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ABSTRACT 

Inaccessibility and harsh conditions of the Arctic frequently limit research on local fish and 

ecosystems. Cumberland Sound on southern Baffin Island houses a remote, winter fishery for 

Greenland halibut (Reinhardtius hippoglossoides) and presented a unique site for evaluating 

Arctic fish stock trends and feeding behavior from limited data. Relative abundance through 

time, 1987-2003, of the Greenland halibut stock was modeled hierarchically from catch per unit 

effort (CPUE) data with multiple fixed effects and location and fisherman as random effects. 

Month and the North Atlantic Oscillation were important predictors of CPUE. Additionally, 

fisherman behavior influenced CPUE, breaking the assumption that CPUE is proportionate to 

fish abundance. A second study using stable isotopes found pelagic feeding of the Greenland 

halibut and a dietary preference for capelin, consistent with studies in other systems. The 

combination of these studies is the first incorporation of fishery and ecological information to 

assess Cumberland Sound Greenland halibut. 
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CHAPTER ONE 

INTRODUCTION 

The Arctic and sub-Arctic oceans are seasonally productive marine ecosystems subject to 

heavy levels of biological resource exploitation (Usher et al. 2005). However, because Arctic 

species are typically long-lived and slow-growing, they can be sensitive to even modest harvest 

levels (Usher et al. 2005) and stocks of almost all commercially harvested marine species 

assessed in the North Atlantic and Barents Sea have declined since the Second World War 

(Bernes 1996). Additionally, increasing sea surface temperatures, a rise in global sea levels, and 

decreasing persistence of sea-ice will affect biological productivity in these ecosystems, in turn 

influencing fishery productivity and distribution of marine resources (Everett et al. 1995). Fish 

stocks are predicted to move towards the North or South Pole, shifting distributions of stocks and 

leading to the expansion of some fisheries and collapse of others (Everett et al. 1995). Studies of 

Arctic/Antarctic systems, where harsh conditions limit methods for evaluating deep-water 

fisheries, often suffer from a lack of data to assess stock status—effectively preventing 

assessment of the impact from increased fishing pressure and/or changes in climate. Thus, 

establishing baseline knowledge for the status of both stocks and ecosystems in Arctic systems is 

highly desirable. 

Cumberland Sound on southern Baffin Island, Nunavut houses a seasonal Inuit fishery 

for Greenland halibut (Reinhardtius hippoglossoides). As a commercially popular fish, 

Greenland halibut has been heavily harvested throughout the North Atlantic (Nedreaas and 

Smimov 2004) and has been potentially overfished in some areas (ICES 1998). Peak catches for 

Cumberland Sound reached greater than 400 tonnes in the early 1990s, but recent years have 

1 



shown reduced total catch (e.g. 2007 yielded only 3 tonnes) caused by warmer, shorter winters 

and reduced formation of landfast sea ice (Treble 2008). Though several reports have assessed 

the Greenland halibut catch rates in Cumberland Sound (e.g. Pike 1994, Mathias and Keast 1996, 

Treble 2008), no studies have addressed the ecosystem—specifically, what environmental 

processes are driving catch trends and what is the structure of the Cumberland Sound food web. 

The remote, artisanal, and self-reporting nature of the Greenland halibut longline fishery in 

Cumberland Sound made it a unique site for evaluating a cold-water fish stock from sparse data. 

Additionally, a current interest by local fisherman and Fisheries and Oceans Canada (DFO) to 

expand the fishery requires further ecosystem and stock research in order to most effectively 

manage the local Greenland halibut. 

Fishery Stock Assessment 

The ultimate goal of fisheries managers is to promote sustainable production of fish 

stocks over time via regulatory and enhancement actions (Hilborn and Walters 1992). As such, 

predicting stock fluctuations to direct management has motivated much of marine fisheries 

research. Stock assessments based on available data (e.g. fishery logbooks, fishery surveys, 

tagging studies, etc.) provide a means of assessing fish populations under potential management 

strategies through statistical and mathematical methods (Hilborn and Walters 1992). Stock 

management is then based on the stock assessment as well as the social, political, and economic 

context of the fishery. Evaluating population status for a population that is not directly 

observable forces stock assessments to rely on statistical models that represent the population 

(Hilborn and Mangel 1997). To create stock assessment models requires harvest/catch rate data 

and a measure of relative abundance (Maunder and Punt 2004). Ideally, this data would be 

2 



collected independently of the fishery—for example, via trawl survey—but fishery-independent 

data is often impractical and cost-inefficient to collect. Thus, data collected by the fishery, i.e. 

fishery-dependent data, is often the main source of abundance data on which to base stock 

assessments (Maunder et al. 2006). 

The most available and frequently used fishery-dependent data is information on catch 

and effort—catch being the amount of target species harvested and effort being the amount of 

time/gear used to harvest (Maunder and Punt 2004). Catch-per-unit-effort (CPUE) reflects 

fishing success, and because fishing success is linked closely with fish abundance, CPUE is 

frequently used as an indicator of change in a fish stock's relative abundance (Hilborn and 

Walters 1992). CPUE is written as a ratio, 

Fish Quantity (1) 

Effort 

where fish quantity could be total weight or total number of fish harvested and effort could be 

the time spent fishing, number of hooks, number of boats, etc. On small spatial scales, CPUE 

assumes that catch is proportional to fish abundance (Maunder and Punt 2004), but studies using 

Virtual Population Analysis have shown there is often little correlation between CPUE and 

estimated stock size (Ultang 1976, Garrod 1977). Even when CPUE and abundance are related, 

however, the relationship is often nonlinear and changes in stock size are not reflected 

proportionally by changes in CPUE (Pope and Garrod 1975). 

One assumption that is often not met when assessing CPUE is that catchability is constant 

(Cooke and Beddinton 1984). The catchability coefficient, q, is the portion of the stock captured 

by one unit of effort, and if q is constant over time, then CPUE will be proportional to abundance 

(Maunder et al. 2006). However, q is seldom constant through time. For example, catchability 
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can increase if the fishing fleet's efficiency increases (e.g. new technology). Environment can 

also affect catchability (e.g. El Nino reduces catchability of yellowfin tuna for purse-seine 

fisheries in the eastern Pacific; Maunder et al. 2006). Essentially, where fishing occurs, when 

fishing occurs, and who is fishing can all change q (Cooke and Beddington 1984). Additionally, 

catchability is often linked to abundance, so if abundance changes with time then catchability 

will change with time (Maunder et al. 2006), as fewer fish are harder to find. 

Another requirement for CPUE to be proportional to abundance is random distribution of 

fishing effort relative to the fish. Yet, fishermen do not fish at random. For example, information 

sharing allows fishermen/fleets to harvest in optimal locations and thereby reduce fishing time 

(i.e. the q or Effort), so CPUE remains high while fish abundance declines (Branch et al. 2006). 

CPUE is also the metric most heavily influenced by individual fisherman behavior (Branch et al. 

2006). Gillis and Peterman (1998) showed that exploitative competition among fishermen in a 

fishery that allows movement in response to changing catch rates causes the relationship between 

CPUE and local abundance to break down. 

To deal with all the assumptions and various factors that can affect or bias catch rates, a 

process called standardization is used (Maunder and Punt 2004). Standardization of catch and 

effort data attempts to remove/explain annual variation in the data unrelated to changes in fish 

abundance (Maunder and Punt 2004), and the most common approach is the use of generalized 

linear models (GLMs; Nelder and Wederburn 1972). The statistical distribution of the response 

variable, typically catch rate, and how various explanatory variables relate to the response define 

the GLM—thereby assuming that the relationship between the expected response and 

explanatory variable is linear (Maunder and Punt 2004). In GLMs of CPUE, year is always an 
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explanatory variable since the main objective of CPUE standardization is to evaluate trends in 

relative abundance through time (Maunder and Punt 2004). 

Generalized linear mixed models (or hierarchical model) (Pinheiro and Bates 2000) build 

on GLMs by including both fixed effects and random effects. Fishery-dependent data is 

inherently hierarchical because predictors are either non-independent (i.e. fishing fleets) or 

multi-level through time. Inclusion of fixed effects in a model allows for comparison among 

different levels, but random effects allow for generalization of conclusions from the fixed effects 

to the population associated with the random effect (Maunder and Punt 2004). For example, if 

random changes exist in the distribution of a fish population through time, it is possible to create 

a random effect of location (Maunder and Punt 2004). Thus, a hierarchical model created with a 

location random effect would predict CPUE for each location but take other location's CPUE 

into consideration, rather than predicting CPUE independently for each location. The assumption 

is that then one can predict the relationship of explanatory variables to CPUE for all similar 

locations (Zuur et al. 2007). Essentially, by developing hierarchical models that share 

information based on simple, localized relationships, the resulting models capture the broader, 

regional processes that drive CPUE. 

Even if all known or available factors relating to the fish stock are included in the CPUE 

standardization, there is still the possibility that CPUE is not linearly proportional to relative 

abundance (Maunder and Punt 2004). Essentially, no model is ever correct, but some models are 

more useful for specific applications and represent a system well enough to improve 

management decisions (Hilborn and Walters 1992). For example, data limitations such as those 

from the Cumberland Sound fishery (e.g. reliance on voluntarily recorded catch records, lack of 

fishery-independent surveys, no understanding of the local Greenland halibut catchability, and 
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no estimates of total abundance) often restrict stock assessments that directly estimate population 

abundance. Instead, models can focus on determining the processes driving CPUE trends, such 

environmental or social factors. Assessing the mechanisms that influence catch rates is crucial 

for appropriate management decisions since teasing apart effects from the mediated by the 

environment versus those mediated by humans can be difficult; there is growing evidence that a 

considerable component in fish stock declines is caused by the environment rather than 

overfishing (Caddy and Gulland 1983, Hilborn and Walters 1992). Additionally, changes in fish 

population health and abundance (e.g. overfishing) usually go undetected until problems are 

severe, but reducing fishing pressure once problems have been identified is economically and 

socially difficult (Hilborn and Walters 1992). Thus, it is important to focus on not only fishing 

catch rates and abundance, but also to realize that fisheries are dynamic interactions of the fish 

population, the fishermen, and the environment. 

Ecosystem-based fisheries management 

The most important biological feature of a fishery is the fish population. Single-species 

assessment models aim to address status and productivity of a specific fish stock, often relying 

on single-species historical data (Walters and Martell 2004). However, because of multiple 

indirect effects of fishing (i.e. habitat destruction, bycatch, evolutionary effects on population 

demographics, and changes in the function and structure of ecosystems; Pikitch et al. 2004) more 

than just the population must be considered. There is a critical need for understanding ecological 

interactions and the effects of fishing on these relationships. Fisheries management has 

historically been ineffective because of a focus on the single target species and frequent 

disregard for ecosystem aspects such as habitat, predators, or prey (Pikitch et al. 2004), leading 
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to fishery collapses despite attentive and seemingly effective stock assessments. Additionally, 

flawed management has stemmed from an imperviousness of fisheries managers to scientific 

invalidation of particular policies—essentially, many fisheries managers have ignored empirical 

evidence and past experience in favor of dogmatic assumptions (Walters and Martell 2004). 

Ecosystem management is a popular concept in current fisheries management (Maunder 

et al. 2006)—essentially, ecosystem-based fishery management reverses the order of 

management priorities, starting with the ecosystem rather than the target species (Pikitch et al. 

2004). Based on single-species models, multiple species models consider predation, food supply, 

and environment (Hilborn and Walters 1992) while ecosystem models allow single-species 

process errors to be explained, at least partially, by trophic-interaction effects (Walters and 

Martell 2004). 

