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ABSTRACT 

This study develops the method of estimating queue length at a signalized 

intersection. The method simplifies the past queue length estimation method that was 

developed using shock wave theory. This simplified method avoids complexity with 

calculations of shock wave speeds and accounts for the variations in vehicle effective 

length. The numbers of cars and trucks in each lane were observed upstream of the stop 

line at a signalized intersection in Windsor, Ontario. Maximum queue length among lanes 

was estimated in each cycle using second-by-second vehicle count and occupancy data 

collected from 7 locations of detectors. As a result, the method generally estimated the 

queue length more accurately than the shock wave method and the estimation errors were 

relatively consistent regardless of detector locations. The findings provide insights into 

the development of simpler queue length estimation method and the selection of the 

optimal location of detectors for accurate queue length estimation. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

Traffic congestion has been recognized as a major and growing issue in many 

urban and suburban areas. It has significant effects on the economy, air pollution, travel 

behavior, accident risk, land use and road users. Transport Canada (2006) reported that 

recurrent congestion in Canada's nine largest urban areas cause a loss of $2.3- $3.7 

billion due to delay, fuel consumption and emissions in 2002.The Texas Transportation 

Institute (2005) estimated that traffic congestion in the 85 metropolitan areas in the US 

caused 3.7 billion vehicle-hours of delay, resulting in 2.3 billion gallons in wasted fuel 

and a congestion cost of $63 billion in 2003. 

The problems of queuing occur in many non-transportation fields such as the 

design and operation of industrial plants, retail stores, grocery check-out point counters, 

bank teller windows, restaurants, serviced oriented industries, computer and 

telecommunications networks etc. Queuing processes also occasionally occur in many 

surface roads such as the signalized and stopped-controlled intersections, freeway 

bottlenecks, incidents sites, toll plazas, parking facilities and merges areas near freeway 

on-ramps. 

In particular, the analysis of queuing at signalized intersections is complex due to 

interaction of traffic movements in different approaches controlled by signals. The signal 

permits certain movement and prohibits other movements in each specified time interval. 

For example, a queue forms during the red interval, and then dissipates within the 
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subsequent green interval. Thus, signal timing plan, capacity of the road section and the 

traffic flow demand are the major factors affecting the queue at a signalized intersection. 

1.2 Importance of queue length estimation 

A long queue increases delay at an intersection. It also reduces the capacity of an 

intersection through spillback and storage blocking between lanes groups. Therefore 

queue length has been recognized as an important measure for evaluating the operational 

performance of signalized intersections. At signalized intersections, queue length is a 

necessary input data for optimizing signal timing (Bang & Nilsson, 1976; Lin & 

Vijayakumar, 1988). 

Queue length can be used to predict intersection delay, travel times and level of 

service at intersections. This information can potentially be provided to drivers so that 

they can avoid delay by choosing alternative route. Queue length is also critical to 

determine the required length of turn bays to prevent queued turning vehicles from 

overflowing in the bay and blocking vehicle flow in the adjacent through lanes. Queue 

length is also used to determine the spacing between successive intersections so that a 

queue does not frequently spill over the upstream intersection. 

1.3 Limitation of existing research work 

Over the years, numerous studies were conducted by many dedicated researchers 

(Newell, 1965; Robertson, 1969; Gazis, 1974; May, 1975; Catling, 1977; Akcelik, 1999; 

Strong et al., 2006; Sharma et al., 2007; Vigos et al., 2008).The past queue length 

estimation methods for signalized intersections can be classified into (1) Input-Output 
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method and (2) Shockwave method. The Input-Output method estimates queue length 

using cumulative vehicle arrival counts (input) and departure counts (output). Vehicle 

counts are mostly collected from detectors at fixed locations upstream of the stop line. 

However, the Input-Output method has an inherent drawback (Liu et al. 2009). Queue 

length cannot be estimated when a queue spill over the location of detector. 

On the other hand the other is the Shockwave model which was developed based 

on the Shockwave theory (Lighthill and Whitham, 1955; Richards, 1956) can estimate 

queue length even when a queue spills over the location of detector(s) (Stephanopolos 

and Michalopoulos, 1979, 1981; Muck, 2002; Skabardonis and Geroliminis, 2008; and 

Liu et al., 2009). However, the past studies on the Shockwave method did not consider 

the following: 

(1) The existing queue length estimation methods did not consider the 

variation in vehicle length although the length of heavy vehicle is longer than the length 

of passenger cars and queue length is affected by vehicle length. 

(2) The existing methods assumed that the vehicle does not change lanes in 

the vicinity of stop line and did not consider the lane changing and differences in queue 

length across lanes. 

(3) The existing methods did not investigate the effect of detector location on 

queue length estimation although traffic counts in each lane are significantly varied by 

the location of detector. If detector is closer to the stop line, more vehicles behind the 

detector location will not be counted. If detector is further away from the stop line, the 

number of lane change is not less to be captured. 
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1.4 Research objectives 

The first objective of this research is to develop a methodology for estimating 

queue length at a signalized intersection on a cycle-by-cycle and lane-by-lane basis 

considering the variation in vehicle length. 

The second objective of this research is to determine the optimal location of 

detectors at a signalized intersection using the proposed queue length estimation method 

to improve the accuracy of the estimated queue length. 

1.5 Thesis organization 

Following the first chapter (Introduction), the thesis is composed of subsequent 

five chapters. 

The second chapter reviews different analytical approaches to queue length 

estimation and optimal detector location at signalized intersections of urban arterials 

roads. 

The third chapter describes the observed traffic and road geometric characteristics of the 

studied signalized intersection. 

The fourth chapter explains the queue estimation method developed using shock 

wave theory and the simplified method which overcomes the limitations of the shock 

wave method. 

The fifth chapter compares the accuracy of queue length estimation between the 

shock wave method and the simplified method based on simulation results. The section 

also determines the optimal location of detectors for accurate estimation of queue length. 

The last chapter presents conclusions and recommendations. 

4 



CHAPTER II 

REVIEW OF LITERATURE 

Queue length has long been recognized as a valuable measure for traffic engineers 

to evaluate performance of a signalized intersection. There are two definitions of queue 

length. Queue length at signalized intersections is typically defined as the distance 

between the stop line of the intersection and the rear end of the last queued vehicle 

(called "horizontal queue"). Queue length is also defined as the number of vehicles in 

queue (called "vertical queue"). However, vertical queue does not represent a physical 

length of queue that occupies the space. Vertical queue can be easily converted to 

horizontal queue if the vehicle length and distance headways are the same. However, if 

the length and headways of individual vehicles are significantly different, horizontal 

queue cannot be simply reflected by vertical queue. In this study, queue length is 

represented by horizontal queue. 

This chapter reviews the past studies on the queue length estimation at signalized 

intersections and optimal location of detectors on urban arterial streets. This chapter at 

first presents the state-of-the-art methods of queue length estimation and optimal detector 

location determination at signalized intersections and identifies their assumptions and 

limitations. 

2.1 Queuing analysis method 

Queuing models are typically classified into (i) deterministic models and (ii) 

stochastic models. The distribution of vehicle arrival and service are assumed to follow a 

uniform pattern in deterministic models. Deterministic queuing analysis can be 
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undertaken at two different levels. First, the analysis can be carried out at the 

macroscopic level, where the arrival and service patterns of vehicles are considered to be 

continuous. The analysis can also be carried out at the microscopic level, where both 

arrival and service patterns are considered to be discrete. 

On the other hand, the arrivals and service time are assumed to follow some 

probability distribution(s) in stochastic models. Due to variation in arrival and service 

rates, queuing occurs in stochastic process. There are many types of probability 

distributions that can be used to represent the arrival and discharge processes of vehicles 

at a transportation facility. These are (i) random; (ii) Erlang and (iii) generalized 

probability distributions (May, 1990). However, since arrival and service processes do 

not always follow certain distributions, stochastic models may not reflect actual queuing 

behavior (Meyer and Miller, 2001). Since the proposed queuing analysis method in this 

research is deterministic and microscopic in nature, only deterministic models will be 

reviewed. 
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2.1.1 Deterministic queuing analysis at signalized intersection 

Deterministic queuing length (vertical queue) can be estimated using cumulative 

vehicle counts (at signalized intersections) under the following assumptions: (i) traffic 

flow is undersaturated (travel demand is less than capacity) (ii) no vehicle waits for more 

than one cycle; (iii) overflow from one cycle to the next does not occur and (iv) the queue 

discipline is "first in, first out" (FIFO) system. 
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FIGURE 2-1: Deterministic queueing diagram for signalized intersection 

(Kang, 2000) 

The queuing diagram in Figure 2-1 shows that, during the red interval of the 

cycle, no traffic can cross the stop line, i.e. the flow rate is zero. As a result, a queue 

starts to form and the maximum queue length occurs at the end of red interval or the 

beginning of green interval. Immediately after the signal turns to green, the queued 

vehicles leave the intersection at the saturation flow rate. It is noted that departure rate 



can be equivalent to the saturation flow only when the queue is present. When the queue 

clears some time after the start of the green interval, both the cumulative arrival and 

departure curves overlap, i.e. the service rate is equal to the arrival rate. 

It this case, the queue formed during the red interval is always completely 

dissipated before the end of the green interval. However, if the intersection is 

oversaturated (i.e. the queue does not clear before the end of green interval) a residual 

queue (overflow queue) will occur in the subsequent cycles. 

2.1.2 Shockwave analysis at signalized intersections 

Queue length (horizontal queue) at signalized intersections can be estimated using 

Shockwave theory if a flow-density relationship and the traffic states of the queue are 

specified. A typical flow- density curve is shown in Figure 2-2(a) and a distance - time 

diagram is shown in Figure 2-2(b). During time to to tj, the signal is green and traffic 

proceeds and the traffic state A is represented by flow (qA)and density (kA). At time ti, 

the traffic signal changes to red and traffic state immediately upstream of the stop line 

changes to the traffic state B while the traffic state immediately downstream changes to 

state D. Three shock waves begin at time t] at the stop line. These are a>AD, <*>DB
 anc* WAB-

When the departure flow at the stop line increases from zero to saturation flow the 

traffic state C forms. This terminates Shockwave CODB and generates two new Shockwaves, 

CODC and COBC- The flow states of A, B, C and D continue until coAB and coBc intercept at 

time t3. At time tj a new Shockwave ooAc is formed, and the two Shockwaves COAB and OOBC 

are terminated. 
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Based on this shock wave theory, a number of real-time estimation of vehicle-

count and queue length estimation models were recently developed (Strong et al., 2006; 

Sharma et al., 2007; Skabardonis and Geroliminis, 2008; Vigos et al., 2008; Liu et al., 

2009; Zheng et al., 2009; Ban et al., 2010). 

2.2 Real-time queue length estimation model 

2.2.1 Input-Output and Hybrid queue length estimation technique 

Sharma et al. (2007) applied two techniques (Input-Output and Hybrid technique) 

for the real time prediction of vehicle delay and queue length at signalized intersections 

based on the cumulative arrival and departure traffic counts collected from loop 

detectors. The Input-Output technique uses advance detector actuations, signal timing 

data and parametric data (e.g. saturation headway, start-up lost time, arrival shift, storage 

capacity etc). In case of Input-Output technique, advance detector is placed upstream of 

the stop line for recording arrival flow over time (input). On the other hand, the estimated 

saturation flow rate is used to determine the number of vehicles crossing the stop line 

over time (output). These two flow profiles are used to calculate the number of vehicles 

in a queue approach between stop line and the location of the advance detectors (Sharma 

et al., 2007). 

The Hybrid technique uses advance detector actuations, stop bar detector 

actuations, phase change data and parametric data (e.g. storage capacity etc) as model 

inputs. The Hybrid technique records number of vehicles passing the loop detectors 

placed upstream of the stop line for counting arrival flow and at the stop bar for counting 

departure flow. The number of vehicle in a queue is calculated using arrival and 

departure flow profiles. Then, the queue length (horizontal queue) can be estimated by 

10 



multiplying the number of vehicle in a queue by the effective length of vehicles in jam 

traffic state. However, the evolution report showed that the result for the Hybrid 

technique was not as good as the Input-Output technique in spite of using more input data. 

The graphical representation of the Input-Output and Hybrid technique are shown in 

Figure 2-3. 

However, there were some limitations with this method: (i) "The Input-Output 

method is insufficient for obtaining the spatial distribution of queue lengths in time" 

(Michalopoulos and Stephanopolos, 1981); (ii) it cannot estimate queue length when a 

queue spills over the location of detector (Liu et al., 2009); (iii) both the Input-Output and 

Hybrid techniques were developed based on the assumption that vehicles do not change 

lanes after they cross the advance detectors might degrade the performance of the 

technique and (iv) the Input-Output method used many assumed values of input 

parameters (e.g. saturation flow rate, storage capacity, etc). 

Vigos et al. (2008) developed a methodology for real-time estimation of vehicle-

count within signalized links. The number of vehicles in signalized links is valuable 

information for urban signal control. A Kalman-Filter was used to estimate vehicle 

counts in real time in signalized links based on measurements at (at least) three loop 

detectors stations located at both end points and the middle of the link. The vehicle-count 

estimation problem is illustrated in Figure 2-4. Figure 2-4(a) depicts the relevant signal 

and detector configuration on the signalized link. The upstream signal (if it exists) 

determines the traffic demands approaching the link while the downstream signal 

controls the vehicle flow exiting the link. 
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Obviously, whenever the link demand is larger than the link outflow, a queue is 

built. It is shown in Figure 2-4(a) that three detectors are installed: at the upstream end of 

the link, at the downstream end of the link and in the middle of the 

Both boundary detectors provide flow measurements, while the middle detector 

provides time-occupancy measurements. The basic structure of the queue estimation is 

shown in Figure 2-4(b). The estimator is imported in real-time (every k) with the flow 

and time-occupancy measurements from the link detectors. The estimators produce the 

estimated number of vehicles in the link (between the two boundary detectors) for every 

k. The number of vehicles in a link obeys the following conservation equation: 

N (k) = N (k-1) + [qin (k-1) - qout (k-1)] (2-1) 

where N(k) denotes the number of vehicles in the link at time k and k is the sampling 

time (e.g. 20 sec); qin (k-1) and qout (k-1) are the flows entering and exiting, respectively, 

the link during the period [(k-1), k]. 

2.2.2 Shockwave maximum queue length estimation techniques 

Liu et al. (2009) developed a method to estimate the real-time queue length for 

the congested signalized intersection using the Shockwave theory. They used the 

SMART-SIGNAL (Systematic Monitoring of Arterial Road Traffic and Signals) data 

collected from the advance detector placed upstream of the stop line. This method 

enables the estimation of queue length even when a long queue spills over the advance 

detector. 
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FIGURE 2-4: Vehicle-count estimation (Vigos et al., 2007) 

The high-resolution event-based data collected by the SMART-SIGNAL identify 

"Break Points" (A, B, and C) in the occupancy profile and time gap profiles which 

indicate the times when the traffic condition changes within a cycle (Figure 2-5 & 2-6). 

These break points are used to calculate the speed of different Shockwaves 

generated at the signalized intersection due to signal changes. The Shockwave 

propagation at the signalized intersection is shown in Figure 2-7. 
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FIGURE 2-5: Detector occupancy profile in a cycle (Liu et al., 2009) 
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FIGURE 2-6: Time gap between consecutive vehicles in a cycle (Liu et al., 2009) 
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FIGURE 2-7: Shockwave technique (Liu et al., 2009) 

When the signal turns to red (Tg
n), two shock waves are generated. First, a queuing 

Shockwave propagates toward the upstream of the traffic flow at a speed vi. At the start 

of the green time (Tr
n), the queue begins to discharge at saturation flow state and a 

discharge Shockwave propagates towards the upstream of the flow at a speed V2. When vi 

and V2 meet a Tn
 max, a departure Shockwave propagates toward the stop line at a speed v3. 

For over-saturation condition, the queue cannot be fully discharged within one cycle and 

the fourth shockwave is formed to generate a residual queue moving upstream at a speed 

v4. 

Once Break Points (A, B, and C) have been identified, the flow (q) and density (k) 

of each traffic state (i.e. the arrival traffic state (qa, ka) and saturation traffic state (qm, km)) 

can be calculated based on detector occupancy times and time gaps between vehicles. 

The wave speed of v3 can be estimated using following equation (Liu et al., 2009): 

q a - q m (2-2) 
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The discharge wave speed V2 can be calculated based on the distance from the 

stop bar (Ld), the difference between the green start time (Tr) and the time when the 

discharge wave reaches advance detector (TB) as shown in the following equation (Liu et 

al., 2009): 

v 2 = - ^ r (2-3) 

where, Lj is the distance from the stop line to the loop detector and TB is the moment 

when the discharge Shockwave (V2) passes the detector at point B. 

Liu et al. (2009) also developed the following equation to calculate the maximum 

queue (Lmax) using the estimated values of v2 and v3 (Figure 2-6): 

^max = ^d +~T~ 7~T (2-4) 

v v 2 v 3y 

where TA is the moment when the queuing Shockwave (vi) passes the detector at point 

A and Tc is the moment when the departure Shockwave (v3) passes the detector at point 

C. 

