
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2010

Robot localization in symmetric environment Robot localization in symmetric environment

Ali Akhavan Malayeri
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Akhavan Malayeri, Ali, "Robot localization in symmetric environment" (2010). Electronic Theses and
Dissertations. 8221.
https://scholar.uwindsor.ca/etd/8221

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8221&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8221?utm_source=scholar.uwindsor.ca%2Fetd%2F8221&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Robot Localization in Symmetric

Environment

By

Ali Akhavan Malayeri

A Thesis

Submitted to the Faculty of Graduate Studies

through Computer Science

in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2010

© 2010 Ali Akhavan Malayeri

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-62738-9
Our file Notre reference
ISBN: 978-0-494-62738-9

NOTICE:

The author has granted a non
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Nnternet, prefer,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

Author's Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe

upon anyone's copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of

such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final

revisions, as approved by my thesis committee and the Graduate Studies office, and that

this thesis has not been submitted for a higher degree to any other University or

Institution.

iii

Abstract

The robot localization problem is a key problem in making truly

autonomous robots. If a robot does not know where it is, it can be difficult to determine

what to do next. Monte Carlo Localization as a well known localization algorithm

represents a robot's belief by a set of weighted samples. This set of samples approximates

the posterior probability of where the robot is located. Our method presents an extension

to the MCL algorithm when localizing in highly symmetrical environments; a

situation where MCL is often unable to correctly track equally probable poses for the

robot. The sample sets in MCL often become impoverished when samples are

generated in several locations. Our approach incorporates the idea of clustering the

samples and organizes them considering to their orientation. Experimental results show

our method is able to successfully determine the position of the robot in symmetric

environment, while ordinary MCL often fails.

IV

Dedication

I dedicate this thesis to my wife Arezoo.

Without whom this, along with many other things, would never have been

possible. Thank you, for all your love, faith, patience, support and

assistance.

v

Acknowledgements

I would like to thank my family for never doubting that I would complete this

thesis. They always asked by "when" I would complete rather than " i f

I wish to express my thanks to my supervisor, Dr. Dan Wu. This thesis would not

have been complete without his expert advice and unfailing patience. I am also most

grateful for his faith in this study especially in the sometimes-difficult circumstances in

which it was written.

I want to thank my external reader, Dr. Huapeng Wu, my internal reader,

Prof. Boubakeur Boufama and my thesis committee chair, Dr. Xiaobu Yuan for

spending their time on reviewing this thesis and for all their help, support,

interest, and valuable hints.

My friends helped me solve many difficult problems during my research. I want

to thank all of them.

VI

TABLE OF CONTENTS

AUTHOR'S DECLARATION OF RIGINALITY iii

ABSTRACT iv

DEDICATION v

ACKNOWLEDGEMENTS vi

LIST OF TABLES x

LIST OF FIGURES xi

Chapter 1 -Introduction 1

1.1 Motivation 2

1.2 Contribution 5

1.3 Outline 5

Chapter 2 - Mobile Robot Localization in Probabilistic Framework 7

2.1 Localization Problem 7

2.2 Features of Environment 8

2.2.1 Landmarks 9

2.2.2 Map 10

2.3 Localization and Probabilistic 10

2.3.1 Acting 11

2.3.2 Sensing 12

2.4 Localization Formula 12

2.4.1 Belief 13

2.4.2 Incorporating Acting 13

vii

2.4.3 Incorporating Sensing 15

2.5 Methods of Implementations 17

2.5.1 Particle Filters 17

2.6 Summary 19

Chapter 3 - Robot localization with known orientation 21

3.1 Motivation 21

3.2 Proposed Method 24

3.2.1 Problem Statement 24

3.2.2 Details of our method 26

3.3 Clustering Algorithm 27

3.3.1 Basic Concept 27

3.3.2 Definition of a Cluster 28

3.3.3 Proximity Measure 28

3.4 Popular algorithm in Clustering 29

3.4.1 Basic Sequential Algorithm 29

3.5 Further details for our Method 31

3.6 Summary 33

Chapter4 - Implementation and Experiment Results 34

4.1 Preparation 34

4.1.1 Software Interface 34

4.1.2 Create SCI Pattern 35

4.1.3 Hardware Platform 36

4.2 Implementation of our Method 37

viii

4.3 Experimental Results 38

4.3.1 Simulation Environment 38

4.3.2 Real Environment 44

4.4 Limitation of our Method 48

Chapter 5 - Conclusion and Future Work 50

5.1 Conclusion 50

5.2 Future Work 50

References 52

Vita Auctoris 56

IX

LIST OF TABLES

3.1 Basic Sequential Algorithm 30

3.2 Incorporated MCL with clustering algorithm 32

4.1 The value of all parameters in above simulation result 43

4.2 The value of all parameters in real experiment 48

x

LIST OF FIGURES

2.1 Robocop Soccer Filed 9

2.2 Sampling-based approximation of the position belief for anon-sensing robot 18

2.3 Typical scanner of a robot in its environment 19

3.1 Particles are accumulated around robot 22

3.2 Robot is located vice versa 23

3.3 Combination of two previous cases and represents the location of robot in two
areas 24

3.4 An example of three stages of MCL in symmetric environment 25

3.5 Case of reverse localization 26

3.6 Line representative 29

4.1 Robot is successfully localized 29

4.2 Robot is localized vice versa 40

4.3 Localization in symmetric environment 42

4.4 The plots of corresponding 43

4.5 Face of our robot is paralleled with X axis 44

4.6 The robot true pose and distribution of particles during our experiment 47

4.7 The plots of corresponding 47

XI

Chapter 1

Introduction

In a complex environment such as symmetric environment, localization and

navigation of a mobile robot- autonomously toward a goal is a very fascinating problem.

A mobile robot can navigate mainly using a global map constructed from sensor

information but before that, a robot need to localize itself based on matching local or

global sensor information to this map and then decides its behavior subsequently based

on the matching results.

The mobile robot localization problem is introduced in many different ways [1,

2]. The simplest localization problem is position tracking [1, 3,4, 5]. Here the initial pose

of robot is known, and the problem is to compensate small, incremental errors in a

robot's odometry. More challenging is the global localization problem [6], where a robot

is not told its initial pose, but instead has to determine it from scratch. The global

localization problem is more difficult, since the error in the robot's estimate cannot be

assumed to be small. Even more difficult is the kidnapped robot problem [7], in which a

well-localized robot is transported to some other place without being told. This problem

differs from the global localization problem in that the robot might firmly believe to be

somewhere else at the time of the kidnapping. The kidnapped robot problem is often used

to test a robot's ability to recover from catastrophic localization failures.

Many algorithms have been proposed for these problems. For example, Kalman

filter [8, 9, 10, 11], Grid localization [12, 13, 14], Monte Carlo localization [15,

16, 17] and some hybrid approaches [18, 19]. Undoubtedly, one of the most popular

algorithms is the Monte Carlo localization (MCL). MCL solves the global localization

and kidnapped robot problem in a highly robust and efficient way [20]. In contrast to

Kalman filter based techniques which only work well for unimodal distributions, MCL is

able to represent multi-modal distributions and can globally localize a robot. MCL is

1

more accurate than Grid localization with a fixed cell size. Moreover, it is surprisingly

easy to implement, which makes them an attractive paradigm for mobile robot

localization.

The key idea of MCL is to represent the belief by a set of samples {particles),

drawn according to the posterior distribution over robot poses. In other words, MCL

simply represents the posteriors by a random collection of weighted particles which

approximates the desired distribution [20]. However, all these proposed methods have

particularly become unreliable in case of dynamic or symmetric environments and the

localization problem is then become more challenging in these environments.

1.1 Motivation

Among many localization techniques, MCL has become arguably the most

popular approach to date. By using a sampling-based representation, MCL has several

key advantages over earlier work in this field. For example, it reduces the amount of

memory required compared to grid-based Markov localization and in contrast to existing

Kalman filtering, it is able to represent multimodal distributions. It is also surprisingly

easy to implement, which makes that an attractive paradigm for mobile robot localization.

However, there are some disadvantages too. For example, the standard MCL

technique may fail during localization when there are similar locations in the robot's

environment such as Robocop soccer field. The problem arises when samples are

generated according to the posterior distribution (as is the case in MCL), they may

represent the multimodal distributions that often arise during the localization in

symmetric environment. This might be undesirable in symmetric environments,

where multiple hypotheses have to be tracked for extended periods of time.

However, although the MCL method is able to initially represent a multimodal belief

distribution, it is unable to maintain it especially when the environment is highly

symmetric [50].

2

In this thesis, we propose a novel approach, called "robot localization with known

orientation" which is based on Monte Carlo Localization framework. This proposes

method represents an extension to the MCL algorithm, when environment is highly

symmetric. Normally when executing MCL in symmetric environment, after iterating

several steps, particles are accumulated in several locations. We use a simple clustering

algorithm to separate the points (particles) into different clusters. We then compare each

particle and consider if it is either allocated to an existing cluster or assigned to a

newly created cluster, depending on its orientation. The comparison is performed

based on our robot's orientation which is initially postulated parallel with the direction of

the x-axis.

Once clusters are generated, we utilized them to localize our robot in the

environment. However, according to the symmetric feature of our environment, three

possible situations are considered as below:

1) Case one happens when most particles are accumulated around the true

location of the robot. This accumulation represents that the robot is

successfully localized in its actual location. However, the key point in this

scenario is although particles become clustered all around the true position of

robot, there is no such a condition to confirm that localization process is ended

and now is time for robot to start position tracking.

2) Case two happens when particles are accumulated contrariwise. This is a

situation when particles often too quickly converge to a single, high likelihood

pose and then ignoring the possibility that the robot might be located in

somewhere else. The resultant cluster in this case represents the location of

robot in opposite side. For example in Robocop soccer field, when the robot is

located in upper corner, particles will show this location in bottom side. This

reverse situation is created because particles have the opposite orientation.

