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Abstract

According to the Canadian Cancer Society, lung cancer is the one of the leading causes

of cancer death. It has been shown that cancer survival chance depends on factors in-

cluding the availability of early detection and diagnostic tools such as miniaturized and

sensitive gas sensor. This can detect the released volatiles in addition to be implementable

in portable electronics, which decisively improves the patient’s survival rate. Therefore,

in this thesis and in an effort to develop high-sensitive and miniaturized gas sensor, a mi-

croelectromechanical systems (MEMS) platform is utilized. In this work, a sensitive gas

sensor is proposed by employing capacitive micromachined ultrasonic transducer (CMUT)

configuration due to its high sensitivity, low LOD and reversibility. The comprehensive

analytical model is proposed for this circular bilayer CMUT-based gas sensor for the first

time, which includes all the known critical design parameters of the sensor. The model

also includes effects of membrane softening and residual stress of the top membrane and

the sensing component. The model is further followed by conducting FEA simulations, to

investigate effect of critical parameters on center resonant frequency of the device. The

achieved results for FEA simulations are compared with the proposed model, which shows

less than 5% average variation. Both model and simulations verify that maximum sensitiv-

ity occurs at smaller radius, thinner membrane and structural material with lower density.

The simulations results are utilized to maximize the sensitivity of the gas sensor in a sample

frequency range of 5MHz and 25MHz. The proposed device has a 500nm functionalized

polysilicon membrane with 300nm polyisobutylene (PIB) while the cavity height is 500nm

and 30V DC bias voltage is applied. The proposed and designed CMUT-based gas sensor

offers a 222Hz/zg sensitivity (∆ f /∆m) in the aforementioned frequency range.
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Chapter 1: Introduction

Based on Canadian Cancer Statistics, 2017, “Each hour, an estimated nine people are

expected to die of cancer in Canada.” Cancer strikes males and females of all ages. Al-

though it has a higher probability to affect Canadians above the age of 50, it is particularly

devastating in children as it remains one of the leading causes of disease-related death in

children under the age of 15 [1]. According to the Canadian Cancer Society, lung and

bronchial cancer are one of the most common types of cancer along with breast, colorectal

and prostate cancer. Lung cancer is by far the leading cause of cancer death among both

men and women, more than the other three major cancer types combined. In addition, lung

cancer mortality is decidedly uneven in different regions in Canada as well as across the

globe. The cancer survival chance variations are due to several factors, which noticeably

includes the availability of effective early detection and diagnostic tools. Therefore, early

detection of lung cancer’s associated biomarkers is critical for patients’ survival. These

biomarkers including 2,4-decadien, 1-propanol, benzaldehyde, hexanal and 2-ethylhexonal

exist in patient’s breath, which can be detected using robust diagnostic tools [2, 3]. Con-

sidering these facts, employing advanced engineering knowledge in gas sensing technol-

ogy coupling with biomedical science can effectively decrease mortality rate. In addition,

equipping with miniaturized sensitive gas sensor to be implemented in portable devices is

an advantage in situations with no immediate access to the healthcare providers. This is

feasible by employing microelectromechanical systems (MEMS) platform.

MEMS-based gas sensors are gaining attraction in various applications including biomed-

ical field [4], environmental science [5], indoor and outdoor air quality monitoring [6] and

automotive industry [7]. These gas sensors can operate based on several detection tech-
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niques to sense the target gases and measure their concentration levels. These include

resistivity and acoustic measurements, optical properties detection as well as mass detec-

tion [8]. Amongst various gas detection technologies, mass sensors are shown as emerging

candidates for high sensitivity applications with low concentration levels of the target gas

molecules [8]. Furthermore, mass resonant sensors can be employed in detection of a wide

range of gases. These sensors provide high sensitivity, low limit of detection (LOD) and

selectivity while they have low cost [8–10]. The mass resonant sensors can be fabricated

using advanced micro and nano fabrication technologies. Employing the advanced micro-

machining techniques enables sensor miniaturization, which is part of the core objective

of this research. This in return leads to possibility for sensor integration in portable de-

vices and wearable electronics. Amongst various mass resonant detectors, micromachined

sensors utilizing thin flexible plates such as cantilever and membrane structures are shown

as potential candidates for high sensitivity gas detection. Therefore, in this research and

in an unconventional approach, capacitive micromachined ultrasonic transducer (CMUT)

that combines the benefits offered by its flexible thin membrane as well as its sealed cavity

configuration has been employed for gas detection applications. Therefore, in this work,

capacitive micromachined ultrasonic transducer (CMUT)-based mass sensor is designed

and developed as a potential candidate for detection of low concentration levels of volatile

organic compounds in a complex environment. The proposed and modeled CMUT-based

sensor benefits from advanced micro and nano fabrication technology, enabling device in-

tegration in a compact and portable electronic. In a new approach and unlike CMUT con-

ventional application as a transducer that was introduced in 1994 [11], the study proposed

in this thesis employs the mass sensitivity properties of such micromachined structure.

The proposed mass detector benefits from low limit of detection (LOD), high sensitivity,

reversibility, relatively low cost and simple structure [8]. In addition, the proposed and

modeled CMUT-based gas sensor can be functionalized by employing various designed
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polymers as sensing materials. Therefore, the CMUT structure can be optimized for a

designed sensing material for a known target gas by employing the developed and evalu-

ated model in this work to enhance the device sensitivity. This in return, can broaden the

application fields of such miniaturized detector system.

1.1 Contributions

In this thesis and in an unconventional approach, CMUT structure is employed as a mass-

based gas sensor. The objective of this thesis is to, for the first time, develop a compre-

hensive analytical model of the CMUT-based gas sensor. The proposed model includes

and correlates all the critical design parameters of a bilayer CMUT-based gas sensor with

circular geometry. These parameters consist of radius and thickness of the membrane, de-

vice material properties, effective cavity height as well as the sensing material thickness

and its material properties. In the developed analytical model in this thesis, all the critical

design parameters of a circular bilayer CMUT-based gas sensor are considered, in addition

to effects of membrane softening parameters and structural material residual stresses. In

order to model the sensor, mass-spring-damper model is employed along with the theory of

thin plates. The proposed model considers sensing material properties by replacing flexural

rigidity of the conventional CMUT transducer structure with effective flexural rigidity in

CMUT sensor. In addition, residual stress of the sensing material is included in the model.

The proposed comprehensive analytical model provides a platform for future research in

this field.

The analytical model in this thesis is further utilized to design a circular bilayer CMUT-

based gas sensor. This step is followed by conducting FEA simulations using COMSOL

Multiphysics to enhance sensitivity of the device for low gas concentration detection. In

this work, effects of geometrical parameters including radius, membrane thickness and cav-
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ity height on resonant frequency and frequency shift of the device are investigated to im-

prove sensor’s sensitivity. Since mass and thickness of the sensing component can change

while it is exposed to the target gas, influences of these two factors on the frequency and

frequency shift of the sensor are also evaluated.

Comparison between the achieved results of the conducted FEA multiphysics simula-

tions and the proposed analytical model indicates a good agreement between the obtained

results.

Finally, employing the proposed analytical model along with FEA simulations results

led this research to propose a device with sufficient sensitivity for low gas concentration

detection using MEMS platform. In addition, the candidate fabrication technique for the

proposed device is introduced and designed in this thesis.

1.2 Thesis Outline

In Chapter 2, various candidate gas sensors including metal oxide semiconductors (MOS),

electrochemical sensors, quartz crystal micro-balance (QCM), surface acoustic waves (SAW),

piezoelectric micromachined ultrasonic transducer (PMUT) as well as CMUT sensors are

reviewed. Their principles of operation and fabrication techniques are discussed in addition

to advantages and disadvantages of each sensor.

Chapter 3 includes a review of CMUT-based gas sensors along with their principles

of operation and details of different fabrication techniques. In Chapter 4, the proposed

comprehensive analytical model and its development are presented. Employment of mass-

spring-damper model as well as the plate theory in modeling a CMUT-based gas sensor

are presented. A new equivalent circuit model of a bilayer CMUT-based gas sensor is also

provided in this chapter.

Chapter 5 consists of investigation on critical design parameters of a circular bilayer
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CMUT-based gas sensor by employing FEA multiphysics simulations. In this Chapter,

radius, membrane thickness, cavity height and structural material of the sensor are investi-

gated as well as mass and thickness of sensing component. Their effects on resonant fre-

quency, frequency shift and consequently sensor’s sensitivity are analyzed. Furthermore, a

sensitive device for low gas concentration detection is proposed. This chapter also includes

a comparison between the achieved results employing the proposed analytical model and

the conducted FEA simulations. Finally, conclusion and the summary of the conducted

research in this thesis are provided in Chapter 6 in addition to the possible future works.
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Chapter 2: Micromachined Gas and Volatile

Sensors

2.1 Introduction

Gas sensors are employed in a wide range of applications including environmental science,

automotive industry, indoor and outdoor air quality monitoring and medical field [12–14].

They operate based on measuring changes in electrical properties such as resistance,

voltage or current. In addition, gas sensors can operate as mass resonant sensors where

the shift in center resonant frequency of device is measured. In gas sensing technology,

there are different parameters that define performance of sensor including selectivity, re-

versibility, sensitivity and limit of detection (LOD). In addition, benefiting from advanced

micro and nano fabrication technology and microelectromechanical systems (MEMS) plat-

form, leads in low power consumption devices. These techniques provide integrability in

wearable and wireless electronics.

This chapter introduces and studies common micro-fabricated gas sensors including

surface acoustic wave (SAW), metal oxide semiconductor (MOS), quartz crystal micro-

balance (QCM), electrochemicals, piezoelectric and capacitive micromachined ultrasonic

transducer (PMUT and CMUT)-based gas sensors. In this investigation, structures and

mechanisms of operation, fabrication techniques and their applications are discussed along

with advantages and disadvantages of each sensor.
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2.2 Surface Acoustic Wave (SAW) Gas Sensor

2.2.1 SAW Structure and Mechanism of Operation

The first generation of SAW gas sensors was introduced decades ago with an ultra-high

resonant frequency of 400MHz [15]. SAW sensors include two SAW reflector arrays on

the crystal substrate separated by a cavity where a pair of electrodes is located, as shown

in Figure 2.1. The reflector arrays consist of metal strips with a half-wavelength width.

A part of the wave’s energy reflects on the spacing between the strips where it gives an

almost a full reflection. The reported operating frequencies for the SAW sensors with

GaAs substrate are as high as 100–500MHz, which results in complexities in the sensor

design and fabrication [16].

SAW sensors can be electrically excited and detected in a piezoelectric substrate us-

ing a transducer. In this configuration, and unlike bulk quartz resonators, the frequency of

SAW sensors does not depend on the wafer thickness. The operating frequency in such

resonators is calculated based on the transducer periodicity, f = n/l, where n and l are

the propagation velocity and acoustic wavelength, respectively at the transducer center fre-

quency. By changing the surface mass when exposed to the analytes, the propagation speed

changes, which causes a frequency shift from the operating frequency. The frequency is

Figure 2.1: Schematic view of a SAW gas sensor.
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closely related to the sensor response which can be affected by other factors such as change

in viscoelasticity and electrical conductivity due to the absorbed analytes [16].

These sensors detect environmental changes based on the change in the physical prop-

erties of the surface waves and amplitude. The measured concentration of detected analytes

has been reported to be in picogram scale. In general, high sensitivity, short response time

and reversibility are reported as advantages of SAW gas sensors beside being applicable in

wireless technologies.

2.2.2 Structural Materials and Fabrication Process

In order to fabricate SAW gas sensors, micromachining techniques are employed [17]. E-

beam lithography and lift-off processes are commonly used techniques to fabricate SAW

gas sensor on gallium orthophosphate (GaPO4) substrate. GaPO4 is one of the preferred

piezoelectric materials for substrates due to its high thermal stability and since the device

operates at temperatures up to 930◦C. In this high temperature sensor, platinum is used as

electrodes because of the high melting temperature. To have a good adhesion, a zirconium

or titanium layer are used between the substrate and electrodes [18]. In general, choice

of SAW sensing materials, electrodes as well as substrates depends on the target wave

propagation properties. The most common materials used as substrate in SAW sensors

are LiNbO3, GaPO4, LiTaO3, silicon and quartz which are functionalized by a sensing

material such as piezoelectric zinc oxide (ZnO) and aluminum nitride (AlN) [15,16]. GaAs

substrates have also been used without the need for a piezoelectric film while aluminum

electrodes and reflectors are widely used due to their acoustic impedance similarity to the

common SAW substrates.

8



2.2.3 Conventional Sensing Materials and SAW Applications

SAW gas sensors can employ various polymers as their sensing elements that can react to

different analytes such as biomarkers associated with lung cancer. However, many of these

polymers respond to the presence of more than one analyte. The number of chosen sensing

materials and their properties are designed according to the type of biomarkers that need

to be identified. Pattern recognition and neural network techniques are employed to dis-

criminate various chemical analytes by analyzing signal obtained from these sensors with

different sensing material [15]. In addition, palladium has been used as the sensing mate-

rial on a SAW sensor to detect hydrogen. Absorbing and desorbing hydrogen molecules

result in a change in density and electrical conductivity of the sensing material. Copper

phthalocyanine (CuPc) has also been used in SAW system for hydrogen detection. It has

been shown that CuPc layer alone is not sensitive enough to hydrogen, which required high

operation temperature of more than 70◦C. This operating temperature can be lowered by

using CuPc or Pd thin film as sensing layer down to room temperature. In this design,

the change in the sensor’s output is mainly due to the change in the electrical conductivity

rather than the mass change of the sensing layer [19].

2.3 Metal Oxide Semiconductor (MOS) Gas Sensors

2.3.1 MOS Structure and Mechanism of Operation

Technology of MOS sensors emerged when resistance of Cu2O changed due to water va-

por exposure [12]. These sensors consist of functionalized electrodes and a microheater,

which are electrically separated, as shown in Figure 2.2. The structure is fabricated on a

membrane fabricated employing advanced micro and nano fabrication techniques.
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Figure 2.2: Schematic view of an MOS sensor and the microheater.

In these sensors, the substrate is heated up by the microheater to start and expedite

oxygen adsorption and sensing procedure [20]. During the sensing process, oxygen is

adsorbed, which results in a change in charge carrier density that alters the conductivity

of sensing material. This change is measured when change in depletion layer at the grains

occurs, which is correlated to the concentration of the target gas [21].

In general, MOS sensors are divided into two categories based on p-type and n-type

materials. These groups differently contribute in sensing due to the various interactions

with the target gas. In a p-type MOS, positive holes carry the charge and conductivity

increases when the number of positive holes is grown due to an oxidizing gas exposure.

Whereas, in an n-type MOS sensor, electron carries the charge. Therefore, conductivity

decreases when the sensing material is in contact with the target gas and charge depletion

happens [22].

These sensors gained attenuation due to their low cost, simple structure and durability.

MOS sensors are offered as good candidates for low gas concentration, specially VOCs in

less than ppm level [17]. However, they operate using high power due to the high operating

temperature ranging between 150◦C to 400◦C.
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2.3.2 Structural Materials and Fabrication Process

In these sensors, S nO2, ZnO, WO3 and TiO2 are used as the sensing material in n-type

MOS sensors while NiO, Cr2O3 and Mn3O4-based sensors are used as p-type MOS devices

on a silicon substrate [21–24]. In addition, porous materials are employed as the sensing

material to enhance sensitivity, selectivity and performance of the device due to existence

of pore channels [25].

In order to fabricate an MOS sensor, commonly, the substrate is insulated by a few

microns thermally grown S iO2. This step is followed by depositing the microheater on the

bottom of the device using DC magnetron sputtering. Next, the electrodes are patterned

on the S iO2 layer employing sputtering and lift off techniques, which is further followed

by depositing sensing material using magnetron sputtering. The microheater is electrically

insulated from the electrodes and the sensing layer by depositing S iO2 using e-beam evap-

oration [17, 26]. Nano-casting and self-templating methods are the employed techniques

for functionalizing the MOS sensor with porous materials [27].

2.3.3 Conventional Sensing Materials and MOS Applications

These sensors are used to detect benzene, formaldehyde and naphthalene in volatile organic

compound (VOC) detection [28]. They are also used in a complex environment with lower

sensitivity than laboratories when pattern recognition techniques are employed [28].

In VOC detection, MOS sensors have provided sensitivity in ppb level when high tem-

perature cycle is used. In the temperature cycle, micro heater periodically provides differ-

ent temperatures to increase reaction between the target VOC and sensing material, which

results in an increased sensitivity of device [28, 29].
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2.4 Quartz Crystal Microbalance (QCM) Gas Sensors

2.4.1 QCM Structure and Mechanism of Operation

QCM gas sensors consist of two electrodes, which are separated by a piezoelectric material

or quartz, as shown in Figure 2.3.

Figure 2.3: Schematic view of a QCM gas sensor.

