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Abstract

Cryptography can be divided into two fundamentally different classes: symmetric-

key and public-key. Compared with symmetric-key cryptography, where the com-

plexity of the security system relies on a single key between receiver and sender,

public-key cryptographic system using two separate but mathematically related

keys. Finite field multiplication is a key operation used in all cryptographic sys-

tems relied on finite field arithmetic as it not only is computationally complex but

also one of the most frequently used finite field operations.

Karatsuba algorithm and its generalization are most often used to construct mul-

tiplication architectures with significantly improved in these decades. However,

one of its optimized architecture called Overlap-free Karatsuba algorithm has been

mention by fewer people and even its implementation on FPGA has not been men-

tioned by anyone. After completion of a detailed study of this specific algorithm,

this thesis has proposed implementation of modified Overlap-free Karatsuba algo-

rithm on Xilinx Spartan-605. Applied this algorithm and its specific architecture,

reduced gates or shorten critical path will be achieved for the given value of n.

Optimized multiplication architecture, generated from proposed modified Overlap-

free Karatsuba algorithm and applied on FPGA board,over NIST recommended

fields (n = 128), are presented and analysed in detail. Compared with existing

works with sub-quadratic space and time complexities, the proposed modified al-

gorithm is highly recommended module and have improved on both space and

time complexities. At last, generalization of proposed modified algorithm is suit-

able for much larger size of finite fields, and improvements of FPGA itself have

been discussed.
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Chapter 1

Introduction

With the rapid development of computer network technology, the application of

the Internet has become more extensive. The openness of the Internet brings

unprecedented amount of information and and the freedom of the Internet has

also created the possibility of private information and data destroyed or invaded.

The security of network information has become increasingly important and has

been used in various fields of society. In order to protect the data being transmit-

ted over the high risk Internet, cryptographic services have been widely used in

communication, government, military and many other fields.

1.1 Motivation

Cryptography can be divided into two fundamentally different categories: sym-

metric keys and public key ,which also known as asymmetric key. In symmetric

key encryption, both sides of the communication, sender and receiver, use the

same key for both encryption and decryption process. Data Encryption Standard

(DES), RC5 and Advanced Encryption Standard (AES) can be called the most

famous symmetric key arithmetic. The security of this mechanism determines

1



Introduction 2

the symmetric key, which only known for senders and receivers. However, it is

difficult for the two parties to exchange keys without compromising the security

of the keys themselves, which in return will hazard data confidentiality and data

authentication. The second question is assumed that symmetric cryptography is

called a key management problem. Supposing that a communication medium is

shared between n users, and each pair of users needs a different key to establish

their own secure communication. So n(n − 1)/2 different keys will be provided,

even in medium-sized networks, it is hard to manage.

Public key cryptography is a solution to the problem of key distribution. Instead

of using a single key, the public key encryption system uses two separate but

mathematically related keys: a public key and a private key. The public key is

not confidential and can be freely distributed in the user’s network and used for

encryption purposes. On the other hand, the private key cannot be shared by

both parties, but is held by only one party and is used during the decryption

process only. The pair of public keys and their corresponding private keys must

be used together and they have a mutual relationship so that the key pair can be

used together to obtain the same result as using a symmetric key twice. It should

also be noted that public key cryptography has an advantage over symmetric key

cryptography because it provides additional security services such as key exchange,

digital signatures, authentication, and message integrity verification.

So far, based on the concept of public key cryptography, three different types

of cryptosystems have been proposed, RSA [1], ELGamal [2], and Elliptic Curve

Cryptography (ECC) [3, 4]. The security of each of these cryptosystems depends

on the a difficult mathematical problem, which called the one-way function. ECC

is much more security for the following reasons:

• The ECC keys are obviously smaller than those of RSA and ELGamal for

any given level of security.
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• The ratio of key sizes of ECC is much more higher than the other two public

key schemes, which means that the higher security is required, the more

efficient ECC becomes.

• The key length of ECC are twice as long as those of symmetric algorithms

for the same level of security, which illustrates the higher comutational com-

plexity of the public key schemes.

In addition, in such a fast developing digital society, the speed of computing

and network transmission continues to increase, and public key cryptography has

played an increasingly important role. As more and more business activities begin

to penetrate into the Internet,and the potential threat posed by quantum com-

puters, this situation will expand to reliable security services,which cover people’s

social lives. However, the intensive computing required in public key cryptosys-

tems is a major problem faced by the promotion of such systems. Therefore,

in recent years, extensive algorithms and effective implementation of public key

cryptography have been extensively researched.

1.2 Objective

Two common used classed of finite fields in cyptography are prime fields of degree

one GF (p) and binary extension fields of degree greater than one GF (2n). The

latter is a subclass of a more generalized group of finite fields known as finite

prime extension fields GF (pn), where the parameter p is equal to two and the

extension degree is greater than one. Binary fields are more attractive for high

speed cryptosystem applications. Because the basic field operations addition and

multiplication in the underlying field F2 can be readily realized by a bit-wise XOR

and a bit-wise AND operations, respectively.



Introduction 4

Different architectures for finite field multipliers can generally be divided into bit-

serial, bit-parallel and digit-level architectures. Given a binary extension field of

degree n, bit-serial multipliers need n clock cycles to finish a full multiplication

operation. Although they need the maximun number of clock cycles for computing

the product coordinates, the provide the optimal area utilization and power con-

sumption. On the other hand, bit-parallel multipliers utilize the highest level of

parallelism, multiplication operation is performed fast and only need one clock cy-

cle. Digit-level architecture, finally, fill the gap between bit-serial and bit-parallel

design styles to keep a balance between space and delay complexities.

Since the extension of the Karatsuba algorithm (a ”divide and conquer” technique

for efficient integer multiplication) to finite field multiplication with quadratic

space complexity, many improvements have been made to this method over the

past few years. Specifically, these improvements can be summarized into two sub-

areas: one attempts to improve the Karatsuba architecture through an optimized

re-factoring process, and another attempt focuses on summarizing the Karatsuba

formula by reducing the number of sub-multiplications, which will be introduced

in Chapter 3 in detail.

To satisfy both speed and high-precision computation requirements, reconfigurable

hardware is increasingly being considered. In field programmable gate arrays

(FPGA), a large amount of flexible hardware resources are available for paral-

leling algorithms, with the further advantage of flexibility in the data path. Fur-

ther more, implementing every polynomial algorithm with a dedicated custom

circuit would obviously incur high development and engineering costs. While the

cost of FPGA development is much more lower, and this remains true even when

amortized for moderate manufacturing volumes. Although many designs with KA

polynomial evaluation have been implemented in FPGA, recent articles have not

focus on Overlap-free KA algorithm. In this thesis, this method will be thoroughly

analysed and will be implemented on FPGA board in Chapter 4.
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1.3 Organization of Thesis

• Chapter 2 In this chapter, mathematics fundamental of abstract algebra

are first introduced. Binary finite extension fields has been illustrated as a

special class of finite field. In the last of this chapter, arithmetic operations

in GF(2n) and architecture of multipliers have been discussed in detail with

their different types.

• Chapter 3 In this chapter contains two parts, including four different kinds of

multiplication algorithms and their comparison based on NIST recommended

GF(2n) fields. We briefly introduce original Karatsuba, Overlap-free Karat-

suba, Reconstruction Karatsuba and Improved Reconstruction by Bernstein

multiplication algorithms. We also arrange their recursive function describ-

ing each method’s space and time complexity. Finally, we analyse the result

of this four algorithms applied in different field and we also achieve the main

algorithm which can efficiently apply into the GF(2128).