Thus, when the value of the robot's orientation is equal to 45° (0 = 45°), we

have a set of particles that their orientation value are equal to 225°. This

3

situation therefore considers as a localization problem in symmetric

environment and we will evaluate it in our propose method.

3) In third case, the distribution of robot pose is usually multimodal due to the

symmetry of the environment and ambiguous detected features. In this case,

some particles are accumulated around the true location of the robot when

some other particles are accumulated contrariwise and represent the location

of robot in opposite side. Generally speaking, this case is the mixture of the

two previous cases, on one hand some particles show the true location of robot

and on the other hand some other particles indicate this position vice versa.

This case is also considered as a localization problem in symmetric

environment because the position of robot is shown in two different locations.

Same as previous case, this problem will also be resolved with our propose

solution for mobile localization in symmetric environment.

We applied our method in all these three situations and clustered the particles

based on the orientation. In order to do that, we take the MCL particle set as input that

needs to be clustered. We then initialized the orientation of robot as a representative point

and then we create our clusters according to this value. The value of representative point

is initially postulated parallel with the direction of the x-axis (0 - it) and the threshold of

dissimilarity 0 = 20° which is derived from the experiment has been considered as input.

Calculating dissimilarity measures between current particle and every cluster to

find a minimum one is considered as a next step. If the minimum measure was larger or

smaller than @, a new cluster that contains current particles will be created. Otherwise,

the considered particle will be assigned to the existing cluster which has a minimum

dissimilarity measure to it.

According to this implementation, we will be able to distinguish those clusters

that have the same orientation with robot and those with other orientation, including the

opposite one. This solution can be applied to all the cases that we mention above as

different possible situations in symmetric environment. Take for example, when we apply

4

our method in case three, we can easily distinguish that which cluster consist the true

orientation and therefore indicating the actual location of robot and which one is showing

the virtual location of our robot due to the feature of the symmetric environment.

1.2 Contributions

This thesis is only concerned with the problem of Monte Carlo localization

in symmetric environments, particularly in small-scale room with robot equipped

with low-cost sensors. In this thesis, we introduce a cluster-based extension to MCL

algorithm called "robot localization with known orientation". In this method, although

clustering plays a very important role but our main concern is based on the orientation.

Ordinary MCL can fail if the map is symmetrical, however, we propose a method based

on this significant problem and in next chapters, we demonstrate that this method is valid

and reliable. Experiments have been conducted with both simulated data as well as

data obtained from a real robot. The results show that our algorithm is able to

successfully determine the position of the robot in these environment, while ordinary

MCL often fails

1.3 Outline

This thesis is organized as follows:

Chapter 2: Localization and Probabilistic Framework. This chapter introduces

the problem of robot localization and describes different instances of the problem. We

discuss a framework that we can use to formalize the uncertainty and beliefs in the

localization problem. Furthermore, we approach the localization problem from a

probabilistic point of view and look at different solutions to the localization problem that

implement this framework.

Chapter 3: The Proposed Method. The proposed method is presented in detail

in this chapter. The statement of the problem and the general description of our method

have been discussed in this chapter. It is also followed by which clustering algorithm is

chose and how to combine it with MCL.
5

Chapter 4: Implementation and experiment results. Details information of the

implementation and the experimental results has been discussed in this chapter. Then,

experimental results are presented that this new extension to the MCL algorithm

successfully localizes in symmetric environments where ordinary MCL often fails.

Chapter 5: Conclusion and future work. We summarize the presented work

with concluding and we also present ideas and possibilities for future research.

6

Chapter 2

Mobile Robot Localization in

Probabilistic Framework
In this chapter we will take a look at robot localization and argue it in probabilistic

framework. In Section 2.1 We will discuss the general problem and review the different

type of information to which a robot has access for localization. In Section 2.2 we will

discuss features in the environment that a robot can detect. In Section 2.3 Localization in

probabilistic framework is discussed. In Section 2.4 we introduce the notion of belief, and

formalize the acting and sensing of a robot in probabilistic models and then use these

models in section 2.5 to derive a general probabilistic formula for localization. We look

to several implementations method in Section 2.6 and discuss how they deal with

localization problem.

2.1 Localization problem

The problem of robot localization consists of answering the question " Where am

I?" from a robot's point of view. This means the robot has to find out its location relative

to the environment. When we talk about location, pose, or position we mean the x and y

coordinates and 6 which is the heading direction of a robot in a global coordinate system.

In determining this location, a robot has access to two kinds of information. First

one is a priori information, gathered by the robot itself or supplied by an external source

as an initialization phase. In general, this information supplied to the robot describes the

environment where the robot is driving around. Second is navigational information that

the robot gathers from its sensors while navigating through the environment.

In order to navigating through the environment, a robotic vehicle has a driving

system which is playing an important role in physical position of robot [25, 33]. The way

that driving system changes the location of robot, contains valuable information in
7

estimating the location. However, in most robotic applications, this value is acquired by

odometry sensors. Odometry works by integrating incremental information over the time

and by using wheel encoders to count the number of revolutions of each wheel, the robot

measures the distance it traveled and its heading direction. Odometry is widely used,

because it gives good short-term accuracy, is inexpensive, and allows for very high

sampling rates [27, 28]. Thou, due to drift and slippage the integration of the wheel

revolutions lead to errors in both traveled distance and orientation [28,42]. These errors

accumulate over time and in particular errors in the orientation, cause large positioning

errors. Another disadvantage of odometry is its sensitivity to terrain. If the surface the

robot is driving on is not smooth, it can result in considerable position errors, since the

odometry system cannot detect the irregularities in the terrain. Also differences in wheel

diameter can cause position errors that are not detected by odometry measurements

[30,40]. Although, odometry causes increasing error in the location estimate, it is the

easiest way to access form of position information and therefore it is an important source

of information for localization.

Sensing the environment through the sensors is another factor to navigating the

environment. These sensors give momentary situation information, called observations

or measurements. This information in one hand describe things about the environment of

the robot at a certain moment and on the other hand provide the location of the robot that

is independent of any previous location[26, 35].This independency has the advantage that

the error in the position does not grow unbounded.

2.2 Features of Environment

The feature of our environment is contributed to obtain the measurements data

and can be introduced into different model. One of the common types of environments is

symmetric environment which is very ambiguous for robot to localize itself successfully

through that. Take for example the Robocop soccer field has a very complex symmetrical

form for robot to localize itself in actual location. Figure 1.1 illustrates this situation in a

robot soccer field.

8

:-'"!]»i4,.u.j»a m.,'!uu'. u t-inuui-o... .•p..,,":U.aiji.'awii^

"'0

* «* • *

*

Figure 2.1: Robocop soccer filed

In this case, for any considered locations as a possible location of our robot, we

have another match location in other side that represents the location of robot

symmetrically.

2.2.1 Landmarks

This complexity can be reduced by adding obstacles or landmarks to our

environments. Landmarks are features in the environment that a robot can detect them.

Sensor readings from a robot are analyzed for the existence of landmarks and once

landmarks are detected, they are matched with priori known information of the

environment to determine the position of the robot. Landmarks can be divided into active

and passive landmarks. Active landmarks are landmarks that actively send out location

information and robot senses the signals sent out by the landmark to determine its

position. For example the GPS sensor [30], uses information from uniquely coded radio

signals sent from satellites.

However, active landmarks in practice often cannot send out their signals in all

directions, and thus cannot be seen from all places. Furthermore, active landmarks may

9

be expensive to construct and maintain. If the landmarks do not actively transmit signals,

the landmarks are called passive landmarks. The robot has to actively look for these

landmarks to acquire position measurements. Techniques using passive landmarks in

determining the position of the robot rely on detection of those landmarks from sensor

readings. The detection of landmarks depends on the type of sensor used. For example,

in detecting landmarks in images from a vision system, image processing techniques are

used.

2.2.2 Map

Another group of localization techniques are map based positioning. These

approaches use geometric features of the environment to compute the location of the

robot. Examples of geometric features are the lines that describe walls in hallways or

offices. Sensor output is then matched with these features. Model matching can be used

to update a global map in a dynamic environment, or to create a global map from

different local maps [24]. Using this technique to determine the absolute position of a

robot has the disadvantage that there needs to be enough sensor information to be

matched with the map to come up with a position. Furthermore, techniques for matching

sensor data with maps often require large amounts of processing power and sensing [25].

2.3 Localization and Probabilistic

If we look at the localization problem probabilistically, we can say that the robot

has a belief about where it is. At any time, it does not consider one possible location, but

the whole space of locations. The localization problem consists of estimating the

probability density over the space of all locations.

The robot has a belief which is the probability density over all locations x G S,

where E is the set of all locations. We denote the belief by Bel. Localization can be seen

as maintaining the belief,

Bel(xk)=P(xk\d0„_k) (2.1)

10

That is, the probability that the robot is at location xk at time k, given all

information or data d0_k up to that time. The location that gives this probability

distribution has the highest probability in the location at which the robot is most likely to

be. The goal of localization is to make this belief get as close as possible to the real

distribution of the robot location. The real distribution of the robot location has a single

peak at the true location and is zero everywhere else. If the robot achieves this goal, then

it knows exactly where it is located.

However, in some cases, during the localization, the robot has access to absolute

and relative measurements. Relative measurements are measurements that are made by

looking at the robot itself only. The robot incorporates these measurements into its belief

to form a new belief about where it is. To be able to update the beliefs with the latest

measurement information, we need to express measurement information in probabilistic

terms. We need to define a probabilistic model for the acting, that is, the relative

measurements, and a probabilistic model for the sensing, that is, the absolute

measurements.

