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ABSTRACT 

Lung Cancer is one of the most deadly diseases which claim millions of 

lives all around the world every year. One of the major reasons that make the 

treatment process of lung cancer hard is that the patients are diagnosed only during 

the later stages. Lung cancer patients exhales volatile organic compounds in their 

breath in low concentration even during the early stages of the disease. There are 

many gas sensors available to detect these volatiles. However, there are certain 

disadvantages which make most of the conventional gas sensors unsuitable for 

early detection. Quartz crystal microbalance (QCM) is one of the promising 

candidates for volatile organic compounds detection. This thesis describes the 

design and analysis of the high-frequency quartz crystal microbalance sensor array 

with a novel concentric electrode and dual inverted mesa structure.  Conventional 

QCM sensors are limited with circular electrodes and single channel design which 

limits the sensing ability. The proposed QCM sensor array has advantages of a 

uniform displacement profile with the concentric electrodes and multiple channels 

on a high frequency monolithic quartz substrate without interference with the dual 

inverted mesa design. This high frequency multiple channels make the multiple 

gas detection feasible. Therefore, in this thesis the critical design parameters of this 

proposed design are analyzed and optimized through a comprehensive finite 

element analysis in COMSOL Multiphysics and analytical modelling. In addition, 

the interference between multiple QCM channels has been further eliminated. 

Furthermore, the fabrication procedure for the proposed high frequency QCM gas 

sensor array has been proposed and analyzed. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

 Cancer is considered to be the second leading cause of death in the world, next to 

heart disease [1]. It is defined as the spontaneous mutation in the single human body cells 

to undergo multiple cell division which results in the formation of tumor [2]. This 

mutation might be caused due to the environmental induced long or short term exposure 

to cancer causing agents or genetic disorders [3]. There are more than hundred types of 

cancer present which are characterized by the abnormal growth of the cells in the various 

parts of the human anatomical system. Out of these several types of cancer, lung cancer is 

one of the most common cancer with the highest number of cases of over 2 million 

patients, which accounts for about 12.3% of the total cancer cases diagnosed in the year 

2018 [4]. 

 Lung cancer accounts for about 1.76 million death in 2018, which is the highest 

mortality rate in the cancer related death [5]. This can be due to the late diagnosis of lung 

cancer i.e. stage Ⅳ - cancerous cells have reached an abnormal growth and spread across 

other organs in the human body [6]. According to the world health organization (WHO), 

lung cancer patients diagnosed at the later stages are extremely hard to treat for the 

oncologist as the cancerous cells fail to respond to the chemotherapy treatment at later 

stages [7]. This late diagnosis of lung cancer limits the probability of curing the disease 

and extending the life expectancy of the patients. If lung cancer is detected at an early 

stage, there is a higher probability of survival, less expensive treatment and an increased 

care for the patients can be provided [8]. 
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 Early diagnosis of lung cancer is considered to be onerous and complicated as the 

lung cancer patient at the early stages shows no symptoms or very less symptoms [9]. 

Conventional medical check-up such as chest X-ray does not recognise the lung cancer at 

the initial stages while the highly advanced diagnosis techniques such as the computer 

tomography (CT) [10], magnetic resonance imaging (MRI) [10], positron emission 

tomography (PET) [10] scans are quite expensive and other medical techniques such as 

sputum cytology [11] and biopsy are prescribed by the doctors only after the symptoms 

shown during later stages of lung cancer.  

 During the early stages, the lung cancer patients exhales traceable amount of 

volatile organic compounds (VOCs) in their breath in the range of 10 – 200 ppm whereas 

a person without lung cancer has only 10 - 500 ppb range [12-14]. An alternative 

diagnostic tool is proposed to effectively detect these small concentrations of VOCs in 

the breath of the lung cancer patient. These proposed highly sensitive gas sensor arrays, 

which are comparatively cheaper and faster than the conventional diagnosis methods, can 

offer a higher probability of curing the lung cancer disease in a wide range scale [15-18]. 

In short, this volatile - detecting sensor should as affordable as a stethoscope and 

effective as a CT scan so that even a general family doctor could use this gas sensor to 

detect early signs of lung cancer in the patients. 

1.2 Thesis Contribution 

 This research focuses on the design and development of quartz crystal 

microbalance gas sensor array to analyze its critical design parameters and improve the 

overall mass sensitivity of the device as well as to eliminate the interference between 

multiple QCM channels with a novel electrode design and an array configuration. 
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 In this thesis, several gas sensors are studied and analyzed for their capability in 

the volatiles detection with necessary qualities such as the high sensitivity, selectivity, 

reversibility, multiple target detection, low cost, ease of fabrication and smaller size. 

From this baseline study, each sensor showcased their own advantages and 

disadvantages, out of which the quartz crystal microbalance gas sensor is selected due to 

its simple structure, which makes the fabrication process less complicated and less 

expensive than the other gas sensors without compromising its performance in terms of 

sensitivity and selectivity. This sensor also exhibits properties such as ability to detect 

multiple gas targets in an array form and stability at higher temperature, which makes it a 

suitable candidate for detecting the volatile organic compounds. 

 Accordingly, the principle of operation of the quartz crystal microbalance sensor 

is studied and analyzed to investigate its potential for the necessary qualities. Following 

this, the mass and frequency change relationship in the sensor are examined which forms 

the basic working principle of this gas sensor. A comprehensive analytical modelling on 

the resonant frequency characteristics has shown its major relationship with the thickness 

of the quartz substrate. Furthermore, analytical modelling has been done on the mass 

sensitivity of the device by altering the significant parameters such as the radius of 

electrode which serves as a critical candidate in deciding the mass loading area and 

understanding the energy trapping effect of the quartz crystal. 

 Moreover, the standard analytical modelling cannot withstand variations in the 

electrode size, structure or the material used. Thus, in order to verify the analytical 

modelled results and to extract the optimised critical design parameters, finite element 

analysis has been done. The finite element analysis in the COMSOL Multiphysics has 
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determined the optimal value for the significant design parameters such as the thickness 

and radius of the quartz and gold electrode and their interlink with the resonant frequency 

characteristics of the device. Investigation on the electrode structures are carried out 

through finite element analysis which exposed its relationship between the distribution of 

the sensitivity and the electrode depending on its structure. Comparison between the 

classic circular electrodes and the ring electrodes are studied and analyzed to improve the 

electrode structure. 

 Furthermore, a novel design of electrode structure called as the concentric 

electrodes is proposed in order to overcome the uneven mass sensitivity distribution 

limitations in the standard electrode structures such as the circular and ring electrodes. In 

this new design, there are two main parameters that are significant for the higher 

sensitivity such as the width of the rings and the gap between the rings which are altered 

with the finite element analysis to provide an approximate uniform mass sensitivity 

distribution. Then, these customized electrodes are designed and placed in an array.  

 Two types of array have been proposed which are the un-etched and etched 

monolithic quartz crystal microbalance (QCM) arrays. The un-etched monolithic QCM 

array has a 5MHz fundamental frequency of operation while the etched monolithic QCM 

array has a 10MHz and 33MHz fundamental frequency of operation. Array configuration 

produces frequency interference between the channels. Therefore, in order to eliminate 

the frequency interferences, the distance between the electrodes are altered and the dual 

inverted mesa structures are introduced. Finally, in order to fabricate the proposed quartz 

crystal microbalance sensor array with customized electrodes, possible fabrication 
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procedures are investigated and a feasible process procedure to fabricate the device is 

proposed. 