Ecosystem-based fisheries management does not replace stock assessments but rather 

incorporates them into ecosystem models. To develop ecosystem models requires information on 

bioenergetics and trophic relationships, knowledge of spatial distribution based on species 

behavior and interactions, and awareness of large-scale, long-term ecosystem events (Walters 

and Martell 2004). Considerable effort has been devoted to developing trophic mass-balancing 

models that describe status and trophic interactions in aquatic ecosystems, allowing for 

predictions of ecosystem state changes under various harvest levels (Christensen and Pauly 

2004). However, the main limitation to ecosystem-based management implementation has been 

lack of data on species linkages relative to commercially important species (Charles 2001); often 

not all information is available, forcing ecosystem-based management to be applied in varying 

degrees. 
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Although a rare occurrence, data and knowledge on a fish stock's biology, population 

dynamics, and environment should be accumulated prior to the commencement or expansion of a 

fishery, making the separation of fishing and natural mortality rates clearer for subsequent stock 

assessments. Data-poor situations for target species and ecosystem processes demand using 

information on natural history and developing precautionary methods (e.g. reduced catch limits 

or large closed areas; Piketch et al. 2004). Christensen and Pauly (2004) indicate that research 

should be focused on analyses and management of exploited ecosystems rather than just 

management of their components. 

Currently, a growing body of public support exists for fisheries that have long-term 

sustainability and protect the capability of ecosystems to support diverse creatures (Walters and 

Martell 2004). Charles (1994) considered the most important component of sustainability for 

individual stocks to be maintaining or enhancing the capacity or quality of the ecosystem, while 

Pitcher and Pauly (1998) indicate that rebuilding ecosystems should be the goal of fisheries 

managers. Thus, fisheries managers should focus on providing not only stock assessments but 

also food web structure studies—thereby setting the stage for ecosystem-based management 

strategies. 

Stable isotopes as tracers of food web structure 

One method frequently used to estimate food web linkages in marine ecosystems is stable 

isotope analysis. Isotopes are atoms of a chemical element that form the same bonds but have 

differing atomic masses; their nuclei have the same number of protons but not neutrons. Stable 

isotopes do not exhibit radioactive decay and either possess extra neutrons, referred to as 

"heavy," or fewer neutrons, referred to as "light." Typically, heavier isotopes are less common in 

8 



the environment (Ehleringer and Rundel 1989) and form stronger bonds in chemical compounds 

(Sacks 1953, Peterson and Fry 1987). As such, heavier isotopes react at slower rates than the 

lighter isotopes (Sacks 1953, Peterson and Fry 1987), resulting in changes in their relative 

abundances. This process, called fractionation, can cause an organism's tissue to possess 

different isotope ratios relative to that organism's food (Minagawa and Wada 1984, Peterson and 

Fry 1987). An increased proportion of heavy (e.g., 15N) to light isotopes (e.g.14N) is referred to as 

15N enrichment (Fry 2006). 

Because fractionation occurs at the 5th or 6th decimal point of an isotope's concentration, 

the notation delta (5) is used to amplify, by 1000, the changes from fractionation. 5-notation 

expresses stable isotopes as the ratio of heavy to light isotopes in a sample relative to a standard 

material, 

5X = [Rsample/Rstandard) - 1 ] x 1000 (2) 

where X is 15N or 13C and R is the corresponding ratio of 15N/14N or 13C/I2C. The difference 

between an organism's and its food's relative stable carbon or nitrogen isotope ratios is called 

the isotopic discrimination factor, denoted A, 

A 5 X = 5Xpredator " oX p r e y ( 3 ) 

where X is the stable isotope. Nitrogen, 15N, or carbon, 13C, stable isotopes are those most 

commonly used in food web ecology. 

A6I3C is relatively conserved, compared to A815N, with increased trophic position in 

aquatic food webs. Fractionation averages at ±l%o (Peterson and Fry 1987), and because of this 

the isotope can often be used to distinguish benthic/inshore food webs from pelagic/offshore 

food webs—stable-carbon isotope values being more enriched in the benthic/inshore systems 

(Hobson and Welch 1992, Hobson et al. 1994, France 1995). Benthic/inshore algae have more 
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positive 513C values than pelagic algae because they possess thicker stagnant boundary layers 

that resist diffusion of C02, resulting in depleted C02 (or HC02") and less subsequent 

assimilation of normally discriminated 13C (France 1995). 

For nitrogen, 15N, enrichment occurs with trophic level at a relatively constant rate of 3-

4%o, allowing derivation of relative trophic positions from 615N values (Minagawa and Wada 

1984, Michener and Schell 1994, Post 2002). This occurs because a consumer becomes enriched 

in 15N relative to its diet from excretion of isotopically light nitrogenous wastes and retention of 

isotopically heavy amino acids (Minagawa and Wada 1984). Relative trophic position can be 

inferred by comparing 515N of a consumer to the 515N of an organism from a known trophic 

level (e.g. a primary producer would be assigned a trophic level of 1). The equation for 

calculating trophic position states: 

TP, = k + (6,5NConsumer - S 'Hasel .ne)/ A5 1 5 N (4) 

where 615Nconsumer is the 515N of the species of interest, S15Nbaseiine is the 515N of the known 

baseline species, and X is the trophic position the known baseline species. However, Jennings et 

al. (2002) found that decreasing 515N values for small herring reflected decreasing trophic level, 

so averaging a species' 515N values can hide the variation among individuals of different sizes. 

Also, because a disproportionately high amount of the light isotopes are absorbed by an 

organism during fasting (i.e. 1SN or 13C enrichment), parts of isotopic variation will include 

differences in feeding rate and metabolic state (Olive et al. 2003). 

Recently, the development of stable isotope mixing models has allowed quantitative 

assessment of relative contributions of different potential dietary sources in a mixture, i.e. the 

minimum to maximum proportion of a prey species in a predator's diet (Phillips and Gregg 2003, 

Moore and Semmes 2008). These mass-balance models can quantitatively assess contribution of 
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different sources to the mixture by assuming that stable isotopes are conserved over time and 

change at a predictable rate during biological processes (Peterson and Fry 1987, Phillips and 

Gregg 2001, Phillips and Gregg 2003, Schindler and Lubetkin 2004, Martinez del Rio and Wolf 

2005). Mass-balance models are often written as, 

&M = / l * (6, +Y0 + / 2 * (&2+Y2) . - + / n * (Sn + Yn) (5) 

where /, is the proportional contribution of the /th source to the mixture, 5, is the isotopic 

signature of the /th source, and y, is the isotopic fractionation of the /th source. However, to 

calculate fractional contributions, the reverse process is used: 6 values are used to calculate 

source contributions, and then a ratio-based approach is used to calculate total amount of 

material contributed to each source (Fry 2006). Statistical models (e.g. IsoSource; Phillips and 

Gregg 2003) can solve for the range of possible source contributions, defining minimum and 

maximum potential contributions for each source. Other models (e.g. MixSIR, Semmens and 

Moore 2008) can determine probability distributions for proportional source contributions to the 

mixture of interest. 

Thus, stable isotopes can provide information on feeding location (e.g. benthic or 

pelagic) and trophic relationships, while mixing models can identify potential proportions of 

dietary items. However, stable isotopes are plagued by the fact that they rely on underlying but 

largely unstated assumptions (Gannes et al. 1997; Jardine et al. 2006). For example, unless 

fractionation has been investigated for a specific species, 6ISN and 513C is assumed to change 3-

4%o and l%o, respectively, between trophic levels, although numerous controlled studies have 

shown this value to vary with species (e.g. Overmyer et al. 2008) and environmental conditions 

(e.g. temperature; Power et al. 2003). Additionally, baseline values of 515N and 613C can vary 

among ecosystems, forcing trophic position and relative source calculations to be based on an 
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isotopic baseline unique to every ecosystem of interest (Post 2002, Jardine et al. 2006). And, 

because the relative trophic position is calculated from the baseline 815N value, the selected 

baseline species must be able to account for temporal variation in all energy sources (e.g. 

primary producers, detritus; Post 2002). Another concern is that 815N and 813C ratios are variable 

among sampling conditions (Power et al. 2003), tissue type (Hobson and Clark 1992), and 

species (Macko et al. 1982, Hobson and Clark 1992, Vander Zanden and Rasmussen 2001). 

Nonetheless, stable isotopes still provide useful tools for assessing carbon sources and 

food web structure, particularly when combined with other trophic assessment methods such as 

stomach content analysis. Stomach content analysis relies on the assumption that prey items 

present in an organism's stomach represent its diet and can therefore be used to estimate trophic 

position. However, different foods are absorbed at different rates in the gut, preventing 

examination of various source contributions in the consumer's diet (Stoner and Zimmerman 

1988), but stable isotope analysis integrates short-term variation in diet and is therefore less 

temporally biased (Pinnegar and Polunin 2000). Additionally, indiscernible stomach contents can 

be clarified by stable isotopes (Malej et al. 1993). Thus, combining stable isotopes with stomach 

content data can be an effective approach to analyze diet: stable isotopes can clarify trophic 

position, trophic similarities, and food-chain lengths while stomach contents can clarify specific 

dietary components (Pinnegar and Polunin 2000). 

Stable isotopes can also be used to assess potential trophic structure changes caused by 

fishing. Fishing is known to affect size and community species composition due to selectivity of 

larger individuals. As fishing increases, the mean size of individuals has been observed to 

decrease (e.g. Gislason 1994, Jennings and Kaiser 1998). Jennings et al. (2002) found the trophic 

level of North Sea demersal fish decreased between 1982 and 2000 in response to fishing, but 

12 



they emphasized the importance of historical trophic data to accurately observe the impacts 

fishing can have on food webs. Walters and Martell (2004) designated the need for information 

on trophic linkages early in the development of a fishery in order to understand changing 

exploitations rates. Therefore, establishing current trophic position of Greenland halibut in 

Cumberland Sound and assessing other trophic linkages are important requirements prior to the 

fishery's expansion. 

Greenland halibut 

Greenland halibut are right eye flatfish inhabiting deep waters more than 2200 m (Boje 

and Hareide 1993). Mainly found in waters with temperatures from 1-4°C (Jergensen 1998), it 

has a circumpolar distribution (Nielsen 1986). Although a flatfish, Greenland halibut possess 

muscles developed equally on both sides, and these fish are known as vigorous and vertical 

swimmers (de Groot 1970). Also, unlike other fish in its family, the left eye does not fully 

migrate to the right side, but rather sits on the dorsal ridge of the forehead, likely providing a 

wider peripheral vision (Stenberg 2007). 

Age and maturation of Greenland halibut are currently under debate, but small halibut 

typically inhabit shallower depths (0-600 m) while the abundance of older, larger fish increases 

with depth (Atkinson et al. 1982, Bowering 1982, Atkinson and Bowering 1987, Crawford 1992, 

J0rgensen 1998). Spawning is thought to occur in early winter in the deep waters of Davis Strait 

with pelagic larvae drifting with the West Greenland current along the west coast of Greenland 

(Stenberg 2007). Small juveniles, < 20 cm, undertake vertical migrations during night, feeding 

on pelagic crustaceans (J0rgensen 1997). Stomach analysis of individuals approximately 20-69 

cm indicate a primarily piscivorous diet (e.g. capelin) with some predation on cephalopods 
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(Bowering and Lilly 1992, Gonzalez et al. 2006). Individuals > 70 cm tend to consume demersal, 

large fish (e.g. redfish ;Bowering and Lilly 1992). 

Population delineation has been determined by studies on meristics (Templeman 1970, 

Misra and Bowering 1984, Riget et al. 1992, Rasmussen et al. 1999), parasites (Khan et al. 1982, 

Boje et al. 1997), genetics (Fairbairn 1981, Riget et al. 1992, Vis et al. 1997), and tagging (Smidt 

1969, Bowering 1984, Boje 2002). Results indicate populations in the Norwegian and Barents 

Sea, the waters of East Greenland, Iceland, and the Faroe Islands, Newfoundland, the Grand 

Banks, Labrador, West Greenland, and the Gulf of St. Lawrence. Knutsen et al. (2007) indicated 

significant genetic structure, i.e. genetic divergence in separate stocks, in the North Atlantic, 

mediated by drifting larvae and eggs on ocean currents. 