• Chapter 4 In this chapter, we introduce the fundamental technology infor-

mation, including FPGA, Verilog HDL and ISE software. Then we analyse

the code corresponding to algorithm mentioned in chapter 3 clearly. At last

of this chapter, we apply our proposed solution to make a comparison with

published articles and achieve a considerable result.

• Chapter 5 In this chapter, it is a summary of our proposed contribution and

future works on how to speed up FPGA its own reading and writing speed

are suggested.



Chapter 2

Preliminary

In this chapter, mathematics fundamental of abstract algebra including group,

rings and field are first introduced. Binary finite extension fields has been illus-

trated as a special class of finite field in this thesis. In the last of this chapter,

arithmetic operations in GF(2n) and architecture of multipliers have been dis-

cussed in detail with their different types.

2.1 Mathematics Fundamental

In this section, three briefly definitions about group, rings and fields will be illus-

trated.

Definition 1: A group is a set G together with a binary operation (?) on G, such

that the following three properties [5]:

• (?)is associative, that is, for any a,b,c∈ G

a ? (b ? c) = (a ? b) ? c

6
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• There is an identity (or unity) element in G such that for all a∈ G

a ? e = e ? a = a

• For each a∈ G, there exists an inverse element a−1 ∈ G such that

a ? a−1 = a−1 ? a = e

• There is an identity (or unity) element e in G such that for all a∈ G

a ? e = e ? a = a

• If the group also satisfies for all a,b∈ G

a ? b = b ? a

then the group is called abelian (or commutative).

Definition 2: A ring is a set R, together with two binary operations denoted by

(+) and (·), such that [5]:

• R is an abelian group with respect to (+)

• (·) is associative, for all a,b,c∈ R

(a · b) · c = a · (b · c)

• The distribute laws hold

a · (b + c) = a · b + a · c

(b + c) · a = b · a + c · a
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Definition 3: A field, is a set F, together with two binary operations denoted by

(+) and (·), such that [5]:

• F, is a ring in tern of (·) and (+) operation

• For any elements a,b∈ F, (·) is commutative

a · b = b · a

• Nonzero elements of F respect to (·)operation form an abelian group

2.2 Finite Field

Finite field,is also called Galois field, is a set of finite number of elements, where

addition and multiplication are defined.

• The finite field is an addictive group under the addition operation.

• All the non-zero elements in a finite field form a multiplicative group under

multiplication operation.

• When we say the order of a field element, it means that the order of the

element in the multiplicative group.

It is commonly denoted finite field as GF (p) or Fp, where p is the number of

elements in this field. The characteristic x of a finite field GF (p) is defiend as the

least positive integer x and ax = 0 for any element a ∈ GF (p).

There are two different kinds of finite field as below [5]:

• Prime fields, GF (p), is a set of {0, 1, 2, ..., p − 1}, where p is a prime num-

ber. InGF (p) , the binary operator(·) refers to mod-p multiplication and
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(+) refers to mod-p addition.

• Binary extended finite field, GF (pn) is a set of polynomials of degree up

to n − 1 with coefficients according to GF (p). In GF (p), the variety of

those polynomials is a root of irreducible polynomial f(x) =
∑n

i=0 fix
i, for

f i∈GF (p). It is noted that p is a prime number and n is a positive integer,

which is greater than 1. In GF (pn), the binary operator(·) refers to mod-f(x)

and mod-p multiplication and (+) refers to mod-p addition.

The irreducible polynomial in finite field can not be factorized into a factor, which

degree between 1 and n − 1 in the same field, just like a prime number. In this

thesis, the irreducible polynomial is fixed over the basic field GF (2128) and will be

discussed in detail in the following sections.

2.3 Arithmetic Operation in Finite Field GF (2n)

Binary extension field, denoted as GF (2n), is a special class of finite extension

fields with element 2. The arithmetic in GF (2n) is very suitable for hardware

implementation. This is mostly because the ground field operations, addition and

multiplication in GF (2), can be directly implemented with the AND and XOR

logic gate, respectively. In fact, the class of binary extension finite fields GF (2n)

has roughly the most popular applications, which is the important reason. Before

we discuss the finite field arithmetic, we can talk about the complex numbers and

their arithmetic operation.
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2.3.1 Arithmetic operation in complex number field

The complex number field C, is denoted as

C = {a + bi|a, b ∈ R, i =
√
−1} = {a + bi|a, b ∈ R, i2 + 1 = 0},

where the set of real numbers is referred to R. Let A = a0 + a1i, B = b0 + b1i, and

a0, a1, b0, b1 ∈ R, then addition and multiplication operations are as follow:

A + B = (a0 + b0) + (a1 + b1)i

A× B = (a0 + a1i)× (b0 + b1i)mod(i2 + 1)

= (a0b0 − a1b1) + (a1b0 + a0b1)i

Because the equation i2 + 1 = 0 does not have a root in real number field, so it is

called the irreducible polynomial in real number field.

The procedure of the complex number in field C and its arithmetic in the real

number field R can be summarized as below:

1. Find a quadratic equation i2 + 1 = 0 that has no root in R, which we also

called irreducible polynomial in real number field R.

2. Use the root of equation i2 + 1 = 0 be i and coin the expression a+ bi, where

a,b ∈ R. And get the representation of the complex field numbers C.

3. Then get arithmetic operation in C.

2.3.2 Arithmetic operation in Finite Field GF (2n)

Similar to the case of complex number C and its arithmetic, we can easily derive

GF(2n) and its arithmetic as follows:
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1. Elements in this fields can be generated with an irreducible polynomial f (x)

of degree n. If x is the root of f (x), a polynomial base can be represented as

{1, x, x2, ..., xn−1}

2. Find an irreducible degree-n polynomial f (x) over GF (2n).

3. Use x as the root of F(x) = 0. Then GF(2n) = {an−1x
n−1 +an−2x

n−2 + . . .+

a0|ai ∈ GF(2), f(x) = 0}

4. Arithmetic operations in GF (2n). For A,B ∈GF (2n), and A =
∑n−1

i=0 aix
i,B =∑n−1

i=0 bix
i, then we get

A + B = (
n−1∑
i=0

(a1 + bi)x
i)mod2

A× B = (
n−1∑
i=0

aix
i ×

n−1∑
i=0

bix
i)mod2modf(x)

Note that the product of the multiplication operation must be modular re-

duced to no higher than n− 1.

2.4 Multiplication Architectures

Time and space complexities are applied to measure the efficiency of GF (2n)

multipliers. In GF (2), polynomial addition can be implemented by a 2-input XOR

gate and multiplication can be used by a 2-input AND gate. According to this

rule, the space complexity can be represented by the total number of AND gates

and XOR gates, and the time complexity can be measured by the delays occur in

one AND gate and XOR gate. So we use S⊕ and S⊗ to denote the number of

XOR and AND gates, respectively. We also use TA and TX to represent the delay

of AND and XOR gates, respectively.
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In this section, we illustrate two structures of polynomial multiplication in GF (2n),

the bit-parallel multiplication and bit-serial multiplication, which usually give a

lower time and space complexity, respectively.

2.4.1 Bit-parallel multiplication

Bit-parallel multipliers are recommended to apply with a requirement of large

performances because it has a larger output and generate result within one clock

cycle.