However, the method cannot estimate the queue length when oversaturation 

occurs. Also, the Break Point C cannot always be determined because two traffic states 

(queue discharge flow and new arrival flow) are not easily distinguished. Only one type 

of vehicle (car) is considered in this method. Since this method uses a pre-determined 

constant effective vehicle length of 7.62 m (25 ft) to estimate individual vehicle speed, it 

may lead to errors in queue estimation. 
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Skabardonis and Geroliminis (2008) proposed an analytical kinematic wave 

model to construct a link travel time and queue length estimate using aggregated 30-

second flow and occupancy data from a loop detector upstream of the stop line and the 

exact times of the red and green phases from the signal controller, the researchers used 

the aggregated 20-30 second average data. 

The arrivals at the upstream detector at distance Ld from the stop line can be 

predicted as follows: If the flow is near zero, the queue exists. If the sufficiently low flow 

follows the saturation flow, the queue clears and new flow arrives. As vehicles are 

moving at free flow speed when departing from the queue, the traffic state changes from 

the jam state to the saturation state. The maximum length of queue can be identified using 

data from a detector placed at distance (Ld) upstream of the stop line and the geometry of 

trapezium (ABCD) in Figure 2- 8 (Skabardonis and Geroliminis, 2008) 

Lm = [u f • w / (u f + w)] • g + Ld = (c / k j) • g + Ld (2-5) 

where, Lm = maximum length of queue; c = cycle length; g = green phase; kj = jam 

density; Uf = free flow speed in the absence of queues; and w = congested shock wave. 

However, free flow speed (uf) is not always constant in different traffic 

conditions, and it leads to error in estimation. Since 30-s aggregation dampens variations 

in vehicle gaps, it is difficult to identify the end of the queue unless the arrival traffic 

flow is significantly lower than the queue discharge flow. Since queue length estimation 

was only part of their travel time estimation model, the accuracy of the queue length 

estimation method was not evaluated. 
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FIGURE 2-8: Space-time diagram (Skabardonis and Geroliminis, 2008) 

2.2.3 Recent queue length estimation method 

Zheng et al. (2009) developed algorithms designed for measuring average control 

delay and queue length (vertical queue) at signalized intersections using traffic count data 

collected from Video Image Processors (VIPs). These algorithms are implemented in a 

computerized system called In-PerforM (Intersection Performance Measurement) for 

measuring the performance of signalized intersections in real time. In this study, all the 

lanes of the approach are equipped with two traffic sensors, placed upstream of the stop 

line and at the stop line as shown in Figure 2-9. The area between the entry loop and exit 

loop is called the measuring zone. The difference in the vehicle counts between the entry 

loop and the exit loop (i.e. vehicles inside the measuring zone) in each lane is taken as the 

queue length during the red signal indication. 
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This study estimated lane-by-lane queue length (vertical queue) considering the 

lane flow, and the left-turn and right-turn flow ratios. This study estimated lane-by-lane 

queue length (vertical queue) using vehicle counts in each lane obtained from detectors 

upstream of the stop line and at the stop line. 

M easuring zone 
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Loop! 

Exit 
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Queue 1 

Entry 
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Queue 2 i" 
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Loop I T 

< 

irtry y E: 
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>.*v.f4 

01 EfltTA' 

Loop 4 

FIGURE 2-9: Layout and sensor configuration of the study site (Zheng et al., 2009) 

In spite of considering lane-specific queue length, the method implicitly assumes 

that vehicles do not change lanes as they pass the detectors upstream of the stop line. If 

more vehicles change lanes after passing the detectors, the estimated queue length is 

likely to be less accurate. 
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Similar to the Input-Output method, this method cannot estimate the queue length 

if the vehicle queue extends beyond the entry loop. Lane change activity within 

measuring zone was not taken into consideration. This study assumes the constant vehicle 

length of 5.5 m (18 ft). 

Ban and Hao (2010) recently developed a new method to estimate queue length at 

signalized intersections using sampled travel times of individual vehicles. Sampled travel 

times are directly measured using the GPS equipped mobile traffic sensors within Virtual 

Trip Lines (VTL). VTL is referred to as the upstream and downstream locations of an 

intersection for travel time collection. The key concept of this method is the Queue Fully 

Discharge Time (QFDT), which is the time when the queue would have been fully 

discharged if there had been enough green time (Ban and Hao, 2010). This QFDT 

concept is based on Shockwave theory. Figure 2-10 depict the propagation of Shockwaves 

in undersaturated and over-saturated condition respectively at a signalized intersection. 

Tr
n and Tg

n indicates the end and start time of the effective green during the nth cycle. 

(a) Undersaturated condition (b) Oversaturated condition 

FIGURE 2-10: Shockwave propagation (Ban and Hao, 2010) 
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The Queue Fully Discharge Time (QFDT) is defined as Tfdin Figure 2-10(a) and 

2-10(b). For unsaturated conditions, QFDT is the time when the departure Shockwave (v3) 

reaches the stop line, (i.e. the time that the queue is fully discharged). For over-saturation 

conditions, Shockwave v3 meets residual Shockwave (v4) before it reaches the stop line, so 

vehicles in the residual queue have to wait for an extra red time. Based on the definition 

of QFDT, all of the queuing vehicles could be fully discharged from Tg
n to Tfd

n at a 

saturation flow rate (qm). Therefore the maximum queue length of the n"" cycle is 

Qnmax =(T n
f d -T n

g )q m (2-6) 

Similarly, the minimum queue length is 

Qn
min = (T n

f d -T n + 1
r )q m (2-7) 

However, mobile sensor data are only collected from the sample vehicles. They 

do not represent the involvement of entire vehicles in a traffic stream. This study assumes 

that arrival flow is uniform and the queue does not spill over the upstream VTL. Also, the 

assumption that a queue clears in two cycles may not be valid in many arterial 

intersections where the queue comprises long vehicles. Furthermore, lane changes 

activity within the area between virtual trips lines are not taken into consideration in this 

study. 

2.3 Optimal location of detectors 

Traffic data collected from loop detectors vary at different detector locations 

upstream of the stop line at signalized intersections. In particular, the likelihood of queue 

spillback and lane change is affected by the location of detectors. For instance, if loop 

detectors are closer to the stop line, vehicles are less likely to change lanes after they pass 
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the detectors. Thus, lane-specific queue length estimation is more likely to be accurate. 

On the other hand, queue spillback is more likely to occur and it is harder to estimate the 

number of queued vehicles beyond the detector location. Thus, detector locations 

significantly affect the accuracy of queue length estimation. 

The past empirical studies reported that detectors were located at various 

locations - 30-123 m (100-405 ft) upstream of stop line (Sharma et al., 2007; Liu et al., 

2009; Federal Highway Administration, 2006; Smaglik et al., 2007; Wang and Wu, 2007) 

as shown in Table 2-1. 

TABLE 2-1: Detector Location in Several Projects 

Study 
Wang and 
Wu, 2007 

Liang ,2006 

Oh and Choi, 
2004 

Federal 
Highway 
Admin., 
2006 

Project 
Google Map based 
online platform for 
arterial traveler 
information (GATI) 
broadcast and 
analysis 
Development of 
the real time arterial 
traffic flow map 

Optimal detector 
location for 
estimating link 
travel speed in 
urban arterial roads 

Traffic detector 
handbook: Third 
edition- volume 1, 
chapter 4,operations 
and intelligent 
transportation 
systems research 

Distance from stop line 

30 m - 40m 

30 m - 42m 

61m 

61m 

Location 
Collected volume and occupancy 
data via loop detection placed at 
30-40 m (100-130ft) in advance 
of intersection stop bars. 
City of Bellevue, Washington 

Used advance loop detectors to 
collect volume and occupancy 
information placed approximately 
30-42 m (100-140 ft) in advance 
of signalized intersections. 
City of Bellevue, Washington 
For links approximately 2000 ft in 
their lengths, the optimal detector 
location were identified to be 
about 61 m (200 ft) from 
downstream intersection for green 
times of 20, 30,40 and 50 
seconds, respectively. 
University Avenue, Madison 
Where a major driveway is 
located within a link, the loop 
should be located at least 15m (50 
ft) downstream from the 
driveway, provided that the loop 
is at least 61m (200 ft) upstream 
of the stop line 
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TABLE 2-1: Detector Location in Several Projects (Continued) 

Study 
Gerolminis, 
2009 

Liu et al., 
2009 

Sharma et al., 
2007 

Smaglik et 
al., 
2007 

Thomas, 
1998 

Project 
Queue spillovers in 
city street networks 
with signal-
controlled 
intersections 

Real-time queue 
length estimation 
for congested 
signalized 
intersections 

Input-Output and 
Hybrid techniques 
for real-time 
prediction of delay 
and maximum 
queue length at 
signalized 
intersections 
Event-based data 
collection for 
generating actuated 
controller 
performance 
measures 
Simulation of 
detector 
locations on an 
arterial street 
management 
system 

Distance from stop line 

75m 

122m 

123m 

123m 

91m, 183m, 274m 

Location 
System loop detectors are located 
on each lane approximately 75 m 
(250 ft) upstream of the 
intersection stop line. 
Lincoln Avenue, Los Angeles 
international Airport 

Collected the data from the 
advance 
detector placed at 122 m (400 ft) 
away from the stop line. 
Rhode Ave., Minnesota 

Collected data for arrival profile 
from the detector e placed at a 
distance 123 m (405 ft) in 
advance of the stop line. 
Noblesville, Indiana 

Placed set-back detectors 123 m 
(405 ft) back from the stop bar at 
the northbound and southbound 
approaches at the INDOT 
intersection test bed. 
Noblesville, Indiana 
Varying the location of the 
downstream detector did not have 
a big impact on the output 
variables when the distance was 
greater than 122m (400 ft.). If 
detectors are placed less than 
122m, the results could be 
misleading because vehicles are 
still accelerating close to the 
intersection. 
Southern Avenue, Arizona 

Although the location of detectors is important for capturing shock waves at 

signalized intersections (Abbas and Bullock, 2003), no studies analyzed the impact of 

detector location on queue length estimation and identified the optimal (or near optimal) 

detector location to minimize estimation error. 
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Given that the accuracy of the estimated queue length by the most real-time 

models depends on the location of detectors, the determination of optimal location for 

accurate queue length estimation is important. Some studies have examined 

determination of the detector location for freeways and urban arterials. 

Thomas (1998) derived the relationship between detector location and travel 

characteristics (link speed, travel time, intersection delay) on arterial streets. The study 

examined the relationship between traffic characteristics and detector locations for 92 m 

(300 ft), 183 m (600 ft) and 275 m (900 ft) from the downstream intersection and 183 m 

(600 ft) from the upstream intersection (Figure 2-11). Regression analysis was used to 

evaluate the relationship between detector output values (occupancy and speed) and link 

travel characteristics (link speed, travel time, intersection delay). 

• • 
• 

3 0 0 * 

<soo 

O i r e c t i o n o t T r a v e l 

• 

D i r e c t i o n o r T r a v e l 

• 

9(«) 

• 
• 

1 <->oo 

• 

! I O O 

FIGURE 2-11: Surveillance detector locations (Thomas, 1998) 
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The study found that it is generally difficult to find "optimal" detector locations, 

for all links in all cases. Although the results shows that 92 m (300 ft) point from the 

downstream intersection was the optimal detector location^ it is valid only for existing 

traffic volumes, green time, intersection geometric, lanes, and speed limit. Therefore, the 

results might not be transferable to different sites and/or areas. 

Thomas et al. (2000) have done a similar study in the same area. They used 

CORSIM simulation in their research. CORSIM is a combination of microscopic network 

simulation and microscopic freeway simulation model. CORSIM stimulates the 

movement of individual vehicles by category in every second (Mystkowski and Sarosh, 

1998). They found that varying the location of the downstream detector did not have a 

significant impact on the output variables (volume, occupancy, speed) when the distance 

was greater than 122 m (400 ft) from the downstream intersection. If the distance is less 

than 122 m, the results could be misleading because vehicles are still accelerating close to 

the intersection. They also found that there was no particular detector location with 

higher accuracy of travel time than the other detector locations. The research showed that 

detector data obtained on one link could not accurately predict link travel characteristics 

on an adjacent link. 

Oh and Choi (2004) developed an extended model based upon the research by 

Sisiopiku et al. (1994) to find the optimal detector location using link travel speed in 

urban arterial roads. They used the CORSIM traffic simulation with changing link length, 

traffic volume, average link speed, detector location, number of lanes and estimated the 

average speed at each detector location. The optimal detector location was selected such 
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that the link average speed is similar to the speed measured at the detector (Oh and Choi, 

2004). 

It was found that the optimal detector location is determined by link length and 

green time with other factors (number of lanes, traffic volumes, and speed limits) also. 

The result shows that for links with approximately 610m (2000 ft), the optimal detector 

locations were about 61m (200 ft) from downstream intersection for diverse green times 

of 20 to 50 seconds. It was also found that with the increase of link length, optimal 

locations were more dependent on green times. Figure 12 shows the results of optimal 

detector locations. 
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FIGURE 2-12: Optimal detector location (Oh and Choi, 2004) 

The research focused on the detector locations over medium size links of 610 m -

2134 m (2000-7000 ft) in length. This limits the applicability of the results obtained in 

this research if links which length is shorten than 610 m (2000 ft.) This research did not 

include the issues of access, turning movement; effect of pedestrian's movement, 

geometric components such as slope and lane width variations. 
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Abbas and Bullock (2003) developed a model to determine the location of 

detector that can best capture the effect of Shockwaves formed at signalized intersection. 

It was found that when the detector is placed very far from a signalized intersection, it 

would not capture the existence of the Shockwave caused by the downstream bad offset. 

On the contrary, if the detector was very close to the intersection, it would be affected by 

the weaker Shockwave generated by the traffic turning from the side street. 

Edara et al. (2008) developed a methodology to identify the optimal locations of 

detectors on freeways in order to minimize the error in travel time estimation. They found 

that the placement of detectors for estimating accurate travel time will vary by location 

based on specific traffic and geometric conditions. They recommended that since the 

traffic conditions change over time, detector placement will require periodic validation 

and modification to ensure continued accuracy. The method showed that the detector 

density needs to be higher in congested areas of corridor. Uncongested sections of the 

corridor need only a nominal deployment. 

An objective function is used to minimize the travel time estimation error. 

Estimation error is the difference between the estimated travel time and the ground truth 

travel time for the freeway section. The freeway section was divided into discrete 

segments. This means that the detectors can be deployed only at the mid points of these 

discrete segments. If there are m discrete locations then n detectors can be placed in mcn 

possible ways (e.g. if m is 50 and n is 5, then the size of the solution space will be 50C5 =2 

million combinations) (Edara et al., 2008). Exact solutions to such combinatorial 

optimization problems were complex and not straight forward. A heuristic search 

algorithm known as Genetic Algorithms (GA) was used to generate useful solutions to 
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optimization using a population (set) of solutions (Goldberg, 1989). Steps involved in GA 

are as follows (Edara et al., 2008): 

(1) The parameter set for the problem has to be encoding first, as a binary or real number 

representation. 

(2) The initial population of P solutions (strings) has to be generating randomly and the 

fitness value (objective function value) for each of these solutions has to be evaluated. 

(3) Two strings from the current generation (parents) have to be selected for participating 

reproduction, the selection probability being proportional to the fitness value. 

(4) Parents selected in step 3 are mated by exchanging genetic material to produce two 

offspring. 

(5) Mutation operator is applied to the newly born offspring. 

(6) Steps 3, 4 and 5 have to be repeated until offspring are generated. These offspring 

constitute the new generation of solutions. 

(7) The old population of solutions will have to be replaced with the newly generated 

offspring and steps 3 through 7 will have to be repeated until a pre-specified number 

of generations or other convergence criteria are met. Final solution is the best solution 

from those discovered during the search. 

However, this method is developed for a freeway with long distance to minimize the 

error in travel time estimation. Thus, it may not be suitable for identifying the location of 

detectors at signalized intersections for queue length estimation. 
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CHAPTER III 

DATA 

3.1 Study area 

This study analyzes the signalized intersection at Huron Church Road and 

Tecumseh Road in Windsor, Ontario, Canada as shown in Figure 3-1. The intersection is 

one of the busiest intersections in Windsor due to its proximity to the Ambassador 

Bridge, the busiest Canada-U.S. international border crossing. This intersection was 

chosen since high volume of trucks pass through the intersection and a long queue of 

vehicles frequently occurs on the northbound road. The posted speed limit at this 

intersection is 60 km/h and the cycle length is 120 sec. The durations of displayed green 

and red intervals for northbound through approach are 42 seconds and 71 seconds, 

respectively. 
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FIGURE 3-1 Schematic drawing of Huron Church-Tecumseh intersection 
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Huron Church Road has three through lanes (Lanes 1, 2 and 3), an exclusive left-

turn lane and an exclusive right-turn lane. There are three driveways at 30 m, 61 m, and 

165 m upstream of the stop line. To better understand the existing traffic conditions, data 

were collected from this intersection during several weekdays of May, June and July 

2009. Northbound traffic counts by vehicle type (car or truck), individual vehicle's length 

and distance headway, queue length, and lane change frequency were observed in each 

lane for each cycle. 