Commercially, the Greenland halibut has been a popular fish species since the beginning 

of the 20th Century (Bernes 1996). Originally caught on a subsistence basis in Greenland waters, 

it is now the most important fish species for the Greenland fishing industry (Bernes 1996). 

Canadian catches, mainly taken via gillnets focused in the deepwater channels near the 

Newfoundland and Labrador coasts, peaked in the 1980s (Bowering and Brodie 1995). The 

decline of these Greenland halibut resources in the 1990s along with declines in other groundfish 

resources led the Canadian government to encourage harvest of Greenland halibut in other areas 

(e.g. Davis Strait, Cumberland Sound) as "developmental fisheries" (Bowering and Brodie 

1995). However, these fisheries have been typically assigned one quota, such as 500 tonnes in 

Cumberland Sound (Treble 2008), and then are considered "stable" when the quotas are not 

exceeded (Bowering and Brodie 1995). Despite actions to increase regulations, management 

units have requested increased research activity (Stenberg 2007), and effective ecosystem-based 
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management demands basic information on food-web structure, trophic interactions, and 

stock/population status. 

Objectives and Rationale 

Commercial popularity of Greenland halibut and potential expansion of the Cumberland 

Sound artisanal fishery demand a basic understanding of the factors affecting Greenland halibut 

relative abundance and its trophic role in the Cumberland Sound system. In the context of both 

restricted access for research and limited historical focus on the Cumberland Sound system, this 

project pursued two objectives: 

1) To assess the fishery-mediated and environmentally-mediated mechanisms driving trends 

in Greenland halibut catch rates in Cumberland Sound by establishing models built from 

fisherman logbooks. 

2) To establish the trophic position and carbon sources for the Greenland halibut stock in 

Cumberland Sound. 

Each of these goals is addressed individually, 1) as Chapter 2, Hierarchical modeling of a 

remote, Arctic, artisanal, longline fishery, and 2) as Chapter 3, Using stable isotope analysis to 

assess the feeding ecology of Greenland halibut in Cumberland Sound. The implications and 

conclusion of both sections are discussed in Chapter 4, Ecosystem management approaches in 

Cumberland Sound. 
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FISHERY* 

* This manuscript is co-authored by S.T Dennard, M.A. MacNeil, S. Campana, M. Treble and 
A.T. Fisk. 



Introduction 

Despite the commercial fishing importance of the Greenland halibut Reinhardtius 

hippoglossoides to indigenous communities, stocks in the Eastern Canadian Arctic have been 

relatively unstudied to date—in part due to the remoteness characterizing such fisheries. The 

Greenland halibut is a deepwater flatfish, found up to 1500 m deep in the Davis Strait off Baffin 

Island (Templeman 1973) and as deep as 2200 m off West Greenland (Boje and Hareide 1993). 

Small halibut typically inhabit shallower depths (0-600 m) while the abundance of older, larger 

fish often increases with depth (Atkinson et al. 1982, Bowering 1982, Atkinson and Bowering, 

1987). Davis Strait is considered an important spawning area for Greenland halibut in the 

Northwest Atlantic (Jergensen 1997, Simonsen and Gundersen 2005). Because the pelagic eggs 

and larvae disperse via currents, their distribution has been linked to the North Atlantic 

Oscillation (NAO; Adlandsvik et al. 2004). The NAO is an atmospheric pressure difference 

controlling the North Atlantic Current, and variations in the NAO lead to changes in ocean 

circulation and conditions in the North Atlantic (Dickson et al. 1999, Dickson et al. 2000); 

increased Greenland halibut commercial landings in West Greenland waters have coincided with 

periods of colder water temperature (Buch et al. 2004). 

Studies of Arctic/Antarctic systems, where harsh conditions limit methods for evaluating 

deep-water fisheries, often suffer from a lack of data to assess stock status. Although the ultimate 

goal of fisheries managers is to promote the sustainable production offish stocks through formal 

stock assessment, it is often impractical to collect fishery-independent data in remote 

environments, meaning data collected by a fishery is the main (or only) source of abundance data 

available (Maunder et al. 2006). A remote, artisanal, and self-reporting longline fishery in 

Cumberland Sound, Nunavut presented a unique site for evaluating trends in cold-water fish 
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stocks from limited data since CPUE data were recorded by individual fishermen and collected 

by the Fisheries and Oceans Canada (DFO) since 1987. Characterized by winter landfast ice, 

Cumberland Sound contains an ice-dependent seasonal Inuit fishery for Greenland halibut that is 

accessible from the town of Pangnirtung. Peak catches, in the early 1990s, reached greater than 

400 tonnes, but recent years have shown reduced total catch (e.g. 2007 yielded only 3 tonnes), 

potentially due to increasingly shorter sea ice seasons, less stable ice conditions, and fewer 

fishermen participating in the fishery. 

In this study, we evaluate catch per unit effort data (CPUE) from 1987 to 2003 within the 

fished areas of Cumberland Sound to determine how social and environmental factors have 

affected the observed catch trends. Past reports assessing Cumberland Sound Greenland halibut 

stocks have suggested over-harvest as a potential explanation for decreased CPUE (Pike 1994) 

and shrinking weight-at-age (Mathias and Keast 1996). Treble (2008) indicated that decline in 

mean length and reduced catch rates could be attributed to the commencement of a new fishery, 

changes in fishing location, or growth over-fishing. Though these explanations are potentially 

driving reduced CPUE, other factors may have affected local catch rates, including NAO or 

fishing characteristics of individual fishermen. 

The process of data collection presented a unique opportunity to study the effects of 

fisherman behavior in Cumberland Sound because catch records were kept specific to individual 

fisherman. Of all fishery dependent data, CPUE is the most influenced by fisherman 

behavior—for example, through information sharing or increased fishing power (sensu Branch et 

al. 2006). Allen and McGlade (1986) indicated the importance of identifying the "actors" in a 

fishery and including their subjective responses/actions in a model rather than assuming a global 

desire of fishermen for optimal efficiency. Their analysis suggested two forms of fisherman 
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behavior relevant to Arctic fisheries: Stochasts who are willing to take new directions and risks 

in the fishery and are typically the more skilled, highlining individuals and Cartesians who 

simply follow the leaders (Allen and McGlade 1986). We suggest that CPUE trends in 

Cumberland Sound reflect these aspects of fisherman behavior while changes in the true 

abundance and distribution of Greenland halibut in Cumberland Sound result from variations in 

the physical environment. 

Materials and Methods 

Fishery characteristics 

Cumberland Sound is an inlet on the southeastern side of Baffin Island, approximately 

250 km long and 80 km wide (Fig. 1). The bottom topography, though variable, generally 

consists of shallow margins with central depths greater than 1500 m. Characterized by the 

formation of seasonal land-fast sea ice, the timing and extent of ice development varies annually 

based on latent heat of surface water and weather conditions (Treble 2008). The observed fishing 

locations from 1987 to 2003 were generally dependent on sea ice conditions and therefore catch 

locations varied annually Overall, fishing has been concentrated in the northern portion of the 

sound, within 70 km of Pangnirtung. 

The Cumberland Sound halibut fishery is dependent on the formation of land-fast ice for 

travel to the deep-water fishing grounds and as a substructure for fishing. The fishery uses 

bottom longlines set through a hole in the ice and stretched along the bottom via a metal kite. On 

average, 100 hooks are placed at ~2 m intervals using gangions placed along the line; the 

longline is tied to a groundline approximately 2000 m long. Between 1987 and 1995, the fishery 

shifted from hand-operated to power winches, making it easier to fish multiple lines from one 
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location. However, the time required to bait and set additional lines was generally longer than the 

2-3 hr set time when a single line was used, leading to an increase in the average duration of 

long-line sets. Because of the increase in abundance of larger halibut with depth, fishing effort 

was focused between 800-1200 m in Cumberland Sound when ice conditions allowed. 

Fishermen were also aware of halibut preference for mud substrates, and as such, directed their 

fishing in such areas. No offshore gill netting or trawling are permitted in the Sound. 

Beginning in 1987, voluntary logbooks were offered to fisherman by DFO and catch-

effort trends have been monitored since the formation of the fishery. Logbook data included 

longline soak time, number of hooks deployed, number of fish caught, bycatch species, fishing 

locations, and fisherman identification (all terms defined in Appendix 1). We used a monthly 

North Atlantic Oscillation (NAO) index taken from the Climate Analysis Section of the U.S. 

National Center for Atmospheric Research (Hurrell 1995). Additionally, we utilized logbook 

information to generate several additional covariates: 1) annual number of fisherman, 2) a 

pre/post storm dummy variable representing a storm in February of 1996 that caused 70% of 

fishermen to lose their gear and quit fishing (and used to examine annual trend changes pre/post 

storm), 3) a dummy variable representing presence of shark bycatch and 4) a categorical variable 

for each surname reported in the logbook data representing individual fishermen, used to 

structure a random-effects distribution of fisherman effects. The response variable was CPUE = 

number of Greenland halibut caught/100 hooks/hour. 

Model structure 

Following data exploration and organization, we established candidate models of CPUE 

based on available explanatory data, knowledge of the system, and awareness of highly 
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correlated parameters. All candidate models (Appendix 2) were run as generalized linear models 

(GLM) or generalized mixed-effects (hierarchical) models. 

After log transformation of the response, all candidate models assumed a normal 

distribution of errors, e„ run in the following form: 

log(CPUE)1 = b0 + b1x1 + e,, (1) 

with Bo as the model intercept, p, as the model slope for any given covariate x,. From the basic 

GLMs, we established an additional set of hierarchical models with location or fisherman 

included as random effects. This approach accounted for the non-independence of observations 

(e.g. individual fishermen) in predictors representing multiple levels through time (Zuur et al. 

2007). Because only a subset of the data had precise location or fisherman records, we created 

two separate sets of hierarchical models. Essentially, we built hierarchical models from 

localized, simple relationships available from the logbook data in order to capture the broader, 

regional processes driving CPUE. Thus, we modeled a distribution of location and fisherman in 

hierarchical models that accounted for within-location and within-fisherman dependence. 

Because not all years were represented in the subsets, shark bycatch records were too rare to 

include in the hierarchical models. Additionally, the fisherman hierarchical model did not 

include the number of fishermen variable since a high correlation between the number of 

fishermen and the storm dummy variable existed in the fisherman subset. 

The candidate mixed-effects models were formed from: 

log(CPUE)lt = b0 + b,x„ + e„ + a„ (2) 

where a, represents the random effect for either location or fisherman, modeled as an 

independent and normally distributed variable. All candidate models were run using the glm and 

nlme packages in the statistical package R (R Development Core Team, 2008). Evidence from 
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the data supporting individual models were compared using Akaike's Information Criteria (AIC; 

Burnham and Anderson, 2002) and model goodness-of-fit (GOF) was assessed using likelihood 

ratio tests (LRT) of each fitted model relative to a null (intercept-only) model (Zurr et al. 2007). 

