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Abstract 

The robot localization problem is a key problem in making truly 

autonomous robots. If a robot does not know where it is, it can be difficult to determine 

what to do next. Monte Carlo Localization as a well known localization algorithm 

represents a robot's belief by a set of weighted samples. This set of samples approximates 

the posterior probability of where the robot is located. Our method presents an extension 

to the MCL algorithm when localizing in highly symmetrical environments; a 

situation where MCL is often unable to correctly track equally probable poses for the 

robot. The sample sets in MCL often become impoverished when samples are 

generated in several locations. Our approach incorporates the idea of clustering the 

samples and organizes them considering to their orientation. Experimental results show 

our method is able to successfully determine the position of the robot in symmetric 

environment, while ordinary MCL often fails. 
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Chapter 1 

Introduction 

In a complex environment such as symmetric environment, localization and 

navigation of a mobile robot- autonomously toward a goal is a very fascinating problem. 

A mobile robot can navigate mainly using a global map constructed from sensor 

information but before that, a robot need to localize itself based on matching local or 

global sensor information to this map and then decides its behavior subsequently based 

on the matching results. 

The mobile robot localization problem is introduced in many different ways [1, 

2]. The simplest localization problem is position tracking [1, 3,4, 5]. Here the initial pose 

of robot is known, and the problem is to compensate small, incremental errors in a 

robot's odometry. More challenging is the global localization problem [6], where a robot 

is not told its initial pose, but instead has to determine it from scratch. The global 

localization problem is more difficult, since the error in the robot's estimate cannot be 

assumed to be small. Even more difficult is the kidnapped robot problem [7], in which a 

well-localized robot is transported to some other place without being told. This problem 

differs from the global localization problem in that the robot might firmly believe to be 

somewhere else at the time of the kidnapping. The kidnapped robot problem is often used 

to test a robot's ability to recover from catastrophic localization failures. 

Many algorithms have been proposed for these problems. For example, Kalman 

filter [8, 9, 10, 11], Grid localization [12, 13, 14], Monte Carlo localization [15, 

16, 17] and some hybrid approaches [18, 19]. Undoubtedly, one of the most popular 

algorithms is the Monte Carlo localization (MCL). MCL solves the global localization 

and kidnapped robot problem in a highly robust and efficient way [20]. In contrast to 

Kalman filter based techniques which only work well for unimodal distributions, MCL is 

able to represent multi-modal distributions and can globally localize a robot. MCL is 
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more accurate than Grid localization with a fixed cell size. Moreover, it is surprisingly 

easy to implement, which makes them an attractive paradigm for mobile robot 

localization. 

The key idea of MCL is to represent the belief by a set of samples {particles), 

drawn according to the posterior distribution over robot poses. In other words, MCL 

simply represents the posteriors by a random collection of weighted particles which 

approximates the desired distribution [20]. However, all these proposed methods have 

particularly become unreliable in case of dynamic or symmetric environments and the 

localization problem is then become more challenging in these environments. 

1.1 Motivation 

Among many localization techniques, MCL has become arguably the most 

popular approach to date. By using a sampling-based representation, MCL has several 

key advantages over earlier work in this field. For example, it reduces the amount of 

memory required compared to grid-based Markov localization and in contrast to existing 

Kalman filtering, it is able to represent multimodal distributions. It is also surprisingly 

easy to implement, which makes that an attractive paradigm for mobile robot localization. 

However, there are some disadvantages too. For example, the standard MCL 

technique may fail during localization when there are similar locations in the robot's 

environment such as Robocop soccer field. The problem arises when samples are 

generated according to the posterior distribution (as is the case in MCL), they may 

represent the multimodal distributions that often arise during the localization in 

symmetric environment. This might be undesirable in symmetric environments, 

where multiple hypotheses have to be tracked for extended periods of time. 

However, although the MCL method is able to initially represent a multimodal belief 

distribution, it is unable to maintain it especially when the environment is highly 

symmetric [50]. 
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In this thesis, we propose a novel approach, called "robot localization with known 

orientation" which is based on Monte Carlo Localization framework. This proposes 

method represents an extension to the MCL algorithm, when environment is highly 

symmetric. Normally when executing MCL in symmetric environment, after iterating 

several steps, particles are accumulated in several locations. We use a simple clustering 

algorithm to separate the points (particles) into different clusters. We then compare each 

particle and consider if it is either allocated to an existing cluster or assigned to a 

newly created cluster, depending on its orientation. The comparison is performed 

based on our robot's orientation which is initially postulated parallel with the direction of 

the x-axis. 

Once clusters are generated, we utilized them to localize our robot in the 

environment. However, according to the symmetric feature of our environment, three 

possible situations are considered as below: 

1) Case one happens when most particles are accumulated around the true 

location of the robot. This accumulation represents that the robot is 

successfully localized in its actual location. However, the key point in this 

scenario is although particles become clustered all around the true position of 

robot, there is no such a condition to confirm that localization process is ended 

and now is time for robot to start position tracking. 

2) Case two happens when particles are accumulated contrariwise. This is a 

situation when particles often too quickly converge to a single, high likelihood 

pose and then ignoring the possibility that the robot might be located in 

somewhere else. The resultant cluster in this case represents the location of 

robot in opposite side. For example in Robocop soccer field, when the robot is 

located in upper corner, particles will show this location in bottom side. This 

reverse situation is created because particles have the opposite orientation. 

Thus, when the value of the robot's orientation is equal to 45° (0 = 45°), we 

have a set of particles that their orientation value are equal to 225°. This 

3 



situation therefore considers as a localization problem in symmetric 

environment and we will evaluate it in our propose method. 

3) In third case, the distribution of robot pose is usually multimodal due to the 

symmetry of the environment and ambiguous detected features. In this case, 

some particles are accumulated around the true location of the robot when 

some other particles are accumulated contrariwise and represent the location 

of robot in opposite side. Generally speaking, this case is the mixture of the 

two previous cases, on one hand some particles show the true location of robot 

and on the other hand some other particles indicate this position vice versa. 

This case is also considered as a localization problem in symmetric 

environment because the position of robot is shown in two different locations. 

Same as previous case, this problem will also be resolved with our propose 

solution for mobile localization in symmetric environment. 

We applied our method in all these three situations and clustered the particles 

based on the orientation. In order to do that, we take the MCL particle set as input that 

needs to be clustered. We then initialized the orientation of robot as a representative point 

and then we create our clusters according to this value. The value of representative point 

is initially postulated parallel with the direction of the x-axis (0 - it) and the threshold of 

dissimilarity 0 = 20° which is derived from the experiment has been considered as input. 

Calculating dissimilarity measures between current particle and every cluster to 

find a minimum one is considered as a next step. If the minimum measure was larger or 

smaller than @, a new cluster that contains current particles will be created. Otherwise, 

the considered particle will be assigned to the existing cluster which has a minimum 

dissimilarity measure to it. 

According to this implementation, we will be able to distinguish those clusters 

that have the same orientation with robot and those with other orientation, including the 

opposite one. This solution can be applied to all the cases that we mention above as 

different possible situations in symmetric environment. Take for example, when we apply 
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our method in case three, we can easily distinguish that which cluster consist the true 

orientation and therefore indicating the actual location of robot and which one is showing 

the virtual location of our robot due to the feature of the symmetric environment. 

1.2 Contributions 

This thesis is only concerned with the problem of Monte Carlo localization 

in symmetric environments, particularly in small-scale room with robot equipped 

with low-cost sensors. In this thesis, we introduce a cluster-based extension to MCL 

algorithm called "robot localization with known orientation". In this method, although 

clustering plays a very important role but our main concern is based on the orientation. 