3.2 Data collection 

Data were collected during several days in May, June and July 2009 at the Huron 

Church-Tecumseh intersection. Northbound traffic counts (left turn, through and right 

turn) by vehicle type (car or truck) were collected in each lane, each phase and each 

cycle. Signal timing, vehicle gap, distance headway (spacing), queue length, queue 

spillback and mid-block traffic activities, e.g. lane changes, side encroachments, etc. 

To observe the representative peak traffic volume, a long queue length and a high 

percentage of trucks, data were collected from 11:00 am-12:00 pm and 3:30 pm-4:30 pm 

in the weekdays. Data were collected under normal weather and daylight conditions. 

To measure the vehicles length, gap (distance headway) between the vehicles and 

the queue length, a scale was drawn on the sidewalk of the intersection with marks every 

1.52 m (5 ft) from the stop line. The observer counted the number and type of vehicles 

passing the intersection in each lane during the green interval and the number and type of 

vehicle queued in each lane during the red interval within a cycle. 
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At the same time the observer also measured the length of the maximum queue 

formed within the cycle using the marked scale on the sidewalk. The observer recorded 

the time when the maximum queue was formed within the cycle using a stop watch. A 

sample data sheet is enclosed in Appendix A-l. 

3.2.1 Traffic counts 

Only two types of vehicles, car and truck were observed in queue but other types 

of vehicles (e.g. school bus, motor cycle) were not observed in queue during the data 

collection periods at the intersection. The observed length of car at the intersection were 

3.65 m, 4.26 m, 4.57 m, 4.87 m, 5.48 m and the observed length of trucks are 16.76 m, 

21.34 m and 21.95 m. It was observed that the total volume was almost the same from 11 

am-12 pm and 3:30 pm - 4:30 pm but the percentage of trucks was higher from 11 am -

12 pm in northbound traffic. Table 3-1 and Table 3-2 show the numbers of northbound 

cars and trucks in each lane of Huron Church Road for 30 cycles during 11 am-12 pm 

and 3:30 pm - 4:30 pm on June 5, 2009. A majority of trucks (78-83%) used the center 

through lane (Lane 2). Due to high percentage of trucks in Lane 2 (45-56%), queue 

length was longest in Lane 2 for most cycles. The percentage of trucks during this study 

period was 13.5-16% and about two-third of total vehicles were through vehicles in 

northbound traffic. Similar distributions of vehicles across lanes were also observed on 

the other weekdays during the study period. 

32 



Table 3-1: Summary of Traffic Counts (11 am-12 pm, June 5, 2009) 

Total 
arrival 

(%) 
Total 

No. of 
stopped 
vehicles 
on red 

No. of 
passing 
vehicles 

on 
green 
Total 

Total 

C 

740 
(84) 

T 

145 
(16) 

885 

183 17 

200 

557 128 

685 

Left-turn 
Lane 

C 

44 
(96) 

T 

2 
(4) 

46(6%) 

38 2 

40 

6 0 

6 

Lane 3 
(Through) 
C 

210 
(97) 

T 

7 
(3) 

217 (24%) 

Lane 2 
(Through) 
C 

90 
(44) 

T 

114 
(56) 

204 (23%) 

Lane 1 
(Through) 
C 

208 
(95) 

T 

11 
(5) 

219 (25%) 
Car - 508 (79%) 

Truck- 132 (21%) 
640 (72 %) 

25 0 

25 

185 7 

192 

12 12 

24 

78 102 

180 

57 

57 

151 11 

162 

Right-turn 
Lane 

C 

188 
(95) 

T 

11 
(5) 

199 (22%) 

51 3 

54 

137 8 

145 
Note: C = Car; T = Truck 

Table 3-2: Summary of Traffic Counts (3:30 pm-4:30 pm, June 5, 2009) 

Total 
arrival 

(%) 
Total 

No. of 
stopped 
vehicles 
on red 

No. of 
passing 
vehicles 
on green 

Total 

Total 

C 

768 
(85) 

T 

120 
(13.5) 

888 

208 19 

227 

560 101 

661 

Left-turn 
Lane 

C 

35 
(100) 

T 

0 
(0) 

35(4%) 

29 0 

29 

6 0 

6 

Lane 3 
(Through) 
C 

245 
(99) 

T 

3 
(1) 

248 (28%) 

Lane 2 
(Through) 
C 

121 
(55) 

T 

100 
(45) 

221 (25%) 

Lane 1 
(Through) 
C 

180 
(95) 

T 

9 
(5) 

189 (21%) 

Car - 546 (83%) 
Truck- 112 (17%) 

658 (74 %) 

37 0 

37 

208 3 

211 

26 15 

41 

95 85 

180 

53 3 

56 

127 6 

133 

Right-turn 
Lane 

C 

187 
(96) 

T 

8 
(4) 

195 
(22%) 

63 1 

64 

124 7 

131 
Note: C = Car; T = Truck 
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Since the traffic data were manually collected at the intersection, there were 

some possible errors associated with counting the number of queued vehicles, measuring 

the length of vehicles, the length of queue, and gap between the queued vehicles. 

3.2.2 Lane change 

The number of lane changes was also observed at two areas - the areas within 

56 m (184 ft) and 122 m (400 ft) in advance of the stop line during the study period as 

shown in Table 3-3.The count of number of lane changes could be easily done manually 

in the field and there were a possibility of miscounting the number of lane changes but 

the total impact of such error was insignificant in our collected data. Within the area of 

56 m and 122 m from the stop line, on average 30 and 74 lane changes (excluding lane 

changes by the vehicles entering or exiting the driveways) respectively occurred during 

different one-hour periods on different weekdays. This indicates that after vehicles pass 

the location closer to the stop line, they are less likely to change lanes. 

TABLE 3-3: Number of Lane Changes 

Distance from 
stop-line 

56 m 
56 m 
122 m 
122 m 

Date 

July 17, 2009 
July 21, 2009 
July 17, 2009 
July 21, 2009 

Time 

5:00 pm - 6:00 pm 
12:30 pm-1:30 pm 
4:00 pm-5:00 pm 
1:30 pm-2:30 pm 

Phase 

Red+ Green 
Red+ Green 
Red+ Green 
Red+ Green 

No. of lane 
changes 

59 
41 
119 
108 

3.2.3 Mid-block driveways 

There are two driveways for vehicles to enter or leave from the gas station located 

at the southeastern corner of Huron Church-Tecumseh intersection. The driveways are 30 

m (99 ft) and 61 m (185 ft) upstream of the stop line. The width of the driveways is 14 m 
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(45 ft) and 15 m (50 ft). Another driveway to the American Plaza is located 165 m (540 

ft) from the stop line as shown in Figure 3-1.Table 3-4 shows the total number of vehicles 

entering and exiting from the driveways at two locations 56 m and 122 m from the stop 

line. 

Table 3-4: Number of Vehicles Entering and Exiting Driveway 

Date 

July 17, 2009 
July 31, 2009 
July 21, 2009 

August 4, 2009 
July 17, 2009 
July 31, 2009 

August 4, 2009 
July 21, 2009 

Time 

5:00 pm-6:00 pm 
5-00 pm -6:00 pm. 
12:30 pm-1:30 pm 
12:30 pm-1:30 pm 
4:00 pm -5:00 pm 
4:00 pm -5:00 pm 
12:30 pm-1:30 pm 
1:30 pm-2:30 pm 

No. of 
vehicles 

entering and 
exiting from the 

first driveway 
[56 m upstream 
of the stop line] 

11 
7 
8 
11 
9 
8 
5 
5 

No. of 
vehicles entering 
and exiting from 
the first & second 
driveway [122 m 

upstream of the stop 
line] 
29 
24 
21 
14 
45 
28 
18 
19 

The number of vehicles entering and exiting the driveways was observed at two 

observation points - 56 m (185 ft) and 122 m (400 ft) upstream of the stop line. At 56 m 

from the stop line, the vehicles entering and exiting the driveway at 30 m from the stop 

line could not be counted. However, these "missing" vehicles were only 1.1% of total 

northbound vehicles. At 122 m from the stop line, the vehicles entering and exiting the 

two driveways at 30 m and 61m from the stop line could not be counted. These missing 

vehicles were only 2.8% of total northbound vehicles. Thus, the vehicles entering or 

exiting the driveways are negligible for queue length estimation. 
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3.2.4 Queue spillback 

It was observed that queue sometimes spills over the two potential locations of 

detectors- 56 m and 122 m from the stop line. As expected queue spillback occurs more 

frequently at 56 m from the stop line than 122 m from the stop line. Frequent queue 

spillback makes difficult to detect the number of queued vehicles beyond the location of 

detectors. Table 3-5 summarizes the results of field observation in each day. 

It was observed that maximum queue length was longer than the distance between 

the stop line and observation point for 7 out of 30 cycles at 56 m from the stop line and 

1.4 out of 30 cycles at 122 m from the stop line. This indicates that if detectors are 

located further away from the stop line, queue is less likely to pass detectors and the 

number of vehicles beyond the detector location is lower. Clearly, for more accurate 

estimation of queue length, detectors should be neither too close to the stop line (due to 

frequent queue spillback) nor too distant from the stop line (due to frequent lane 

changes). 

3.2.5 Right-turn and left-turn lane 

At the Huron Church-Tecumseh intersection, the right-turn lane with full width 

(3.66m) starts 164m from the stop line and the left-turn lane with full width start 56m 

from the stop line. If the location of data collection points is placed at or within 56 m it 

would be possible to capture all the through, left-turn and right-turn vehicles. On the 

other hand, if the data collection points are placed at 122m, left-turn vehicles cannot be 

captured because the left-turn starts beyond the data collection point. 
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TABLE 3-5: Number of Queue Spillback 

Distance from 
the stop line 

56 m 

122 m 

Date 

June 30, 2009 
June 30, 2009 
July 01, 2009 
July 01, 2009 
July 01, 2009 
July 01, 2009 
July 21, 2009 
June 30, 2009 
June 30, 2009 
July 01, 2009 
July 01, 2009 
July 01, 2009 
July 01, 2009 
July 21, 2009 

Time 

12:30 pm-1:30 pm 
2:00 pm -3:00 pm 

11:30 pm-12:30 pm 
12:30 pm-1:30 pm 
1:30 pm-2:30 pm 
2:30 pm -3:30 pm 

12:00 pm- 1:00 pm 
12:30 pm- 1:30 pm 
2:00 pm - 3:00 pm 

11:30 pm-12:30 pm 
12:30 pm- 1:30 pm 
1:30 pm- 2:30 pm 
2:30 pm- 3:30 pm 
12:00 pm-1:00 pm 

No. of queue 
spillback 

7 
20 
5 
5 
2 
6 
5 
1 
2 
2 
1 
0 
2 
2 

It is also observed in the study area that the length of both turning lanes is 

sufficient to store all queued vehicle since these lanes are normally used by the short 

vehicles (car).However, the long queue in lane 2 (which is generally created due to long 

vehicles) sometimes prevents from entering the left-turn lane. 

3.2.6 Length of vehicles, gap between vehicles and queue length 

It was observed that the length of cars was 3.7-5.5 m (12-18 ft) and the length of 

trucks was 16.8-21.9 m (55-72 ft). The average distance headway between vehicles was 

different for different vehicle types. The headways for car following car, truck following 

car, and truck following truck (car following truck was not observed during the study 

period) were 3.7 m, 4.6 m and 5.7 m, respectively. This indicates that trucks tend to 

maintain longer headway than cars, particularly when they follow other trucks. Due to 

37 



longer length and headway of trucks, queue length longer when there are more trucks in a 

queue. 

TABLE 3-6: Observed Queue Length by Vehicle Type 

Vehicles in a 
queue 
3 cars 
4 cars 

2 trucks 
3 trucks 
4 trucks 
5 trucks 

Observed queue 
length (ft) 

7 0 - 8 0 
88 -125 
147 - 168 
200- 269 
310 - 365 
390 - 445 

Vehicles in a 
queue 

1 truck + 2 cars 
1 truck + 5 cars 
2 trucks + 1 car 
4 trucks + 1 car 
5 trucks + 1 car 

Observed queue 
length (ft) 

135 
215 

200-205 
385 
470 

3.2.7 Signal timing 

The cycle length at the Huron Church-Tecumseh intersection is 120 seconds. 

Displayed green intervals are shown in Table 3-7. Intergreen period (red + amber) 

between phases are 3-4 sec. The effective green time is the time allocated for a given 

traffic movement (green plus yellow) at a signalized intersection less the start-up and 

clearance lost times for the movement (Kang, 2000). Highway Capacity Manual (2000) 

states the effective green time is equal to the actual (displayed) green time plus the 

change-and-clearance interval minus the lost time for the movement. The effective red 

interval is cycle length minus the effective green interval. The effective green time and 

effective red time were calculated using different parametric values available at the study 

site in the following equation developed by Mannering et al. (2009): 

g = G + Y+AR - tL (3-1) 

where g = effective green time (seconds); G = displayed green time (seconds); 

Y = displayed yellow time (seconds); AR = displayed all-red time (seconds); tL = total 

38 



lost time (seconds) (i.e. sum of start-up lost time and clearance lost time).The effective 

green and red times are 43 and 77 seconds, respectively. 

The same values of effective green time and effective red time were calculated 

using the Canadian Capacity Guide for Signalized Intersections (2008). Details 

calculation is shown in the Appendix B. Thus, the effective green interval is 1 second 

longer than the displayed green interval (42 sec). 

Table 3-7: Duration of Green Intervals at Huron Church-Tecumseh 
Intersection (City of Windsor, 2009) 

Phase 
1 

2 

Lane 
Eastbound Left 
Westbound Left 
Eastbound Through 
Westbound Through 

Green intervals (sec) 
8 
8 
35 
35 

3.3 Estimation of queue length 

Using the traffic count, gap and signal timing data, collected from the 

intersection, the queue length can be estimated as follows. The time period during which 

a queue formed "detector actuation time" (DAT) is estimated. The estimation of DAT is 

shown in Figure 3-2. DAT was found to be 77 seconds for northbound approach of the 

Huron Church Road-Tecumseh Road intersection. This is exactly equal to the effective 

red interval as calculated earlier. 

39 



DAT = Yellow interval + Red interval + Start-up lost time 

| Yellow | Red |Start-up 
Lost time | Green | 

4 sec 71 sec 2 sec 42 sec 

0 4 75 77 120 
| 1 1 1 1 
| 77sec 1 

IStart time DAT Stop time| 

Figure 3-2: Estimation of Detector Actuation Time (DAT) 

Since a majority of drivers (73%) stop during 4-sec yellow intervals at 70 km/h 

when they are 200 ft in advance of the stop line (Rakha, 2007), it was assumed that 

yellow interval is included in DAT. 

After determining DAT, the maximum queue length formed in each lane can be 

estimated by using the observed number of queued cars and trucks, the observed length 

of vehicles and the length of gaps between queued vehicles during DAT as follows: 

Qest = N c x Lc + NT x LT+ (N - 1) x h (3-2) 

where, Qest is estimated queue length; Nc is the number of cars passing the detector 

during DAT; NT is the number of trucks passing the detector during DAT; Lc is the 

average length of car; LT is the average length of truck; N is the total number of vehicle 

passing the detector during DAT and h is the weighted average headway between the 

vehicles in a queue. 

The estimated queue length and field-measured queue length are compared in 

Table 3-8. It was observed that due to shorter length of car and shorter gap between the 
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cars, the queue length formed by the same number of cars is shorter than that of trucks. 

The developed method can successfully estimate the queue length using the manually 

collected traffic data. The mean absolute percentage error and standard deviation of 

errors for the estimated queue length at the study site was 3.48% and 2.25% respectively. 

In summary the preferred location of data collection points for each criterion is 

shown in Table 3-9. It is event from the observed results that there are advantages and 

disadvantages of selecting data collection points closer to the stop line or further away 

from the stop line for accurate estimation of queue length. More detailed method of 

determining optimal location of data collection points will be discussed in Chapter 5. 