In the QCM gas sensors, the bottom electrode is known as the reference electrode and

top electrode is functionalized by a specific sensing material based on the target gas. When

the voltage is applied to the electrode, created electric field across the piezoelectric material

causes a deformation in it, which is used to create standing waves by applying AC at the

resonant frequency of device [30]. When the sensing material exposes to the target gas,

sensor resonant frequency shifts, which is associated with target gas adsorption, as shown

in Equation 2.1 [30],

∆m = −C · ∆ f (2.1)

where ∆m is surface mass change and C is material dependent constant. Frequency

shift of the device is shown in Equation 2.2,

∆ f =
−2 f0 · 2ρs
√
µq · ρq

(2.2)
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where f0, ρs, µq and ρq are reference frequency, density of surface mass, shear stiffness

and quartz’s density, respectively. Equation 2.2 is applicable when there is no energy dis-

sipation in the material. Therefore, where damping exists such as a bio-molecular system

Equation 2.2 is not valid [31].

Based on Equation 2.2, lower shear stiffness results in higher frequency shift and con-

sequently higher sensitivity in QCM gas sensors. Therefore, thinner quartz crystal, which

has lower shear stiffness provides a more sensitive device.

These sensors have sensitivity in ppm level while poor selectivity is reported as their

disadvantage [32].

2.4.2 Structural Materials and Fabrication Process

In a typical QCM sensor, a few hundred microns of a piezoelectric material or quartz crystal

is used between two electrodes, which are made of gold or platinum by lift-off technique.

The quartz crystal is usually etched using anisotropic inductively coupled plasma reactive

ion etching (ICP RIE). Arrays of QCM sensors can be fabricated by micromachining tech-

niques and the device is applicable as hybrid sensors when it is combined with oscillator

circuit on a silicon substrate [33]. These sensors are commonly functionalized by poly-

mers as sensing material due to their flexibility when deformation occurs in the quartz

crystal [31].

2.4.3 Conventional Sensing Materials and QCM Applications

Calixarene or its derivatives are used to functionalize QCM sensors for VOC detections

including alcohol, ether, ester and toxic gases. Calixarene is employed to detect methylene

chloride emissions in ppm level with robust bonding properties [34]. Ability of calixarene

in making hydrogen bonds is made it popular while reacting with target gas. Whereas

calixarene can affect sensitivity of QCM due to its random arrangement of molecules in the
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crystal [34].

In addition, QCM is used in humidity detection by dip coating polyaniline emeral-

dine (PANI-ES) thin film. In these sensors, three acids including 1,5-naphtalene disulfonic

acids (1,5-NDSA), hydrochloric acid (HCl) and dodecylbenzene sulfonic acid (DBSA) are

doped on QCM electrode, which operates in 10MHz frequency. These structures provide

a sensitivity in ppm level to water vapor by a linear frequency shift, which is correlated to

the vapor absorption [34].

Moreover, these sensors are employed in detection of small amount of nitro-explosive

gases. In these application, the gold electrode is functionalized by nano-rods or nano-

spheres of PPy-BPB with improved sensitivity due to the non-covalent bonds between the

halogen and nitro gases [35].

2.5 Electrochemical Gas Sensors

2.5.1 Electrochemical Sensor Structure and Mechanism of Operation

Electrochemical gas sensor’s configuration consists of a polymer as a sensing material,

which connects two interdigitated electrodes (IDEs) on a silicon substrate, as shown in

Figure 2.4.

Figure 2.4: Schematic view of an electrochemical sensor.

14



This structure improves contact between the sensing material and the electrodes while

they are connected to an external data analyze unit [36]. These sensors operate based

on measuring properties of the sensing material such as electrical resistance or thickness.

Change in the properties of the sensing component is due to chemical reaction with the

analyte, which can be correlated to the target gas concentration [37]. Unlike MOS sensors,

polymer-based electrochemical sensors can operate in the room temperature while they still

can measure concentration of VOCs such as benzene and toluene [38]. Moreover, an array

of functionalized electrochemical gas sensors with different polymers can be fabricated to

increase selectivity.

In general, these sensors benefit from low cost and high sensitivity while baseline drift and

poor selectivity are reported as their disadvantages [39, 40].

2.5.2 Structural Materials and Fabrication Process

Electrochemical gas sensors consist of an insulated silicon substrate with S iO2 and two

deposited electrodes. The insulator layer is thermally grown or deposited using e-beam

evaporation process, which is followed by depositing and patterning the electrodes. In-

sulating or conductive polymers including poly (3,4-ethylene-dioxythiophene) (PEDOT),

polyaniline (PANI) and polypyrrole (PPy) are typically used as the sensing materials [36].

To functionalize the sensor, either spin coating, dip coating, drop casting or spray coating

are employed based on the polymer properties [41].

2.5.3 Conventional Sensing Materials and Electrochemical

Applications

These sensors are employed in VOC detection using capped nano particles as the sensing

material. In addition, breath biomarkers are measured by arrays of functionalized sensors
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with gold nano particles. These sensors are employed in lung cancer detection, in ppb

level of concentration, when cross-linked gold nano particles are used. Stability, sensitivity

and selectivity of these sensors immensely depends on size and composition of the nano

particles [42]. In addition, electrochemical sensors with sulfonated doped PPy, is used for

2,4,6-trinitrotoluene (TNT) detection as one of the most explosive materials. These sensors

consist of gold IDEs and PPy polymer when there is a sulfonated dye. They have provided

the sensitivity in ppb level [41].

2.6 Piezoelectric Micromachined Ultrasonic Transducer

(PMUT)-Based Gas Sensors

2.6.1 PMUT Structure and Mechanism of Operation

PMUT structure consists of a clamped edges piezoelectric material which is sandwiched

between two electrodes on a silicon substrate. PMUT configuration works based on piezo-

electricity effect of materials, which it deforms in response to an applied electrostatic force.

This effect can be reversible, which the piezoelectric material creates an electrostatic force

when a mechanical force is applied [43]. PMUT configuration recently is employed in gas

sensing technology when the device is functionalized by a sensing material depending on

a target gas, as shown in Figure 2.5 [44].

Figure 2.5: Schematic view of a PMUT-based gas sensor.
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When the sensing layer adsorbs the target gas molecules, mass of the vibrating piezo-

electric material changes, which results in a frequency shift as illustrated in Equation 2.3,

∆ f = −
1
2

f0 ·
∆m
m

(2.3)

where f0, m and ∆m are the original resonant frequency, mass of the vibrating mem-

brane and mass change due to the gas adsorption, respectively. Frequency shift in a PMUT-

based gas sensor can be correlated to the target gas concentration.

Low power consumption, easy integration and selectivity while they are fabricated in

arrays are reported as PMUT-based gas sensor advantages [44, 45].

2.6.2 Structural Materials and Fabrication Process

In general, PMUT-based gas sensors are divided into thin and thick films piezoelectric ma-

terials. Aluminum nitride (AlN), lead zirconate titanate (Pb(Zr3Ti)O3), which is named

PZT and zinc peroxide (ZnO2) are commonly used materials for thin film PMUTs [46].

However, a thick piezoelectric material is used when the sensor needs to have a high phys-

ical tolerance during exposure. This structure can be fabricated in arrays while functional-

ized by polymers as sensing materials.

In order to fabricate a PMUT-based gas sensor, sacrificial technique is the conventional

employed process. In this technique usually doped silicon is used as the substrate using

LPCVD process, while the electrode is e-beam evaporated on it. The channels are wet

etched and patterned on the electrode, which is followed by piezoelectric material depo-

sition by sputtering technique and creating the top electrode by e-beam evaporation. Re-

cently, back side or front side etching techniques are used to create a thin piezoelectric

layer through the silicon substrate [47–50].
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2.6.3 Conventional Sensing Materials and PMUT-Based Gas Sensors

Applications

Since PMUT structure is employed in gas sensing technology since 2018, it is only in-

vestigated in humidity detection in ppm level, when an array of them is functionalized by

graphene oxide (GO) using drop casting [44].

2.7 Capacitive Micromachined Ultrasonic Transducer

(CMUT)-Based Gas Sensors

2.7.1 CMUT Structure and Mechanism of Operation

CMUTs have been introduced as an alternative to the conventional piezoelectric transducers

with improved properties [51]. However, CMUT configuration can also be employed as a

mass resonant sensor in the gas sensing field. The structure is functionalized by a sensing

material to detect VOCs and various gases, which provide a wide range of application.

CMUT gas sensor consists of a thin flexible membrane coated with a sensing material

suspended over a fixed bottom electrode to form a cavity. In this design, the top membrane

and the bottom electrode act as a capacitor where changes in the sensing material can

influence the device capacitance [8]. A schematic view of a coated CMUT sensor with

polyisobutylene (PIB) is shown in Figure 2.6.

Figure 2.6: Schematic view of a CMUT-based gas sensor with deflected top membrane.
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By exposing the polymer to the gas, analytes are adsorbed by the sensing material,

which results in a change in the mass of the flexible membrane. This mass change results

in a center resonant frequency shift, which is correlated with the analyte concentration. The

relation between the center resonant frequency, material properties and structural dimen-

sions are determined by Equation 2.4,

f0 = 0.47
tm

r2
m

√
Em

ρm(1 − υ2
m)

(2.4)

where tm, rm, Em, ρ and υ are the thickness, radius, Young’s module, density, and Pois-

son’s ratio of the membrane, respectively [52]. CMUT sensors require a relatively high DC

bias voltage known as pull-down voltage to create an electrostatic force across the cavity

and bring the top membrane to an optimal point defined by the cavity height and membrane

physical properties [51]. In this configuration, several parameters affect the sensitivity of

the sensor such as the structural and material properties, radius, membrane thickness, sens-

ing material initial thickness, cavity height, and pull-down voltage. In addition, since the

top membrane of a CMUT sensor is backed with vacuum this structure provides a lower

energy consumption and higher quality factor [52]. Compared to conventional capacitive

gas sensors such as micro-machined cantilever-based sensors, the analytes cannot reach

the cavity underneath the vibrating membrane and therefore the sensor resolution is en-

hanced [53]. Good sensitivity, low LOD, reversibility, and high-quality factor are reported

as the advantages of these sensors [52]. CMUT gas sensors has similar disadvantages

as electrochemical sensors including poor selectivity and baseline drift associated with

the common employed sensing materials. These drawbacks, however, can be addressed

through fabricating sensor arrays using different sensing materials.
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2.7.2 Structural Materials and Fabrication Process

This device employs stack of polysilicon, silicon or silicon nitride as the membrane and

gold electrode, which are fabricated on an insulated silicon substrate with silicon nitride.

Polymers are commonly used as sensing materials on the top membrane.

The two common micro-machining methods for CMUT fabrication are sacrificial and

wafer bonding techniques [54–56], where the main difference between these two tech-

niques is the method to create the cavity between the two membranes. In sacrificial method,

a sacrificial oxide layer is deposited on the fixed bottom electrode which later forms the cav-

ity followed by the deposition of the top membrane material. The sacrificial layer is then

etched using wet etching process and through several release holes on the top membrane or

designated channels [57].

A more advanced technique to fabricate a CMUT is a wafer bonding method. In this

technique, cavities are patterned and created on a handling wafer that bonds to a second

wafer with the deposited top membrane material in vacuum and at high temperatures. Sec-

ond wafer substrate is then etched or polished to leave a thin membrane suspended over the

cavity. SOI wafer can also be used as the second wafer, where the top silicon layer acts as

the membrane material and oxide as the etching stop when removing the bulk silicon sub-

strate. Wafer bonding method provides several advantages such as elimination of releasing

holes that improved device efficiency as well as ability to precisely control and optimize

cavity and membrane thicknesses. Moreover, the bonding technique provides capability to

fabricate large membranes due to the stress-free processes; however, the quality of bonding

is largely affected by the smoothness of the contact surface [58].

20



2.7.3 Conventional Sensing Materials and CMUT-Based Gas Sensors

Applications

These sensors are used in dimethyl methylphosphonate (DMMP) detection by employing

a very thin layer of DKAP polymer. DMMP is a simulant for sarin gas, which is detected

by these sensors with a good selectivity and a sensitivity of 48.8 zg/Hz/µm2 [59]. In

addition, polyisobutylene (PIB) coated CMUT sensor is also reported to detect DMMP with

a sensitivity of 130 zg/Hz/µm2 [52] with a minimum LOD for DMMP of 16.8pptv [53].

In addition, CMUT sensors employing different materials such as polyimide, amine-

bearing functional groups and quinidine can be fabricated as a highly sensitive CO2 de-

tector. A CO2 sensitivity of 1.06ppm/Hz at 50MHz and a resolution of 4.9ppm in the

ambient temperature is reported with consideration of other influencing parameters such

cross sensitivity with water vapor, sensor repeatability and regeneration [58].

2.8 Conclusions

In this chapter, different micromachined gas sensors have been introduced including SAW,

MOS, QCM, electrochemical as well as PMUT and CMUT-based gas sensors. Their struc-

tures and mechanisms of operation, standard fabrication techniques employing advanced

micro and nanofabrication technology, applications along with their advantages and disad-

vantages are discussed. SAW gas sensors includes two IDEs and reflector arrays on a piezo-

electric substrate, which is coated with sensing material. When target analyte is adsorbed,

propagation speed in the sensor changes, which results in a shift in resonant frequency of

the device. Short response time, high sensitivity and reversibility are main advantages of

SAW sensors while poor selectivity is reported as disadvantage. The sensor’s performance

can be affected by the environment’s temperature.
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Electrochemical sensors consist of two electrodes, which are connected by a sensing

material. They operate based on change in resistance of the sensing material, which is

due to the target gas adsorption. Electrochemical sensors typically benefit from simple

structures, low cost, high sensitivity in addition to their capability to be functionalized

with different sensing materials while operate in room temperature. However, their perfor-

mances are influenced by environmental factors including temperature and humidity. MOS

sensors, which can be categorized in electrochemical sensors also benefit from long life-

time and short response time while they have high energy consumption due to existence of

micro heaters.

QCM sensors comprises of two electrodes, which are separated by a quartz component.

The electrodes are functionalized by the sensing material depending on target gas. These

sensors operate based on measuring frequency shift of the quartz when the sensing material

reacted with target analyte. High sensitivity and fast response time are reported as advan-

tages of these sensors while they have poor selectivity and their performances are affected

by environment temperature.

PMUT-based gas sensors include a sandwiched piezoelectric material by two elec-

trodes, which is functionalized by a sensing material depending on a target gas. When

the target gas is adsorbed, mass of the vibrating membrane changes, which result in a

frequency shift. This sensor benefits from Low power consumption, easy integration and

selectivity while they are fabricated in arrays.

CMUT-based gas sensors consist of two parallel membranes, which are separated by a

vacuum cavity to form a capacitance. The top membrane is functionalized with the sensing

material and when the electrostatic force is applied, the membrane deflects towards the

bottom electrode and capacitance changes. By exposing the sensing material to the target

gas, frequency of the device shifts in response to the target gas adsorption. Based on

the conducted review of MEMS-based gas sensors in this chapter and amongst different
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detection techniques, CMUT mass resonant sensors configuration are shown as emerging

candidate for high sensitive devices. These sensors benefit from relatively simple structure

and low cost, high sensitivity and quality factor as well as reversibility and low limit of

detection. In order to improve selectivity of a CMUT-based gas sensor, an array of the

individual cells can be fabricated and functionalized by a variety of sensing materials. Due

to the aforementioned advantages of CMUT-based gas sensors, this structure is reviewed

in Chapter 3, in order to propose a comprehensive analytical model and a sensitive device

for low gas concentration detections.
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Chapter 3: Capacitive Micromachined Ultrasonic

Transducer (CMUT)-Based Gas Sensors

3.1 Introduction

Microelectromechanical systems-based sensors (MEMS), are introduced as high-performance

detectors due to their sensing capabilities at micro and nanoscale levels and potential for in-

tegration with wearable electronics [11]. One of these devices is capacitive micromachined

ultrasonic transducers (CMUTs), which were introduced in 1994 [11]. In an unconven-

tional approach, a CMUT structure can also act as a mass resonant sensor, hence allowing

it to be used for volatile organic compounds (VOCs) detection applications. These sensors

are also used in carbon dioxide [58] and dimethyl methylphosphonate (DMMP) detec-

tions [60].

A CMUT-based sensor benefits from a simple parallel plate structure that can be func-

tionalized by a polymer sensing layer that senses the change in the mass when exposed

to the target gas molecules. In addition, high quality factor and sensitivity as well as low

limit of detection (LOD) are reported as their advantages. CMUT-based gas sensors can be

selective in a complex environment when an array of individual devices is functionalized

by various sensing materials.

In this chapter, structure and mechanism of operation as well as different fabrication

techniques for CMUT-based gas sensors are reviewed.
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3.2 CMUT and M3CMUT-Based Gas Sensor Principle of

Operation

The structure of a CMUT consists of a deflectable top membrane that is suspended over

a fixed bottom electrode to form a cavity between them. The top membrane is clamped

at the edges and suspended on top of the bottom electrode. The device top membrane is

commonly metalized or is fabricated using a highly conductive material. When a DC bias

voltage is applied to the top membrane, it creates an electrostatic force between the bottom

electrode and the top membrane that as a result, creates a downward deflection in the top

membrane. A schematic view of a conventional CMUT is illustrated in Figure 3.1.

