh e

470 V»
_ R10 LED4
RJ3-0 WWtTEH CT-470 ·,·»
„ R36 LEDS
RJ4--0 WWiTEH er· ¦ >470 \¡»
„ „. R37 LED6

'O-VWfCTEH s-
470 ?·»

_ „ R39 LED8BJ7!se^vwi"ci,t>i er ¦
470 Si»

GND

TPDUTh

R4049.9
^e-ww-e^

R41 400
t????t- j^e-ww-gi

^ß-? C CT" ÏR4249S
GND tt _ D«M<1

- TPIN- R4349.9

—L- R44 180
GND

GND

IFHR

GND R4518°

EPId

G,£f

MB0-1X1T-36-F

P$2
P$1
PS3
PS4
PS6
PS5

— PS9
PS10

PS8
PS7

018Jt-I
100 R48

-cae-vwv-e=1 P$1
P$2
PS3

TUXGR 16X2 R2
LCD DISPLAY 16x2

O O 2
OUÛÎirujûQÛQÛOQÛZZ

^e-ww-e

FFFFFa??
t i

KlXlWICD Connector
GND

UJ LU u.UCC33

2ohm1%
"CrHWW-C^ ^&H

REG1117F

PVA2F .1 uF.i 47 UF

1N4006 REG1117F
VIN ^OUT

2 ohm 1%
fhWA-e^r SZCC5

2 ohm 1?

47 uF
TC20

22OuF

University of Windsor
Department of Electrical and Computer Engineering

TITLE: TestServerU2

Document Number:
Test Server MCU - 2

Date: 21/10/2009 12:48:08 nil

REU:

Sheet: 2/7
Figure A.2. Test Server MCU Schematic - Ethernet, ICSP, LCD, LEDs, Oscillator, and Power

iNPnwTH «hi

|Fnpt7

FFiHIJ

µ?.p ni ita

Mf-H ™H7 eg

CO
CD
3
<t>

TI
TJ
Gì
>

S 2.

l§l3llIlIlliIii3I!SiiïîiïlïSillgSliSiliëiïlSS5ïflSsSig8lgS8iS8ï8 |?*"?

GND
GND
GNDGND I

ggggggggSSSSEESSBEËS§i§§lBtÎlailggaagggggfiaaaggggsgsggg 888888888

SfeW WfHT

¡ywiFg^wA er' '¦f WAh?-

8W

"G
Figure A.3. Test Server FPGA Schematic

Jfte25~ ^¦t26 ^C27 Çfb28 ^029* %:30 fc31 ^C32 ^C33 Vc34

IFORS

LEDB13_

f"? T1uf TuF 1PuF TuF TuF TuF TuF TiuF
' ' · ' j.

LG T679-E1F1-1
R58 LED10

330 Si»
LG T679-E1F1-1

R59 LED11
•/vena ¿y

330 si»
LG_T679-E1F1-1R60 LED12

330 V»
LG T679-E1F1-1
R6Î LED13

2ie-vwv-ao EH Q"°
330 si»

LG T679-E1F1-1
R62 LED14

-Jg&jwo*t>i er·
330 Si.

LG T679-E1F1-1
R63 LED15

330 Si»
LG T679-E1F1-1

R64 LED16
-^e-WWO-OI (3"330 Si»

LG T679-E1F1-1
R65 LEDI 7

-^fcHVWTO'tH O"·
330 Si»

LG_T679-E1F1-1
R66 LED18

^fHWA"0"|>| O'"330 v»
LG T679-E1F1-1

R67 LED19
-^e-wweyM cr·

330 s,\
LG_T679-E1F1-1

R68 LED20
-^e-VWTOtH cTn ¦330 si»

LG T679-E1F1-1
R77 LED21
•.Ï/WMO·""

330 Si»
LG T679-E1F1-1

R78 LED22
- - - - ?|?f| Ly330 si»

LG T679-E1F1-1
R79 LED23

-a&werMcT" ¦¦
330 si»

LG T679-E1F1-1
R80 LED24

- --^y330 Si»
LG T679-E1F1-1

R81 LE02S
...render

330 si»
LG T679-E1F1-1

R82 LED26

330 Si»
LG_T679-E1F1-1

R83 LED35

330 si»
F

GND

LEDGß_

LG_T679-E
R69

^=CHWWOTH O"1
I-E1F1-1

LED27

330
LG T679

R70

si»
E1F1-1
LED28

330
LG_T679-

R71

si»
Í-E1F1-1

LED29

si»
)-E1F1-1

LED30

330
LG_T679-

R72

330
LG_T679-

R73

si»
I-E1F1-1

LED31

330
LG T679-

R74

Si»
¦E1F1-1
LED32

330 si»
LG T679-E1F1-1

R75 LED33
-^e-WWOtH o- ¦

330 Sì»
LG T679-E1F1-1

R76 LED34
-^HWWOtH O- ¦

330
F

J^J
REG1117
vin ??st

1GND

<~T~I PVA1

GND »f?^—Jçf·'' GND
31

VCC33

401 OD

CLKJN

R88

10m
R87

Jt38 Jj^3910m ^C40 Jb
JSffiCMT

OOuF 10OuF

University of Windsor
Department of Electrical and Computer Engineering

TITLE: TestServerU2

Document Number:
Test Server FPGA - 2

Date: 21/10/2009 12:48:08 ftH

REU:

Sheet: 4/7
Figure A.4. Test Server FPGA Schematic - LEDs, Oscillator, Power, and Reset

INPORTO

RS4BSr)UT7

RS4«SnilTfi

RS48SOI IT7

INPORT7
LTC485N 100

R141
€¿-43
a

VCC
A
B

GND isagi.

GND

TRANSI

LTC485N 100 G
R129

TRANS2 LTC485N

Bi_lTC485N 100
« "? WW-A

R130

?» TRANS3 LTC485N

LTC485N -? 00
^e-ww-e?

('.' TRANS4
LTC485N

LTC485N 100
g '"? WW-ß

TRANS5

LTC485N

&JLTC485N 100
? ""O WW-T

¦¿' TRANS8

LTC485N

REC6LTC485N 100

TRANS7

LTC485N

TC485N 100

R140

TRANS8 LTC485N

PORT1A1

JT^

_iai _ „

44520-0001 44520-0001

PORT1B1 PORT1B

PORTICI PORT1C

m^mrB
poRTini BNDPORT1D

R30m

R25fi\ <|HWr|"'

University of Windsor
Department of Electrical and Computer Engineering

TITLE: TestServerU2

Document Number: RS485 Board 1
Date: 21/10/2009 12:48:08 fill

REU:

Sheet: 5/7
Figure A.5. RS485 Transceiver Network (First 8) Schematic

TRANS9

Sa RO VCC

RS4«soim
NPORT8 LTC485S

B-AWv-é RO VCC
RE
DE

3H DI GND
100 R120

!¦'.' TRANSIÓ

RO VCC
RE
DE B
Dl GND REC 10BSaSSQU

INPORT9 10^WW RO VCC
RTE

B
"O2) Dl GND

100 R119

¡¿i TRAMSIl

(4| RO VCC

RS4850UT REC11LTC485S
NPORTIOib RO VCC

RE A
DE

GND

100 R118

) TRANS 1 2

OH RO vcc LTC485S

RS48f¡r>UT
NPORT11* ¿TC485S RO VCC

RE
DE B

OH Dl GND
100 R117

W TRANS 13
X1C2

(SM RO VCC LTC485S

RS4850UT11 REC13
»_^LTC485S

INPORT12ib =???????3 RO VCC
RE

B
CT Dl GND

100 RlIB

C) TRANS 14

tiä RO VCC LTC485S X1D2

RS4850UTI1
REC14LTC485S

•¦B-WA-mINPORT13* RO VCC
RE
DE
Dl GND

100 R115

TRANSIS

LTC485SRO VCC
RE A
DE B

GND
RS4850UT REC15

^JJ¡C485SINPORT14H- RO VCC fg&%
100 R114

"m Dl GND
TRANSI 6 LTC485S

RlI RO VCC

REC16RS4850UT1_ .
"^U£4B5S

NPORT15oo
RO VCC
RE

B
"RN Dl GND

University of Windsor
Department of Electrical and Computer Engineeri

LTC485S

TITLE: TestServerU2

Document Number:
RS485 Board 2

Date: 21/10/2009 12:48:08 AM Sheets 6/7
Figure A.6. RS485 Transceiver Network (Second 8) Schematic

Ï}b43
"ÌuF

tbr'Ç42
ÌuF

fC44
"ÌuF

?ffc45 %46 %47 ??48 F?48 ??50 ÍC51 F<'Ç48
IuF

i _tg_ t

??53 %54
IuF

C55

"ÌuF
b_57
"ÌuF

JJÇ58 ?
~ìuF

Ç59
"ÌuF

]t60
"ÌuF

t6ì
"ÌuF

??62
"DuF UuF

¿64
ÌuF

%65 <C66

"ÌuF

i j>_ i

b67
"ÌuF

F?68 TÇ69 1
ÌuF

Pç70 JPÇ71 _%72 jFfe73
F F

$72
ÌuF

R27

f??
í$¡

University of Windsor
Department of Electrical and Computer Engineering

TITLE: TestServerU2

Document Number:
RS485 Board 3

REU:

Date: 21/10/2009 12:48:08 AM Sheet: 7/7

Figure A.7. RS4S5 Transceiver Network Schematic - Power

A.2 Bill of Materials

A.2.1 Bill ofMaterials - Prototyping Stage

Table A.l. Bill of Materials - Prototyping Stage
Part List
Name Digikey Part Number Manufacturer Quantity Used
Ethernet Microcontroller Dev Kit DM163024-ND Microchip
Power Supply for MCU Kit AC162039-ND Microchip
FPGA (UART) Dev Kit P0304A-ND Terasic

8
J^
8
8

1

RS485 Transceiver LTC485CN8#PBF-ND Linear

RJ45 Connectors A31451-ND Tyco
100 ohm Terminating Resistors 100H-ND Yageo
.1 uF Capacitors 399-4454-1-ND Kernet

Prototyping Board V1256-ND Vector

.4.2.2 Bill ofMaterials - Final Test Server

Part

Cl
C2
C3
C4
C5
C6
C7
C8
C9
ClO
CIl
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25
C26
C27
C28
C29
C30
C31

C32

Value

.IuF

.IuF

.IuF

.IuF

.IuF

.IuF

.IuF

.IuF

.IuF

.IuF

.IuF

.IuF

.IuF

33 pF
33 pF
.IuF
.IuF
.IuF
.IuF
22OuF
.IuF
47 uF
47 uF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF

Device

C-US025
C-US025
C-US025
C-US025
C-US025
C-US025
C-US025
C-US025
C-US025-
C-US025
C-US025
C-US025-
C-US02S·
C-US025
C-US025-
C-US025
C-US025
C-US025
C-US025
C-US025
C-US025·
C-US025
C-US025-
C-US025
C-US025-
C-US025
C-US025·
C-US025·
C-US025
C-US025-
C-US025-
C-US025

Package

024X044
024X044
¦024X044
024X044
024X044
024X044
024X044
024X044
024X044
¦024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044

C025
C025
C025
C025
C025
C025
C025
C025
C025
C025-
C025
C025-
C025·
C025-
C025
C025-
C025
C025·
C025·
C025-
C025·
C025·
C025-
C025
C025-
C025
C025·
C025-
C025
C025-
C025
C025-

024X044
024X044
¦024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044
024X044

Library

resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor

Sheet

1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
4
4
4
4
4
4
4
4

Part Value Device Package Library Sheet

C33
C34
C35
C36
C37
C38
C39
C40
C41
C42
C43
C44
C45
C46
C47
C48
C49
C50
C51
C52
C53
C54
C55
CS6
C57
C58
C59
C60
C61
C62
C63
C64
C65
C66
C67
C68
C69
C70
C71
C72
C73
Dl
DISI
ICI
IC2
IC3
IC4
IC5
IC6
IC7
IC8
Jl
Ll
LEDI
LED2
LED3
LED4
LED5
LED6
LED7
LED8

.IuF

.IuF
lOOuF
.IuF
.IuF
.IuF
.IuF
lOOuF
lOOuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
.IuF
1N4004
TUXGR_16X2_R2
PIC18F97J60
EP2C15AF256
MAGICIACK
RJIl
REG1117F
REG1117F
401OD
REG1117

C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
C-US025-024X044
1N4004

TUXGR_16X2_R2
PIC18F97J60
EP2C15AF256
MAGICJACK
RJIl
REG1117F
REG1117F
4010D
REG1117
JACK-PLUGO
WE-CBF_0805
LED
LED
LED
LED
LED
LED
LED
LED

C025-024X044
C025-024X044
C025-024X044
C025-024X044
C025-024X044
C025-024X044
C025-024X044
C025-024X044
C025-024X044
C02S-024X044
C025-024X044
C025-024X044
C025-024X044
C025-024X044
C025-024X044
C025-024X044
C025-024X044
C025-024X044
C025-024X044
C025-024X044
C025-024X044
C025-024X044
C025-024X044
C025-024X044
C025-024X044
C025-024X044
C025-024X044
C025-024X044
C025-024X044
C025-024X044
C025-024X044
C025-024X044
C025-024X044
C025-024X044
C02S-024X044
C025-024X044
C025-024X044
C025-024X044
C025-024X044
C025-024X044
C025-024X044
DO41-10
TUXGR_16X2_R2
TQFPlOO
FBGA256
MAGJACK
RJIl
DD-3
DD-3
S016
SOT223
SPC4077
080S
SMARTLED-TTW
SMARTLED-TTW
SMARTLED-TTW
SMARTLED-TTW
SMARTLED-TTW
SMARTLED-TTW
SMARTLED-TTW
SMARTLED-TTW

resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
diode
display-led
microchip

4
4
3
4
4
4
4
4
4
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
2
2
1

altera-cyclone-ll 3
magicjack 2
magjack 2
burr-brown 2
burr-brown 2
40xx 4
burr-brown 4
con-jack 2
wuerth-elektronik 2
led 2
led 2
led 2
led 2
led 2
led 2
led 2
led 2

Part Value Device Package Library Sheet

LED9
LEDlO
LEDIl
LED12
LED13
LED14
LED15
LED16
LED17
LED18
LED19
LED20
LED21
LED22
LED23
LED24
LED25
LED26
LED27
LED28
LED29
LED30
LED31
LED32
LED33
LED34
LED35
LED36
PORTI
Ql
Q2
Rl
R2
R3
R4
R5
R6
R7
R8
R9
RIO
RIl
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30