Ordinary MCL can fail if the map is symmetrical, however, we propose a method based 

on this significant problem and in next chapters, we demonstrate that this method is valid 

and reliable. Experiments have been conducted with both simulated data as well as 

data obtained from a real robot. The results show that our algorithm is able to 

successfully determine the position of the robot in these environment, while ordinary 

MCL often fails 

1.3 Outline 

This thesis is organized as follows: 

Chapter 2: Localization and Probabilistic Framework. This chapter introduces 

the problem of robot localization and describes different instances of the problem. We 

discuss a framework that we can use to formalize the uncertainty and beliefs in the 

localization problem. Furthermore, we approach the localization problem from a 

probabilistic point of view and look at different solutions to the localization problem that 

implement this framework. 

Chapter 3: The Proposed Method. The proposed method is presented in detail 

in this chapter. The statement of the problem and the general description of our method 

have been discussed in this chapter. It is also followed by which clustering algorithm is 

chose and how to combine it with MCL. 
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Chapter 4: Implementation and experiment results. Details information of the 

implementation and the experimental results has been discussed in this chapter. Then, 

experimental results are presented that this new extension to the MCL algorithm 

successfully localizes in symmetric environments where ordinary MCL often fails. 

Chapter 5: Conclusion and future work. We summarize the presented work 

with concluding and we also present ideas and possibilities for future research. 
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Chapter 2 

Mobile Robot Localization in 

Probabilistic Framework 
In this chapter we will take a look at robot localization and argue it in probabilistic 

framework. In Section 2.1 We will discuss the general problem and review the different 

type of information to which a robot has access for localization. In Section 2.2 we will 

discuss features in the environment that a robot can detect. In Section 2.3 Localization in 

probabilistic framework is discussed. In Section 2.4 we introduce the notion of belief, and 

formalize the acting and sensing of a robot in probabilistic models and then use these 

models in section 2.5 to derive a general probabilistic formula for localization. We look 

to several implementations method in Section 2.6 and discuss how they deal with 

localization problem. 

2.1 Localization problem 

The problem of robot localization consists of answering the question " Where am 

I?" from a robot's point of view. This means the robot has to find out its location relative 

to the environment. When we talk about location, pose, or position we mean the x and y 

coordinates and 6 which is the heading direction of a robot in a global coordinate system. 

In determining this location, a robot has access to two kinds of information. First 

one is a priori information, gathered by the robot itself or supplied by an external source 

as an initialization phase. In general, this information supplied to the robot describes the 

environment where the robot is driving around. Second is navigational information that 

the robot gathers from its sensors while navigating through the environment. 

In order to navigating through the environment, a robotic vehicle has a driving 

system which is playing an important role in physical position of robot [25, 33]. The way 

that driving system changes the location of robot, contains valuable information in 
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estimating the location. However, in most robotic applications, this value is acquired by 

odometry sensors. Odometry works by integrating incremental information over the time 

and by using wheel encoders to count the number of revolutions of each wheel, the robot 

measures the distance it traveled and its heading direction. Odometry is widely used, 

because it gives good short-term accuracy, is inexpensive, and allows for very high 

sampling rates [27, 28]. Thou, due to drift and slippage the integration of the wheel 

revolutions lead to errors in both traveled distance and orientation [28,42]. These errors 

accumulate over time and in particular errors in the orientation, cause large positioning 

errors. Another disadvantage of odometry is its sensitivity to terrain. If the surface the 

robot is driving on is not smooth, it can result in considerable position errors, since the 

odometry system cannot detect the irregularities in the terrain. Also differences in wheel 

diameter can cause position errors that are not detected by odometry measurements 

[30,40]. Although, odometry causes increasing error in the location estimate, it is the 

easiest way to access form of position information and therefore it is an important source 

of information for localization. 

Sensing the environment through the sensors is another factor to navigating the 

environment. These sensors give momentary situation information, called observations 

or measurements. This information in one hand describe things about the environment of 

the robot at a certain moment and on the other hand provide the location of the robot that 

is independent of any previous location[26, 35].This independency has the advantage that 

the error in the position does not grow unbounded. 

2.2 Features of Environment 

The feature of our environment is contributed to obtain the measurements data 

and can be introduced into different model. One of the common types of environments is 

symmetric environment which is very ambiguous for robot to localize itself successfully 

through that. Take for example the Robocop soccer field has a very complex symmetrical 

form for robot to localize itself in actual location. Figure 1.1 illustrates this situation in a 

robot soccer field. 
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Figure 2.1: Robocop soccer filed 

In this case, for any considered locations as a possible location of our robot, we 

have another match location in other side that represents the location of robot 

symmetrically. 

2.2.1 Landmarks 

This complexity can be reduced by adding obstacles or landmarks to our 

environments. Landmarks are features in the environment that a robot can detect them. 

Sensor readings from a robot are analyzed for the existence of landmarks and once 

landmarks are detected, they are matched with priori known information of the 

environment to determine the position of the robot. Landmarks can be divided into active 

and passive landmarks. Active landmarks are landmarks that actively send out location 

information and robot senses the signals sent out by the landmark to determine its 

position. For example the GPS sensor [30], uses information from uniquely coded radio 

signals sent from satellites. 

However, active landmarks in practice often cannot send out their signals in all 

directions, and thus cannot be seen from all places. Furthermore, active landmarks may 
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be expensive to construct and maintain. If the landmarks do not actively transmit signals, 

the landmarks are called passive landmarks. The robot has to actively look for these 

landmarks to acquire position measurements. Techniques using passive landmarks in 

determining the position of the robot rely on detection of those landmarks from sensor 

readings. The detection of landmarks depends on the type of sensor used. For example, 

in detecting landmarks in images from a vision system, image processing techniques are 

used. 

2.2.2 Map 

Another group of localization techniques are map based positioning. These 

approaches use geometric features of the environment to compute the location of the 

robot. Examples of geometric features are the lines that describe walls in hallways or 

offices. Sensor output is then matched with these features. Model matching can be used 

to update a global map in a dynamic environment, or to create a global map from 

different local maps [24]. Using this technique to determine the absolute position of a 

robot has the disadvantage that there needs to be enough sensor information to be 

matched with the map to come up with a position. Furthermore, techniques for matching 

sensor data with maps often require large amounts of processing power and sensing [25]. 

2.3 Localization and Probabilistic 

If we look at the localization problem probabilistically, we can say that the robot 

has a belief about where it is. At any time, it does not consider one possible location, but 

the whole space of locations. The localization problem consists of estimating the 

probability density over the space of all locations. 

The robot has a belief which is the probability density over all locations x G S, 

where E is the set of all locations. We denote the belief by Bel. Localization can be seen 

as maintaining the belief, 

Bel(xk)=P(xk\d0„_k) (2.1) 
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That is, the probability that the robot is at location xk at time k, given all 

information or data d0_k up to that time. The location that gives this probability 

distribution has the highest probability in the location at which the robot is most likely to 

be. The goal of localization is to make this belief get as close as possible to the real 

distribution of the robot location. The real distribution of the robot location has a single 

peak at the true location and is zero everywhere else. If the robot achieves this goal, then 

it knows exactly where it is located. 

However, in some cases, during the localization, the robot has access to absolute 

and relative measurements. Relative measurements are measurements that are made by 

looking at the robot itself only. The robot incorporates these measurements into its belief 

to form a new belief about where it is. To be able to update the beliefs with the latest 

measurement information, we need to express measurement information in probabilistic 

terms. We need to define a probabilistic model for the acting, that is, the relative 

measurements, and a probabilistic model for the sensing, that is, the absolute 

measurements. 