Utilizing advanced microfabrication technology, individual CMUT cells can be fabri-

cated to form an array of sensors with various arrangements including circular, square, O-

ring, as well as hexagonal shapes [60–62]. This ability to form an array of sensors on the

same chip is beneficial when a CMUT is designed to detect a target gas in a complex envi-

ronment. Employing an array configuration can address the disadvantages associated with

the lack of selectivity for the commonly used polymer as the sensing layers [63]. CMUT

structure operates based on electrostatic transduction between the device fixed electrode

and the suspended membrane on top of it. The electrostatic force is generated by applying

a DC bias voltage to the top membrane, which causes the membrane to deflect toward the

Figure 3.1: Schematic view of a CMUT cell configuration.
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bottom electrode. When the electrostatic force creates deflection in the top membrane, a

mechanical restoring force resists this deflection due to the membrane stiffness, k, shown

in Equation 3.1. If the applied voltage exceeds a limit known as the collapse voltage,

presented in Equation 3.2 [64], the mechanical restoring force overcomes the electrostatic

force and the device becomes unstable. Therefore, conventional CMUTs are operating

close to the collapse voltage of the structure to avoid device breakdown but to enhance the

sensor sensitivity [65].

k =
16πEmt3

m

3(1 − υ2
m)r2

m
−
ε0AmV2

DC

h3
e f f

+ 4πσmtm (3.1)

In Equation 3.1, Em, tm, rm, υm, Am, σm, V and he f f are Young’s modulus, thickness,

radius, Poisson’s ratio, area, residual stress of the membrane, applied DC voltage and effec-

tive cavity of the device, respectively. In Equation 3.1, first term is defined by membrane

geometry and its material properties while second and third terms are known as the spring

softening effect due to the applied DC bias voltage and residual stress of the membrane,

respectively.

VCollapse =

√
8kh3

0

27ε0Am
(3.2)

In Equation 3.2, h0, ε0 and Am are cavity height, permittivity of vacuum and membrane

area, respectively. By employing the spring softening constant in Equation 3.3, the center

resonant frequency of the device is approximated [66],

ωr = 2π fr =
√

k/mm (3.3)

where mm is the effective mass of the membrane. In a CMUT configuration, a DC

bias voltage is applied to the top membrane, which creates an electrostatic force across the

cavity. The applied force forms a deflection in the membrane towards bottom electrode as
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shown in Figure 3.2 [67]. The cavity also acts as a dynamic capacitance in response to

changes in the surrounding environment properties of the device including pressure, mass

and acoustic signals [62, 68, 69]. The changes alter the membrane deflection, capacitance

and consequently the resonant frequency of the device [70]. In order to measure the reso-

nant frequency, device is connected to an impedance analyzer as shown in Figure 3.2.

CMUT can also be developed with a multiple moving membrane capacitive microma-

chined ultrasonic transducer (M3-CMUT) configuration [66] with a potential in gas sensing

technology. This new configuration benefits from two or more deflectable membranes that

contributes to the device performance as shown in Figure 3.3.

In this design, when a DC bias voltage is applied to top or middle membranes, they

are attracted towards each other, therefore, a smaller cavity height can be achieved at a

lower DC bias voltage. This results in the enhanced operational properties, acoustic out-

put and sensitivity of the transducer [71]. In general, CMUT sensor is modeled using a

mass-spring-damper in one dimension, which is explained in Chapter 4. In order to model

a CMUT configuration, two different approaches exist for small and large deflections of

the device membrane. Small deflection approach is proposed when the membrane dis-

Figure 3.2: Schematic view of a CMUT with deflected top membrane.

Figure 3.3: Schematic view of an M3-CMUT.
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placement is small in comparison with membrane thickness while there is a linear relation

between applied force and membrane displacement [72]. Whereas, in large membrane

deflections, there is nonlinearity between membrane displacement and applied force [73].

In the unconventional application of CMUT in gas sensing technology, the top mem-

brane is functionalized by a sensing material as shown in Figure 3.4. Various polymers

can be used as sensing materials in gas sensing applications including polyisobutylene

(PIB) [71] and polydimethylsiloxane (DKAP) [74]. When a CMUT gas sensor is exposed

to a target gas, the sensing material adsorbs the target gas molecules which in return causes

a change in effective mass of the sensing material that prompts changes in the top mem-

brane’s effective mass. This change in device’s effective mass creates a shift in center res-

onant frequency of the sensor, which can be correlated to concentration level of the target

gas molecules as shown in Equation 3.3.

Based on the review conducted, mass sensitivity per unit area is defined by Equation

3.4. The recent reported mass sensitivity per unit area is 130 zg/Hz/µm2 [67], which is

improved to 48.8 zg/Hz/µm2 [74].

S m = −2
m

f0Am
= −2

ρt
f0

(3.4)

Figure 3.4: Schematic view of a CMUT-based gas sensor.
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3.3 Conventional CMUT Sensor Microfabrication

Techniques

Advanced micromachining techniques are used to fabricate CMUT-base gas sensors. Em-

ploying these technologies provide ease of circuit integration due to the material properties

of silicon as the substrate. The two common CMUT fabrication techniques are sacrificial

release process [75] as well as the wafer bonding process [69] that are investigated and

discussed in this chapter.

3.3.1 Sacrificial Technique

Sacrificial fabrication process is a commonly used fabrication technique in CMUT tech-

nology. In this technique, a highly doped silicon substrate is covered by a layer of silicon

nitride, which acts as an insulator as well as the etch-stop-layer for next fabrication step

as presented in Figure 3.5 (a). The thickness of silicon nitride layer is important as it pro-

tects the silicon substrate during etching in next fabrication step [8]. In the next step a

layer of metal is deposited as the bottom electrode, which is followed by depositing and

patterning silicon dioxide (S iO2) as the sacrificial layer illustrated in Figure 3.5 (b). To

create top membrane, a layer of polysilicon is deposited on the sacrificial layer shown in

Figure 3.5 (c). In traditional CMUT, a second silicon nitride layer is used as top membrane

and is deposited on a patterned polysilicon layer. In order to release the top membrane

and form the gap, etching holes are created on the silicon nitride to reach the underneath

layer. After removing the sacrificial layer through a wet etching process in Figure 3.5 (d,

e), a cavity is formed between silicon substrate and silicon nitride membrane. The device

is then vacuumed and sealed by depositing another silicon nitride layer on top of the struc-

ture [61, 76, 77]. In the next step, metal layer is deposited on the top membrane to create
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Figure 3.5: Schematic view of CMUT fabrication steps using sacrificial release process.

the top electrode as shown in Figure 3.5 (f). To functionalize the device as a gas sensor, a

sensing material is deposited on the top membrane. In order to deposit the sensing mate-

rial, different techniques are used including inkjet printing, spray coating, drop casting and

polymer evaporation [78].

3.3.2 Wafer Bonding Techniques

Sacrificial release process has been widely used for CMUT fabrication due to its low cost

and ease of fabrication. However, wafer bonding technique provides better control on

the membrane thickness and cavity height in addition to a lower residual stress during

fabrication. The drawbacks of wafer bonding process is surface roughness and cleanliness

before bonding [79]. In this section, different wafer bonding techniques including wafer

fusion bonding, LOCOS and anodic bonding are discussed.

3.3.2.1 Wafer Fusion Bonding

In the wafer bonding fabrication process two separate substrates are used. One silicon sub-

strate is used for micromachining to create bottom electrode and cavity, while the second

one is used for top membrane that will be bonded to the first substrate. A highly doped

silicon wafer is used for first substrate while second substrate is traditionally a silicon on

30



insulator (SOI) wafer. A layer of silicon dioxide is thermally grown on the first silicon

substrate based on desired cavity height and the cavity is patterned photolithographically

as illustrated in Figure 3.6 (a). In order to create a thin insulating layer at the bottom of

the cavities, another layer of silicon dioxide is thermally grown as shown in Figure 3.6

(b). A critical point in direct wafer bonding is having smooth surfaces to create Van der

Waals bonds. Therefore, RCA cleaning is done on the SOI wafer in addition to buffering

the oxide anchors on the first substrate before starting the bonding process. During the next

step, both SOI wafer and oxide surface on the first substrate are brought together to build

Van der Waals bonds in a hydrogen chamber, which is followed by annealing at 1100◦C, as

presented in Figure 3.6 (c). In order to release the top membrane, initially, the SOI handle

wafer is removed followed by removal of buried oxide layer (BOX). To remove the SOI

handle, BOX layer acts as the etch stop layer while the silicon membrane plays the same

role during removing BOX layer. The main portion of SOI handle wafer is removed by

mechanical grinding, which is further followed by wet etching using Potassium Hydroxide

(KOH) to remove the rest of it as shown in Figure 3.6 (d). The BOX layer is then removed

by wet etching using buffered oxide etchant (BOE) as seen in Figure 3.6 (e). After releasing

the structure, a metal layer is deposited using sputtering technique and patterned on the top

electrode as illustrated in Figure 3.6 (f) [55, 70, 80].

Figure 3.6: Schematic view of CMUT fabrication steps using wafer fusion bonding tech-
nique.
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3.3.2.2 Local Oxidation of Silicon (LOCOS)

In this technique, silicon dioxide layer is locally grown to form a thinner cavity height by

raising the bottom membrane and creating thick anchors while isolating each single device.

This results in addressing existing drawbacks of wafer bonding process including parasitic

capacitance and low breakdown voltage. In this technique, a highly doped silicon wafer is

used as substrate which is followed by thermal wet oxidation as shown in Figure 3.7 (a).

Another layer of silicon dioxide is thermally grown by wet oxidation and patterned to raise

the bottom electrode as illustrated in Figure 3.7 (b). In the next step, a silicon dioxide layer

is grown and patterned on a raised bottom membrane, which acts as the etch stop layer for

patterning silicon nitride in the next step, shown in Figure 3.7 (c). A silicon dioxide layer

is then grown and patterned for the anchors as illustrated in Figure 3.7 (d). The second

substrate is a silicon on insulator (SOI) wafer, as shown in Figure 3.7 (e), which will be

bonded to the substrate with the raised membrane. Next steps are similar to fusion bonding

technique described in Section 3.3.2.1, which are bonding the SOI wafer, annealing the

device in high temperature (around 1100◦C), using Tetra Methyl Ammonium Hydroxide

(TMAH) and buffered oxide etch (BOE) to remove the wafer handle and buffered oxide

(BOX), respectively, to release the top membrane as illustrated in Figure 3.7 (f) [76,81,82].

Figure 3.7: Schematic view of LOCOS fabrication steps.
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3.3.2.3 Anodic Wafer Bonding

In anodic wafer bonding a borosilicate glass substrate is used as bottom substrate and sil-

icon on insulator (SOI) wafer as top membrane [83, 84]. The substrate is cleaned by the

piranha solution and then the cavity is patterned in borosilicate substrate by wet chemical

etching or reactive ion etching (RIE), as illustrated in Figure 3.8 (a). In the next step, a

metal layer is deposited using evaporation technique to form bottom electrode, wherein ti-

tanium is used as adhesion layer as shown in Figure 3.8 (b). Next, a silicon nitride layer is

deposited on the membrane side of the SOI wafer using plasma enhanced chemical vapor

deposition (PECVD) technique as seen in Figure 3.8 (c). This insulates the top membrane

from electrically shorting in collapse modes. Then, the first substrate and SOI wafer are

bonded, which is followed by etching the second wafer handle and BOX layer using TMAH

and BOE etching, respectively, as illustrated in Figure 3.8 (d) [83]. In anodic wafer bond-

ing, roughness of the bonding surfaces is not as critical as in the fusion bonding process.

In addition, lower temperature processes provide ease of depositing metal electrode during

the fabrication steps, which results in a low residual stress and fabrication of transparent

CMUT structures. Moreover, employing glass substrate decreases the parasitic capacitance

and provides higher reliability [85].

Figure 3.8: Schematic view of anodic bonding fabrication steps.
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3.3.3 Flexible CMUT Structures

Flexible CMUTs are fabricated using polymers. In order to fabricate a flexible CMUT,

the sacrificial release process can be used on a coated silicon substrate with polyethylene

terephthalate (PET). SU8 is employed as structural material and copper as sacrificial layer.

Platinum and gold are then deposited to form the electrode and silicon wafer is removed,

as shown in Figure 3.9 [68].

CMUT can also be fabricated on a flexible silicon wafer, as illustrated in Figure 3.10

[86]. In order to make the silicon substrate flexible, trenches are created inside the sil-

icon substrate by using deep reactive ion etching (DRIE). In the next step, the trenches

are refilled by polydimethylsiloxane (PDMS) using dispensing system and spinning. Extra

PDMS is later removed by lift off process and backside of the silicon substrate is etched

by employing DRIE [86]. In the next step, regular processes for fabricating CMUT on the

silicon substrate can be used as briefed in the Sections 3.3.1 and 3.3.2.

Figure 3.9: Schematic view of a flexible CMUT.

Figure 3.10: Schematic view of a flexible silicon substrate.
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3.4 Conclusions

In this chapter, CMUT-based gas sensors are reviewed. Structure and mechanism of oper-

ation of these devices are discussed as well as their fabrication techniques. The presented

advanced microfabrication techniques in this chapter include sacrificial process, different

wafer bonding procedures including fusion boding, anodic bonding and local oxidation of

silicon (LOCOS) in addition to flexible CMUT structures.

Although the sacrificial technique is the standard method to fabricate a CMUT, based

on the review in this chapter the wafer fusion bonding is proposed as a candidate technol-

ogy to fabricate a CMUT-based gas sensor. Since in the wafer fusion bonding cavity height

and anchors are created independently, it allows us to have a uniform structure while pro-

viding precision in the device dimensions as well as enhancing sensitivity of the sensor. In

addition, this technique results in a better device performance since it does not require to

release the top membrane by creating sacrificial channels.
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Chapter 4: Developed Bilayer CMUT-Based Gas

Sensor Model with Circular Membrane

4.1 Introduction

Capacitive micromachined ultrasonic transducer (CMUT) was introduced in 1994 [87].

Since then, CMUTs have been used as an alternative for conventional piezoelectric trans-

ducers in ultrasonic and underwater imaging applications [87]. In this work and unlike con-

ventional transducer application, this device is configured as a mass resonant sensor, where

the CMUT technology is implemented to detect and measure the concentration of various

target gases. Therefore, this new CMUT structure needs to be fully studied and developed

for gas sensing applications. The objective of this thesis is to propose, for the first time,

an advanced analytical model that provides a method to design an optimize a highly sen-

sitive CMUT gas sensor for complex environment with low concentration levels of target

gases. In this thesis, critical design parameters including radius, membrane thickness, cav-

ity height as well as structural material are extensively studied. Using the aforementioned

design parameters, a comprehensive CMUT analytical model is developed. Furthermore,

the proposed advanced analytical model is employed to design a sensitive CMUT gas sen-

sor, followed by conducting FEA simulations for low gas concentration levels described in

Chapter 5.
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4.2 Proposed Analytical Model for Conventional CMUT

Structure

Plate or membrane theory can be employed to model a CMUT structure [88]. In this thesis,

a comprehensive analytical model is developed to predict resonant frequency of the device,

which is fully matched with the very well-known plate theory.

The proposed analytical model employs mass-spring-damper theory [89] to model the

behavior of a single cell CMUT-based gas sensor with circular plate, which is shown in

Figure 4.1. In this model, it is assumed that a uniform pressure is applied to an isotropic and

homogeneous membrane with clamped edges and linear elastic deformation. Furthermore,

it is assumed that the device operates under small deflection condition [90] in response to

the absorption of the target gas.

The structure is modeled using mass-spring damper, as shown in Figure 4.1. The mass-

spring damper treats CMUT as a dynamic capacitance with movable mass. As shown

in Figure 4.1, in the modeled CMUT, bottom electrode is fixed while the top membrane

with stiffness k suspended on top of it and acts as a movable and connected mass to the

spring. When the DC bias voltage is applied to the top membrane, an electrostatic force

is created across the CMUT cavity. A downward deflection in the device top membrane

is created towards the bottom electrode. The membrane mechanical restoring force resists

this deformation due to the k, stiffness of the membrane. The damping by the sensor’s

surrounding media represented below as B [91].

When DC bias voltage is applied, at an equilibrium point, the electrostatic force and the

mechanical force become equal in magnitude as shown in Equation 4.1,

kx =
−ε0Am

2
(
VDC

x
)2 (4.1)
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Figure 4.1: Schematic view of a CMUT mass-spring-damper model

where ε0, Am, VDC and x are the permittivity of vacuum, effective membrane area,

applied DC bias voltage and membrane displacement, respectively. Based on Equation

4.1, if the electrostatic force due to VDC, dominates the mechanical force related to k, the

top membrane collapses. Therefore, the stable state for the membrane deflection is when

Equation 4.2 is valid,

dF
dx

< 0⇒
ε0AmV2

DC

(h0 − x)3 − k < 0 (4.2)

where F is the total applied force. Equation 4.2 stays valid, when membrane displace-

ment is smaller than one third of the initial cavity height, h0, as shown in Equation 4.3.

x <
h0

3
(4.3)

Based on Equations 4.2 and 4.3, critical DC bias voltage known as collapse voltage,

defines the maximum tolerable applied voltage to the device. The collapse voltage is cal-

culated by Equation 4.4 [92].