1.3 Thesis Outline 

 In Chapter 2, various types of gas sensors are investigated based on their detecting 

mechanism. Their advantages and disadvantages are reviewed to eventually find the 

optimal gas sensor with the necessary qualities. 

 Chapter 3 is the detailed study of the principle of operation of the quartz crystal 

microbalance gas sensor and its working mechanism. The frequency and mass change 

interrelation and the piezoelectric effect are studied. 

 Following this, comprehensive analytical modelling and finite element analysis 

has been done in the Chapter 4. The resonant frequency characteristics of the proposed 

quartz crystal sensors are theoretically analyzed and the mass sensitivity relationship with 

the size of the electrode are investigated using Sauerbrey‟s equation followed by the 

investigation of the critical design parameters of the proposed device such as the radius 

and thickness of quartz and gold in order to determine their relationship with device 

overall performance with the finite element analysis. 

 Chapter 5 presents the study and analysis of the device electrode structures and 

their relationship with the mass sensitivity of the proposed device along with the 

comparison between the conventional circular electrode and the ring electrode. A novel 

design of the electrode structure called as the concentric electrode is proposed. The 

significant design parameters of the proposed electrode which determine the efficiency of 

the sensor are investigated and optimised through the finite element analysis. Their 

advantages comparative to the conventional electrodes are presented. 
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 Chapter 6 presents the monolithic multiple electrode design of the quartz crystal 

microbalance sensor in an array configuration. Two types of monolithic QCM arrays are 

proposed in this chapter. In order to eliminate the frequency interference in the array, 

finite element analyses are conducted and the following simulation results are used to 

develop an optimal configuration and distance between the electrodes in the array. 

Furthermore, in order to reduce the size of high frequency QCM array, dual inverted 

mesa structures are proposed and the critical design parameters are analyzed and 

optimized. 

 Chapter 7 presents the fabrication process steps of the proposed sensor.  The 

fabrication steps are aimed to be less complicated as possible compared to the other gas 

sensors to manufacture the device easily without compromising the performance. 

 Finally, Chapter 8 summarizes the work done in the thesis along with the 

significant results obtained through this research. Then potential future works that can 

improve the overall efficiency such as the addition of suitable sensing layer depending on 

the application are further provided. 
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CHAPTER 2 

GAS SENSOR TECHNOLOGY 

 Gas sensing technology has played a major role for several decades in many 

medical, safety and detecting applications such as food quality detection [19], chemical 

vapor detection [20], air quality monitoring [21], space exploration applications [22] and 

electronic noses [23]. Several types of gas sensors are commercially available for 

detecting volatile organic compounds depending upon the concentration and type of 

volatiles. These types of gas sensors are categorized based on their detecting mechanism 

which are further reviewed, investigated, and analyzed in this chapter. 

2.1 Introduction 

 Gas sensors are commonly categorized based on their detecting mechanisms. The 

functionality of majority of gas sensors depends on the electrical characteristic variation 

such as the resistance [24] and capacitance [25] or the frequency variation [26] to detect 

the target gas. These significant measurement variations are caused due to the fact that if 

a target gas comes into contact with the sensor then a critical parameter undergoes 

variation in the sensor which can be further mapped to detect the concentration or 

presence of the target gas [27]. The efficiency of the gas sensor is measured in terms of 

the sensitivity, selectivity, reversibility, accuracy, range of detection, recovery time and 

the response time [28-30]. Multiple channels in a gas sensors is useful to detect multiple 

gas target simultaneously and it is a significant quality in gas sensing because an array of 

sensors can provide high accuracy in the detection compared to the single channel gas 

sensors.  
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The qualities of an ideal gas sensor for sensing multiple volatile gas targets are listed 

below, 

1. Ability to provide high sensitivity towards volatile organic compounds. 

2. Possibility for design modification to detect multiple target volatile organic 

compounds simultaneously. 

3. Diverse sensing materials compatibility. 

4. Simple design geometry and ease of fabrication. 

5. High reversibility and reproducibility. 

6. Comparatively robust design. 

7. Miniaturized structure and low of cost. 

 The above qualities have the potential to provide a robust candidate sensor for 

complex environment gas detection and the sensors that carry such qualities will be 

investigated in this chapter. 

2.2 Sensors Based on Electrical Variations 

2.2.1 Chemiresistor Sensor 

 Chemiresistor sensor operates based on the variation in the resistance of the 

sensor when the target gas comes into contact with the sensing material. Conventional 

chemiresistor sensor geometry includes interdigitated electrodes (IDE), and a sensing 

material that is deposited on the active surface of the sensor embedded on a silicon 

substrate. The electrical variation occurs when the sensor comes into contact with the 

target gas, which forms the basic working principle of the sensor as shown in the Figure 

2.1 [31]. When the target gas comes into contact with the sensing material, the physical 

and chemical properties of the sensing material bridging the electrodes undergoes 
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changes, which as a result increases or decreases the resistance of the sensing material. 

This change in the resistance are then measured to detect the concentration or presence of 

the target gas by connecting the two electrodes to an external data processing unit to 

analyze the physical and chemical changes in the sensing film. The chemiresistor can 

employ a wide range of sensing material which further determines the properties of the 

sensor such as the reversibility and lifetime [32]. 

                 

Fig. 2.1: Top view of a chemiresitor sensor showing the sensitive material and interdigitated 

electrodes (IDE) on a silicon substrate. 

 Chemiresistor sensors are built with the simplest structural configuration among 

the gas sensors. The chemiresistor sensors are fabricated with the sensitive material 

bridging the gap between the two electrodes which is mounted on the silicon substrate. 

The electrodes are usually made of gold or chromium for their high conductive and 

inertness property. The sensing material is responsible for the conductance between the 

electrodes. Owing to their simple geometry, they are highly preferred in the food aroma 

sensing and industrial applications. They also benefit from the wide range of sensing 

materials such as conducting and non-conducting polymers, grapheme, nanoparticles and 

metal oxides [33]. 



 

10 
 

 Although possessing wide range of advantages such as the high sensitivity, ease 

of fabrication, wide ranges of available sensing materials, chemiresistor sensor lacks 

selectivity and they are highly sensitive towards humidity and temperature present in the 

environment [34]. Furthermore, they also have low selectivity in the detection of target 

gases depending on the choice of sensitive materials such as polymers. 

2.2.2 Metal Oxide Semiconductor Sensor 

 Metal oxide semiconductor (MOS) sensors are a different version of the common 

chemiresistor sensor with a micro heater unit and the metal oxides as their sensing 

materials. They are preferred for their accuracy rate, long lifetime, short response time 

and easy integrations in electronic circuits. The working mechanism of the sensor 

depends on the change of conductance when the reducing or oxidizing gas comes into 

contact with the sensing material as shown in the Figure 2.2. This interaction changes the 

physical and chemical properties of the sensing material which forms the basis of this 

sensor [35].  Each metal oxide sensing materials are sensitive to a particular gas at a 

suitable temperature. This suitable optimum temperature can be provided by an 

electrically separated micro heater unit which heats the metal oxides and makes the 

sensing material reactive to various gas targets as per the requirement. The MOS sensing 

material can be classified into n-type and p-type materials [36]. Some of the n-type metal 

oxides are TiO2, ZnO, SnO2 and WO3 and p-type metal oxides are NiO, Mn3O4 and 

Cr2O3. The majority charge carriers in the n-type MOS are electrons. The reactivity of n-

type MOS with reducing gas increases the conductivity and its reactivity with the 

oxidizing gas increases the conductivity. Whereas, the majority charge carriers in the p-

type MOS are holes. The reactivity of p-type MOS with reducing gas decreases the 
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conductivity and the its reactivity with the oxidizing gas decreases the conductivity. 