The classical method to calculate polynomial multipliers is a typical parallel struc-

ture. In this method, all inputs are entered and calculated in parallel. Although

the classic method is a fast structure for GF (2n) multipliers, its application is

limited for its large space complexity. While recently, this method combine with

other methods such as non-recursive KA [6], Chinese reminder theorem [7], and

Mastrovito matrix [8]. And then the new combination multiplication a highly

proposed in the literature to optimize the construct quadratic space complexity

multipliers, because it gives a same asymptotic time complexity with a obvious

decrease in space gate cost.

2.4.2 Bit-serial multiplication

Compare with the feature to bit-parallel, bit-serial multiplication has a lower space

cost, which makes it competitive in application in constrained resources. Based

on the input and output sequences, bit-parallel multiplication can be divided into

four types, as follows [9]:

• BL-SISO: bit-level serial input and serial output

• BL-SIPO: bit-level serial input and parallel output
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• BL-PISO: bit-level parallel input and serial output

• BL-PIPO: bit-level parallel input and parallel output

In this thesis, we focus on the hardware implementation of bit-parallel binary

polynomial multiplication and analyse the result.



Chapter 3

An Overview of Bit-Parallel

Multiplication for GF (2n) and

Comparison

In this chapter contains two parts, including four different kinds of multiplica-

tion algorithms and their comparison based on NIST recommended GF(2n) fields.

First, we briefly introduce original Karatsuba, Overlap-free Karatsuba, Recon-

struction Karatsuba and Improved Reconstruction by Bernstein multiplication al-

gorithms. We also arrange their recursive function describing each method’s space

and time complexity. After that, we analyse the result of this four algorithms ap-

plied in different field and we also achieve the main algorithm which can efficiently

apply into the GF(2128).

3.1 Karatsuba Algorithm

In early 1960, the first sub-quadratic integer multiplication algorithm was invented

by A.A.Karatsuba for fast multiplication of multi-place numbers [10]. After that,

14
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Karatsuba-Ofman’s algorithm (KOA), published in 1962 [11], was a new integer

multiplication method which broke the quadratic complexity barrier in positional

number systems. Due to its simplicity, the current improved works mainly focus

on using more efficient polynomial multiplication algorithms or structures based

on Karatsuba formulas.

Let A =
∑n−1

i=0 aix
i and B =

∑n−1
i=0 bix

i be two GF(2n) elements. To explain the

KOA easily, we will assume that n = 2m = 2k(k > 1) in the following [12].

First, the previous KOA implementations split polynomials A and B into the ”most

significant half” and the ”least significant half” as follows:

A =
n−1∑
i=0

aix
i = xm

m−1∑
i=0

am+ix
i +

m−1∑
i=0

a1x
i = xmAH + AL

B =
n−1∑
i=0

bix
i = xm

m−1∑
i=0

bm+ix
i +

m−1∑
i=0

b1x
i = xmBH + BL

where AH =
∑m−1

i=0 am+ix
i, AL =

∑m−1
i=0 aix

i,BH and BL are defined similarly.

Then the product AB is computed recursively using

AB = AHBHx
2m + {[(AH + AL)(BH + BL)]− [AHBH + ALBL]}xm + ALBL (3.1)

we note that in GF(2) ”-” is the same as ”+”, where means that a 2-input XOR

gate is needed. For VLSI implementation of (3.1), the expression in the two square

brackets are computed confluently, and one XOR gate delay 1Tx is required. As we

mentioned, ”-” operation is also performed at a cost of 1Tx. Therefore, two XOR

gate delays 2Tx are needed to calculate the three part products AHBH , ALBL and

(AH + AL)(BH + BL).

In order to calculate exact complexities of the above binary polynomial KOA, we

introduce some symbols [13]. Let S and T represent for ”Space” and ”Delay”,

respectively. And we use S⊗(n) and S⊕(n) to denote the numbers of AND and
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XOR gates, T⊗(n) and T⊕(n) to denote the delays produced by AND and XOR

gates, respectively.

As we mentioned above, the XOR gate delay T⊕(n) = T⊕(n
2
) + 3. It is easy to get

that 2TX is required to compute the product of two polynomials of degree 1. Thus,

we can establish the recurrence relation of the XOR gate delay, and similarly, we

can obtain the recurrence relations of S⊗(n), S⊕(n) and T⊗(n). These recurrence

relations illustrate the space and time complexities of the KOA [14].

S⊗(2) = 3

S⊗(n) = 3S⊗(n
2
)

T⊗(2) = 1

T⊗(n) = T⊗(n
2
)S⊕(2) = 4

S⊕(n) = 3S⊕(n
2
) + 4n− 4

T⊕(2) = 2

T⊕(n) = T⊕(n
2
) + 3

After solving the above recurrence relations using the formula derived in the new

method [13], we obtain the following complexity results for the binary polynomial

KOA [17], [14].



S⊕(n) = 6nlog2 3

S⊗(n) = nlog2 3

T⊕(n) = 3 log2 n− 1

T⊗(n) = 1

(3.2)

3.2 Overlap-free Karatsuba-Ofman Algorithm

In 2010, H.Fan have proposed a new method to implement the polynomial KOA

for hardware multipliers [12]. It estimates overlaps in the previous designs so the

XOR gate delay of proposed is obviously better than the original KOA. In addition
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to the theoretical significance, this new method is also suitable for practical VLSI

applications such as designs of hybrid GF(2n) multipliers.

From the equation (3.1), we can get that the partial polynomials AHBHx
2m,

{[(AH + AL)(BH + BL)] − [AHBH + ALBL]}xm and ALBL are XORed by adding

coefficients of common exponents of x together. The VLSI module used to perform

this XOR operation is called overlap module [14]. In order to explain overlaps of

common exponents of x clearly, we present the following table, which shows ranges

of x ’s exponents in these three polynomials. From the figure, it is easy to know

Figure 3.1: Ranges of x ’s exponents of equation (3.1)

that overlaps occur only when n > 4 or m > 2, and there is no overlap when n = 2

or m = 1.

Because of the overlaps, one more XOR gate delay is needed in the overlap module

to compute the summation of the three polynomials AHBHx
2m, {[(AH +AL)(BH +

BL)]− [AHBH + ALBL]}xm and ALBL. According to this, a total of 3 XOR gates

delays are required in (3.1) besides the cost of the recursive computation of the

three partial products.

Therefore, a new method focus on overlaps has been proposed. Instead of splitting

two input operands int the ”most significant half” and the ”least significant half”,

this new method split operands according to the parity of x ’s exponents. So we
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can rewrite A and B as follows [12]:

A =
n−1∑
i=0

aix
i =

m−1∑
i=0

a2ix
2i +

m−1∑
i=0

a2i+1x
2i+1 =

m−1∑
i=0

a2ix
2i + x

m−1∑
i=0

a2o+1x
2i

B =
n−1∑
i=0

bix
i =

m−1∑
i=0

b2ix
2i +

m−1∑
i=0

b2i+1x
2i+1 =

m−1∑
i=0

b2ix
2i + x

m−1∑
i=0

b2o+1x
2i

Now let y = x2, then operands A and B can be rewritten as

A = Ae(y) + xAo(y)

B = Be(y) + xBo(y),

where Ae(y) =
∑m−1

i=0 a2iy
i, Ao(y) =

∑m−1
i=0 a2i+1y

i, and Be(y) and Bo(y) are de-

fined similarly. BecauseAe(y), Ao(y), Be(y) and Bo(y) are polynomials in degree of

y, which is less than m, multiplication operations among them may also be com-

puted recursively. Then we can get the product of A, B as the KOA-like formula

as follows

AB = (Ae(y) + xAo(y))(Be(y) + xBo(y))