TABLE 3-8: Observed and Estimated Queue Length 

Vehicles in 
queue 

3 cars 
4 cars 

2 trucks 
3 trucks 
4 trucks 
5 trucks 

1 tr.+ 2 cars 
1 tr. +5 cars 

2 trs.-i- 1 cars 
4 trs. +1 cars 
5 trs.+ 1 cars 

Observed 
queue length 

(ft) 

7 0 - 8 0 
88-125 
147 - 168 
200-269 
310-365 
390 - 445 

135 
215 

200-205 
385 
470 

Mean observed 
Queue 

length, Qobs 
(ft) 
75 
106 
157 
235 
337 
417 
135 
215 
202 
385 
470 

Estimated 
Queue 

length, Qest 
(ft) 
72 
100 
163 
254 
345 
436 
131 
215 
194 
376 
467 

Absolute Error (%) = 

[(Q obs - Q est) / Q obs] 
x 100 

4.00 
5.66 
3.82 
8.08 
2.36 
4.55 
2.96 
0.00 
3.96 
2.33 
0.63 

Mean absolute error 
= 3.48% 

Standard Deviation 
= 2.25% 
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TABLE 3-9: Preferred Data Collection 

Criterion 

Number of lane 
changes 

Mid-block 
driveways 

Queue spillback 

Right-turn and 
left-turn lane 

Types of vehicles 
and gap between 
vehicles 

Preferred location 
(distance from the 
stop-line) 

56 m 

56 m 

122 m 

56 m 

122 m 

Points Location for Different Criteria 

Reasons 

The number of lane changes in peak 
hour was substantially higher (about 
1.5 to 2 times) within the area of 122 
m than 56 m. 
The number of vehicles entering and 
exiting from the driveways is higher 
(about 3-5 times) at 122 m than 56 m. 
The number of queue spillback is 
higher (about 3 to 6 times) at 56 m 
than 122 m. 
Left-turn and right-turn vehicle can be 
captured at 56 m from the stop line 
but not 122 m from the stop line. 
Due to high percentage of trucks and 
longer length and headway of trucks, 
queue length is longer and queue 
spillback occurs more frequently at 
56 m from the stop line than 122 m. 
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CHAPTER IV 

QUEUE LENGTH ESTIMATION MODEL 

4.1 Shock wave method 

Most conventional queue length estimation methods (e.g. input-output technique) 

cannot estimate the queue length if the queue spills over detectors. The advance loop 

detector is commonly used to detect the presence and passage of vehicles over a short 

segment of roadway. To overcome this limitation, Liu et al. (2009) developed a queue 

length estimation method using shock wave theory. For a given cycle at a typical 

signalized intersection, the following three traffic states exist: 1) normal traffic state: 

when the vehicles arrive the signalized intersection at normal speed; 2) queued traffic 

state: when the vehicles stop behind the stop line and form a queue during the red 

interval; and 3) saturation traffic state: when the queued vehicles are discharged at 

maximum flow rate during the subsequent green interval. 

Each traffic state is characterized by flow and density as follows (Liu et al., 

2009): 1) normal traffic state: qa (arrival flow rate) and ka (density of arrival flow); 2) 

queued traffic state: zero flow (due to stoppage of vehicles) and kj (jam density or 

maximum density); and 3) saturation traffic state: qm (maximum flow rate or capacity) 

and km (density at capacity). The three shock wave speeds are calculated using the 

following equations: 

Queuing shock wave speed: Vj = — (4-1) 
k j - k a 

Discharge shock wave speed: v2 = —— (4-2) 



Departure shock wave speed: v3 = — — ^ - (4-3) 

Figure 4-1 shows the movements of these three shock waves in the fundamental 

diagram and the time-space diagram. 

When these shock waves pass the detector upstream of the stop line, a significant 

change in speed, flow and occupancy (surrogate measure of density) can be observed at 

the location of detectors (Liu et al., 2009). The time when this change occurs is called 

"Break Point". Three Break Points (A, B and C) were defined as follows (refer to Figure 

4-l(b)): 

Break Point A: when the queuing shock wave (vi) passes detectors; 

Break Point B: when the discharge shock wave (V2) passes detectors; 

Break Point C: when the departure shock wave (V3) passes detectors. 

Figure 2-5 shows that the occupancy times of the first 11 vehicles are generally 

low (less than 2.5 sec) but the occupancy time of the 12l vehicle suddenly increases to 

more than 45 sec when the vehicle completely stops at red. The point immediately before 

the occupancy time significantly increases is defined as the "Break Point A" and the 

corresponding time instant as TA. After the occupancy time significantly increases and it 

drops after some time when the vehicles start moving over the detector. This changing 

point is defined as the "Break Point B" as shown in Figure 2-5 and the corresponding 

time instant as TB. 
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Flow, q f 
(QmiKm) 

Loop 
detector 

*• Density, k 
(0, kj) 

(a) Fundamental diagram 

• Time 

Distance 

(b) Time-space diagram 

FIGURE 4-1: Shock waves at signalized intersections (Liu et al., 2009) 

After the "Break Point B", the traffic flow condition becomes saturation flow 

state. After the queue clears, a large time gap between queue discharge flow and new 

arrival flow can be observed as shown in Figure 2-6. The time when this large gap occurs 

is called the "Break Point C" and the corresponding time instant is Tc. 
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After identifying the break points, the second-by-second occupancy data needs to 

process to find out the individual occupancy time of each vehicles and time gap between 

the two consecutive vehicles in the flow within the cycle. The time gap can be easily 

estimated by using the following headway relationship. Time gap between ith and (i+l)th 

vehicle is [t(1+i) - (t, + iocc t)]; where, t(1+i) is the time instants of the following vehicle 

and ti is the time instant of preceding vehicle with occupancy time iocc t 

The flow and density of the saturation state and arrival state are then estimated 

using the average time gap and space mean speed of the two flows. Differences between 

the densities and flow rates provide the value of departure Shockwave, V3 (Equation 4-3). 

To estimate the shockwave, we will need to estimate two traffic states, i.e. saturation 

traffic state (qm, km) and the arrival traffic state (qa, ka) before and after the "Break Point 

C". Flows and densities in these traffic states are estimated in the following steps: 

Step 1: The spot speed (the speed of the vehicle at the designated point on the 

road) of the ith vehicle (uO can be estimated by dividing the effective vehicle length by 

the occupancy time of the ith vehicle, tm and is expressed as u, = Le / 1 0 , , (For example, if 

the effective vehicle length is 25 ft and the occupancy time is 0.436 s, u = 25 feet / 0.436 

sec =57 feet/sec). 

Step 2: The space mean speed, us (speed of the vehicles that traverse the same 

length of roadway) can be calculated by using the number of vehicles that arrive between 

Break Point B and Break Point C and their spot speeds (u,). The space mean speed (us) 

for the n vehicles is expressed as us= 1 / [1 / n Y — ]. For example, if there are 7 
.tiui 
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vehicles with the spot speeds of 57, 59, 55, 50, 60, 57 and 56 feet / sec, us= 1 / [1/7 x 

(1/57 + 1/59 +1/55 + 1/58 + 1/60 + 1/57 + 1/56)] = 57.43 feet / sec. It should be noted 

that the occupancy time of individual vehicle passing the loop detector can be calculated 

using second-by-second traffic data. Effective vehicle length divided by the individual 

occupancy time equals the spot speed of each vehicle. 

Step 3: The number of vehicles (n) arriving between Break Point B and Break 

Point C, and their individual time gaps h; can be counted from the time gap profile shown 

in Figure 4-3.Using the time gaps of the vehicles in the saturation, the average flow (qm) 

can be estimated. The estimated average flow (qm) is expressed as qm= 1/ [1/nV — ]. For 

example, if time gaps are 2.34, 2.42, 3.39, 2.42, 2.38, 2.43 and 2.30 sec, qm = 1/ [1/7 x 

(2.34 + 2.42 + 2.39 + 2.42 + 2.38 + 2.43 + 2.30)] = 0.42 veh /sec, i.e. 1500 veh / hour. 

Step 4: The density of flow (km) in the saturation state can easily be calculated 

using the equation, km = qm / us. For example, km = 0.42 / 57.43) =0.0073 veh/ft or 38 

veh/mile. 

Step 5: Similarly, the flow and density of the new arrival flow (qa, ka) after Break 

Point C can be estimated using the occupancy time and the headway of the vehicles in 

that state from the occupancy profile and the time gap profile. The departure Shockwave 

can be calculated using Equation 4-3. 

To account for the variation in capacity (qm) and critical density (km), discharge 

shock wave speed can alternatively be calculated based on the time of Break Points B 
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(TB) identified from detector occupancy time and time gap profiles as follows (Liu et al., 

2009): 

v 2 - ^ V (4-4) 

where Ld is the distance between the advance detector, TB is the time instant when the 

discharge Shockwave reaches the advance detector and Tr is the time of green start. 

However, since the variation in jam density due to change in truck percentage was not 

still considered, the calculation of queuing and discharge shock wave speed using 

Equation (4-1) and (4-2) will be subject to errors. 

After determining V2 and V3, the maximum queue length for any given cycle 

(Lmax) is calculated as follows (Liu et al., 2009): 

L = L , + T c T B (4-5i 

+ — 
VV2 V 3 y 

In spite of strong theoretical background, the shock wave method cannot be used 

when the queue does not spill over detectors (called "short queue") since shock waves 

cannot be determined at detector location. Also, even if the queue spills over detectors 

(called "long queue"), it is difficult and cumbersome to determine Break Points B and C, 

and calculate discharge and departure shock wave speeds. The calculation time will 

drastically increase if the length of queue in multiple lanes should be estimated. 

The shock wave method has a limitation when the queue length is estimated at 

signalized intersections with high truck volume such as the studied intersection. The 

method cannot account for the variation in flow-density relationship as the percentage of 
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trucks changes. To evaluate the impact of truck percentage on flow-density relationship, 

hypothetical cases of vehicle mix in traffic flow were considered. In each case, it was 

assumed that there are two types of vehicles - cars and trucks - and percentage of trucks 

increases from 0% to 100% in a 10% increment. Since it is hard to generalize the impact 

of truck percentage on space mean speed, constant space mean speeds of 60 km/h and 40 

km/h were assumed for the normal and saturation traffic states, respectively. Capacity 

and jam density were calculated based on length and distance headways of vehicles. 

Since tracks are longer and have longer distance headway than cars, capacity and 

jam density are expected to be lower when percentage of trucks is higher. Clearly, flow-

density relationship, and three shock wave speeds (vi, v2 and V3) are affected by 

percentage of tracks as shown in the fundamental diagram (Figure 4-2). Table 4-1 shows 

that the speeds of backward-moving (negative) shock waves increase as the percentage of 

trucks increases. Sample calculation is shown in Appendix C and individual flow- density 

relationship is shown in Appendix D. 
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FIGURE 4-2: Fundamental diagrams for different percentage of trucks 

Table 4-1: Shock Wave Speeds for Different Percentage of Trucks 

Truck % 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

Jam density 
(vehicle/km) 

111 
93 

79 
69 
62 
56 
51 
46 
43 
40 
37 

Queuing shock 
wave speed (vi) 

(m/sec) 

-5.0 
-5.95 
-6.50 
-7.30 
-7.80 
-8.30 
-8.88 
-9.70 

-10.10 
-10.59 
-11.2 

Discharge shock 
wave speed (v2) 

(m/sec) 

-8.40 

-11.11 
-12.50 
-14.50 
-16.50 
-18.50 
-21.51 
-24.63 
-26.93 
-29.78 
-34.20 

Departure 
shock 

wave speed 

(v3) 
(m/sec) 

4.80 
4.75 
4.75 
4.80 
4.77 
4.76 
4.78 
4.72 
4.76 
4.76 
4.70 
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4.2 Simplified method 

As explained in Chapter 3, a simple method (Equation 3-2) was developed to 

estimate the queue length in each lane at the intersection using the data manually 

collected from the field. The simplified method of queue length estimation can be applied 

to both short and long queue. Equation 3-2 is refined to estimate the maximum queue as 

follows: 

Lmax = Lf + NCLC + NTLT + (N - l)h (4-6) 

where Lmax = estimated maximum queue length; Lf = average distance between stop line 

and the front end of the first queued vehicle; Nc = the number of queued cars; NT = the 

number of queued trucks; Lc = the average length of car; LT= the average length of truck; 

N = the total number of vehicles in a queue; and h = the volume weighted average 

distance headway. Based on the field observation that headways are different for different 

types of vehicles, h is calculated using the following equation: 

- = N c c h c c + Nprh-rr + NT ChT C + NC ThC T 

N 

where Ncc is the number of car following car; NTT is the number of track following 

truck; NTc is the number of truck following car; NCT is the number of car following truck; 

and hCc, hTT, hTC and h d are headways between the vehicles in a queue. In this method, 

the distance headway is defined as the distance between the rear end of the lead vehicle to 

the front end of the following vehicle. The average length of car and truck, and headway 

between the consecutives queued vehicles were measured from the field observation. 
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Figure 4-3 illustrates the flow diagram of the simplified method for queue length 

estimation. First, traffic data are imported from detectors. If a queued vehicle occupies 

detectors, the queue is classified as a long queue. Otherwise, the queue is classified as a 

short queue. Second, for a long queue, Break Point C should be identified. Third, the 

number of vehicles for each type should be counted up to Break point C. On the other 

hand, for short queue, the number of vehicles for each type should be counted up to the 

effective red. Finally, the maximum queue length for a given cycle can be calculated 

using Equations 4-6 and 4-7. 

Import detector 
data 

No 
r 

Short queue 

Count number of vehicles up 
to effective red 

i ' 

Estimate queue 
length 

Yes Long queue 

Identify Break 
Point C 

Count number of 
vehicle up to 

Break Point C 

Estimate queue 
length 

FIGURE 4-3: Flow Charts for Queue Length Estimation by Simplified Method 
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CHAPTER V 

RESULTS AND DISCUSSION 

5.1 Queue length analysis using simulation 

To compare the accuracy of queue estimation between the two methods - the 

shock wave method and the simplified method - second-by-second detector data 

(occupancy and headways) and cycle-by-cycle queue length data are needed. However, 

these data could not be directly obtained from the study site due to absence of loop 

detectors. Thus, fictitious loop detectors (data collection points) were created and traffic 

data were collected from them using VISSIM 5.1 traffic simulation (PTV AG, 2008). The 

details of the simulation model are explained in the following subsections. 

5.1.1 Overview of VISSIM 

VISSIM is a microscopic step and driver behavior-based traffic simulation tool, 

employed widely by transportation modelers and researchers. VISSIM can model 

integrated roadway networks and various modes, including general-purpose traffic, buses, 

high-occupancy vehicles (HOV), light rail, trucks, bicyclists, and pedestrians (PTV AG, 

2008). VISSIM can simulate networks of all sizes and all roadway functional 

classifications ranging from individual intersections to freeway and arterial corridors and 

entire metropolitan areas. It can model individual vehicle or pedestrian movements on a 

second or sub-second (up to one-tenth of a second) basis on a variety of constraints such 

as road geometry, vehicle characteristics, driving behavior, and traffic controls. VISSIM 

can track individual vehicle movements and accurately measure the physical length of a 

queue. 
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5.1.2 VISSIM network component and workflow 

The VISSIM simulation network requires four major components: Network, 

Traffic, Control and Output (PTV AG, 2008). The "Network" represents the physical 

infrastructure of roadway and tracks. An intersection in VISSIM is modeled by a series of 

links and link connectors for through and turning movements. The "Traffic" represents 

the vehicular movements in the network such as speed distribution, vehicle model 

distribution, vehicle type and class, traffic composition and traffic demand. The 

"Control" defines the method of controlling conflict movements such as speed changes, 

traffic signals, and priority rules. The "Output" defines the types of results (e.g. travel 

time, delay) generated from the simulation. These four components are shown in Figure 

5-1. 

The queue length in northbound through lanes was only analyzed. However, to 

realistically reflect actual traffic conditions, traffic movements in all lanes and both 

directions on Huron Church Road and Tecumseh Road were also simulated. 
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FIGURE 5-1 Components of VISSIM simulation 
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For the simulation purpose, the hourly traffic data collected at the Huron Church-

Tecumseh intersection by the City of Windsor were first imported to VISSIM. But in the 

initial runs of the simulation, it was found that vehicle types were evenly distributed 

across the three through lanes. To reflect higher truck volume in the middle through lane 

(Lane 2) than the other two through lanes as observed in the field, the following 

adjustments were made. 

First, all cars and trucks enter the same link and split into three northbound 

through lanes. Among the three lanes, the right through lane (Lanel) and the left through 

lane (Lane 3) were closed to tracks using link dialog "lane closure". This way, trucks are 

released to only the middle through lane (Lane 2) while cars are released to any lane. 

After trucks enter the road, tracks are still allowed to change lanes as they approach the 

stop line. After this adjustment, the proportions of trucks in the through lanes were 

similar to the observed proportions. 

In the VISSIM network configuration three data collection points were placed in 

the three northbound through lanes at the same distance upstream of the stop line. 

Second-by-second speed, vehicle count by type of vehicle, and occupancy in each lane 

were obtained from the data collection points. To determine the number of lane changes 

in a given road section, the position of each vehicle in each time interval was extracted 

from the individual vehicle records generated by VISSIM. In the vehicle records, the 

position of the vehicle is described longitudinally (along the length of road section) and 

laterally (along the width of lane). Thus, the times when the lane change starts and ends 

can be determined when the vehicle starts leaving the current lane and reaches the center 
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of the target lane, respectively. The example vehicle record generated by VISSIM 

simulation is shown in Table 5-1. 

TABLE 5-1: Example Vehicle Records Generated by VISSIM for One Cycle 

Time 
(sec) 

3485.2 
3485.4 
3490.8 

3491 
3489.4 
3489.6 
3508.2 
3508.4 
3508.2 
3496.6 

3498 
3498.2 
3496.4 
3496.6 
3521.6 
3521.8 
3530.6 
3530.8 
3528.8 

3529 
3531.8 

3532 
3529.8 

3530 
3533 

3533.2 
3528.2 
3528.4 
3533.4 
3533.6 

Vehicle 
No. 