Results 

Data exploration 

Pairwise plotting of explanatory variables showed no collinearity in the full data set or 

location subset, but in the fisherman subset, a strong correlation existed between the number of 

fishermen and the storm term (cor = -0.91). A plot of raw log(CPUE) data through time for 

Cumberland Sound indicated a major drop in Greenland halibut abundance since 1990-1992 

(Fig. 2a) with a steady decline in CPUE from the start of the fishery in 1987 to the lowest CPUE 

in 1999 followed by an apparent rapid increase in catch rates until 2002. A comparison of the 

raw CPUE plot to a plot of annual NAO index (Fig. 2b) showed no obvious similarities but 

comparison of a monthly NAO index plot for all years to a monthly CPUE plot for all years 

showed a parallel trend (Fig. 2c). Declines or increases in the NAO monthly index appeared to 

correspond with a decrease or increase in Cumberland Sound catch rates. A plot of fisherman 

participation (Fig. 2d) showed an increasing number entering the fishery after its onset, a peak 

participation in 1995, followed by a sharp drop after the storm of 1996. 

Generalized Linear Model results 

The top-ranked GLM (MSI 1; Appendix 2) included all fixed effects. The selected GLM 

and top-ranked hierarchical models all included the effects of year and NAO (Table 1); all three 

selected models showed a strong ability to predict log(CPUE) when predicted log(CPUE) values 
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were plotted against observed log(CPUE) values (Fig. 3). Model goodness-of-fit (GOF) 

likelihood ratio tests and quantile-quantile plots for all top-ranked models showed adequate 

model fits for the assumed normally-distributed errors. 

For GLM MSI 1, the year effect (Fig. 4) indicated a general decrease in catch rates over 

time, suggesting reduced abundance of Greenland halibut in the Sound through time. NAO had a 

positive effect on log(CPUE); an increased index was associated with increased catch rates. 

Categorical month variables showed February through May had higher log(CPUE) than January 

with the greatest catch rates occurring in February and March. The interaction term between 

storm and year, shared by the best-fitting GLM and fisherman hierarchical models, captured an 

increase in the predicted catch rate slope after the 1996 storm, where the annually decreasing 

trend in catch rates changed to an increasing trend in catch through time. 

Because of the rarity of shark records within the data, only the GLM models could 

include the shark presence/absence variable, and it was identified as an important predictor of 

log(CPUE). The negative value for shark presence indicated that the presence of a shark on the 

line reduced the predicted log(CPUE). Only the GLM models identified the number of fishermen 

variable as important, having a negative effect on catch rates. More fisherman in the industry 

reduced log(CPUE). Thus, when a GLM alone was used to model CPUE (i.e. location and 

fishermen were not accounted for), the number of fishermen appeared to be an important factor 

in predicting CPUE. 

Location Hierarchical Model 

Based on AIC values, the best location model included the fixed effects of NAO and the 

categorical month variable (LM7; Appendix 2). The year effect (Fig. 4), like the GLM, showed a 
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decrease in catch rates through time, suggesting reduced Greenland halibut abundance through 

time. The NAO effect on catch rates was positive, but the effect size was larger in the location 

hierarchical model than the GLM, suggesting that when location is accounted for, the estimated 

NAO effect on Greenland halibut increases. The categorical month variables showed greatest 

catch rates during March, followed by February. However, the magnitude of the effect of April 

was reduced in the location hierarchical model from the GLM while the effect of May became 

negative. The reduced month effect size indicates that the ability to capture Greenland halibut in 

later months was unrelated to the fishing location. 

Fisherman Hierarchical Model 

The AlC-ranked best model for the fisherman data included the fixed effect of NAO, 

month, and the interaction term of storm and year (FM7; Appendix 2). Year was negatively 

associated with log(CPUE) (Fig. 4), but the magnitude of the year effect for FM7 was larger than 

both the GLM and LM7; a decline in relative abundance was most pronounced when individual 

fisherman were accounted for. A positive NAO paralleled positive log(CPUE), but the NAO 

effect size was largest for the fisherman model. Thus, when individual fishermen are considered, 

the potential importance of NAO in driving catch rates and relative abundance increases still 

further. The categorical month variable mirrored the location hierarchical model with a negative 

effect of May, but the highest catch rates were predicted for February followed by March. For 

the interaction of storm and year, the slope of predicted log(CPUE) increased relative to the no-

interaction model. The fisherman model's storm effect size increased relative to the parameter 

estimate from the GLM, indicating a stronger change after 1996 from a negative to a positive 

catch rate slope when individual fishermen effects are modeled directly. 
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Discussion 

When modeling CPUE, annual trends typically reflect changes in annual abundance 

(Maunder and Punt 2004), and negative values are thought to represent decreases in relative 

abundance through time. However, the fact that CPUE is oftentimes not proportional to 

abundance (Ultang 1976, Garrod 1977) demands explanatory data to standardize CPUE and deal 

with the associated assumptions (Maunder and Punt 2004). Despite the data limitations in 

Cumberland Sound, we have shown that changes in relative abundance may not have been 

fishery driven and trends in CPUE represented an inconsistent index of Greenland halibut 

relative abundance. Environmental factors such as NAO and season appear to be driving trends 

in fish abundance while aspects of the fishery—particularly individual fishermen 

characteristics—are affecting reported catch rates. Importantly, the magnitude of environmental 

effect sizes was compromised when catch differences among fishermen were ignored. Thus, we 

were able to provide an informative analysis of the Cumberland Sound catch rate trends in the 

context of data restrictions. 

In the GLM analysis of the full dataset, all available covariates were identified as 

important predictors of Greenland halibut catch rates. The presence of Greenland sharks as 

bycatch, a variable only included in the GLM, negatively affected catch rates, indicating that 

sharks either prey on unhooked fish, scavenge hooked fish before being hooked themselves, or 

sever the longline. The tendency of Greenland sharks to entangle themselves in and/or break the 

longline is a major source of time and gear loss to Cumberland Sound fishermen (Pike 1994). 

The ability of a species to survive, escape, or avoid scavengers once hooked determines the catch 

actually brought to the surface, and amount of time a baited hook is available to fish will 
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influence how many fish are captured (Ward et al, 2004). Though typically greater soak time 

allows for greater catch rates, the risk of bycatch or scavenging also increases. Additionally, 

Greenland halibut may trade food for safety (McNamara and Houston 1990), avoiding longlines 

where sharks are present. The positive correlation between shark catch rates and set duration 

suggests that reducing set time would reduce Greenland shark bycatch, but since the transition to 

a power winch, set times have actually increased. 

The number of fisherman present in the fishery was only identified by the GLM analysis 

as significant. This variable represents a measure of resource competition, defined as use of the 

same resource by several foragers (sensu Birch 1957). Interference competition occurs when 

foraging success is reduced by interactions among foragers or between forager activities, and 

exploitative competition occurs when limited resources are shared (Park 1954)—potentially 

leading to a tragedy of the commons in which individuals receive the economic benefits 

associated with resource exploitation while the consequences of stock depletion are shared by all 

resource users (Hardin 1968). 

The parameter estimate for number of fisherman in our GLM was negative, indicating 

that greater fishery participation was correlated with an overall reduced efficiency of the fishery. 

In fact, as the number of fisherman participating increased, the CPUE associated with individual 

fisherman decreased. However, the Cumberland Sound fishermen work in clusters—they fish 

near each other in one general location, suggesting that location is tied to the effect of fishermen 

density. The top-ranked location hierarchical model did not find the number of fishermen as a 

significant effect, meaning that when recorded location is considered a sample of all locations 

catch rates did not actually decline as more fishermen participated. However, although the 

location hierarchical model suggests that it is unlikely overfishing occurred through either 
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exploitative or interference competition, it is also possible the model could simply not detect an 

effect. 

Both hierarchical models and the GLM identified two physical factors strongly associated 

with catch rates: NAO index and month. The monthly North Atlantic Oscillation (NAO) index 

had a significant positive effect on log(CPUE) of Greenland halibut, consistent with other 

fisheries in the North Atlantic (Bogstad and Gjester 1994, Friedland et al. 1998, Dickson and 

Turrell 1999). The NAO index is measured as the difference between the subtropic high-pressure 

zone over the Azores and the polar low-pressure zone over Iceland (Hurrell 1995). A positive 

NAO index represents an increased pressure difference, i.e. an Azores High and an Icelandic 

Low, and shifts in the NAO mediate changes in temperature, ocean circulation, and winter 

storms (Ottersen et al. 2001). The Davis Strait and Labrador Sea are mixing sites of both Arctic 

and sub-Arctic waters (Dunbar 1951, Bailey 1957), and changes in the boundaries of these 

waters influence the distribution of marine fauna in Cumberland Sound (Aitken and Gilbert 

1989). An increased monthly NAO index represented a change in Arctic and sub-Arctic currents, 

and it was strongly associated with increased monthly catch rates in Cumberland Sound. In the 

Norwegian Sea, distribution of Greenland halibut was related to the hydrographic front between 

surface Atlantic water and colder, deeper waters (Bakken et al. 1975, Bergstad and Isaksen 1987, 

Bergstad 1990), and in the Faroe-Shetland Channel, the best Greenland halibut catch rates were 

in intermediate waters originating in the Arctic (Bullough et al. 1998). Thus, NAO-mediated 

temperature changes could affect the distribution of Greenland halibut within Cumberland 

Sound. 

The increased NAO effect in the mixed-effect models indicates that a high NAO index is 

associated with higher CPUE, independent of fisherman or catch location. Thus, NAO-mediated 
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environmental changes were likely affecting Greenland halibut distribution since parallel trends 

in NAO index and CPUE were unrelated to fishery aspects such as fisherman or location. 

Distribution changes have been observed in other fish as well, such as Atlantic salmon (Salmo 

salar) whose thermal habitat size shrunk during years of positive NAO index and expanded 

during negative phases (Friedland et al. 1998, Dickson and Turrell 1999). A high NAO could 

expand thermal habitat size for Greenland halibut in Cumberland Sound and make them more 

available to fisherman, thereby increasing the catchability coefficient. 

Separate from the monthly NAO index, both hierarchical models and the GLM contained 

an effect from the categorical variable month, i.e. different months affected CPUE differently. 

We included the months January-May as factors, and in both models, February and March had 

the highest CPUE relative to January. Some variation among months could likely be attributed to 

the NAO, but the correlation coefficient (cor=-0.58) suggests only a partial influence of NAO on 

monthly conditions. Fishing location varied monthly based on formation and break-up of sea ice, 

but when fishing location was included as a random effect, the variation in monthly CPUE 

became more pronounced. In fact, the change of May to a negative effect from the GLM and 

hierarchical models suggests that accessibility of fisherman to halibut through season and change 

of fisherman through season were not affecting catch rates. Rather, the likely mechanism was an 

environmental effect associated with month. This is consistent with previous findings for 

summer longline catches in Cumberland Sound where catch rates were reduced relative to winter 

longline catches (Northlands Consulting 1994, Mathias and Keast 1996) and only trawl and 

gillnet gear fished at deepwater stations within Cumberland Sound produced catches (Northlands 

Consulting 1994). Observed changes in catchability with season and between gears suggest 

environmental factors could be influencing fish distribution. 
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One possible reason for a change in behavior could be migration associated with the 

onset of maturity in Greenland halibut. Distribution and size data from a trawl survey suggest a 

late summer movement of Greenland halibut to spawning grounds in the deep waters (>1000 m) 

of Davis Strait (Jorgensen 1997). Additionally, seasonal migration between feeding and 

spawning areas has been observed for Greenland halibut in the Gulf of St. Lawrence (Bowering 

1982) and Icelandic waters (Sigurdsson 1979). However, if Greenland halibut are migrating 

seasonally, catches between Cumberland Sound and Davis Strait would be expected; an 

exploratory fishery in Cumberland Sound caught no Greenland halibut at the Sound's mouth 

during August/September of 1994 (Northlands Consulting 1994). This absence suggests that if 

the fish leave, they do so before late summer or their behavior reduces their catchability to near 

zero. Additionally, reduced catch could also result from a general dispersal within Cumberland 

Sound as opposed to an out-migration to Davis Strait. Nonetheless, parasite fauna on 

Cumberland Sound fish could not be discriminated from Hawke Channel in the Labrador Sea, 

implying movement to/from the Sound (Arthur and Albert 1993). 