These changes in the conductivity are measured with an external circuit or signal 

processing unit which forms the basic working principle of the sensor [37]. 

                          

Fig. 2.2: Side view of metal oxide semiconductor sensor with a micro heater unit. 

 The metal oxide semiconductor gas sensors have a complex geometry due to the 

integration of the micro heater unit which needs electrical isolation area in the design. 

The sensor consists of two inter digitated electrodes (IDE) connected by the metal oxide 

sensing material. The micro heater unit is placed below the substrate material in order to 

have a full coverage for the heat. They are electrically isolated by an insulating layer with 

high temperature tolerance. The device is commonly built on a silicon substrate. 

 Metal oxide semiconductor has advantages such as the measurement simplicity, 

durability, low cost, long lifetime and a wide range of sensing materials. However they 

have some practical limitations such as the higher power consumption of the micro heater 

which limits the portable applications and the heating units are not always preferred in 

the bio sensing applications. Although array configuration is possible with this sensor, the 

heat dissipation on a large scale array is considerably difficult to manage [38-39].  

2.2.3 Conducting Polymer Sensor 
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 The conducting polymer sensor are known for their wide range of available active 

sensing materials such as the polypyrrole (PPy), polyaniline (Pani), polythiophene (PTh) 

and their derivatives [40]. Conducting polymer sensors have many advantages such as the 

high sensitivity, simple design, short response time and stability at room temperature. 

However, they are sensitive to temperature changes and humidity. The conducting 

polymers possess fine mechanical properties which makes the fabrication of the polymer 

sensor process much easier than its competitive gas sensors as shown in the Figure 2.3. 

When the gas target gas comes into contact with the sensing polymer, the change in the 

doping levels occurs. The doping levels of the conducting polymers strongly depend on 

the chemical reaction with chemical gas. This interaction either dope or undope the 

sensing material which alters the conductance of the material. This change in electrical 

property is measured which forms the basic working principle of this sensor [41]. 

                        

Fig. 2.3: Side view of conducting polymer sensor showing the employment of conducting 

polymer as the active sensing layer. 

 The polymer sensor consists of two electrodes usually made up of the gold for 

their high conductance and inertness properties which are interconnected with the 

polymer derivatives. The polymer material forms the active sensing layer. These 

conducting polymers can be synthesized either through the chemical or electrochemical 

process of oxidizing the corresponding polymer. These electrodes and the conducting 
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polymers are fabricated in the silicon substrate. In some cases, in order to improve the 

performance of electrical conductivity, inter digitated electrodes are employed [42]. 

 Conducting polymers sensor has several advantages such as the high sensitivity, 

wide range of available polymers and short response time [43]. Nevertheless, they have 

some disadvantages including their sensitivity to the temperature and humidity [44], poor 

reversibility and they not suitable for array configuration as the sensor occupies large 

space [45]. 

2.2.4 Carbon Nanotubes Sensor 

 Carbon nanotubes are known for their extremely high adsorptive capacity even up 

to an atomic level which is considered as the significant reason for its excellent 

sensitivity and the popularity of the sensor [46]. Carbon nanotubes (CNT) possess several 

characteristics such as the high strength, large electrical and thermal conductivity, and 

high surface to volume ratios. These physical properties of the CNT provide smaller 

dimensions for the overall size and higher electrical sensitivity for the sensor. CNT are 

utilised in various types of sensors such as the resistive, capacitive and resonant 

frequency change sensors [47]. However, the resistive type of measurement is the most 

used sensor with CNTs owing to their simple geometry as shown in the Figure 2.4. The 

interaction between the CNT and the target gas causes changes in the physical properties 

of the CNT such as increase in the mass which subsequently increases the resistance and 

decreases the conductance. CNT sensor uses conductance as the measurable variable. 

This change in the electrical current can be measured which forms the basic working 

principle behind the CNT sensors [48].  
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Fig. 2.4: Side view of carbon nanotube sensor showing the highly adsorptive carbon nanotube as 

the sensing matrial with the ohmmeter as the measurement unit. 

 The carbon nanotubes can be either single walled or multi walled with varying 

band gaps which act as semiconducting structures. The design of the CNT sensor is more 

similar to the MOS gas sensor. The carbon nanotube sensors consist of electrodes bridged 

by the carbon nanotubes which act as the active sensing layer. The source and drain 

electrodes are connected by this CNT while the gate is insulated by the dielectric barrier 

layer such as the silicon dioxide layer built on the silicon substrate [49]. 

 Carbon nanotube sensor has several advantages such as the high sensitivity, great 

adsorptive capacity. However, they have disadvantages such as the high in cost, complex 

procedures to synthesise the carbon nanotube, fabrication complexity, long recovery 

time, possible irreversible changes of carbon nanotube conductivity, poor selectivity and 

they are also sensitive to the ambient conditions such as the presence of humidity and gas 

flow rate [50]. 

2.3 Sensors Based on Acoustic Variations 

2.3.1 Quartz Crystal Microbalance Sensor 

 The quartz crystal microbalance (QCM) sensor consists of AT cut quartz substrate 

sandwiched between the two electrodes. The AC voltage is applied on the top electrode 
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while the bottom electrode is grounded. Electrodes are usually made of gold or silver 

while chromium is used as the adhesive layer for the electrodes and substrate. Gold is 

mostly preferred as the electrode material due to its high conductivity and inertness 

property. Due to its simple design, it has high potential for alterations in the design and 

has the possibility to detect multiple gas targets simultaneously in the array configuration 

[51].  

 Quartz crystal microbalance sensor is a mass sensitive device, which can detect 

nanogram level of mass changes. Therefore, it is a preferred candidate sensor for various 

fields of applications where there is a need for detection of target gases at low 

concentration levels [52]. They are also preferred in the practical applications due to their 

simple geometry and low cost of fabrication without compromising its performance in 

sensing the gases. Due to their simple structure and geometry, the design modifications 

are quite easy as per the demand in complex multiple gas sensing applications as shown 

in the Figure 2.5. The quartz crystal microbalance depends on the piezoelectric property 

of the quartz substrate [53]. The piezoelectric effect of the quartz can be defined as the 

accumulation of charges in the surface of quartz crystal when they are subjected to 

physical or mechanical stress. This voltage produced is proportional to the amount of 

mechanical or electrical stress produced. In turn, when an AC electric potential is applied 

across the quartz crystal, a mechanical deformation is produced and the crystal undergoes 

thickness shear mode of oscillation at the resonant frequency. Any mass changes in the 

electrically active area during the oscillation produce a direct shift in the resonant 

frequency of the quartz [54]. These variations in the resonant frequencies can be 
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measured with an impedance analyzer, which form the basic working principle of the 

quartz crystal microbalance sensor [55]. 

      

Fig. 2.5: Side view of quartz crystal microbalance sensor showing the quartz substrate 

sandwiched between two electrodes. 

 The quartz crystal microbalance has several advantages in the case of volatile 

detection such as the high sensitivity, wide range of sensing materials, potential to detect 

multiple targets, simple geometry and ease of fabrication and reversibility depending on 

the sensing material and high selectivity. Some of the sensing materials such as the 

carbon nanotube, if used on the QCM sensor could result in sensitivity towards 

temperature and humidity [56]. Although the conventional QCM operates with single 

channel limiting its ability, design alterations are proposed to be made to operate in array 

configurations as it will be investigate in Chapter 6 of this thesis. 