3551 
3551 
3551 
3551 
3555 
3555 
3563 
3563 
3563 
3564 
3566 
3566 
3567 
3567 
3587 
3587 
3593 
3593 
3594 
3594 
3594 
3594 
3597 
3597 
3597 
3597 
3602 
3602 
3606 
3606 

Link 
No. 

13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 

Lane 
No. 

1 
2 
2 
3 
2 
1 
3 
2 
3 
1 
1 
2 
2 
3 
2 
1 
2 
1 
3 
2 
2 
1 
1 
2 
2 
3 
2 
3 
2 
1 

Longitudinal 
Position (x*) 

(m) 
57.1 
60.2 

134.7 
137.6 
71.3 
74.5 

253.5 
256.5 
253.5 

61.4 
60.6 
63.9 
29.3 
32.3 
5.2 
6.2 

116.1 
118.4 
68.6 
71.6 
109 

110.9 
54.8 
57.6 

100.7 
103.7 

15.5 
18.6 

69 
71 

Longitudinal 
Position (x**) 

(m) 
149.9 
146.8 
72.3 
69.4 

135.7 
132.5 
-46.5 
-49.5 
-46.5 
145.6 
146.4 
143.1 
177.7 
174.7 
201.8 
200.8 

90.9 
88.6 

138.4 
135.4 

98 
96.1 

152.2 
149.4 
106.3 
103.3 
191.5 
188.4 

138 
136 

Lateral 
position (y) 

(m) 
0.97 
0.03 
0.97 
0.03 
0.03 
0.97 
0.03 
0.97 
0.03 
0.97 
0.97 
0.03 
0.97 
0.03 
0.03 
0.97 
0.03 
0.97 
0.03 
0.97 
0.05 
0.99 
0.97 
0.03 
0.99 
0.05 
0.95 
0.01 
0.03 
0.97 

Vehicle 
type 

Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 

Note: 

x* = distance from the starting end of link 13 (northbound Huron Church Road) 
x** = distance from the stop line (stop line is 207 m upstream of the starting point of link 
13) 
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TABLE 5-1: Example Vehicle Records Generated by VISSIM for One Cycle 
(Continued) 

Time 
(sec) 

3545.8 
3546 
3549 

3549.2 
3545.8 

3546 
3549.4 
3549.6 
3552.6 
3552.8 
3577.2 
3577.4 
3580.4 
3580.6 
3574.4 
3574.6 
3578.4 
3578.6 
3584.8 

3585 
3569 

3569.2 
3578.8 

3579 
3582 

3582.2 
3588 

3588.2 

Vehicle 
No. 

3616 
3616 
3616 
3616 
3617 
3617 
3617 
3617 
3632 
3632 
3637 
3637 
3648 
3648 
3648 
3648 
3650 
3650 
3651 
3651 
3652 
3652 
3664 
3664 
3664 
3664 
3664 
3664 

Link 
No. 

13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 

Lane 
No. 

1 
2 
2 
3 
1 
2 
2 
3 
2 
1 
3 
2 
2 
3 
3 
2 
1 
2 
1 
2 
2 
1 
1 
2 
2 
3 
3 
2 

Longitudinal 
Position (x*) 

(m) 
70.9 
72.5 
96.1 
97.9 
50.3 
52.3 
81.9 
83.7 
4.8 
6.3 

105.4 
107.4 

125 
127.3 
61.9 
63.4 

126.3 
129 

177.7 
180.5 

11.8 
13.4 
21.3 
24.6 
72.7 
75.8 

162.2 
165.6 

Longitudinal 
Position (x**) 

(m) 
136.1 
134.5 
110.9 
109.1 
156.7 
154.7 
125.1 
123.3 
202.2 
200.7 
101.6 
99.6 

82 
79.7 

145.1 
143.6 
80.7 

78 
29.3 
26.5 

195.2 
193.6 
185.7 
182.4 
134.3 
131.2 
44.8 
41.4 

Lateral 
position (y) 

(m) 
0.97 
0.03 
0.99 
0.05 
0.97 
0.03 
0.97 
0.03 
0.03 
0.97 
0.03 
0.97 
0.97 
0.03 
0.03 
0.97 
0.97 
0.03 
0.97 
0.03 
0.03 
0.97 
0.97 
0.03 
0.97 
0.03 
0.03 
0.97 

Vehicle 
type 

Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 
Car 

Note: 

x* = distance from the starting end of link 13 (northbound Huron Church Road) 

x** _ distance from the stop line (stop line is 207 m upstream of the starting point of link 
13) 

5.2 Determination of optimal location of detectors 

Loop detectors in actual roads are represented by data collection points in the 

VISSIM network configuration. When vehicles pass data collection points in VISSIM, 

second-by-second speed, volume and occupancy data are automatically stored in a file. 
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Since the accuracy of queue length estimation depends on the location of data collection 

points, it is important to determine optimal location of data collection points such that the 

estimation error is minimized. In this study, a total of 7 locations - 40 m, 60 m, 80 m, 100 

m, 120 m, 140 m and 160 m upstream of the stop line were considered. Data collection 

points were only created upstream of the stop line, but not on the stop line, because queue 

length estimation using two detectors was not as accurate as the estimation using only 

one detector (Sharma et al., 2007). 

Given that queue length varies in each cycle, second-by-second simulated traffic 

data were collected from the data collection points for 30 cycles in a one-hour simulation 

period (cycle length of 120 seconds) using VISSIM. In every cycle, queue was fully 

discharged before the end of green interval and residual queue did not occur in the 

following cycle. Thus, the simulated flow is undersaturated for all cycles. 

Since the queue length varies across lanes, the times of Break Points B and C for 

each lane also vary. These times can be identified from the individual occupancy time 

and time gaps in each lane separately (Liu et al., 2009). However, it was difficult to 

objectively determine Break Point C based on time gaps. Instead, these times were 

identified from the second-by-second vehicle count and occupancy. Break Point B occurs 

when occupancy suddenly drops after occupancy is 100% during red interval (i.e. 

vehicles are stopped). This is the time when the queue discharge starts. Break Point C 

occurs immediately before zero occupancy is observed for 2 or more consecutive seconds 

after Break Point B and then occupancy increases again (Liu et al., 2009). This is the time 

when the rear end of the last queued vehicles passes data collection points. 
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Since only the maximum of actual queue length in all lanes can be obtained from 

VISSIM, the queue length was only estimated in the lane where the maximum queue 

length occurs (called "the analysis lane"). The analysis lane was identified after the queue 

length was estimated in each lane based on the number of vehicles in a queue, distance 

headway and vehicle length using the simplified method. The length of car and truck was 

assumed to be 4.55 m and 22 m, respectively, based on the field observation. However, 

since it is complicated to differentiate distance headways between different types of 

vehicles in VISSIM, default constant headway of 2 m was used. The default distance 

between the stop line and the front end of the first queued vehicle is 1.2 m in VISSIM. It 

was observed that maximum queue length was more likely to occur in the center through 

lane (Lane 2 in Figure 1) due to high number of trucks in the lane. This is similar to the 

actual observed conditions at the study site. 

Since the shock wave method can be used for long queue only, queue length was 

estimated only at the data collection points where the queue spillback occurs. For 

instance, if the estimated queue length in the analysis lane was 90 m, queue length was 

estimated at 40 m, 60 m and 80 m. Then the queue length was estimated for the analysis 

lane using the shock wave method and the simplified method, and compared with the 

actual queue length. 

For example, sample simulated data were collected from data collection points 60 

m upstream of the stop line for one 120-sec. cycle as shown in Table 5-2. In this cycle, 

Break Point A occurred at 31 sec. after red starts when the queued vehicle passed the 

detectors. Break Point B occurred at 82 sec. (= TB) when the queue discharge started after 

the signal turned to green at 77 sec. (= Tr). Break Point C occurred at 91 sec. (= Tc) when 
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the last vehicle in the queue passed the data collection points. This point was identified 

by the following zero occupancies for 3 seconds which represent time gap between queue 

discharge flow and new arrival flow. Individual vehicle data are summarized in Table 5-

3. Maximum queue length was estimated using the shock wave method as follows: 

1. Saturation traffic state 

Average time gap = (1.452 + 2.587) / 2 = 2.0195 sec 

qm = 1 / Average time gap = 1 / 2.0195 = 0.495 veh/sec 

Average individual occupancy time/effective length =(0.065 + 0.0593)= 0.0622 sec/m 

um= 1 / [Average individual occupancy/effective length] = 1 / 0.0622 = 16.07 m/sec 

km = qm / ura = 0.495 / 16.07 = 0.0308 veh/m 

2. Normal traffic state 

Average time gap = (4.638 + 5.686 + 4.686 + 7.736) / 4 = 5.685 sec 

qa = 1 / Average time gap = 1 / 5.685 = 0.175 veh/sec 

Average individual occupancy/effective length = (0.0494 + 0.0499 + 0.0415 + 
0.0434) / 4 = 0.046 sec/m 

ua = 1 / [Average individual occupancy/effective length] = 1 / 0.046 = 21.74 m / sec 

ka = qa / ua = 0.175 / 21.74 = 0.008 veh/m 

3. Departure shock wave (v3) can be calculated using Eq. (4-3) as follows: 

q a - q „ 0.175-0.495 tAM . 
v = ^a—im _ _ 14 Q3 mjs 

k a - k m 0.008-0.0308 

4. Discharge shock wave (v2) can be calculated using Eq. (4-4) as follows: 

V 2 = J d ^ _ = i2m/s 
T B - T r 82-77 

5. Maximum queue length can be calculated using Eq. (4-5) as follows: 

T c - T B _£n, 91-82 
L m „ = LH +-^ ^ r = 60 + — — ^ = 118 m "d ' f , , \ " v 7 | 1 \ 

- + -
vv2 v3y 

12 14.03 
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TABLE 5-2: Second-by-second VISSIM Simulated Data (Lane 2 at 60 m Upstream of Stop Line) 

Time(sec) 
1 
2 
3 
4 
5 

22 
23 
24 
25 
26 
27 

31 
32 
33 
34 
35 

40 
41 

77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 

102 
103 

107 
108 

115 
116 
117 

120 

car 
0 
0 
0 
0 
0 

1 
0 
0 
1 
0 
0 

0 
0 
0 
0 
0 

0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
] 

0 
1 
0 
0 
0 
0 
1 
0 

1 
0 

1 
0 

1 
0 
0 

0 

Truck 
0 
1 
0 
0 
0 

0 
0 
0 
0 
0 
0 

1 
0 
0 
0 
0 

1 
0 

0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 

0 
0 

0 
0 
0 

0 

Speed(km/h) 
0 

42 4 
0 
0 
0 

52 8 
0 
0 

49 
0 
0 

27 
0 
0 
0 
0 

12 
0 

0 
0 
0 
0 
0 

27.1 
0 
0 
0 

39 4 
0 
0 

42 1 
0 

44 
0 
0 
0 
0 

52 5 
0 

50 7 
0 

61 9 
0 

59 5 
0 
0 

0 

Occupancy (%) 
0 

50 4 
100 
58 
0 

30 8 
0 
0 

16 2 
18 
0 

66.3 
100 
100 
90 8 

0 

2 2 
100 

100 
100 
100 
63 7 

0 
34 
100 
100 
20 8 
19 1 
22 2 

0 
29 9 
78 

15.2 
21 
0 
0 
0 

31 4 
0 

317 
0 

26 4 
0 

187 
89 
0 

0 

Traffic state 
Beginning of Red 

Break Point A 

Queued traffic state 

End of red 
Beginning of green 

Break point B 
Saturation traffic state 

Break point C 

Normal traffic state 

End of green 
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TABLE 5-3 Individual VISSIM Simulated Vehicle Data (Lane 2 at 60 m Upstream of 

Stop Line) 

Time 
(sec) 

2 

22 

25 

31 

40 

82 

86 

89 

91 

96 
102 

107 

115 

Veh. 
No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

vehicle 
type 

Truck 

Car 

Car 

Truck 

Truck 

Truck 

Car 

Car 

Car 

Car 

Car 

Car 

Car 

Individual 
Occupancy 

time 
(sec) 

2.084 

0.308 

0.342 

3.571 

39.659 

2.548 

0.413 

0.377 

0.362 

0.314 

0.317 

0.264 

0.276 

Time 
gap 
(sec) 

0 

17.916 

2.692 

5.658 

5.429 

2.341 

1.452 

2.587 

1.623 

4.638 

5.686 

4.683 

7.736 

Effective 
length 

(m) 

23.8 

6.35 

6.35 

23.8 

23.8 

23.8 

6.35 

6.35 

6.35 

6.35 

6.35 

6.35 

6.35 

Individual 
Occupancy time / 

Effective 
length 

0.0875 

0.0485 

0.0538 

0.15 

1.6663 

0.107 

0.065 

0.0593 

0.057 

0.0494 

0.0499 

0.0415 

0.0434 

Traffic 
state 

Break 
Point A 
Queued 
traffic 
state 

Break 
Point B 

Saturation 
traffic 
state 

Break 
Point C 
Normal 
traffic 
state 

Maximum queue length can also be estimated using the simplified method. Since 

there are 5 cars and 4 trucks from the beginning of red interval to Break Point C (0-91 

seconds), queue length is calculated using Eq. ((4-6) as follows: 

Lmax = L f + N C L C + N T L T + (N - l)h = 1.2 + 5(4.55) + 4(22) + (9 -1)(2) = 128 m 

These estimated queue length, (Lmax)est was compared with actual observed queue length, 

(Lmax)obs and the estimation error was calculated using the following equation: 

_ Iv^max Jest V^max /0bs L , i n n 

l^max )( 
(5-1) 

obs 
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The estimated queue length at 7 locations of data collection points using the two methods 

is shown in Tables 5-4 and 5-5. Queue length was estimated only in the analysis lane. 

However, queue length could not be estimated using the shock wave method for some 

cycles due to the following reasons: 

(1) When the data collection points are too distant from the stop line, queue did not spill 

back over the data collection point and shock waves could not be detected at the 

location of data collection points. For this reason, when the data collection points 

were located 160 m from the stop line, the queue length was estimated for only 8-13 

cycles out of 30 cycles. 

(2) In some cycles, the flow and density of new arrival flow was greater than or equal to 

the flow and density of queue discharge flow. This results in a negative departure 

shock wave which contradicts the assumed flow-density relationship as shown in 

Figure 4-1. Consequently, the calculated queue length will be erroneous. 

(3) When the time gap between the queue discharge flow and the new arrival flow was 

smaller or similar to the saturation time gap, Break Point C could not be identified 

(Liu et al., 2009). Consequently, departure shock wave (V3) could not be determined. 