2.3.1 Acting

A robot performs actions and changes its position in the environment. We define

action ak from a set of possible actions and express the location of the robot changes

probabilistically by a transition density as [31, 2]

P(xk*k-i. a*-i) (2.2)

This probability density gives the probability that if at time step k - 1 the robot

was at location xfe_! and performed action afc_!, then it ended up at location xk at time

step k. In other words, the transition density describes how the actions of the robot

change its location. This density is therefore called the action or motion model.

Actions contain relative information about the new location of a robot. By given

the last location, the robot can estimate its current location based on the performed action.

Without the last location, the robot only knows it made a certain move; it is not able to
11

label an absolute location to the resulting position. In practice we can roughly

approximate this transition density from the kinematics and dynamics of the robot.

Another option is to have the robot learn the model itself [31, 49].

2.3.2 Sensing

We can also describe the sensing of the robot in probabilistic terms. Let S be the

space of all possible measurements coming from a sensor, and let sk denote an element in

S observed at time k. We can describe the probability that a sensor observes sk from a

certain location xk at time k by the density [31,2].

P(sk\xk) (2.3)

This is called the sensor or perceptual model. As with the motion model, the

perceptual model is often time-invariant. In that case we can omit the time subscript k.

Unlike the transition density of the acting of the robot, this probability density is

difficult to compute. The reason for this is the sometimes high dimensionality of the

measurements. Consider for example how complex the probability density is if the

measurements come from a camera. The probability density will have to give a

probability for each possible camera picture at each possible location, which would

require a large amount of computing power.

2.4 Localization Formula

The robot performs an action and this action changes the location of the robot

according to the transition density from. Besides this, the robot can also get information

from sensing the environment and perhaps extracts features from this sensor information

to form a feature vector which is distribute according to the probability distribution from.

The robot now has to update its belief with the new information in order to get the

best location estimate.

12

2.4.1 Belief

Before the robot start acting in the environment it has an initial belief of where it

is. We model this belief by the prior belief at time step 0, Bel~(x0). If the robot knows

where it initially is, then Bel~(x0) is a distribution with a peak at the location where the

robot knows it is. The goal of the localization becomes to compensate for slippage, drift

and possible other noise sources to keep track of the location. This problem called the

position tracking problem. In the case that the robot does not know where it starts, the

initial belief Bel~(x0) is a uniform distribution. The problem of localization is to make

the robot localize itself, not having any idea of where it is. This is described as the wake-

up robot or global localization problem. Finally, in the case that the robot thinks it is at a

certain location, but it actually is not there, the initial belief is initialized with a peak at

the location where the robot thinks it is. Since it is not actually located there, the robot

has to detect this and adjust its belief. This is called this the kidnapped robot problem.

Starting with the initial belief the robot starts querying its sensors and performing

actions in the environment. The resulting measurements and actions have to be

incorporated into the belief of the robot to give it the most up-to-date location estimate.

The belief the robot has after it has incorporated the action afe_! executed at step k — 1,

and before it gets a new measurement zk, is the prior belief,

Bel~(xk) = P(xk \zlf a1(z2, a2, zfc_lf afe_i) (2.4)

Once it has received an absolute measurement zk at step k, it incorporates this

measurement to obtain the posterior belief,

Bel+(xk) = P(xk\z1,al, z2,a2, . . . ,z f c_ l la f t_1 ,zk) (2.5)

2.4.2 Incorporating Acting

Assume the robot has performed an action and wants to include the relative

position measurement result of this action into its belief. In equation (2.4) we defined the

belief which is the latest action information incorporated, the prior belief Bel~(xk). We

13

can rewrite this original definition by utilizing the theorem of total probability and use

Markov assumption. The theorem of total probability states that the probability of an

outcome is equal to the sum of the probabilities of each of its dependent, partial,

outcomes [33]. Using this theorem, we rewrite the definition of the prior belief (2.4) to

Bel~(xk) = J" sP(*k |*k_1 ,z l la1 > . . . lzk_1 ,ak_1) *

POfc-!|z1(alf..., zk_ lf ofc_i) dxk_x. (2.6)

This equation expresses that the prior belief of being in state xk is the sum of the

probabilities of coming from state xk_x to state xk given all the earlier actions and

measurements, P(jtk | j tk_1 ,z1 ,a1 , . . .)zk_1 ,ak_1), multiplied by the probability of

actually being in state xk_i given all the earlier measurements and actions,

P(xk-i \zi> a i . • • • / zk-\< afe-i)-

The second term of the integral in (2.6) is the probability of being at location

xk..x given all information up to step k - 1; in particular the action performed at step k -

1. However, the physical location of the robot at step k - 1 does not depend on the

action that is performed at that step. Therefore, we do not have to take ak_! into account

when expressing this probability. Using this and the definition of the posterior belief from

(2.5), we rewrite (2.6) into

Bel~(xk) = / s P(x k | x k _ 1 , z 1 , a l l . . . , z k _ 1 , a k _ 1) x

P(xk-1 lzl> al> • • • > zk-2> ak-2> zk-l)^xk-l

= }sP{xk\xk-\>zl>a\>--->zk-l>ak-l) x

fle/+(xk_1)<fck_1. (2.7)

To simplify the expression of the first term of the integral in (2.7) we make a

Markov assumption [2, 37], which states that given knowledge of the current state, the

past is independent of the future, and vice versa. With knowledge of the previous

14

location xk_x , it is of no importance how the robot ended up at that location or what it

sensed. With this, we have that

P(.xk \xk-l> Zl>---> Zk-\> a fe- l) = P(xk \xk-l> ak-l)- (2-8)

The right hand side of this equation is the conditional probability of being in state

xk given knowledge of the previous state and the performed action. We defined this as

the action model in (2.2). By substituting the result into (2.7) we obtain an equation that

can be used to efficiently incorporate the robot's actions into its belief,

Bel~(xk) = fE P(xk |xk_ l t afe_i) Bel+(xk_x)dxk_x (2.9)

That is, the prior belief of the robot in being at location xk .

2.4.3 Incorporating Sensing

Assume that the robot has the prior belief Bel~(xk), the belief in the location after

it has performed its last action. The robot makes a measurement of the environment and

extracts a feature vector zk from this measurement. We want to incorporate this

measurement into the prior belief to form the posterior belief as we defined in equation

(2.5). With Bayes' rule and the Markov assumption we can rewrite this posterior belief

into a computation-ally efficient form.

Bayes' rule [36, 33] explains how the robot has to change its belief when a new

measurement arrives. Using Bayes' rule and the definition of the prior belief from (2.4),

we can rewrite (2.5),

D j+(N = P(zfe|xfc,zi,ai,-,Zfc-i,afc-i)P(xfc \2\.a\,-,Zk-\^k-\)
P(zfe|z1,a1,...,zk_1,afe_1)

= P0?fc |sfe,z1,a1,...,zfe_1,afe-1) Bel ~(sfc)
P(zfe|z1,ai,...,zk_i,afc_i)

15

That is times the prior belief of being in s t a t e s , Bel (xk), divided by the

probability of observing measurement xk conditioned on all information so far,

P(z f c |z l f . . . ,ak_1) .

To make the computations of equation (2.10) less complex, we again make the

Markov assumption. In this case we use it to state that a sensor reading only depends on

the current state. The sensor reading is not influenced by previous locations of the robot.

It does not matter how the robot got at the current location. The probability of observing

a measurement is independent of the actions and observations that were made before the

robot arrived in its current state. We use this assumption to rewrite the first term in the

nominator of (2.10),

P(zk\xk,z1,a1,...,zk_l,ak_1)=P(zk\xk) (2.11)

When we make the Markov assumption, the conditional probability of observing

measurement zk given the current state and past actions and observations reduces to the

sensor model from (2.3). If we substitute this into (2.10), we obtain

Ber(xk) = ——; (2.12)
P(Zfc|Zi,Oi l... lZfc_i,Ofc_i)

The denominator of this equation is a normalizing constant ensuring that the

probability density integrates to 1. This constant is calculated by integrating the

numerator over all possible locations xk [36, 31],

P{zk |z lf at,..., zk_x, afc_i) = fE P{zk \xk) Bel~ixk)dxk (2.13)

Equation (2.12) shows how we can express the posterior belief in terms of the

prior belief. It also shows how we update the posterior belief to incorporate a new

absolute measurement. It is a computationally efficient equation due to the use of the

sensor model and the prior belief.

16

Finally we can combine the derived results into a single localization equation for

the posterior belief in the location of a robot taking into account sensing and action

information. Substituting equation (2.9) into equation (2.12), the posterior belief becomes

n , + / , P(zk\xk)Ber(xk)
Ber(xk) = —-—• —

P(.zk*i afc-i)

P(zk\xk) jE P(x fe |x fe_1,q fc_1)gef+(x fc_1)dxk_1

P(zfc|z1,...,afc_1)

= r]kP{zk\xk) $EP(xk\xk_1,ak_1)Bel+(xk_1)dxk-1 (2.14)

Where r)k is the probability density normalize P(zk\Z\,...,afc_i)-1, calculated

as in equation (2.13).

2.5 Methods of Implementation

A way of dealing with continuous location spaces is by discretization or

factorization of the space [19, 48]. This way of representing the belief is captured by

Hidden Markov Models [3, 44]. These are general models in terms of transition and

measurement probabilities. A number of methods has been developed using different

representations for the discretization [34, 39]. However we only focus one particle filters

as a one way of discretization and introduce it as below.

2.5.1 Particle Filters

Particle filter represents the posterior distribution Bel+(xk) by set of random

samples drawn from this distribution. Each particle, which is a sample of the posterior

distribution, represents a possible state to be estimated at time t. The input of particle

filter is the particle setA:fc_1, along with the most recent control ak and the most

recent measurement zk. MCL proceeds in two phases:

17

Robot motion. When the robot moves, MCL generates N new samples that

approximate the robot's position after the motion command. Each sample is generated by

randomly drawing a sample from the previously computed sample set, with likelihood

determined by their p values. This value is a numerical weighting factor, analogous to a

discrete probability.

i#3KS«rs

Figure 2.2 Sampling-based approximation of the position belief for anon-sensing robot [45].