2.3.2 Surface Acoustic Wave Sensor  

 The Surface Acoustic Wave (SAW) gas sensor is made up of interdigitated gold 

transducers placed on the piezoelectric substrate. For the chemical and biological sensing 

applications, the appropriate sensing material such as the polymer, carbon nanotube and 

the metal oxides are coated on the surface layer which undergoes changes in the form of 

mass, viscoelasticity or the conductivity when the target gas comes into contact [57]. 
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Surface acoustic wave (SAW) sensors are widely popular for their high sensitivity in gas 

applications and its ability to work in wireless modes. Such competitive advantages had 

received continuous research and technological attention for the SAW gas sensor [58]. 

 The SAW gas sensor depends on the variations in the SAW during the 

propagation of the acoustic wave through the target gas. These variations are directly 

proportional to the concentration of the target gas in the sensing region of the SAW 

sensor. Initially, the surface acoustic waves are produced the interdigitated transducers 

implanted on the piezoelectric material. These surface acoustic waves travel through the 

surface region of the piezoelectric material depending on the order of the wavelength and 

are detected by the receiver interdigitated transducer as shown in the Figure 2.6. Surface 

acoustic wave undergoes change in either phase or frequency when they are interacted by 

the corresponding gas targets. These changes can be accurately measured with impedance 

analyzer or can be wirelessly received and processed which is the basic working principle 

behind this sensor [59].  There are three stages in the operation of the SAW gas sensor, 

i. Excitation of the piezoelectric substrate with the interdigitated transducer (IDT) to 

produce acoustic waves. 

ii. Acoustic waves undergoing modulation due to their interaction with the target 

gases. 

iii. Detection of the change in acoustic wave with interdigitated transducer. 
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Fig. 2.6: Top view of surface acoustic wave sensor showing the propagation a SAW waves across 

the sensing material from IDT. 

 The surface acoustic wave sensor has advantages such as the high sensitivity, 

excellent response time, smaller size, wireless mode of operation, and planar structure. 

Although possessing such high advantages, it is inevitable for disadvantages such as the 

complexity in the fabrication process and its difficulty to operate in an array 

configuration that is a requirement for gas detection in a complex environment. Array 

configuration ability is significant to detect multiple gas targets. The main difficulty in 

the design for an array configuration with SAW sensor is the process of reducing the size 

of the sensor comparative to the other competitive sensors such as the quartz crystal 

microbalance which can provide the similar performance without design complications. 

[60]. 

2.4 Sensors Based on Optical and Calorimetric Variations 

2.4.1 Optical Sensor 

 The optical sensor consists of fiber optic cable with source of the light beam on 

one side and the receiver of the light on the other side. The source of the light is usually 

white light or laser and the receiver is the spectrometer analyser to detect the variations. 
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The cladding of the fiber cable is coated with the sensing material. The whole optic fiber 

setup is fabricated on the silicon substrate as shown in the Figure 2.7 [61]. 

 Optical sensors are widely known for their high sensitivity in the gas sensing 

applications. The accuracy of the optical sensors is comparatively better than other 

competitive sensors. These fiber optic gas sensors depend on the pulse width modulation 

of the source light for sensing the target gas concentration [62]. Initially the beam of light 

is passed through the fiber optic from the source which is modulated by the interaction 

with the chemical gases. This modulation causes variations in the physical properties of 

the source white light beam which is measured at the receiver end through a photo voltaic 

reader. The refractive index of the source beam changes when an adsorption or scattering 

occurs due to interaction. This measured variation in the refractive index of the pulse 

width modulation is directly proportional to the concentration of the chemical gas 

detected at the sensing region. The sensitivity can be increased by employing the 

appropriate sensing materials [63]. 

 

Fig. 2.7: Side view of optical sensor showing the light propagating through fiber and getting 

modulated due to the interaction with target gas. 

 The optical sensor has several advantages such as the high sensitivity, accuracy of 

detection, very good selectivity. It has disadvantages such as the higher size dimensions, 
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expensive setup and its difficulty to work in an array configuration for multiple targets 

detection simultaneously. Despite having several advantages, the optical sensors are not 

preferred in the volatile detection because of the difficulty in miniaturization and 

difficulty in array configuration setup [64].  

2.4.2 Calorimetric Sensor 

 The calorimetric sensor has several chemi-adsorptive dyes implanted which turns 

colour when the target gas comes into contact with the sensing layer of the sensor. This 

interaction between the chemi-adsorptive dye and the gas undergoes chemical process 

and the colour of the dye changes. This change in the colour is further detected and 

calculated with a suitable image processing system and the presence of the target gas is 

detected. The calorimetric sensors are the most low cost gas sensor for the volatile 

detection and they work in an array configuration. 

 The calorimetric sensor some advantages such as the low cost, ability to work in 

array configuration and stability. However, it has disadvantages such as the irreversibility 

of the sensor response, long response time, low accuracy, high image processing power 

[65].  

2.5 Conclusion 

 From a comprehensive analysis of the commercial and common gas sensors, the 

advantages and disadvantages of each individual sensor are analyzed and interpreted. 

This interpretation determines that there are various gas sensors which can be used to 

detect the volatiles. However, there are certain quality requirements specifically for 

complex environment applications in the sensor performances. Among all the 

investigated sensors, quartz crystal microbalance exhibits promising competitive 
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advantages over the other sensors such as its high sensitivity, reversibility, selectivity, 

long lifetime, robustness, simple design, ease of fabrication, potential for array 

configuration and low cost of fabrication. Thus, implementing this candidate sensor in an 

array configuration could provide a platform to detect multiple gas targets 

simultaneously. Since QCM exhibited most of the required qualities and potential, the 

focus of this thesis is on the design and development of high performance QCM sensor in 

an array configuration for volatile detection in a complex environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

22 
 

CHAPTER 3 

QUARTZ CRYSTAL MICROBALANCE SENSOR 

3.1 Introduction 

 Quartz crystal microbalance sensor is one of the candidate technologies for gas 

detection and has received a high attention in the research and development due to their 

advantages during the recent decades [66]. The simplicity in the design of this sensor 

combined with high potential qualities is one of the major reasons for this research focus. 

As discussed in the previous chapter, this sensor provides a competitive advantage and 

qualities over other gas sensors in its range such as the wide choice for the sensing 

material, potential to detect multiple gas targets in array configuration and smaller size. 

The working mechanism of the Quartz crystal microbalance sensor and its physics of 

operation are discussed and investigated in detail in this chapter. 

3.2 Basic Structure and Mechanism of Operation 

3.2.1 Quartz Crystal Microbalance – Design Principle  

 The Quartz crystal microbalance sensor is commonly built on an AT cut quartz 

crystal that usually has a thickness ranging between 330μm to 168μm as shown in the 

Figure 3.1 depending on the need for resonant frequency. The AT cut of the quartz 

crystal is achieved by cutting the quartz crystal 35° 15' degree to the principle optical axis 

of the crystal (z-axis) as shown in the Figure 3.2 [67]. The quartz crystal that are found in 

nature are rare and expensive, therefore, they are nowadays synthetically grown. These 

crystals are subjected to various process such as annealing and electrical sweeping in 

order to reduce the number of defects and impurities in the crystal, which may cause 

errors in their fabricated devices [68]. AT cut of quartz is usually preferred because of 
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their stability in operation and its temperature tolerance, which helps the device to 

operate even at higher temperature without causing shift in the frequency. Quartz can 

have piezoelectric effect even up to 573°
 
C [69]. In a quartz crystal microbalance 

structure, this AT cut quartz crystal is sandwiched between the two metallic electrodes in 

order to apply the AC potential. In these devices, electrodes are usually made of gold, 

titanium, silver or platinum however, gold is preferred for its high conductivity and 

inertness property as it is chemically non-reactive. Although copper and silver are more 

conductive than the gold, they do not possess inertness property similar to gold [70]. 