VCollapse =

√
8kh3

0

27ε0Am
(4.4)
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Based on the diaphragm theory [89], deformation of a point located at radial distance b

in a circular membrane with clamped edges, which is exposed to a uniform pressure P is

calculated from Equation 4.5,

y =
(3(1 − υ2

m)Pr2)
16Emt3

m
(r2

m − b)2 (4.5)

where rm is the radius of the membrane. Since the membrane is circular with clamped

edges, the maximum displacement occurs at the center of the membrane, which is driven

as Equation 4.6.

y =
3(1 − υ2

m)Pr4

16Emt3
m

(4.6)

By substituting the spring force, −kx, in the membrane displacement, Equation 4.6,

and calculating k, Equation 4.7 is achieved, which defines the geometrical effect of the

membrane on the spring constant.

k =
−FS pring

x
=

16πEmt3
m

3(1 − υ2
m)r2

m
(4.7)

In a CMUT structure, when the DC bias voltage is applied to the top membrane, it

deflects towards the bottom electrode. The applied voltage makes the membrane softer to

deform by decreasing the spring constant. Therefore, this makes the membrane to operate

close to the optimum point. This phenomenon is known as the spring softening effect and

is caused by the applied DC bias voltage [93].

Since CMUT membranes act as dynamic capacitors, the applied force generated by this

capacitive element is calculated by Equation 4.8,

FCapacitor = −
d
dx

(
1
2

CV2
DC) = −

1
2

V2
DC(

d
dx

(
ε0Am

he f f − x
)) =

ε0AmV2
DC

2(he f f − x)2 (4.8)
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where he f f is effective cavity height and calculated from Equation 4.9,

he f f = h0 +
tm

εm
(4.9)

where εm is the relative permittivity of the top membrane. By substituting Equation 4.8

in Equation 4.10 and the Newton’s second law of motion, Equation 4.11 is achieved.

F = FS pring + FCapacitor (4.10)

m
d2x
dt2 −

ε0AmV2
DC

2(he f f − x)2 + kx = 0 (4.11)

By employing the first order Taylor expansion in Equation 4.11, Equation 4.12 is ob-

tained, which is spring softening effect due to the applied DC bias voltage [89].

m
d2x
dt2 + (k −

ε0AmV2
DC

h3
e f f

)x =
ε0AmV2

DC

2h2
e f f

(4.12)

In addition to the effect of geometrical parameter on the spring constant, Equation 4.7,

as well the spring softening effect due to the applied DC bias voltage, Equation 4.8, resid-

ual stress also influences the spring constant since thin films prone more to have stress

depends on the material. Residual stress is defined as the stress in the structure when the

external forces are removed. The assumed stress in this model contains intrinsic as well

as thermal stresses of the device structural materials. Intrinsic stress can be created due to

the different deposition temperature processes including spraying, coating, sputtering, and

vapor deposition techniques. Thermal stress is created due to the different coefficients of

thermal expansion (CTE) in different layers of the CMUT structural materials [94]. The

total residual stress σtotm is defined in 4.13,
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σtotm = σthm + σ0m (4.13)

where σthm and σ0m represent the thermal stress and intrinsic stress of the membrane,

respectively. By combining 4.7,4.12 as well as 4.13, Equation 4.14 is obtained, which

represents the total stiffness of the top membrane in a conventional circular CMUT.

k =
16πEmt3

m

3(1 − υ2
m)r2

m
−
ε0AmV2

DC

h3
e f f

+ 4πσmtm (4.14)

Equation 4.14 is substituted in Equation 4.15 to calculate center resonant frequency of

the deigned CMUT,

ωr = 2π fr =

√
k

mm
(4.15)

where mm is the effective mass of the top membrane.

In this work and in an unconventional approach, the traditional CMUT configuration

is employed as a mass resonant sensor in gas sensing technology. In a CMUT-based gas

sensor the top membrane is functionalized by a sensing layer, which forms a bilayer struc-

ture. Therefore, effect of critical parameters of the added sensing layer on the resonant

frequency of the device need to be considered in the analytical model. These parameters

do not exist in the analytical model for a conventional CMUT as discussed in this section.

Therefore, in this work and in the absence of the comprehensive model, a novel analytical

model is proposed and developed in section 4.3, which includes critical design parameters

of a bilayer circular CMUT-based gas sensor including radius, membrane thickness, cavity

height and material properties of the CMUT. The proposed model also includes thickness,

mass and material properties of the sensing layer in addition to the residual stress for the

top membrane and the sensing material.
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4.3 Proposed Analytical Models for CMUT-Based

Gas Sensor

In order to develop a CMUT sensor capable of detecting a target gas as discussed in the

previous chapters, a sensing material needs to be employed in the traditional CMUT design.

Once the target gas molecules are absorbed by the device sensing material, the overall mass

of the top membrane will increase. Therefore, the resonant frequency of the CMUT device

will shift in response to the changed mass as shown in 4.15, which can be correlated to the

presence of the target gas in the sensor environment. As a result, and in order to design

and optimize a CMUT sensor, the change in the center resonant frequency of the device

due to the bi-layer construction along with varying mass of the CMUT sensor need to be

considered in developing the proposed analytical model. By employing the mass-spring-

damper model for a conventional CMUT, which is shown in Figure 4.1, a bi-layer CMUT

is modeled and illustrated in Figure 4.2. In this model, Kbi, Bm and Bs represent stiffness

for a bilayer circular CMUT-based gas sensor, damping due to the membrane and damping

due to the sensing material, respectively.

Figure 4.2: Schematic view of a mass-spring-damper for a bilayer CMUT-based gas sen-
sor.
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In this chapter, a new comprehensive analytical model is proposed taking the physical

parameters of the structure into consideration. In order to propose the comprehensive an-

alytical model for CMUT-based gas sensor, three models are developed to find effects of

critical parameters on center resonant frequency of the device, as presented in Table 4.1.

These parameters include radius, membrane thickness and cavity height in addition to the

material properties of the top membrane and the sensing layer. Material properties of a

conventional CMUT are considered in flexural rigidity, D, as shown in Equation 4.16 [90].

D =
Emt3

m

12(1 − υ2
m)

(4.16)

where υm, Em and tm are the Poisson’s ratio, Young’s modulus and membrane thick-

ness, respectively. Membrane and sensing layer residual stresses along with the membrane

stiffness and the softening effect due to the applied DC bias voltage are all investigated

and considered. 3D electromechanical FEA simulations and optimizations are further con-

ducted for low gas concentration levels, which will be discussed in Chapter 5. During this

study, three initial models are developed as shown in Table 4.1, including one-layer, two-

layer as well as multi-layer model without thermal residual stress are developed. In Table

4.1, D, De f f , σtot, σths and σ0t are flexural rigidity, effective flexural rigidity, total residual

stress, sensing material thermal stress and intrinsic stress of top membrane, respectively.

These models then provide the platform for the accurate comprehensive bi-layer analytical

model proposed for the developed circular CMUT-based gas sensor.

In the one-layer model, effect of the sensing layer including material properties, mass

and thickness as well as the residual stress are ignored and the structure is considered as

the conventional one layer CMUT by considering the flexural rigidity. Equation 4.14 is

used to calculate the stiffness of the top membrane in the one-layer model while residual

stress is ignored to evaluate only the effects of top membrane’s geometrical parameters and

spring softening. However, in a bilayer CMUT-based gas sensor, existing sensing layer
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Table 4.1: Design parameters in the developed and proposed models.

Flexural Rigidity Top Membrane Sensing Layer
D/De f f Residual Stress Residual Stress

One-Layer Method D - -
Two-Layer Method D σtot σths

Multilayer Model without De f f σ0t -
Thermal Residual Stress

The Proposed Bilayer Model De f f σtot σths

which can also change due to target gas adsorption, affects center resonant frequency of

device. In addition, fabrication of a thin layer of the sensing material, intend to have high

residual stress, which none of these effects are included in the One-Layer analytical model

of a traditional CMUT.

The one-layer model optimized to the two-layer model by adding total residual stress of

the top membrane, σtot, as well as the thermal stress, σths, mass, ms, and thickness, ts, of the

sensing material. In two-layer model, Equation 4.15, is developed to Equation 4.17, which

includes mass of the top membrane, mm, and the sensing material, ms, in addition to the

membrane stiffness, k. In two-layer model, contribution of mass of the top membrane and

sensing layer in center resonant frequency are considered, equally as shown in Equation

4.17. By developing Equation 4.14 while including aforementioned parameters, membrane

stiffness in Two-Layer model is derived in Equation 4.18. Two-Layer model is developed to

investigate effect of thermal stress of the sensing material when its geometrical parameters

are neglected. In this model, flexural rigidity is considered the same as the One-Layer

model while material properties of the sensing layer including Poisson’s ratio, υs, Young’s

modulus, Es and density of sensing material, ρs are ignored. In the developed Two-Layer

model, total residual stress of the top membrane, σtotm, is considered while only thermal

stress in the sensing layer is included.

fr =

√
k

mm + ms
(4.17)
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k =
16πEmt3

m

3(1 − υ2
m)r2

m
−
ε0AmV2

DC

h3
e f f

+ 4π(σtotmtm + σthsts) (4.18)

σths is the thermal stress of the sensing layer, as shown in Equation 4.19,

σths(y) = −
2
3
αEs(Ts − T f )(

6y2

t2
s
−

1
2

) (4.19)

where α, Ts, T f and ts are the thermal expansion coefficient, solidification temperature,

final temperature and thickness of the sensing material, respectively at any given point of

sensing material, y, as shown in Figure 4.3 [95].

The Two-Layer model, however, ignores the geometrical parameters of the sensing

layer even though the thermal stress of it is included. Therefore, by adding the sensing

material to the structure, the first parameter which needs to be considered is the effective

flexural rigidity of the device, which as a results adds the critical parameters of the sens-

ing component to the model. In this thesis, it is assumed that the membrane deflection is

smaller than the membrane thickness, based on the small deflection theory [96]. Hence,

effective flexural rigidity can be employed in the model. This theory is applicable when

the maximum displacement of the membrane is smaller than 20% of its thickness, which

is valid for this study [97]. Therefore, Kirchoff theory [98] can be employed for multilayer

membranes with different material properties as shown in 4.21. Consequently, in order to

investigate effect of sensing material properties, flexural rigidity is replaced by the effective

flexural rigidity, De f f , as shown in Equation 4.20, in the Multilayer model without Ther-

mal Residual Stress. In this model, residual stress of the sensing layer is ignored. The

Figure 4.3: Schematic view of the CMUT structure and the target point at y.
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effective flexural rigidity can be calculated through Equations 4.21 to 4.24. This assump-

tion considers effect of material and geometrical parameters of the sensing layer, which

are not included in the developed One-Layer and Two-Layer Models. These parameters

are thickness, Young’s modulus and Poisson’s ratio of the sensing material in addition to

the properties of the top membrane. Moreover, only the intrinsic residual stress of the top

membrane is included while the residual stress of the sensing layer is ignored. These as-

sumptions show that all critical parameters of the sensing material and its residual stress

are effectively involved in center resonant frequency and cannot be neglected.

k =
64πDe f f

r2
m

−
ε0AmV2

DC

h3
e f f

+ 4πσ0mtm (4.20)

De f f =
AC − N2

A
(4.21)

A, N and C are parameters, which can be calculated through Equations 4.22 to 4.24,

A =
Em

1 − υ2
m

tm +
Es

1 − υ2
s
ts (4.22)

N =
Em

2(1 − υ2
m)

t2
m +

Es

2(1 − υ2
s)

((ts + tm)2 − t2
m) (4.23)

C =
Em

3(1 − υ2
m)

t3
m +

Es

3(1 − υ2
s)

((ts + tm)3 − t3
m) (4.24)

where Es, υs, ts are Young’s modulus, Poisson’s ratio and the thickness of the sensing

material, respectively.

Finally, the Proposed Bilayer model includes the effective flexural rigidity illustrated in

Equations 4.21 through 4.24, as well as the total residual stress of the top membrane and

thermal stress of the sensing layer, as shown in Equations 4.13 and 4.19, respectively. These
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parameters are included in the proposed analytical model for a bilayer circular CMUT-

based gas sensor. This comprehensive mode is based on the previous developed models,

geometrical and material properties of the sensing layer as well as the residual stress that

are effectively involved in the device performance and cannot be ignored. This proposed

analytical model and the effective spring constant, kbi, of the sensor flexible membrane

is shown in Equation 4.25, which considers all the known critical parameters of the top

membrane and the sensing component.

kbi =
64πDe f f

r2
m

−
ε0AmV2

DC

h3
e f f

+ 4π(σtotmtm + σthsts) (4.25)

In this proposed model, polymers are considered as intrinsic stress-free materials, which

is the case for commonly used polymers. In addition, the total residual stress is typi-

cally obtained through experimentation. In this thesis, the commonly obtained values for

these materials, 130MPa, 143MPa and 170MPa are used for residual stress of the silicon,

polysilicon and silicon nitride top membranes, respectively [99]. However, the model can

be simply modified if the membrane material differs from the above assumed commonly

used materials. As a result, by developing three different models, One-Layer, Two-Layer

and Multilayer without Thermal Residual Stress, it is shown that properties of sensing layer

are effectively involved in resonant frequency of device. These sensing material parameters

are not negligible and includes thickness, residual stress, Young’s modulus, Poisson’s ratio,

density and residual stress. Therefore, a comprehensive analytical model is proposed in this

work. This proposed model referred to as the Bilayer Model hereafter for a CMUT-based

gas sensor with circular geometry. This model incorporates all the critical parameters of

the top membrane as well as the sensing layer, as shown in Equation 4.25. In addition, the

proposed comprehensive model incorporates membrane softening effect due to the applied

DC bias voltage and residual stresses.
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4.4 Equivalent Circuit Model of a Conventional CMUT

As discussed in the previous chapters, a CMUT device acts as an electromechanical sys-

tem, which combines mechanical and electrical operational properties. A CMUT cell can

be modeled and analyzed by replacing mechanical parameters such as velocity and force

by electrical components including current and voltage. The differential equation shown

in Equation 4.12, is described by the Mason’s equivalent circuit model of a CMUT struc-

ture [100,101]. The model consists of mechanical and electrical ports in addition to a trans-

former for a linearized parallel plate as shown in Figure 4.4. The electrical port models a

CMUT as a capacitor as well as a resistor while the mechanical port models the mechanical

impedances of the proposed analytical model [100, 101].

By replacing the mechanical parameters including velocity and force, in addition to the

capacitors and resistors of the existing components in the device an equivalent electrical

theoretical model is derived as shown in Figure 4.5.

In this model, RS ource, C0 and CParas, are the source resistance, the clamped parallel

plate capacitance for the DC bias voltage and the parasitic capacitance, respectively. RBm,

−CS pring, Cm, LMedium and Lm are the electrical equivalent substitutions for damping, spring

softening effect due to the applied DC bias voltage, top membrane capacitor and loaded

Figure 4.4: Basic view of the Mason’s equivalent circuit.
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Figure 4.5: Equivalent circuit model of a conventional CMUT cell.

mass due to the medium and mass of the top membrane, respectively. The clamped parallel

plate capacitance, C0, can be calculated from Equation 4.26.

C0 =
ε0Am

he f f
(4.26)

In this model, n is the transformer ratio, which is a function of the applied DC bias

voltage and consequently the electrostatic force. The transformer ratio can be described as

in Equation 4.27,

n = E0Cm =
ε0AmVDC

h2
e f f

(4.27)

where, the electric field is driven in Equation 4.28.

E0 =
VDC

he f f
(4.28)

4.5 Proposed Equivalent Circuit Model of a Bilayer

CMUT-Based Gas Sensor

In a CMUT-based gas sensor, the conventional CMUT transducer is functionalized by a

sensing material. When the device is exposed to a target gas, the target gas molecules are
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absorbed into the sensing layer, which results in a change in the properties of the sensing

layer including its mass and resistivity. Therefore, in order to accurately develop the equiv-

alent electric circuit model of a CMUT-based gas sensor, the sensing layer is modeled as

a capacitor as well as a variable inductor and resistor to accommodate the target gas ab-

sorption. The equivalent circuit model for a CMUT-based gas sensor is shown in Figure

4.6.

In this work, Rm and Cm are representing the top membrane’s resistance and capacitance

respectively. They are added to the circuit in order to develop a comprehensive analytical

model of the electrical properties of the top membrane. In this developed model, Rs + ∆R

represents the sensing layer resistivity in addition to the resistance change due to the target

gas absorption. In this model presented in Figure 4.6, Cs, CParas−s and CParam−m are the

sensing layer capacitor, parasitic capacitance between the sensing layer and the bottom

electrode and the generated parasitic capacitance between the top membrane and the bottom

electrode, respectively. RBs and Ls + ∆m represent damping and the mass equivalent of the

sensing layer, which changes due to the target gas absorption. If the top membrane and

the sensing layer are fabricated from conductive materials, the parasitic capacitors, CParas−s

and CParas−m are very low and negligible. However, if nonconductive materials like silicon

nitride or nonconductive polymers are used as the top membrane and the sensing layer, the

parasitic capacitances play an important role in the circuit model and cannot be ignored.