The most widely applicable conclusion from the present analysis is that individual 

fishermen characteristics can be a critical factor in understanding trends in fishery-dependent 

CPUE data. Because fishermen report CPUE themselves, it is the data source most likely to be 

influenced by their behavior (Branch et al. 2006); teasing apart the effects of behavior from other 

potential covariates is an important, but not often possible, step in analysis of fishery-dependent 

data. The unique nature of this dataset allowed us to explore fisherman behavior and demonstrate 

that, at a small scale, individuals can substantially affect reported fishery trends. 

For Cumberland Sound, participation in the fishery rapidly increased after the initial 

successful years. High payoffs and the introduction of power winches to increase fishing 
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efficiency attracted new individuals each year until a storm in 1996 prevented subsequent return. 

Consistent with predictions from behavior theory (Branch et al. 2006), differences in longlining 

skill varied widely among fisherman, causing distorted trends in GLM environmental covariates 

(Fig. 5). Despite the fact that fishermen are individuals with different skills, backgrounds, fishing 

behavior, and honesty in reporting, consideration of fisherman dynamics remains relatively 

unemployed in fishery modeling—particularly for artisanal fisheries. The application of 

hierarchical modeling provides a cohesive approach for incorporating and understanding the 

behavioral effect in fishery-dependent data, and in this study, the fixed effect for storm actually 

embodied effects from individual fisherman behavior. 

The presence of risk-taking stochasts versus low-risk cartesians emerged in the fisherman 

hierarchical model as the pre/post storm factor. Included as a dummy variable in both the GLM 

and the fisherman mixed effects models, the effect of the 1996 storm changed model-predicted 

CPUE from negative to positive, i.e. CPUE increased after the storm, most likely due to changes 

in which fishermen were participating. Essentially, the fishermen who most likely remained or 

re-entered the fishery after a gear loss of 70% were stochasts because their behavior was not 

influenced by fishing conditions (Allen and McGlade 1986). Because stochasts are also typically 

risk-taking highliners who are more efficient at catching fish (Allen and McGlade 1986, Holland 

and Sutinen 2000), CPUE through time increased when the high-quality fishermen remained and 

caused a reduced overall fishery effort. In fact, the top-ranked hierarchical fisherman model 

shows an increasing trend in CPUE for those highliners who remained in the fishery after 1996 

(Fig. 6), but the model predicts a decrease in CPUE for the fishermen who dropped out, implying 

that those who left were also less skilled. Thus, because the quality of individual fishermen in the 
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Cumberland Sound fishery is tied so closely to catch rates, the assumption that CPUE represents 

relative fish abundance was not met. 

These effects are evident from the change in the storm effect size between the GLM and 

the fishermen hierarchical model: the storm term in both models decreased the intercepts but 

increased predicted CPUEs per year, yet the size of the effect was increased in the hierarchical 

model. If the pre/post storm variable represents a change in the skill of the average fisherman in 

the fishery, then the increase in its effect size from the GLM to the mixed-effects model suggests 

those remaining in the fishery were in fact more skilled. Thus, despite accounting for variation 

among fisherman with the inclusion of a random effect, the importance of the storm 

remained—fitting our a priori expectations of fisherman influence on reported CPUE. 

Conclusion 

We suggest that trends in the abundance and distribution of Greenland halibut, as 

represented by catch rates, result from variations in the physical environment rather than the 

fishery since the self-reported CPUE in the Cumberland Sound fishery reflects a considerable 

influence of individual fisherman behavior and location. Increased effect sizes and trends from 

the GLM to the hierarchical models show the importance of accounting for fishery 

characteristics that increase observation error in catch rates to more accurately assess relative 

fish abundance. The time-series, multi-level, and random nature of fishery-dependent data make 

it inherently hierarchical and therefore the utilization of random effects in a hierarchical model is 

a more appropriate approach to structure fishery-dependent data analysis than regular GLMs. 

Despite limited data availability on this remote, self-reporting fishery, our understanding of the 
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mechanisms affecting catch rates of Greenland halibut in Cumberland Sound strongly implicate 

local, environmental processes rather than human-mediated effects. 
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Table 2.1. Parameter estimates and standard errors for the Generalized Linear Model (GLM MSI 1) and hierarchical models. 

Parameter GLM ± ISE LM7±1SE FM7±1SE 

Intercept 1.4461 ±0.050 0.7109± 0.125 0.7894± 0.452 

Year -0.1178 ± 0.005 -0.1146 ±0.051 -0.2447 ± 0.018 

NAO 0.0111 ±0.006 0.0541 ±0.009 0.0603 ± 0.008 

Storm -0.9804 ± 0.084 -1.1551 ±0.071 

Storm*Year 0.2179± 0.014 0.3719± 0.018 

Month(February) 0.2900 ±0.048 0.3077 ±0.067 0.3417 ±0.457 

Month(March) 0.3708 ± 0.048 0.1751 ±0.066 0.2106 ±0.455 

Month(April) 0.2214 ±0.054 0.0710 ±0.069 0.1758 ±0.455 

Month(May) 0.1636 ±0.066 -0.6930 ±0.088 -0.0416 ±0.458 

Shark Presence -0.1970 ± 0.034 

Number of Fisherman -0.0029 ± 0.0002 

Explained Deviance 0.283 0.317 0.348 



Figure 2.1. Location of the Inuit commercial fishery targeting Greenland halibut in Cumberland Sound, Nunavut, Canada. 
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Figvire 2.2. Trends in response and covariates. A) Annual average catch per unit effort measured as log(# Greenland halibut/100 
hooks/hour) through time, 1987-2003; catch rates declined during 1990s. B) Number of fishermen participating in the Cumberland 
Sound fishery each year; most fishermen withdrew after a 1996 storm destroyed 70% of all gear. C) Average annual NAO index 
through time, 1987-2003. D) Monthly NAO index averaged for all years, 1987-2003; monthly NAO indexes paralleled monthly 
Greenland halibut catch rates. 
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Figure 2.3. Comparison of predicted log(CPUE) against observed log(CPUE) for Greenland halibut in Cumberland Sound from the 
best AlC-ranked GLM (MSI 1), location hierarchical model (LM7), and fisherman hierarchical model (FM7). 
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Figure 2.4. Observed log(CPUE) through time with the predicted log(CPUE) through time for the GLM (MSI 1), location hierarchical 
model (LM7), and fisherman hierarchical model (FM7). The catch rates predicted in the hierarchical models more closely follow 
observed catch rates than the GLM predicted values. 
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Figure 2.5. Catch per unit effort measured as log(# Greenland halibut/100 hooks/hour) for all fishermen in the Cumberland Sound 
fishery across all years, 1987-2003; wide variation in catch rates exists for individual fisherman and across all fishermen. 
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Figure 2.6. Predicted catch per unit effort measured as log(# Greenland halibut/100 hooks/hour) for each fisherman in the Greenland 
halibut commercial fishery of Cumberland Sound as derived from the fisherman hierarchical model. Lines are predicted catch rates 
while points are observed catch rates. For the fishermen who remained in the fishery after 1996, a general increasing trend in catch is 
predicted, while those who dropped out have a predicted general decline in catch rates. 
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Appendix 2.1. Variables recorded (taken from Pangnirtung fishermen voluntary logbooks and 
other sources). 

YEAR 

JDAY 

DATE 

MONTH 

SET 

HAULED 

DURATION 

HSET 

HLOST 

HFISHED 

TURBOT 

Turb/lOOhk 

Turb/lOOhk/hr 

SHARK 

Shark/lOOhk 

Shark/1 OOhk/hr 

RAY 

LOCATION 

FISHERMAN 

Year of catch observation 

Jday of catch observation 

Date of catch observation 

Month of catch observation 

1 = January, 2 = February, 

3 = March, 4 = April, 5 = May 

Time of day line was set 

Time of day line was hauled 

Soak time (in hours) 

# Hooks set on line 

# Hooks lost during soak 

# Hooks returned when line hauled 

# of Turbotcaught 

(TURBOT/HFISHED)* 100 

Turb/1 OOhk/DURATION 

# Greenland Sharks caught 

(SHARK/HFISHED)* 100 

Shark/lOOhk/DURATION 

# Skates or Rays caught 

Sites fished, A-H 

Full name of fisherman for observation 
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FAMILY Surname of fisherman for observation 

NAO North Atlantic Oscillation index (monthly) 

STORM Dummy variable: 

0 = before Feb. 1996 storm 

1 = after Feb. 1996 storm 

SHARKPRES Dummy variable: 

0 = shark not captured 

1 = shark(s) captured 

NUMFISH Total # of fisherman for year of observation 
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Appendix 2.2. All candidate models run to predict catch per unit effort of Greenland halibut in 
Cumberland Sound. 

Original Candidate General Linear Models 

MO log(CPUE) = b0 

Ml =b0+biYear 

M2 =b0 + biMonth 

M3 = bo + biFisherman 

M4 = bo + b i NumberFishermen 

M5 = b0 + bi Storm 

M6 =b0 + b,NAO 

M7 = b0 + b i Location 

M8 = b0 + b i Location + b2NAO 

M9 = b0 + b i Storm + b2NAO 

M10 =b0 + biYear + b2Month 

Mil = b0 + b. Year + b2NAO 

M12 = b0 + b i Storm + 62Month 

M13 = bo + b i NumberFishermen+ b2Fisherman 

M14 = b0 + bi Storm + b2NAO + b3Fisherman 

M16 = bo + b i Storm + b2Month + bsFisherman 

M16 = b0 + biNumFish + ^Year + b3NAO 

M17 = b0 + biNumFish + b2Year + b3Month 

Ml 8 = b0 + biNumFish + b2Year + b3NAO + b4Fisherman 

M19 = b0 + bi NumFish + t^ Year + b3Month+ b4Fisherman 

M20 = b0 + bi Location + b2NAO + b3Fisherman 
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M21 = bo + biLocation + b2Month + b3Fisherman 