2.3.1 Acting 

A robot performs actions and changes its position in the environment. We define 

action ak from a set of possible actions and express the location of the robot changes 

probabilistically by a transition density as [31, 2] 

P(xk\*k-i. a*-i) (2.2) 

This probability density gives the probability that if at time step k - 1 the robot 

was at location xfe_! and performed action afc_!, then it ended up at location xk at time 

step k. In other words, the transition density describes how the actions of the robot 

change its location. This density is therefore called the action or motion model. 

Actions contain relative information about the new location of a robot. By given 

the last location, the robot can estimate its current location based on the performed action. 

Without the last location, the robot only knows it made a certain move; it is not able to 
11 



label an absolute location to the resulting position. In practice we can roughly 

approximate this transition density from the kinematics and dynamics of the robot. 

Another option is to have the robot learn the model itself [31, 49]. 

2.3.2 Sensing 

We can also describe the sensing of the robot in probabilistic terms. Let S be the 

space of all possible measurements coming from a sensor, and let sk denote an element in 

S observed at time k. We can describe the probability that a sensor observes sk from a 

certain location xk at time k by the density [31,2]. 

P(sk\xk) (2.3) 

This is called the sensor or perceptual model. As with the motion model, the 

perceptual model is often time-invariant. In that case we can omit the time subscript k. 

Unlike the transition density of the acting of the robot, this probability density is 

difficult to compute. The reason for this is the sometimes high dimensionality of the 

measurements. Consider for example how complex the probability density is if the 

measurements come from a camera. The probability density will have to give a 

probability for each possible camera picture at each possible location, which would 

require a large amount of computing power. 

2.4 Localization Formula 

The robot performs an action and this action changes the location of the robot 

according to the transition density from. Besides this, the robot can also get information 

from sensing the environment and perhaps extracts features from this sensor information 

to form a feature vector which is distribute according to the probability distribution from. 

The robot now has to update its belief with the new information in order to get the 

best location estimate. 
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2.4.1 Belief 

Before the robot start acting in the environment it has an initial belief of where it 

is. We model this belief by the prior belief at time step 0, Bel~(x0). If the robot knows 

where it initially is, then Bel~(x0) is a distribution with a peak at the location where the 

robot knows it is. The goal of the localization becomes to compensate for slippage, drift 

and possible other noise sources to keep track of the location. This problem called the 

position tracking problem. In the case that the robot does not know where it starts, the 

initial belief Bel~(x0) is a uniform distribution. The problem of localization is to make 

the robot localize itself, not having any idea of where it is. This is described as the wake-

up robot or global localization problem. Finally, in the case that the robot thinks it is at a 

certain location, but it actually is not there, the initial belief is initialized with a peak at 

the location where the robot thinks it is. Since it is not actually located there, the robot 

has to detect this and adjust its belief. This is called this the kidnapped robot problem. 

Starting with the initial belief the robot starts querying its sensors and performing 

actions in the environment. The resulting measurements and actions have to be 

incorporated into the belief of the robot to give it the most up-to-date location estimate. 

The belief the robot has after it has incorporated the action afe_! executed at step k — 1, 

and before it gets a new measurement zk, is the prior belief, 

Bel~(xk) = P(xk \zlf a1( z2, a2, . . . . zfc_lf afe_i) (2.4) 

Once it has received an absolute measurement zk at step k, it incorporates this 

measurement to obtain the posterior belief, 

Bel+(xk) = P(xk\z1,al, z2,a2, . . . ,z f c_ l la f t_1 ,zk) (2.5) 

2.4.2 Incorporating Acting 

Assume the robot has performed an action and wants to include the relative 

position measurement result of this action into its belief. In equation (2.4) we defined the 

belief which is the latest action information incorporated, the prior belief Bel~(xk). We 
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can rewrite this original definition by utilizing the theorem of total probability and use 

Markov assumption. The theorem of total probability states that the probability of an 

outcome is equal to the sum of the probabilities of each of its dependent, partial, 

outcomes [33]. Using this theorem, we rewrite the definition of the prior belief (2.4) to 

Bel~(xk) = J" sP(*k |*k_1 ,z l la1 > . . . lzk_1 ,ak_1) * 

POfc-!|z1( alf..., zk_ lf ofc_i) dxk_x. (2.6) 

This equation expresses that the prior belief of being in state xk is the sum of the 

probabilities of coming from state xk_x to state xk given all the earlier actions and 

measurements, P(jtk | j tk_1 ,z1 ,a1 , . . . )zk_1 ,ak_1), multiplied by the probability of 

actually being in state xk_i given all the earlier measurements and actions, 

P(xk-i \zi> a i . • • • / zk-\< afe-i)-

The second term of the integral in (2.6) is the probability of being at location 

xk..x given all information up to step k - 1; in particular the action performed at step k -

1. However, the physical location of the robot at step k - 1 does not depend on the 

action that is performed at that step. Therefore, we do not have to take ak_! into account 

when expressing this probability. Using this and the definition of the posterior belief from 

(2.5), we rewrite (2.6) into 

Bel~(xk) = / s P(x k | x k _ 1 , z 1 , a l l . . . , z k _ 1 , a k _ 1 ) x 

P(xk-1 lzl> al> • • • > zk-2> ak-2> zk-l)^xk-l 

= }sP{xk\xk-\>zl>a\>--->zk-l>ak-l) x 

fle/+(xk_1)<fck_1. (2.7) 

To simplify the expression of the first term of the integral in (2.7) we make a 

Markov assumption [2, 37], which states that given knowledge of the current state, the 

past is independent of the future, and vice versa. With knowledge of the previous 
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location xk_x , it is of no importance how the robot ended up at that location or what it 

sensed. With this, we have that 

P(.xk \xk-l> Zl>---> Zk-\> a fe- l ) = P(xk \xk-l> ak-l)- (2-8) 

The right hand side of this equation is the conditional probability of being in state 

xk given knowledge of the previous state and the performed action. We defined this as 

the action model in (2.2). By substituting the result into (2.7) we obtain an equation that 

can be used to efficiently incorporate the robot's actions into its belief, 

Bel~(xk) = fE P(xk |xk_ l t afe_i) Bel+(xk_x)dxk_x (2.9) 

That is, the prior belief of the robot in being at location xk . 

2.4.3 Incorporating Sensing 

Assume that the robot has the prior belief Bel~(xk), the belief in the location after 

it has performed its last action. The robot makes a measurement of the environment and 

extracts a feature vector zk from this measurement. We want to incorporate this 

measurement into the prior belief to form the posterior belief as we defined in equation 

(2.5). With Bayes' rule and the Markov assumption we can rewrite this posterior belief 

into a computation-ally efficient form. 

Bayes' rule [36, 33] explains how the robot has to change its belief when a new 

measurement arrives. Using Bayes' rule and the definition of the prior belief from (2.4), 

we can rewrite (2.5), 

D j+( N = P(zfe|xfc,zi,ai,-,Zfc-i,afc-i)P(xfc \2\.a\,-,Zk-\^k-\) 
P(zfe|z1,a1,...,zk_1,afe_1) 

= P0?fc |sfe,z1,a1,...,zfe_1,afe-1) Bel ~(sfc) 
P(zfe|z1,ai,...,zk_i,afc_i) 
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That is times the prior belief of being in s t a t e s , Bel (xk), divided by the 

probability of observing measurement xk conditioned on all information so far, 

P(z f c |z l f . . . ,ak_1) . 

To make the computations of equation (2.10) less complex, we again make the 

Markov assumption. In this case we use it to state that a sensor reading only depends on 

the current state. The sensor reading is not influenced by previous locations of the robot. 