LGJT679
LG_T679
LG_T679
LG_T679
LG_T679
LG_T679
LG_T679
LG_T679
LG_T679
LG_T679·
LG_T679·
LG_T679
LGJT679-
LGJT679
LG_T679
LG_T679-
LG_T679-
LG_T679-
LG_T679-
LG_T679
LG_T679-
LG_T679-
LG_T679-
LG_T679-
LG_T679-
LG T679-

ElFl-I
ElFl-I
ElFl-I
ElFl-I
ElFl-I
ElFl-I
ElFl-I
ElFl-I
ElFl-I
ElFl-I
ElFl-I
ElFl-I
ElFl-I
ElFl-I
ElFl-I
ElFl-I
ElFl-I
ElFl-I
ElFl-I
ElFl-I
ElFl-I
ElFl-I
ElFl-I
ElFl-I
ElFl-I
ElFl-I

44520-0001
25MHz
ASFl
2.26K 1%
IK
4.7K
IK
4.7K
IM
470
470
470
470
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
330
100
100
100

LED

LGJT679-E1F1-1
LGJT679-E1F1-1
LGJT679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LGJT679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LGJT679-E1F1-1
LG_T679-E1F1-1
LGJT679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LG_T679-E1F1-1
LGJT679-E1F1-1
LED
44520-0001
CRYSTALSM49
ASFl

R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-USJJ204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/2V
R-US_0204/5
R-US_0204/5
R-US_0204/5

SMARTLE D-TTW
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
PLCC2
SMARTLED-TTW
44520-0001
SM49
ASF
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204V
0204/5
0204/5
0204/5

led
led
led
led
led
led
led
led
led
led
led
led
led
led
led
led
led
led
led
led
led
led
led
led
led
led
led
led
con-molex
crystal
crystal
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor

2
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
7
5
2
4
1
1
1
1
1
2
2
2
2
2
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
7
5
5
5

Part Value Device Package Library Sheet

R31
R32
R33
R34
R35
R36
R37
R38
R39
R40
R41
R42
R43
R44
R45
R46
R47
R48
R49
R50
R51
R52
R53
R54
R55
R56
R57
R58
R59
R60
R61
R62
R63
R64
R65
R66
R67
R68
R69
R70
R71
R72
R73
R74
R75
R76
R77
R78
R79
R80
R81
R82
R83
R84
R85
R86
R87
R88
R89
R90
R91

100
100
100
100
100
470
470
470
470
49.9
49.9
49.9
49.9
180
180
0
0
100
2 ohm 1%
2ohml%
2 ohm 1%
DNI
DNI
IK
IK
0
0
330
330
330
330
330
330
330
330
330
330
330
330
330
330
330
330
330
330
330
330
330
330
330
330
330
330
100K
10OK
100K
10m
10m
100
100
100

R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-USJD204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US__0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V

0204/5
0204/5
0204/5
0204/5
0204/5
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V

resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor

resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor

5
5
5
5
5
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
6
6
6

72

Part Value Device Package Library Sheet

R92
R93
R94
R95
R96
R97
R98
R99
RlOO
RlOl
R102
R103
R104
R105
R106
R107
R108
R109
R110
RlIl
R112
R113
R114
R115
R116
R117
R118
R119
R120
R121
R122
R123
R124
R125
R126
R127
R128
R129
R130
R131
R132
R133
R134
R135
R136
R137
R138
R139
R140
R141
R142
R143
R144
RECl
REC2
REC3
REC4
REC5
REC6
REC7

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
200
200
200
200
200
200
200
200
100
100
100
100
100
200
200
200
200
200
100
100
100
200
200
200
LTC485N
LTC485N
LTC485N
LTC485N
LTC485N
LTC485N
LTC485N

R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/2V
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
R-US_0204/5
LTC485N
LTC485N
LTC485N
LTC485N
LTC48SN
LTC485N
LTC485N

0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204V
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
0204/5
S0IC8
S0IC8

S0IC8
S0IC8
S0IC8
S0IC8
S0IC8

resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor
resistor

linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

73

Part Value Device Package Library Sheet

REC8
REC9
RECIO
RECIl
REC12
REC13
REC14
REC15
REC16
Sl
S2
S3
S4
TRANSI
TRANS2
TRANS3
TRANS4
TRANS5
TRANS6
TRANS7
TRANS8
TRANS9
TRANSIÓ
TRANSIl
TRANS12
TRANS13
TRANS 14
TRANS15
TRANS16
Xl

LTC485N
LTC485S
LTC485S
LTC485S
LTC485S
LTC485S
LTC485S
LTC485S
LTC485S
PVAl
PVAl
PVAl
PVA2F
LTC485N
LTC485N
LTC485N
LTC485N
LTC48SN
LTC485N
LTC485N
LTC485N
LTC485S
LTC485S
LTC485S
LTC485S
LTC485S
LTC48SS
LTC48SS
LTC485S
44520-0001

LTC485N
LTC48SS
LTC485S
LTC485S
LTC485S
LTC485S
LTC485S
LTC485S
LTC485S

PVAl
PVAl
PVAl
PVA2F
LTC485N
LTC485N
LTC485N
LTC485N
LTC48SN
LTC485N
LTC485N
LTC485N
LTC485S
LTC485S
LTC485S
LTC485S
LTC485S
LTC485S
LTC485S
LTC485S
44520-0001

S0IC8
S0IC8
S0IC8
S0IC8
S0IC8
S0IC8
S0IC8
S0IC8
S0IC8
PVAlF
PVAlF
PVAlF
PVA2F
S0IC8
S0IC8
S0IC8
S0IC8
S0IC8
S0IC8
S0IC8
S0IC8
S0IC8
S0IC8
S0IC8
S0IC8
S0IC8
S0IC8
S0IC8
S0IC8
44520-0001

linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
switch-misc
switch-misc
switch-misc
switch-misc
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
linear-technology
con-molex

5
6
6
6
6
6
6
6
6
1
1
4
2
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6

74

Appendix B. Test Server VHDL Code

B.l server.vhd

--File Name: server.vhd
-Description: Test Server Module
-Author: Christopher Rennick

-Date: April 30, 2009
--Simulator: Altera Quartus Il

library ieee;
use ieee.std_logic_1164.all;
use ¡eee.std_logic_unsigned.all;

entity server is
port(CLK, RESET: in stdjogic;
req_mcu_buf, req_mcu_output: in stdjogic;
MCUJN: in std_logic_vector(7 downto 0);
inport: in std_logic_vector(15 downto 0);
ack_mcu_buf, ack_mcu_output: out stdjogic;
rs485out: out std_logic_vector(15 downto 0);
MCUOUT: out std_logic_vector(7 downto O);
LEDG: out std_logic_vector(7 downto 0);
LEDR: out stdJogic_vector(17 downto O));

end server;

-req signals from MCU
-input from MCU
-input from rs485 network
-ack signals to MCU
-output to rs485 network
-output to MCU
-LED signals for dev. kit

architecture behavioural of server is
signal divCLK: stdjogic;
begin

-instantiation of rs485 to MCU
rs485_to_mcu_entity: entity work.rs485_to_mcu
port map(CLK => div_CLK, RESET => not(RESET),
req => req_mcu_output,
inport => inport,
ack => ack_mcu_output,
data_out => MCU_OUT,
LEDR =>LEDR(8 downto O));

-instantiation of MCU to rs485
mcu_to_485_entity: entity work.mcu_to_485
port map(CLK => div_CLK, RES => not(RESET),
datajn => MCUJN,
req => req_mcu_buf,
ack => ack_mcu_buf, rs485out => rs485out,
LEDG => LEDG, LEDR => LEDR(17 downto 9));

-The following is a clock divider to get the Dev. Kit clock speed of 50MHz
- down to the desired speed of 25MHz
process(CLK, RESET)
begin

if (RESET=O') then
div_CLK<='0';

elsif (CLK'event and CLK=1I') then
div_CLK<=not(div_CLK);

end if;
end process;

end behavioural;

B.2 mcu to 485.vhd

-File Name: mcu_to_485.vhd
-Description: Test Server Module that takes parallel MCU data in

-and outputs the RS485 serial data
-Author: Christopher Rennick
-Date: April 29, 2009
-Simulator: Altera Quartus Il

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity mcu_to_485 is
port(CLK, RES: in stdjogic;
data_in: in std_logic_vector(7 downto O); -input from MCU
req: in stdjogic;
ack: out stdjogic;
rs485out: out std_logic_vector(15 downto 0); -output to rs485 network
LEDG: out std_logic_vector(7 downto 0);
LEDR: out std_logic_vector(8 downto O));

end mcu_to_485;

architecture behavioural of mcu_to_485 is
signal mem_wr, mem_en, data_availl: stdjogic;
signal data_bus: std_logic_vector(7 downto 0);
begin

-instantiation of mcu_buf_mem module
mcu_buf_meml: entity work.mcu_buf_mem
port map(CLK => CLK,
RESET => RES,
req => req,
busy => mem_wr,
MCUJn => datajn,
meml_en => mem_en,
data_avail => data_availl,
ack => ack,
data_out => data_bus,
LEDG => LEDG,
LEDR => LEDR(8 downto 5));

-instantiation of rs485_output module
rs485_outputl: entity work.rs485_output
port map(CLK => CLK,
RESET => RES,
data_avail => data_availl,
datajn => data_bus,
WR => mem_wr,
rs485out => rs485out,
LEDR => LEDR(4 downto O));

end behavioural;

B.2.1 mcu_buf_mem.vhd
-File Name: mcu_buf_mem.vhd
-Description: Test Server Module that takes parallel MCU data in
-and stores it in a FIFO RAM buffer
-Author: Christopher Rennick
-Date: March 25, 2009
-Simulator: Altera Quartus Il

library ¡eee;
use ¡eee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity mcu_buf_mem is
port(CLK, RESET, req: in stdjogic;
busy: in stdjogic;
MCUJN: in std_logic_vector(7 downto O); -input from MCU
memlen: ¡nout stdjogic;
data_avail: out stdjogic;
ack: out stdjogic;
data_out: out std_logic_vector(7 downto O); --output to rs485_output module
LEDG: out std_logic_vector(7 downto 0);
LEDR: out std_logic_vector(3 downto O));

end mcu_buf_mem;

architecture behavioural of mcu_buf_mem is
signal meml_wr, memlbusy, FIFO_full_sig: stdjogic;
signal meml_datain, memldataout: std_logic_vector(7 downto 0);
begin

-instantiation of memory for incoming MCU and outgoing MCU data
memi: entity work.fifo
port map(CLK => CLK,
RES => RESET,
EN => meml_en,
WR => busy,
datajn => memldatain,
data_avail => data_avail,
FIFOJuII => FIFOJuI l_sig,
data_out => data_out,
LEDR => LEDR(I downto O));

-instantiation of input buffer for MCU data
- ***busy signal is tied to WR for memi: if WR is 0 it is busy,
--*** if WRisl, it is free***
¡nmcu_buf: entity work.mcujjuf
port map(CLK => CLK,
RESET => RESET,
req => req,
busy => busy,
FIFO_full => FIFO_full_sig,
MCUJN => MCUJN,
ack => ack,
mem_en => meml_en,
data_out => memldatain,
LEDR => LEDR(3 downto 2),
LEDG => LEDG);

end behavioural;

B.2.2 rs485_outputvhd

-File Name: rs485_output.vhd
-Description: Test Server Module that outputs RS485 Serial Data
-Author: Christopher Rennick
-Date: April 14, 2009
-Simulator: Altera Quartus Il

library ¡eee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity rs485_output is

port(CLK, RESET, data_avail: in std_logic;
datajn: in std_logic_vector(7 downto O); -input from FIFO module
WR: out stdjogic;
rs485out: out std_logic_vector(15 downto 0); -output to RS485 network
LEDR: out std_logic_vector(4 downto O));

end rs485_output;

architecture behavioural of rs485_output is
type memtype is array (0 to 31) of std_logic_vector(7 downto 0);
signal outbuff: memtype; -output buffer
signal addr: stdjogicvector (3 downto 0); -used to determine the bus to transmit to

-flags used to determine whether the module is reading, writing or sending the first byte of the packet
signal reading, sending, firstsend: stdjogic;

signal clock_div, in_count: integer; -signal for clock divider and input counter
signal send_countl, send_count2: integer; -counters for sending packet bytes
begin

process (CLK, RESET)
begin

if (RESET=1I') then
LEDR<="00000";
in_count<=0;
clock_div<=0;
WR<=T; -memory WR signal
send_countl<=0;
send_count2<=0;
reading<='0';
sending<='0';
firstsend<='0';
rs485out<="llllllllllllllll"; -initializing all buses to T
addr<="0000";

elsif (CLK'event and CLK=1I') then
-checking if module is sending
if (sending='0') then

-check to see if memory contains any data

if (data_avail='l') then
reading<=T;

end if;

if (reading='l')then
-inputting data from FIFO module
if (in_count>=0 and in_count<30) then

outbuff(in_count-3)<=data_in;
-when reading from memory, WR is ?'
WR <= ?';
¡n_count<=in_count+l;
reading<='l';

elsif (in_count>=30 and in_count<=32) then
WR<='1';
outbuff(in_count-3)<=data_in;
LEDR<="10000";
in_count<=in_count+l;
reading<='l';

elsif (in_count>32) then
WR <= ?';
firstsend<='l';
in_count<=0;
sending<='l';
reading<='0';
addr<=outbuff(0)(7 downto 4);

end if;
end if;

elsif (sending =T) then -now sending data

WR<=T;
clock_div<=clock_div+l;

--firstsend is used so there is no wait to send the first byte of the packet
if (firstsend = ?' or clock_div=249) then

clock_div<=0;
firstsend<='0';
if (send_countl=0) then

rs485out(to_integer(unsigned(addr))) <= ?';
elsif (send_countl > 0 and send_countl <=8) then

rs485out(to_integer(unsigned(addr))) <= outbuff(send_count2)(8-
send_countl);

elsif (send_countl = 9) then
rs485out(to_integer(unsigned(addr))) <= ?';

end if;

if (send_countl=9) then -increase the counters appropriately
send_countl<=0; -send_countl counts bits/byte
LEDR(2)<='0';
if (send_count2 = 31) then