 

Fig. 3.1: Quartz crystal microbalance sensor (a) Top view of a quartz crystal microbalance sensor 

showing the top gold electrodes (b) Side view showing the quartz sandwiched between two gold 

electrodes. 

    

Fig. 3.2: Quartz crystal orientation (a) Quartz crystal (b) AT cut - crystal 35 
0
 15 

/
 degree to the z-

axis 

(a) (b) 

(a) (b) 
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3.2.2 Thickness Shear Mode (TSM) Oscillation 

 Quartz is made up of silicon and oxygen bonds. These silicon and oxygen bonds 

have a non-linear nature, which results in a net dipole moment in the quartz. When an 

alternating current is applied across the metallic electrodes that are deposited on both 

sides of the crystal, the opposite ends of the dipole tend to pushed in the opposite 

directions followed by the dipoles tending to rotate themselves to be aligned along the 

direction of the applied electric field [71]. This displacement results in a net strain. The 

displacement in the dipoles of the quartz also varies with the electric field resulting in the 

mechanical deformational of the quartz crystal. As a result, the acoustic shear waves are 

launched in the direction perpendicular to the direction of the crystal from the either sides 

of the crystal. When this alternating current supply is removed, the crystal comes back 

into its original form from the deformed state due to the absence of strain in the crystal. 

The AT cut of the quartz is responsible for the thickness shear mode of oscillation as 

shown in the Figure 3.3. AT cut is mostly used in quartz-based applications because of its 

exceptional frequency stability [72].  

 

Fig. 3.3: Quartz crystal microbalance sensor undergoing th6wickness shear mode of oscillation 

when AC current is applied. 
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3.2.3 Piezoelectric Property of Quartz 

 The deformation of the quartz on the application of alternating current is the result 

of inverse piezoelectric effect. Since quartz is a piezoelectric crystal, it exhibits 

piezoelectric property which is the production of electric field in its surface when a 

mechanical stress is induced [73]. The magnitude of the electric current produced is 

directly proportional to the amount of stress applied on the crystal.  Thus, inversely when 

an electric current in an alternating form is applied between the top and bottom 

electrodes, the quartz undergoes mechanical deformation in the form of an oscillation. 

Inverse piezoelectric effect is the responsible for the thickness shear mode of oscillation 

of the quartz crystal microbalance sensor [74].  

 

Fig. 3.4: Piezoelectric effect (a) Quartz crystal when no electric potential is applied (b) Quartz 

when electric potential is applied between its two electrodes and exhibiting inverse piezoelectric 

effect. 

3.2.4 Resonant Frequency  

 The frequency at which the piezoelectric quartz crystal undergoes thickness shear 

mode of oscillation under the influence of applied alternating current (usually sine wave) 

is called as the resonant frequency. This fundamental resonant frequency of the quartz is 

used for sensing and acts as an indicator for the sensor exposure which undergoes 

variations. It either increases or decreases by a certain level of Hz depending upon the 

addition or removal of the mass on the surface of the electrically active sensing electrode 

area [75]. The addition of mass reduces the resonant frequency, while the removal of the 
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mass increases the resonant frequency. These variations in the resonant frequency can be 

monitored with a high frequency oscillator. The relationship between the frequency and 

mass in the quartz crystal microbalance was first observed by Sauerbrey, a German 

physicist in 1959 and devised equations called as the Sauerbrey‟s equation of mass and 

frequency relationship [76]. 

3.2.5 Sensitivity  

 The magnitude of variation in resonant frequency for a particular amount of mass 

determines the sensitivity of the Quartz crystal microbalance sensor. In an ideal case, 

Quartz crystal microbalance can detect up to 1ng amount of change in mass on its sensing 

electrode surface. If the center resonant frequency of the quartz crystal microbalance is 

higher, the sensor tends to be more sensitive towards the mass which results in a larger 

shift in the resonant frequency compared to sensor with lower center resonant frequency 

[77]. Although higher resonant frequency has advantage of more sensitivity, they are 

fragile due to their thin quartz substrate compared to lower resonant frequency sensor that 

uses comparatively thicker substrate [78].  

3.3 Mass and Frequency Relationship 

 When an alternating current is applied on the metallic electrodes of a Quartz 

crystal microbalance, the device starts to oscillate at the resonant frequency [79] which is 

given by, 

   
√     

   
                                                                

where, fo is the resonant frequency of the resonating quartz crystal, μq is the shear 

modulus of the quartz crystal (μq = 2.947 × 10
11

 g cm
-1 

s
-2

), ρq is the density of the quartz 

crystal (2.648 × g cm
-3

) and tq is the thickness of the quartz crystal. Since μq and ρq are 
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constant values, the resonant frequency is directly influenced by the thickness of the 

quartz crystal. 

 This resonant frequency f0 of the quartz changes either by addition or removal of 

the mass on the electrically active sensing area. This mass and frequency relation is 

devised in an equation by Sauerbrey, 

      

  

 
                                                                

where, A is the area of electrodes of the quartz crystal microbalance, Δf is the change in 

the resonant frequency, Sc is the Sauerbrey constant equals to 2.264 × 10
-6

 g
-1

 cm
-2 

s and 

Δm is the change in mass on the surface of electrode. The negative sign denotes the 

reduction in the resonant frequency by addition of mass on the top of electrode. The 

Sauerbrey‟s equation of mass-frequency relationship is derived as follows: 

   
  

 
                                                                    

where, mq is the mass per unit area and Mq is the total mass of the quartz crystal. This 

Equation 3.3 is combined with 3.1, to obtain, 

   
√    

   
                                                                      

By addition of some quantity of mass to the electrode causes change in the resonant 

frequency which can be written as, 

       
√    

         
                                                       

Equation 3.4 is substituted in the above equation 3.5, to obtain, 

    
√    

         
 

√    

   
                                               



 

28 
 

The above equation 3.6 is written as,  

    
√    (    )

   
 (  

   

  
)

                                                        

Substituting equation 3.4 in the above equation to obtain, 

    
  (    )

  (  
   

  
)

                                                         

For a thin deposit, the Δmq is lower than mq, to obtain, 

    
  (    )

  
                                                            

The above equation can also be written as, 

    
  (    )

    
                                                          

Then substituting equation 3.1 in the above equation to obtain, 

    
   

 (    )

√    

                                                        

The above equation is rewritten as, 

     
   

 

√    

  

 
    

  

 
                                           

Equation 3.12 is the Sauerbrey‟s equation which determines the relationship change in 

the resonant frequency and the mass change in the surface of the electrode. 

 Thus from the following derivation, it is found that the change in the frequency is 

directly proportional to the change in the mass. This equation 3.12 is used to calculate the 

resonant frequency variation of the proposed sensors in this work. 

3.4 Sensor Equivalent Circuit Model 
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 The equivalent circuit model study of the quartz crystal microbalance provides a 

better understanding of its principle of operation. It can be modeled in terms of 

mechanical and electrical form as follows. 

3.4.1 Mechanical Equivalent Model 

 The mechanical model of the quartz crystal microbalance can be modeled with the 

mass (M), compliance (Cm), and a resistance (rf). The compliance is the representation of 

the energy stored during the oscillation and the resistance is the representation of the 

energy dissipated during the oscillation [80]. 