= {Ae(y)Be(y) + x2Ao(y)Bo(y)}+ x{Ae(y)Bo(y) + Ao(y)Be(y)}

= {Ae(y)Be(y) + yAo(y)Bo(y)}+

x{(Ae(y) + Ao(y))(Be(y) + Bo(y))− (Ae(y)Be(y) + Ao(y)Bo(y))}

(3.3)

Obviously, function (3.3) also includes three partial products and in hardware im-

plementation multiplying a polynomial by x or y = x2 is equivalent to shifting

its coefficients left and no extra gate is required. It is clearly to check that the

expansion of Ae(y)Be(y) + yAo(y)Bo(y) contains with even exponents x, and the

expansion of x{(Ae(y) + Ao(y))(Be(y) + Bo(y))− (Ae(y)Be(y) + Ao(y)Bo(y)) con-

tains with odd exponents x. Therefore, no overlap exists when computing their

summation, and no gate is needed either.
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Consequently, the recurrence relations describing the time and space complexities

can be cited as follows:S⊗(2) = 3

S⊗(n) = 3S⊗(n
2
)

T⊗(2) = 1

T⊗(n) = T⊗(n
2
)S⊕(2) = 4

S⊕(n) = 3S⊕(n
2
) + 4n− 4

T⊕(2) = 2

T⊕(n) = T⊕(n
2
) + 2

Then we can get the solutions as below:



S⊕(n) = 6nlog2 3 − 8n + 2

S⊗(n) = nlog2 3

T⊕(n) = 2 log2 n

T⊗(n) = 1

(3.4)

Compared with formula (3.2), the overlap-free method reduces the XOR gate delay

T⊕(n) from 3 log2 n− 1 to 2 log2 n, which nearly equal to 33% for n = 2t (t > 1).

3.3 Reconstructed Karatsuba Algorithm

In 2009, Bernstein [15], Zhou and Michalik [16] has optimize the reconstruction

part of the Karatsuba formula by factorizing some constant common terms. Bern-

stein also applied this optimization to the reconstruction of Karatsuba formula

and then to two recursion of Karatsuba resulting in 5.46nlog2(n) + S⊕ instead of

6nlog2(n)+S⊕ for the original Karatsuba formula and a delay of 2.5 log2(n)T⊕+T⊗.

Let consider two degree n−1 polynomials A(x) =
∑n−1

i=0 aix
i and B(x) =

∑n−1
i=0 bix

i

with n = 2k. The method of Karatsuba for polynomial multiplication consists of
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expressing the product C = A×B in terms of three multiplications of polynomial

of half size. The detailed computations are given below:

• Component polynomial formation(CPF). The CPF consists of splitting A in

two halves

A(x) =

n
2
−1∑

i=0

aix
i

︸ ︷︷ ︸
AL

+x
n
2

n
2
−1∑

i=0

ai+n
2
xi

︸ ︷︷ ︸
AH

and then generate three polynomials of half size A
′

0 = AL, A
′

1 = AL+AH and

A
′

2 = AH . The same as B = BL+BHx
n
2 , we generate B

′

0 = BL, B
′

1 = BL+BH

and B
′

2 = BH .

• Recursive products. We perform the pairwise products of the CPF of A and

B

C
′

0 = A
′

0B
′

0 = ALBL

C
′

1 = A
′

1B
′

1 = (AL + AH)(BL + BH) (3.5)

C
′

2 = A
′

2B
′

2 = AHBH

• Reconstruction. We reconstruct C = A× B as

C = C
′

0(1 + x
n
2 + C

′

1x
n
2 + C

′

2x
n
2 (1 + x

n
2 )

= C
′

0 + (C
′

0 + C
′

1 + C
′

2)x
n
2 + C

′

2x
n (3.6)

The three half size products C
′

0, C
′

1 and C
′

2 of (3.5) are computed by applying

the same method recursively. If the recursive computations are performed in

parallel we get a parallel multiplier with a sub-quadratic space complexity and a

logarithmic delay. And a non-recursive form of the number of XOR gates , AND
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gates , the total delay shows as below:
S⊗ = 6nlog2(3) − 8n + 2

S⊕ = nlog2(3)

T = 3 log2(n)T⊕ + T⊗

(3.7)

3.4 Improved Reconstruction by Bernstein

Recently an optimized version of the Karatsuba formula, which we mentioned on

previous section, have been proposed. Bernstein have reduced the complexity of

the reconstruction step as follows [18]

Step 1. R0 = P0 + x
n
2 P1 (Cost = n

2
− 1 bit additions)

Step 2. R1 = R0(1 + x
n
2 ) (Cost = n− 1 bit additions)

Step 3. C = R1 + P2x
n
2 (Cost = n− 1 bit additions)

(3.8)

This method reduces the number of bit additions of one recursion of the Karatsuba

formula S⊕ = 7n/2−3+3S⊕(n/2), which gives for a full recursion S⊕ = 5.5nlog2 n−

7n+3/2. But this method converses a delay of T = 3 log2 nD⊕+T⊗. In this result,

we call the reconstruction formula (3.8) as improved reconstruction by Bernstein.

3.5 Comparison

From the previous sections, we have summarized four different kinds of bit-parallel

multiplication algorithms,including original KOA, overlap-free KOA, reconstruc-

tion Karatsuba and improved reconstruction by Bernstein. Therefore, we collect

all these four algorithms results and briefly make a comparison, including space

complexity (the number of AND gates and XOR gates)and time complexity. It

shows in the form of table as follows: For more specific digital comparison, we
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Figure 3.2: Comparison time and space complexities of four different multi-
plication algorithms

set several examples of these four architectures later on NIST(National Institute

of Standard and Technology) recommended fields. The corresponding time and

space complexities and their comparison are given as well. Each kind of algorithm

is applied to build efficient polynomial multiplication over NIST recommended

fields GF(2163), GF(2233), GF(2283) and GF(2409). Some detailed number of the

time and space complexities will also be presented.

First, according to figure 3.2, we analyse the data in horizon direction, which means

that we compare three concepts among four multiplication algorithms, including

#AND (the number of AND gates), #XOR (the number of XOR gates) and time

complexity.

where we use blue, orange and yellow column to represent #AND, #XOR and

time complexity, respectively.

From figure 3.3 we can achieve some disciplines:

• All the methods have approximately same number of AND gates

• Using the Improved Reconstruction by Bernstein algorithm can achieve low-

est number of XOR gates

• Using the Overlap-free Karatsuba algorithm can achieve lowest time com-

plexity
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Figure 3.3: Horizon direction comparison

Because of the number of AND gates, we only make the vertical comparison two

concepts among these four algorithms, including #XOR and time complexity.

where red and blue column represent the Improved Reconstruction by Bernstein

Figure 3.4: Comparison in the number of XOR gates

and the other three multiplication algorithms, respectively.
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From figure 3.4 we can obtain that

• Improved Reconstruction by Bernstein multiplication algorithm only reduce

slight number of XOR gates. The gap between Improved Reconstruction by

Bernstein multiplication algorithm and others may obvious with n increas-

ing.

Figure 3.5: Comparison in time complexity

where blue, red and yellow column represent the original KOA, Overlap-free Karat-

suba and Reconstruction Karatsuba (or Improved Reconstruction by Bernstein),

respectively.

From figure 3.5 we can read that

• The apparent gap between Overlap-free Karatsuba and other three algo-

rithms always exists no matter how the value of n changing.