It does not matter how the robot got at the current location. The probability of observing 

a measurement is independent of the actions and observations that were made before the 

robot arrived in its current state. We use this assumption to rewrite the first term in the 

nominator of (2.10), 

P(zk\xk,z1,a1,...,zk_l,ak_1)=P(zk\xk) (2.11) 

When we make the Markov assumption, the conditional probability of observing 

measurement zk given the current state and past actions and observations reduces to the 

sensor model from (2.3). If we substitute this into (2.10), we obtain 

Ber(xk) = ——; (2.12) 
P(Zfc|Zi,Oi l... lZfc_i,Ofc_i) 

The denominator of this equation is a normalizing constant ensuring that the 

probability density integrates to 1. This constant is calculated by integrating the 

numerator over all possible locations xk [36, 31], 

P{zk |z lf at,..., zk_x, afc_i) = fE P{zk \xk) Bel~ixk)dxk (2.13) 

Equation (2.12) shows how we can express the posterior belief in terms of the 

prior belief. It also shows how we update the posterior belief to incorporate a new 

absolute measurement. It is a computationally efficient equation due to the use of the 

sensor model and the prior belief. 
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Finally we can combine the derived results into a single localization equation for 

the posterior belief in the location of a robot taking into account sensing and action 

information. Substituting equation (2.9) into equation (2.12), the posterior belief becomes 

n , + / , P(zk\xk)Ber(xk) 
Ber(xk) = —-—• — 

P(.zk\*i afc-i) 

P(zk\xk) jE P(x fe |x fe_1,q fc_1)gef+(x fc_1)dxk_1 

P(zfc|z1,...,afc_1) 

= r]kP{zk\xk) $EP(xk\xk_1,ak_1)Bel+(xk_1)dxk-1 (2.14) 

Where r)k is the probability density normalize P(zk\Z\,...,afc_i)-1, calculated 

as in equation (2.13). 

2.5 Methods of Implementation 

A way of dealing with continuous location spaces is by discretization or 

factorization of the space [19, 48]. This way of representing the belief is captured by 

Hidden Markov Models [3, 44]. These are general models in terms of transition and 

measurement probabilities. A number of methods has been developed using different 

representations for the discretization [34, 39]. However we only focus one particle filters 

as a one way of discretization and introduce it as below. 

2.5.1 Particle Filters 

Particle filter represents the posterior distribution Bel+(xk) by set of random 

samples drawn from this distribution. Each particle, which is a sample of the posterior 

distribution, represents a possible state to be estimated at time t. The input of particle 

filter is the particle setA:fc_1, along with the most recent control ak and the most 

recent measurement zk. MCL proceeds in two phases: 
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Robot motion. When the robot moves, MCL generates N new samples that 

approximate the robot's position after the motion command. Each sample is generated by 

randomly drawing a sample from the previously computed sample set, with likelihood 

determined by their p values. This value is a numerical weighting factor, analogous to a 

discrete probability. 

i#3KS«rs 

Figure 2.2 Sampling-based approximation of the position belief for anon-sensing robot [45]. 

Figure 2.2 shows the effect of this sampling technique, starting at an initial known 

position and executing actions as indicated by the solid line. As can be seen there, the 

sample sets approximate distributions with increasing uncertainty, representing the 

gradual loss of position information due to slippage and drift. 

Sensor readings describe the formation process by which sensor measurements 

are generated in the physical world. In fact, it is defined as a conditional probability 

distribution P (zk\xk , m), where xk is the robot pose, zk is the measurement at time k, 

and m is the map of the environment. Figure 2.3 shows a typical range-scan obtained in a 

corridor with a mobile robot. 
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Figure 2.3: Typical scanner of a robot in its environment. [45] 

However, the sensors equipped on Create for detecting the external environment 

are really limited. In our experiment, the positive return from bump sensors means that 

Create touches the wall. . The bumper sensors return feedbacks only when they detect a 

hard surface. In our experiment, the positive return from bumper sensors means that robot 

touches the wall and then, high weight will be assigned to the particles which are 

around the wall, and low weight will be given to the rest of particles. 

2.6 Summary 

The robot localization problem is the problem of answering the question "Where 

am I?" from a robot's point of view. In some cases, the robot has access to priori 

information (map) that is describing characteristics of the environment. In other cases, 

however, the robot acquires the information while it is localizing in the environment. 

This information consists of relative and absolute measurements. The relative 

information provides high frequency, low cost, detailed information about the relative 

19 



displacement of the robot, independent of features in the environment [46, 43]. The 

absolute information provides position measurements based on observations made from 

the environment. This position information is independent of previous position estimates. 

However, this comes at the price of higher computational costs, lower frequency and 

lower accuracy. Since the absolute measurements do not depend on previous position 

estimates, they do not suffer from unbounded error growth. 

In probabilistic localization problem, the robot considers the whole space of 

locations as a possible location to be, instead of being sure of one location. A robot starts 

with an initial belief and this belief can be a uniform distribution when the robot has no 

idea where it is, or it can be a distribution with one peak at the right location if the robot 

knows, or thinks it knows, where it is. 
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Chapter 3 

Robot localization with known 

orientation 

As we mention above, among many localization techniques, MCL has become 

arguably the most popular approach to date. However, the standard MCL technique 

sometimes is unable to maintain multimodal belief distributions that are present in 

complex situation such as symmetric environments [50]. We propose a new method 

based on this localization problem in symmetric environment and we will discuss more 

about it in this chapter. 

In Section 3.1 we present our motivation based on the MCL's debilities. In 

Section, 3.2, we propose our method according to this motivation. Then we discuss 

clustering and explain how it works in Section 3.3. We discuss popular algorithm for 

clustering in section 3.4 and introduce the basic sequential algorithm as a fast method to 

produce a single clustering. Section 3.5 describe more details about our method and 

finally we may draw our conclusion in section 3.6 

3.1 Motivation 

Undoubtedly, many algorithms have been implemented based on MCL [19, 20, 

36, 38] in recent years. In most of them, increasing the accuracy and efficiency of MCL 

are intended as a main goal. For example one of the controversial issues is when the 

number of particles required to achieve a certain level of accuracy varies drastically 

[3,47]. There are several extensions to MCL that solve the problem of failure in number 

of particles. Take for example, Sensor Resetting Localization (SRL), Mixture MCL (Mix-

MCL), and Adaptive MCL (A-MCL) [22]. Although some of those approaches produce 

remarkable results, they are not satisfactory, due to the feature of the environments. This 

is especially true for any application in dynamic or symmetric environment such as 

21 



Robocop soccer field which is dynamic because other robots as a soccer players are 

moving through the environment and it is symmetric because objects are reflecting along 

the coordinate axis. This will increase the level of uncertainly for robot to find its actual 

position precisely when the environment is very ambiguous and symmetric. Therefore, 

not only method of implementation, but also feature of the environment plays a very 

important role to increasing the accuracy and efficiency of MCL. 

However, our main concern in this thesis is based on the symmetric environment. 

We executed the ordinary MCL in this environment and the following three cases 

emerged. 

First Case: Most of the generated particles are accumulated around the actual location of 

robot and confirmed that the localization is successfully ended. However, 

this is the case that does not happen very often in symmetric environment. 

Figure 3.1 illustrate the situation. 