Figure 4.6: The developed equivalent circuit model for a CMUT-based gas sensor.
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4.6 Conclusions

In order to effectively design, develop and incorporate CMUT-based gas sensor for low

concentration level gas detection, in this chapter, a novel comprehensive analytical model

is proposed. this model predicts the varying center resonant frequency of a bilayer cir-

cular CMUT-based gas sensor in response to a target gas exposure. In order to develop

the proposed analytical model, mass-spring-damper phenomena is employed for a linear

elastic deformation of the membrane and for small deflections. In this proposed model,

critical parameters of the top membrane and the sensing layer are considered including the

radius, thickness, material properties and the residual stresses as well as the effective cavity

height. Furthermore, the proposed model includes the spring softening effect due to the

applied DC bias voltage in addition to the membrane stiffness effect. Moreover, the equiv-

alent electric circuit model is developed that employs the Mason’s equivalent model. The

critical parameters are further extensively investigated in Chapter 5 by conducting FEA

simulations. In addition, the proposed analytical model is employed to enhance the sen-

sitivity of a CMUT-based gas sensor for the frequency range of 5MHz and 25MHz as a

sample application frequency. The investigation of the critical parameters is followed by

comparing the proposed analytical model to the FEA simulation results.
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Chapter 5: Proposed Micromachined CMUT-Based

Gas Sensors - Design, Simulations,

and Evaluations

5.1 Introduction

Conventional CMUT transducers as introduced and studied in Chapter 3, consist of a top

and a bottom membranes that are separated via an air or a vacuum cavity. However, when

a CMUT is employed as a gas sensor, the top membrane is functionalized by utilizing a

sensing material designed and optimized to be responsive to a target gas. When the sen-

sor is exposed to an environment containing the target gas, the gas molecules are absorbed

by the sensing material, which causes a shift in the center resonant frequency of the de-

vice. Therefore, both geometrical and material properties of the top membrane and sensing

layer effectively contribute in changes in the center resonant frequency, and consequently

the sensitivity of the CMUT-based gas sensor. As the application of CMUT structures in

the gas sensing technology is new, this thesis presents, for the first time, a comprehensive

analytical model proposed for use in MUT-based sensor platforms. The proposed analyt-

ical model effectively includes and combines the physical and material properties of the

device as well as the residual stresses of the structural and sensing materials, as presented

in Chapter 4. The proposed analytical model is further employed to design an optimized

circular bilayer CMUT-based gas sensor. In this chapter, FEA simulations are conducted

using COMSOL Multiphysics to enhance the sensitivity of the proposed device. The criti-
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cal design parameters of a bilayer circular CMUT-based gas sensor are investigated while

considering the feasibility of micro and nano fabrication technology. In addition, conducted

FEA simulations are used to evaluate the effect of each parameter on the center resonant

frequency of the device while compared with the proposed analytical model. Critical pa-

rameters include radius size, membrane thickness, cavity height, structural material as well

as the mass and thickness of the sensing material. Additional information about the accu-

racy of COMSOL Multiphysics simulations, as well as the details on system setup and the

computer specifications are also provided in this chapter.

5.2 COMSOL Multiphysics and System Setup

In this thesis, COMSOL Multiphysics software, version 5.4, is used to conduct FEA simu-

lations in order to investigate the effect of critical parameters of a bilayer circular CMUT-

based gas sensor on the device performance. COMSOL Multiphysics features various ad-

vanced physics solvers and allows for coupled examination of multidisciplinary problems

that is required in the study presented in this work. In this thesis, Eigenfrequency Pre-

stressed analyses are conducted using the Solid Mechanics and Electrostatics modules,

which allow for detailed analysis of electromechanical forces. This software is run on a

Windows machine consisting of sixteen 2GHz Intel Xenon cores with a total of 384GB of

RAM.

5.2.1 Domain Meshing

In order to conduct FEA simulations, meshing is applied through a physics-controlled pro-

cess. Simulated devices in this chapter have a dimension range from tens of nanometers

to hundred microns in the same design. Therefore, accurately meshing the device should

be considered, specifically when different thicknesses of the membrane and the sensing
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Table 5.1: Number of elements for a bilayer circular CMUT-based gas sensor with 9µm
radius and 500nm silicon membrane which is functionalized by 100nm PIB while the cavity
is 140nm.

Mesh Tetrahedron Elements Triangle Elements Total Number of Elements
Normal 98,905 30,402 129,307

Fine 310,853 73,494 384,347
Finer 501,770 111,194 612,964

layer exist. Consequently, Normal, fine as well as finer meshes were employed on a bilayer

circular CMUT-based gas sensor with 9µm radius, 140nm cavity height and 500nm silicon

membrane, functionalized by a 100nm PIB sensing material in order to evaluate the impact

of meshing on simulations. The number of elements for different investigated meshes are

provided in Table 5.1 and the portions of the meshed structure with normal, fine and finer

grids are shown in Figure 5.1.

In these COMSOL simulations, since by applying the DC bias voltage the top mem-

brane deflects toward the bottom electrode, therefore, the vacuum cavity between the mem-

branes is considered as the deforming domain. The chosen deforming domain consists of a

moving mesh to allow for dynamically conducting the simulations when mechanical move-

ment occurs. By increasing the number of elements, the change in the frequency associated

with the simulations decreases. Therefore, by defining the parameter 1/N, where N rep-

resents the number of elements, an examination of how higher N contributes to lowering

the error of simulations can be performed. The result shown in Figure 5.2 includes a plot

Figure 5.1: Portion of the meshed CMUT-based gas sensor.

54



Figure 5.2: Frequency dependency associated with number of elements.

of simulated frequencies versus 1/N. A curve is fitted for the frequency associated with

normal, fine and finer meshes, which is shown as a trendline in Figure 5.2. The intercep-

tion between the trendline and frequency axis represents the point, in which, N tends to

infinity that means the simulations error due to the number of elements is minimized. The

uncertainty quantification for the finer grid is less than 1%.

Based on the above results, all remaining bilayer circular CMUT-based gas sensors in

this thesis simulations were meshed with finer grids in order to eliminate any potential

deviation.

5.2.2 Boundary Conditions for FEA Simulations

In this thesis, a bilayer circular CMUT-based gas sensor configuration is designed in COM-

SOL Multiphysics as shown in Figure 5.3. Due to the nature of the design, not all parts of

the structure are involved in vibration, therefore, effective areas of the device were designed

in COMSOL in such a way that anchors are ignored. Boundary conditions are applied on

the designed geometry in order to enhance the accuracy of the simulations.

As illustrated in Figure 5.4 (a), highlighted parts in blue show that the silicon substrate

is fixed along with the perimeter of the top membrane and sensing layer. This creates

a clamped edges device. The top membrane is free to move as highlighted in blue and
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Figure 5.3: Schematic view of the designed device in COMSOL Multiphysics.

shown in Figure 5.4 (b), that in return allows for the membrane deflection towards the

bottom electrode when activated by an applied DC bias voltage between the top and bottom

membranes.

In the COMSOL simulation, the vacuum cavity between the top and the bottom mem-

branes is defined as a deforming domain as highlighted in blue and shown in Figure 5.5,

to allow for the created electrostatic force across the cavity to cause a deflection in the top

membrane.

Figure 5.4: (a) Fixed constraints includes bottom membrane and perimeter of the top mem-
brane and sensing layer, (b) free boundaries, which consists of the top and bottom surfaces
of the top membrane and the sensing layer.

Figure 5.5: Vacuum cavity (the highlighted domain in blue) is defined as the deforming
domain.
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The DC bias voltage is applied to the top surface of the top membrane as highlighted in

blue and illustrated in Figure 5.6 (a), whereas the bottom electrode is grounded as shown

in Figure.5.6 (b). Depending on the type of fabrication technique including wafer bonding

or sacrificial technique such as PolyMUMPs, and the structural material properties, the top

membrane can be conductive or nonconductive. Therefore, if the top membrane is con-

ductive, location of the applied DC bias voltage on it, does not affect the center resonant

frequency. However, if the top membrane is nonconductive, center resonant frequency of

the sensor can be affected by the capacitance due to the sensing material resistivity. There-

fore, in the conducted FEA simulations, top surface of the top membrane is considered as

the terminal, in order to consider the capacitance of the top membrane. In addition, the

capacitance due to the top membrane is included in the analytical model as discussed in

Chapter 4.

In order to evaluate effect of fringing fields outside the air cavity on the sensor’s per-

formance, an air cylinder considered in the area surrounding of the bilayer circular CMUT-

based gas sensor, as shown in Figure 5.8. Conducted electrostatic FEA simulations on the

device in Figure 5.7, shows that the fringing field has less than 1% effect on the resonant

frequency. Due to this small difference, the effect of air around the structure is ignored in

all simulations.

Figure 5.6: (a)The top surface (highlighted in blue) of the top membrane is defined as the
terminal to apply DC bias voltage. (b) the bottom electrode is grounded.
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Figure 5.7: Schematic view of a CMUT-based gas sensor when damping is considered.

5.2.3 Proposed Structural Materials in FEA Simulations

The conducted FEA simulations in this chapter are done for structural materials with dif-

ferent properties such as silicon, polysilicon as well as silicon nitride. These materials

are used to cover a range of lower and higher material properties including density and

Young’s modulus, than silicon as the original material in microfabrication. In addition, in a

CMUT-based gas sensor polymers are used as sensing materials to functionalize the device.

Therefore, in this thesis, polyisobutylene (PIB) is employed as an example of the sensing

material. However, the developed model remains valid for any other designed sensing poly-

mer. PIB is used in gas sensing technology due to its sensitivity to a wide range of gases in-

cluding dimethyl methyl phosphonate (DMMP) [102], tetrachloroethane (PCE) [103] and

dichloromethane (DCM) [104]. Material properties of the employed structural materials

and PIB are shown in Table 5.2.

In addition, in micro and nanofabrication technology the top membrane can be vacuum

backed to effectively enhance the performance of the CMUT-based gas sensor [60].

Table 5.2: Material properties of Silicon, Polysilicon, Silicon Nitride and PIB.

Description Silicon Polysilicon Silicon Nitride PIB
Young’s Module (E)(Gpa) 170 160 250 10

Density (ρ)(Kg/m3) 2329 2320 3100 920
Relative Permittivity (ε) 11.7 4.5 9.7 2.2

Poisson’s Ratio (ν) 0.28 0.22 0.23 0.48
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The cavity between the top and the bottom membranes is, therefore, considered as

vacuum in all of the FEA simulations.

5.3 Sensor Performance Evaluations and Simulation

Results of Bilayer Circular CMUT-Based Sensors

The proposed analytical model, presented in Chapter 4, is employed to design a circular

bilayer CMUT-based gas sensor. This is followed by conducting FEA simulations using

COMSOL Multiphysics, to further enhance the sensitivity of the device to low gas concen-

tration. In this section, critical parameters of the device are investigated including radius,

membrane thickness and cavity height in addition to the structural material properties. The

simulations are conducted using COMSOL Multiphysics. Effects of the aforementioned

critical parameters on the center resonant frequency are optimized for the frequency range

between 5MHz to 25MHz, as a sample of frequency range. However, the proposed analyt-

ical model in Chapter 4 remains valid for all other frequency ranges.

In this chapter, the analytical model analysis is also compared with the FEA simulations

to evaluate the accuracy of the proposed analytical model.

5.3.1 Effect of the Radius

The CMUT radius is one of the critical parameters, which affects the center resonant fre-

quency of the device. Radius effectively contributes to resonant frequency by influencing

spring constant as can be deduced from Equation 4.25. In this equation, term 1, phys-

ical properties, and term 2, spring softening effect due to the applied DC bias voltage,

are influenced by radius in the spring constant. Increasing the radius of the bilayer circu-

lar CMUT-based gas sensor results in a decrease in the term 1 of the stiffness, which is

inversely proportional to the radius squared of the membrane. Moreover, increasing the
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radius, affects term 2 by changing the area of the membrane. Therefore, the stiffness and

consequently the center resonant frequency of the device decreases for larger radii. In this

section, the effect of radius on the first six modes of the resonant frequency and frequency

shift of the device is investigated by conducting FEA simulations using COMSOL Multi-

physics. Eigenfrequency Prestressed analyses are performed for the radii ranging between

5µm and 30µm due to the sample target frequency range between 5MHz and 25MHz. Prop-

erties for this device are presented in Table 5.3, however, the model remains valid for other

device properties as well as the structural materials. In addition, displacement of the top

membrane is also investigated using Stationary study in COMSOL Multiphysics for the

device properties shown in Table 5.3.

Obtained simulation results indicate that adding sensing material to the conventional

CMUT and transforming it to the bilayer circular CMUT-based gas sensor does not affect

the mode shapes of center resonant frequency of the device, as shown in Figure 5.8. There-

fore, the proposed analytical model in Chapter 4 as well as conducted FEA simulations

remain valid while the radius is changed.

From the simulation results, it can be seen that by increasing the radius of the vibrating

membrane, the center resonant frequency of the bilayer circular CMUT based gas sensor

decreases as presented in Figure 5.9 (a). Larger radii make the vibrating membrane softer

in response to the applied DC bias voltage than the smaller devices as can be seen from

Equation 4.25. In addition, as shown in Figure 5.9 (b), smaller radii provide higher fre-

quency shift, which can enhance the sensitivity of the bilayer circular CMUT-based gas

Table 5.3: Structural properties of the simulated devices to evaluate the effect of radius.

Radius Top Membrane PIB Cavity Structural DC Bias PIB
Thickness Thickness Material Voltage Density

(µm) (nm) (nm) (nm) (V) (Kg/m3)
5, 7, 9, 15

500 300 500 Polysilicon 30 920
20, 25, 30
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Figure 5.8: Conducted FEA simulations for (a) first, (b) second, (c) third, (d) forth, (e) fifth
and (f) six modes of the resonant frequency of bilayer circular CMUT-based gas sensor with
5µm radius and 500nm polysilicon membrane, which is functionalized by 300nm PIB while
biased with 30V DC and the cavity is defined 500nm.

sensor in response to the target gas absorption, as shown in Equation 5.1. Sensitivity is

defined as frequency shift per unit mass change,

S =
∆ f
∆m

(5.1)

where ∆ f is frequency shift and ∆m is mass change of the device.

By conducting COMSOL simulations in this thesis, the displacement of the membrane

is also investigated using Stationary study in COMSOL Multiphysics, to stay below one

Figure 5.9: (a) Resonant frequency (MHz) vs radius (µm), and (b) frequency shift(MHz)
vs. radius (µm) based on the resonant frequency of the device with radius 5µm, for a 500nm
polysilicon membrane, which is functionalized by 300nm PIB, while biased by 30V DC and
the cavity is defined 500nm.
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third of the cavity height, as shown in Equation 4.3, in order to avoid device collapse. Dis-

placement increases for higher radii, as it is illustrated in Figure 5.10. Based on Equation

4.6 regarding membrane displacement, the maximum deflections occur at the center of the

membrane and higher radii tend to deflect the membrane easier than the lower radii.

From the simulations, a displacement profile for the deflected membrane towards the

bottom electrode is shown in Figure 5.11, which is simulated using COMSOL Multiphysics

for a device with a 5µm radius, a 500nm polysilicon membrane, functionalized by 300nm

PIB and biased by 30V DC, and a cavity defined at 500nm. Conducted simulations for

total displacement of the membrane with the aforementioned properties is also shown in

the Figure 5.12.

Figure 5.10: Membrane displacement (nm) vs. membrane radius (µm) for a 500nm polysil-
icon membrane, which is functionalized by 300nm PIB, while biased by 30V DC and the
cavity is defined 500nm.

Figure 5.11: Membrane displacement profile for the radius 5µm, 500nm polysilicon mem-
brane, which is functionalized by 300nm PIB, while biased by 30V DC and the cavity is
defined 500nm.
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Figure 5.12: Total displacement of the membrane for a 5µm radius, 500nm polysilicon
membrane, which is functionalized by 300nm PIB, while biased by 30V DC and the cavity
is defined 500nm.

Based on the conducted FEA simulations in this thesis and the proposed analytical

model in Chapter 4, the frequency shift of a bilayer circular CMUT-based gas sensor is

immensely dependent on the radius.