Due to the first reason, too distant location of the data collection points from the 

stop line is not practical for queue length estimation. However, queue length could be 

estimated for more number of cycles using the simplified method than the shock wave 

speed for all data collection point locations. This is because the simplified method can 

avoid the error associated with the calculation of departure shock wave as explained in 

the second reason. The third reason applies to both methods since Break Point C must 

exist to estimate the queue length regardless of the queue estimation method. 
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TABLE 5-4 Estimated Queue Length Using Shock Wave Method (Car-truck mix) 

Cycle 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Actual 
Max. 
queue 
lane 
82 

L3** 
133 
L2 
109 
L2 
95 
L2 
108 
L3 
113 
L2 
105 
L2 
133 
L2 
132 
L3 
104 
L2 
165 
L2 
107 
L2 
184 
L2 
164 
L2 
177 
LI 
148 
L2 
145 
L2 
177 
L2 
173 
L2 
114 
L2 

40m 

65.12 
(20.57)* 

140.9 
(5.99) 
90.9 

(16.58) 

d 

43.65 
(59.57) 

d 

247.08 
(135.32) 

145.7 
(9.55) 
252.83 
(91.53) 
176.3 

(69.53) 
285.9 

(74.37) 
92.11 

(13.91) 

b 

112.72 
(31.26) 
220.7 

(24.70) 

b 

131.9 
(9.01) 
105.65 
(26.73) 

70.4 
(59.28) 
143.9 

(26.27) 

60m 

71.15 
(13.22) 
237.1 

(78.29) 
132.6 

(21.66) 

d 

64.6 
(40.18) 

92 
(18.50) 
165.7 

(57.80) 
195.8 

(47.24) 
131.59 
(0.30) 
135.9 

(30.74) 
149.7 
(8.70) 
128.4 

(20.03) 

b 

114.85 
(29.96) 
228.20 
(28.92) 
2 03.8 
(37.71) 
94.65 

(34.71) 
113.7 
35.76) 
115.76 
(33.08) 
241.3 

(111.66) 

80m 

80 
(2.50) 
178.8 

(34.49) 
109.5 
(0.45) 

141 
(48.49) 
93.52 

(13.39) 
156.4 

(38.45) 
141.6 

(34.88) 

c 

207 5 
(57.17) 
140.3 

(34.92) 
148.6 
(9.41) 
127.2 

(18.89) 

b 

183.5 
(11.87) 
155.07 
(12.38) 

d 

100.46 
(30.71) 

102 
(42.31) 
104. 1 

(39.81) 
234.1 

(105.36) 

100m 

a 

100 
(24.81) 

100 
(8.26) 

b 

100 
(7.41) 
118.3 
(4.66) 
129.9 

(23.73) 
109 

(17.99) 
139.11 
(5.38) 
120.72 
(16.08) 
130.18 
(20.61) 
100.6 
(6.00) 
124.5 

(32.34) 
138.4 

(15.60) 
177.45 
(0.25) 

197 
(33.13) 
164.2 

(13.27) 

c 

186.7 
(7.91) 

a 

120m 

a 

c 

a 

a 

a 

a 

a 

123.9 
(6.77) 

a 

a 

157 
(4.23) 

a 

202.7 
(10.16) 
153.3 
(6.47) 
189.57 
(7.10) 
141.3 
(4.52) 
153.9 
(6.13) 
159.4 
(9.95) 
164.8 
(4.69) 

a 

140m 

a 

a 

a 

a 

a 

a 

a 

a 

a 

a 

c 

a 

177.4 
(3.56) 
142.7 

(12.97) 
189.6 
(7.13) 
176.83 
(19.48) 
144.08 
(0.63) 

152 
(4.06) 

155 
(10.39) 

a 

160m 

a 

a 

a 

a 

a 

a 

a 

a 

a 

a 

208.09 
(26.88) 

a 

c 

206.53 
(25.93) 

c 

a 

b 

172.9 
(2.29) 

c 

a 

Average 
(%) 

72.09 
(12.09) 
164.2 

(35.87) 
108.25 
(11.73) 

141 
(48.49) 
75.44 

(30.13) 
122.23 
(20.53) 
171.07 
(62.93) 
150.16 
(20.38) 
174.51 
(38.59) 
143.30 
(37.81) 
179.91 
(24.03) 
112.07 
(14.70) 
168.20 
(15.35) 
150.28 
(19.15) 
193.43 
(24.7) 
171.71 
(23.71) 
131.53 
(15.74) 
134.27 
(20.18) 
138.53 
(25.86) 
206.43 
(81.09) 
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TABLE 5-4 Estimated Queue Length Using Shock Wave Method (Car-truck 

mix) (Continued) 

Cycle 

21 

22 

23 

24 

28 

29 

30 

Actual 
Max. 
queue 
lane 
155 
L2 
153 
L2 
123 
L2 
121 
L2 
185 
L3 
177 
L2 

127 
L2 

No. of cycle 
with the lowest 

error 
Average error 

(%) 
Standard 

Deviation (%) 

40m 

49 
(68.27) 

d 

d 

d 

d 

343 
(93.82) 

204 
(60.65) 

3 

47.21 

35.75 

60m 

c 

c 

511.0 
(315.45) 

d 

d 

334.36 
(88.90) 

177.3 
(39.64) 

3 

52.02 

65.98 

80m 

238.7 
(54.02) 

d 

276.8 
(125.06) 

143.1 
(18.30) 
235.3 

(27.19) 
106.9 

(39.56) 

274.8 
(116.37) 

3 

39.83 

33.93 

100m 

114.40 
(26.19) 
180.8 

(18.22) 
114.9 
(6.50) 

134 
(10.81) 
152.3 

(17.68) 
208.8 

(17.96) 

251.7 
(98.22) 

10 

18.83 

19.46 

120m 

205.4 
(32.51) 
171.5 

(12.08) 

c 

134.86 
(11.46) 

c 

144.8 
(18.19) 

213.83 
(68.37) 

5 

14.47 

17.20 

140m 

211.3 
(36.32) 

c 

a 

a 

243.25 
(31.49) 
150.9 

(14.75) 

a 

3 

14.08 

11.94 

160m 

186.8 
(20.56) 

a 

a 

a 

c 

195.4 
(10.39) 

a 

3 

17.21 

10.61 

Average 
(%) 

167.60 
(39.64) 
176.15 
(18.22) 
300.9 

(149.0) 
137.32 
(13.52) 

210 
(27.19) 
211.99 
(40.50) 

224.32 
(76.65) 

Note: 
*: Estimation error 
**: Lane with maximum queue length (analysis lane). Average error and standard deviation of errors are 
calculated in this lane only. 

Reasons for missing data: 
a: No queue spillback occurred. 
b: Break point C could not be determined. 
c: New arrival flow was greater than or equal to queue discharge flow (qa > qm). 
d: Density of new arrival flow was higher than or equal to density of queue discharge arrival flow (ka > km). 
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TABLE 5-5 Estimated Queue Length 

Cycle 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

Actual 
Max. 
queue 
lane 
82 

L3** 
133 
L2 
109 
L2 
95 
L2 
108 
L3 
113 
L2 
105 
L2 
133 
L2 
132 
L3 
104 
L2 
165 
L2 
107 
L2 
184 
L2 
164 
L2 
177 
LI 
148 
L2 
145 
L2 
177 
L2 
173 
L2 
114 
L2 
155 
L2 
153 
L2 
123 
L2 
121 
L2 

40m 

75.6 
(7.80)* 
147.6 

(10.97) 
108.3 
(0.64) 
106.15 
(11.73) 
112.70 
(4.35) 
112.7 
(0.26) 
112.7 
(7.33) 
167.25 
(25.75) 
143.25 
(8.52) 
123.6 

(18.84) 
103.95 
(37.0) 
79.95 

(25.28) 

b 

121.40 
(25.97) 
165.1 
(6.72) 

b 

223.95 
(54.44) 
97.40 

(44.97) 
77.75 

(55.05) 
117.05 
(2.67) 
101.75 
(34.35) 
136.70 
(10.65) 
136.70 
(10.65) 
134.5 

(11.15) 

60m 

69.05 
(15.79) 
158.5 

(19.17) 
127.95 
(17.38) 

99.6 
(4.84) 
106.15 
(1.71) 
108.35 
(4.11) 
132.35 
(26.04) 
130.15 
(2.14) 
117.05 
(11.32) 
147.6 

(41.92) 
103.95 
(37.0) 
99.6 

(6.91) 

b 

113.23 
(30.95) 
147.65 
(16.58) 
169.45 
(14.49) 
114.85 
(20.79) 
121.4 

(31.41) 
132.5 

(23.24) 
123.6 
(8.42) 
114.85 
(25.90) 
125.8 

(17.77) 
167.25 
(35.97) 
134.5 

(11.15) 

80m 

88.7 
(8.17) 
141.05 
(6.05) 
110.5 
(1.37) 
123.6 

(30.10) 
99.6 

(7.77) 
132.35 
(17.12) 
132.35 
(26.04) 
136.7 
(2.78) 
136.7 
(3.56) 
99.60 
(4.23) 
117.07 
(29.06) 
112.7 
(5.32) 

b 

182.5 
(11.28) 
154.20 
(12.88) 

176 
(18.91) 
121.40 
(16.27) 
127.95 
(27.71) 
121.4 

(29.82) 
99.6 

(12.63) 
199.95 

(29) 
143.25 
(6.37) 
123.6 
(0.48) 
121.25 
(0.20) 

ng Simplified Method (Car-true 

100m 

a 

114.85 
(13.64) 
103.95 
(4.63) 

b 

99.6 
(7.77) 
119.5 
(5.53) 
112.7 
(7.33) 
136.7 
(2.78) 
130.15 
(1.40) 
154.15 
(48.55) 
154.15 
(6.57) 
119.25 
(11.44) 
173.8 
(5.54) 
145.4 

(11.34) 
180.4 
(1.92) 
162.9 

(10.06) 
169.4 

(16.82) 
134.5 

(24.01) 
145.4 

(15.95) 

a 

108.30 
(30.12) 
130.15 
(14.93) 
130.15 
(5.81) 
134.55 
(12.40) 

120m 

a 

138.85 
(4.39) 

a 

a 

a 

a 

a 

149.8 
(12.63) 

a 

a 

136.7 
(17.15) 

a 

173.8 
(5.54) 
145.4 

(11.34) 
189.57 
(7.10) 
136.7 
(7.63) 
175.95 
(21.34) 
208.7 

(17.90) 
162.85 
(5.86) 

a 

210.85 
(36.03) 

106 
(30.72) 
121.45 
(1.26) 
147.6 

(21.98) 

140m 

a 

a 

a 

a 

a 

a 

a 

a 

a 

a 

112.7 
(31.69) 

a 

154.15 
(16.22) 
175.95 
(7.28) 
167.3 
(5.48) 
136.7 
(7.63) 
151.95 
(4.79) 
202.15 
(14.20) 
193.4 

(11.79) 

a 

162.85 
(5.06) 
173.8 

(13.59) 

a 

a 

160m 

a 

a 

a 

a 

a 

a 

a 

a 

a 

a 

169.45 
(2.69) 

a 

160.7 
(12.66) 
206.5 

(25.91) 
154.2 

(12.88) 

a 

b 

226.15 
(27.76) 
217.4 

(25.66) 

a 

204.3 
(31.80) 

a 

a 

a 

i. mix) 

Average 
(%) 

77.78 
(10.58) 
140.17 
(10.84) 
112.67 
(6.0) 

109.78 
(15.55) 
104.51 
(5.4) 
118.22 
(6.75) 
122.52 
(16.68) 
144.12 
(9.21) 
131.78 
(6.2) 

131.23 
(28.38) 
128.28 
(23.02) 
102.87 
(12.23) 
165.61 
(9.99) 
155.76 
(17.72) 
165.48 
(9.08) 
156.35 
(11.74) 
159.58 
(22.4) 
159.75 
(26.85) 
150.1 

(23.91) 
113.41 
(7.9) 

157.55 
(27.46) 
135.95 
(15.67 
135.83 
(10.83) 
134.48 
(11.37) 
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TABLE 5-5 Estimated Queue Length Using Simplified Method (Car-truck mix) 
(Continued) 

Cycle 

25 

26 

27 

28 

29 

30 

Actual 
Max. 
queue 
lane 
157 
L2 
161 
L2 
124 
L2 
185 
L3 
177 
L2 
127 
L2 

No. of cycle with the 
lowest error 

Average error (%) 
Standard deviation 

(%) 

40m 

130.15 
(17.10) 
189.05 
(17.42) 

97.4 
(21.45) 
182.55 
(1.32) 
165.05 
(6.75) 
217.4 

(71.18) 

5 

19.65 

18.37 

60m 

169.45 
(7.92) 
189.05 
(17.42) 
110.5 

(10.88) 
176 

(4.86) 
171.6 
(3.05) 
217.25 
(71.18) 

4 

18.62 

15.02 

80m 

82.15 
(47.67) 
189.05 
(17.42) 
123.6 
(0.32) 
213.10 
(15.18) 
110.5 

(37.57) 
223.95 
(76.33) 

5 

17.29 

16.83 

100m 

158.55 
(0.98) 
202.15 
(25.56) 
106.15 
(14.39) 
206.55 
(11.64) 
171.6 
(3.05) 
145.4 

(14.48) 

7 

12.17 

10.38 

120m 

195.65 
(24.61) 
175.95 
(9.28) 

113 
(8.87) 
169.45 
(8.40) 
141.05 
(20.31) 
243.6 

(91.81) 

4 

18.2 

19.64 

140m 

162.9 
(3.75) 
219.6 

(36.39) 

a 

217.45 
(14.92) 
147.6 

(16.61) 

a 

4 

13.52 

9.83 

160m 

176 
(12.10) 
243.6 

(51.30) 

a 

136.70 
(26.10) 
171.6 
(3.05) 

a 

1 

21.08 

12.86 

Average 
(%) 

153.55 
(16.3.) 
201.20 
(24.97) 
110.13 
(11.18) 
185.97 
(11.77 
151.23 
(14.55) 
209.52 
(64.99) 

Note: 
*: Estimation error 
**: Lane with maximum queue length (analysis lane). Average error and standard deviation of errors are 
calculated in this lane only. 

Reasons for missing data: 
a: No queue spillback occurred. 
b: Break point C could not be determined. 

The average estimation errors in each cycle were generally lower for the 

simplified method than the shock wave method as shown in Figure 5-2(a). It was found 

that the average error per cycle was the lowest when the data collection points were 

located 140 m and 100 m from the stop line for the shock wave method and the 

simplified method, respectively. Figure 5-2(b) shows the average estimation error and 

standard error (95% confidence interval) at each distance from the stop line. 
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FIGURE 5-2 Comparison of estimation errors between shock wave and 
simplified methods (Car-truck mix) 
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Standard error is defined as follows: 

SE = t a / 2 - 7 = 
Vn 

Where, 

SE = standard error; 

t a / 2 = critical value of t statistics at the confidence level (1-a); 

s = standard deviation; 

n = number of samples. 

It was found that average estimation error of the shock wave method gradually 

decreases as the data collection points are located further away from the stop line. This is 

partially because the number of samples is relatively lower for the location further away 

from the stop line and their variation is also smaller. On the other hand, the error of the 

simplified method is generally constant for all data collection point locations. Thus, the 

simplified method provides more reliable results regardless of distance from the stop line. 

Although the average estimation error is the lowest at 100 m from the stop line for 

the simplified method, the errors are not significantly different among 7 locations of data 

collection points at a 95% confidence interval. This indicates that the optimal location for 

queue length estimation does not exist in this case. 
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FIGURE 5-3 Relative frequencies of lane change and queue spillback at 
different data collection points (Car-truck mix) 

Figure 5-3 shows that relative frequency of lane change increases and the relative 

frequency of queue spillback decreases as the detectors are further away from the stop 

line. It appears that as detectors are closer to the stop line, estimation errors of the shock 

wave method increases. This implies that shock waves speeds can be more accurately 

estimated at the locations closer to the end of actual queue. In other words, spatial 

variations in shock waves are less likely to be captured at the locations closer to the stop 

line. 

5.3 Estimation of queue length (car only) 

To estimate the effect of trucks on queue length estimation, the hypothetical case 

with cars only at the intersection was also considered. In this case, it was assumed that 

the same number of vehicles as the existing case with car-truck mix arrives the 
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intersection. Unlike the existing case, cars were allowed to choose any lane of the 

northbound approach in the VISSIM simulation. Queue length was estimated at 6 

locations of data collection points - 40 m, 60 m, 80 m, 100 m and 120 m - using the 

shock wave method and the simplified method as shown in Table 5-6 and Table 5-7. 

However, queue length could not be estimated using Shockwave method for some cycles 

due to the same reasons described in section 5.2. 

It was found that the average estimation errors in each cycle were also generally 

lower for the simplified method than the shock wave method as shown in Figure 5-4 (a). 

It was found that the average error per cycle was the lowest when the data collection 

points were located 80 m and 40 m from the stop line for the shock wave method and the 

simplified method, respectively. On the other hand, it was found that the standard 

deviation was the lowest when the data collection points were located 60 m and 100 m 

from the stop line for the shock wave method and the simplified method, respectively. 