 

Fig. 3.5: Mechanical equivalent model of the quartz crystal microbalance. 

3.4.2 Electrical Equivalent Model 

 The mechanical equivalent circuit of the quartz crystal microbalance can be 

modeled as the electrical circuit in the Resistor, Inductor and Capacitor (RLC) form. The 

electrical equivalent model consists of basic RLC circuit where the R represents the 

energy dissipated during the oscillation, C represents the energy stored during the 

oscillation and L represents the inertial component related to the dissipated mass. The 

addition of the electrodes in the quartz crystal microbalance adds a capacitance to the 
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circuit. These RLC parameters of the equivalent circuit can be divided into motional 

components and static components. 

 

Fig. 3.6: Electrical equivalent model of the quartz crystal microbalance without electrode contact. 

 The motional components are the Rm, Lm, and Cm which are derived from the 

resonance operation of the QCM and the additional parallel static capacitor C0. The 

addition capacitor C represents the dielectric energy storage because the oscillation 

crystal is established between the top and bottom electrodes. This model is called as the 

Butterworth Van Dyke (BVD) equivalent circuit [81]. 

 

Fig. 3.7: Electrical equivalent model of the quartz crystal microbalance with electrode contact 

(Butterworth Van Dyke equivalent circuit). 

 The mass variation of the quartz crystal changes the inductance in this equivalent 

circuit. Both the series resonant frequency and the parallel resonant frequency depend 

upon inductor element which is also the function of the mass displacement. When the 

thin film is deposited on the surface, the decrease in the frequency can be correlated to 

the increase in mass using the Sauerbrey‟s equation. 



 

31 
 

     
   

   

√    

                                                          

where, f0 is the resonant frequency, m is the mass added, n is the harmonic number and 

the μq and ρq represents the density and shear modulus of quartz. 

3.5 Conclusion 

 The basic physics involved in this sensor‟s operation including the piezoelectric 

effect of quartz, highly conductive gold electrode with inertness property, thickness shear 

mode oscillation, and resonant frequency of the device are studied. The mechanical and 

electrical equivalent circuits provided a better understanding of the device. The 

Sauerbrey‟s equation of mass and frequency change derivation has provided the basic 

understanding of the working principle behind the sensor. It has also disclosed the 

inversely proportional relationship between the thickness of the quartz crystal and the 

resonant frequency. Although it has provided the basic relation between the mass and 

frequency change of the quartz crystal, they needed to be analyzed furthermore for a 

more complex configuration proposed in this thesis as well as the designed sensor arrays 

by plugging in with the real time values for analytical modeling which is done in the 

following next chapter. 

 

 

 

 

 



 

32 
 

CHAPTER 4 

DESIGN PARAMETER ANALYSIS AND MODELLING  

4.1 Introduction 

 The quartz crystal microbalance sensor design is comprised of several critical 

design parameters that influence the output performance of the device. The influencing 

design parameters include thickness and radius of the quartz substrate as well as the 

metallic gold electrode, along with the electrode configuration. These critical design 

parameters have a direct effect on the performance of the device including the resonant 

frequency of the oscillating crystal and mass loading area on the electrode surface. Using 

the analytical modeling techniques, the prior mentioned significant critical parameters 

can be modeled and analyzed. However, they cannot be applied when some of these 

design parameters such as the electrode dimensions of the quartz crystal microbalance is 

complex and customized. This demands the need for finite element analysis which can 

accurately model the device despite having complex geometries in the design and 

increase the overall output performance. Therefore, the following analytical modeling 

and finite element analysis are done in this chapter to investigate and analyze the effect of 

design parameters in order to optimize the device sensitivity and functionality. 

4.2 Quartz Crystal Microbalance - Analytical Modeling 

 The analytical modeling of the quartz crystal microbalance sensor can be carried 

out based on the Sauerbrey‟s equation of mass and frequency change relationship [79] 

shown below as, 
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where, μq is the shear modulus of the quartz crystal (μq = 2.947 × 10
11

 g cm
-1 

s
-2

), ρq is the 

density of the quartz crystal (2.648 × g cm
-3

), A is the area of electrodes of the quartz 

crystal microbalance, Δf  is the change in the resonant frequency, Δm is the change in 

mass on the surface of the electrode.  

 The parameters      are the constant values depending on the quartz crystal 

properties while the parameters A and f0, the resonant frequency are the variable 

parameters which are further studied and analyzed. 

4.2.1 QCM Resonant Frequency 

 Since quartz is a piezoelectric crystal, a shear displacement occurs in the quartz, 

when an alternating current is applied between the top and bottom electrodes. The applied 

alternating current produces a resonant oscillation in the quartz crystal when the 

wavelength of the shear displacement in the quartz crystal corresponds to double the 

thickness of the substrate. The frequency at which this process occurs is called as the 

resonant frequency. Based on the following equation, the resonant frequency is 

dependent on the thickness of the quartz crystal which increases if the thickness of quartz 

is reduced and decreases if the thickness of the quartz is increased.  

   
√     

   
                                                                 

where, tq is the thickness of the quartz crystal which is inversely proportional to the 

resonant frequency of the crystal.  In order to investigate the change in the resonant 

frequency with the change in the quartz thickness for the range of available quartz 

substrate, the thickness of the quartz is varied and the resonant frequency values are 

plotted. In this study, the μq = 2.947 × 10
11

 g cm
-1 

s
-2 

and ρq = 2.648 × g cm
-3 

are the 

constant values which depend on the physical properties of the quartz. Figure 4.1 shows 
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the analytically modeled results showing the relationship between the thickness of quartz 

with the fundamental resonant frequency. It states that the resonant frequency increases 

with the decrease in thickness of the quartz crystal. 

 

Fig. 4.1: Analytical modeling result presenting relationship between the resonant frequency, f0, 

and the thickness of quartz substrate, tq. 

 The most commonly used fundamental resonant frequency for the quartz crystal 

microbalance ranges between 5 MHz and 10 MHz because stability in the design 

structure associated with the thickness of the quartz and their compatibility in un-etched 

array design, thus suitable for the practical applications [82]. Within this range, a higher 

frequency quartz crystal microbalance can provide a larger response to the deposited thin 

film mass compared to the quartz crystal microbalance with lower resonant frequency. 

This means that a device with a higher resonant frequency is more sensitive to the mass 

changes compared to a lower resonant frequency device. However, the limitation for a 

higher resonant frequency is that if the thickness of quartz is reduced, the quartz substrate 

becomes thinner and fragile that makes it prone to breakage which might limit it usage in 

the practical applications such as an electronic nose portable device. The requirement for 
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the portable sensor system suggest to employ a quartz crystal microbalance that is robust 

but without a significant degradation in the device sensitivity and performances [83]. 

4.2.2 Frequency and Mass Relationship 

 The ability of the quartz crystal microbalance to detect the mass changes arises 

from the Sauerbrey‟s equation of relationship between the change in frequency and 

change in mass. This equation is the linear relationship between the resonant frequency of 

the oscillating crystal and the mass changes given by,  

                                                                        

where, C is the constant value depending on the properties of quartz and n is the overtone 

number. For a most common standard 5 MHz crystal, the constant C value equals 17.7 

ng. cm
-2

. Hz
-1

. This indicates that if 17.7 nanogram of mass is adsorbed on a centimeter 

square area of the top active electrode surface, resonant frequency of about 1 Hz is 

reduced or in other words, about 0.057 Hz is reduced when 1 nanogram of mass is 

adsorbed. The above equation can be used when the deposited mass on the quartz crystal 

microbalance is a thin layer of rigid film which is firmly attached to the crystal surface. 