Above these figures and analyses, we can settle that we will just focus on the

Overlap-free Karatsuba algorithm and its hardware implement in the following

chapters in this thesis. Although the Improved Reconstruction by Bernstein al-

gorithm can do well in the space complexity, especially for the number of XOR
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gates, this result is the consequence of the huge value of m. For the limit of

the input and output number in the FPGA (Field- Programmable Gate Array)

board, which will be mentioned in the next chapter, we will design the hardware

implementation when n = 128. And in this case, the Improved Reconstruction

by Bernstein algorithm does not have a better layout in the comparison of the

number of XOR gates. Therefore, we only do the research on Overlap-free Karat-

suba multiplication algorithm as the following chapter. We will also compare the

proposed hardware implementation with other methods or other published data

in space and time complexities in detail.



Chapter 4

Proposed Hardware

Implementation of Modified

Overlap-free Karatsuba

Multiplication Algorithm for

GF (2n)

In this chapter, we first introduce the fundamental technology information, includ-

ing FPGA and its internal architecture, Verilog HDL and ISE software in detail.

Then we illustrate the meaning of each code correspond to its function in algo-

rithm. Finally, we compare the proposed module implementation with published

article in GF (24), GF (28) and GF (216) and then achieve a considerable result.

26
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4.1 Fundamental Technology Background

In this section, we briefly introduce the fundamental technology that we need

throughout hardware implementation. First, we present what is FPGA and its

internal architecture. In order to program it, we explain the reason why we choose

Verilog as HDL and ISE as the simulator.

4.1.1 FPGA and their internal architecture

Field Programmable Gate Array (FPGAs) are semiconductor devices that are

based around a matrix of configurable logic blocks (CLBs) connected via pro-

grammable interconnects [19]. Typical internal structure of FPGA (figure 4.1)

comprises of three major elements:

Figure 4.1: Internal architecture of a typical FPGA

• Configurable logic blocks (CLBs), shown as blue boxes in figure 4.1, are

the resources of FPGA meant to implement logic functions. Each CLB is

comprised of a set of slices which are further decomposable into a definite

number of look-up tables (LUTs), flip-flops (FFs) and multiplexers (MUXes).
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• Input/Output Blocks (IOBs) available at FPGA’s periphery facilitate ex-

ternal connections. These programmable blocks carry signals ’to’ or ’from’

FPGA chip. Figure 4.1 shows IOBs as a set of rectangular boxes enclosed

within the FPGA boundary.

• Switch Matrix, shown as red-coloured lines in figure 4.1, is an interconnecting

wire-like arrangement within FPGA. These offer connectivity for the CLBs

or provide dedicated low impedance, minimum delay path such as global

clock line [20].

In general, FPGAs are more flexible than ASICs as they are able to programmed

easily to desired functions or applications, with the emphasis on the ease of re-

programmability. This is the feature that makes such devices suitable for building

processing units for polynomials which are likely to have to adapt to parameter

changes from time to time. The fundamental building block of a FPGA is its logic

cells. Despite the different hardware used to realize the logic cell functions and

different input widths provided by various FPGA vendors, they can be mapped

to certain logic functions with the help of the synthesis and mapping tools.

Xilinx Spartan-605 FPGA cells contain a 6-input LUTs improving performance

and minimize power in a certain degree. Each CLB in Spartan-605 FPGA con-

sists of two slices, arranged side-by-side as part of two vertical columns. There are

three types of CLB slices in the Spartan-605 architecture: SLICEM, SLICEL and

SLICEX. Each slice contains four LUTs, eight FFs, and miscellaneous logic. The

LUTs are for general-purpose combinatorial and sequential logic support. Syn-

thesis tools take advantage of these highly efficient logic, arithmetic and memory

features [21],[22].
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4.1.2 Verilog HDL and ISE Design Suite

FPGAs are much more than just a bunch of gates. Although it is possible to build

logic circuits of any complexity simply by arranging and connecting logic gates, it

is just not practical and efficient. So we need a way to express the logic in some

easy to use format that can be converted to an array of gates eventually. And

HDL will be focused throughout this thesis. A Hardware Description Language

(HDL) is a software programming language used to model the intended operation

of a piece of hardware. There are two aspects to the description of hardware

that an HDL facilities; the abstract behaviour modelling and hardware structure

modelling.

• Abstract behaviour modelling. A hardware description language is declar-

ative in order to facilitate the abstract description of hardware behaviour

for specification purposes. This behaviour is not prejudiced by structural or

design aspects of the hardware intent.

• Hardware structure modelling. Hardware structure is capable of being mod-

elled in a hardware description language irrespective of the design’s be-

haviour.

The behaviour of hardware may be modelled and represented at various levels of

abstraction during the design process. Higher level models describe the opera-

tion of hardware abstractly, while lower level models include more detail, such as

inferred hardware structure.

Verilog, standardized as IEEE 1364, is a HDL, which can be used to describe

digital circuits in a textual manner [23]. It is most commonly used in the design

and verification of digital circuits at the register transfer level (RTL) of abstraction.

It is also used in the verification of analog circuits and mixed-signal circuits, as

well as in the design of genetic circuits. Verilog gained a strong foothold among

advanced, high-end designers for the following reasons:
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• The behavioural constructs of Verilog could describe both hardware and test

stimulus.

• The Verilog simulator is fast, especially at the gate level.

• The Verilog simulator is an ”interpreter”, which interpretive software ex-

ecutes source code directly instead of pre-compiling the source code into

intermediate ”object” code.

According to these features, we choose Verilog as HDL in this thesis to write the

code and program the FPGA board.

Simulation is the fundamental and essential part of the design process for any

electronic based product; not just FPGA devices. For FPGA devices, simulation

is the process of verifying the function characteristics of models at any level or

behaviour, that is, from high levels of abstraction down to low levels. The basic

arrangement for simulation is shown in Figure 4.2.

Figure 4.2: Basic simulation arrangement

In this thesis, we choose Xilinx ISE software as the simulator to finish the FPGA

board hardware simulation. The Xilinx ISE (Integrated Synthesis Environment)

produced by Xilinx for synthesis and analysis of HDL design. The ISE software

controls all aspects of the design flow [24]

• synthesis or compile its design
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• perform timing snaysis

• examine RTL diagrams

• simulate a design’s reaction to different stimuli

• configure the target device with the programmer

Through the Project Navigator interface (shown in figure 4.3), you can access all

Figure 4.3: Project Navigator Interface [24]

of the design entry and design implementation tools. You can also access the files

and documents associated with your project.

4.2 Hardware implementation of Modified Overlap-

free Karatsuba algorithm for GF (2n) on FPGA

In this section, we first present the complexity analysis by applying 1-step Overlap-

free KA (Karatsuba) for even-term polynomials (ETP). Then we apply the pro-

posed modified algorithm into FPGA and achieve the results for GF (2128).



Proposed Hardware Implementation of Modified
Overlap-free Karatsuba Multiplication Algorithm for GF(2n) 32

4.2.1 Fundamental Multiplication Modules for GF (24)

We now convey an example to compare the proposed modified method with the

original KOA. We assume n = 4 and then let

A = a3x
3 + a2x

2 + a1x + a0 = AHx
2 + AL

B = b3x
3 + b2x

2 + b1x + b0 = BHx
2 + BL

where AH = a3x + a2, AL = a1x + a0, BH = b3x + b2 and BL = b1x + b0 are the

polynomials of degree 1 in x. Then the original KOA computes the product AB

using

AB = AHBHx
4 + {[(AH + AL)(BH + BL)] + [AHBH + ALBL]}x2 + ALBL (4.1)

there are three products of polynomials of degree 1 in (4.1), and they can be

computed recursively using the KOA at a cost of 2Tx.