Figure 2.2 shows the effect of this sampling technique, starting at an initial known

position and executing actions as indicated by the solid line. As can be seen there, the

sample sets approximate distributions with increasing uncertainty, representing the

gradual loss of position information due to slippage and drift.

Sensor readings describe the formation process by which sensor measurements

are generated in the physical world. In fact, it is defined as a conditional probability

distribution P (zk\xk , m), where xk is the robot pose, zk is the measurement at time k,

and m is the map of the environment. Figure 2.3 shows a typical range-scan obtained in a

corridor with a mobile robot.

18

Figure 2.3: Typical scanner of a robot in its environment. [45]

However, the sensors equipped on Create for detecting the external environment

are really limited. In our experiment, the positive return from bump sensors means that

Create touches the wall. . The bumper sensors return feedbacks only when they detect a

hard surface. In our experiment, the positive return from bumper sensors means that robot

touches the wall and then, high weight will be assigned to the particles which are

around the wall, and low weight will be given to the rest of particles.

2.6 Summary

The robot localization problem is the problem of answering the question "Where

am I?" from a robot's point of view. In some cases, the robot has access to priori

information (map) that is describing characteristics of the environment. In other cases,

however, the robot acquires the information while it is localizing in the environment.

This information consists of relative and absolute measurements. The relative

information provides high frequency, low cost, detailed information about the relative

19

displacement of the robot, independent of features in the environment [46, 43]. The

absolute information provides position measurements based on observations made from

the environment. This position information is independent of previous position estimates.

However, this comes at the price of higher computational costs, lower frequency and

lower accuracy. Since the absolute measurements do not depend on previous position

estimates, they do not suffer from unbounded error growth.

In probabilistic localization problem, the robot considers the whole space of

locations as a possible location to be, instead of being sure of one location. A robot starts

with an initial belief and this belief can be a uniform distribution when the robot has no

idea where it is, or it can be a distribution with one peak at the right location if the robot

knows, or thinks it knows, where it is.

20

Chapter 3

Robot localization with known

orientation

As we mention above, among many localization techniques, MCL has become

arguably the most popular approach to date. However, the standard MCL technique

sometimes is unable to maintain multimodal belief distributions that are present in

complex situation such as symmetric environments [50]. We propose a new method

based on this localization problem in symmetric environment and we will discuss more

about it in this chapter.

In Section 3.1 we present our motivation based on the MCL's debilities. In

Section, 3.2, we propose our method according to this motivation. Then we discuss

clustering and explain how it works in Section 3.3. We discuss popular algorithm for

clustering in section 3.4 and introduce the basic sequential algorithm as a fast method to

produce a single clustering. Section 3.5 describe more details about our method and

finally we may draw our conclusion in section 3.6

3.1 Motivation

Undoubtedly, many algorithms have been implemented based on MCL [19, 20,

36, 38] in recent years. In most of them, increasing the accuracy and efficiency of MCL

are intended as a main goal. For example one of the controversial issues is when the

number of particles required to achieve a certain level of accuracy varies drastically

[3,47]. There are several extensions to MCL that solve the problem of failure in number

of particles. Take for example, Sensor Resetting Localization (SRL), Mixture MCL (Mix-

MCL), and Adaptive MCL (A-MCL) [22]. Although some of those approaches produce

remarkable results, they are not satisfactory, due to the feature of the environments. This

is especially true for any application in dynamic or symmetric environment such as

21

Robocop soccer field which is dynamic because other robots as a soccer players are

moving through the environment and it is symmetric because objects are reflecting along

the coordinate axis. This will increase the level of uncertainly for robot to find its actual

position precisely when the environment is very ambiguous and symmetric. Therefore,

not only method of implementation, but also feature of the environment plays a very

important role to increasing the accuracy and efficiency of MCL.

However, our main concern in this thesis is based on the symmetric environment.

We executed the ordinary MCL in this environment and the following three cases

emerged.

First Case: Most of the generated particles are accumulated around the actual location of

robot and confirmed that the localization is successfully ended. However,

this is the case that does not happen very often in symmetric environment.

Figure 3.1 illustrate the situation.

Figure 3.1: Particles are accumulated around robot

In this rectangle symmetric environment, Particles are accumulated in

one location and robot is presented as a red circle in middle of that.

22

Second Case: In this case, particles have reflection along the coordinate axis. This

reflection is achieved based on the movement of the robot in our

environment. For example, when environment is rectangle and robot

touches the long side of the environment the reflection will be based

on the X-axis, because long side is parallel with x-axis. Same thing

for small side, when robot touches the small side of our rectangular

environment, the reflection will be based on the Y-axis because small

side is parallel with y-axis. Figure 3.2 demonstrating this situation. As

we can clearly see in this picture, when we divide our environment to

four smaller areas along the coordinate axis, although robot is located

in fourth section, particles are representing the virtual location of

robot in second area. This is the situation when robot is localized

vice versa.

2 T ^

3

y

1

. 4

Figure 3.2 Robot is located vice versa

Third Case: this case which is the most common situation in symmetric environment is

combination of two previous cases. This time, particles will show the

location of robot not only in actual position, but also as a reflection

along the coordinate axis. As we can see in figure 3.3, particles are

23

accumulated in two main group and illustrating the location of robot

in second and forth area. Particles with black color represent the true

location of robot and particles that are blue represent the virtual

location of our robot.

2 ^W

3

y

1

x * x .

Figure 3.3 Combination of two previous cases and represents the location of robot in two areas.

3.2 Proposed Method

Before describing our method in details, we first explain the problem statement

that gave us the motivation to propose our method in symmetric environment and then

show how we solve this significant problem in our method.

3.2.1 Problem Statement

In robotic, when we talk about the localization, several factors must be

considered. Method of implementation, environment and even accuracy of the sensors are

just few of them. Each of them has its own hardness and consider as separate field.

However, in case of environment, symmetric environment is one of the most challenging

environments in robot localization. We consider our main focus in this environment and

propose a method for mobile robot localization in symmetric environment. However,
24

because our method is based on Monte Carlo Localization framework we first executed

the ordinary MCL in this environment. After iterating several steps in MCL, we realize

that when samples are generated according to the posterior distribution (as is the case in

MCL), they may represent the multimodal distributions that often arise during the

localization in symmetric environment. We also find that in some cases particles are

ignoring the possibility that the robot might be located in somewhere else and they often

too quickly converge to a single, high likelihood pose regardless to the actual location of

robot.

According to these inabilities in MCL, we propose a method to determine the

actual position of robot in symmetric environment. In our method, we utilized the

clustering because particles are not considered individually as a single point and we need

to analyze them as a whole entity. Based on checking the orientation of each clusters, the

robot can distinguish that which one of the above described cases is happed. Figure 3.4

shows three pictures of localization cases in symmetric environment.

i
4

(a) (b) (c)

Figure 3.4: An example of three stages of MCL in symmetric environment.

Figure 3.4(a) it shows particles concentrated successfully around the true position

of the robot and the true position is represented by black cluster. In figure 3.4(b),

although the robot is located in bottom side, particles are representing the virtual location

of robot in opposite side. This is the situation when particles are accumulated in blue

cluster and robot is localized vice versa. Figure 3.4(c) shows that there is uncertainty that

whether robot is located in black or blue cluster.

25

3.2.2 Details of our method

To obtain a better result from MCL in symmetric environment, the distribution of

the particle set in our method is analyzed by sending to the clustering part. Then, the

resultant clusters are used to determine whether the robot is successfully localized in true

location or it is localized contrariwise. In case of reverse localization, particles have the

opposite direction with robot. For example, in figure3.5, when the value of the robot's

orientation is equal to n (9 = 71) and robot is moving to the north side, particles return

their orientation value equal to 2TT and moving to the south side.

A-

Figure 3.5: Case of reverse localization

Therefore orientation is considered as a main point in our method to distinguish about

which cluster is correspond to direction of the robot and which cluster is pointed to

another bearing. In order to describe our consequence in this method, two characteristic

variables are calculated respectively as below:

1) 0, the value of representative point (robot's orientation).

2) 0, threshold of dissimilarity

9 is indicate as a value of our robot's orientation and it is initially postulated parallel with

the direction of x-axis (d - it) in first time that we settle our robot in our environment.

This value is updated whenever that robot is turned in our environment. 0 which is

postulated to 20° was used as dissimilarity input value to measuring the dissimilarity

26

between current particle and every existent cluster in our environment. The value of 0 is

derived from the experiment. We have appointed different values for 0 during our

experiment but we realized that the best acceptable value for alpha is 20 degrees

considering to the size of our environment and the percentage of the error distance in our

motion model. However, if the value of this measurement was larger or smaller than 0, a

new cluster that contains current particles will be created otherwise, the considered

particle will be assigned to the existing cluster which has a minimum dissimilarity

measure to it. However, before we are going to describe our method in more details, a

brief introduction will be provided to introduce the clustering and shows how it is works

in our algorithm.

3.3 Clustering Algorithm

Clustering is one solution to the case of unsupervised learning, where class

labeling information of the data is not available. Clustering is a method where data is

divided into groups (clusters) which 'seem' to make sense. Clustering algorithms are

usually fast and quite simple. They need no beforehand knowledge of the used data

and form a solution by comparing the given samples to each other and to the clustering

criterion. Clustering is used in many fields of science including machine vision, life and

medical sciences and information science. One reason for this is the fact that intelligent

beings, humans included, are known to use the idea of clustering in many brain functions.

3.3.1 Basic Concept

When classifying different kind of samples a way to represent the sample

in a mathematical way is needed. These features are represented in a feature vector. A

feature vector is a vector including different features for the sample. That is, with n

features xt the feature vector is of the form

x = [x l 5x 2 , . . . , x n] T (3.1)

27

Where T denotes transposition and xt is typically real numbers. The selection of these

features is often very hard due to the fact there usually are a lot of features from where

the most representative ones should be selected. This is because the computational

complexity of the classification (clustering) algorithm grows with every feature selected.