However, if the attached mass layer is soft, thick or not coupled to the surface, then this 

equation cannot be applied [84].  

 In order to investigate the expected range of frequency change for a practical 

change in the mass, the center frequencies are calculated with the increased area of the 

electrode of 500μm on a 5 MHz crystal. The linear characteristic of the change in mass 

and frequency equation is shown in the following Figure 4.2. 
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Fig. 4.2: Analytical modeling result presenting the linear relationship between the mass and 

frequency with a sensitivity of 0.135 ng. cm
-2

. Hz
-1

. 

 Therefore, the sensitivity of the sensor also depends on the size of the electrode 

which can be explained by equation 

                                                                         

where, A is the area of the top sensing electrode and r is the radius of the sensing 

electrode. Thus it is clear that the size of the sensing electrodes is a significant factor for 

the sensitivity of the quartz crystal microbalance sensor. 

4.2.3 Mass Sensitivity (Δf/Δm) and Radius of the Electrode (r) Relationship 

 The radius of the electrode is directly affecting the sensitivity of the device. 

According to the Sauerbrey‟s equation, the smaller radius of electrodes provides a higher 

mass sensitivity compared to a larger radius of electrode. The magnitude of this 

sensitivity variation of the device is larger with higher resonant frequency device 

compared to the device with lower resonant frequency as shown in the Figure 4.3 and 4.4. 
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Fig. 4.3: Analytical modeling result presenting relationship between the average mass sensitivity 

(Δf/Δm) and radius of the electrode (mm) for a 5MHz quartz crystal microbalance sensor. 

 

Fig. 4.4: Analytical modeling result presenting relationship between the average mass sensitivity 

(Δf/Δm) and radius of the electrode (mm) for a 10 MHz quartz crystal microbalance sensor. 

 From Figures 4.3 and 4.4, the significance of a smaller electrode is determined as 

it provides a higher average mass sensitivity. Despite providing a higher mass sensitivity 

for the device, it also has a disadvantage of reduces mass loading area. This phenomenon 
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of trapping of energy at the center of quartz is called as the energy trapping effect. Due to 

this energy trapping property of quartz, most of the energy is trapped on the center of the 

electrode while the quartz acting as an acoustic lens [84-85]. The distribution of the mass 

sensitivity in the quartz can be described as a Gaussian curve in the radical direction due 

to the energy trapping effect. Therefore, it is shown that a larger mass loading area on the 

surface of the active top sensing electrode is required for a better performance. This is 

due to the fact that a larger mass loading area provides a platform for more target gas to 

interact with the quartz crystal microbalance which in turn produces a higher shift in the 

resonant frequency compared to lower mass loading area [86].  

 Although the resonant frequency and mass sensitivity characteristics are modeled 

in the analytical modeling, the same modeling techniques cannot be applied when the 

shape of the electrodes are complex as proposed in this research work or when the mass 

layer is applied on the top electrode similar to the application of this work. Thus, with the 

help of finite element analysis, the device can be modeled for various customized 

structure of electrodes, array configurations and also to analyze its critical design 

parameters. 

4.3 Finite Element Analysis 

 The finite element analysis is the process of simulating the predefined physical 

phenomenon using the numerical technique called finite element method. Finite element 

analysis technique is used to design customized geometric designs of a device because in 

some cases that need complex modifications, the analytical modeling cannot model 

complex structures and provide the results. This technique of finite element analysis can 

also be useful to reduce the number of needed physical prototypes and experiments. 
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 In the case of quartz crystal microbalance sensor, the theoretical calculations can 

be used only to understand the basic conventional design of the device. The need for a 

multiple sensors on the same substrate in an array configuration or to determine the effect 

of certain design parameters on the performance of the device such as the thickness of the 

electrode, radius of the quartz can be modeled and optimized with the finite element 

analysis methods. 

4.3.1 COMSOL Multiphysics 

 COMSOL Multiphysics can combine multiple physics based environment, set 

complex boundary conditions in multi-dimensional forms, and build detailed geometry 

structures for analysis [87]. It has wide range of materials with predefined physical 

properties which can be applied for the designed geometries. The COMSOL is also 

integrated with an ample physics conditions and features with which a virtual prototype 

of quartz crystal microbalance can be accurately designed and modeled. With the help of 

this comprehensive modeling tool, meshes can be built. Furthermore, it has a wide range 

of study collection and post processing abilities.  

4.3.2 Meshing Characteristics 

 In COMSOL Multiphysics after building the geometry, assigning the boundary 

conditions and setting the physics conditions, the designed model has to be meshed 

before conducting the comprehensive study. The mesh is a vital part in deciding how the 

designed geometry is solved. The meshing characteristics define the way in which the 

geometry in divided, shape of the mesh elements, size and density of the elements. The 

following physics controlled meshes can be set in the predefined meshing qualities such 

as, 
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 extremely fine,  

 extra fine,  

 finer,  

 fine,  

 normal,  

 course,  

 courser, 

  Extra course and extremely course. 

 Depending on the following predefined meshing qualities, the COMSOL software 

divides the geometries into segments of small sizes, shape and density. Increasing the 

density of the meshing provides more accurate results with the cost of processing power 

and time. Thus in order to get the most accurate results in the best possible minimal time, 

the meshing characteristics of the COMSOL is conducted on the basic geometry of the 

quartz crystal microbalance and analyzed. The parameters of the quartz crystal 

microbalance are set as per the Table 4.1 and the meshing characteristic analysis is 

conducted for the primal meshes. 

Table 4.1: Dimensions of the quartz crystal microbalance sensor for mesh accuracy analysis 

Parameters Value Unit 

Radius of quartz 12 mm 

Thickness of quartz 333 μm 

Radius of electrode 500 μm 

Thickness of electrode 300 nm 
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 The meshes are built starting from the normal to extra fine meshes since the 

course meshes are scarcely arranged. This meshing analysis has provided different results 

for the resonant frequencies from the adaptive frequency study. The segmentation of the 

different meshes in which the electrode areas are densely packed due to their smaller 

dimensions. The two dimensional plot of mechanical response gives the resonant 

frequency values which are captured and presented in the following Figure 4.5. 

 

     

Fig. 4.5: COMSOL simulation results showing the resonant frequency characteristics to analyze 

the meshing characteristics (a) Normal mesh (b) Fine mesh (c) Finer mesh (d) Extra fine mesh. 

 From the following analysis, the resonant frequency of the sensing device is 

found to be constant when the meshing characteristics are finer and above as illustrated in 

(a)         (b) 

(c) (d) 
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the Figure 4.6. The absence of any change in the resonant frequency after a certain mesh 

number is an indicator of the ability of finer mesh and beyond to provide independency to 

the meshing density results with the minimal possible simulation time. Moreover, 

meshing above the quality of finer meshing would take longer simulation times, while 

providing the same results as the finer meshing. Thus, the following finer mesh has been 

chosen for the upcoming simulations of the proposed designed sensors in this work. 

Furthermore, this analysis on the meshing characteristics has assured the independency of 

the results to the meshing density during the finite element analysis simulations. 

 

Fig. 4.6: COMSOL simulation results illustrating the effect of meshing on the output resonant 

frequency. 