-send_count2 counts bytes/packet
send_count2<=0;
sending<='0';
LEDR(3)<='1';

else

send_count2<=send_count2+l;
sending<=T;
LEDR(3)<='0';

end if;
elsif (send_countl>3 and send_countl<8) then

LEDR(2)<='1';
send_countl<=send_countl+l;

else
send_countl<=send_countl+l;
LEDR(2)<='0';

end if;
end if;

end if;
end if;

end process;
end behavioural;

B.2.3flfo.vhd
-File Name: fifo.vhd

-Description: Test Server Module that stores parallel data that
-came in from the MCU
-Author: Christopher Rennick
-Date: April 14, 2009
-Simulator: Altera Quartus Il

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std. all;

- memory size is based on an assumption of 32 byte packets

entity FIFO is
port(CLK, RES, EN, WR: in stdjogic;
datajn: in std_logic_vector(7 downto 0); -input from MCUJauf module
data_avail, FIFO_full: out stdjogic;
data_out: out std_logic_vector(7 downto 0); -output to RS485_output module

LEDR: out std_logic_vector(l downto O));
end FIFO;

architecture behavioural of FIFO is
signal read_addr, write_addr: std_logic_vector(39 downto 0);
signal address_a_sig, address_b_sig: std_logic_vector(12 downto 0);
signal wren_a_sig: stdjogic;
signal q_a_sig: std_logic_vector(7 downto 0);
begin

-instantiation of dual port RAM megafunction created by MegaWizard in Quartus I
fifo_ram_inst : entity work.fiforam
PORT MAP (

address_a => address_a_sig,
address_b => address_b_sig,
clock => CLK,
data_a => data_in,
data_b => "00000000",
wren_a => wren_a_sig,
wrenb => ?',
q_a => q_a_sig,
q_b => data_out

process (CLK, RES)
begin

if (RES=1I') then
read_addr<=X"000000000O";
write_addr<=X"0000000000";
address_a_sig<="0000000000000";
data_avail<='0';
wren_a_sig<='0';
LEDR<="00";
FIFOJuIk=O';

elsif (CLK'event and CLK=T) then
-setting the data_avail flag to show if there is data available in the FIFO
if ((tojnteger(unsigned(write_addr))-to_integer(unsigned(read_addr)))>=32)then

data_avail<=T;
else

data_avail<='0';
end if;

--this is used to set the FIFO_full flag if the write pointer is more than V* of the max
-memory space ahead of the read pointer
if((to_integer(unsigned(write_addr))-to_integer(unsigned(read_addr)))>=2048)then

FIFOJuIk=T;
else

FIFOJuIk=O';
end if;

-writing to the FIFO
if (EN=1I') then

address_a_sig<=write_addr(12 downto 0);
wren_a_sig<=T;
LEDR(Ok=T;
write_addr<=std_logic_vector(to_unsigned((to_integer(unsigned(write_addr))+l),40));

else

end if;

wren_a_sig<='0';
address_a_sig<="0000000000000"
LEDR(Ok=O';
write_addr<=write_addr;

-reading from the FIFO
if (WR=O') then

addressj)_sig<=read_addr(12 downto 0);

else

end if;

LEDR(1)<=T;
read_addr<=stdjogic_vector(to_unsigned((to_integer(unsigned(read_addr))+l),40));

LEDR(1)<='0';
address_b_sig<="0000000000000";
read_addr<=read_addr;

end if;
end process;

end behavioural;

B.2.4 mcu_buf.vhd
--File Name: mcu_buf.vhd
-Description: Test Server Module that buffers parallel data that

-came in from the MCU before sending it to the FIFO RAM
--Author: Christopher Rennick
-Date: April 14, 2009
-Simulator: Altera Quartus Il

library ieee;
use ieee.stdJogic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all;

entity mcu_buf is
port(CLK, RESET, req: in stdjogic;
busy, FIFO_full: in stdjogic;
MCUJN: in std_logic_vector(7 downto 0);
ack, mem_en: out stdjogic;
data_out: out stdJogic_vector(7 downto 0);
LEDR: out std_logic_vector(l downto 0);
LEDG: out std_logic_vector(7 downto O));

end mcu buf;

-input from MCU

-output to FIFO module

architecture behavioural of mcu_buf is
type buf_type is array(0 to 31) of std_logic_vector(7 downto 0);
type memjype is array(0 to 3) of bufjype;

signal buff: mem_type;
signal int_ack, write_sig: stdjogic;
signal switch, writing: stdJogic_vector(l downto 0);
signal count, send_count: integer;
begin

process(CLK, RESET, req)
begin

if (RESET=1I') then
ack <= 1O';
int_ack <= ?';
count<=0;
switch <= "00";
writing <= "00";
send_count<=0;
memen <= 1O';
LEDR<="00";
LEDG <="00000001";

elsif (CLK'event and CLK=T) then
LEDG<="00000000";
-ack signal must be brought low after every byte is received
if (int_ack='l') then

LEDG(7)<='1';
ack<='0';

-ack signal to MCU
-copy of ack signal

-counts incoming bytes from MCU
-stores which buffer is being written to
-stores which buffer is being read from
-counts the bytes being sent to the FIFO
-signal to FIFO
-LED control for dev. kit

¡nt_ack<='0';
elsif (int_ack='0') then

LEDG(7)<='0';
-if req=l then MCU has data to send
if (req='l') then

--checking whether a full packet has been received
if (count>=0 and count <32) then

-if FIFO is full, do not accept data from MCU
if (FIFOJuII = O') then

buff(to_integer(unsigned(switch)))(count) <= MCUJN;
count<=count+l;
ack<='l';
int_ack<=T;
LEDG(6)<='0';

else

end if;

LEDG(6)<=T;
ack<='0';
int ack<='0';

-when a full packet has been received, switch input buffer pointer
-and set write buffer pointer to last input buffer
elsif (count=32) then

LEDR<="10";
switch<=stdlogic_vector(to_unsigned((tojnteger(unsigned(switch))+l),2));

count<=0;
write_sig<='l';

end if;

-if there is no data to be sent, keep ack low
elsif (req='0') then

ack <= ?';
int_ack<='0';

end if;
end if;

-after a packet has been received, switch to next buffer and start
-sending first buffer to FIFO
if (write_sig='l') then

-if memory is not busy (busy=l), start sending data
if (busy=T) then

-sending data
if (send_count=0) then

mem_en<='l';
send_count<=send_count+l;
LEDR<="00";
write_sig<=T;

elsif (send_count<32 and send_count>0) then
mem_en<='l';
data_out<=buff(to_integer(unsigned(writing)))(send_count-l);
send_count<=send_count+l;
LEDR<="00";
write_sig<='l';

-when done sending, turn off memi enable
elsif (send_count=32) then

data_out<=buff(to_integer(unsigned(writing)))(send_count-l);
send_count<=send_count+l;
mem_en<='0';
LEDR<="01";
write_sig<='l';

else

send_count<=0;
mem_en<='0';
LEDR<="00";
wr¡te_sig<='0';

writing<=std_logic_vector(to_unsigned((to_integer(unsigned(writing))+l),2));

else
end if;

mem_en<='0';
LEDR<="00";
write_sig<=write_sig;
send_count<=send_count;
writing<=writing;

end if;
end if;

end if;
end process;

end behavioural;

B.3 rs485 to mcu.vhd

-File Name: rs485_to_mcu.vhd
--Description: Test Server Module that accepts data from the RS485
-network, buffers it, and sends it to the MCU
-Author: Christopher Rennick

-Date: April 28, 2009
-Simulator: Altera Quartus Il

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rs485_to_mcu is
port(CLK, RESET, req: in stdjogic;
inport: in std_logic_vector(15 downto O); -input from RS485 network
ack: out stdjogic;
data_out: out std_logic_vector(7 downto O); -output to MCU
LEDR: out std_logic_vector(8 downto O));

end rs485_to_mcu;

architecture behavioural of rs485_to_mcu is
signal busy_sig, data_avail_sig: stdjogic;
signal data_out_sig: std_logic_vector(7 downto 0);
begin

-instantiation of rs485_buf_mem module
in485_buf_mem: entity work.rs485_buf_mem
port map(CLK => CLK, RESET => RESET,
busy => busy_sig,
inO => inport(O), inl=> in_port(l), in2=> in_port(2), in3=> in_port(3),
in4=> in_port(4), in5=> in_port(5), in6=> in_port(6), in7=> in_port(7),
in8=> in_port(8), in9=> in_port(9), inlO=> inport(lO), inll=> inport(ll),
inl2=> in_port(12), ¡nl3=> in_port(13), inl4=> in_port(14), inl5=> in_port(15),
data_avail => data_avail_sig,
LEDR => LEDR(4 downto 0),
dataout => data_out_sig);

-instantiation of mcuoutput module
mcu_output_inst: entity work.mcu_output
port map(CLK => CLK, RESET => RESET,
data_avail => data_avail_sig,
req => req, datajn => data_out_sig,
WR => busy_sig, ack => ack,
LEDR => LEDR(8 downto 5),
data_out => data_out);

end behavioural;

B.3.1 rs485buf_mem.vhd
-File Name: rs485_buf_mem.vhd
-Description: This module consists of the 16 rs485_buf
- Modules Combined With the FIFO RAM Block
-Author: Christopher Rennick
-Date: April 13, 2009
-Simulator: Altera Quartus Il

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rs485_buf_mem is
port(CLK, RESET, busy: in stdjogic;
inO, ini, in2, in3, in4, in5, Ìn6, in7: in stdjogic; -inputs from RS485 network
in8, in9, inlO, itili, inl2, inl3, inl4, inl5 : in stdjogic;
data_avail: out stdjogic;
LEDR: out std_logic_vector(4 downto O);
data_out: out std_logic_vector(7 downto O)); -output to mcu_output module

end rs485_buf_mem;

architecture behavioural of rs485_buf_mem is
signal mem2_wr, mem2_en: stdjogic;
signal mem2_datain, mem2_dataout: std_logic_vector(7 downto 0);
signal data_avail_sig: std_logic_vector(15 downto 0);
signal EN_sig: std_logic_vector(15 downto 0);
begin

-instantiation of memory for incoming and outgoing test node data
mem2: entity work.rs485_fifo
port map(CLK => CLK, EN => mem2_en, WR => busy, RES => RESET, dataJn => mem2_datain,
data_avail => data_avail, LEDR => LEDR(4 downto 2), data_out => data_out);

-instantiation of rotating priority arbiter
arbl: entity work.arbiter
port map(CLK => CLK, RES => RESET, busy => busy, data_avail => data_avail_sig,

LEDR => LEDR(I downto 0), EN => EN_sig);

-instantiation of 16 input buffers for RS485 serial inputs
¡n485_buf0: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(0), datajn => inO,
data_avail => data_avail_sig(0), memen => mem2_en, data_out => mem2_datain);

in485_bufl: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(l), datajn => ini,
data_avail => data_avail_sig(l), mem_en => mem2_en, data_out => mem2_datain);

in485_buf2: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(2), datajn => in2,
data_avail => data_avail_sig(2), memen => mem2_en, data_out => mem2_datain);

¡n485_buf3: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(3), datajn => in3,
data_avail => dataavai l_sig(3), memen => mem2_en, data_out => mem2_datain);

in485_buf4: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(4), datajn => in4,
data_avail => data_avail_sig(4), memen => mem2_en, data_out => mem2_datain);

in485_buf5: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(5), datajn => in5,
data_avail => data_avail_sig(5), mem_en => mem2_en, data_out => mem2_datain);

¡n485_buf6: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(6), datajn => in6,
data_avail => data_avail_sig(6), memen => mem2_en, data_out => mem2_datain);

in485_buf7: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(7), datajn => in7,
data_avail => data_avail_sig(7), mem_en => mem2_en, data_out => mem2_datain);

in485_buf8: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(8), datajn => in8,
data_avail => data_avail_sig(8), memen => mem2_en, data_out => mem2_datain);

in485_buf9: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(9), datajn => in9,
dataavail => data_avai l_sig(9), memen => mem2_en, data_out => mem2_datain);

in485_buf10: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(10), datajn => inlO,
data_avail => data_avail_sig(10), memen => mem2_en, datajjut => mem2_datain);

in48S_bufll: entity work.rs485J)uf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(ll), datajn => ¡nil,
datajavail => data_avai l_sig(ll), memen => mem2j?n, data_out => mem2_datain);

in485_bufl2: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(12), datajn => inl2,
data avail => datajjvail_sig(12), memjîn => mem2_en, datajjut => mem2_datain);

in485_bufl3: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(13), datajn => inl3,
datajjvail => data_avail_sig(13), mem_en => mem2_en, dataout => mem2jiatain);

in485_bufl4: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(14), datajn => inl4,
data_avail => data_avail_sig(14), memen => mem2_en, datajjut => mem2_datain);

in485_bufl5: entity work.rs485_buf
port map(CLK => CLK, RESET => RESET, busy => EN_sig(15), datajn => inl5,
data_avail => data_availjsig(15), mem_en => mem2_en, datajsut => mem2_datain);

end behavioural;

B.3.2 mcu_output.vhd

--File Name: mcujjutput.vhd
--Description: Output Module for Sending Parallel Data to MCU
-Author: Christopher Rennick
-Date: April 10, 2009
-Simulator: Altera Quartus Il

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity mcu_output is
port(CLK, RESET: in stdjogic;
dataavail, req: in stdjogic;
datajn: in std_logic_vector(7 downto 0); -data from FIFO
WR: out stdjogic;
ack: out stdjogic;
LEDR: out std_logic_vector(3 downto 0);
data_out: out stdJogic_vector(7 downto O)); -data going to MCU

end mcu_output;

architecture behavioural of mcu_output is

type mem_type is array (O to 31) of std_logic_vector(7 downto 0);
signal outbuff: mem_type;
signal reading, sending, once: stdjogic;
signal send_count, incount: integer;
begin

process (CLK, RESET)
begin

if (RESET=1I') then
-check bit to make sure that send_count is only incremented once per byte sent (req may be asserted for more than one clock
cycle)

once<='0';

in_count<=0; -counter for inputting the 100 bytes to outbuff
send_count<=0; -counting the number of bytes sent to MCU so far
ack<='0'; -ack pin to MCU
WR<=T; -write/read bit for FIFO
reading<='0'; -signals that data is currently being read in from FIFO
sending<='0'; -signals that data is in outbuff waiting to be sent
LEDR(2 downto 0)<="000";
LEDR(3)<=T;

elsif (CLK'event and CLK=T) then
LEDR(3)<='0';
-not sending mode
if (sending='0') then

if (data_avail=T) then
reading<=T;
LEDR(0)<='1';

else

end if;

reading<='0';
LEDR(0)<='0';