Feature selection and the reduction of dimensionality of the data are beyond this

document.

3.3.2 Definition of a Cluster

Now, let us define some basic concepts of clusters in a mathematical way. Let X

be a set of data, that is

X = [x1 ,x2 , . . . ,xn] (3.2)

Where X is a set of vectors constituted by n vectors xt. The set X includes a group of

vectors, into m small sets (clusters Q) if the following conditions are met:

1. None of the clusters is empty; Q ^ 0

2. Every sample belongs to a cluster

3. Every sample belongs to a single cluster QD Cj = 0, i^j

Naturally, it is assumed that vectors in cluster Cj are in some way "more similar" to each

other than to the vectors in other clusters.

3.3.3 Proximity Measure

When clustering is applied a way to measure the similarities and dissimilarities

between the samples is needed. A typical case where proximity between subsets is

needed is when a single vector x is measured against a cluster C. The representative can

be chosen so that the value is, for example, maximized or minimized. If a single vector

representative is chosen among C the used method is called global clustering criteria

28

and if all the vectors in C have an effect on the representative a local clustering

criteria is being used. Figure 3.5 one type of representatives is shown below.

o X ° o °
o °CX© o °

o ^^QVO U
0

O O u A O u

o o "^^X o
0 o o u

Figure 3.6: Line representative [17]

3.4 Popular algorithm in Clustering

As we mention above, calculating all possible combinations of the feature vectors

is not generally possible. Clustering algorithms provide means to make a sensible

division into small clusters by using only a fraction of the work needed to calculate all

possible combinations.

3.4.1 Basic Sequential Algorithm

Sequential algorithms are straightforward and fast methods to produce a

single clustering [32]. Usually the feature vectors are presented to the algorithm

once or a few times. Final result is typically dependent on the order of presentation and

the result is often compact.

A very basic clustering algorithm that is easy to understand is basic

sequential algorithmic scheme (BSAS). In the basic form vectors are presented only once

and the number of clusters is not known a priori. What is needed is the dissimilarity

29

measure d(x, C) and the threshold of dissimilarity 0 and the number of maximum

clusters allowed q.

The idea is to assign every newly presented vector to an existing cluster or create

a new cluster for this sample, depending on the distance to the already defined

clusters. As pseudo the algorithm works like in table 3.1.

1. m = 1; Cm= {Xi}; // Mt first cluster = first sample

2. for every sample x from 2ioN

a. find cluster Cksuch that min d(x, C^

b. if d(x, Cfc) > © AND (m< q)

i.m = i + l; Cm= {x} //Create a new cluster

c. else

i. Ck=Ck+{x} // Add sample to the nearest cluster j

i i Update representative if needed

3. end algorithm j

Table 3.1 Basic Sequential Algorithm

As can be seen the algorithm is simple but still quite efficient. Different choices

for the distance function lead to different results and unfortunately the order in

which the samples are presented can also have a great effect to the final result. What's

also very important is a correct value for 0 . This value has a direct effect on the

number of formed clusters. If 0 is too small unnecessary clusters are created and

if too large a value is chosen less than required number of clusters are formed.

30

One detail is that if q is not defined the algorithm 'decides' the number of clusters

on its own. This might be wanted under some circumstances but when dealing

with limited resources a limited q is usually chosen.

3.5 Further details for our method

The concept of localization in our method is referred as the different distributions

of particle set which have significant characteristics and can be distinguished from each

other. In this method, the distribution of the particle set is analyzed by sending to

the clustering part and then, the clustered particle set is further used to extract

information. This characterization is based on the orientation and particles will be

organized according to this attitude. Therefore the orientation of each individual particles

has been compared with orientation of our robot that is initially postulated parallel with

the direction of the x-axis (0 = 7t). For this comparison, threshold 0 is considered as an

input and it is equal with 20°. Based on this threshold value, we can estimate that the

maximum number of cluster that may produce is equal to 18 clusters. However, most of

these clusters will disappear after iterating several steps in MCL and only two of them

will remain in our environment frequently. One of these clusters always refers to actual

location of robot with same orientation and other one always acts vice versa. Just to have

a better visual perception, we have shown each one of these clusters with different color

that makes our comparison easier. For example, particles in black cluster always

represent the same orientation with robot and particles in blue cluster act contrary.

Furthermore, in order to describe the stages of localization, three characteristic

variables are calculated respectively. nc for number of clusters, nmax for number of

particles in the cluster which has the maximum number of particles compared to other

clusters, and pm a x for percentage of nmax in the current whole set of particles. We

utilized these parameters to have a terminate condition to stop the recursive process in

MCL. For example, if one of our clusters contained more than 80% of particles in whole

particle set, the localization process will stop. In case of having two clusters such as case

three in our environment, when number of particles in both cluster become more than

31

90% of particles in whole particle set, the robot will stop to indicating the localization

process.

We also specified a yellow point in middle of the biggest cluster - in case of the

number of particles - to represent the actual location of our robot. In order to do that, we

choose Euclidean distance between particles as our proximity measures. However, if this

point is appeared in middle of the black cluster, the distance between the current location

of robot and actual location of yellow point is not very significant. On contrary case,

when the yellow point is appeared in middle of the blue cluster, we will represent that

backward and reflect it along a coordinate axis in our environment. In this case the

distance between the current location of robot and actual location of yellow point is

significant. Table 3.1 is pseudo code description of our method that is represented as

below.

The combined MCL-Clustering algorithm

Xk =MCL (xk_t, uk ^zk)

Ck = B S A S (xk , ©) //clustering based on Orientation

//humber of clusters in clustered particle set

nc = numberOfClusters(Cfc)

//the number of particles in the cluster which has the maximum number

of particles compared to other clusters

nmax= tsaxParticleNumbers (Ck)

//the percentage of nmax in the current whole set of particles, ntotal is the

number of current particles

if(C0=Q)&(pmax>e)

/•'stop to indicate localization is successful completed or starts doing other jobs

Return Xk , Ck , nc , nmax , pmax

Table 3.2: Incorporated MCL with clustering algorithm

32

3.6 Summary

We mixed the clustering method with MCL framework to categorize this

information and have a better resolution result. Clustering is one solution to the case

of unsupervised learning, where class labeling information of the data is not

available[41]. Clustering is a method where data is divided into groups (clusters) which

'seem' to make sense. One of the fastest ways to produce a clustering is basic sequential

algorithmic scheme that we employed it to do our clustering which is based on

orientation.

In our method, the orientation of each individual particles has been compared

with orientation of our robot that is initially postulated parallel with the direction of the x-

axis .Therefore, those particles with same orientation range are collected in the same

cluster and the rest will goes and collected in other cluster. Then we can distinguish

about which cluster is correspond to the direction of the robot and which cluster is

pointed to another bearing. This technique has a noticeable functionality in symmetric

environment and will improve the ambiguous of belief state.

33

Chapter4

Implementation and Experiment

Results

In this chapter, we show how we can apply our method to the Robot Localization

problem in symmetric environment. We implemented a simulator and real robot word

experiments that allows us to step-by-step combine a part of the localization problem

with our technique and look at how the behaviors of our method in different

circumstances, considering practical situations.

In Section 4.1 we start with some general remarks about preparation, Robot Serial

Command Interface (SCI) and its behavior. In section 4.2 hardware platforms and its

setup has been discussed. In section 5.3 we will present the experimental results and then

provide some references to related work in Section 4.4.

4.1 Preparation

In order to implement our method in virtual and real word environment, we

prepared of list of hardware and software interface that we described each one of them in

details respectively.

4.1.1 Software Interface

Versions of Robot manufactured contain an electronic and software interface that

allows us to control or modify our robot behavior and remotely monitor its sensors. Our

robot is not exemption and utilized the interface that called the iRobot Create Serial

Command Interface or Create SCI

34

Create SCI is a serial protocol that allows us to control our robot that called

Create which is an autonomous mobile robot for educators and developers built by

iRobot Corporation, through its external serial port (Mini-DIN connector). The SCI

includes commands to control all of Create's actuators and also to request sensor data

from all of Create's sensors. Using the SCI, we can add functionality to the normal

Create behavior or we can create completely new operating instructions for Create.

To use the SCI, a processor capable of generating serial commands such as a PC

or a microcontroller must be connected to the external Mini-DIN connector on Create.

The connector is located in the rear right side of Create beneath a snap-away plastic

guard.

4.1.2 Create SCI Pattern

The Create SCI has four operating modes: off, passive, safe, and full. On a battery

change or other loss of power, the SCI will be turned off. When it is off, the SCI will

listen at the default baud bps for an SCI Start command. Once it receives the Start

command, the SCI will be enabled in passive mode. In passive mode, we can request and

receive sensor data using the Sensors command, execute virtual button pushes to start and

stop the cycles and define a song (but not play one).

We cannot control any of Create's actuators when in passive mode, but Create

will continue to behave normally, including performing, charging, etc. When in passive

mode, we can then send the Control command to put the robot into safe mode. In safe

mode, we have full control of the robot, except for detection of a cliff while moving

forward (or moving backward with a small turning radius), detection of wheel drop (on

any wheel) and charger plugged in and powered.

When one of the conditions listed above occurs, the robot stops all motors and

reverts to passive mode. For complete control of the robot, we must send the Full

command while in safe mode to put the SCI into full mode. Full mode shuts off the cliff

and wheel-drop safety features. (The robot will still not run with a powered charger

35

plugged in.) This mode gives us unrestricted control of the robot's actuators. To put the

SCI back into safe mode, we can send the Safe command.