5.3.2 Effect of the Membrane Thickness

The membrane thickness is one of the geometrical parameters which is further affecting

the center resonant frequency of the bilayer circular CMUT-based gas sensor. Membrane

thickness affects the parameters A, C as well as N, in the effective flexural rigidity remark-

ably, as shown in Equations 4.21 through 4.24. Effective flexural rigidity affects the term

1 of the stiffness, which is related to the membrane geometrical properties. Additionally,

by increasing the thickness of a membrane residual stress increases as well. Therefore,

thicker membranes provide higher membrane stiffness and consequently higher center res-

onant frequency of the device, as it is shown in Equation 4.25. In this section, effect of

the membrane thickness is studied as a critical design parameter by employing COMSOL

Multiphysics. In order to investigate it, FEA simulations are conducted for a polysilicon
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membrane with properties shown in Table 5.4. Thickness ranging from 300nm to 1000nm

is considered to stay in the target frequency range, 5MHz to 25MHz, as a sample of the

frequency.

In this section, the center resonant frequency, the frequency shift as well as the displace-

ment of the membrane are investigated. Eigenfrequency Prestressed analyses are performed

for the first six modes of the center resonant frequency of the devices with the aforemen-

tioned properties in Table 5.4. The circular bilayer CMUT-based gas sensor includes PIB

as an example of the sensing material in the conducted FEA simulations. As illustrated in

Figure 5.13, an added sensing material to the device does not affect shapes of frequency

modes.

From the conducted simulations in this thesis illustrated in Figure 5.14 (a), it can be

seen that by incrementing the thickness, the frequency of the circular bilayer CMUT-based

gas sensor increases for the membrane thicknesses ranging between 300nm and 1000nm.

Table 5.4: Structural properties of the simulated devices to evaluate effect of membrane
thickness.

Radius Top Membrane PIB Cavity Structural DC Bias PIB
Thickness Thickness Material Voltage Density

(µm) (nm) (nm) (nm) (V) (Kg/m3)
300, 500

9 200 150 Polysilicon 46 920
800, 1000

Figure 5.13: FEA simulations for the first six modes of frequency of a circular bilayer
CMUT-based gas sensor, with 300nm polysilicon membrane functionalized by 200nm PIB,
radius 9µm, cavity 150nm while biased with 46 DC voltage.
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Figure 5.14: (a) Resonant frequency (MHz) vs. membrane thickness (nm) and (b) fre-
quency shift (MHz) vs. membrane thickness (nm) where the reference resonant frequency
belongs to a device with 300nm membrane thickness. Simulations are conducted for
polysilicon membranes with 9µm radius, which are functionalized by 200nm PIB, while
biased by 46 DC voltage and the cavity is defined 150nm.

The raising in the resonant frequency is due to the higher stiffness of the thicker mem-

branes, as shown by the stiffness equation, 4.25. From FEA simulations, the frequency

shift for the circular bilayer CMUT-based gas sensor with the aforementioned properties in

Table 5.4 increases, as illustrated in Figure 5.14 (b). In addition, the frequency has slightly

a higher shift for the smaller thicknesses, which can improve the sensitivity of the circular

bilayer CMUT-based gas sensor.

Furthermore, the displacement of the top membrane versus the membrane thickness for

simulated bilayer circular CMUT-based gas sensors are shown in Figure 5.15.

Higher membrane thicknesses increase the effective flexural rigidity and consequently

the term 1 of the stiffness in addition to the residual stress of the device. Therefore, thicker

membranes have higher stiffness, which results in lower displacement when the same elec-

trostatic force is applied.

Based on the conducted FEA simulations in this work, a deformation profile of a 9µm

radius CMUT membrane is shown in Figure 5.16, which is simulated using COMSOL

Multiphysics. The polysilicon membrane has 300nm thickness, which is functionalized
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by 200nm PIB and biased with 46V DC when the cavity height is defined 150nm. Total

displacement of the device is also shown in Figure 5.17.

Figure 5.15: Displacement (nm) vs. membrane thickness (nm) for a polysilicon membrane
with 9µm radius, which is functionalized by 200nm PIB, while biased by 46 DC voltage
and the cavity is defined 150nm.

Figure 5.16: profile of the deflected polysilicon membrane for a structure with 9µm radius,
which is functionalized by 200nm PIB, while biased by 46 DC voltage and the cavity is
defined 150nm.

Figure 5.17: Total displacement of the bilayer circular CMUT-based gas sensor with 9µm
radius, which is functionalized by 200nm PIB, while biased by 46 DC voltage and the
cavity is defined 150nm.
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As a result, evaluating bilayer circular CMUT-based gas sensors with the thicknesses

ranging between 300nm and 1000nm illustrates that a smaller thickness contributes to

higher frequencies.

5.3.3 Effect of the Cavity Height

The cavity height has a significant role in the static operation of the bilayer circular CMUT-

based gas sensor at the equilibrium point. Based on Equation 4.8, the electrostatic force

created across the larger cavities is smaller than the devices with lower gap between the

electrode and membrane. Therefore, based on Equation 4.4, collapse voltage increases

for larger cavities. Additionally, by increasing the cavity height, the term 2 of the mem-

brane stiffness, which is softening effect due to the applied DC bias voltage, decreases.

Therefore, a lower DC bias voltage makes the membrane stiffer, which results in higher

frequencies. In this section, the effect of cavity height is evaluated for the first six modes

of the resonant frequency of the circular bilayer CMUT-based gas sensors. In addition to

the behavior of the frequency, frequency shift versus cavity height and the membrane dis-

placement are investigated. FEA simulations are conducted using COMSOL Multiphysics

for cavity heights ranging between 130nm and 500nm for a bilayer circular CMUT-based

gas sensor with structural parameters as shown in Table 5.5.

The first six modes of the resonant frequency are shown in Figure 5.18 for a simu-

lated device with 500nm polysilicon membrane and 9µm radius, which is functionalized by

Table 5.5: Structural properties of the simulated devices to evaluate the effect of cavity
height.

Radius Top Membrane PIB Cavity Structural DC Bias PIB
Thickness Thickness Material Voltage Density

(µm) (nm) (nm) (nm) (V) (Kg/m3)
130, 140, 150

9 500 100 Polysilicon 30 920
250, 500
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100nm PIB when biased with 30V DC, and the cavity is defined at 130nm. Based on the

conducted FEA simulations it can be seen that, in Figure 5.18, adding PIB as an example

of the sensing material does not affect the mode shapes of the frequency.

From the simulations the frequency increases for larger cavities, as illustrated in Figure

5.19 (a). The slope of the plotted frequency versus cavity height in Figure 5.19 (a) shows

that when the cavity height is smaller, the frequency increases faster in comparison to

when the cavity heights are larger. As shown in Figure 5.19 (b), the frequency shift for the

smaller cavity heights ranging between 130nm to 150nm shows higher increment, which

can be involved in improving the sensitivity of the circular bilayer CMUT-based gas sensor.

Figure 5.18: The first six frequency modes of conducted FEA simulations for a circular
CMUT-based gas sensor, with 500nm polysilicon membrane functionalized by 100nm PIB,
cavity height 130nm and radius 9µm, while biased with 30V DC.

Figure 5.19: (a) Resonant frequency (MHz) vs. cavity height (nm) and (b) frequency
shift (MHz) vs. cavity height (nm) when the reference resonant frequency belongs to the
device with 130nm cavity height. FEA simulations are conducted for 500nm polysilicon
membranes with 9µm radius, which are functionalized by 100nm PIB, while biased by 30
DC voltage.
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In this section, the displacement of the membrane for different cavity heights is also

investigated for the structure with aforementioned properties in Table 5.5. The achieved

FEA simulation results are shown as illustrated in Figure 5.20, wherein, they confirm that

the membrane displacement does not exceed one third of the cavity height, therefore, the

device does not collapse, as shown in Equation 4.4. Additionally, Figure.5.20 explains that

displacement of the membrane decreases rapidly by increasing the cavity height due to the

smaller electrostatic force.

Based on the conducted FEA simulations in this thesis, a profile of the deformed 500nm

polysilicon membrane is shown in Figure 5.21, which is functionalized by 100nm PIB, with

a radius of 9µm and a cavity height of 130nm while a 30V DC is applied to the membrane.

The simulated total displacement of the top membrane for the same device is also shown

in Figure 5.22.

Since applying DC bias voltage forces the device to operate closer to the optimum point,

therefore, the cavity height is an effective parameter which should be considered to avoid

device collapse, as shown in Equation 4.4. Maximum membrane displacement should not

exceed one third of the cavity height to avoid the device collapse, as illustrated in Equation

4.3.

Figure 5.20: Displacement(nm) vs. cavity height(nm) for a 500nm polysilicon membrane
with 9µm radius, which is functionalized by 100nm PIB, while biased by 30 DC voltage.
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Figure 5.21: Membrane displacement profile for a 500nm polysilicon membrane with 9µm
radius, which is functionalized by 100nm PIB, while biased by 30V DC and the cavity
height is defined 130nm.

Figure 5.22: Total displacement of the device with 500nm polysilicon membrane with
9µm radius, which is functionalized by 100nm PIB, while biased by 30V DC and the cavity
height is defined 130nm.

5.3.4 Effect of the Structural Material

In order to design a bilayer circular CMUT-based gas sensor, the material properties of

the top membrane play an important role in the center resonant frequency of the device.

Elasticity, which is represented by the Young’s modulus (E), the Poisson’s ratio (υ) and

the density (ρ) are effective material properties in the resonant frequency of the device. In

this thesis, it is assumed that the material behaves as a linear elastic material, therefore, the

simulations and the proposed comprehensive analytical model in Chapter 4 are valid when

Equation 5.2 remains valid [105],
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E =
σ

ε
(5.2)

where ε is defined as strain of the structural material. The Young’s modulus, E, rep-

resents the rigidity, which contributes to the effective flexural rigidity and consequently

the resonant frequency and the displacement of the membrane as shown in Equations 4.22

through 4.24 as well as Equation 4.5. Poisson’s ratio is the ratio of the transverse strain to

the longitudinal strain of the material [106], which is defined as Equation 5.3,

υ =
εtrans

εlong
(5.3)

where εtrans and εlong represent the transverse and the longitudinal strains respectively.

In this section, three common materials including silicon as reference in the micro and

nanofabrication technology, polysilicon and silicon nitride, are investigated as the structural

materials of the top membrane. The first six modes of the resonant frequency are simulated

for the devices with the properties, as shown in Table 5.6 and the simulated profiles are

shown in Figure 5.23.

As illustrated in Figure 5.23, conducted FEA simulations show that adding a sensing

material to CMUT structure does not affect the shape of the first six frequency modes.

From the simulation results as presented in Figure 5.24, the frequency (a) and the fre-

quency shift (b) are shown versus structural materials, silicon, polysilicon and silicon ni-

Table 5.6: Structural properties of the simulated devices to evaluate the effect of material
properties.

Radius Top Membrane PIB Cavity Structural DC Bias PIB
Thickness Thickness Material Voltage Density

(µm) (nm) (nm) (nm) (V) (Kg/m3)
Silicon,

9 500 100 140 Polysilicon, 30 920
Silicon Nitride
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Figure 5.23: FEA simulations for (a) first, (b) second, (c) third, (d) forth, (e) fifth and (f)
sixth modes for a circular CMUT-based gas sensor, with 500nm silicon membrane func-
tionalized by 200nm PIB, radius 9µm and 140nm cavity height while biased with 46 DC
voltage.

tride, for a circular bilayer CMUT-based gas sensor. Simulations are conducted for a 500nm

thickness of membrane, which is functionalized by 200nm PIB while radius and cavity are

defined at 9µm and 140nm respectively and the applied DC bias voltage is 46V . Based

on the material properties shown in Table 5.2 and Equations 4.21 through 4.24, a higher

Young’s modulus, Em contributes to a higher flexural rigidity, Deff, and consequently a

higher resonant frequency of device. Therefore, more elastic materials provide higher res-

onant frequencies for a circular bilayer CMUT-based gas sensor. As shown in Figure 5.24

(b), the frequency shift increases for stiffer materials, which needs to be considered for

sensitivity optimization based on target frequency range and sensor applications.

In order to investigate the effect of structural material on the device operation, the mem-

brane’s displacement is also studied for a bilayer circular CMUT-based gas sensor with a

500nm membrane thickness, which is functionalized with a 200nm PIB when the cavity

is defined at 140nm and the membrane is biased with 46V DC. From the simulation re-

sults, it can be seen that silicon and silicon nitride membranes have higher displacement in

comparison to polysilicon as presented in Figure 5.25. Based on the conducted studies in

this section, the displacement of top membrane with different structural materials does not

exceed one third of the initial gap, h0, as shown in Equation 4.4. Therefore, the device does

not collapse.
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Figure 5.24: (a) Resonant frequency (MHz) vs. material and (b) frequency shift (MHz) vs.
material where polysilicon is considered as the reference material for the frequency shift.
FEA simulations are conducted for 500nm membranes, functionalized by 200nm PIB, 9µm
radius and 140nm cavity height, while biased with 46V DC.

Figure 5.25: Displacement (nm) vs. material for a 500nm silicon membrane with 9µm
radius, which is functionalized by 200nm PIB and 140nm cavity height while biased by
46V DC.

To investigate displacement of device, a stationary study has been conducted using

COMSOL Multiphysics. Based on the conducted FEA simulations, a displacement profile

is shown in Figure 5.26 for a 500nm silicon membrane with 9µm radius, 140nm cavity

height while the membrane is functionalized by 200nm PIB and it is biased with 46V DC.

The simulated total displacement of the device’s membrane with aforementioned properties
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Figure 5.26: Displacement (nm) vs. material for a 500nm silicon membrane with 9µm
radius, which is functionalized by 200nm PIB and 140nm cavity height while biased by
46V DC.

Figure 5.27: Total displacement for a bilayer circular CMUT-based gas sensor with 500nm
functionalized silicon membrane with 200nm PIB, when the cavity is 140nm and 46V is
applied as the bias voltage.

is shown in Figure 5.27.

According to the conducted FEA simulations in this chapter and the proposed analytical

model in Chapter 4, the material properties of the top membrane including Young’s mod-

ulus (E), Poisson’s ratio (υ), relative permittivity (ε) and density (ρ) are all affecting the

center resonant frequency of device. Stiffer structural materials including silicon nitride

contribute to a higher resonant frequency whereas softer materials including polysilicon

provide a lower center resonant frequency. In this thesis, the target frequency range is con-

sidered 5MHz to 25MHz as a sample range. Therefore, mainly silicon and polysilicon are

chosen since they stay in the desired frequency range.
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5.3.5 Influence of the Sensing Material Properties

In a circular bilayer CMUT-based gas sensor, the sensing material properties including

mass and thickness changes in response to the target gas adsorption. This results in a shift

in the center resonant frequency of the device. Therefore, an investigation on mass and

thickness of the sensing material and their effects on the center resonant frequency is crit-

ical. Furthermore, it provides more information to evaluate the proposed analytical mode

in Chapter 4 for a bilayer circular CMUT-based gas sensor. In this thesis, PIB is used as

an example of the sensing material to conduct FEA simulations and evaluate the proposed

analytical model. All the material properties of PIB are considered in the proposed model

presented in Chapter 4 and conducted FEA simulations, including Young’s modulus, Pois-

son’s ratio, relative permittivity and density. Therefore, it can be replaced by a variety of

sensing materials while the proposed model and method for conducting FEA simulations

still stays valid.

5.3.5.1 Investigation on Sensing Material Mass Change

In the above sections, critical geometrical parameters are investigated for a circular bilayer

CMUT-based gas sensor. However, in this section, change in mass of the sensing mate-

rial is evaluated, since effective mass of the sensor changes due to exposure to the target

gas. Change in the mass affects the center resonant frequency as shown in Equation 4.17,

which can be correlated to the target gas adsorption. Density of the sensing material is

investigated as the representative for mass of the sensing layer, while conducting FEA sim-

ulations using COMSOL Multiphysics. Sensing material mass affects the center resonant

frequency of the device as shown in Equation 4.17. This means by increasing the mass of

the sensing material, center resonant frequency of circular bilayer CMUT-based gas sensor

decreases. In this section, change in density of device is investigated for silicon and polysil-

75



icon membranes with 9µm radius, while functionalized with different thicknesses of PIB

as an example of the sensing material. The PIB density varies between 920 Kg/m3, which

is the original density to 1840 Kg/m3. The geometrical properties of simulated devices in

this section, are shown in Table 5.7.

In this thesis, the first six modes of the frequency are studied by conducting FEA sim-

ulations on bilayer circular CMUT-based gas sensors. The simulated profiles are shown

in Figure 5.28 for a circular bilayer CMUT-based gas sensor with a 9µm radius, a 500nm

functionalized silicon membrane with 50nm PIB while the cavity is 140nm and the mem-

brane is biased with 46V DC. As illustrated in Figure 5.28, adding the sensing material to

CMUT structure while its mass is changing does not affect shape of the vibration modes.

Table 5.7: Structural properties of the simulated devices to evaluate the sensing material
mass change.