Figure 3.1: Particles are accumulated around robot 

In this rectangle symmetric environment, Particles are accumulated in 

one location and robot is presented as a red circle in middle of that. 
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Second Case: In this case, particles have reflection along the coordinate axis. This 

reflection is achieved based on the movement of the robot in our 

environment. For example, when environment is rectangle and robot 

touches the long side of the environment the reflection will be based 

on the X-axis, because long side is parallel with x-axis. Same thing 

for small side, when robot touches the small side of our rectangular 

environment, the reflection will be based on the Y-axis because small 

side is parallel with y-axis. Figure 3.2 demonstrating this situation. As 

we can clearly see in this picture, when we divide our environment to 

four smaller areas along the coordinate axis, although robot is located 

in fourth section, particles are representing the virtual location of 

robot in second area. This is the situation when robot is localized 

vice versa. 
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Figure 3.2 Robot is located vice versa 

Third Case: this case which is the most common situation in symmetric environment is 

combination of two previous cases. This time, particles will show the 

location of robot not only in actual position, but also as a reflection 

along the coordinate axis. As we can see in figure 3.3, particles are 
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accumulated in two main group and illustrating the location of robot 

in second and forth area. Particles with black color represent the true 

location of robot and particles that are blue represent the virtual 

location of our robot. 
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Figure 3.3 Combination of two previous cases and represents the location of robot in two areas. 

3.2 Proposed Method 

Before describing our method in details, we first explain the problem statement 

that gave us the motivation to propose our method in symmetric environment and then 

show how we solve this significant problem in our method. 

3.2.1 Problem Statement 

In robotic, when we talk about the localization, several factors must be 

considered. Method of implementation, environment and even accuracy of the sensors are 

just few of them. Each of them has its own hardness and consider as separate field. 

However, in case of environment, symmetric environment is one of the most challenging 

environments in robot localization. We consider our main focus in this environment and 

propose a method for mobile robot localization in symmetric environment. However, 
24 



because our method is based on Monte Carlo Localization framework we first executed 

the ordinary MCL in this environment. After iterating several steps in MCL, we realize 

that when samples are generated according to the posterior distribution (as is the case in 

MCL), they may represent the multimodal distributions that often arise during the 

localization in symmetric environment. We also find that in some cases particles are 

ignoring the possibility that the robot might be located in somewhere else and they often 

too quickly converge to a single, high likelihood pose regardless to the actual location of 

robot. 

According to these inabilities in MCL, we propose a method to determine the 

actual position of robot in symmetric environment. In our method, we utilized the 

clustering because particles are not considered individually as a single point and we need 

to analyze them as a whole entity. Based on checking the orientation of each clusters, the 

robot can distinguish that which one of the above described cases is happed. Figure 3.4 

shows three pictures of localization cases in symmetric environment. 

i 
4 

(a) (b) (c) 

Figure 3.4: An example of three stages of MCL in symmetric environment. 

Figure 3.4(a) it shows particles concentrated successfully around the true position 

of the robot and the true position is represented by black cluster. In figure 3.4(b), 

although the robot is located in bottom side, particles are representing the virtual location 

of robot in opposite side. This is the situation when particles are accumulated in blue 

cluster and robot is localized vice versa. Figure 3.4(c) shows that there is uncertainty that 

whether robot is located in black or blue cluster. 
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3.2.2 Details of our method 

To obtain a better result from MCL in symmetric environment, the distribution of 

the particle set in our method is analyzed by sending to the clustering part. Then, the 

resultant clusters are used to determine whether the robot is successfully localized in true 

location or it is localized contrariwise. In case of reverse localization, particles have the 

opposite direction with robot. For example, in figure3.5, when the value of the robot's 

orientation is equal to n (9 = 71) and robot is moving to the north side, particles return 

their orientation value equal to 2TT and moving to the south side. 

A-

Figure 3.5: Case of reverse localization 

Therefore orientation is considered as a main point in our method to distinguish about 

which cluster is correspond to direction of the robot and which cluster is pointed to 

another bearing. In order to describe our consequence in this method, two characteristic 

variables are calculated respectively as below: 

1) 0, the value of representative point (robot's orientation). 

2) 0, threshold of dissimilarity 

9 is indicate as a value of our robot's orientation and it is initially postulated parallel with 

the direction of x-axis (d - it) in first time that we settle our robot in our environment. 

This value is updated whenever that robot is turned in our environment. 0 which is 

postulated to 20° was used as dissimilarity input value to measuring the dissimilarity 
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between current particle and every existent cluster in our environment. The value of 0 is 

derived from the experiment. We have appointed different values for 0 during our 

experiment but we realized that the best acceptable value for alpha is 20 degrees 

considering to the size of our environment and the percentage of the error distance in our 

motion model. However, if the value of this measurement was larger or smaller than 0, a 

new cluster that contains current particles will be created otherwise, the considered 

particle will be assigned to the existing cluster which has a minimum dissimilarity 

measure to it. However, before we are going to describe our method in more details, a 

brief introduction will be provided to introduce the clustering and shows how it is works 

in our algorithm. 

3.3 Clustering Algorithm 

Clustering is one solution to the case of unsupervised learning, where class 

labeling information of the data is not available. Clustering is a method where data is 

divided into groups (clusters) which 'seem' to make sense. Clustering algorithms are 

usually fast and quite simple. They need no beforehand knowledge of the used data 

and form a solution by comparing the given samples to each other and to the clustering 

criterion. Clustering is used in many fields of science including machine vision, life and 

medical sciences and information science. One reason for this is the fact that intelligent 

beings, humans included, are known to use the idea of clustering in many brain functions. 

3.3.1 Basic Concept 

When classifying different kind of samples a way to represent the sample 

in a mathematical way is needed. These features are represented in a feature vector. A 

feature vector is a vector including different features for the sample. That is, with n 

features xt the feature vector is of the form 

x = [x l 5x 2 , . . . , x n ] T (3.1) 
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Where T denotes transposition and xt is typically real numbers. The selection of these 

features is often very hard due to the fact there usually are a lot of features from where 

the most representative ones should be selected. This is because the computational 

complexity of the classification (clustering) algorithm grows with every feature selected. 

Feature selection and the reduction of dimensionality of the data are beyond this 

document. 

3.3.2 Definition of a Cluster 

Now, let us define some basic concepts of clusters in a mathematical way. Let X 

be a set of data, that is 

X = [x1 ,x2 , . . . ,xn] (3.2) 

Where X is a set of vectors constituted by n vectors xt. The set X includes a group of 

vectors, into m small sets (clusters Q) if the following conditions are met: 

1. None of the clusters is empty; Q ^ 0 

2. Every sample belongs to a cluster 

3. Every sample belongs to a single cluster QD Cj = 0, i^j 

Naturally, it is assumed that vectors in cluster Cj are in some way "more similar" to each 

other than to the vectors in other clusters. 

3.3.3 Proximity Measure 

When clustering is applied a way to measure the similarities and dissimilarities 

between the samples is needed. A typical case where proximity between subsets is 

needed is when a single vector x is measured against a cluster C. The representative can 

be chosen so that the value is, for example, maximized or minimized. If a single vector 

representative is chosen among C the used method is called global clustering criteria 
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and if all the vectors in C have an effect on the representative a local clustering 

criteria is being used. Figure 3.5 one type of representatives is shown below. 
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Figure 3.6: Line representative [17] 

3.4 Popular algorithm in Clustering 

As we mention above, calculating all possible combinations of the feature vectors 

is not generally possible. Clustering algorithms provide means to make a sensible 

division into small clusters by using only a fraction of the work needed to calculate all 

possible combinations. 

3.4.1 Basic Sequential Algorithm 

Sequential algorithms are straightforward and fast methods to produce a 

single clustering [32]. Usually the feature vectors are presented to the algorithm 

once or a few times. Final result is typically dependent on the order of presentation and 

the result is often compact. 