Figure 5-4(b) shows that average estimation error and standard error (95% 

confidence interval) for the shock wave method fluctuate as the data collection points are 

located further away from the stop line, whereas the error and standard error for the 

simplified method are almost constant for all data collection point locations. Thus, the 

simplified method also provides more reliable results regardless of data collection point 

locations and vehicle mix. Similar to the car-truck case, there was no significant 

difference in average estimation error among different data collection point locations at a 

95% confidence interval. 
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TABLE 5-6 Estimated Queue Length Using Shock Wave Method (Car Only) 

Cycle 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Actual 
queue 

length (m) 
46 

L3** 
71 
L3 
79 
L3 
86 
L3 
76 
L2 
106 
L2 
79 
L2 
78 
L2 
94 
L2 
98 
L3 
86 
L3 
92 
LI 
92 
LI 
80 
L2 
121 
L3 

Average error (%) 
Standard deviation 

(%) 

40m 

76.86 
(67.10)* 

74.18 
(4.49) 
83.71 
(5.96) 
163.27 
(89.85) 

b 

115.37 
(8.84) 
100.65 
(27.41) 
108.13 
(38.62) 
118.26 
(25.8) 
143.58 
(46.51) 
122.83 
(42.83) 

b 

b 

124.85 
(56.06) 
279.75 

(131.20) 
45.39 

37.23 

60m 

a 

c 

84.86 
(7.42) 
105.35 
(22.50) 
67.81 

(10.76) 
128.95 
(21.65) 
68.88 

(12.80) 
87.54 

(12.23) 
89.05 
(5.25) 
118.37 
(20.79) 
102.86 
(19.60) 
130.37 
(41.71) 
111.18 
(20.84) 
86.69 
(8.36) 
160.07 
(32.29) 
18.16 

10.4 

80m 

a 

a 

c 

c 

a 

b 

84.30 
(6.71) 
87.98 

(12.79) 
105.85 
(12.61) 
96.38 
(1.64) 
87.97 
(2.29) 
138.98 
(51.07) 
91.27 
(0.79) 
87.65 
(9.57) 
153.84 
(27.14) 
13.84 

16.15 

100m 

a 

a 

a 

a 

a 

140.26 
(32.32) 

a 

a 

a 

a 

a 

a 

a 

a 

132.92 
(9.85) 
21.08 

15.88 

120m 

a 

a 

a 

a 

a 

129.18 
(21.86) 

a 

a 

a 

a 

a 

a 

a 

a 

a 

21.86 

-

Average 
error 
(%) 

76.86 
(67.10) 
74.18 
(4.49) 
84.28 
(6.69) 
134.31 
(56.17) 
67.81 

(10.76) 
128.44 
(21.16) 
84.61 

(15.64) 
94.55 

(21.21) 
104.38 
(14.55) 
119.44 
(22.98) 
104.55 
(21.57) 
134.67 
(46.39) 
101.22 
(10.81) 
99.73 

(24.66) 
181.64 
(50.12) 

Note: 
*: Estimation error 
**: Lane with maximum queue length (analysis lane). Average error and standard deviation of errors are 
calculated in this lane only. 
Reasons for missing data: 
a: No queue spillback occurred 
b: Break point C could not be determined 
c: New arrival flow was greater than or equal to queue discharge flow (qa > qm) 
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TABLE 5-7 Estimated Queue Length Using Simplified Method (Car only) 

Cycle 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Actual 
(m) 

46 
L3** 

71 
L3 
79 
L3 
86 
L3 
76 
L2 
106 
L2 
79 
L2 
78 
L2 
94 
L2 
98 
L3 
86 
L3 
92 
LI 
92 
LI 
80 
L2 
121 
L3 

Average error (%) 
Standard 

Deviation (%) 

40m 

64.7 
(40.65)* 

64.7 
(8.87) 
77.8 

(1.51) 
97.45 

(13.31) 

b 

97.45 
(8.06) 
77.8 

(1.52) 
84.35 
(8.14) 
97.45 
(3.67) 
90.9 

(7.24) 
90.9 

(5.69) 

b 

b 

77.8 
(2.75) 
123.65 
(2.19) 
8.62 

10.7 

60m 

a 

71.25 
(0.35) 
71.25 
(9.81) 
97.45 

(13.31) 
84.35 

(10.98) 
97.45 
(8.06) 
71.25 
(9.81) 
84.35 
(8.14) 
77.8 

(17.23) 
90.9 

(7.24) 
90.9 

(5.69) 
104 

(13.04) 
84.35 
(8.31) 
71.25 

(10.93) 
130.2 
(7.60) 
9.32 

3.95 

80m 

a 

a 

90.9 
(15.06) 

90.9 
(5.69) 

a 

b 

84.35 
(6.77) 
97.45 

(24.93) 
77.8 

(17.23) 
90.9 

(7.24) 
90.9 

(5.69) 
97.45 
(5.92) 
84.35 
(8.31) 
84.35 
(5.43) 
134.45 
(11.11) 
10.30 

6.29 

100m 

a 

a 

a 

a 

a 

117.1 
(9.47) 

a 

a 

a 

a 

a 

a 

a 

a 

104 
(14.04) 
11.75 

3.23 

120m 

a 

a 

a 

a 

a 

123.65 
(16.65) 

a 

a 

a 

a 

a 

a 

a 

a 

a 

16.65 

-

Average 
error 
(%) 
64.7 

(40.65) 
67.97 
(4.61) 
79.98 
(8.79) 
95.26 

(10.77) 
84.35 

(10.98) 
108.91 
(10.56) 

77.8 
(6.03) 
88.71 

(13.73) 
84.35 

(12.71) 
90.9 

(7.24) 
90.9 

(5.69) 
100.72 
(9.48) 
84.35 
(8.31) 
77.8 

(6.37) 
123.07 
(8.73) 

Note: 
*: Estimation error 
**: Lane with maximum queue length (analysis lane). Average error and standard deviation of errors are 
calculated in this lane only. 

Reasons for missing data: 
a: No queue spillback occurred 
b: Break point C could not be determined 
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It is evident from the Figure 5-2(b) and Figure 5-4(b) that the estimated error is 

significantly lower for the flow with car only than that of mixed flow of cars and trucks 

when the simplified method is used. This may be because the variation in estimated 

queue length across the lanes is higher for the car-truck mix flow than car-only flow as 

shown in the Figure 5-4. 
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FIGURE 5-5: Distribution of queue length across lanes 
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5.4 Estimation of queue length (Short queue) 

In the previous sections, queue length was estimated only when the queue spills 

over the detectors (i.e. long queue). However, the simplified method can also be applied 

to estimate queue length even when the queue does not spill over the detectors (i.e. short 

queue). As explained in Section 3.3, the number of queued vehicles is counted up to the 

effective red (= 77 sec.) and then estimated the queue length using Equation 4-6. The 

estimated queue length at 7 locations of data collection points using the simplified 

method for the mixed flow of cars and trucks is shown in Table 5-8. From the Figure 5-6 

(b), it was found that the simplified method also estimated the queue length for short 

queue at a similar level of accuracy for long queue. Again, difference in errors was not 

significant among different data collection point locations at a 95% confidence interval. 

TABLE 5-8 Estimated Queue Length Using Simplified Method (Short Queue) 

Cycle 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Actual 
(m) 

82 
L3** 
133 
L2 
109 
L2 
95 
L2 
108 
L3 
113 
L2 
105 
L2 
133 
L2 
132 
L3 
104 
L2 

40m 60m 80m 100m 

75.6 
(7.80)* 

120m 

70.96 
(13.46) 

103.95 
(4.63) 
112.7 

(18.63) 
93.05 

(13.84) 
119 

(5.53) 
101.8 
(3.04) 

99.6 
(24.54) 
112.7 
(8.36) 

140m 

67.05 
(18.25) 
138.85 
(4.39) 
103.95 
(4.63) 
119.25 
(25.52) 
103.95 
(3.95) 
112.7 
(0.26) 
119.25 
(13.57) 
121.05 
(8.98) 
86.15 

(34.73) 
127.15 
(22.25) 

160m 

51.6 
(37.07) 
108.3 

(18.57) 
110.50 
(1.37) 
130.15 
(37) 

31.95 
(70.41) 
136.7 

(20.97) 
104.95 
(.05) 

127.95 
(3.79) 
95.25 

(27.84) 
125.8 

(20.96) 

Average 
(%) 

66.30 
(19.14) 
123.57 
(11.48) 
106.13 
(3.54) 
120.7 

(27.05) 
104.51 
(29.4) 
122.8 
(8.92) 
108.66 
(5.55) 
124.5 
(6.38) 
93.66 

(29.03) 
121.88 
(17.19) 
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'ABLE 5-8 Estimated Queue Length Using Simplified Met 

Cycle 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

Actual 
(m) 

165 
L2 
107 
L2 
184 
L2 
164 
L2 
177 
LI 
148 
L2 
145 
L2 
177 
L2 
173 
L2 
114 
L2 
155 
L2 
153 
L2 
123 
L2 
121 
L2 
157 
L2 
161 
L2 
124 
L2 
185 
L3 
177 
L2 
127 
L2 

Average 
Error (%) 
Standard 

Deviation (%) 

40m 60m 80m 100m 

99.6 
(12.6) 

10.21 

3.39 

120m 

82.15 
(23.22) 

86.5 
(24.12) 

13.93 

8.37 

lod (Short 

140m 

108.38 
(1.26) 

99.6 
(12.63) 

79.95 
(35) 
135.7 

(12.14) 

112.7 
(9.11) 

134.5 
(5.90) 

13.29 

11.05 

Queue) (Continued) 

160m 

128 
(19.62) 

145.4 
(1.75) 

130.15 
(14.16) 

110.5 
(27.77) 
69.05 

(43.86) 
134.5 

(11.15) 

93.05 
(24.95) 

145.4 
(14.48) 

21.98 

17.58 

Average 
(%) 

106.17 
(14.7) 

145.4 
(1.75) 

103.96 
(15.88) 

110.5 
(27.77) 

74.5 
(39.43) 
135.1 

(11.64) 

102.87 
(17.03) 

139.95 
(10.19) 

*: Estimation error 
**: Lane with maximum queue length (analysis lane). Average error and standard deviation of errors are 
calculated in this lane only. 
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FIGURE 5-6 Comparison of estimation errors between long queue and short 
queue using simplified method 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

This study develops a method for estimating queue length at a signalized 

intersection using traffic data collected from loop detectors (data collection points) 

upstream of the stop line. The proposed method considers the variations in length of 

vehicles and queue length across lanes, since queue length is affected by longer length of 

trucks and different number of vehicles in each lane. It can estimate the queue length 

when the queue spills over detectors similar to the queue length estimation method 

developed using shock wave theory. In particular, the method simplifies the procedure of 

queue length estimation without shock wave calculation. Maximum queue length among 

lanes was estimated using this simplified method and the shock wave method at 7 

different locations of detectors (data collection points) upstream of the stop line. As a 

result of the analysis, the study found the following: 

1. The estimation errors vary at different detector locations. This is because as detectors 

are closer to the stop line, lane change occurs less frequently but queue spills over 

detectors more frequently. 

2. The estimation errors of the simplified method were generally lower than the errors 

of the shock wave method in each cycle. Although there exists a location of data 

collection point with the lowest error, the errors were not significantly different 

among different locations. 
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3. The average errors and standard errors were generally constant at all data collection 

point locations. This implies that the simplified method can estimate queue length at 

similar level of accuracy regardless of detector locations. 

4. The estimation error and standard error of the shock wave method was lower as the 

detector location is further away from the stop line. This indicates that shock wave 

speeds need to be estimated at the location closer to the end of the queue for more 

accurate estimation of queue length. However, the accuracy of the shock wave 

method can be improved by installing detectors at more distant location from the 

stop line as long as the queue spills over detectors. 

5. The simplified method can also estimate queue length even when the queue does not 

spill over detectors (i.e. short queue) at similar level of accuracy as long queue. 

Thus, the method can be applied to queue length estimation regardless of queue 

spillback. 

6. The accuracy of queue length estimation is lower for mixed flow of cars and trucks 

compared to car-only flow. This is because the variation in queue length across 

lanes is greater for mixed flow than car-only flow and potential error with 

identifying the lane with maximum queue length has greater impact on the accuracy 

for mixed flow. 

Based on the findings, it is recommended that the simplified method be applied to 

the queue length estimation at signalized intersections since the calculation is simpler and 

accuracy is more reliable at any detector location and regardless of queue spillback. 
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There are some limitations of the simplified method. The method cannot estimate 

the queue length if there is no clear distinction between queue discharge flow and new 

arrival flow similar to the shock wave method. Also, the method cannot capture the 

vehicles that pass detectors immediately before the end of the previous cycle but did not 

pass through the intersection. This phenomenon frequently occurs for the vehicles in the 

dilemma zone. This error can be reduced by starting vehicle counts a few seconds before 

the beginning of red interval. However, it is unclear how to determine this start time of 

vehicle counts in each cycle. Similarly, the method cannot be applied to the oversaturated 

conditions when not all queued vehicles are cleared by the end of green interval. Clearly, 

the length of these "residual" queues from the previous cycle should be estimated for 

more accurate estimation of queue length in the current cycle. 

In future studies, the method should be evaluated using the actual observed data 

collected from the intersection. The method should also be applied to the queue length 

estimation for left-turn and right-turn lanes to understand how different signal timing plan 

(protected or permissive) affect queue length. 

The proposed method can be applied to estimate queue length at any signalized 

intersections using second-by-second traffic data collected from upstream of the stop line. 

Although it was found that the optimal location of data collection point did not exist at 

the studied intersection, it may exist at the other intersections. Then the proposed method 

can help decision makers to determine suitable location of detectors for accurate 

estimation of queue length. 
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APPENDICES 

APPENDIX A: Sample data sheet 

Table A-1: Sample Data Sheet 

Cycle-by-cycle traffic counts; Huron Church -Tecumseh Intersection (northbound) 

Date: Friday, June 6, 2009 Time: llam.-12pm. 

Cycl 

1 R 
G 

2 R 
G 

3 R 
G 

4 R 
G 

5 R 
G 

6 R 
G 

7 R 
G 

8 R 
G 

9 R 
G 

10 R 
G 

11R 
G 

12R 
G 

13 R 
G 

14 R 
G 

15 R 
G 

16R 
G 

Total 

4 
22 

4 
23 

5 
28 

3 
20 

8 
22 

9 
23 

4 
23 

6 
33 

5 
22 

7 
26 

8 
22 

9 
30 

4 
29 

3 
26 

5 
26 

10 
24 

Total 

C 

16 
3 
21 
5 
23 
3 
19 
6 
16 
9 
21 
4 
15 
6 
29 
5 
20 
5 
22 
7 
17 
8 
25 
4 
26 
3 
24 
5 
23 
10 
21 

T 

6 
1 
2 

5 

1 
2 
6 

2 

8 

4 

2 
2 
4 
1 
5 
1 
5 

3 

2 

3 

3 

L-T Lane 

C 
1 

2 
1 
2 

1 

1 
2 
1 
2 

1 

2 

1 

2 

1 

3 
2 
2 
1 

T 

Lane 3 

C 

6 

8 

10 
1 
5 
2 
5 

5 
1 
5 

8 

4 
1 
9 
2 
6 
1 
8 
1 
10 

6 
1 
8 
1 
7 

T 

2 

1 

2 

Lane 2 

C 
1 
3 

2 

3 

8 

1 
3 
1 
1 

3 

2 

6 
1 
2 

1 
1 
3 

4 

6 
1 
1 

T 

6 
1 
2 

1 

1 
2 
3 

2 

6 

4 

2 

4 
1 
4 

5 

3 

1 

L 2 

3 

Lane 1 

C 
1 
3 
1 
6 
2 
8 

3 
3 
5 
4 
5 

5 
1 
11 
2 
6 
1 
3 
2 
5 
1 
6 
1 
8 
1 
5 

3 
4 
7 

T 

1 

1 

1 

1 

1 

R-T 
Lane 
C 
1 
4 

4 
1 
2 
1 
3 
1 
5 
1 
5 

4 
5 
7 
2 
8 
1 
3 
1 
3 
4 
10 
1 
5 
1 
9 
1 
4 
2 
5 

T 

1 

1 

2 

1 
1 

1 
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Table A-1: Sample Data Sheet (continued) 

Cycl 

17 R 
G 

18R 
G 

19 R 
G 

20 R 
G 

21 R 
G 

22 R 
G 

23 R 
G 

24 R 
G 

25 R 
G 

26 R 
G 

27 R 
G 

28 R 
G 

29 R 
G 

30 R 
G 

C = Car 

Total 

5 
19 

4 
31 
8 
15 
16 
11 
6 
19 
10 
16 
2 

29 
13 
21 
5 

26 
9 
18 
5 

29 
7 
16 
4 
22 
10 
20 

;T = Tn 

Total 

C 
5 
11 
4 
27 

8 
11 
11 
8 
5 
15 
8 
13 
2 

24 
13 
15 
4 
20 
9 
14 
5 

24 
7 
16 
4 
16 
9 
12 

ick;R 

T 

8 

4 

4 
5 
3 
1 
4 
2 
3 

5 

6 
1 
6 

4 

5 

6 
1 
8 

= Red 

L-T Lane 

C 
1 

2 
2 

1 
1 
1 

1 

1 

2 

1 

1 

2 
0 

interv 

T 

1 

1 
0 

al;G = 

Lane 3 

C 
1 
3 

11 

1 
4 
3 
5 
2 
2 
1 
9 
2 

1 
7 
1 
6 
1 
5 
1 
4 

7 

8 
= Greei 

T 

4 

5 

1 

1 

1 
l intei 

Lane 2 

C 

1 

3 

1 

2 

3 

2 

5 
2 

3 

4 
1 
3 
1 
2 
1 
1 

•val; L 

T 

7 

4 

4 
5 
3 
1 

2 
3 

5 

2 

5 

3 

3 

4 

4 
-T = L 

Lane 1 

C 
3 
4 
1 
5 

2 
7 
7 

6 
3 
3 

4 
3 
5 

5 
3 
3 
3 
9 
3 
6 
1 
5 
4 
2 

sft-turn 

T 

3 

1 

1 

2 

2 

R-T 
Lane 
C 

3 
3 
8 

5 
4 
3 

2 
5 

6 
5 
7 
2 
5 
3 
5 

6 
1 
3 
2 
2 
2 
1 

T 

1 

1 

1 

1 

R-T = Right-Turn 
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Table A-2: Sample Data Sheet 
Cycle-by-cycle traffic counts; Huron Church -Tecumseh Intersection (northbound) 

Date: Friday, June 6, 2009 Time: Time: 3:30 pm. - 4-30 pm. 