Radius Top Membrane PIB Cavity Structural DC Bias PIB
Thickness Thickness Material Voltage Density

(µm) (nm) (nm) (nm) (V) (Kg/m3)
50 Silicon, 920, 1150, 1380

9 500 140 46
100 Polysilicon 1610, 1840

Figure 5.28: (a) First, (b) second, (c) third, (d) fourth, (e) fifth and (f) sixth modes of
frequency for a bilayer circular CMUT-based gas sensor with 9µm radius, 500nm silicon
membrane, which is functionalized by 50nm PIB, while cavity height is 140nm and biased
with 46V DC.
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From the simulations and as shown in Figure 5.29, by increasing sensing material’s

mass that represents gas molecule absorption phenomena, frequency of device reduces

while frequency shift increases. Decline in the frequency versus sensing material den-

sity is due to higher effective mass of the device as shown in Equation 4.17. Additionally,

the functionalized silicon membrane with a 50nm PIB, provides a higher frequency than the

coated silicon membrane with a 100nm PIB. However, the functionalized polysilicon mem-

brane with a 100nm PIB presents a lower frequency than the silicon membrane, which can

be linked to the material properties. Based on the conducted FEA simulations, behavior of

the frequency for functionalized silicon and polysilicon membranes with a 100nm PIB are

parallel and very close, as shown in Figure 5.29 (a). Therefore, the frequency shift of the

devices corresponds to each other as shown in Figure 5.29 (b). As a result, functionalizing

either silicon or polysilicon with a 100nm PIB thickness have the same frequency shift due

to their close material properties, which can result in close sensitivity.

Figure 5.29: Frequency (MHz) vs. sensing material density(Kg/m3) (a) and frequency
shift (MHz) (b) vs. sensing material density(Kg/m3) when the reference frequency belongs
to sensing material with original density (920Kg/m3). FEA simulations are conducted for
bilayer circular CMUT-based gas sensors with 9µm radius, 500nm thickness of the silicon
and polysilicon membranes, coated by 50nm and 100nm PIB, 140nm cavity height while
biased with 46V DC.

77



In addition to the center resonant frequency and the frequency shift of the device, dis-

placement of the membrane is investigated in this section, in order to avoid device collapse.

Conducted FEA simulations in this thesis present displacement for a functionalized 500nm

silicon and a polysilicon membranes with 50nm and a 100nm PIB while the cavity height

is 140nm and the top membrane is biased with 46V DC, as shown in Figure 5.30. There-

fore, as illustrated in Equation 4.6, displacement of the top membrane does not change

for different densities. However, FEA simulation results shown in Figure 5.30 present that

the membrane’s material properties and its thickness affect membrane displacment. More-

over, by comparing the achieved results for functionalized silicon and polysilicon with a

100nm PIB, the silicon provides higher displacment which is due to its material proper-

ties. Additionally, decreasing the PIB thickness for the device shown in Figure 5.30, with

silicon membrane results in a higher displacement while the device is still stable and does

not collapse. FEA simulations are conducted in this section to investigate the membrane

displacement amplitude for silicon and polysilicon. It is shown that while the device is

functionalized by different PIB thicknesses, displacement does not exceed one third of the

initial cavity and consequently the device does not collapse.

Figure 5.30: Displacement of the 500nm silicon and polysilicon membranes, which are
functionalized by 50nm and 100nm while the cavity height id 140nm and the membrane is
biased with 46V DC.
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In Figure 5.31, displacement profile of one of the simulated devices in COMSOL Mul-

tiphysics is shown. The bilayer circular CMUT-based gas sensor has 500nm silicon mem-

brane, which is functionalized by 50nm PIB while the radius and the cavity height are 9µm

and 140nm respectively. The device is biased with a 46V DC. Total displacement of the

device is also shown in the Figure 5.32.

Figure 5.31: The displacement profile of 500nm silicon membrane for a simulated circular
CMUT-based gas sensor with 9µm radius, 140nm cavity height while biased with 46V DC.

Figure 5.32: Total displacement of 500nm silicon membrane for a simulated circular
CMUT-based gas sensor with 9µm radius, 140nm cavity height, biased with 46V DC.

5.3.5.2 Investigation on Sensing Material Thickness Change

In a circular bilayer CMUT-based gas sensor, by exposing the sensing material to the target

gas, the properties of sensing material change in response to the target gas adsorption. One
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of the critical parameters which can be affected is the sensing material thickness. Adsorbing

the target gas can cause swelling in the sensing material depending on its properties. Based

on conducted FEA simulations and the proposed analytical model in this thesis, changes in

mass and thickness of the sensing material have similar effects on the resonant frequency

of the device. As a result, the thickness of the material does not counteract the effect of

the mass change and instead they both act together to strengthen the resonant frequency. In

this section, FEA simulations results are presented for devices mentioned in Table 5.8.

First six modes of resonant frequency are studied and shown in Figure 5.33. The vi-

bration modes are not changed while thickness of the sensing layer altered due to the gas

adsorption. Increasing the sensing material thickness increases the effective flexural rigid-

ity, Deff, of the device as shown in Equations 4.21 through 4.24.

Table 5.8: Structural properties of the simulated devices to evaluate sensing material thick-
ness change.

Radius Top Membrane PIB Cavity Structural DC Bias PIB
Thickness Thickness Material Voltage Density

(µm) (nm) (nm) (nm) (V) (Kg/m3)
100, 120, 140 Silicon,

9 500 140 46 920
160, 180, 200 Polysilicon

Figure 5.33: (a) first, (b) second, (c) third, (d) forth, (e) fifth and (f) sixth modes of fre-
quency, simulated in COMSOL for a 500nm silicon membrane with radius 9µm and cavity
height 140nm. The membrane is functionalized by 100nm PIB while 46V DC is applied.
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Additionally, a thicker sensing material contributes in stiffening the membrane as shown

in term 3 of Equation 4.25, stiffening effect due to the residual stress. Consequently, if the

sensing material swells in response to target gas adsorption, the center resonant frequency

increases, as shown in Figure 5.34 (a), based on the FEA simulations. The results in Figure

5.34 are shown for 500nm silicon and polysilicon membranes, which are functionalized by

100nm PIB, with 9µm radius while the cavity is defined 140nm and 46V DC is applied.

Frequency shift of the circular bilayer CMUT-based gas sensor also increases for higher

sensing material thicknesses as shown in Figure 5.34 (b).

Displacement of the aforementioned device in Table 5.8 is also measured by stationary

simulations in COMSOL Multiphysics to stay below one third of cavity height, in order to

avoid device collapse. As shown in Figure 5.35, the displacement for a silicon membrane

is higher than the polysilicon membrane, which is due to their different material properties,

based on Equation 4.6. Considering the proposed results in Figure 5.35, the membrane

deflection is lower than one third of the initial cavity height.

Figure 5.34: Frequency (MHz) vs. sensing material thickness(nm), (a) and frequency shift
(MHz) (b) vs. sensing material thickness(nm) where the structure with 120nm is considered
for the reference frequency. FEA simulations are conducted in COMSOL for 500nm silicon
and polysilicon membranes with radius 9µm and cavity height 140nm. The membrane is
functionalized by 100nm PIB while 46V DC is applied.
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Figure 5.35: Displacement (nm) vs. sensing material thickness, simulated in COMSOL
for a 500nm silicon and polysilicon membranes with radius 9µm and cavity height 140nm.
The membrane is functionalized by 100nm PIB while 46V DC is applied.

Therefore, the device does not collapse while sensing material’s thickness is changing

due to the swelling after target gas adsorption.

A simulated displacement profile of the device with 500nm silicon and polysilicon

membranes is shown in Figure 5.36. Displacement simulations are conducted using COM-

SOL Multiphysics for functionalized membranes with 100nm PIB while it is biased with

46V DC and the cavity is defined at 140nm. By conducting FEA simulations, as shown in

Figure 5.36 that the maximum displacement occurs at the center of the membrane, which

is 16nm. Total displacement of the silicon membrane is also shown in Figure 5.37, which

confirms that the membrane deflects less than one third of the cavity, therefore, it does not

collapse.

As a result, and based on the conducted FEA simulations in this section as well as

Figure 5.36: The displacement profile of a 500nm silicon membrane with radius 9µm and
cavity height 140nm. The membrane is functionalized by 100nm PIB while 46V DC is
applied.
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Figure 5.37: Total displacement of a 500nm silicon membrane with radius 9µm and cavity
height 140nm. The membrane is functionalized by 100nm PIB while 46V DC is applied.

the proposed model in Chapter 4, the change in thickness of the sensing material affects

the resonant frequency of device. A silicon membrane provides a slightly higher resonant

frequency that of a polysilicon membrane, which is due to its different material properties.

Furthermore, a higher frequency shift belongs to silicon membrane, which can affect the

sensitivity of the circular bilayer CMUT-based gas sensor as will be discussed in Section

5.5.

5.4 Comparison Between the Proposed Analytical Model

and Conducted FEA Simulations

The proposed analytical model presented in Chapter 4, has been developed by employ-

ing critical design parameters including structural and sensing material properties, radius,

membrane thickness, cavity height as well as residual stresses of deflectable membrane

and sensing layer. The aforementioned parameters affect spring constant and consequently,

center resonant frequency of circular bilayer CMUT-based gas sensor. Therefore, the pro-

posed comprehensive model is developed for the first time, to provide information about
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frequency based on different critical parameters. FEA simulations are further conducted as

shown in section 5.3 to enhance the sensitivity of circular bilayer CMUT-based gas sensor.

In this section, effect of the critical parameters on center resonant frequency of device is

compared for conducted FEA simulations and the proposed analytical model in Chapter

4. In Figure 5.38, the graph of frequency versus radius is shown for a device with 500nm

polysilicon membrane, which is functionalized by a 300nm PIB with 500nm cavity height

where a 30V DC is applied c©2019 IEEE. The achieved results by the proposed compre-

hensive analytical model, in addition to the conducted FEA simulation results are shown in

Figure 5.38 for radii ranging 5µm to 30µm. By comparing the results, the average variation

between the proposed model and the conducted FEA simulations is less than 3%.

In Figure 5.39, the graph of frequency versus membrane thickness is shown for 9µm

radius polysilicon membrane. The membrane is functionalized by a 200nm PIB while

cavity is defined at 150nm and the membrane is excited with 46V DC. The results for the

proposed analytical model are compared with conducted FEA simulations in Figure 5.39,

which shows less than 1% average variation.

The proposed analytical model and the conducted FEA simulations are compared in

Figure 5.38: Resonant frequency vs. membrane radius for a structure with 500nm polysil-
icon top membrane and cavity height, which is functionalized by 300nm PIB while 30V
DC is applied.
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Figure 5.39: Resonant frequency vs. membrane thickness for a structure with 9µm ra-
dius,polysilicon membrane and 200nm PIB thickness as well as 150nm cavity height, which
is excited by 46V as the applied DC bias voltage.

Figure 5.40 where they predict center resonant frequency of device versus different cavity

heights. The comparison shown in Figure 5.40 is conducted for a device with a 500nm

polysilicon membrane and 9µm radius, while a 30V DC is applied to the membrane c©2019

IEEE. Based on Equation 4.9, the model needs to incorporate cavity height, which creates

a capacitor between the top and the bottom electrode, in order to accurately present the

sensor sensitivity. Consequently, in the proposed model, the effective cavity height has

also been employed to optimize the CMUT gas sensor sensitivity. The average variation

between the presented FEA simulations and the proposed model in Figure 5.40 is less than

1%.

In Figure 5.41, the devices’ frequencies using different structural materials have been

shown in addition to the comparison with FEA simulation results. The results are shown

for a device with a 9µm radius and a 500nm membrane, while the cavity is at 140nm and

a 30V DC is applied. The device is functionalized with a 200nm PIB as the sensing ma-

terial. Average variation between the proposed analytical model and the conducted FEA

simulations in frequency prediction versus material is approximately 5%.

Since the mass of the sensing material in a CMUT sensor changes by exposing to target

gas, the proposed model is employed to predict resonant frequency for mass changes in
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Figure 5.40: Resonant frequency vs. cavity height for a structure with 9µm radius, 500nm
thickness polysilicon membrane and 30V applied DC voltage.

Figure 5.42 c©2019 IEEE. In addition, the conducted FEA simulation results are presented

in Figure 5.42 to be compared with the proposed model. This comparison is shown in

Figure 5.42 for a circular bilayer CMUT-based gas sensor with a 9µm radius and a 500nm

polysilicon membrane, which is functionalized by a 100nm PIB, while the cavity height is

set at 140nm and the membrane is biased by 30V DC. Average variation between the con-

ducted FEA simulations and the proposed model in predicting resonant frequency versus

sensing material mass change is less than 1%.

Frequency versus PIB thickness is shown in Figure 5.43 based on conducted FEA sim-

Figure 5.41: Resonant frequency vs. material for a structure with 9µm radius, 500nm top
membrane thickness and 200nm PIB thickness as well as 140nm cavity height, which is
excited by 30V as the applied DC bias voltage.
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Figure 5.42: Resonant frequency prediction vs. sensing material mass for a structure with
9µm radius, 500nm polysilicon membrane, 140nm cavity height, which is functionalized
by 100nm PIB and 30V as the applied DC bias voltage.

ulations for a circular bilayer CMUT-based gas sensor. The device has 9µm radius with

500nm silicon membrane while the cavity is 140nm and the device is biased with 46V DC.

In Figure 5.43, the proposed analytical model is also shown to be compared to the con-

ducted FEA simulations. Average variation between the conducted FEA simulations in this

chapter and the propose analytical model in Chapter 4 is less than 1%.

Figure 5.43: Resonant frequency prediction vs. sensing material thickness for a structure
with 9µm radius, 500nm silicon membrane, 140nm cavity height, which is functionalized
by PIB and biased with 46V DC.
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5.5 Sensitivity Evaluation

In this thesis and in an unconventional approach, CMUT structure operates as a mass reso-

nant sensor. Conventional CMUT structure is functionalized by a sensing material, which

adsorbs target gas molecules when it is exposed to it. Change in effective mass of the de-

vice results in a shift in center resonant frequency. Since this application is new, there was

no analytical model to predict center resonant frequency of device until the comprehensive

analytical model is proposed in this thesis. FEA simulations were further conducted, which

are presented in Section 5.3 and compared with the proposed analytical model, presented

in Section 5.4. In this section, conducted FEA simulations for critical design parameters

are used to optimize sensitivity of device for low gas concentration detection, which as

shown in Equation 5.1, is defined as frequency shift per unit mass change. Therefore,

FEA simulations are conducted to investigate effect of radius on sensitivity of device, as

illustrated in Figure 5.44. The evaluation is done for devices with 500nm polysilicon mem-

brane, functionalized by 300nm PIB as a sensing material for radii ranging between 7µm

and 30µm. The devices are biased with 30V DC when the cavity height is defined 500nm.

As shown in Figure 5.44, circular bilayer CMUT-based gas sensor with smaller radius has

higher sensitivity to mass. Based on the conducted simulations maximum achieved sen-

sitivity is 222Hz/zg for the device with 9µm radius in a sample frequency range between

5MHz and 25MHz. This device consists of a 500nm polysilicon membrane, functionalized

with a 300nm PIB when the cavity is at 500nm.

Sensitivity versus membrane thickness is evaluated by conducting FEA simulations, as

shown in Figure 5.45. It is illustrated that by increasing the membrane thickness, the sen-

sitivity of the bilayer circular CMUT-based gas sensor is decreasing. Therefore, a thinner

membrane which has a lower mass, provides higher sensitivity to mass in the gas sensing

application.
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Figure 5.44: Sensitivity (Hz/zg) vs. membrane radius(µm) for a 500nm polysilicon mem-
brane, which is functionalized by 300nm PIB while biased by 30V DC and the cavity is
defined 500nm.

Figure 5.45: Sensitivity (Hz/zg) vs. membrane thickness (nm) for a polysilicon membrane
with 9µm radius, which is functionalized by 200nm PIB, while biased by 46 DC voltage
and the cavity is defined 150nm.

In micro and nano fabrication technology, silicon is extensively used as wafer and also

structural material. Therefore, in order to evaluate effect of structural material on sensitivity

of a circular bilayer CMUT-based gas sensor, silicon is considered as the reference while

polysilicon and silicon nitride are compared with it. FEA simulations are conducted for

devices with 500nm membrane thickness, which are functionalized with 200nm PIB’s while

the radius and the cavity are set at 9µm and 140nm respectively. The devices are biased with

a 46V DC. As illustrated in Figure 5.46, polysilicon provides higher sensitivity to mass in

comparison to silicon nitride. This is correlated to its material properties and its lower
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Figure 5.46: Sensitivity (Hz/zg) vs. material for a 500nm membrane, functionalized by
200nm PIB, 9µm radius and 140nm cavity height, while biased with 46V DC.

density.

As discussed in section 5.3.5.1, the sensing material properties can change while it is

exposed to a target gas. The thickness and the mass of the sensing material are two of

parameters which can be affected during sensing procedure. The change in the mass and

the thickness of the sensing material does not counteract their effects on the center resonant

frequency, but instead they strengthen each other. In Figure 5.47, sensitivity of the de-

vice is shown versus the sensing material density for a device with a 9µm radius, a 500nm

membrane thickness, when cavity is defined at 140nm. The device is functionalized by

50nm and 100nm PIB. As shown in Figure 5.47, when the sensing material’s mass changes

due to higher gas adsorption, sensitivity decreases, which is correlated to the higher mass

of the membrane. It is also illustrated that the functionalized silicon membrane with a

50nm PIB as an example of the sensing material provides a higher sensitivity in compar-

ison to a functionalized silicon membrane with 100nm PIB. In addition, the sensitivity of

the functionalized silicon and polysilicon membranes with 100nm PIB, are almost equal.