-reading mode (from FIFO)
if (reading='l') then

if (in_count>=0) then
WR <= ?';

else
WR<=T;

end if;

if (in_count>=0 and in_count<=31) then
outbuff(in_count)<=data_in;
¡n_count<=in_count+l;
reading<='l';
sending<='0';
LEDR(0)<=T;

else

end if;
end if;

in_count<=0;
sending<='l';
reading<='0';
LEDR(0)<='0';

-sending mode
elsif (sending =T) then

WR<='1';
if (send_count<=31) then

LEDR(1)<=T;
if (req = ?') then

once<=T;
if (once='0'(then

send_count<=send_count+l;
end if;
ack<='0';
LEDR(2)<='0';

else
once<='0';
ack<=T;
LEDR(2)<=T;
data_out<=outbuff(send_count);

end if;
--when done sending, turn off ack

elsif(send_count>31) then
send_count<=0;
ack<='0';
LEDR(2)<='0';

end if;
end if;

end if;
end process;

end behavioural;

sending<='0',
LEDR(1)<='0'

B.3.3 rs485_flfo.vhd
-File Name: rs485_fifo.vhd
-Description: FIFO RAM Module for the RS485 Buffers
-Author: Christopher Rennick

-Date: April 12, 2009
-Simulator: Altera Quartus Il

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

- memory size is based on an assumption of 100 byte packets
- capability to store 128 packets Is desired

entity rs485_fifo is
port(CLK, EN, WR, RES: in stdjogic;
data_in: in std_loglc_vector(7 downto 0);
data_avail: out stdjogic;
LEDR: out std_logic_vector(2 downto 0);
data_out: out std_logic_vector(7 downto O));

end rs485_flfo;

-data in from rs485 buf modules

-data output to the mcu_output module

architecture behavioural of rs485_fifo is
-the current address being read from and written to
signal read_addr, write_addr: std_logic_vector(39 downto 0);

-the signals for the address lines going to the RAM megafunction
signal address_a_slg, address_b_sig: std_logic_vector(9 downto 0);

signal wren_a_sig: stdjogic;
signal q_a_slg: std_logic_vector(7 downto 0);
begin

-instantiation of Quartus Il derived dual-port RAM megafunction
fifo_ram_inst : entity work.rs485_fifo_ram
PORT MAP (

address_a => address_a_sig,
address_b => address_b_sig,
clock => CLK,
data_a => datajn,
data_b => "00000000",
wren_a => wren_a_sig,
wrenb => ?',
q_a => q_a_sig,

the write enable function for the 'a' port of the RAM megafunction
-the 'a' output port of the RAM megafunction

q_b => dataout
);

process (CLK, RES)
begin

if (RES=1I') then
-the reset command instructions

read_addr<=X"0000000000";
write_addr<=X"0000000000";
address_a_sig<="0000000000";
data_avail<='0';
wren_a_sig<='0';
LEDR<="000";

elsif (CLK'event and CLK=1I') then

-determines if the data_avail flag should be set or not
if ((tojnteger(unsigned(write_addr))-to_integer(unsigned(read_addr)))>=32) then

data_avaik='l';
LEDR(2)<=T;

else
data_avail<='0';
LEDR(2)<='0';

end if;

-write

if (EN=1I') then
address_a_sig<=write_addr(9 downto 0);
wren_a_sig<='l';
write_addr<=stdjogic_vector(to_unsigned((to_integer(unsigned(write_addr))+l),40));
LEDR(I downto 0)<="01";

else

wren_a_sig<='0';
address_a_sig<="0000000000";

end if;

-read
if (WR=O') then

address_b_sig<=read_addr(9 downto 0);
read_addr<=stdjogic_vector(to_unsigned((to_integer(unsigned(read_addr))+l),40));
LEDR(I downto 0)<="10";

end if;

end if;
end process;

end behavioural;

B.3.4 arbiter.vhd

-File Name: arbiter.vhd

-Description: Rotating Priority Arbiter Module
-Author: Christopher Rennick
-Date: April 12, 2009
-Simulator: Altera Quartus Il

library ieee;
use ¡eee.stdJogic_1164.all;
use ieee.std_logic_unsigned.all;

entity arbiter is
port(CLK, RES, busy: in stdjogic;
data_avail: in std_logic_vector(15 downto O); -dataavail signals from rs485_buf modules
LEDR: out std_logic_vector(l downto O);
EN: out std_logic_vector(15 downto O)); -EN bus output to rs485_buf modules

end arbiter;

architecture behavioural of arbiter is
signal en_array: bit_vector(15 downto 0);
signal count: integer;
begin

process(CLK, RES)
begin

if (RES=1I') then
count<=0;
en_array<=X"0001";
LEDR<="00";

elsif (CLK'event and CLK=1I') then
-busy is tied to WR signal of rs485_fifo module, if busy=0, the module is being read from
if (busy='!') then

--checking if no one has data available to send to fifo, rotate en_array
if ((enarray and To_bitvector(data_avail))=X"0000") then

count<=0;
EN<=X"0000";
en_array<=en_array rol 1;

else

-when count>34, disable any active rs485_buf modules
if (count>34) then

count<=0;
EN<=X"0000";
en_array<=en_array rol 1;

--enable appropriate rs485_buf module
else

count<=count+l;
en_array<=en_array;
EN<=To_StdLogicVector(en_array and To_bitvector(data_avail));

end if;
end if;

--if rs485_fifo module is busy, do nothing
else

EN<=X"0000";
en_array<=en_array;
count<=count;

end if;

end if;
end process;

end behavioural;

B.3 5 rs485_buf.vhd

-File Name: rs485_buf.vhd
-Description: This Module Buffers Serial Data From The RS485
-Connection Before Sending It To The FIFO RAM Block
-Author: Christopher Rennick

-Date: March 17, 2009
-Simulator: Altera Quartus Il

library ieee;
use ieee.stdJogic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all;

entity rs485_buf is
port(CLK, RESET: in stdjogic;
busy: in stdjogic;
datajn: in stdjogic; -input from one of the rs-485 network buses
data_avail: out stdjogic;
mem en:outstd logic;

data_out: out std_logic_vector(7 downto O)); -tri-state output to the rs485_fifo module
end rs485_buf;

architecture behavioural of rs485_buf is
signal buff: std_logic_vector(7 downto O);
signal go_clk, data_avail_sig: stdjogic;
signal buffswitch, send_buffswitch: std_logic_vector(l downto 0);
signal clock_div, clock_div_count: integer;
signal count, countl, send_count: integer;
signal data_a_sig, q_a_sig, q_b_sig: std_logic_vector(7 downto 0);
signal address_a_sig, address_b_sig: std_logic_vector(6 downto 0);
signal wren_a_sig: stdlogic;
signal check: integer;
begin

-instantiation of RAM megafunction with 128 byte capacity (4 32 byte packages)
rs485_ram_inst : entity work.rs485_ram
PORT MAP (

address_a => address_a_sig,
address_b => addressbsig,
clock => CLK,
data_a => data_a_sig,
data_b => "00000000",
wren_a => wren_a_sig,
wren_b => ?',
Q_a => q_a_sig,
q_b => q_b_sig

);

process(CLK, RESET, datajn)
begin

if (RESET='l')then
send_buffswitch<="00"; -dictates which half of memory is being read from
buffswitch<="00"; -dictates which half of memory are being written to
-used to calculate an average of all sampled inputs to ensure no bounces in signal were read
check<=0;

go_clk <= ?'; -used to indicate we're looking for the middle of the incoming data pulse
countl <= 0; -counting out incoming bits being saved to 8 bit buffer
count <= 0; -counting bytes being saved to 100 byte packet buffer
sendcount <= 0; -counter for sending data out of module to FIFO
clock_div <= 0; -clock divider for syncing with incoming RS485 signal
data_avail <= 1O'; -signal to arbiter to say data is ready to be sent to FIFO
data_avail_sig <= ?';
data_out<="ZZZZZZZZ";
mem_en <= 'Z';
clock_div_count<=0;

-the following are for testing memory write performance in simulation to save time
-count <=29;

elsif (CLK=1I' and CLK'event) then
if (data_in='0' or go_clk=T or clock_div_count=10) then

-Baud rate is 100K Baud
-Examining 10 divisions of 25 clock cycles, find average value
-of these to ensure it wasn't triggered by a 'bounce'
if (count<32) then

wren_a_sig<='0';
if (clock_div=24) then

clock_div<=0;
clock_div_count<=clock_div_count+l;
if (data_in='l') then

-count of 'ones' in the input data stream
-used to find the "average" value of datajn
check<=check+l;

end if;

elsif (clock_div_count/=10 or go_clk='l') then
clock_div<=clock_div+l;

end if;

-clock_div_count=10 when we reach a full 250 cycles (10*25)
if (clock_div_count=10) then

clock_div_count<=0;

-go_clk=0 when we are looking at the start bit, for all other data
-bits, go_clk=l
if (go_clk='0') then

buff<="00000000";
if (check<5) then -check if average value is 0

go_clk<='l';
check<=0;

end if;
else

-checking if we are still looking at a data bit or the
-stop bit
if (countl<=7) then

if (check<4) then
-average input value is 0
buff(7-countl) <= ?';
check<=0;

else
-average input value is 1
buff(7-countl) <= T;
check<=0;

end if;
countl<=countl+l;

else
-we are now at the stop bit

check<=0;
go_clk<='0';
address_a_sig<=buffswitch &

std_logic_vector(to_unsigned(count,5));
wren_a_sig<='l';
data_a_sig<=buff;
countl<=0;
count<=count+l;

end if;
end if;

end if;
else

count<=0;
data_avaik=T;
data_avail_sig<='l';
wren_a_sig<='0';
data_a_sig<="00000000";

buffswitch<=std_logic_vector(to_unsigned((to_integer(unsigned(buffswitch))+l),2));
end if;

end if;

-this is to send the data serially, byte by byte to the FIFO RAM block
if (busy='!.') then

if (send_count =0) then
address_b_sig<=send_buffswitch &std_logic_vector(to_unsigned(send_count,5));

send_count<=send_count+l;
elsif (send_count =1) then

send_count<=send_count+l;
mem_en<=T;

address_b_sig<=send_buffswitch &std_logic_vector(to_unsigned(send_count,5));
elsif (send_count >1 and send_count<=31) then

mem_en<='l';
address_b_sig<=send_buffswitch&std_logic_vector(to_unsigned(send_count,5));

data_out<=q_b_sig;

91

end if;
end if;

end process;
end behavioural;

B.4 Server_test.vhd

--File Name: servertest.vhd

-Description: Test Server Verification Wrapper Module
-This Module Simulates The Server Being Connected To The MCU
-Author: Christopher Rennick
-Date: May 10, 2009
-Simulator: Altera Quartus Il

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity server_test is
port(CLK, RESET: in stdjogic;
in_port: in std_logic_vector(15 downto 0);
rs485out: out std_logic_vector(15 downto 0);
MCU_OUT: out std_logic_vector(7 downto 0);
LED6: out std_logic_vector(7 downto 0);
LEDR: out std_logic_vector(17 downto O));

end serverjest;

architecture behavioural of server_test is
signal req_mcu_buf_sig, req_mcu_output_sig, ack_mcu_buf_sig, ack_mcu_output_sig: stdjogic;
signal addr: std_logic_vector (3 downto 0);
signal sending, firstsend: stdjogic;

signal send_countl, send_count2: integer;
type mem_type is array (0 to 31) of std_logic_vector(7 downto 0);
signal outbuff: memjype;

signal datajn: std_logic_vector(7 downto 0);
signal reading: stdjogic;
signal read_count: integer;

signal switch: stdjogic;

send_count<=send_count+l;
elsif (send_count >31 and send_count<=32) then

data_out<=q_b_sig;
mem_en<='l';
send_count<=send_count+l;

elsif (send_count=33) then
data_out<=q_b_sig;
mem_en<='Z';
send_count<=send_count+l;

else -done sending, get everything ready for next packet
send_count<=0;
count<=0;
mem_en<='0';
data_avail<='Z';
data_avail_sig<='0';
data_out<="ZZZZZZZZ";
send_buffswitch<=std_logic_vector(to_unsigned((to_integer(unsigned

(send_buffswitch))+l),2));
end if;

signal DCLK: std logic;

signal clock_div: integer;

begin
serverentityl: entity work.server
port map(CLK => CLK, RESET => RESET, req_mcu_buf => req_mcu_buf_sig,
reqjncujjutput => req_mcu_output_sig, MCUjn => data_in,
in_port => in_port,
ack_mcu_buf => ack_mcu_buf_sig, ack_mcu_output => ack_mcu_output_sig,
rs485out => rs485out,
MCUJDUT => MCUJDUT,
LEDG => LEDG, LEDR => LEDR);

process(CLK, RESET)
begin

if (RESET=O1) then
DCLK<='0';
clock_div<=0;

elsif (CLK'event and CLK=1I') then
DCLK<=not(DCLK);

-clock divider circuitry used to verify functionality on physical board
-Note: to use clock divider, CLK signal to serverentityl needs to be changed
-to DCLK signal

-clockj)iv<=clock_div+l;
-if (clock_div=32) then

DCLK<=not(DCLK);
clock_div<=0;

-end if;
end if;

end process;

process(DCLK, RESET)
begin

if (RESET=O') then
req_mcu_buf_sig<='0';
req_mcu_output_sig<='0';
reading<='0';
read_count<=0;
datajn<="00000001"; .
switch<='0';

elsif (DCLK'event and DCLK=1I') then
if (reading='0') then

-writing to FPGA and out rs485
if (read_count=33) then

read_count<=0;
if (switch='l' and ack_mcu_output_sig='l') then

reading<='l';
end if;

switch<=not(switch);
req_mcu_buf_sig<='0';

elsif (read_count=0) then
datajn<="00000001";
reqjncuJjuf_sig<=T;
read_count<=read_count+l;

end if;

if (ack_mcu_buf_sig='l') then
if (switch='0') then

-packet to turn on motherboard power
if (read_count=l) then

datajn<="00010000";
read_count<=read_count+l;

elsif (read_count=30) then
dataJn<=X"DC";

else

read_count<=read_count+l;
elsif (read_count=31) then

data_in<=X"D5";
read_count<=read_count+l;

elsif (read_count=32) then
read_count<=read_count+l;
req_mcu_buf_sig<='0';

else

end if;

data_in<="00000000";
read count<=read count+1;