M22 = b0 + biLocation + b2NAO + b3NumFish 

M23 = bo + biLocation + b2Month + b3NumFish 

M24 = bo + biLocation + b2NAO + b3NumFish + b4Fisherman 

M25 = bo + biLocation + b2Month + b3NumFish + baFisherman 

M26 = bo + b i Year + b2Month+ b3Fisherman 

M27 = bo + b i Year + b2NAO+ b3Fisherman 

Candidate CPUE General Linear Models for all years, 1987-2003 

MSO log(CPUE) = b0 + e, 

MSI =bo + biYear + e, 

MS2 = b0 + b i Year + b2Month + e, 

MS3 = bo + bi Year + b2Month*NAO + e, 

MS4 = b0 + bi Year + b2Month + b3NAO + e, 

MS5 = b0 + bi Year + b2SharkPres + e, 

MS6 = b0 + b. Year + b2Month*NAO + b3SharkPres + e, 

MS7 = b0 + b i Year + b2Month + b3 SharkPres + e, 

MS8 = b0 + b, Year + b2Storm + b3Year*Storm + b4Month + e, 

MS9 = bo + b, Year*Storm + b2Month*NAO + b3SharkPres + e, 

MS 10 = b0 + b i Year* Storm + b2Month*NAO + b3 SharkPres + 

baNumFish + e, 

MS 11 = bo + b. Storm + b2Month + b3NAO + b4SharkPres + b5NumFish 

e, 

MS12 =bo + b,Year*NAO + e, 



Candidate Location Hierarchical models 

LMO log(CPUE) = b0 + e, + Location 

LM1 = bo + bi Year + e, + Location 

LM2 = bo + bi Year + b2Month + e, + Location 

LM3 = b0 + bi Year + b2NAO + e, + Location 

LM4 = bo + bi Year + b2Storm + b3Year*Storm + e, + Location 

LM5 = bo + bi Year + b2NumFish + e, + Location 

LM6 = bo + bi Year + b2NumFish + b3Month + e, + Location 

LM7 = b0 + bi Year + b2NAO + b3Month + e, + Location 

LM8 = b0 + bi Year + b2Month*NAO + e, + Location 

LM9 = b0 + b i Year + b2NumFish + b3NAO + e, + Location 

LM 10 = b0 + bi Year + b2NumFish + b3Month*NAO + e, + Location 

LM 11 = b0 + b i Year + b2NumFish + b3NAO + b4Month + e, + Location 

LM12 = b0 + bi Year + b2Storm + b3Year*Storm + b4NAO + e, + 

Location 

LM13 = b0 + bi Year + b2Storm + b3 Year* Storm + b4Month + e, + 

Location 

LM14 = b0 + bi Year + b2Storm + b3Year*Storm + b4Month + b5NAO + 

e, + Location 

LM15 = b0 + bi Year + b2Storm + b3Year*Storm + b4NAO + b5NumFish 

+ e, + Location 

LM16 = b0 + bi Year + r^Storm + b3Year*Storm + b4Month + b5NumFish 

+ e, + Location 
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LM17 = b0 + bi Year + b2Storm + b3Year*Storm + b4Month + b5NAO + 

beNumFish + e, + Location 

Candidate Fisherman Hierarchical models 

FMO log(CPUE) = b0 + e, + Fisherman 

FM1 = bo + bi Year + e, + Fisherman 

FM2 = b0 + bj Year + t^Month + e, + Fisherman 

FM3 = b0 + bi Year + b2NAO + e, + Fisherman 

FM4 = b0 + bi Year + b2Storm + b3Year*Storm + b4NAO + e, + 

Fisherman 

FM5 = b0 + bi Year + b2Storm + b3Year*Storm + b4Month + e, + 

Fisherman 

FM6 = b0 + b i Year + b2Month + b3NAO + e, + Fisherman 

FM7 = b0 + bi Year + b2Storm + b3Year*Storm + b4Month+ b5NAO + ei 

+ Fisherman 

FM8 = b0 + bi Year + b2Storm + b3Year*Storm + b4Month*NAO + ei + 

Fisherman 

FM9 = b0 + bi Year + b2NumFish + e, + Fisherman 

FM10 = b0 + bi Year + b2NumFish + b3Month + e, + Fisherman 

FM11 = b0 + bi Year + b2NumFish + b3NAO + e, + Fisherman 

FM12 = b0 + b i Year + b2NumFish + b3NAO + b4Month + e, + Fisherman 

FM13 = b0 + b. Year + b2NumFish + b3Month*NAO + e, + Fisherman 
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CHAPTER THREE 

USING STABLE ISOTOPE ANALYSIS TO ASSESS THE FEEDING ECOLOGY 
OF GREENLAND HALIBUT IN CUMBERLAND SOUND* 

* This manuscript is co-authored by S.T. Dennard, B.C. McMeans, and A.T. Fisk. 



Introduction 

The use of naturally occurring stable isotopes of elements such as carbon (513C) and 

nitrogen (615N) has advanced the study of energy flow and trophic ecology (Michener and Schell 

1994) since stable isotope ratios in consumer tissues can be related to the ratios in their diet 

(DeNiro and Epstein 1978, 1981). Little change between trophic positions occurs for 613C, but 

the differences can be used to distinguish benthic/inshore food webs from pelagic/offshore food 

webs—613C values tend to be more enriched in benthic/inshore systems (Hobson and Welch 

1992, Hobson et al. 1994, France 1995). However, enrichment of the heavy isotope of nitrogen 

occurs with trophic position at a relatively constant rate, allowing relative trophic positions to be 

derived from 515N (Michener and Schell 1994). Thus, stable isotopes can provide information on 

feeding location (e.g. benthic or pelagic) and trophic relationships, and when used in conjunction 

with other dietary analysis methods (e.g. stomach content) or previous knowledge, they can 

provide confirmation or clarification of feeding ecology. 

The Greenland halibut is a commercially popular fish species with a circumpolar 

distribution (Nielsen 1986). In Cumberland Sound, Nunavut, the Greenland halibut are targeted 

by an artisanal, Inuit longline fishery. Although many studies have focused on Greenland halibut 

diet, they have been generally restricted to stomach content analysis with little use of stable 

isotopes. Efforts to assess the diet of the Cumberland Sound stock have placed them at a 4th 

trophic level with a pelagic carbon source (Fisk et al. 2002). Specific species in Greenland 

halibut diets vary geographically, but trends in feeding have been observed: juvenile Greenland 

halibut (< 20 cm) feed primarily on small crustaceans and cephalopods, individuals 20-69 cm 

predominately consume small fish (e.g. herring, capelin), and individuals >69 cm target demersal 

fish (e.g. redfish; Bowering and Lilly 1992, Dawe et al. 1998). Overall, stomach content and 
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visual observations show that despite being a flatfish, Greenland halibut tend to feed pelagically 

(Orr and Bowering 1997). However, Greenland halibut diet depends on many factors, and diet 

changes with area, depth, or predator size (Bowering and Lilly 1992, Solmundsson 1993, 

Rodriguez-Marin et al. 1997). Pedersen and Riget (1993) suggest that Greenland halibut feed on 

the most abundant prey within its habitat, preventing assumptions of a Greenland halibut stock's 

dietary preferences in an unstudied system where potential prey items are unknown. 

The Cumberland Sound Greenland halibut stock is of commercial importance to the Inuit 

of Cumberland Sound, but recent years have seen changes in climate: late formation of landfast 

sea ice and shorter ice seasons. Additionally, there are efforts to both expand the artisanal fishery 

and to extend it into summer months. Trophic dynamics are sensitive to environmentally-

mediated effects and human-mediated effects. Thus, to assess and predict potential stock 

responses to changes in the Cumberland Sound ecosystem requires an initial understanding of 

trophic position and carbon sources for the local Greenland halibut stock. 

The purpose of this study was to provide preliminary information on the Greenland 

halibut diet in Cumberland Sound, focusing on two known potential prey items, capelin 

(Mallotus villosus) and shrimp (Lebbeus polaris), and to assess the utility of stable isotopes to 

define the feeding ecology of a large arctic fish. Capelin represent a pelagic, surface-feeding 

organism (Templeman 1948) while shrimp are known to be epibenthic feeders (Birkely and 

Gulliksen 2003)—thereby allowing these species to act as proxies of their respective habitats. 

Copepods (Calanus hyperboreus) and scallops (Chlamys islandica) were also included in this 

study; copepods and scallops represented the baseline for pelagic and benthic carbon sources 

respectively, and a trophic position of 2 (i.e. primary herbivores; Hobson et al. 2002). 
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Materials and Methods 

Sampling 

Greenland halibut (n = 26, 17 males, 7 females) were collected in April 2008 in the 

Cumberland Sound fishery via bottom longline. All halibut were measured for total length and 

assigned to size classes. Because of the current discrepancy in aging Greenland halibut (e.g. 50 

cm Greenland halibut could grow -1-5 cm/year depending on the aging method; Treble 2008), 6 

size classes were created with 5 cm intervals: <55, 55-60, 60-65, 65-70, 70-75, >75. Samples of 

dorsal muscle tissue and liver tissue were collected, stored in plastic bags, and frozen until 

analysis. Stomach contents, if any, were identified as close to species level as possible. Shrimp 

and copepod samples were collected from Cumberland Sound in April 2008 and capelin and 

scallop samples were collected in August 2008. Shells of shrimp and scallops were removed 

prior to analysis. 

Stable isotope analysis 

Copepods were analyzed whole and multiple individuals were combined for each sample 

to achieve sufficient tissue weight. Soft tissue of individual scallops and shrimps were analyzed 

while capelin and Greenland halibut were subsampled to approximately 1 gram before freeze 

drying 48 hours. Tissue was ground using a ball mill grinder (SPEX CertiPrep 8000-D ball 

milling unit, SPEX CertiPrep, Metuchen, NJ, USA). Samples were homogenized in 5 ml of 2:1 

chloroform:methanol with 30 seconds of vortexing, left 24 hours, and then decanted for 

gravimetric determination of lipids (Post et al. 2007). The process was repeated for thorough 

extraction and solvents were dried off the tissue via 24 hours in a fumehood. Between 400-600 

ug of tissue was weighed into tin capsules and stable carbon and nitrogen isotope ratios were 
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provided from a continuous flow isotope ratio mass spectrometer (IRMS, Finnigan MAT 

Deltaplus, Thermo Finnigan, San Jose, CA, USA). 

Stable isotope abundances are expressed in delta (6) values as the deviation from 

standards in parts per thousand (%o) from the following equation: 

6 X = [(Rsample/RstandardH] X 1000 (1) 

where X is 15N or l3C and R is the ratio l5N/l4N or 13C/12C. The standard reference material was 

Pee Dee Belemnite carbonate for C02 and atmospheric nitrogen N2. The analytical precision for 

615N was <0.22 and <0.24 for 6I3C, based on more than 100 analyses of NIST standard (bovine 

muscle) across multiple sample runs. Based on a recent single run of NIST standards sucrose (n 

= 13) and ammonium sulphate (n = 13), 815N was 0.14 and 513C was 0.05 

Data analysis 

Because the Greenland halibut were assigned to size classes, the relationship between 

Greenland halibut size, sex, and 515N (muscle tissue) was investigated using a generalized linear 

model (GLM). Confidence intervals at 95% were calculated to compare Greenland halibut tissue 

isotope values between size classes and to other food web species. All analyses were run in R (R 

Development Core Team 2008). 

Trophic position (TP) was determined relative to the sampled copepod, which was 

assumed to be a primary herbivore occupying a trophic position of 2 (Hobson et al. 2002). 

Relative trophic positions of consumers were calculated based on muscle tissue 515N using: 

Trophic position = 2 + ( 6 ' 5Nconsumer - 6 ' ^cahnus)/! .4 (2) 

and assuming an isotopic discrimination factor among trophic positions of 3.4%0 (Post 2002). 
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Isosource mixing model software (Philips and Gregg 2003) was used to assess dietary 

contributions of both prey species to the diet of the Greenland halibut. This model calculates 

feasible combinations of primary producer isotope signatures, 815N and 513C, that explain 

observed consumer isotope signatures. Outputs are given as the range of all possible solutions 

indicating minimum and maximium contributions of each food source consistent with isotope 

mass balance (Urton and Hobson 2005, Inger et al. 2006). The model source increment was set at 

1% and the tolerance at 0.7%. Isosource ouputs are reported here as median and 1-99* percentile 

range of solutions (Bernstead et al. 2006). 

Another stable isotope mixing model, MixSIR, (Semmens and Moore 2008) was also 

applied to assess relative contributions of different prey to the consumer. Unlike Isosource, 

MixSIR uses a Bayesian framework to estimate probability distributions of source contributions 

to a mixture while accounting for uncertainty associated with multiple sources, fractionation, and 

isotope signatures. We used previously published fractionation values of 1.0 ± 0.4%o for 513C 

and 3.4 ± 1.1 %o for 515N. The maximum importance ratio was below 0.001, indicating model 

effectiveness in estimating true posterior density (Moore and Semmens 2008). MixSIR results 

are presented as median, 5th, and 95th percentiles. 

Results 

Total length ranged in size from 51.4 cm to 85.6 cm with a mean ± 95% confidence 

interval (CI) of 62.44 ± 2.95 cm. The majority of stomachs were empty (89%) with three 

stomachs containing shrimp, mysids, or unidentifiable fish. 