Therefore, a lighter sensing material, which results in a lower effective membrane’s mass,

associates with a higher sensitivity of device.

As a result, a smaller initial thickness of the sensing material provides a bilayer circular

CMUT-based gas sensor with a higher sensitivity to the mass change. Moreover, the effect
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Figure 5.47: Sensitivity(Hz/zg) vs. sensing material density(Kg/m3) for a bilayer circular
CMUT-based gas sensor with 9µm radius, 500nm thickness of the silicon and polysilicon
membranes, which are functionalized by 50nm and 100nm PIB, with 140nm cavity height
while biased with 46V DC.

of sensing material’s properties on the sensitivity of the device is dominated by its initial

thickness. In addition to the sensing material’s mass, effect of its thickness is also evaluated

on the sensitivity of device, as shown in Figure 5.48. Simulations are conducted for a device

with 500nm silicon and polysilicon membranes, functionalized with 100nm PIB, while the

cavity is defined at 140nm and 46V DC is applied.

As illustrated in Figure 5.48, polysilicon membrane provides a higher sensitivity in

Figure 5.48: Sensitivity (MHz/zg) vs. sensing material thickness, simulated in COMSOL
for a 500nm silicon and polysilicon membranes with radius 9µm and cavity height 140nm.
The membrane is functionalized by 100nm PIB while 46V DC is applied.
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comparison to silicon, which is correlated to the lower material density. By combining the

obtained results in evaluating the effect of radius, membrane thickness and material on the

sensitivity of a bilayer circular CMUT-based gas sensor, a smaller radius and thickness for

a polysilicon membrane provides higher sensitivity. In this thesis and by considering the

sample frequency range between 5MHz and 25MHz, the proposed bilayer circular CMUT-

based gas sensor comprises 9µm radius, 500nm polysilicon membrane with a 500nm cavity

height while biased with 46V DC.

5.6 Conclusions

In this chapter, critical design parameters of a circular bilayer CMUT-based gas sensor

are investigated using COMSOL Multiphysics. Eigenfrequency Prestressed and Station-

ary studies are conducted to evaluate effects of critical parameters on center resonant fre-

quency and deflection of the top membrane in order to avoid device collapse. These critical

parameters include radius, membrane thickness, cavity height, structural material as well

as thickness and mass of sensing layer. In this chapter, PIB is used as an example of the

sensing material to conduct FEA simulations and analyze performance of the circular bi-

layer CMUT-based gas sensor. As a result, and based on the conducted FEA simulations

in this chapter, smaller radii, thinner thickness of membrane and lighter structural mate-

rial, effectively, contribute in providing a sensitive CMUT-based gas sensor. Moreover, the

achieved results using the proposed analytical model is compared with the obtained results

of conducted FEA simulations. Maximum average variation between the proposed compre-

hensive analytical model and conducted FEA simulations is 5%. According to the achieved

results, maximum obtained sensitivity in this chapter for a sample frequency range between

5MHz and 25MHz is 222 Hz/zg for a device with 9µm radius, 500nm polysilicon mem-

brane, which is functionalized by 300nm PIB. The device is biased with 30V DC while the
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cavity height is defined 500nm. In order to fabricate the proposed device, micro fabrication

techniques should be employed which have better control on forming a thinner membrane

while providing high performance and quality factor, as discussed in section 2.7. Therefore,

details of the proposed fabrication process for the designed device using advanced micro

and nano fabrication technology is presented in Chapter 6. These fabrication techniques

are chosen in order to provide a device with enhanced sensitivity.
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Chapter 6: Proposed Fabrication Steps for the

CMUT-Based Gas Sensor with Enhanced

Sensitivity

6.1 Introduction

In a CMUT-based gas sensor there are various critical parameters in micro and nano scale,

which need to be considered in the design as well as fabrication processes and feasibility.

These critical parameters are radius, membrane thickness, cavity height, structural and

sensing material properties as well as residual stresses of the top membrane and sensing

layer. The aforementioned parameters are effectively involved in sensor’s performance

and device’s sensitivity, which also should be considered in the fabrication feasibility. As

discussed in chapter 5, thinner and lighter membrane of a CMUT-based gas sensor as well

as smaller radii contribute in more sensitive devices, due to the lower involved effective

mass [68]. Therefore, appropriate micro fabrication techniques need to be employed to

fabricate the proposed CMUT-based gas sensor in Chapter 5, which has relatively thin

membrane and small dimensions. As discussed in Chapter 3, sacrificial technique is the

conventional process for CMUT fabrication, An SEM image of the fabricated CMUT in

this thesis using sacrificial technique is shown in Figure 6.1.

However, based on the review conducted in Chapter 3, wafer fusion bonding is pre-

ferred to fabricate CMUT-based gas sensors due to the more controllable processes and the

absence of releasing holes on the top surface. In addition, efficiency of CMUT-based gas
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Figure 6.1: SEM image for a fabricated CMUT using sacrificial technique (POLY-
MUMPs), chip IMUWR001.

sensors fabricated by wafer bonding technique has been reported higher than the devices

fabricated by the sacrificial technique, as discussed in Chapter 3 [107]. This is due to op-

timization feasibility of top membrane and cavity using different substrates. Moreover, in

the sacrificial fabrication process and at the stage of functionalizing the device with sensing

material, coated polymer may reach bottom membrane through the releasing holes. This,

consequently, damps the device deflection and decreases CMUT performance. Therefore,

in this chapter wafer fusion bonding is employed to fabricate the proposed sensitive device

in section 5.5 and details of fabrication steps are proposed. In addition to the sensitivity,

selectivity is a critical component for sensory performances, which can be addressed by

using advanced microfabrication technology, wherein, individual CMUT cells can be con-

figured in an array format [108]. In this work and in order to use CMUT configuration as a

gas sensor, the top membrane is functionalized by PIB using inkjet dispensing.
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Table 6.1: Physical properties of the proposed CMUT for fabrication. Radius of the struc-
ture is 9 µm.

Layer Material Thickness (nm)
Substrate Silicon
Insulator S i3N4 80±8

Structural Material Polysilicon 500±10
Cavity Vacuum 500±5

Sensing Material PIB 200±10

6.2 Wafer Fusion Bonding Fabrication Steps for

CMUT-Based Gas Sensor

Based on the review conducted in Chapter 3, following steps for CMUT-based gas sensor

fabrication are proposed employing wafer fusion bonding process. This technique has ca-

pability to fabricate a wide range of cell dimension while providing uniformity, precision

and simple fabrication steps [81]. In wafer fusion bonding technique, since cavity is pat-

terned on a separate wafer, there is no need to creates releasing holes on the membrane

as surface micromachining process. Therefore, efficiency of the device increases due to

the vacuum sealed cavity between the membrane and bottom electrode [81]. In this sec-

tion, fabrication steps for a CMUT-based gas sensor are provided in details, using wafer

fusion bonding and inkjet dispensing. All materials, fabrication techniques including etch-

ing, lithography and deposition processes as well as temperature of steps are presented. In

addition, acceptable tolerance and device dimensions are shown in Table 6.1.

In this work, a highly doped silicon wafer is used as the bottom electrode [109]. Polysil-

icon on insulator (Poly SOI) wafer is used to create the top membrane. To start fabrication

process, silicon wafer is cleaned by piranha solution, as shown in Figure 6.2 (a) [110]. A

2µm silicon dioxide layer is thermally grown by wet oxidation on the wafer in temperature

1050◦C, as illustrated in Figure 6.2 (b). To pattern silicon dioxide, a positive photoresist is
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spin coated to create 0.8µm thickness of photoresist, which is followed by soft baking to

evaporate extra solvent of the photoresist, as shown in Figure 6.2 (c). To expose the pho-

toresist to UV light, proper masks are used to create desirable pattern on silicon dioxide

when molecule bonds of positive photoresist break and restructure, as illustrated in Figure

6.2 (d) [70]. To remove the restructured photoresist molecules, as shown in Figure 6.2

(e), a proper developer is used that is provided with the photoresist by the manufacturers.

Since plasma etching does not have a good selectivity between silicon and silicon diox-

ide, a combination of plasma etching and wet etching are used. 80% of silicon dioxide

is removed by plasma etching and the rest 20% is wet etched by 20:1 buffered oxide etch

(BOE), as it is shown in Figure 6.2 (f) [109]. This combination of etching silicon dioxide

provides surface smoothness, which is crucial for wafer bonding [109]. In Figure 6.2 (g), it

is shown that another layer of silicon dioxide with 2µm thickness is grown on the previous

layer, by wet oxidation in 1050◦C. As shown in Figure 6.2 (h), by using BOE 6:1, all the

grown silicon dioxide is removed while anchors and bottom electrodes are patterned. In

Figure 6.2 (i, j), it is shown that 40nm of silicon dioxide is grown in temperature 1000◦C

using dry oxidation on the silicon wafer, which is followed by depositing 80nm of silicon

nitride (S i3N4) using LPCVD method.S i3N4 is deposited to insulate the bottom electrode.

S iO2 is grown under S i3N4 to protect the wafer smoothness underneath against plasma

etching while patterning S i3N4. In addition, it acts as an etch stop layer while S i3N4 is

being removed. As shown in Figure 6.2 (k), a positive photoresist is spin coated on the

oxide-nitride, which is followed by a soft bake step to evaporate off extra solvent [70].

Employing proper mask and lithography process make the exposed photoresist soluble in

the developer to pattern the photoresist, as shown in Figure 6.2 (l, m). By plasma etching,

S i3N4 in the wells is removed, as shown in Figure 6.2 (n), while it remains on the plateau

areas to insulate the bottom electrode. Extra photoresist is removed by acetone after pat-

terning S i3N4. S iO2 layer is lithographically patterned by using a positive photoresist.
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This step is followed by developing photoresist and wet etching S iO2 using BOE 20:1, as

shown in Figure 6.2 (o, p, q). By employing wet oxidation, 700nm S iO2 layer is grown

in temperature 1050◦C to create the anchors, as illustrated in Figure 6.2 (r) [109]. These

raised areas act as self-alignments when the Poly SOI wafer is being bonded to the wafer.

In order to have a uniform surface for the anchors, a polishing process is used. As can be

seen in Figure 6.2 (s), Poly SOI wafer which contains a 500nm highly doped polysilicon

layer, is bonded to the bottom wafer in a vacuum chamber [24]. To make the molecule

bonds stronger between the Poly SOI wafer and the substrate which contains the cavity,

an annealing process is needed in nitrogen (N2) at 1050◦C [109]. In the next step, the top

membrane is released by using Tetramethyl ammonium Hydroxide (TMAH) and 6:1 BOE

to remove handle wafer and BOX layer, as illustrated in Figure 6.2 (t) [109]. It is shown

in Figure 6.2 (u) that device is functionalized by PIB on the top membrane using inkjet

printing [42]. In order to coat the top membrane with PIB, droplets of the sensing material

are diluted and ejected on top of the device by inkjet dispensing system [42].
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Figure 6.2: Schematic view of CMUT-based gas sensor fabrication steps using wafer fu-
sion bonding and inkjet dispensing.

6.3 Conclusions

In this chapter, wafer fusion bonding is suggested to fabricate the proposed CMUT-based

gas sensor in Chapter 5. This technique is used unlike the conventional process, sacrifi-

cial technique, since it has more controllable fabrication steps, which are necessary for a

CMUT-based gas sensor to have a thin membrane. In addition, this technique does not

create sacrificial holes on top membrane to release the membrane and create the cavity.

This feature is important in CMUT-based gas sensor since gas molecules do not reach the

cavity and affect sensor’s performance. Moreover, existence of the sacrificial channels can

damp operation of the device, since sensing polymer may reach the bottom electrode dur-

ing coating step. Consequently, details of wafer fusion bonding technique to fabricate a

CMUT-based gas sensor including lithography, LPCVD, wet and dry oxidations, plasma

etching as well as inkjet dispensing are shown in this chapter. Fabrication steps are pro-

posed for the CMUT- based gas sensor with 222Hz/zg sensitivity as discussed in Chapter

5. The proposed device has a 500nm polysilicon membrane, which is functionalized by

200nm PIB while the radius and cavity are 9µm and 500nm, respectively. This proposed

fabrication step can be utilized as a platform to develop optimized CMUT gas sensors in

future. The process remains applicable for CMUT-base sensors utilizing any other sensing

materials as well as operating at any desired given frequencies.
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Chapter 7: Conclusions and Future Work

Micro and nano gas sensors have a wide range of applications in various fields. They

are applicable in biomedical field, industrial manufacturing, air quality monitoring, envi-

ronmental science, military and automotive industries. Benefiting from advanced micro

and nano fabrication technology has led gas sensing advances to be miniaturized and im-

plementable in wearable electronics and portable devices. Capacitive micromachined ul-

trasonic transducer (CMUT) is one of the configurations that is recently employed in gas

sensing technology unlike its conventional approach as a transducer. This configuration

has gained attraction due to its high sensitivity and quality factor, low LOD and relatively

simple structure and vast range of applications while using MEMS platform. This structure

can also benefit from low cost of fabrication due to its relatively simple structure. In a typ-

ical CMUT-based gas sensor, conventional CMUT is functionalized by a sensing material

related to the target gas or volatile organic compound (VOC). These sensors can detect a

wide range of gases while being selective in a complex environment when they are func-

tionalized by various polymers. In order to design a CMUT-based gas sensor, there are dif-

ferent critical design parameters which need to be considered including radius, membrane

thickness, residual stress and material properties of the membrane. In addition, influencing

parameters of the sensing material on center resonant frequency of sensor including thick-

ness and material properties, should be taken into consideration. Therefore, the objective

of this thesis is proposing a comprehensive analytical model for a CMUT-based gas sensor,

for the first time, which comprises all the critical design parameters. In addition, FEA sim-

ulations are conducted to enhance the sensitivity of device for low gas concentration while

being compared with the analytical model.
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7.1 Conclusions

In this thesis and for the first time, a new comprehensive analytical model is developed

for a circular bilayer CMUT-based gas sensor. The proposed model includes all the critical

design parameters of a CMUT-based gas sensor such as radius, thickness and material prop-

erties of membrane as well as effective cavity height. The proposed model also includes

sensing material’s mass, thickness and its material properties. In addition, membrane soft-

ening effect due to the applied DC bias voltage as well as residual stress of the membrane

and sensing layer are considered in the proposed analytical model. FEA simulations are

further conducted using COMSOL Multiphysics to enhance sensor sensitivity for low gas

concentration detection for a frequency range between 5MHz and 25MHz as a sample of

the frequency range.

The simulation results for radius of membrane shows that smaller radii contribute in

higher frequency, frequency shift and consequently sensor’s sensitivity. However, thicker

membranes have higher frequency and frequency shift while provide a less sensitive CMUT-

based gas sensor. Based on the conducted FEA simulations, silicon nitride membrane has

higher frequency and frequency shift whilst polysilicon membrane contributes in a more

sensitive device due to its lower density.

In addition, when sensing material exposes to a target gas it adsorbs the target gas

molecules, which can increase mass and thickness of the sensing layer. Consequently, in

this thesis, FEA simulations are also done to investigate effects of mass and thickness of the

sensing material on center resonant frequency of the sensor. Results show that frequency

shift of the sensor increases when the sensing material’s mass and thickness are raised.

Therefore, these two parameters do not neutralize each other and instead they enhance

their effects on center resonant frequency of the sensor.

Based on the conducted FEA simulations in this thesis, a CMUT sensor is designed
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where its maximum achieved sensitivity is shown to be 222 Hz/zg. This designed sensor

uses a polysilicon membrane with radius and thickness of 9µm and 500nm, respectively.

The sensor is then functionalized by 300nm PIB. The device is biased with 30V DC while

the initial cavity height is 500nm. The frequency range in this thesis is selected between

5MHz and 25MHz as a sample. In addition, achieved results of the proposed analytical

model are compared with the conducted FEA simulations. Calculated average variation

based on the comparison shows less than 3% for the radius, less than 1% when membrane

thickness and cavity height are evaluated and 5% for structural material, respectively. Fre-

quency versus sensing material’s mass and thickness also show less than 1% average vari-

ation.

7.2 Future Works

The proposed comprehensive analytical model in this thesis, is the first analytical model for

a bilayer CMUT-based gas sensor with circular geometry. The CMUT-based gas sensors

can be optimized using the developed model in this work for any gas sensing application

with a target sensitivity and operating at a desired frequency. The sensor can be further

fabricated using the proposed fabrication techniques in this work that uses wafer fusion

bonding and inkjet dispensing, to conduct measurements in addition to comparison with

the proposed analytical model and FEA simulations in this thesis. The proposed CMUT-

sensor can be functionalized with different sensing materials to evaluate selectivity of the

device in a complex environment.
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