If no commands are sent to the SCI when it is in safe or full mode, Create will

wait with all motors off and will not respond to button presses or other sensor input. To

go back to passive mode from safe or full mode, we can send any one of the four virtual

button commands. These button commands are equivalent to the corresponding button

press in normal Create behavior.

However, all the Create's controls such as movement and access to sensors are

obtained through a Java Application Programming Interface (API) named Roombacomm,

which is Java library for communicating and controlling the Create. Although it is

designed for robot Roomba, it works very well with Create and it works on any operating

system that supports a serial communicator for Java (RXTX). Therefore, all source code

in our implementation is written in Java with utilizing the Eclipse Software Development

Kit.

4.1.3 Hardware Platforms

The Roomba is an autonomous robotic vacuum cleaner made and sold by iRobot.

Under normal operating conditions, it is able to navigate a living space and its obstacles

while vacuuming the floor. However, to give scientists a better platform they've gone

ahead and built the iRobot Create to work with. The main differences are a lack of

vacuum - no more clean floors - and a nifty "cargo bay connector" which can support a

Command Module which bristles with ports and allows us-added motors, sensors and the

like. Otherwise, most functions are quite similar to that such as Virtual Walls, the Home

base and the Remote Control.

The iRobot Create comes fully assembled. It has two powered wheels, a castor

(and optional 4th wheel), 10 pre-programmed behaviors, an expandable input/output port

for custom sensors and actuators a cargo bay with mounting points and a tailgate for

ballast. As a first movement, because the Create is designed to move forward, all the

36

sensitive sensors are located on the movable front bumper. This rubber bumper protects

them or anything they run into from any damage that might otherwise be sustained. When

a Roomba turns, its fixed front wheel would skid. This swiveling caster of the Create

reduces that and hopefully makes turning a little more accurate.

The Cargo Bay Connector, located in the front middle of the cargo bay,

contains 25 pins that let us to attach electronics for peripheral devices such as

additional sensors. The Element Direct BAM (short for Bluetooth Adapter Module) is

one of these additional sensors that enable wireless control of the iRobot Create robot

from a Windows. The BAM connects to the Create's cargo bay port - without any extra

wires or cables. The BAM provides a virtual serial port connection between a Bluetooth

host and Create. A PC can communicate with Create in the same way it would as if it

were attached with a serial cable. The BAM gives us complete wireless control of Create.

It also exposes Create's programmable 10, making it easy to connect additional

hardware.

Generally speaking, the iRobot Create is a great and inexpensive robotics

platform, especially when compared to similar platforms aimed at academia. It uses

standard Roomba parts for many of its subsystems, making it cheap to repair. The new

commands and capabilities can lead to some interesting experiments with minimal added

hardware.

Although the cheaper solutions exist for those on a budget, the Command Module

is a good device for those desiring a quick and highly-integrated way to add intelligence

to the Create.

4.2 Implementations of our Method

The performance of our method is tested on both real and simulated robots

environment. The goal of the experiments is to verify and solve the localization

problem in symmetric environment according to the distribution of the particles in

our clusters. However, in both of these environments, we considered not only those three

37

important characteristic variables, but also designated another one called yellow point

that we will explain it below.

As we discussed in previous chapter, we start comparing all the existing particles with

our robot in base of the orientation and organized them in the way that they suppose to

be. Two clusters have been considered that first one with black color, is corresponding to

the true orientation of the robot and therefore demonstration the actual location of our

robot and the second one with blue representation, is corresponding directly to opposite

orientation that illustrating the position of our robot vice versa. For the rest of our

particles, we will generate the new clusters, depends on the orientation on each particle,

and collecting them on related particle set and then represent them with different color.

4.3 Experimental Results

As we mention in section 3.2.1, three conditions have been considered in our

method. However, all these three condition are utilized in both real and simulated

environment. Below we explain each one of the in more details.

4.3.1 Simulation Environment

We placed our robot in a field of 900x5 50pixel and considering two thousand

particles in this field to estimating the true location of our robot. These particles are

randomly generated all over the environment and each one representing a different x, y,

and 6.

Case one: The robot moves with known initial orientation (6 = it). Based on this

initialization, we execute our algorithm and as a first condition, robot

and particles are become in the same location and robot is sitting in

middle of the black cluster. In this case (Figure 4.2) particles in

black cluster contained more than 80% of particles in whole particle

set and therefore the localization process will stop Furthermore, the

value of error distance is not very significant in this case because our

38

w

(a)

.!.)YJ P^ri..-leFil!ei'oi-ipn-ir' Ffi|,v:MlK

Ffe Edft Nawpte Sw* ftwjKt Run VMsm Met*

I ' * v.; ^ • © * <fc * . «i; - i : fc ' J * / * a. f i -y * *»* V-'

Tinse : O0J0OJ35

2 ZQm i.O Clusted CitJttfQ 2000 1,0 Clusters tIMJIt 0 0.0

(b)

Figure 4.1: Robot is successfully localized

Figure 4.1 (a) shows the distribution of the particle in black cluster and current

location of our robot in middle of that. The yellow point is representing the actual

position of our robot in center of black cluster. Figure 4.1 (b), demonstrate that, most

particles are accumulating in beigest cluster which is the black cluster and blue cluster is

out of any particle.

39

Case Two: In next condition, all Particles are accumulated in blue cluster and

therefore representing the opposite location of our robot. However,

in this case, our robot is still in black cluster which is out of any

particles. This time, because we already know the blue cluster is

always showing the opposite location of our robot, the center of

converse position of this cluster represents the actual position of

our robot. Therefore, the value of the error distance in this case is

very significant. Figure 4.3 shows the discussed condition below.

(a)

" i_i| Cfcjster.Java j j j SmisUx-i Java ' £ Part«fe5«t.|av* ,'fl Ostws.java ; \£ Partlda.jave

[Time : 00 :00:41

2 2000 1.0 Clusterl (BLACK) 0 0.0 Clustec2 (BLUE) 2O0O 1,0

(b)

Figure 4.2: Robot is localized vice versa

40

Figure 4.2 (a) shows the distribution of the particle in blue cluster and current

location of our robot which is in opposite side. In this case, the yellow point is

represented the actual position of our robot based on the blue cluster. Figure 4.2 (b),

demonstrate that all two thousand particles are accumulated in blue cluster which is the

biggest cluster in this case and black cluster is out of any particle. Same as other

situation, because more than 80% of particles in whole particle set are accumulating in

one place, the localization process will stop although they represent the location of our

robot contrariwise.

Case Three: In this condition we have two particles set with different orientation

and it will be the most difficult situation to verify which one

shows the robot true pose. Furthermore, In this case none of

these clusters are contained more than 80% of current number

of total particles. Therefore, stop condition is not considered

and then algorithm will run for ever. To overtake of this

problem we offer the solution that if total amounts of particles

in both cluster - blue and black - become more than 90% the

localization has been done and the algorithms will stop

running. However, if particles that accumulated on black

cluster are more than blue one, the error distance is not really

noticeable. Instead, when particles are accumulated in blue

cluster, the same step as case two will happen again and

therefore, the value of the error distance will be very

significant. Figure 4.3 shows the discussed condition below.

41

^^w*

m-
(a)

5- • Jaw« - P«rticteF'iIter/oulput.lsct - fctipse SDK i

W© Bsfe; W*«@*« Search Proiect Run Wtafc* Help

A: dssS«*.jav.a t t | SftnutatiorMava •!:. ftarticfeSet.favft i,'. €tete«,^iy« i
£ ! • ' - • • ' ' ' . • - ' ' "

... Time : 00£00:SO
?*? •

^ • 2 1444 0.722 C l u s t t t i {BLACK) SSS 0 .278 ClasteiSZ |BLtlE) 144* 0.722

•jaw i i l Pawn

(b)

Figure 4.3: Localization in symmetric environment

Figure 4.3 (a) shows the distribution of the particle in both blue and black cluster

and current location of our robot in middle of black cluster. In this case, the yellow point

is represented the actual position of our robot depends on each cluster that consist more

particle than other. For black cluster, case one is considered and for blue cluster case two

is considered. Figure 4.3 (b), demonstrate the number of cluster in first column (nc = 2),

number of particles in beigest cluster in second column (n m a x = 1444) and percentage on

42

nmax m third column (pmax = 0.722). It also shows all two thousand particles are

divided between black and blue cluster

Nubmer of particles in Blue and Black Cluster
1600

1400

1200

a 1000 -

i soo •
* 600

400

/ " " "

A-A£——-—
200 -j , kS i£ ' f

0 5 10 15 20 25 30 35 40

Time

(?i\

16

14

12 -

t 10

S :
4

2

0 •

Number of Cluster

> » ^ ^

\

0 5 10 15 20 25 30

Time

"**~-

35 40

_ _ _ _ (b)

Figure 4.4: The plots of corresponding (a) Number of particles in blue and black cluster (b) number of

clusters.

0

5

; » ; ;
is

P *
25

v*r*
35

40

Number of

Cluster

<wr
14

* cP ' .
14

.? '
5

. *A *
5

4

Number of

particle in

bigest

cluster

- 172

179

' S&V-
339

w$r
617

ML ~
1192

1337

Percentage

of particle

in bigest

duster

0.086

0.0895

s^M-
0.1695

. Q.543fr

a3085

em
0.596

C.66S5

Number of

particle in

Black

Cluster

1M

132

-110 ,

210

- 38$ °
617

as2 ;
1192

1337

Percentage

of particle

in Black

cluster

urn
0.066

^®m ;
0.105

-" fc2?3

0.3085

0,596 V
0.596

0.6665

Number of

particle in

Blue Cluster

~ 124 *

121

" 335 '

339

«w
474

s* sp
587

637

Percentage

of particle

in Blue

cluster

" £efe?y>
0.0605

^0OS25?,
0.1695

\$&';
0,237

' « % , 4

0.2935

0.3035

Number of

particle in

Black and

Blue cluster

^ • * M s
253

"*Wf
549

}m$\ \
1091

,* . # # ^ i
1779

1944

Percentage of

particle in

Black and Blue

cluster

^i;Wk*\
0.1265

&|ti*fg
0.2745

«towr|
0.5455

^pai iv7
0.SB95

0.972 J

Table 4.1: The value of all parameters in above simulation result

Figure 4.4(a), show the accumulation of particles in both cluster. It also

demonstrates the number of particles growth more rapidly in blue cluster after 15 second.