Of species analyzed from the Cumberland Sound food web for Greenland halibut 

feeding, Greenland halibut size class 6, >75 cm, had the highest 615N (17.13) and scallops the 
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lowest 515N (8.58 ± 0.18) (Table 1, Fig. 1). The lowest 513C belonged to copepods (-20.52 ± 

0.82) and highest 513C to scallop (-18.55 ± 0.38) (Table 1). The mean 513C value for Greenland 

halibut was -18.95 ± 0.16%, with little variation across sizes (Table 1). 

Trophic positions were calculated for each species using equation (2) and are listed in 

Table 1. The Greenland halibut was calculated at a trophic position of approximately 4.0 for all 

size classes (Table 1). Only the largest size class, >75 cm and for which n = 1, had a different 

trophic position (TP=4.3). Assessment of size in the GLM found length as a significant predictor 

of Greenland halibut 815N (p = 0.0022), but when a sex effect was also included in the GLM, 

neither effect was significant (sex p = 0.9124, length p = 0.0893). Overlapping 95% confidence 

interval bars indicated no significant difference in 515N across Greenland halibut size classes, but 

because the largest size class was only n = 1, a confidence interval could not be calculated. Thus, 

by assessing length as categorical variable in the GLM, i.e. six size classes, only the largest size 

class was a significant predictor of 515N. 

Capelin was identified as the main component of the Greenland halibut's diet by both 

IsoSource and MixSIR (Table 2). Capelin and shrimp were the only potential prey items 

included in the models, although other prey items that were not sampled also likely contributed 

to the Greenland halibut's diet. Nonetheless, the mixing models confirmed that Greenland 

halibut with a length of 50 - 85 cm depend on a pelagic food source. 

Discussion 

Greenland halibut are primarily harvested in Cumberland Sound during winter and early 

spring months, and stomach content analysis has proven ineffective due to the high percentage of 

empty stomachs during this season. Attempts in this study to capture Greenland halibut in 
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Cumberland Sound in summer/fall months were unsuccessful, indicating the usefulness and 

necessity of stable isotope data to elucidate the prey preferences of Greenland halibut in 

Cumberland Sound. 

Values of 813C across the sampled species from Cumberland Sound suggested two carbon 

sources, pelagic and benthic. Benthic organisms in this study were 13C enriched, more negative 

in 513C relative to the pelagic species, consistent with others studies of arctic ecosystems 

(Hobson and Welch 1992, Hobson et al. 1995, Hobson et al. 2002). Consistent with known 

habitat and feeding preferences of these organisms, the invertebrates and fish increased on a 

gradient of 513C from pelagic habitat species (copepods, capelin; Templeman 1948, Hirche 1997) 

to epibenthic (shrimp; Birkely and Gulliksen 2003) to benthic habitat species (scallops; Wiborg 

1963). Scallops were the most 13C enriched, suggesting a primarily benthic carbon source. 

Copepods and capelin, as the most 13C depleted samples, indicated pelagically feeding species. 

Shrimp exhibited an intermediate 513C, suggesting that they feed between both habitats. The 

Greenland halibut 513C values across all size classes grouped them with the offshore pelagic 

species. Despite being a flatfish, pelagic feeding behavior of Greenland halibut in Cumberland 

Sound is consistent with body morphology (de Groot 1970) and stomach content studies 

(Bowering and Lilly 1992, Gonzalez et al. 2006). The mixing models, which were based on both 

813C and 515N, also indicated pelagic behavior by identifying capelin as the main component 

(relative to shrimp) in the Cumberland Sound Greenland halibut diet. 

Relative values of 515N for the species in this study were also consistent with prior 

knowledge of their feeding ecology. Capelin are a foraging pelagic fish found throughout the 

Arctic and sub-Arctic zones of the Atlantic and Pacific oceans (Templeman 1948), and a relative 

trophic position of 3.0 is consistent with their position as secondary consumers (0*Driscoll et al. 
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2001). Greenland halibut across all sizes were a trophic position of 3.8, consistent with a known 

dietary preference in other ecosystems for capelin (TP = 3.0) or shrimp (TP = 3.1). 

The mixing models identified capelin as the main prey item for the 50 - 85 cm Greenland 

halibut sampled in Cumberland Sound, also consistent with previous observations on diet with 

size: individuals 20-69 cm predominately consume small fish (e.g. herring, capelin). However, it 

is important to note that not all possible prey species were included in this study but rather 

common species representing pelagic fish and meso-benthic invertebrates. Other species (e.g. 

Arctic cod; Bowering and Lilly 1992) would share similar stable isotopes signatures to 

capelin/shrimp and likely be important components of the Cumberland Sound Greenland halibut 

diet. In fact, capelin represent a relatively new food source to the Greenland halibut of 

Cumberland Sound and have only been observed in the ecosystem in recent years. Fisk et al. 

(2002) found similar stable isotope signatures in 1999 that indicated a pelagic carbon source and 

4th trophic position, thereby verifying the importance of other, unknown prey items in 1999 and 

suggesting other prey items currently. Although MixSIR (which incorporates multiple sources of 

uncertainty; Moore and Semmens 2008) still emphasized capelin as important, the systems 

modeled were incredibly simplified with only two source items included. The addition of other 

species to the mixing models could reduce the success and/or agreement of the models. 

The tendency of Greenland halibut to change diet with growth as suggested by previous 

studies was reflected in the GLM results. Length was a significant predictor of 51SN in the GLM, 

implying a change in diet with size. However, most Greenland halibut individuals in this study 

were 50 - 75 cm, and, according to other studies, such a range in size would share a similar diet. 

Thus, the significance of length was driven by the one individual > 75 cm—therefore suggesting 
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a consistent diet (TP = 3.9 - 4.0) prior to a certain size and then a change in prey preference (TP 

> 75 cm = 4.3). 

The indication of pelagic feeding from the 8I3C values, the identification of capelin as the 

main prey item by the mixing models, and the implication by the GLM of transitions in diet with 

size are all characteristics observed in other studies of Greenland halibut. However, the diet of 

Greenland halibut can be extremely variable in prey preferences and seasonal diets, such that 

dietary assumptions cannot be made for Greenland halibut in an unstudied ecosystem. 

Nonetheless, the variability in diet preferences has been well-documented and can direct small-

scale research in unstudied areas. 

The usefulness of this study lies in its potential use for future research. Despite the 

concerted efforts of Fisheries and Oceans Canada (DFO) and the Pangnirtung Hunters and 

Trappers Association to determine the independence of the Greenland halibut of Cumberland 

Sound stock (Kabva Marine Services et al. 2003, Treble 2003), there has been limited research 

focusing on the ecology of this fish stock. Basic fisheries management requires single species 

models, and prior to this study, there have been none developed for the Cumberland Sound 

Greenland halibut. This study provides the starting point on which to base future studies by 

confirming the pelagic feeding of the Cumberland Sound Greenland halibut and indicating the 

importance capelin may represent in the diet. Additionally, this study indicates the usefulness of 

stable isotopes for assessing Greenland halibut feeding behavior in unstudied ecosystems. 

Focusing the direction of stable isotope studies on dietary assessments from other systems 

provides a straightforward method for structuring diet and trophic relationships with small 

sample size demands. 
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Because trophic dynamics are sensitive to both environmentally-mediated effects and 

human-mediated effects, establishing baseline information is crucial for predicting potential 

stock responses to changes in the Cumberland Sound ecosystem and fishery. Future research 

must focus on the importance capelin play in the local ecosystem and Greenland halibut diet. 

Additionally, identification of other important prey items is necessary. This study provides the 

starting point for more elaborate Cumberland Sound research on the local Greenland halibut 

feeding ecology by confirming pelagic feeding, establishing its relative trophic position, and 

specifying the importance of capelin as prey. 
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Table 3.1. Stable-nitrogen and stable-carbon isotope values (mean ± SE) for several food web 

components of the Cumberland Sound ecosystem and derived relative trophic position* 

Species Size Class n 815N(%>) 813C(%0) Relative Trophic 
Position 

Copepods 
Scallop 
Shrimp 
Capelin 
G. Halibut 1 

2 
3 
4 
5 
6 

<55 
5 5 - 6 0 
6 0 - 6 5 
6 5 - 7 0 
7 0 - 7 5 
> 7 5 

4 bulk 
5 
5 
7 
6 
3 
8 
5 
3 
1 

9.47 ± 0.26 
8.58 ±0.18 
13.24 ±0.12 
12.92 ±0.13 
15.85 ±0.10 
16.25 ±0.10 
16.00 ±0.21 
16.35 ±0.20 
16.50 ±0.29 
17.13 

-20.52 ± 0.82 
-18.55 ±0.38 
-18.74 ±0.16 
-19.25 ±0.05 
-19.05 ±0.09 
-18.94 ±0.01 
-19.01 ±0.21 
-18.93 ±0.09 
-18.62 ±0.39 
-18.91 

2 
benthic 

3.1 
3.0 
3.9 
4.0 
4.0 
4.0 
4.1 
4.3 

* Trophic position = 2 + (S^N^^me, - 8 NCaijmJ/3.4 
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Table 3.2. Model estimates of prey contributions to the diet of Greenland halibut, Reinhardtius 
hippoglossoides, as provided by IsoSource (median, 1st and 99th percentiles) and MixSIR 
(median, 5th and 95th percentiles) using isotopic discrimination factors 3.4%o and 1.0%o for 815N 
and 813C, respectively. 

Prey Species 

Shrimp 

Capelin 

IsoSource 

0.0 
(0.0-0.01) 

0.99 
(0.99-1.0) 

MixSIR 

0.001 
(0.0-0.002) 

0.999 
(0.998-1.0) 
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Figure 3.1. Stable-nitrogen and stable-carbon isotope values (mean ± SE) of 6 size classess of 
Greenland halibut, likely prey species (capelin and shrimp) of the Greenland halibut and two 
baseline species from the Cumberland Sound ecosystem. 
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CHAPTER FOUR 

CONCLUSION: ECOSYSTEM MANAGEMENT APPROACHES IN CUMBERLAND 
SOUND 



Conclusion 

The overall goal of this research was to determine which social and environmental factors 

have affected the observed catch per unit effort (CPUE) trends in the Cumberland Sound fishery 

for Greenland halibut and to investigate basic feeding ecology of the Cumberland Sound 

Greenland halibut stock. The combination of these two studies provides the basis for 

understanding the social, physical, and biological mechanisms driving Greenland halibut catch 

rates in Cumberland Sound as well as establishing the starting point for an ecosystem-based 

management approach in the Cumberland Sound fishery. Despite data restrictions, these studies 

show some mechanisms driving catch rate trends can be developed through hierarchical 

modeling while carbon sources and trophic position can be established through stable isotope 

analysis. 

Chapter two focused on reported declining catch rates observed in the mid-1990s. We 

found that changes in abundance and distribution of Greenland halibut likely resulted from 

variations in the physical environment and fisherman behavior rather than the fishery itself. By 

modeling fishing location and individual fisherman as random effects with multiple fixed effects 

in two hierarchical models of CPUE, we found the months (January through May) and the North 

Atlantic Oscillation (NAO) index were significant predictors of catch rate. The month effect 

showed greatest catch rates during February and March, but declining catch rates during May. 