-packet to turn off motherboard power
if (read_count=l) then

data_in<="00010001";
read_count<=read_count+l;

elsif (read_count=30) then
data_in<=X"2C";
read_count<=read_count+l;

elsif (read_count=31) then
data_in<=X"33";
read_count<=read_count+l;

elsif (read_count=32) then
read_count<=read_count+l;
req_mcu_buf_sig<='0';

else

end if;

data_in<="00000000";
read_count<=read_count+l;

end if;
end if;

else

-writing from FPGA to MCU
if (ack_mcu_output_sig='l') then

if (read_count=32) then
read_count<=0;

else

end if;

reading<='0';
req_mcu_output_sig<='0';

req_mcu_output_sig<=' 1';
read_count<=read_count+l;
reading<='l';

else

end if;

req_mcu_output_sig<='0';
read_count<=read_count;
reading<=reading;

Appendix C. Test Server C Code

r**************************

* Main Application Entry Point
* Module for Microchip TCP/IP Stach and Test Server Functionality
* -Communicates over TCP/IP socket at IP address as given on LCD of
'"' Development Kit

-Calculates the CRC check value for all outgoing and incoming
* packets
* -Transmits to the FPGA and accepts transmissions from the FTGA

* Code is based off of TCPIP Demo App created by Microchip and
* available for free with their TCP/IP Stack Software

* FileMarae: Main.c
* Dependencies: TCPIP. h
* Processor: PICÎ8

* Author: Christopher Rennick

* version of Microchip TCP/IP Stack in Use:
* Author Date Comment

* Howard Schlunder 07/10/09 Rev. 5.10

* This macro uniquely defines this file as the main entry point.
* There should only be one such definition in the entire project,
* and this file must define the AppConfig variable as described below.
*/

#define THIS__IS_STACK_APPLICATION

// Include all headers for any enabled TCPIP Stack functions
Sinclude "TCPIP Stack/TCPIF.h"

// Include functions specific to this stack application
include "Main. h "

?include <stdio.h:·
#include <string.h>

// Declare AppConfig structure and some other supporting stack variables
APPJCONFIG AppConfig;
BYTE AN0String[8] ;

// Use ÜART2 instead of UARTl for stdout {printf functions) . Explorer 16
// serial port hardware is on PIC UART2 module.
#if defined (EXPLORER_l 6)

int C30_UART = 2;
#endif
I * « k * * * * * * * * * * * * * * * * * * « * * * -A i * * * * * * * * * * * * * * »¦ * i * * * ? * * * * * * * Jr « » * * » * « * * i * * * * * J, ?- * * «' * * /
//Initialize constants for Berkeley Sockets
#define PORTNUM 9764
// Maximum number of siraultanous connections accepted by the server.
#define MAX_CLIENT (1)
?define PÄCKETLENGTH 30
' * * ~ ^..".^.TrrrT^^^ir^ri^/

¡ ,. .,. t .,. .v ,, .k .,. «(,«»«,««,„,„„„„„„„„„,„,,„.„„„, .,, j. + :1. ft .,.,.,. .,. ... t ... ^ _.

//These variables are the storage for outgoing and incoming packets
#pragma udata my_section 1
unsigned char sending_data_buf fer [30] ;
?pragma udata my_section_2
unsigned char receiving_data_buffer [30] ;
//This variable is the hex character string conversion of receiving data buffer

95

»pragma udata my_section_3
char dataString [PACKETLENGTH] ;

int CRC_value;
/ A A * A' * * * * A A A A A * A A- A A A A A A A A A A A A A ',

/ A A A -V A A A A A A A A A A A A A A ? * A A A A A A A A A * A j

// Function declarations.
static void InitAppConf ig (void) ;
static void InitializeBoard (void) ;
int BerkeleyTCPServer (char *bfr, char *trans_bfr, int total);
void Initialize (void) ;
void crcl6 (unsigned char data) ;
void FPGA_transmit (void) ;
void FPGA_receive (void) ;
/ A A A A * -A -A ? A * A A A AAAA i

/ 1 PICI 8 Interrupt Service Routines
#if defined) 18CXX)

#if defined (HI_TECH_C)
void interrupt low_priority LowISR(void)
#else
#pragma interruption LowISR
void LowISR (void)
#endif
(

TickUpdateO ;
}

#if defined (HI_TECH_C)
void interrupt HighlSR(void)
e 1 s e
#pragma interruptlow HighISR
void HighlSR(void)
#endif
{

#if defined (STACK_USE_UART2TCP_BRIDGE)
UART2TCPBridgeISR() ;

#endif

#if de fined (ZG_CS_TRIS)
zgEintlSRO ;

#endif // ZG_CS_TRIS
}

#if !de fined (HI_TECH_C)
#pragma code lowVector=0xl8
void LowVector (void) {_asra goto LowISR _endasm}
tpragrna code highVector=0x8
void HighVector (void) (_asm goto HighISR _endasm}
#pragma code // Return to default code section
tendif

// C30 and C32 Exception Handlers
// If your code gets here, you either tried to read or write
/7 a NULL pointer, or your application overflowed the stack
// by having too many local variables or parameters declared.
#elif defined (C30)

void _ISR attribute ((no_auto_psv)) _AddressError (void)
{

Nop () ;
Nop () ;

}

void _ISR attribute {(no_auto_psv)) _StackError (void)
{

Nop () ;
Nop () ;

}

#elif defined(C32)
void _general_exception_handler (unsigned cause, unsigned status)

{
Nop () ;
Nop () ;

}
flendif

/ * ¦*- A * * a a A' A * a A A A A AaAA A A * A A A A * * * * *¦ * A A J- A A A * * A- A * A A A A A a A A A A A ? A A- A A A A A A *' a A a A A à A A a A A- A

Function :
void main (void)

Description:
This is the main function where all other functions are called froia

Precondition:
None

Parameters :
None - None

Returns :
None

Remarks :

This function was originally part of the Microchip TCP/IP Stack Software
A A A A -A' A A A * * A A A A k A A A A A A A k A * A A A A A A A A A A A A A * A A A * A A A A A A A * A A A A * /

void main (void)
{

static TICK t = 0;
static DWORD dwLastIP = 0;
int i;
int total;
char bfr [67] ;

// Initialize application specific hardware
InitializeBoard () ;
Initialize () ;

#if defined (USE_LCD)
// Initialize and display the stack version on the LCD
LCDInit () ;
DelayMs(lOO) ;
strcpypgm2ram((char*) LCDText, "CTCPStack " VERSION " "

") ;
LCDUpdate {) ;
#endif

// Initialise stack -related hardware components that may be
// required by the UART configuration routines

Ticklnit () ;

// Initialize Stack and application related NV variables into AppConfig.
InitAppConf ig () ;

// Initiates board setup process if button is depressed
//' on startup

if (BUTTON0_IO == Ou)
{

#if defined (EEPROM_CS_TRI S) Il defined (SPIFLASH_CS_TRIS)
// Invalidate the EEPROM contents if BUTTONO is held down for more
//seconds
TICK StartTime = TickGetO;
LED_POT (0x00) ;

while (BUTTON0_IO == Ou)
{

if (TickGetO - StartTime >
{

#if defined (EEPROM_
XEEBeginWrite (0x0000) ;
XEEWrite (OxFF) ;
XEEEndWriteO ;

4*TICK_SECOND)

CS TRIS)

#elif de fined (SPI FLASH_CS_TRIS)
SPIFlashBeginWrite (OxOOOO) ;
SPIFlashWrite (OxFF) ;
#endif

#if defined (STACK_USE_UART)
putrsUART ("\r\n\r\n.BUTTON0 held for more than 4

seconds, \r\n\r\n") ;
#endif

LED_PUT (OxOF) ;
while! (LONG) (TickGet () - StartTime) <=

(LONG) (9*TICK_SECOND/2));
LED_PUT (0x00) ;
while (BUTTON0_IO == Ou);
Reset () ;
break;

}
}
#endif

}

/./ Initialize core stack layers (MAC, ARP, TCP, UDP) and
Il application modules ¡HTTP, SNM?, etc.)

StacklnitO ;

// This infinite loop will continuously execute all
// stack -related tasks and also application functions.

// Note that this is a "co-operative mult-tasking" mechanism
// where every task performs its tasks (whether all in one shot
// or part of it) and returns so that other tasks can do their
/ / j ob .
// If a task needs very long time to do its job, it must be broken
// down into smaller pieces so that other tasks can have CPD time.
total=0;

while (1)
{

// Blink LEEO (right most one) every second.
if(TickGet() - t >= TICK_SECOND/2ul)
(

t = TickGet () ;
LED0_IO ?= 1;

}

// This task performs normal stack task including checking
// for incoming packet, type of packet and calling
/'/ appropriate stack entity to process it.
StackTask() ;

//' This task, invokes each of the core stack application tasks
StackApplications () ;

// Process application specific tasks here.
if (PACKETLENGTH-total>0 SS (i=

BerkeleyTCPServer (s (receiving_data_buf fer [total]) , s (sending_data_buffer [total]) ,
(PACKETLENGTH-total))) >0)

total+=i ;

i f (total==PACKETLENGTH)
(

CRC_value=0xFFFF;
//Calculate the CRC value for the outgoing data
for (i=0;i<=29; i++)
{

crcl6 (receiving_data_buffer [i]) ;
}

,//Transmit the outgoing data to the FPGA
FPGA_transmit;

//Check to see if data is waiting to be input from the FPGA

//input any data that is waiting
FPGA_receive;

total=0;
}

// Tf the local IP address has changed (ex: due to DHCP lease change
/7 write the new IP address to the LCD display, UART, and Announce
// service
if(dwLastIP != AppConfig.MyIPAddr.Val)
{

dwLastIP = AppConfig.MyIPAddr.Val;

#if defined (STACK_USE_UART)
putrsUARTi (ROM char*) "\r\nNew IP Address: ");

#endif

DisplayIPValue (AppConf ig.MylPAddr) ;

#if defined (STACK_USE_UART)
putrsDART((ROM char*) "\r\n") ;

tendi f

#if defined (STACK_USE_ANNOUNCE)
Announce I P () ;

#endif

,' k k k k k * k ? -* k k k k k k k k k k k k * * k k * À k * * k k k k -k *-k k k k k * k * k A k k * k k k k * k k k
Function :

static void Initialize (void)

Description:
This routine initializes the MCU I/O port directionality as well as

initialize the request lines to 0

Precondition :
None

Parameters:
None - None

Returns :
None

Remarks :
None

void Initialize (void)
{

CRC_value=0;

//Initialize IO ports for input/output to FPGA
/7B4 is ackl, B5 is real, B6 is ack2, B7 is req.2
ackl_en=l;
ack2_en=l;
reql_en=0;
req2_en=0;
//initialize request lines to zero so unwanted data is not transmitted to th»
reql=0;
req2=0;

//PORTC is used for outputting the 8 bit parallel data to the FPGA
mcu_out_en=OxOO;
mcu_out=OxOO;

//PORTD is used for accepting the 8 bit parallel data frora the FPGA
mcu inO en=l;

mcu_inl_en=l;
mcu_in2_en=l;
mcu_in3_en=l ;
mcu_in4_en=l ;
mcu_in5_en=l ;
mcu_in6_en=l ;
mcu in7 en=l;

Function:
static void crcl6(int data)

Description:
This function updates the CRCl 6 value for the outgoing packets by
accepting the output data one byte at a time

Precondition:
CRC value must be initialized to OxFFFF before function call

Parameters :
Inputs: integer data to be added to the CRC value

Outputs: None

Returns :
None

Remarks :
None

void crcl6 (unsigned char data)
{

// y: Temporary calculation for 16-bit arithmetic
// x: Temporary calculation for 8-bit arithmetic
long y;
int. x;

? = (CRC_value » 8) " data;
? ?= ? >> 4;
y = (long) ? << 4;
// update the CRC based on the new byte
CRC_value = (CRC_value « 8) ? (y « 8) ? (y << 1) ? ?;

}

/**

Function:
void FPGA transmit (void)

Description :
This function transmits the data to the FPGA one byte at a time, including
the CPiC value. It does this using a simple request/acknowledge handshake
with the FPGA hardware .

Precondition:

CRC_value must be determined before function call

Parameters :
Inputs: None

Outputs: None

Returns:
Mone

Remarks :

If no response is heard upon initial setting of the request line after a
count of 255, the function exits. The client will notice no response was
heard for this packet and will re-transmit at a later time.

** * /

void FPGA_transmit (void)
(

int i ;

int count;
short int done;

count=0;
done=0;
i=0;

while (done==0)
{

reql=l;

//wait for a response from the FPGA, if none is received before
//count reaches 255, exit function
while (ackl==0 && done==0)
{

if (i==0)
{

count++;
if (count==255)

done=l;
)

}

//Transmit the data bytes to the FPGA and de-assert req
if (i<=29 && done==0)
{

mcu_out=receiving_data_buf fer [i] &255;
reql=0;
i++;

)
//transrait the high order byte of the CRC
else if (i==30 && done==0)
(

mcu_out=(CRC_value>>8) &255;
reql=0;
i++;

}
//tranmit the low order byte of the CRC
else
{

mcu_out=CRC_value & 2 5 5 ;
reql=0;
CRC_value=OxFFFF;
done=l;

}
}

}

Function:
void FPGA_receive ¡void)

Description:
This function accepts data from the FPGA using the same acknowledge/request
handshake method used to transmit data. Data is accepted one byte at a time
and when all packet data has been received, the CRC value is checked to
ensure there were no transmission errors anywhere from the test node to here.
If the CRC does not match, the ACK value of the packet is changed to 170 in
decimal .