To show the role of the overlap in 4.1, we group the three products in 4.1 and

write them as polynomials of degree 2 in x as follows:

d2x
2 + d1x + d0 = AH + BH

e2x
2 + e1x + e0 = [(AH + AL)(BH + BL)] + [AHBH + ALBL]

f2x
2 + f1x + f0 = ALBL

Then we have

AB = (d2x
2 + d1x + d0)x

4 + (e2x
2 + e1x + e0)x

2 + (f2x
2 + f1x + f0)

= d2x
6 + d1x

5 + (d0 + e2)x
4 + e1x

3 + (e0 + f2)x
2 + f1x + f0 (4.2)

Obviously, one XOR gate delay 1Tx is required to compute the overlap summations

(d0 + e2) and (e0 + f2). Because we need 2Tx to perform the XOR operations in
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the curly bracket of (4.1), the total number of XOR gate delays of the original

KOA is 2 + 1 + 2 = 5.

Let y = x2, the proposed method in Chapter 2 function computes AB as follows

[13]

AB = (Ae(y) + xAo(y))(Be(y) + xBo(y))

= {Ae(y)Be(y) + x2Ao(y)Bo(y)}+ x{Ae(y)Bo(y) + Ao(y)Be(y)}

= {Ae(y)Be(y) + yAo(y)Bo(y)}+

x{(Ae(y) + Ao(y))(Be(y) + Bo(y))− (Ae(y)Be(y) + Ao(y)Bo(y))}

(4.3)

where Ae(y) = a2y + a0, Ao(y) = a3y + a1, Be(y) = b2y + b0 and Bo(y) = b2y + b1

are polynomials of degree 1 in y, where we will do modified into the architecture.

Then we define four polynomials of degree 2 in y as belows:

p2y
2 + p1y + p0 = Ae(y)Be(y)

q2y
2 + q1y + q0 = Ao(y)Bo(y)

r2y
2 + r1y + r0 = (Ae(y) + Ao(y))(Be(y) + Bo(y))

s2y
2 + s1y + s0 = Ae(y)Be(y) + Ao(y)Bo(y)

We need 1Tx to perform ”+” operations in the last two equations. We also need

2Tx to compute the three products of polynomials of degree 1 in y in the above

four equations. Then we have the product AB can be shown as follows:

AB = {(p2y2 + p1y + p0) + y(q2y
2 + q1y + q0)}+

x{(r2y2 + r1y + r0) + (s2y
2 + s1y + s0)}

= q2x
6 + (p2 + q1)x

4 + (p1 + q0)x
2 + p0+

(r2 + s2)x
5 + (r1 + s1)x

3 + (r0 + s0)x

(4.4)
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Evidently, one XOR gate delay is needed to obtain the summations in the five

brackets. Therefore the total number of XOR gate delay is 4, and 1Tx has been

saved compared to the original KOA.

Figure 4.4 shows the multiplier architecture by applying one step Overlap-free KA

algorithm as above example, if m = n is even. The multiplier includes three stages:

the splitting stage, the sub-multiplier stage and the alignment stage, where three

sub-multiplier operate in parallel.

Figure 4.4: Multiplier Architecture by applying Overlap-free KA

In this architecture [16], we can efficiently define which part’s function. The split-

ting stage requires m XOR gates to generate the inputs for the middle multiplier,

which compute the product of Ae(y) + Ao(y) and Be(y) + Bo(y). The alignment

stage merges the output of sub-multipliers according to their degrees. Both in

figure 4.4 and (4.5), common sub-expressions are found when calculating Dm
2
...m−2



Proposed Hardware Implementation of Modified
Overlap-free Karatsuba Multiplication Algorithm for GF(2n) 35

and Dm... 3m
2

−2 [25]

Dm
2
...m−2 = [Um

2
...m−2 + W0...m

2
−2] + U0...m

2
−2 + V0...m

2
−2

Dm... 3m
2

−2 = [Um
2
...m−2 + W0...m

2
−2] + Wm

2
...m−2 + Vm

2
...m−2

(4.5)

Using this architecture and proposed modified Overlap-free Karatsuba algorithm,

we can implement it on the typical FPGA board and analyse its features.

4.2.2 Implementation of proposed modified algorithm

for GF (2n) on FPGA

In this part, we will combine the proposed modified Overlap-free KA algorithm

with the Multiplier architecture, and use Verilog HDL to complete the implementa-

tion of proposed modified Overlap-free KA algorithm for GF (2n), where n = 128,

on Xilin Spartan-605 board.

In order to make easier understand, we first make the module when n = 2 as an

example. The detail Verilog HDL code has been shown in table 4.1.

Table 4.1: Verilog HDL n = 2 module

1 module mul_2_module(

2 input [1:0] A,

3 input [1:0] B,

4 output [3:0] mul_2

5 );

6 assign mul_2 [0]=A[0]&B[0];

7 assign mul_2 [2]=A[1]&B[1];

8 assign mul_2 [3:0]=

9 {A[1]&B[1],

10 (A[0]^A[1])&(B[0]^B[1])^ mul_2 [0]^ mul_2[2],A[0]&B[0]};

11 endmodule

Because of the value of n, in Chapter 3 we have mentioned, no overlap will occur

at this time. To analyse the table 4.1 more clearly, we show some typical steps

explanation as follows:
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assign mul_2 [0]=A[0]&B[0]

equal to function ALBL

assign mul_2 [2]=A[1]&B[1]

equal to function AHBH

assign A[0]^A[1])&(B[0]^B[1])^ mul_2 [0]^ mul_2 [2]

equal to function [(AH + AL)(BH + BL)] + [AHBH + ALBL]

Then we extend the value of n from 2 to 4, which Verilog HDL shows in table 4.2.

Since value 4 is exact double size of 2, we use nested and transferred statement to

finish the module. For this value, overlap occurs during the alignment stage and

then we apply the proposed algorithm in this part, which also shows in the table

4.2, the specific code as below:

assign d7=d2^d1^d0;

assign mul_4 [7:0]={ d2[3:2] ,(d2 [1:0]^ d7[3:2]) ,

(d0 [3:2]^ d7[1:0]) ,d0 [1:0]}

therefore, we can extend the value of n until 128. The detail Verilog HDL code

has been shown in Appendix in the end of this thesis.

Table 4.2: Verilog HDL n = 4 module

1 module mul_4_module(

2 input [3:0]A,

3 input [3:0]B,

4 output [7:0] mul_4

5 );

6 wire [3:0] d0 ,d1,d2,d7;

7 mul_2_module u0((A[1:0]) ,(B[1:0]) ,(d0));

8 mul_2_module u1((A[1:0]^A[3:2]) ,(B[1:0]^B[3:2]) ,(d1));

9 mul_2_module u2((A[3:2]) ,(B[3:2]) ,(d2));

10 assign d7=d2^d1^d0;

11 assign mul_4 [7:0]={ d2[3:2] ,(d2 [1:0]^ d7[3:2]) ,

12 (d0 [3:2]^ d7[1:0]) ,d0 [1:0]};

13 endmodule

Following the nested and transferred statement, we finally get the module of n =

128 in Appendix A. Then we use the simulator, Xilinx ISE software, to complete
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the simulation of all the huge module. From the simulator, we first implement

this module in to the typical board, Xilinx Spartan-605. And then complete

implement design part, including translate, map and place & route. After that,

we also generate programming file and from the simulation part, we achieve the

RTL schematic in figure 4.5.