The NAO index was positively associated with catch rates, i.e. high catch rates mirrored a high 

NAO index. In the fisherman hierarchical model, the significance of the storm variable, which 

represented a change after 1996 from decreasing to increasing CPUE, was linked to reduced 

fishery participation following a large storm that caused a gear loss of 70%. In fact, the storm 

variable was found to represent a switch in the quality of fisherman remaining in the fishery after 
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the large storm: the more skilled fishermen remained after such losses while the less skilled 

dropped out—effectively changing CPUE. Additionally, a generalized linear model (GLM) 

identified negative relationships of CPUE with shark bycatch and with increased fisherman 

participation. Reduced catch in the presence of Greenland shark bycatch was expected since the 

sharks are known to tangle or destroy lines and scavenge hooked Greenland halibut. However, 

the negative effect from increased fisherman participation was not identified in the location 

hierarchical model, indicating that when location is considered random (i.e. fished locations are 

only a sample of all potential locations), the number of fisherman participating is not affecting 

CPUE. Also, the fact that fisherman behavior influenced CPUE records illustrates the potential 

break down of the CPUE assumption that catch rates are proportional to true fish abundance. As 

such, using hierarchical models to predict CPUE is a more appropriate method than generalized 

linear models. 

Chapter three used nitrogen (815N) and carbon (813C) stable isotope data to provide 

preliminary information on the Greenland halibut diet in Cumberland Sound, focusing on two 

known potential prey items. Capelin (Mallotus villosus) represent a purely pelagic organism 

while shrimp (Lebbeus polaris) are known to be partially benthic feeders—thereby allowing 

these prey species to act as proxies of their respective habitats. Despite being a flatfish, 

Greenland halibut are known water column feeders (Bowering and Lilly 1992, Gonzalez et al. 

2006), and 813C for the Greenland halibut stock indicated a pelagic carbon source in Cumberland 

Sound as well. Additionally, stable isotope mixing models, IsoSource and MixSIR, indicated a 

99% dietary composition of capelin relative to the shrimp, further confirming a pelagic feeding 

behavior. This study provides the starting point for more elaborate Cumberland Sound research 

on the local Greenland halibut feeding ecology by confirming pelagic feeding, establishing 
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relative trophic position, and specifying the importance of capelin as prey. Additionally, this 

study confirms that stable isotopes are reliable and useful indicators of Greenland halibut 

feeding. 

In summary, the main results of this work indicate that it is unlikely reduced catch rates 

were driven by the Cumberland Sound fishery. Rather, physical variables (e.g. month or NAO) 

are affecting distribution or abundance of Greenland halibut within the system and social 

variables (e.g. fisherman behavior) are affecting observed trends in CPUE. The time-series, 

multi-level, and random nature of fishery-dependent data makes it inherently hierarchical and 

therefore the utilization of random effects in a hierarchical model is a more appropriate approach 

to structure fishery-dependent data analysis than regular GLMs. Additionally, assessment of 

Greenland halibut stable isotopes provide the first evidence of pelagic feeding behavior in 

Cumberland Sound. Consequently, the combination of these studies is the first attempt to 

incorporate both fishery and ecological information to study the Cumberland Sound Greenland 

halibut. 

Research Needs for the Cumberland Sound Greenland Halibut Fishery 

The Cumberland Sound fishery for Greenland halibut is still new and small relative to 

other Greenland halibut fisheries. As an artisanal fishery with limited gear and participation, the 

fishery has yet to reach an assigned quota (Treble 2008). Recent years have seen a decline in 

fishery participation due to unstable ice conditions and shorter ice seasons. However, there has 

been interest in the formation of a summer fishery for Greenland halibut in Cumberland Sound in 

addition to an expansion of the commercial nature of the fishery. Prior to such steps, though, 

more information on the Cumberland Sound ecosystem and Greenland halibut stock is crucial for 
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predicting future trends and establishing appropriate management strategies. For example, 

conducting fishery-independent surveys would strengthen stock assessment models. 

Additionally, we must understand the distribution and abundance of the capelin stock, a recent 

species present in Cumberland Sound, as well as establish the importance capelin play in the 

Cumberland Sound Greenland halibut diet. Because Cumberland Sound is receiving attention for 

future research, our identification of these important knowledge gaps can help direct research 

efforts. 

Seasonal/monthly effects on catch rates 

Cumberland Sound is a relatively pristine system; fishing is limited to certain areas and 

longlining only occurs several months of the year. Previous exploratory surveys have had 

limited success longlining in summer months, but trawling yields low catches (Northlands 

Consulting 1994). Before development of a summer fishery, understanding why catch models 

show a monthly effect is crucial—essentially, why do catch rates decline as the season changes? 

The decrease in longline effectiveness from winter/spring to summer/fall suggests either a 

change in catchability (i.e. a change in fishing power or seasonal change in fish behavior), 

migration of Greenland halibut out of the Sound, or redistribution of the fish within Cumberland 

Sound. 

One suggested mechanism for reduced longlining success in summer months and the 

significance of a month effect in the hierarchical model is a change in summer fishing power. 

Although catchability refers to the interaction of the animal's behavior and the fishing gear, the 

concept is often blurred with fishing power (Ward 2008), which actually refers to the property of 

the fishing gear and practices. In the case of Cumberland Sound, gear restrictions dictate fishing 
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power—trawling is prohibited in the winter fishing grounds. An exploratory survey in 

summer/fall of 1994 used longlining in addition to otter trawling, gill netting, and traps 

(Northlands Consulting 1994). Summer longlining with gear and fishing location similar to the 

winter methods proved unsuccessful. The highest catch rates were at a water depth of ~900 m 

and took an average of 63 hours for 300 hooks to catch 100kg of Greenland halibut (Northlands 

Consulting 1994). The winter fishery, which is spread out over shallower waters, needed an 

average of 4 hours for 300 hooks to catch 100 kg of Greenland halibut (Pike 1994). While otter 

trawling proved moderately successful when targeting waters >400m deep in Cumberland Sound 

(Northlands Consulting 1994), the fishing was not focused in the winter fishing grounds. Thus, a 

change in fishing power was not causing the observed summer catch rate decline. 

Another possible cause of reduced summer catch is a change in behavior that reduced 

catchability: Greenland halibut may have begun feeding in the water column. As our stable 

isotope study showed, the Greenland halibut of Cumberland Sound feed pelagically and, 

consistent with other systems (Bowering and Lilly 1992), capelin likely form a main component 

of the diet. Capelin are migratory fish, moving in large schools to inshore waters for spawning in 

late spring and early summer, only inhabiting Cumberland Sound during summer months. If 

Greenland halibut do remain in Cumberland Sound year-round, they are possibly moving within 

the water column, targeting the summer capelin source. Thus, managing the Cumberland Sound 

fishery from ecosystem point of view demands assessment of Cumberland Sound capelin and 

other potential prey items. However, capelin have only been observed in Cumberland Sound in 

recent years, suggesting that they have either replaced the previous pelagic feeder or else 

represent a new food source for Greenland halibut in the ecosystem. Thus, a change in 
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Greenland halibut behavior to specifically target capelin would not explain the reduced summer 

catches in years prior to capelin arrival. 

Migration of the fish out of the system or redistribution of Greenland halibut within 

Cumberland Sound could also explain reduced summer catches and the significance of a month 

effect in the hierarchical models. Distribution and size data from a trawl survey conducted in 

Davis Strait suggest a late summer movement of local Greenland halibut to spawning grounds in 

the deep waters (>1000 m; Jorgensen 1997), similar to seasonal migrations of Greenland halibut 

between feeding and spawning areas in the Gulf of St. Lawrence (Bowering 1982) and Icelandic 

waters (Sigurdsson 1979). However, if Greenland halibut are migrating seasonally, catches 

between Cumberland Sound and Davis Strait would be expected, but the 1994 exploratory 

fishery in Cumberland Sound caught no Greenland halibut at the Sound's mouth (Northlands 

Consulting 1994). Rather than an out-migration from the Sound, reduced catch could also result 

from a general dispersal within Cumberland Sound. Trawling in areas of Cumberland Sound not 

targeted during winter fishing yielded concentrations of Greenland halibut in waters >350m. Yet, 

parasite fauna on Cumberland Sound Greenland halibut imply movement to/from the Sound 

since the parasites could not be discriminated from those found in the Hawke Channel of the 

Labrador Sea (Arthur and Albert 1993). 

One potential method for elucidating summer movement is the use of satellite tags on 

large Greenland halibut individuals. A study with Atlantic bluefin tuna using pop-up satellite 

archival tags provided insight into migrations and environmental preferences (Block et al. 

2001)—information also needed for Cumberland Sound Greenland halibut. The satellite tag is 

attached externally to a fish, and after release at a preprogrammed time, it floats to the surface 

and transmits recorded data to satellites (Block et al. 1998). The tags record temperature and 
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depth data as well as daily geographic position of the fish as determined by light intensity 

records (Block et al. 1998). Thus, movements and behaviors determined from satellite tags could 

clarify if the Greenland halibut move within the water column during summer/fall months, 

redistribute within Cumberland Sound, or migrate into Davis Strait. 

Ecosystem-based Management in Cumberland Sound 

Because these studies suggest that changes in the abundance and distribution of 

Greenland halibut in Cumberland Sound resulted from variations in the physical environment 

and fisherman behavior rather than the fishery itself, understanding the ecology and behavior of 

the target species and its food web prior to developing a summer fishery is crucial. Although past 

models offish populations have often ignored environment (Hilborn and Mangel 1997), there is 

growing evidence that a considerable component in fish stock declines is caused by the 

environment rather than overfishing (Caddy and Gulland 1983, Hilborn and Walters 1992). If a 

fishery develops with little or no conservation and regulation, though, overfishing is the likely 

cause of reduced CPUE (e.g. Namibian hake fishery; Hilborn and Mangel 1997). 

With the realization that single species operate within an ecosystem and the failure of 

past attempts to manage fisheries as a single population (e.g. for maximum sustainable yield), 

fisheries management has turned its focus to the ecosystem level (Browman and Stergiou 2004). 

Because our understanding of the mechanisms affecting catch rates of Greenland halibut in 

Cumberland Sound strongly implicate local, environmental processes, and because trophic 

dynamics are sensitive to environmentally-mediated effects, placing the Greenland halibut within 

a food web structure is crucial—multiple species models require both accurate assessment of 

trophic linkages and single species models (Beverton and Holt 1957). Even when years of 
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fishery data are available, some key assessment calculations will depend on data that can only be 

gathered in the early stages of a fishery's development (e.g. behavior of a species; Hilborn and 

Walters 1992). Walters and Martell (2004) designated the need for information on trophic 

linkages early in the development of a fishery in order to understand changing exploitations 

rates. Therefore, establishing current trophic position of Greenland halibut in Cumberland 

Sound and assessing other trophic linkages is needed prior to the fishery's expansion in order to 

understand possible changes in future trophic structure in Cumberland Sound. 

The importance of pelagic food sources in the Greenland halibut diet suggests that 

feeding behavior could also be driving stock distribution and fishery catch rates. However, 

stable isotopes can only pinpoint relative trophic level, and because of limitations in sampling 

and accessibility, the only potential prey we assessed were capelin and shrimp. To build an 

effective ecosystem-based management strategy before commercial exploitation is expanded 

within Cumberland Sound, other important food items must be identified and studied. The 

incorporation of CPUE into stable isotope modeling could be a powerful tool, showing how 

fishing can affect food web structures. However, stable isotope data spanning multiple years are 

required—Jennings et al. (2002) emphasized the importance of historical trophic data to 

accurately observe the impacts fishing can have on food webs. 

Though the size of the data sets and variety of ecosystem knowledge needed to create 

large scale ecosystem studies is outside the scope of this project, future research within 

Cumberland Sound can focus its efforts in the direction needed for effective ecosystem-based 

management strategies. Essentially, determining reasons for reduced catch rates during 

summer/fall months (i.e. are the fish within the Sound or not), identifying the Cumberland Sound 

Greenland halibut dietary components (in addition to capelin), and also establishing a full 
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Cumberland Sound food web structure are all studies needed prior to the expansion of the 

Cumberland Sound fishery. Such information provides the basis for effective and appropriate 

ecosystem-based management as well as for understanding future CPUE trends in the face of 

changing climate and increased fishery effort. 
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