Precondition:
None

Parameters :
Inputs: None

Outputs : None

Returns:
None

Remarks :

This function waits for a count of 256 before leaving the function. It is
assumed that if the ack line is not asserted before then that the FPGn
simply has no data to be sent back to the client program.

void FPGA_receive (void)
{

i ? t i ;
int exit, count;

exit=0;
count=0;
i=0;

//accept data from FPGA
while (exit=0)
{

if (i<=0)
count++;

//if ack is not accepted by a count of 256, exit function
else if (i==32 I I count==256)

exit=l;
else
{

if (ack2)
{

/ / s e?d i ?g_d a t a_bu f fe r [i] =mc u_ i? ;
sending_data_buf fer [i] =mcu_inO+ (mcu_inl<<l) + (mcu_in2<<2) + (m

cu_in3«3) + (mcu_in4<<4) + (mcu_in5«5) + (mcu_in6<<6) + (mcu_in7«7) ;
i++;
req2=l;

}

//initialize CRC value
CRC_value=OxFFFF;

//check and compare CRC value, if different, set ACK to 170
if (i==32)
{

for (i=0; i<=29; i++)
<

crei 6 (sending_data_buf fer [i]) ;
}
if ((CRC_value>>8) &255!= sending_data_buffer [30] ||

(CRC_values255) ! =sending_data_buf fer [31])

sending__data_buf fer [1]=170;

/ * * * * * ir + * * * * * * * ·*: * ¦* * * * * * * *r * * *' * * * * * * * * * * * *¦ -* * * * * * * * * * * * ¦* * * *¦ * * * * * * * * * * * * ¦*- * * *- * * * *- *
Function:

int BerkeleyTCPServer ¡char *bfr, char »trans bfr, int total)

Description:
This function handles all socket communication with the PC Client program.

Precondition :
Stack and Berkeley API must be initialized prior to function call

Parameters :

Inputs: Hone-
Outputs : Mone

Returns :
None

Remarks :

This function was originally part of the Microchip TCP/IP Stack software

102

Internal Function Call:
The ConvertandStore function is called from within after data has been

received over the socket.

t BerkeleyTCPServer (char *bfr, char *trans_bfr, int total)

static SOCKET bsdServerSocket;
static SOCKET ClientSock [MAX_CLIENT] ;
struct sockaddr_in addr;
struct sockaddr_in addRemote;
int addrlen = sizeof (struct sockaddr_in) ;
int length;
int i, j ;
static enura
{

BSD_INIT = 0,
BSD_CREATE_SOCKET,
BSD_BIND,
BSDJÚISTEN,
BSD_OPERATION

) BSDServerState = BSD_INIT;

switch (BSDServerState)
{

case BSD_INIT:
// Initialize all client socket handles so that we don't, process
// them in the BSD OPERATION state
for(i = 0; i < MAX_CLIENT; i++)

ClientSock [i] = INVALID_SOCKET;

BSDServerState = BSD_CREATE_SOCKET;
1 1 No break needed

case BSD_CREATE_SOCKET:
// Create a socket for this server to listen and accept connections on
bsdServerSocket = socket (AF_INET, SOCK_STREAM, IPPROTOJTCP) ;
if (bsdServerSocket == INVALID_SOCKET)

return -1;

BSDServerState = BSD_BIND;
// No break needed

case BSD_BIND:
// Bind socket to a local port
addr .sin_port = PORTNUM;
addr . sin_addr . S_un. S_addr = IP_ADDR_ANY;
if(bind(bsdServerSocket, (struct sockaddr*) saddr, addrlen) == SOCKET_ERROR

return -1;

BSDServerState = BSD_LISTEN;
// No break needed

case BSD_LISTEN:
if (listen (bsdServerSocket, MAX_CLIENT) == 0)

BSDServerState = BSDjDPERATION;

// So break. If listen () returns SOCKET_ERROR it could be because
// MAX_CLIENT is set to too large of a backlog than can be handled
// by the underlying TCP socket count (TCP PURPOSE BERKELEY SERVER
// type sockets in TCPIPConf ig .h) . However, in this case, it is
// possible that some of the backlog is still handieable, in which
// case we should try to accept;) connections anyway and proceed
// with, normal operation.

case BSDJDPERATION:
for(i=0; i<MAX_CLIENT; i++)

{
// Accept any pending connection requests, assuming we have a place to
//store the socket descriptor

if (ClientSock(i) == INVALI D_SOCKET)
ClientSockfi] = accept (bsdServerSocket, (struct sockaddr*) saddRemote,

Saddrlen) ;

// If this socket is not connected then no need to process anything
if (ClientSock[i] == INVALID_SOCKET)

continue;

// For ail connected sockets, receive and send back the data
length = recv(ClientSock [i] , bfr, total, 0} ;

if (length< 0)
{

//close the socket connection
closesocket (ClientSock [i]) ;
ClientSock[i] = INVALID_SOCKET;

}
else if(length>0)
{

send(ClientSock[i] , trans_bfr, length, 0);
}
return length;

}

breaks-

default :
return 0;

}
return 0;

}

Function:

void DisplayIPValue (IP_ADDR IPVaI)

Description :
Writes an IP address to the LCD display and the UART as available.

P re c??d i. t i on:

Stack must be initialized prior to function call

Parameters:
Inputs: None

Outputs: None

Re turn s :
None

Remarks :

This function was originally part of the Microchip TCP/IP Stack software

void DisplayIPValue(IP_ADDR IPVaI)
{
// printf (" su.îu.îu. %u", IPVaLv[O], IPVaLv[I], IPVaI. v[2], IPVaLv[S]);

BYTE IPDigit[4] ;
BYTE i;

fifdef USE_LCD
BYTE j;
BYTE LCDPos=16;

#endif

for(i = 0; i < sizeof (IP_ADDR) ; i++)
{

uitoa((WORD) IPVal.vfi] , IPDigit) ;

fif defined (STACK_USE_UART)
putsUART (IPDigit) ;

#endif

frifdef USE LCD

else

#endif

for(j = O; j < strlen((char*) IPDigit) ; j++)
{

LCDText[LCDPos++] = IPDigit [j] ;
}
if(i == sizeof (IP_ADDR)-1)

break;
LCDText[LCDPos++] = '.';

if(i == sizeof (IP^ADDR) -1)
break;

#if defined (STACK_USE_UART)
while (BusyUARTO) ;
WriteUART(' . ') ;

tendi f

#ifdef USEJLCD
if(LCDPos < 32u)

LCDText[LCDPos] = O;
LCDUpdate () ;

tendif
}

Function :
static void InitializeBoard ivoidi

Description :
This routine initializes the hardware. It is a generic initialization
routine for many of the Microchip development boards, using definitions
in HardwareProfile.h to determine specific initialization.

Precondition:
None

Parameters :
N e· ? e - None

Returns :
None

Remarks:

This function was originally part of the Microchip TCP/IP Stack software
x * * ~ /

static void InitializeBoard(void)
{

// LKDs
LEDOJTRIS = 0;
LEDIJTRIS = 0;
LED2JTRIS = 0;
LED3JTRIS = 0;
LED4JTRIS = 0;
LED5JTRIS = 0;
LED6JTRIS = 0;

/7#if !defined (EXPL0RERJ16) // Pin multiplexed with a button on EXFL0RERJ16
LED7JTRIS = 0;

//#endif
LED_PUT (0x00) ;

// Enable 4x/Sx/96MHz PLL on PICÌ8F87J10, PIC18F97JÓ0, PIC18F87J50, etc.
OSCTUNE = 0x40;

ADCON2 = OxBE; // Right justify, 20TAD ACQ time, Fosc/64 (-21 .OkH:

// Enable internal PORTB pull-ups
INTCON2bits.RBPD = 0;

// Configure USART

TXSTA = 0x20;
RCSTA = 0x90;

// See if we can use the high baud rate setting
#if ((GetPeripheralClock()+2*BAUD_RATE) /BAUD_RATE/4 - 1) <= 255

SPBRG = (GetPeripheralClockf) +2*BAUD_RATE) /BAUD_RATE/4 - 1;
TXSTAbits.BRGH = 1 ;

lelse //' use the low baud .rate setting
SPBRG = (GetPeripheralClock()+8*BAUD_RATE) /BAOD_RATE/16 - 1;

#endif

// Enable Interrupts
RCONbits.IPEN = 1; // Enable interrupt priorities

INTCONbits.GIEH = 1;
INTCONbits.GIEL = 1;

#if defined (SPIRAM_CS_TRIS)
SPIRAMInit () ;

#endif
#if defined (EEPROM_CS_TRIS)

XEEInit () ;
#endif
#if defined (SPIFLASH_CS_TRIS)

SPIFlashlnit () ;
#endif

)

* Fune t i on : voi ci I ni t AppCon f ig (voi ci)
<¦

* Precondition: MPFSInIt(J is already called,
•?-

* Input : None

* Output: Write/Read non-volatile config variables.
*

* Side Effects: None
¦A

* Overview: None
A

* Note: None

* Remarks: This function was originally part of the Microchip TCP/IP
S t ac k s o f t w a r e

* * * * * * * * * * ? * * * * * * -? * * * * * * t * » * * * * * * * * * * * * * * * * * * * ,'

/'/' MAC Address Serialization using a MPLAB PM3 Programmer and
// Serialized Quick Turn Programming (SQTPi.
//' The advantage of using SQTP for programming the MAC Address is it.
// allows you. to auto- increment the MAC address without recompiling
// the code for each unit. To use SQTP, the MAC address must be fixed
// at a specific location in program memory. Dncorament these two pragmas
// that locate the MAC address at OmIF1FFO. Syntax below is for MPLAB C
// Compiler for PIC18 MCUs. Syntax will vary for other compilers.
//ttpragma rondata MACROM-OxlFFFO
static ROM BYTE SerializedMACAddress[6] = {MY_DEFÄULT_MAC_BYTE1, MY_DEFAÜLT_MAC_BYTE2,
MY_DEFAULT_MAC_BYTE3, MY_DEFAULT_MAC_BYTE4 , MY_DEFAOLT_MAC_BYTE5 , MY_DEFAULT_MAC_BYTE6} ;
/ / #?r a gma rorad a t. a

static void InitAppConfig (void)
{

AppConf ig. Flags. blsDHCPEnabled = TRUE;
AppConfig. Flags. blnConf igMode = TRUE;
memcpypgm2ram((void*) SAppConfig. MyMACAddr, (ROM void*) SerializedMACAddress,

sizeof (AppConfig. MyMACAddr)) ;
// I
/ / _?rog_add ress T MACAd d ressAddres s ;
// MACAddressAddress.next = 0xl57F8;
// _ raemepy p2d24 ((char*) SAppConíig .MyMACAddr, MACAddressAddress,
sizeof (AppConf ig. MyMACAddr) i ;

106

AppConfig.MylPÄddr.Val = MY_DEFAÜLT_IP_ADDR_BYTE1 | MY_DEFAULT_IP_ADDR_BYTE2«8ul
I MY_DEFAULT_IP_ADDR_BYTE3«16ul | MY_DEFAULT_IP_ADDR_BYTE4«24ul;

AppConfig.DefaultIPAddr.Val = AppConfig.MylPÄddr.Val;
AppConfig.MyMask.Val = MY_DEFAULT_MASK_BYTE1 | MY_DEFAULT_MASK_BYTE2<<8ul |

MY_DEFAULT_MASK_BYTE3<<16ul] MY_DEFAULT_MASK_BYTE4<<24ul;
AppConfig.DefaultMask.Val = AppConfig.MyMask.Val;
AppConfig.MyGateway.Val = MY_DEFAULT_GATE_BYTE1 | MY_DEFAULT_GATE_BYTE2<<8ul I

MY_DEFAÜLT_GATE_BYTE3«16ul | MY_DEFAULT_GATE_BYTE4«24ul;
AppConfig.PrimaryDNSServer.Val = MY_DEFAULT_PRIMARY_DNS_BYTE1 |

MY_DEFAULT_PRIMARY_DNS_BYTE2«8ul | MY_DEFAULT_PRIMARY_DNS_BYTE3«16ul |
MY_DEFAULT_PRIMARY_DNS_BYTE4«24ul;

AppConfig.SecondaryDNSServer . Val = MY_DEFAULT_SEC0NDARY_DNS_BYTE1 |
MY_DEFAaLT_SECONDARY_DNS_BYTE2«8ul | MY_DEFAULT_SECONDARY_DNS_BYTE3«16ul |
MY_DEFAÜLT_SECONDARY_DNS_BYTE4«24ul;

// SNMP Community String configuration
#if defined (STÄCK_USE_SNMP_SERVER)
{

BYTE i;

static ROM char * ROM cReadCommunities [] = SNMP_READ_COMMUNITIES;
static ROM char * ROM cWriteCommunities [] = SNMP_WRITE_COMMUNITIES;
ROM char * strCommunity;

for(i = 0; i < SNMP_MAX_COMMUNITY_SüPPORT; i++)
{

// Get a pointer to the next community string
strCommunity = cReadCommunities [i] ;
if(i >= sizeof: (cReadCommunities) /sizeof (cReadCommunities [0]))

strCommunity = "";

,// Ensure we don't buffer overflow. If your code gets stuck here,
// it means your 3NMP_COMMUNITY_MAX_LEN definition in TCPIPConf ig . h
// is either too small or one of your community string lengths
// ÍSNMP_READ_COMM0NIT:i:eS) are too large. Fix' either!
if (strlenpgmf strCommunity) >= sizeof (AppConfig. readCommunity [0]))

while (1) ;

//' Copy .string into AppConfig
strcpypgm2ram((char*) AppConfig. readCommunity [i] , strCommunity) ;

// Get a pointer to the next community string
strCommunity = cWriteCommunities [i] ;
if(i >= sizeof (cWriteCommunities) /sizeof (cWriteCommunities [0]))

strCommunity = "";

// Ensure we don't buffer overflow. If your code gets stuck here,
? it means your SNMP_CCMMUNITY_MAX_LEN definition in TCPIPConf ig . h
/'/ is either too small or one of your community string lengths
// (SNMP_WRITE_COMMUNITIES) are too large. Fix either,
if (strlenpgm(strCommunity) >= sizeof (AppConf ig.writeCommunity [0]))

while (1) ;

// Copy string into AppConfig
strcpypgm2ram((char*) AppConf ig.writeCommunity [i] , strCommunity) ;

}
)
#endif

// Load the default NetBIOS Host Name
memcpypgm2ram(AppConfig.NetBIOSName, (ROM void*)MY_DEFAOLT_HOST_NAME, 16);
FormatNetBIOSName(AppConfig. NetBIOSName) ;