Figure 4.5: RTL Schematic

In figure 4.5, we can directly know that our module exactly follows multiplier

architecture, in figure 4.4. There are several CLBs shown in the RTL scheme,

including the input, output and the name of the block, which also illustrates the

steps.

In each CLB, when we check in it, it shows the kinds of LUTs, FFs and MUX. And

we summarise the exact kinds of LUTs, in figure 4.6 which occurs in the whole

module.

Internally, LUTs comprises of 1-bit memory cells and a set of multiplexers. One

value among these SRAM bits will be available at the LUT’s output depending

on the value(s) fed to the control line(s) of the multiplexers. For these features,

LUTs is an important cell in CLB. If we can design the LUT’s structure, we may

optimize the speed of input and output, which reflects on chips is the speed of

reading and writing information.
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Figure 4.6: 2, 4, 5 and 6-input LUTs

We can also get ISm simulation in the simulator, shown in figure 4.7 and 4.8

without and with input respectively. We can control the value of each input,

directly achieve the output value, analyse the time delay and get wave changes if

we design the clockwise.

Figure 4.7: ISim simulation without input module

In the next section, we will discuss the time delay and the comparison value of

output using the ISm simulation.
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Figure 4.8: ISm simulation with proposed input module

4.3 Complexity Comparison

In this section, we first present the simulation results of proposed modified module

in Verilog code and ISE system. Then compare it with other published multipliers,

for GF (24),GF (28) and GF (216) field, referencing specific paper.

4.3.1 Synthesis results

First, we take the simulation results of proposed modified module using overlap-

free Karatsuba multiplication algorithm for GF (24) as an example, which has been

shown in following codes and figures.

The proposed modified module has been coded in Verilog in Appendix B. From the

code, the first two inputs have been settled 001, 001 respectively and the system

needs to wait 100ns for global reset to finish. Then the value of B, which is one of

inputs, has changed from 001 to 111 every 1ns. And using the simulation system

we can achieve the following figure.

The figure shows the binary equivalent of multiplication of two 4-bit numbers to

give the product. Ports A and B are the input ports that accept the numbers

to be multiplied. The port mul 4 is the output port, where the product of the

two aforesaid numbers are obtained. For example, the product of 0001 and 0001

(binary equivalents), specified at the ports A and B respectively, is obtained at

port mul 4, output port, as 00000001. Similarly, products of other specified finite
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Figure 4.9: Simulation result of proposed modified module for GF (24)

field GF (28) and GF (216) are obtained, shown as figure 4.10 and 4.11 respectively.

Figure 4.10: Simulation result of proposed modified module for GF (28)

Figure 4.11: Simulation result of proposed modified module for GF (216)

4.3.2 Comparison

According to the simulation results, we reference the paper called FPGA Based

Modified Karatsuba Multiplier [32] because it has valuable kinds of finite field

multipliers. We have studied the performance of each multiplier over GF (24),

GF (28) and GF (216) employing the Xilinx ISE simulation tool. All multipliers
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are implemented on Spartan-605 device. These multipliers are compared based on

number of slices, 4-input LUTs, bonded I/O blocks and maximum combinational

path delay.

Figure 4.12: Comparison of device utilization and combinational path delay
of proposed modified multipliers and other multipliers for GF (24)

Table in figure 4.12 shows the result of device utilization and combinational path

delay of various types of GF (24) multipliers. The number of slices and combina-

tional path delay for proposed modified multiplier are 6 out of 6822 and 10.101 ns

respectively. Whereas, the minimum number of slices and combinational path de-

lay for Modified Karatsuba multiplier are 6 out of 6822 and 13.057 ns respectively.

Although they have the same number of slices, the combinational path delay for

proposed modified multiplier is 23.4% lower than the one for Modified Karatsuba,

which is the minimum combinational path delay among the other multipliers.

In order to make the comparison clearer, we only implement the polynomial mul-

tiplication part, which will be research further in Chapter 5. So we compare

Karatsuba, Modified Karatsuba and proposed modified Overlap-free algorithm

multiplication, in the following comparison for GF (28) and GF (216).

Tables 4.3 and 4.4 illustrate the result of device utilization and combinational path

delay of three types multipliers for GF (28) and GF (216) respectively. The com-

binational path delays for proposed modified Overlap-free multiplier are 13.425
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Table 4.3: Comparison of device utilization and combinational
path delay for GF (28)

Different No. of slices No.of 4-input No.of boned Max
GF (out of 6822) LUTs IOBs combinational

Multipliers (out of 27288) (out of 296) path delay(ns)
Karatusba[31] 66 115 24 20.028

Modified 36 62 24 17.035
Karatsuba[32]

Proposed modified 60 74 24 13.425
Overlap-free

Table 4.4: Comparison of device utilization and combinational
path delay for GF (216)

Different No. of slices No.of 4-input No.of boned Max
GF (out of 6822) LUTs IOBs combinational

Multipliers (out of 27288) (out of 296) path delay(ns)
Karatusba[31] 252 395 52 27.012

Modified 130 230 52 24.413
Karatsuba[32]

Proposed modified 248 254 52 18.277
Overlap-free

ns and 18.277 ns respectively. For GF (28), the combinational path delay for pro-

posed modified Overlap-free multiplier is 32.97% lower than that for Karatsuba

multiplier and 21.19% lower than the one for Modified Karatsuba multiplier. For

GF (216), the combinational path delay for proposed modified Overlap-free multi-

plier is 32.34% and 25.13% lower than that for Karatsuba multiplier and Modified

Karatsuba multiplier respectively. Although the number of slices occupied of pro-

posed modified Overlap-free multiplier is not obviously less than the other two

methods, the max combinational path delay of proposed modified Overlap-free

multiplier has a significant reduction among these three methods.

In conclusion, proposed modified multiplier module has less hardware space com-

plexity and time complexity than other finite field multipliers. And this result

proves the comparison made in Chapter 3, that Overlap-free Karatsuba algorithm
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multiplication has lower time delay comparing with other kinds of finite field mul-

tipliers.



Chapter 5

Conclusion

In this chapter, we summarize the main contribution in this thesis and propose

the future work in related implementation.

5.1 Summary of Contribution

Bit-parallel multiplication applied with modified Overlap-free Karatsuba algo-

rithm has been investigated in this thesis when n is presented for NIST recom-

mended fields. Our main contribution is summarized as follows:

• Compared Overlap-free Karatsuba algorithm with other existing popular

algorithm, such as Karatsuba algorithm, reconstruction Karatsuba algorithm

and improved reconstruction by Bernstein, and achieve the advantage of

proposed algorithm in the max combinational path delay.

• Implement the proposed modified Overlap-free Karatsuba algorithm multi-

plication on FPGA board, simulate in the ISE Xilinx system and achieve

the synthesis result in NIST recommended field n = 128.

44
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• Compared proposed modified Overlap-free Karatsuba algorithm multipli-

cation with especially published multiplications (Karatsuba and Modified

Karatsuba multiplications),for GF (24), GF (28) and GF (216). The results of

the comparison have confirmed that proposed modified Overlap-free Karat-

suba algorithm multiplication provides a obvious reduction on the max com-

binational path delay.