A very basic clustering algorithm that is easy to understand is basic 

sequential algorithmic scheme (BSAS). In the basic form vectors are presented only once 

and the number of clusters is not known a priori. What is needed is the dissimilarity 
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measure d(x, C) and the threshold of dissimilarity 0 and the number of maximum 

clusters allowed q. 

The idea is to assign every newly presented vector to an existing cluster or create 

a new cluster for this sample, depending on the distance to the already defined 

clusters. As pseudo the algorithm works like in table 3.1. 

1. m = 1; Cm= {Xi}; // Mt first cluster = first sample 

2. for every sample x from 2ioN 

a. find cluster Cksuch that min d(x, C^ 

b. if d(x, Cfc) > © AND (m< q) 

i.m = i + l; Cm= {x} //Create a new cluster 

c. else 

i. Ck=Ck+{x} // Add sample to the nearest cluster j 

i i Update representative if needed 

3. end algorithm j 

Table 3.1 Basic Sequential Algorithm 

As can be seen the algorithm is simple but still quite efficient. Different choices 

for the distance function lead to different results and unfortunately the order in 

which the samples are presented can also have a great effect to the final result. What's 

also very important is a correct value for 0 . This value has a direct effect on the 

number of formed clusters. If 0 is too small unnecessary clusters are created and 

if too large a value is chosen less than required number of clusters are formed. 
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One detail is that if q is not defined the algorithm 'decides' the number of clusters 

on its own. This might be wanted under some circumstances but when dealing 

with limited resources a limited q is usually chosen. 

3.5 Further details for our method 

The concept of localization in our method is referred as the different distributions 

of particle set which have significant characteristics and can be distinguished from each 

other. In this method, the distribution of the particle set is analyzed by sending to 

the clustering part and then, the clustered particle set is further used to extract 

information. This characterization is based on the orientation and particles will be 

organized according to this attitude. Therefore the orientation of each individual particles 

has been compared with orientation of our robot that is initially postulated parallel with 

the direction of the x-axis (0 = 7t). For this comparison, threshold 0 is considered as an 

input and it is equal with 20°. Based on this threshold value, we can estimate that the 

maximum number of cluster that may produce is equal to 18 clusters. However, most of 

these clusters will disappear after iterating several steps in MCL and only two of them 

will remain in our environment frequently. One of these clusters always refers to actual 

location of robot with same orientation and other one always acts vice versa. Just to have 

a better visual perception, we have shown each one of these clusters with different color 

that makes our comparison easier. For example, particles in black cluster always 

represent the same orientation with robot and particles in blue cluster act contrary. 

Furthermore, in order to describe the stages of localization, three characteristic 

variables are calculated respectively. nc for number of clusters, nmax for number of 

particles in the cluster which has the maximum number of particles compared to other 

clusters, and pm a x for percentage of nmax in the current whole set of particles. We 

utilized these parameters to have a terminate condition to stop the recursive process in 

MCL. For example, if one of our clusters contained more than 80% of particles in whole 

particle set, the localization process will stop. In case of having two clusters such as case 

three in our environment, when number of particles in both cluster become more than 
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90% of particles in whole particle set, the robot will stop to indicating the localization 

process. 

We also specified a yellow point in middle of the biggest cluster - in case of the 

number of particles - to represent the actual location of our robot. In order to do that, we 

choose Euclidean distance between particles as our proximity measures. However, if this 

point is appeared in middle of the black cluster, the distance between the current location 

of robot and actual location of yellow point is not very significant. On contrary case, 

when the yellow point is appeared in middle of the blue cluster, we will represent that 

backward and reflect it along a coordinate axis in our environment. In this case the 

distance between the current location of robot and actual location of yellow point is 

significant. Table 3.1 is pseudo code description of our method that is represented as 

below. 

The combined MCL-Clustering algorithm 

Xk =MCL (xk_t, uk ^zk) 

Ck = B S A S (xk , © ) //clustering based on Orientation 

//humber of clusters in clustered particle set 

nc = numberOfClusters(Cfc) 

//the number of particles in the cluster which has the maximum number 

of particles compared to other clusters 

nmax= tsaxParticleNumbers (Ck) 

//the percentage of nmax in the current whole set of particles, ntotal is the 

number of current particles 

if(C0=Q)&(pmax>e) 

/•'stop to indicate localization is successful completed or starts doing other jobs 

Return Xk , Ck , nc , nmax , pmax 

Table 3.2: Incorporated MCL with clustering algorithm 
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3.6 Summary 

We mixed the clustering method with MCL framework to categorize this 

information and have a better resolution result. Clustering is one solution to the case 

of unsupervised learning, where class labeling information of the data is not 

available[41]. Clustering is a method where data is divided into groups (clusters) which 

'seem' to make sense. One of the fastest ways to produce a clustering is basic sequential 

algorithmic scheme that we employed it to do our clustering which is based on 

orientation. 

In our method, the orientation of each individual particles has been compared 

with orientation of our robot that is initially postulated parallel with the direction of the x-

axis .Therefore, those particles with same orientation range are collected in the same 

cluster and the rest will goes and collected in other cluster. Then we can distinguish 

about which cluster is correspond to the direction of the robot and which cluster is 

pointed to another bearing. This technique has a noticeable functionality in symmetric 

environment and will improve the ambiguous of belief state. 
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Chapter4 

Implementation and Experiment 

Results 

In this chapter, we show how we can apply our method to the Robot Localization 

problem in symmetric environment. We implemented a simulator and real robot word 

experiments that allows us to step-by-step combine a part of the localization problem 

with our technique and look at how the behaviors of our method in different 

circumstances, considering practical situations. 

In Section 4.1 we start with some general remarks about preparation, Robot Serial 

Command Interface (SCI) and its behavior. In section 4.2 hardware platforms and its 

setup has been discussed. In section 5.3 we will present the experimental results and then 

provide some references to related work in Section 4.4. 

4.1 Preparation 

In order to implement our method in virtual and real word environment, we 

prepared of list of hardware and software interface that we described each one of them in 

details respectively. 

4.1.1 Software Interface 

Versions of Robot manufactured contain an electronic and software interface that 

allows us to control or modify our robot behavior and remotely monitor its sensors. Our 

robot is not exemption and utilized the interface that called the iRobot Create Serial 

Command Interface or Create SCI 
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Create SCI is a serial protocol that allows us to control our robot that called 

Create which is an autonomous mobile robot for educators and developers built by 

iRobot Corporation, through its external serial port (Mini-DIN connector). The SCI 

includes commands to control all of Create's actuators and also to request sensor data 

from all of Create's sensors. Using the SCI, we can add functionality to the normal 

Create behavior or we can create completely new operating instructions for Create. 

To use the SCI, a processor capable of generating serial commands such as a PC 

or a microcontroller must be connected to the external Mini-DIN connector on Create. 

The connector is located in the rear right side of Create beneath a snap-away plastic 

guard. 

4.1.2 Create SCI Pattern 

The Create SCI has four operating modes: off, passive, safe, and full. On a battery 

change or other loss of power, the SCI will be turned off. When it is off, the SCI will 

listen at the default baud bps for an SCI Start command. Once it receives the Start 

command, the SCI will be enabled in passive mode. In passive mode, we can request and 

receive sensor data using the Sensors command, execute virtual button pushes to start and 

stop the cycles and define a song (but not play one). 

We cannot control any of Create's actuators when in passive mode, but Create 

will continue to behave normally, including performing, charging, etc. When in passive 

mode, we can then send the Control command to put the robot into safe mode. In safe 

mode, we have full control of the robot, except for detection of a cliff while moving 

forward (or moving backward with a small turning radius), detection of wheel drop (on 

any wheel) and charger plugged in and powered. 