Figure 4.4(b), illustrate that the number of cluster decreased rapidly after 15 second and

then remain steady up to time 40.

Table 4.1 represents the value of all parameters in our process. First column

shows the time value that we spend in whole process. The second column shows the

numbers of clusters fall from 14 to 4. Next two columns illustrate the information about
43

biggest cluster. Information in fifth and sixth column is about black cluster. As we can

see, after 30 second the black cluster becomes the biggest cluster in our environment.

Number and percentage of the particles in blue cluster is demonstrated in next two

columns. This table also shows the number of particles in both cluster and percentage of

the relevant in next two columns.

4.3.2 Real Environment

In this section, we present the experimental results performed on our real robot

that obviating of localization problem in symmetric environment. As a result, we will see

that our robot is going to stop when a large number of dispersed particles are

accumulating and also will successfully localize when the particles are located on

one or both of our blue and black cluster. It also returns the true location and orientation

according to the clusters and the yellow point measurement that we explain that in

previous section.

We executed our method, starting by placing our robot in a field of

100 c mxl50 c m around with wall and because we initialized or orientation before (JT =

180°), we adjust face of our robot parallel with X axis. Figure 4.6 shows how we settle

our robot in our symmetric environment. In this experiment, the number of particles is

initialized as 2000 particles and the criterion for clustering is 0 = 20°. Criterion 0 is

a threshold used in BSAS to determine whether a particle belongs to an existing cluster or

is assigned to a newly created cluster.

• * > . " > • $ &

Figure 4.5: Face of our robot is paralleled with X axis

44

We also considering two more parameters that indicate the robot is localized or

lost. First parameter is considered as 20% of total particles, which means when the

number of particles in the largest cluster is lower than 20% of whole particles, the robot

will believe it has lost. For second parameter, we postulate 80% of whole particle, which

means when the number of particles in largest cluster is equal or more than 80% of whole

particles, the robot will believe it is localized successfully. However, in case three,

because particles are separated in both clusters, we postulate our second parameter as a

90% of whole particles, in both blue and black cluster to show that our robot is

successfully localized or not.

45

—v ffi*j«r»urr-v * w ^ i « i e ^ w » .

. . -r ••••>.

•••!«§ii

la

, , i , < : • - . „ ,
-V.' «.;. •:' • j * , . :

• !-•;. iiSi1..!;-1,- -.j39\

; « M • f-'.'s

jMMm

#Js: a##s$£*^^|^^#-w?-,,,:."': ̂ S^pfefe-Kj %"^^'^\;*^^^^;^^^*s»tew' -n a

•
Figure 4.6: The robot true pose and distribution of particles during our experiment

Figure 4.6 illustrate our experiment in real word. Figure 4.6(a) shows that

particles are located all over our environment. Because we randomly generate them, each

one has different orientation and therefore each one will represent with different color.

Figure4.6 (b) shows that we have 6 clusters but none of them have more that 80% of

whole particles, therefore our process will keep running and goes to next figure. In Figure

4.6(c), although our robot moves to different location, we still have more than 2 clusters

with less than of 80% of whole particles. This process is continuing until last step in

figure 4.6(f), that we have only two clusters. Black cluster is then representing the true

location of our robot and the yellow point in middle of that shows the actual location of

our robot.

Figure 4.7: The plots of corresponding (a) Number of particles in blue and black cluster (b) number of

clusters.

47

Figure 4.7(a) indicates that the number of particles in blue and black cluster and

4.7(b) shows how the number of cluster is decreased from 18 to 4 clusters between time

15 and 55 second.

Time

0

5

10

15

20

25

30

35

40

45

50

55

Number of

Cluster

14

13

16

17

16

5

5

5

4

4

5

4

Number of

particle in

bigest

cluster

184

185

339

397

389

938

1213

1182

1050

1049

1334

1635

Percentage

of particle

in bigest

cluster

0.092

0.0925

0.1995

0.1985

0.1945

0.469

0.6065

0.591

0.525

0.5245

0.667

0.8175

Number of

particle in

Black

Cluster

142

126

147

169

166

322

265

266

1050

1049

1334

1635

Percentage

of particle

in Black

cluster

0.071

0.063

0.0735

0.0845

0.083

0.161

0.1325

0.133

0325

0.5245

0.667

0.8175

Number of

particle in

Blue Cluster

116

113

183

136

336

938

129

161

449

451

441

282

Perce nta

geof

particle

in Slue

cluster

0,058

0.0565

0.0915

0.068

0.168

0.469

0.0645

0.0805

0.2245

0.2255

0.2205

0.141

Number

of

particle

in Black

and Blue

cluster

258

239

330

305

502

1260

394

427

1499

1500

1775

1917

Percenta

geo f

particle

in Black

and Blue

cluster

0.129

0.1195

0.165

0.1525

0.251

0.63

0.197

0.2135

0.7495

0.75

0.8875

0.9585 .

Table 4.2: The value of all parameters in above experiment result

Table 4.2 represents the value of all parameters in our real experiment. First

column shows that we spend 55 second to obtain the suitable result in our whole process.

Second column shows the numbers of clusters. This number rapidly decreased from 16 to

5 after 20 second. Next two columns illustrate the information about biggest cluster. This

number is gradually raised after 30 second. Information in fifth and sixth column is about

black cluster. As we can see, after 40 second the black cluster becomes the biggest cluster

in our environment. Number and percentage of the particles in blue cluster is

demonstrated in next two columns. This value has been very fluctuated. This table also

shows the number of particles in both cluster and percentage of the relevant in next two

columns.

4.4 Limitation of our Method

Our framework is based on Monte Carlo Localization, which draws samples

uniformly at random from the environment free-space. This process has some

48

disadvantages for localization. Take for example the process can demand a high number

of particles to completely cover the environment in order to guarantee that the robot will

be able to recover its pose. It is known that the performance of the Monte Carlo filter

highly depends on having some particles with a pose close to the real robot pose in the

initial distribution. Due to this inherent fault, MCL may fail during localization.

Therefore, we have suggested to make sure the failure of MCL will not occur when

using our method to help robot know whether it is successfully localized in your

environment.

49

Chapter 5

Conclusion and Future Work

In this work we have thoroughly discussed the problem of robot localization in

symmetric environment and then show how to apply our techniques to solve this

problem. We have pointed out advantages and disadvantages of our technique and we

have discussed the use of our method for all possible cases in symmetric environment,

illustrated with experiments.

5.1 Conclusion

We proposed a new method to improve the localization problem in symmetric

environment. This method which is based on MCL framework has been executed in both

real and simulated environment. In case of localization, most existing approaches focus

on the accuracy and efficiency of MCL by adding more and more particles until better

observation likelihoods can be obtained.

However, one drawback is the inability to deal with local maxima that are present

in symmetric environments. In this thesis we proposed an algorithm that mainly focus on

this problem and help robot to successfully localize itself in symmetric environment. In

order to do that, we initialize the orientation of our robot, and utilized the basic sequential

algorithm for clustering the particle set in real time. This aggregation which is based on

orientation will help us to distinguish the right particle set (cluster) that present the true

location of robot. Beside of that, by considering the number of clusters and the number of

particles in each one of them in our particle set, we realize whether if robot is

successfully localized or not.

5.2 Future Work

This work can be used for further studies in a number of different directions.

50

Kidnapped problem: according to our initialization, it is possible to verify the

failure case in kidnapped problem and recover it aging after transported our robot to some

other place without being told.

Resampling: Our method is based on MCL framework. So it has the inherent

limitation of MCL which is particle deprivation problem. In some cases, even with a

large number of particles, it may happen that there are no particles around the correct

state. For future work, we may generate new particles based on their weight and their

orientation, and then do more measurements to verify if the state showed by

particles is correct.

Accelerating: this method is proposed in case of verifying the localization, not

aimed at speeding up the robot localization. Therefore one objective for future researcher

is to control the robot so as to minimize the speed of localization in our method.

51

References

[1] J. Borenstein, B. Everett, and L. Feng. Navigating Mobile Robots: Systems and Techniques.
A. K. Peters, Ltd., Wellesley, MA, 1996.

[2] D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile robots in dynamic
environments. Journal of Artificial Intelligence Research, (1999), 391—427. Available at:
http://www.jair.org/papers/paper616.html

[3] B. Yamauchi and R. Beer. Spatial learning for navigation in dynamic environments. IEEE
Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, Special Issue on
Learning Autonomous Robots, 1996. Available at: http://www.nrl.navy.mil/aic/index.php

[4] B. Schiele and J. Crowley. A comparison of position estimation techniques using occupancy
grids. In Proceedings of the 1994 IEEE International Conference on Robotics and
Automation, pages 1628-1634, San Diego, CA, May 1994.

[5] G. Wei, C. Wetzler, and E. von Puttkamer. Keeping track of position and orientation of
moving indoor systems by correlation of range-finder scans. In Proceedings of the
International Conference on Intelligent Robots and Systems, pages 595-601, 1994.

[6] W. Burgard, A. Derr, D. Fox, and A.B. Cremers. Integrating global position estimation and
position tracking for mobile robots: The dynamic markov localization approach. In Proc. of
the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'98), 1998.

[7] S. Engelson and D. McDermott. Error correction in mobile robot map learning. In
Proceedings of the 1992 IEEE International Conference on Robotics and Automation, pages
2555-2560, Nice, France, May 1992.