5.2 Future Work

Proposed modified Overlap-free Karatsuba algorithm multiplication effects the

most research efforts on parallel finite field multiplications. In this thesis, it talks

about multiplication part of a bit-parallel polynomial basis multiplier without

the reduction modulo of the irreducible polynomial. So the potential work will

discusses implementation of the irreducible polynomial.

There are two steps to implement a bit-parallel polynomial basis multiplier in

GF (2n): polynomial multiplication and reduction modulo [33]. In this thesis, we

finish the first step, and define that proposed modified Overlap-free Karatsuba

algorithm polynomial multiplication is the best in critical path among the other

methods. In the optimization work, to make this result more persuasive, we will

choose a irreducible polynomial to reduce modulo in the result of A(x) and B(x)

production D(x). The most significant m−1 terms of D(x) are iteratively reduced

to polynomials with degree less than m by using the irreducible polynomial F (x)

[25]. The reduction operation usually costs a small number of gates compared

with KOMs because F (x) typically has low weight as recommended by the NIST

in [34] and the SECG in [35]. So adding the reduction modulo, will not effect the

recent solution.
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Table 5.1: Complexity for modular reduction operations[25]

m 113 128 163 193 233 283
# XOR 232 527 665 398 537 1159

Table 5.1 shows the number of XOR gates for the finite field with the irreducible

given in equation 5.1.

GF(2113) : F(x)113 = x113 + x9 + 1

GF(2128) : F(x)128 = x128 + x8 + x7 + x2 + x + 1

GF(2163) : F(x)163 = x163 + x7 + x6 + x3 + 1

GF(2193) : F(x)193 = x193 + x15 + 1

GF(2233) : F(x)233 = x233 + x74 + 1

GF(2283) : F(x)283 = x283 + x12 + x7 + x5 + 1

(5.1)

F(x)128 is adopted for GHASH function in the AES-GCM standard [36], and other

polynomials are recommended for elliptic curve crypto-systems by NIST FIPS-186-

2 standard [34] or the SECG domain parameters in [35].

In conclusion, the future work implementation of proposed modified Overlap-free

Karatsuba algorithm multiplication for GF (2n), where n = 128, can be concur-

rently applied polynomial multiplication and reduction modulo with the function

of F(x)128 = x128 + x8 + x7 + x2 + x + 1.
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Appendix A

Proposed Modified Overlap-free KA Algorithm in

GF (2128) Verilog code

module mul_2_module(

input [1:0] A,

input [1:0] B,

output [3:0] mul_2

);

assign mul_2 [0]=A[0]&B[0];

assign mul_2 [2]=A[1]&B[1];

assign mul_2 [3:0]={A[1]&B[1],(A[0]^A[1])&(B[0]^B[1])^ mul_2 [0]^ mul_2[2],A[0]&B[0]};

endmodule

module mul_4_module(

input [3:0]A,

input [3:0]B,

output [7:0] mul_4

);

wire [3:0] d0,d1 ,d2,d7;

mul_2_module u0((A[1:0]) ,(B[1:0]) ,(d0));

mul_2_module u1((A[1:0]^A[3:2]) ,(B[1:0]^B[3:2]) ,(d1));

mul_2_module u2((A[3:2]) ,(B[3:2]) ,(d2));

assign d7=d2^d1^d0;

assign mul_4 [7:0]={ d2[3:2] ,(d2 [1:0]^ d7[3:2]) ,(d0 [3:2]^ d7[1:0]) ,d0 [1:0]};

endmodule

module mul_8_module(

input [7:0]A,

input [7:0]B,

output [15:0] mul_8
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);

wire [7:0]d0,d1,d2 ,d7;

mul_4_module u3((A[3:0]) ,(B[3:0]) ,(d0));

mul_4_module u4((A[3:0]^A[7:4]) ,(B[3:0]^B[7:4]) ,(d1));

mul_4_module u5((A[7:4]) ,(B[7:4]) ,(d2));

assign d7=d2^d1^d0;

assign mul_8 [15:0]={ d2[7:4] ,(d2 [3:0]^ d7[7:4]) ,(d0 [7:4]^ d7[3:0]) ,d0 [3:0]};

endmodule

module mul_16_module(

input [15:0]A,

input [15:0]B,

output [31:0] mul_16

);

wire [15:0]d0 ,d1,d2,d7;

mul_8_module u6((A[7:0]) ,(B[7:0]) ,(d0));

mul_8_module u7((A[7:0]^A[15:8]) ,(B[7:0]^B[15:8]) ,(d1));

mul_8_module u8((A[15:8]) ,(B[15:8]) ,(d2));

assign d7=d2^d1^d0;

assign mul_16 [31:0]={ d2[15:8] ,(d2 [7:0]^ d7[15:8]) ,(d0 [15:8]^ d7[7:0]) ,d0 [7:0]};

endmodule

module mul_32_module(

input [31:0]A,

input [31:0]B,

output [63:0] mul_32

);

wire [31:0]d0 ,d1,d2,d7;

mul_16_module u9((A[15:0]) ,(B[15:0]) ,(d0));

mul_16_module u10((A[15:0]^A[31:16]) ,(B[15:0]^B[31:16]) ,( d1));

mul_16_module u11((A[31:16]) ,(B[31:16]) ,(d2));

assign d7=d2^d1^d0;

assign mul_32 [63:0]={ d2[31:16] ,(d2 [15:0]^ d7[31:16]) ,(d0 [31:16]^ d7[15:0]) ,d0 [15:0]};

endmodule

module mul_64_module(

input [63:0]A,

input [63:0]B,

output [127:0] mul_64

);

wire [63:0]d0 ,d1,d2,d7;

mul_32_module u12((A[31:0]) ,(B[31:0]) ,(d0));

mul_32_module u13((A[31:0]^A[63:32]) ,(B[31:0]^B[63:32]) ,( d1));

mul_32_module u14((A[63:32]) ,(B[63:32]) ,(d2));

assign d7=d2^d1^d0;
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assign mul_64 [127:0]={ d2[63:32] ,(d2 [31:0]^ d7[63:32]) ,( d0 [63:32]^ d7[31:0]) ,d0 [31:0]};

endmodule

module mul_128_module(

input [127:0] A,

input [127:0] B,

output [255:0] mul_128

);

wire [127:0] d0,d1,d2 ,d7;

mul_64_module mul_641 ((A[63:0]) ,(B[63:0]) ,(d0));

mul_64_module mul_642 ((A[63:0]^A[127:64]) ,(B[63:0]^B[127:64]) ,( d1));

mul_64_module mul_643(A[127:64] ,B[127:64] ,( d2));

assign d7 = d1^d2^d0;

assign mul_128 [255:0] = {d2 [127:64] ,(( d2 [63:0])^( d7 [127:64])) ,(( d0 [127:64])^( d7[63:0])) ,d0 [63:0]};

endmodule
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Simulation code of proposed modified module us-

ing Overlap-free Karatsuba multiplication algo-

rithm for GF (24)

1 module test_sim;

2 // Inputs

3 reg [3:0] A;

4 reg [3:0] B;

5 // Outputs

6 wire [7:] mul_4;

7 // Instantiate the Unit Under Test(UUT)

8 test uut(

9 .A(A),

10 .B(B),

11 .mul_4(mul_4)

12 );

13 initial begin

14 // Initialize Inputs

15 A=001;

16 B=001;

17 // wait 100 ns for global reset to finish

18 #100

19 // Add stimulus here

20 #1 B=010;

21 #1 B=011;

22 #1 B=100;

23 #1 B=101;

24 #1 B=110;

25 #1 B=111;
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26 end

27 endmodule
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