When one of the conditions listed above occurs, the robot stops all motors and 

reverts to passive mode. For complete control of the robot, we must send the Full 

command while in safe mode to put the SCI into full mode. Full mode shuts off the cliff 

and wheel-drop safety features. (The robot will still not run with a powered charger 
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plugged in.) This mode gives us unrestricted control of the robot's actuators. To put the 

SCI back into safe mode, we can send the Safe command. 

If no commands are sent to the SCI when it is in safe or full mode, Create will 

wait with all motors off and will not respond to button presses or other sensor input. To 

go back to passive mode from safe or full mode, we can send any one of the four virtual 

button commands. These button commands are equivalent to the corresponding button 

press in normal Create behavior. 

However, all the Create's controls such as movement and access to sensors are 

obtained through a Java Application Programming Interface (API) named Roombacomm, 

which is Java library for communicating and controlling the Create. Although it is 

designed for robot Roomba, it works very well with Create and it works on any operating 

system that supports a serial communicator for Java (RXTX). Therefore, all source code 

in our implementation is written in Java with utilizing the Eclipse Software Development 

Kit. 

4.1.3 Hardware Platforms 

The Roomba is an autonomous robotic vacuum cleaner made and sold by iRobot. 

Under normal operating conditions, it is able to navigate a living space and its obstacles 

while vacuuming the floor. However, to give scientists a better platform they've gone 

ahead and built the iRobot Create to work with. The main differences are a lack of 

vacuum - no more clean floors - and a nifty "cargo bay connector" which can support a 

Command Module which bristles with ports and allows us-added motors, sensors and the 

like. Otherwise, most functions are quite similar to that such as Virtual Walls, the Home 

base and the Remote Control. 

The iRobot Create comes fully assembled. It has two powered wheels, a castor 

(and optional 4th wheel), 10 pre-programmed behaviors, an expandable input/output port 

for custom sensors and actuators a cargo bay with mounting points and a tailgate for 

ballast. As a first movement, because the Create is designed to move forward, all the 
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sensitive sensors are located on the movable front bumper. This rubber bumper protects 

them or anything they run into from any damage that might otherwise be sustained. When 

a Roomba turns, its fixed front wheel would skid. This swiveling caster of the Create 

reduces that and hopefully makes turning a little more accurate. 

The Cargo Bay Connector, located in the front middle of the cargo bay, 

contains 25 pins that let us to attach electronics for peripheral devices such as 

additional sensors. The Element Direct BAM (short for Bluetooth Adapter Module) is 

one of these additional sensors that enable wireless control of the iRobot Create robot 

from a Windows. The BAM connects to the Create's cargo bay port - without any extra 

wires or cables. The BAM provides a virtual serial port connection between a Bluetooth 

host and Create. A PC can communicate with Create in the same way it would as if it 

were attached with a serial cable. The BAM gives us complete wireless control of Create. 

It also exposes Create's programmable 10, making it easy to connect additional 

hardware. 

Generally speaking, the iRobot Create is a great and inexpensive robotics 

platform, especially when compared to similar platforms aimed at academia. It uses 

standard Roomba parts for many of its subsystems, making it cheap to repair. The new 

commands and capabilities can lead to some interesting experiments with minimal added 

hardware. 

Although the cheaper solutions exist for those on a budget, the Command Module 

is a good device for those desiring a quick and highly-integrated way to add intelligence 

to the Create. 

4.2 Implementations of our Method 

The performance of our method is tested on both real and simulated robots 

environment. The goal of the experiments is to verify and solve the localization 

problem in symmetric environment according to the distribution of the particles in 

our clusters. However, in both of these environments, we considered not only those three 
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important characteristic variables, but also designated another one called yellow point 

that we will explain it below. 

As we discussed in previous chapter, we start comparing all the existing particles with 

our robot in base of the orientation and organized them in the way that they suppose to 

be. Two clusters have been considered that first one with black color, is corresponding to 

the true orientation of the robot and therefore demonstration the actual location of our 

robot and the second one with blue representation, is corresponding directly to opposite 

orientation that illustrating the position of our robot vice versa. For the rest of our 

particles, we will generate the new clusters, depends on the orientation on each particle, 

and collecting them on related particle set and then represent them with different color. 

4.3 Experimental Results 

As we mention in section 3.2.1, three conditions have been considered in our 

method. However, all these three condition are utilized in both real and simulated 

environment. Below we explain each one of the in more details. 

4.3.1 Simulation Environment 

We placed our robot in a field of 900x5 50pixel and considering two thousand 

particles in this field to estimating the true location of our robot. These particles are 

randomly generated all over the environment and each one representing a different x, y, 

and 6. 

Case one: The robot moves with known initial orientation (6 = it). Based on this 

initialization, we execute our algorithm and as a first condition, robot 

and particles are become in the same location and robot is sitting in 

middle of the black cluster. In this case (Figure 4.2) particles in 

black cluster contained more than 80% of particles in whole particle 

set and therefore the localization process will stop Furthermore, the 

value of error distance is not very significant in this case because our 
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Figure 4.1: Robot is successfully localized 

Figure 4.1 (a) shows the distribution of the particle in black cluster and current 

location of our robot in middle of that. The yellow point is representing the actual 

position of our robot in center of black cluster. Figure 4.1 (b), demonstrate that, most 

particles are accumulating in beigest cluster which is the black cluster and blue cluster is 

out of any particle. 
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Case Two: In next condition, all Particles are accumulated in blue cluster and 

therefore representing the opposite location of our robot. However, 

in this case, our robot is still in black cluster which is out of any 

particles. This time, because we already know the blue cluster is 

always showing the opposite location of our robot, the center of 

converse position of this cluster represents the actual position of 

our robot. Therefore, the value of the error distance in this case is 

very significant. Figure 4.3 shows the discussed condition below. 

(a) 
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(b) 

Figure 4.2: Robot is localized vice versa 
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Figure 4.2 (a) shows the distribution of the particle in blue cluster and current 

location of our robot which is in opposite side. In this case, the yellow point is 

represented the actual position of our robot based on the blue cluster. Figure 4.2 (b), 

demonstrate that all two thousand particles are accumulated in blue cluster which is the 

biggest cluster in this case and black cluster is out of any particle. Same as other 

situation, because more than 80% of particles in whole particle set are accumulating in 

one place, the localization process will stop although they represent the location of our 

robot contrariwise. 

Case Three: In this condition we have two particles set with different orientation 

and it will be the most difficult situation to verify which one 

shows the robot true pose. Furthermore, In this case none of 

these clusters are contained more than 80% of current number 

of total particles. Therefore, stop condition is not considered 

and then algorithm will run for ever. To overtake of this 

problem we offer the solution that if total amounts of particles 

in both cluster - blue and black - become more than 90% the 

localization has been done and the algorithms will stop 

running. However, if particles that accumulated on black 

cluster are more than blue one, the error distance is not really 

noticeable. Instead, when particles are accumulated in blue 

cluster, the same step as case two will happen again and 

therefore, the value of the error distance will be very 

significant. Figure 4.3 shows the discussed condition below. 
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Figure 4.3: Localization in symmetric environment 

Figure 4.3 (a) shows the distribution of the particle in both blue and black cluster 

and current location of our robot in middle of black cluster. In this case, the yellow point 

is represented the actual position of our robot depends on each cluster that consist more 

particle than other. For black cluster, case one is considered and for blue cluster case two 

is considered. Figure 4.3 (b), demonstrate the number of cluster in first column (nc = 2), 

number of particles in beigest cluster in second column (n m a x = 1444) and percentage on 
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nmax m third column (pmax = 0.722). It also shows all two thousand particles are 

divided between black and blue cluster 
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Figure 4.4: The plots of corresponding (a) Number of particles in blue and black cluster (b) number of 

clusters. 
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Table 4.1: The value of all parameters in above simulation result 

Figure 4.4(a), show the accumulation of particles in both cluster. It also 

demonstrates the number of particles growth more rapidly in blue cluster after 15 second. 