Cycle 

1 R 
G 

2 R 
G 

3 R 
G 

4 R 
G 

5 R 
G 

6 R 
G 

7 R 
G 

8 R 
G 

9 R 
G 

10 R 
G 

11 R 
G 

12R 
G 

13R 
G 

14 R 
G 

15R 
G 

16R 
G 

17R 
G 

18R 
G 

Total 

7 
21 

6 
23 
5 
18 
7 
21 
6 
22 
7 
23 
5 

23 
9 
33 
8 

27 
9 
24 
9 
22 
10 
30 
8 

21 
15 
19 
5 
24 
7 

20 
3 
19 
15 
22 

Total 

C 

17 

6 
19 
5 
15 
7 
19 
5 
19 
2 
14 
5 
17 
9 
17 
6 
21 
9 
21 
8 

20 
10 
28 
6 
16 
9 
17 
4 
21 
7 
18 
3 
10 
14 
19 

T 

4 

4 

3 

2 
1 
5 
5 
4 

3 

4 
2 
6 

3 
1 
2 

24 
2 
5 
6 
2 
1 
3 

2 

10 
1 
3 

L-T Lane 

C 
1 
1 

2 
1 
2 
1 

2 
1 

1 

2 
4 
1 

1 

1 
1 

1 

T 

Lane 3 

C 

6 

2 
6 

3 
1 
6 
1 
6 

6 
2 
7 
2 
7 
1 
7 
1 
9 
1 

10 
2 
6 
1 
7 
3 
7 
1 
8 
3 
6 
1 
3 
6 
9 

T 

1 

1 

1 

Lane 2 

C 
2 
3 

2 

1 
2 
5 

4 

1 

3 
2 
3 

1 
3 
2 
2 

6 

4 

2 

3 
2 
1 
1 
1 

2 

T 

4 

4 

3 

2 
1 
5 
5 
3 

2 

3 
2 
6 

3 

2 

3 
2 
3 
4 
2 
1 
3 

1 

3 

Lane 1 

C 
2 
4 

1 
6 
2 
4 
3 
4 
3 
2 
1 
4 

4 
2 
3 
3 
8 
3 
4 
1 
5 
3 
4 
1 
2 
2 
3 
1 
5 

2 

4 
2 
7 

T 

1 

1 

1 

1 

1 

R-T 
Lane 
C 
2 
3 

1 
5 
1 
6 
1 
4 
1 
7 
1 
3 
1 
2 
3 
4 
1 
6 
4 
5 
4 
3 
3 
7 
3 
3 
4 
5 
1 
5 
1 
8 
1 
2 
5 
1 

T 

1 

1 
1 
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Table A-2: Sample Data Sheet (Continued) 

Cycle 

19R 
G 

20 R 
G 

21 R 
G 

22 R 
G 

23 R 
G 

24 R 
G 

25 R 
G 

26 R 
G 

27 R 
G 

28 R 
G 

29 R 
G 

30 R 

G 
C = Car; 

Total 

8 
17 
7 
25 
9 
21 
15 
21 
3 

21 
11 
24 
6 
15 
8 

32 
10 
25 
3 

22 
4 
25 
6 
31 

T = True 

Total 

C 
8 
11 
7 
21 
9 
19 
15 
17 
3 
17 
11 
22 
6 
15 
8 
29 
10 
20 
3 
17 
3 

25 
5 
26 

k;R = 

T 

6 

4 

2 

4 

4 

2 

3 

5 

5 

1 
5 

= Red 

L-T Lane 

C 

1 

1 

3 

1 

3 

1 

3 

2 
1 

interv 

T 

1 

al;G = 

Lane 3 

C 
1 
4 
1 
8 

6 
2 
6 

5 

6 

6 
3 
12 
2 
9 
1 
7 
1 
9 

9 

Green 

T 

interv 

Lane 2 

C 
1 
2 
1 
4 
2 
5 
2 
4 

5 
2 
6 
1 
3 
2 
8 
2 
1 

1 
6 

7 

al; L-l 

T 

5 

4 

2 

3 

4 

1 

1 

4 

4 

5 

r = Lel 

Lane 1 

C 
4 
3 
3 
4 
2 
4 
3 
2 

3 
2 
6 
2 
3 
2 
3 
1 
8 
2 
5 
1 
5 
1 
5 

t-turn; 

T 

1 

1 

1 

1 

R-T 
Lane 
C 
2 
2 
1 
5 
4 
4 
5 
5 
2 
4 
4 
4 
2 
3 
1 
6 
2 
2 

5 

3 
2 
4 

T 

1 

1 

1 

1 

1 

R-T = Right-Turn 

85 



APPENDIX B: Effective green and effective red calculation 

A. Effective green and effective red calculation for northbound Huron Church-
Tecumseh intersection based on Mannering et al.(2009) 

Car length = 4.55 m (average); Truck length = 22 m (average) 

Width of Tecumseh Road (cross road) at the intersection = 18.29 m 

Cross road width + car width = 18.29 + 4.55 = 22.84 m 

Cross road width + truck width = 18.29 + 22 = 40.29 m 

North bound speed [50 - 70 km / hour] = [13.88 - 19.44 m / sec] =16.66m / sec (average) 

Minimum All Red interval = AR= (Cross road width + car width) / speed 

= 22.84 m / 16.66 m / sec = 1.37 sec = 1.5 sec 

Or, Maximum All Red interval AR = (Cross road width + truck width) / speed 

= 40.29 m / 16.66 m / sec = 2.42 sec = 2.5 sec 

Displayed Red = Red end - start end = 71 sec - 0 sec = 71 sec 

Displayed Green = G = Green end - Red end = 113 sec - 71 sec = 42 sec 

Yellow=Y= Start at 114 sec - end at 117 sec = 4 sec 

AR= All Red interval = 2.5 sec (estimated) = start at 118 sec - end at 120 sec 

Start-up lost time = TsL = Reaction-Perception time (1 sec) and acceleration time (1 sec) 

= 2 sec 

Clearance lost time, TcL = Last second of yellow interval (1 sec) + entire All-Red 

interval (3 sec) = 1 sec + 2.5 sec = 3.5sec 
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Effective green, g = G+Y+AR-(TsL + TcL) = (42+4+2.5) - (2+3.5) = 48.5 sec - 5.5 sec 

= 43 sec 

Effective Red =120 sec - 43 sec = 77 seconds 

They considers the typical value of the start-up lost time as around 2 seconds and the 

entire all-red interval including the last second of the yellow interval as the clearance lost 

time (Mannering et al., 2009). 

B. Effective green and effective red calculation for northbound Huron Church at 

Tecumseh intersection based on CCG method 

According to the Canadian Capacity Guide (CCG) effective green time is 1 sec 

longer than the displayed green interval for signalized intersections (Canadian Capacity 

Guide for Signalized Intersections, 2008). We can follow the CCG method for calculating 

effective green time since it should better reflect the Canadian traffic conditions. Thus if 

the green time for northbound through traffic of Huron Church Road is 42 seconds, the 

effective green time will be 43 seconds and the effective red time for this approach will 

be 77 seconds. 
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APPENDIX C: Estimation of values of Shockwave parameters 

Assuming the average speed (u) of vehicles is 40 km / hour (38 ft /sec) in saturation 

flow state (before break point C) and 60 km (53 ft /sec) in arrival state (after break point 

C) at upstream of a signalized intersection. The minimum safe time headways (IIMIN) 

between the vehicles can be computed by using the following Pipes' theory (May, 1990): 

hiviiN = 1.36 + Ln /u 

where, Ln = length of vehicle and u = speed of vehicle 

Case 1: Car 100% + truck 0% 

Assuming car length = 20 ft. 

Headway time in saturation flow state, h = 1.36 + 20 / 38 = 1.88 sec 

Flow in saturation state, qm = 3600 /1.88 = 1914 vehicles / hour 

Density in saturation state, km = flow / speed = [1914v/hr] / [40 km / hr] = 48 vehicle / 
km 

Assuming that the headway time in arrival state is longer than that of saturation state (For 
example, 1.25 times longer). 

Therefore, headway time in arrival state is 1.88 x 1.25 = 2.35 sec. 

Flow in arrival state, qa = 3600 / 2.35 = 1532 vehicles / hour 

Density in arrival state, ka = flow / speed = [1532 v / hr] / [60 km / hr] = 26 vehicle / km 

Assume effective length = length of vehicle + gap between the two consecutive vehicles 
in queue 

= 20 ft+10 ft = 30 ft = 9 m 

Jam density, kj = 1000 m / 9 m = 111 vehicles / km 

Queuing Shockwave, vi = (0 -q a) / ( kj - ka) = (0 -1532) / (111 - 26) = -1532/85 

= -18.02 km/hour =-5.0 m/sec 
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Discharge Shockwave, v2 = (qm - 0) / km - kj) = (1914 - 0) / (48-111) = 1914 / - 63 

= - 30.38 km/hour = - 8.4 m /sec 

Departure Shockwave, v3 = (qm - qa) / (km - ka) = (1914 - 1532) / (48 - 26) = 382 / 22 

= + 17.37 km/hour v3= + 4.8 m/sec 

Case 2: Car 50% and truck 50% 

Assuming car length = 20 ft 

Assuming truck length = 72ft. 

Headway time in saturation flow state, h = 50% (1.36 + 20 / 38) + 50% (1.36 + 72 / 38) 

= 50% x 1.88 + 50% x 3.25 = 2.565 sec 

Headway time in saturation flow state, h = = 2.565 sec 

Flow in saturation state, qm = 3600 / 2.565 = 1404 vehicles / hour 

Density in saturation state, km = flow / speed = [1404 v / hr] / [40 km / hr] = 35 vehicle / 
km 

Assuming that the headway time in arrival state is longer than that of saturation state (For 
example, 1.25 times longer). 

Therefore, headway time in arrival state is 2.565 x 1.25 = 3.2 sec. 

Flow in arrival state, qa = 3600 / 3.2 = 1125 vehicles / hour 

Density in arrival state, ka = flow / speed = [1125 v / hr] / [60 km / hr] = 18.75 vehicle / 
km 

Assume effective length = length of vehicle + gap between the two consecutive vehicles 
in queue 

= 50% x 30 ft +50% x 90 ft = 60 ft = 18.29 m 

Jam density, kj = 1000 m /18.29 m = 56 vehicles / km 

Queuing Shockwave, vi = (0 -q a) / ( kj - ka) = (0 -1125) / (56 - 18.75) = - 1125 / 37.25 

= -30.20 km / hour =-8.38 m/sec 

Discharge Shockwave, v2 = (qm - 0) / km - kj) = (1404 - 0) / (35 - 56) = 1404 / - 21 
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= -66.85 km / hour =-18.57 m/sec 

Departure Shockwave, v3 = (qm - qa) / (km - ka) = (1404 - 1125) / (35 - 18.75) = 279 / 
16.25 

= + 17.1 km/hour = + 4.76 m/sec 

Case 3: Car 0% and truck 100% 

Assuming truck length = 72ft. 

Headway time in saturation flow state, h = 1.36 + 72 / 38 = 3.25 sec 

Flow in saturation state, qm = 3600 /3.25 = 1107 vehicles / hour 

Density in saturation state, km = flow / speed = [1107 v / hr] / [40 km / hr] = 28 vehicle / 
km 

Assuming that the headway time in arrival state is longer than that of saturation state (For 
example, 1.25 times longer). 

Therefore, headway time in arrival state is 3.25 x 1.25 = 4.06 sec. 

Flow in arrival state, qa = 3600 / 4.06 = 887 vehicles / hour 

Density in arrival state, ka = flow / speed = [887 v / hr] / [60 km / hr] = 15 vehicle / km 

Assume effective length = length of vehicle + gap between the two consecutive vehicles 
in queue 

= 72 ft+18 ft = 90 ft = 27 m 

Jam density, kj = 1000 m / 27 m = 37 vehicles / km 

Queuing Shockwave, vi = (0 -q a) / (kj - ka) = (0 -887) / (37 - 15) = - 887 / 22 

= -40.31 km/hour =-11.2 m/sec 

Discharge Shockwave, v2 = (qm - 0) / (km - kj) = (1107 - 0) / (28-37) = 1107 / - 9 

= -123 km/hour = - 34.2 m /sec 

Departure Shockwave, v3 = (qm - qa) / (km - ka) = (1107 - 887) / (28 - 15) = 220 / 13 

= + 16.92 km/hour v3= + 4.70 m/sec 
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APPENDIX D: Fundamental diagrams 

FIGURE D-1: Fundamental Diagram 
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Case 3 (Car 80 % +truck 20 %) 
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Case 5 (Car60%+truck40%) 
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Case 9 
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APPENDIX E: Second -by-second VISSIM Simulated data 

TABLE E-1: Second -by-second VISSIM Simulated Data (Lane 1 at 60 m Upstream of Stop 
Line) 

Time (sec) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

Car 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
1 
0 
0 
0 
0 
0 
0 
1 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 

Truck 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Occupancy (%) 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

26.8 
0 

31.8 

0 
0 
0 
0 
0 
0 

36.1 

0 
44.6 

18.9 

0 
0 
0 
0 
0 
0 
0 
0 

42.7 

0 

Break Points 
No queue 



TABLE E-1: Second -by-second VISSIM Simulated Data (Lane 1 at 60 m Upstream of Stop 
Line) (Continued) 

Time (sec) 

38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 

Car 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Truck 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Occupancy (%) 

0 
0 
0 
0 

1.1 
0 
0 
0 
0 
0 
0 

18.7 

48.1 

0 
0 
0 
0 
0 
0 
0 
0 
5.5 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Break Points 
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TABLE E-1: Second -by-second VISSIM Simulated Data (Lane 1 at 60 m Upstream 
of Stop Line) (Continued) 

Time (sec) 
78 
79 
80 
81 
82 
83 
84 
85 
86 
77 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 

Car 
0 
0 
0 
0 
0 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 

Truck 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Occupancy (%) 

0 
0 
0 
0 
0 
0 

88.3 
15.4 

60.5 

0 
35.5 

19.5 
50.7 

0 
48.1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

20.5 

6.6 
0 
0 
0 
0 

26.1 

0 
0 
0 
0 
0 
0 
0 
0 

Break Points 

Note: No queue formed in LI. 
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TABLE E-2: Second -by-second VISSIM Simulated Data (Lane 2 at 60 m Upstream 
of Stop Line) 

Time (sec) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

Car 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Truck 

0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 

Speed 

0 
42.4 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

52.8 

0 
0 
49 
0 
0 
0 
0 
0 
27 
0 
0 
0 
0 
0 
0 
0 
0 

Occupancy 
(%) 

0 
50.4 

100 
58 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

30.8 
0 
0 

16.2 
18 
0 
0 
0 
0 

66.3 
100 
100 
90.8 

0 
0 
0 
0 
0 

Break Point 

A 
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TABLE E-2: Second -by-second VISSIM Simulated Data (Lane 2 at 60 m Upstream 
of Stop Line) (Continued) 

Time (sec) 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 

Car 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Truck 

1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Speed 

12 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Occupancy 

(%) 
2.2 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
63.7 

0 

Break Point 

101 



TABLE E-2: Second -by-second VISSIM Simulated Data (Lane 2 at 60 m Upstream 
of Stop Line) (Continued) 

Time (sec) 

82 
83 
84 
85 
86 
77 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 

Car 

0 
0 
0 
0 
1 
0 
0 
1 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 

Truck 

1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Speed 

27.1 
0 
0 
0 

39.4 

0 
0 

42.1 

0 
44 
0 
0 
0 
0 

52.5 

0 
0 
0 
0 
0 

50.7 

0 
0 
0 
0 

61.9 

0 
0 
0 
0 
0 
0 
0 

59.5 

0 
0 
0 
0 
0 

Occupancy 
(%) 

34 
100 
100 
20.8 

19.1 
22.2 

0 
29.9 
7.8 
15.2 
21 
0 
0 
0 

31.4 

0 
0 
0 
0 
0 

31.7 
0 
0 
0 
0 

26.4 

0 
0 
0 
0 
0 
0 
0 

18.7 
8.9 
0 
0 
0 
0 

Break Point 

B 

C 

Since there are 5 cars and 4 trucks from the beginning of red interval to Break Point C 
(0-91 seconds) queue length in L2 = 1.2 + 5 (4.55) + 4 (22) + (9-1) (2) = 127.95 m. 
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TABLE E-3: Second -by-second VISSIM Simulated Data (Lane 3 at 60 m Upstream 
of Stop Line) 

Time (sec) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

Car 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
1 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 

Truck 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Occupancy 

(%) 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

26.9 

1.1 
28.9 
0 
0 
0.3 
45.1 

0 
0 
0 

55.8 
0 
0 

67.7 
0 
0 
0 
0 
0 
0 
0 
7.2 
42.3 

0 
0 
0 
3 

57.3 

Break Point 

A 
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TABLE E-3: Second -by-second VISSIM Simulated Data (Lane 3 at 60 m Upstream 
of Stop Line) (Continued) 

Time (sec) 

42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 

Car 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

Truck 

0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Occupancy 
(%) 

0 
0 
0 
0 
0 
0 

68.6 

100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
56.9 
0 

53.2 

Break Point 

B 

104 



TABLE E-3: Second -by-second VISSIM Simulated Data (Lane 3 at 60 m Upstream 
of Stop Line) (Continued) 

Time (sec) 

85 
86 
77 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 

Car 

0 
1 
1 
0 
1 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Truck 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Occupancy 
(%) 

0 
49.8 
9.9 
33.9 

20.9 
23.2 

0 
0 
14 
23.3 

0 
0 
0 
0 

31.5 

0 
0 
0 
0 
0 
0 
0 

27.7 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Break Point 

C 

Since there are 11 cars and 1 trucks from the beginning of red interval to Break Point C 

(0-89 seconds) queue length in L3 = 1.2 + 11 (4.55) + 1 (22) + (12-1) (2) = 95.25 m. 

Comparing the queue formed in the above three lanes we can conclude that maximum 

queue length occurred in L2. 
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