[8] S. Kwon, K.W. Yang and S. Park. An Effective Kalman Filter Localization Method
for Mobile Robots. Intelligent Robots and Systems, 2006 IEEE/RSJ International
Conference on, pages 1524-1529, Oct. 2006.

[9] T.H. Cong, Y.J. Kim and M. Lim. Hybrid Extended Kalman Filter-based localization
with a highly accurate odometry model of a mobile robot. Control, Automation and
Systems, 2008. ICCAS 2008. International Conference on 14-17 Oct. 2008. Page(s):738 -
743.

[10] F. Kong, Y. Chen, J. Xie, G. Zhang and Zude Zhou. Mobile Robot Localization Based on
Extended Kalman Filter. Intelligent Control and Automation, 2006. WCICA 2006. The
Sixth World Congress on Volume 2, Page(s):9242 - 9246.

[11] C. Takenga, T. Peng and K. Kyamakya. Post-processing of Fingerprint
Localization using Kalman Filter and Map-matching Techniques. Advanced

52

http://www.jair.org/papers/paper6
http://www.nrl.navy.mil/aic/index.php

Communication Technology, The 9th International Conference on Volume 3, 12-14
Feb. 2007, Page(s):2029 - 2034.

[12] A.C. Schultz and W. Adams. Continuous localization using evidence grids. Robotics
and Automation, 1998. Proceedings. 1998 IEEE International Conference on Volume
4, 16-20 May 1998, Page(s):2833 - 2839 vol.4.

[13] A Howard, M.J. Mataric and G.S. Sukhatme. Cooperative relative localization for mobile
robot teams: An ego-centric approach. In Proc. of The naval Reasearch Laboratory
Workshop on Multi-Robot Systems, Washington, D.C. 2003.

[14] W. Burgard, A.B. Cremers, D. Fox, D. Hahnel, G. Lakemeyer, D. Schulz, W.
Steiner and S. Thrun. Experiences with an interactive museum tour-guide robot. Artificial
Intelligence 114:3-55, 1999.

[15] T. Rofer and M. Jungel. Vision-Based Fast and Reactive Monte-Carlo
Localization. Proc. of the 2003 IEEE International Conference on Robotics &
Automation, Taipei, Taiwan, September, 2003.

[16] J. Liu, K. Yuan, W. Zou, and Q. Yang. Monte Carlo Multi-Robot Localization
Based on Grid Cells and Characteristic particles. Proceedings of the 2005
IEEE/ASME International Conference on Advanced Intelligent Mechatronics,
Monterey, California, USA, 24-28, July, 2005.

[17] X. Ma, X. Dai and W. Shang. Vision-based Extended Monte Carlo Localization for Mobile
Robot. Proc. of the IEEE International Conference on Mechatronics & Automation,
Niagara Falls, Canada, 2005.

[18] A Gasparri, S. Panzieri, F. Pascucci and G. Ulivi, A Hybrid Active Global
Localization Algorithm for Mobile Robots. International Conference on Robotics and
Automation, Roma, Italy, 10-14 April 2007.

[19] X. Zhang, X. Chen, J. Li and X. Li. Vision-based Monte Carlo - Kalman
Localization in a Known Dynamic Environment. Control. Automation, Robotics and
Vision, 2006. ICARCV 06. 9 th International Conference on Volume, Issue, 5-8 Dec.
2006.

[20] D.B. Rubin. Using the SIR algorithm to simulate posterior distributions. In M.H. Bernardo,
K.M. an DeGroot, D.V. Lindley, and A.F.M. Smith, editors, Bayesian Statistics 3. Oxford
University Press, Oxford, UK, 1988.

[21] S. Lenser, and M.Veloso, "Sensor Resetting Localization for Poorly Modeled Mobile
Robots"Proceedings of ICRA 2000, IEEE, 2000.

[22] J.S. Gutmann, and D. Fox, "An Experimental Comparison of Localization Methods
Continued," In Proc. of the 2002 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS'02), Lausanne, Switzerland October 2002.

53

[23] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, Robust monte carlo localization for
mobile robots. Artificial Intelligence 128,1-2 (2001), 99-141. Available at:
http://citeseer.nj.nec.com/thrun01robust.html

[24] A. Singhal, Issues in Autonomous Mobile Robot Navigation (1997). Available at:
http://citeseer.nj.nec.com/singhal97issue.html

[25] I. J. Cox and G. Wilfong (Editors), Autonomous Robot Vehicles, Springer-Verlag, New
York (1990).

[26] S. Roumeliotis, Reliable Mobile Robot Localization (1999). Available at: http://www-
users.cs.umn.edu/~stergios/

[27] J. Borenstein and L. Feng, Measurement and correction of systematic odometry errors in
mobile robots. IEEE Transactions on Robotics and Automation 12 (1996), 869-880.
Available at: http://citeseer.nj.nec.com/borenstein96measurement.html

[28] J. Borenstein, Control and kinematic design of multi degree of freedom robots with
compliant linkage. IEEE Transactions on Roboticsand Automation (1995). Available at:
http://citeseer.nj.nec.com/borenstein95control.html

[29] S. Shoval and J. Borenstein, Measurement Of Angular Position Of A Mobile Robot Using
Ultrasonic Sensors (1999). Available at:
http://citeseer.nj.nec.com/shoval99measurement.html

[30] P. H. Dana, The Global Positioning System (2000). Available at
http://www.colorado.edu/geography/gcraft/notes/gps/gps_f.html

[31] S. Thrun, Bayesian landmark learning for mobile robot localization. Machine Learning 33, 1
(1998), 41-76.

[32] J. Manyika and H. Durrant-Whyte, Data Fusion and Sensor Management, a
decentralized information-theoretic approach, Ellis Horwood Limited, Chichester, West
Sussex (1994).

[33] E. Weisstein, Math World (2003). Available at http://mathworld.wolfram.com/.

[34] H. Bruyninkx, Bayesian probability (2002). Available at
http://people.mech.kuleuven.ac.be/~bruyninc.

[35] S. Thrun, D. Fox, and W. Burgard, Probabilistic methods for state estimation in
robotics. Proceedings of the Workshop SOAVE'97. VDI-Verlag (1997), page: 195-202.

[36] S. Thrun, Probabilistic algorithms in robotics. AI Magazine 21,4 (2000), page: 93-109.

[37] H. Baltzakis and P. Trahanias, Hybrid mobile robot localization using switching state-space
models. Proceedings of the 2002 IEEE International Conference on Robotics and
Automation. Washington D.C.,USA (2002), page: 366-373.

54

http://citeseer.nj.nec.com/thrun01robust.html
http://citeseer.nj.nec.com/singhal97issue.html
http://www-
http://users.cs.umn.edu/~stergios/
http://citeseer.nj.nec.com/borenstein96measurement.html
http://citeseer.nj.nec.com/borenstein95control.html
http://citeseer.nj.nec.com/shoval99measurement.html
http://www.colorado.edu/geography/gcraft/notes/gps/gps_f.html
http://mathworld.wolfram.com/
http://people.mech.kuleuven.ac.be/~bruyninc

[38] A. R. Cassandra, L. P. Kaelbling, and J. A. Kurien, Acting under uncertainty: Discrete
bayesian models for mobile robot navigation. Proceedings of IEEE/RSJ International
Conference on intelligent Robots and Systems (1996).

[39] W. Burgard, D. Fox, D. Hennig, and T. Schmidt, Estimating the absolute position of a
mobile robot using position probability grids. Proceedings of the Fourtheenth National
Conference on Artificial Intelligence (1996), Page: 896-901.

[40] D. Fox, S. Thrun, W. Burgard, and F. Dellaert, Particle filters for mobile robot localization.
Sequential Monte Carlo Methods in Practice. Springer. New York (2001). Available at:
http://citeseer.nj.nec.com/fox01particle.html

[41] M. Grewal and A. Andrews, Kalman filtering: theory and practice, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey (1993).

[42] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization for mobile robots.
In Proceedings of the IEEE International Conference on Robotics andAutomation (ICRA),
1999.

[43] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte carlo localization: Efficient position
estimation for mobile robots. In Proceedings of the National Conference on Artificial
Intelligence (AAAI), Orlando, FL, 1999. AAAI.

[44] T. L. Dean and M. Boddy. An analysis of time-dependent planning. In Proceeding of
Seventh National Conference on Artificial Intelligence AAAI-92, pages 49-54, Menlo
Park, CA, 1988. AAAI, AAAI Press/The MIT Press.

[45] S. Zilberstein and S. Russell. Approximate reasoning using anytime algorithms. In S.
Natarajan, editor, Imprecise and Approximate Computation. Kluwer Academic Publishers,
Dordrecht, 1995.

[46] S. Thrun. Probabilistic robotics. Communications of the ACM, 45(3):52-57, 2002.

[47] S. Thrun, W. Burgard, and D. Fox. 2005. Probabilistic Robotics. MIT Press.

[48] T. Graepel. Statistical physics of clustering algortihms. Technical Report 171822, FB
Physik, Institut fur Theoretische Physic, 1998.

[49] S. Theodoridis and K. Koutroumbas, Pattern Recognition. Academic Press, 2006.

[50] Tun Yang, and Victor Aitken, "Uniform Clustered Particle Filtering for Robot Localization"
2005 American Control Conference, June 8-10, 2005. Portland, OR, USA

55

http://citeseer.nj.nec.com/fox01particle.html

VITA AUCTORIS

NAME

PLACE OF BIRTH

YEAR OF BIRTH

EDUCATION

AH Akhavan Malayeri

Tehran, Iran

1976

School of Software Engineering

Azad University

Central Tehran branch, Iran

1996-2001 B.Eng.

School of Computer Science

University of Windsor

Windsor, Ontario, Canada

2007-2010M.SC

56

	Robot localization in symmetric environment
	Recommended Citation

	ProQuest Dissertations