Figure 4.4(b), illustrate that the number of cluster decreased rapidly after 15 second and 

then remain steady up to time 40. 

Table 4.1 represents the value of all parameters in our process. First column 

shows the time value that we spend in whole process. The second column shows the 

numbers of clusters fall from 14 to 4. Next two columns illustrate the information about 
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biggest cluster. Information in fifth and sixth column is about black cluster. As we can 

see, after 30 second the black cluster becomes the biggest cluster in our environment. 

Number and percentage of the particles in blue cluster is demonstrated in next two 

columns. This table also shows the number of particles in both cluster and percentage of 

the relevant in next two columns. 

4.3.2 Real Environment 

In this section, we present the experimental results performed on our real robot 

that obviating of localization problem in symmetric environment. As a result, we will see 

that our robot is going to stop when a large number of dispersed particles are 

accumulating and also will successfully localize when the particles are located on 

one or both of our blue and black cluster. It also returns the true location and orientation 

according to the clusters and the yellow point measurement that we explain that in 

previous section. 

We executed our method, starting by placing our robot in a field of 

100 c mxl50 c m around with wall and because we initialized or orientation before (JT = 

180°), we adjust face of our robot parallel with X axis. Figure 4.6 shows how we settle 

our robot in our symmetric environment. In this experiment, the number of particles is 

initialized as 2000 particles and the criterion for clustering is 0 = 20°. Criterion 0 is 

a threshold used in BSAS to determine whether a particle belongs to an existing cluster or 

is assigned to a newly created cluster. 

• * > . " > • $ & 

Figure 4.5: Face of our robot is paralleled with X axis 
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We also considering two more parameters that indicate the robot is localized or 

lost. First parameter is considered as 20% of total particles, which means when the 

number of particles in the largest cluster is lower than 20% of whole particles, the robot 

will believe it has lost. For second parameter, we postulate 80% of whole particle, which 

means when the number of particles in largest cluster is equal or more than 80% of whole 

particles, the robot will believe it is localized successfully. However, in case three, 

because particles are separated in both clusters, we postulate our second parameter as a 

90% of whole particles, in both blue and black cluster to show that our robot is 

successfully localized or not. 
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Figure 4.6: The robot true pose and distribution of particles during our experiment 

Figure 4.6 illustrate our experiment in real word. Figure 4.6(a) shows that 

particles are located all over our environment. Because we randomly generate them, each 

one has different orientation and therefore each one will represent with different color. 

Figure4.6 (b) shows that we have 6 clusters but none of them have more that 80% of 

whole particles, therefore our process will keep running and goes to next figure. In Figure 

4.6(c), although our robot moves to different location, we still have more than 2 clusters 

with less than of 80% of whole particles. This process is continuing until last step in 

figure 4.6(f), that we have only two clusters. Black cluster is then representing the true 

location of our robot and the yellow point in middle of that shows the actual location of 

our robot. 

Figure 4.7: The plots of corresponding (a) Number of particles in blue and black cluster (b) number of 

clusters. 
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Figure 4.7(a) indicates that the number of particles in blue and black cluster and 

4.7(b) shows how the number of cluster is decreased from 18 to 4 clusters between time 

15 and 55 second. 
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17 

16 

5 

5 

5 

4 

4 

5 
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particle in 
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cluster 

0.092 

0.0925 

0.1995 

0.1985 

0.1945 

0.469 
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0.525 
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0.667 
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particle in 
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265 
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1635 

Percentage 
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0.063 

0.0735 

0.0845 

0.083 

0.161 
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particle in 
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136 
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in Slue 
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0.0805 

0.2245 

0.2255 
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0.141 
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of 
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and Blue 
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305 
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geo f 
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in Black 

and Blue 
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0.129 

0.1195 

0.165 

0.1525 

0.251 

0.63 

0.197 

0.2135 

0.7495 

0.75 

0.8875 

0.9585 . 

Table 4.2: The value of all parameters in above experiment result 

Table 4.2 represents the value of all parameters in our real experiment. First 

column shows that we spend 55 second to obtain the suitable result in our whole process. 

Second column shows the numbers of clusters. This number rapidly decreased from 16 to 

5 after 20 second. Next two columns illustrate the information about biggest cluster. This 

number is gradually raised after 30 second. Information in fifth and sixth column is about 

black cluster. As we can see, after 40 second the black cluster becomes the biggest cluster 

in our environment. Number and percentage of the particles in blue cluster is 

demonstrated in next two columns. This value has been very fluctuated. This table also 

shows the number of particles in both cluster and percentage of the relevant in next two 

columns. 

4.4 Limitation of our Method 

Our framework is based on Monte Carlo Localization, which draws samples 

uniformly at random from the environment free-space. This process has some 
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disadvantages for localization. Take for example the process can demand a high number 

of particles to completely cover the environment in order to guarantee that the robot will 

be able to recover its pose. It is known that the performance of the Monte Carlo filter 

highly depends on having some particles with a pose close to the real robot pose in the 

initial distribution. Due to this inherent fault, MCL may fail during localization. 

Therefore, we have suggested to make sure the failure of MCL will not occur when 

using our method to help robot know whether it is successfully localized in your 

environment. 
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Chapter 5 

Conclusion and Future Work 

In this work we have thoroughly discussed the problem of robot localization in 

symmetric environment and then show how to apply our techniques to solve this 

problem. We have pointed out advantages and disadvantages of our technique and we 

have discussed the use of our method for all possible cases in symmetric environment, 

illustrated with experiments. 

5.1 Conclusion 

We proposed a new method to improve the localization problem in symmetric 

environment. This method which is based on MCL framework has been executed in both 

real and simulated environment. In case of localization, most existing approaches focus 

on the accuracy and efficiency of MCL by adding more and more particles until better 

observation likelihoods can be obtained. 

However, one drawback is the inability to deal with local maxima that are present 

in symmetric environments. In this thesis we proposed an algorithm that mainly focus on 

this problem and help robot to successfully localize itself in symmetric environment. In 

order to do that, we initialize the orientation of our robot, and utilized the basic sequential 

algorithm for clustering the particle set in real time. This aggregation which is based on 

orientation will help us to distinguish the right particle set (cluster) that present the true 

location of robot. Beside of that, by considering the number of clusters and the number of 

particles in each one of them in our particle set, we realize whether if robot is 

successfully localized or not. 

5.2 Future Work 

This work can be used for further studies in a number of different directions. 
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Kidnapped problem: according to our initialization, it is possible to verify the 

failure case in kidnapped problem and recover it aging after transported our robot to some 

other place without being told. 

Resampling: Our method is based on MCL framework. So it has the inherent 

limitation of MCL which is particle deprivation problem. In some cases, even with a 

large number of particles, it may happen that there are no particles around the correct 

state. For future work, we may generate new particles based on their weight and their 

orientation, and then do more measurements to verify if the state showed by 

particles is correct. 

Accelerating: this method is proposed in case of verifying the localization, not 

aimed at speeding up the robot localization. Therefore one objective for future researcher 

is to control the robot so as to minimize the speed of localization in our method. 
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