#if defined(ZG_CS_TRIS)
// Load the default SSID Name

if (sizeof (MY_DEFAULT_SS I D_NAME) > sizeof (AppConfig .MySSID))
(

ZGSYS_DRIVER_ASSERT(5, (ROM char *) "AopConf ig .MvSSID [] too small.Nn");
}
memcpypgm2ram(AppConfig. MySSID, (ROM void*)MY_DEFAULT_SS I DJSIAME,

sizeof (MY DEFAULT SSID NAME));

#endif

108

Appendix D. PC Client C Code
t * * * ******* >***/

inane: dient, c

Description: This is the C code to run the client side of the TCP/IP Socket
Connection

Author: Chris Rennick

t'a te: August 3, 2009

Notes: Adapted from C code provided in: TCP/IP Sockets in C by Donahoo, M anc
Calvert, K

//Header file calls

//if Windows system
#ifdef WIN32

?include <winsock . h>
//if I,inu>:/Unix system
#else

#include <sys./socket . h>
#include <sys/types .h>
#include <arpa/inet . h>
#include <netinet/in . h>

tendi f

#include <stdio.h>
i nel ude < s t ring . h>
?include <stdlib . h>
?include <time.h>
/ * * * * * * ************ ¦> •r * * * * * ¦* A******* T ********** -> * I

//Define system constants and input/output file pointers
J k k k k * * * * * * k A A A k A * * * A k A k * * * * * * * * * * * * * * * * * * A * * * * * * * A A A A A A A * A * * k k k k A * A A A A A A A A A A A A A A k
?define MAXSENDPACKETS 1048576
?define PACKETLENGTH 30

FILE *packets;
FILE *sorted_packets;
FILE *converted_packets;
FILE *received_packets;

//Global Variable declarations
?********************** wl»„w„-,..„.„„„.„»„/
//sending data buffer is for data that is received over ethernet waiting to be sent
//to the test nodes

unsigned int sending_data_buf fer [MAXSENDPACKETS] [31] ;
//read__data_buf fer is data that has been read from the FPGA waiting to be sent over
//the ethernet connection
unsigned int receiving_data_buf fer [MAXSENDPACKETS] [30] ;

//This is the array that holds the time in seconds that a packet was sent (value
//is counted in seconds since January 1, 1970
time_t sending_data_buffer_time [MAXSENDPACKETS] ;

//this is the pointer that handles the address in the data buffer for inputting
//new data from the file
int write_pointer_sending;

109

//This is the pointer that handles the address in the data_buffer for outputtinq
//data over the socket to the MCU
int. read_pointer_sending;

//This is the pointer that handles the address of the data buffer used for
//accepting data from the MCU
int write_pointer_receiving;

//This is to keep track of when the last sort on the data was performed
int lastSort;

//These are used in the sorting function. They are kept global so that from one
//small sort to another, the bus contention issues don't happen,
int lastAddrl, lastAddr2, lastAddr3, lastAddr4;

//This is also used in the sort function to note that the above three variables
//have already been, determined once
short int comparisonFull;

//This is to keep track of any nodes that haven't been communicated to in a while
short int nodeLastComm[16] [16] ;
short int nodesConnected[16] [16] ;

//This variable is set to 1 when, the system has no new data to send, but is still
//waiting to receive data frora the nodes
short int. IDLE;

//This variable holds the time when the system last went into IDLE state
time t IDLE time;

/ / Func t i ? ? ? r ot o t y?e s
! .(. y y y y .-,. .;. .;. -1; .;. .;. .;. y. y .¡. y .j. y ^. .;. .,. .l: ^1. .;. _j. .(. .;. .,. .y y y .y y .y .y y y(..;..<. y. y. y y y y y y. y y y y y y y y y y y y y. .y y y .* -;: * -.. -I. * y y y -

void DieWithError (char *errorMessage) ;
void Initialize (void) ;
void InitializeNetwork (void) ;
void NoResponseCheck (void) ;
void SortPackets (void) ;
void ConvertandStore (unsigned char *data_in, short int sendread, int size);
int nodelastcommto (void) ;
void CheckReceived (void) ;

function:

int. main (int. arge, char *argv[])

Description :
This is the main program entry point. All other functions are called from within

this

including all socket operations.

Precondition :
None

Parameters :

Inputs: Server IP address and port number
Outputs: None

Returns :
None

Remarks :

This code was adapted from the example code frora the book TCP/IP Sockets in C
written by Donahoo, M and Calvert, K.

int main(int arge, char *argv[])
{

110

int sock, i, j, k, 1;
struct sockaddr_in dataServAddr;
unsigned short dataServPort;
char temp [3] ;
char *servIP;
unsigned char dataString [PACKETLENGTH] ;
unsigned char dataBuf fer [PACKETLENGTH] ;
char data [61] ;
int. n;
int dataStringLen;
int bytesRcvd, totalBytesRcvd;

#ifdef WIN32
WSADATA wsaData;

#endif

//Openning output files
pac kets=fopen ("C: /User s /Chris./Desktop /ATI /C_F.i.les /text_f i les./packet s .dat.", "r") ;
sorted_packets=fopen ("C: /Ose rs /Chris /Desktop/ATI /C File s /text files /sorted packets

.dat'V'w");
converted_packets=fopen ("C: /Users/Chris/Desktop/ATI/C _Files/text files/converted ?

ackets . dat", "w") ;
received_packets=fopen("C: /Users/Chris/Desktop/ATI/C_Fi.les/text_fi.l.es/rece.ived_pac:

ket.s.dat", "w") ;

//routine used to initialize global variables
Initialize () ;

//routine used to send packets to check which nodes are connected
InitializeNetwork () ;

//set up socket constants for port number and IP address
if (argc>=3)
(

servIP = argv[l];
dataServPort = atoi (argv[2]) ;

)

#ifdef WIN32
/ / 1 ?i t i a 1 i ? e W i ? s oe k
if (WSAStartup (MAKEWORD (2, 0) , SwsaData) != 0)

printf (stderr, "WSAStartup () failed");
#endif

//Open Socket
if ((sock=socket (PF_INET, SOCK_STREAM, IPPROTO-TCP)) <0)

DieWithError ("Socket Í) failed") ;

//setup socket constants for IP address and port, as well as //the address family
memset (SdataServAddr, 0, sizeof (dataServAddr)) ;
dataServAddr . sin_family = AF_INET;
dataServAddr . sin_addr.s_addr = inet_addr (servIP) ;
dataServAddr . sin_port = htons (dataServPort) ;
//Connect to Socket
if (connect (sock, (struct sockaddr *) SdataServAddr, sizeof (dataServAddr)) <0)

DieWithError ("connect () failed") ;

while (1)
{

//read from the input file until no more data exists in the file
if (! feof (packets))
{

//input the data, from the hex file
n=fread(data, 1, sizeof (data) ,packets) ;
data [sizeof (data)]=' \0 ' ;
ConvertandStore (data, 0, 60);

//increment the sort counter
lastSort++;

argv[l] , argv[2]) ,

}
else
(

//if there is no more data to input from the file
//start entering IEiLE mode
IDLE=I;
IDLE time=time (NULL) ;

//if there are 50 new data strings, sort and send them
if (lastSort==50 || ((time (NULL) -IDLE_time==l) && IDLE==1))
{

IDLE=O;

lastSort=0;

//Check all sent packets to see if a response was ever received
NoResponseCheck () ;

//50 or more packets are -waiting to be transmitted, so sort t liera
SortPackets () ;

fprintf (converted_packets, "IP address and port number are: %s %s

fprintf (converted_packets, "\n Start of data being sent out\n");

//Send only that data that hasn't been sent before
while (read_pointer_sending<write_pointer_sending)
{

//store the value of the system clock for current
//transmission packet to verify later that not too much
//time has past without a response from the node
sending__data_buf fer_time [read_pointer_sending] =time (NULL) ;

//convert data back into a hex number character string
for (j=0; j<=29; j++)

dataString! j] =sending_data_buf fer [read_pointer_sending] [j] &255;

read_pointer_s ending++;

dataStringLen = PACKETLENGTH;
//Send dataString over Socket to Server
if (send(sock, dataString,. dataStringLen, 0)

dataStringLen)

bytes than expected"),
DieWithError ("send!) sent a different number of

totalBytesRcvd = 0;

//Receive data back from Server
printf ("%d ReceivedXn", read_pointer_sending) ;
//exit=0;

bytesRcvd=0;

while (PACKETLENGTH-bytesRcvd>0 && (n=recv(sock,
dataBuffer+bytesRcvd, PÄCKETLENGTH-bytesRcvd , 0))>=0)

{
bytesRcvd+=n;
totalBytesRcvd++;

tr-

ior (j=0; j<PACKETLENGTH; j++)
printf ("%02X", dataBuf fer [j]) ;

printf ("\n") ;

ConvertandStore (dataBuf fer, 1, PACKETLENGTH);

112

}
)

tifdef WIN32
closesocket (sock) ;
WSACleanup () ;

#else
close (sock) ;

#endif

//close output files
fclose (packets) ;
fclose (converted_packets) ;
fclose (sorted_packets) ;

while (1) ;

Function :
static void Initialize (void)

Description:
This function is used to initialize global variables

Precondition:
None

Parameters :

Inputs: None
Outputs: None

Returns :
None

Remarks:
None

* A * A A A' A * A A- A- A

void Initialize (void)
{

//initialize data address pointers
write_pointer_sending=0 ;
read_pointer_sending=0;
write_pointer_receiving=0;
//Initialize IDLE
IDLE=O;

//initialize sorting global variables
lastSort=0;
lastAddrl=0;

lastAddr2=0;
lastAddr3=0;
lastAddr4=0;
comparisonFull=0;

//initialize node s Connect ed
for (short, int i=0; i<=15; i++)
{

for (short int j=0; j<=15; j++) nodesConnectedfi] [j] =1;
}

/ A A A A A A A A * A A A A * * AAAA AAAA A A A A A A A A A A A A
Flinction :

static void InitializeNetwork (void)

Description:
This function sends out a packet to all 256 nodes of the test network.

It is used to detect which nodes are currently connected to the network
Precondition :

None

Parameters :

Inputs : Mone
Outputs: None

Returns :
None

Remarks :
None

void InitializeNetwork (void)
(

int i, j ;

for (i=0; i<=255; i++)
{

for (j=0; j<=29; j++) sending_data_buf fer [i] [j] =0;
sending_data_buf fer [i] [0]=i;
sending_data_buf fer [i] [1]=18;
sending_data_buffer [i] [3]=27;

write_pointer_sending++;

,' k k *¦ a A A k ? A k -k a *¦ A k A * A A * a A k * k A a A k k A * k k k k k k k A A A A -k k a k k A A A A- A k k k k * A- A * k k k k k k * * A * * A' k k k k k k k A A A
Function :

void ConvertandStore (char *data_in, short int sendread, int size)

Description:
This function accepts a char format hex file and converts the packet to decima

integers
and stores the packet in the sending data buffer for output to the FPGA

Precordi, t ion :
None

Parameters :

Inputs: - sendread flag which tells the function whether it is a packet waiting to
be sent, or one thatwas received over the socket that is currently being
converted

- data_in character string which is the string to be converted
- integer size which is the length of the character string to be converted

Outputs : None

P.eturns :
None

Remarks :

Note: at this point, the data still needs to be sorted, which is why it must be in
integer form

void ConvertandStore (unsigned char *data_in, short, int sendread, int size)
{

short int i;
int. temp_buf fer [size] ;
int remainder;
int count;

if (sendread==0)
{

for (i=0; Ksize; i++)
{

if ((data_in[i]-55)<=2)
temp buffer [i]=data in[i]-48;

else

temp_buf fer [i]=data_in [i] -55;
>

for (i=0;i<=size; i=i+2)
{

remainder=!);
if (temp_buffer[i+l]>=10)
{

temp_buf fer [i+1] -=10;
remainder=l;

}

sending_data_buffer[write_pointer_sending] [i/2] = (temp_buf fer [i] *16) + (remainder*10)
+temp_buf fer [i+1] ;

}

for (i=0; i<=29; i++)
fprintf (converted_packets, "%d
", sending_data_buf fer [write_pointer_sending] [ij) ;

fprintf (converted_packets, "\n") ;

write_pointer_sending++;

return;
}
else if (sendread==l)
{

for (i=0; i<=size; i++)
receiving_data_buffer [write_pointer_receiving] [i]=data_in[i] ;

fprintf (received_packets, "%d ", write__pointer_receiving) ;
for (i=0; i<size; i++)

fprintf (received_packets, "%02X ",
receiving_data_buffer [write_pointer_receiving] [i]);

fprintf (received_packets, "\n") ;

write_pointer_receiving++;

CheckReceived() ;

return;

function:
int nodelastcorarato (void)

Description:
This function returns the address for a node that hasn't been communicated to in a

while

Precondition:
nodeLastCorara and nodesConnected matrices need to be initialized

Parameters :
Inputs: None

Outputs: None

Returns :

Returns the integer address of a node that has not been communicated with in a while

Remarks :
None

** ^ *************** ? *** A*^****** -^*** ^ *^ ^; ir I
int. nodelastcommto (void)
{

int i, j ;
int addr, buff_addr;

for (i=0; i<=15; i++)
(

for (J=O; j<=15; j++)
{

if(i==15 && j==15)
{

for (short int k=0; k<=15; k++)
{

for (short int 1=0; 1<=15; 1++)
nodeLastComm[k] [1] =nodesConnected[k] [1] ;

)

}

if (nodeLastComm[i] [j]==1)
{

addr=(i*10)+j;
buf f_addr=addr>>4 ;

if (buf f_addr !=lastÄddr3 && buf f_addr !=lastAddr2 &&
buf f_addr ! =lastAddrl)

{
nodeLastComm[i] [JJ=O;

return addr;
}

}
}

}
return lastAddr4<<4;

}

/ * ¦*

unction
ort Packet s???a ??a

Description:
This function takes the sending__data_buf fer and sorts it so that there is at least
a three transmission gap between consecutive packets going to the same address bus
in the test node network

Precondition:

Data needs to be present in the sending data buffer to be sorted

Parameters :

Inputs: None
Outputs: None

Returns :
None

Rema r k
one

void SortPackets (void)
{

int i, j, k;
int temp_buffer [30] ;
short int exit=0;
int shift_addrl, shift_addr2;

fprintf (sorted_packets, "write pointer :%d read pointer :%d \n",
write_pointer_sending, read_pointer_sending) ;

for (i=read_pointer_sending; i<write_pointer_sending;i++)
{

shift addrl=sending data buffer [i] [0] >>4;

//If the sort has not been run once yet, the address comparison values
// í lasAddrl-lastAddr4 } do not yet have valid addresses in them and thus
//must be created
if (comparisonFull==0)
(

/ / ere a t i ? ç) .1 a s tA d d r 4
if (i==0)
(

//setting lastAddr-l
lastAddr4=shift_addrl;

fprintf (sorted_packets, " i-0 addri: %d\t", shif t_addrl) ;

//update the nodeLastComm matrix to reflect the address of
//the outgoing packet

nodeLastComm [sending_data_buf fer [i] [0]/16] [sending_data_buf fer [i] [0]%16]=0;

for (k=0; k<=29; k++)
fprintf (sorted_packets, "%d ", sending_data_buf fer [i] [k]);
fprintf (sorted_packets, "\n") ;

}
//compare to lastAddr4 and create lastAddi:3
else if (i==l)
{

//if the current address does not match the last, addresses
if" (shift_addrl!=lastAddr4)
{

lastAddr3=shift_addrl;
fprintf (sorted_packets, "got to i--l addrl : %d\t",
shift_addrl) ;

}
//This 'else' handles moving a packet if it matched
//lastAddr4
else
{

for (k=0;k<=29;k++)
temp_buf fer [k] =sending_data_buffer [i] [k] ;

j=i;
//search through all packets after current packets
//and find one to trade places
while (exit==0)
f

shift_addr2=sending_data_buf fer [j) [0] »4;

if (shift_addr2!=lastAddr4)
{

//if no packet exists with an address
//that doesn't match the last address
//then create a filler packet and
//insert it
if (j>=write_pointer_sending)
{

for (k=0;k<=29;k++)
{
sending_data_buf fer [i] [k]=0;
//move conflicting packet to
//end of queue

sending_data_buf fer [write_pointer_sending] [k] =temp_buf fer [k] ;
>

sending_data_buf fer [i] [0] =nodelastcommto () ;
sending_data_buf fer [i] [1]=18;
sending_data_buf fer [i] [3]=27;

shift_addr2=sending_data_buf fer [i] [O) >>4;

write_pointer_sending++;
)
else
{

//trade packets with one that
//doesn't match iastaddr4
for (k=0;k<=29,-k++)
{

sending_data_buf fer [i] [k] =sending_data_buf fer [j] [k] ;

sending_data_buf fer [j] [k] =temp_buf fer [k] ;
}

Ì
//update lastAddr3 to reflect the nev;
//traded packet
lastAddr3=shift_addr2;
exit=l;

}
)
exit=0;

fprintf (sorted_packets, "i-1 addr2 : %d\t", shif t_addr2) ;
}

//update the nodeLastComm matrix to reflect transmitted
//packet

nodeLastComm [sending_data_buf fer [i] [0]/16] [sending_data_buf fer [i] [0]%16]=0;

for (k=0; k<=29; k++)
fprintf (sorted_packets, "%d ", sending_data_buf fer [i] [k]);
fprintf (sorted_packets, "\n") ;

}
//compare to lastAddr·! and lastAddr:3 and create lastAddr':
else if (i==2)
(

//no conflict with lastaddr3 or 4
if (shift_addrl != lastAddr3 SS shift_addrl !=lastAddr4)
{

lastAddr2=shift_addrl;
fprintf (sorted_packets, "i-2 addrl: %d\t", shift_addrl) ;
}
//conflict with either lastaddr3 or 4
else
{

for (k=0;k<=29;k++)
temp_buf fer [k] =sending_data_buffer [i] [k] ;

j=i;
//search through all packets after current packets
//and find one to trade places
while (exit==0)
{

shift_addr2=sending_data_buf fer [j] [0] »4;

if (shift_addr2!=lastAddr3 &&
shift_addr2 !=lastAddr4)

{
//if no packet exists with an address
//that doesn't match the last address
//then create a filler packet and
//insert it
if (j>=write_pointer_sending)
{

for (k=0;k<=29;k++)
{
sending_data_buf fer [i] [k]=0;
//move conflicting packet to
//end of queue

sending_data_buf fer [write_pointer_sending] [k] =temp_buf fer [k] ;
}

sending_data_buf fer [i] [O]=nodelastcommto () ;
sending_data_buf fer [i] [1]=18;
sending_data_buf fer [i] [3]=27;

shift_addr2=sending_data_buf fer [i] [O] >>4;

write__pointer_sending++;
}
else
(
//trade packets with one that
//doesn't match lastaddr:3 or 4

for (k=0;k<=2 9;k++)
{

sending_data_buf fer [i] [k] =sending_data_buf fer [j] [k];

sending_data_buf fer [j] [k] =temp_buf fer [k] ;
}

}
//update lastâddr:2 to reflect the new
/ / 1 raded ?a e k e t
lastAddr2=shift_addr2;
exit=l;

}

}
exit=0;

fprintf (sorted_packets, "i-2 addr2 : %d\t", shift_addr2) ;
}

//update the nodeLastComm matrix to reflect transmitted
//packet

nodeLastComm[sending_data_buf fer [i] [0] /16] [sending_data_buf fer [i] [0]%16]=0;
for (k=0; k<=29; k++)
fprintf (sorted_packets, "%d ", sending_data_buf fer [i] [k]);
fprintf (sorted_packets, "\n") ;

}
//compare to lastAddr4, lastAddr3, and lastAddr2 and create
//lastAddrl
else if (i==3)
{

//no conflict with lastaddr2, 3 or 4
if (shift_addrl !=lastAddr2 &S shif t__addrl != lastAddr3 &&

shift_addr 1 ! =lastAddr4)
{

lastAddrl=shift_addrl;
fprintf (sorted_packets, "got to i=^=2 addrl: Vi\t",
shift_addrl) ;

)
//conflict with one of lastaddrS, 3 or 4
else
{

for (k=0;k<=29;k++)
temp_buf fer [k]=sending_data_buf fer [i] [k] ;

j=i;
//search through all packets after current packets
//and find one to trade places
while (exit==0)
{

j++;
shift_addr2=sending_data_buf fer [j] [0] >>4;

if (shift_addr2!=lastAddr2 SS
shift_addr2 !=lastAddr3 SS shif t_addr2 !=lastAddr4)

{

sending_data_buf fer [i] [k]=0;

//if no packet exists with an address
//that doesn' t raatch the last address
//then create a filler packet and
//insert it
if (j>=write_pointer_sending)
f

for (k=0;k<=29;k++)
{

//move conflicting
//packet to end of queue

sending_data_buf fer [write_pointer_sending] [k] =temp_buf fer [k) ;
}

sending_data_buf fer [i] [0] =nodelastcommto () ;

shift_addr2=sending_data_buf fer [i] [0] >>4;

sending_data_buf fer [i] [1]=18;
sending_data_buf fer [i] [3]=27;

write_pointer_sending++;
}
else
{
//trade packets with one that
.//doesn't raatch Xastaddr2, 3 or 4

for (k=0;k<=29;k++)
{

sending_data_buffer [i] [k] =sending_data_buffer [j] [k];

sending_data_buf fer [j] [k] =temp_buf fer [k] ;
}

}
//update lastAddrl to reflect the net
/ / 1 r aded ?ae k e t
lastAddrl=shift_addr2;
exit=l;

}
}
exit=0;
fprintf (sorted_packets, "got to i=~3 addr2 : %d\t",
shift_addr2) ;

)
//update the node'LastComm matrix to reflect transmitted
//packet

nodeLastComm[sending_data_buf fer [i] [0]/16] [sending_data_buf fer [i] [0]%16]=0;

for (k=0; k<=29; k++)
fprintf (sorted_packets, "%d ", sending_data_buffer [i] [k]) ;
fprintf (sorted_packets, "\n") ;
//all last address values have been set at least once
comparisonFull=l ;

}
>
//all lastAddr values have been created, and thus a full comparison and
//sort can take place from, this point, on
else
{

//no conflict, with any iastaddr value
if (shift_addrl!= lastAddr3 SS shif t_addrl !=lastAddr2 s&

shift_addrl != lastAddrl)
{

120

lastAddr4=lastAddr3;
lastAddr3=lastAddr2;
lastAddr2=lastAddrl;
lastAddrl=shift_addrl;
fprintf (sorted_packets, "got to i=--%d addrl : %d\t", i,

shift_addrl) ;
)
//current address matched at least one of the past 3 bus addresses
el.se
{
for (k=0;k<=29;k++) temp_buf fer [k] =sending_data_buf fer [i] [k];

//search through all packets after current packets and find
//one to trade places
while (exit==0)
{

shift_addr2=sending_data_buf fer [j] [0] >>4;

if (shift_addr2!=lastAddr3 Si shift_addr2 !=lastAddr2
&& shift_addr2 != lastAddrl)

{
//.if no packet, exists with an address that
//doesn't match the last address
//then create a filler packet and insert it
if (j>=write_pointer_sending)
{

for (k=0;k<=29;k++)
{

sending_data_buf fer [i] [k]=0;
//move conflicting packet to
//end of queue

sending_data_buf fer [write_pointer_sending] [k] =temp_buf fer [k] ;
}

sending_data_buf fer [i] [0] =nodelastcommto () ;
sending_data_buf fer [i] [1]=18;
sending_data_buffer [i] [3]=27;

shift_addr2=sending_data_buf fer [i] [0] >>4;

write_pointer_sending++;
}
else
(

//trade packets with one that doesn't
//match any lastaddr value
for (k=0;k<=29;k++)
{

sending_data_buffer [i] [k] =sending_data_buf fer [j] [k];
sending_data_buf fer [j] [k] =temp_buf fer [k] ;

}
}
//update last address values
lastAddr4=lastAddr3;
lastAddr3=lastAddr2;
lastAddr2=lastAddrl;
lastAddrl=shift_addr2;
exit=l;

}
}
exit=0;
fprintf (sorted_packets, " i=%d addr2 : %d\t", i,
shift_addr2) ;

}

//update the nodeLastComm matrix to reflect transmitted packet

nodeLastComm[sending_data_buffer [i] [0]/16] [sending_data_buffer [i] [0]%16]=0;
for (Jc=O; k<=29; k++)

fprintf (sorted_packets, "%d ", sending_data_buf fer [i] [k]) ,
fprintf (sorted_packets, "\n") ;

runcti on :
void NoResponseCheck (void)

Description:
This function checks all packets to see if a reply from the node was ever

The function will re-send a packet three times before marking that a node is not
connected if no response is ever received.

Precondition :
None

Parameters :

Inputs: None
Outputs : None

Returns :
Hone

Remarks :
None

void NoResponseCheck (void)
{

int i, j ;

//don't bother starting to check until at least 15 packets have been sent
if (read_pointer_sending>16)
(

//check all packets that have been sent more than 15 transmissions ago
for (i=0; i<=read_pointer_sending-16; i++)
(

//compare current read pointer to when the data vías sent
if (time (NULL) -sending_data_buf fer_time [i] >=16)
{

//retry sending packet 3 times
if (sending_data_buffer[i] [30]<=3)
{

for (j=0; j <=2 9 ; j++)
sending_data_buf fer [write_pointer_sending] [j] =sending_data_buf fer [i] [j) ;

sending_data__buf fer [i] [30] +=1;
write_pointer_sending++;
lastSort++;

)
//all 3 retries failed, mark the packet as not being

connected

else if (sending_data_buf fer [i] [30]=4)

nodesConnected[sending_data__buffer [i] [0]/16] [sending_data_buffer [i] [0]%16]=0;

return;
}

Function:
void CheckReceived (void)

Description:
This function checks recently received packets against sent packets to determine
which packet, received a response. The function then marks that, that sent packet,
received a reply. This function also verifies the ACK field of the returned

packet .

Precondition:
Hone

Parameters :
Inputs: None

Outputs: None

Returns :
None

Remark
ne

void CheckReceived (void)
{

int. i, j ;

//scan through all sent packets for a match to the most recently received
for (i=0; i<=read_pointer_sending; i++)
{

if (receiving_data_buf fer [write_pointer_receiving-
sending_data_buf fer [i] [O])

{
if (receiving_data_buf fer [write_pointer_receiving-

sending_data_buf fer [i) [2))
{

if (receiving_data_buffer [write_pointer_receiving-
sending_data_buf fer [i] [3])

{
//mark packet as having received a reply
sending_data_buffer [i] [30]=8;

if (receiving_data_buf fer [write_j?ointer_receiving-
1][2]==0 M receiving_data_buffer [write_pointer_receiving-l] [2]==15 ||
receiving_data_buf fer [write_pointer_receiving-l] [2] ==170)

{
for (j=0; j<=29; j++)

sending_data_buffer [write_pointer_sending] [j] =sending_data_buf fer [i] [j] ;
wr i te_pointer_s ending++;
lastSort++;

}
}

}
}

}
}

Function :

void DieWithError (char *errorMessage)
Description:

Function used to print any error messages which may arise when creating socket
Precondition:

None

Parameters :

Inputs: System created error messages
Outputs: None

1] [0]

1] [1]

1] [3]

Returns:
None

Remarks :

This code was originally part of the example code from the book TCP/IP Sockets in C
written by Donahoo, M and Calvert, K.

void DieWithError (char *errorMessage)
{

#ifdef WIN32
fprintf (stderr, "%s : *d\n", errorMessage, WSAGetLastError ()) ;

#else
perror (errorMessage) ;

#endi f
exit (1) ;

}

124

\

Vita Auctoris

Christopher Rennick was born in Regina, Saskatchewan, Canada. He grew up in
Stratford, Ontario, Canada where he graduated from Stratford Central Secondary School
in 2003. He received his Bachelor of Applied Science in Electrical Engineering from the
University of Windsor in Ontario, Canada in 2007. He is currently a candidate for the
Master's of Applied Science degree in Electrical Engineering at the University of Windsor
and hopes to be completed his degree at the end of calendar year 2009. His research
interests include custom hardware and embedded system design.

	TCP/IP Control Server for a Multi-Drop Test Bench Network
	Recommended Citation

	ProQuest Dissertations