4.3.3 Investigation of Thickness of Quartz Crystal 

 The thickness of the quartz crystal is an important parameter which determines 

the basic fundamental resonant frequency of the quartz crystal microbalance sensor. This 

fundamental resonant frequency determines the basic sensing capability of the sensor also 

through the Sauerbrey‟s equations. From the analytical modeling, it is been found that the 

resonant frequency increases when the quartz crystal thickness is decremented and 
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decreases when the quartz crystal thickness is incremented. In order to verify the results 

of analytical modeling and also to analyze its behavior for a more complex sensor 

configuration, the finite element analysis of thickness of quartz is carried out in 

COMSOL software. 

 Accordingly, the geometry of the quartz in the form of a cylinder is built with the 

inbuilt COMSOL kernel and the boundary conditions are set to be free material. In order 

to eliminate any external mass factors on the quartz crystal, the electrodes are removed 

for this frequency analysis and the alternating current is applied on the top and bottom of 

the quartz substrate. Due to the absence of complex geometrical structures, the mesh size 

is kept user controlled in order to reduce simulation time. A parametric sweep from 50μm 

to 333μm is selected and the adaptive frequency study is conducted in the COMSOL in 

order to analyze their resonant frequency response by plotting the frequency versus the 

displacement. The frequency in which the highest displacement takes place in the 

following plot represents the resonant frequency. Abs(u) is the function of displacement. 

The values are plotted in a two dimensional graph in the COMSOL and shown in the 

Figure 4.7. 

 

(b) (a) 
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Fig. 4.7: COMSOL simulation results showing the resonant frequency characteristics to analyze 

the thickness of quartz crystal (a) 50μm (b) 100μm (c) 168μm (d) 215μm (e) 333μm. 

 Followed by the simulations, the results of the relationship between change in the 

thickness of the quartz and the change in the resonant frequency are plotted in the Figure 

4.8. Figure 4.8 shows that the relationship is fairly linear, the resonant frequency shift is 

observed to be higher as the thickness of the quartz is reduced. The 5MHz and the 

10MHz quartz crystal microbalance is the most employed category due to their 

robustness and stability. A thickness of quartz of 168μm and 333μm can provide this 

particular resonant frequency for the sensing device. 

(d) (c) 

(e) 
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Fig. 4.8: COMSOL simulation results illustrating the relationship between the resonant frequency 

and the thickness of quartz (μm). 

 An accuracy rate of 99.99 % has been achieved between the variations in 

analytical modeling and the finite element analysis using the COMSOL software which is 

shown in the Table 4.2. 

Table 4.2: Comparison between the theoretical and simulation resonant frequency for different 

values of thickness of quartz. 

Thickness of quartz 

crystal (μm) 

Theoretical resonant 

frequency 

(MHz)  

Simulation resonant 

frequency 

(MHz) 

50 33.2 33.2 

100 16.66 16.651 

168 10.17 10.17 

215 7.6 7.6 

333 5.12 5.12 

 

4.3.4 Investigation of Radius of Quartz Crystal 
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 As per the analytical modeling results and derivations, the radius of the quartz 

crystal does not have any significant effects on the output of the sensor with a 

conventional design. However, if this conventional design is altered, the output 

performance has the probability to vary. Thus in order to analyze the characteristics of 

this parameter, a parametric sweep is conducted in the COMSOL to observe any 

variations in the resonant frequency. 

 During the analysis of change in the radius of quartz crystal parameter, all other 

critical parameters such as the thickness of quartz and gold electrode and radius of gold 

electrode were kept constant in order to avoid any other possibilities for resonant 

frequency variations.  Followed by setting all other parameters constant, a parametric 

sweep is done between 500μm to 12mm and the resonant frequency characteristic 

analysis is conducted and the results are plotted using a two dimensional graph in 

COMSOL and recorded resonant frequency variation results are shown in the Figure 4.9. 

 

(b) (a) 
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Fig. 4.9: COMSOL simulation results showing the resonant frequency characteristics to analyze 

the radius of quartz crystal (a) 500μm (b) 750μm (c) 1mm (d) 2mm (e) 3mm (f) 7mm. 

 Followed by obtaining the data, the resonant frequency on each radius of quartz 

crystal is plotted in a graph as shown in Figure 4.10. The results indicate that the resonant 

frequency varies with the variation in the radius of quartz dimensions. This variation is 

due to the fact that the vibration of the crystal during the TSM mode of oscillation travels 

through the quartz for up to a certain range depending on the size of the electrodes. For a 

500μm radius of electrode, the vibrations travels up to 3mm and the resonant frequency 

stays stable beyond. These vibrations will affect the results of the quartz crystal 

microbalance sensor when it is designed in an array configuration [88]. In the case of a 

(d) (c) 

(e) (f) 
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conventional single channel QCM design, the variations can be neglected as it does not 

affect the final sensor output during sensing. 

 

Fig. 4.10: COMSOL simulation results illustrating the relationship between the resonant 

frequency and the radius of quartz (μm). 

4.3.5 Investigation of Thickness of Gold Electrode 

 The increment in the displacement of the quartz crystal microbalance can be 

correlated to the higher sensitivity. Therefore, in order to obtain a better sensitivity with 

the device, the effect of the electrodes dimensions needs to be assessed to analyze its role 

on the displacement characteristics [89]. To conduct test on the thickness of gold 

electrode characteristics, all other critical parameters are kept constant including the 

radius of quartz and gold electrode and the thickness of quartz crystal. Followed by this 

process defining the parameters, the adaptive frequency study is conducted and the 

mechanical response of the quartz for the applied potential is plotted in a two dimensional 

graph and shown in Figure 4.11. 
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Fig. 4.11: COMSOL simulation results showing the resonant frequency characteristics to analyze 

the thickness of gold electrodes (a) 50nm (b) 200nm (c) 300nm (d) 400nm (e) 500nm (f) 1000nm. 

 The results indicate that the thickness of 300 nanometer of gold electrode exhibits 

higher displacement compared to the other thickness values. It exhibited a displacement 

of approximately 5.5 nanometers which can provide better output during the sensing 

process as shown in the Figure 4.12.  

(b) (a) 

(d) (c) 

(e) (f) 
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Fig. 4.12: COMSOL simulation results illustrating the relationship between the displacement and 

the thickness of gold electrode (nm). 

4.3.6 Investigation of Radius of Gold Electrode 

 The radius of electrode is a significant parameter for the operation and 

performance of the sensing device. It serves as the active sensing area, where the target 

gas are prone to get interacted with the device and makes changes in the resonant 

frequencies which are further measured for the detection purpose. The radius of the 

electrode also plays a vital role in deciding the mass loading area. A higher mass loading 

area can provide a higher shift in the frequency due to the fact that the larger electrode 

size could provide more area for the interaction of the target gas with the sensor. In other 

words, a higher mass loading area could be platform for higher sensitivity [90]. 

Accordingly such a significant parameter is analyzed with finite element analysis tool to 

study its characteristics. 

 The finite element analysis is conducted by considering all other critical design 

parameters constant and the resonant frequency is calculated by conducting the adaptive 

frequency study and the results are shown in the Figure 4.13. The meshing conditions 
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were kept constant for all the electrode sizes and according re-meshed before each 

simulations. 

 

 

Fig. 4.13: COMSOL simulation results showing the resonant frequency characteristics to analyze 

the radius of gold electrodes (a) 100μm (b) 300μm (c) 1mm (d) 3mm. 

 As it can be seen from Figure 4.13, the results show that the smaller electrodes are 

exhibiting higher resonant frequency compared to the larger electrodes. This is due to the 

effect of the basic mass sensitivity of the quartz crystal microbalance. The variation in the 

resonant frequency is near linear and dependent on the fundamental resonant frequency 

of the sensor. In order to verify this dependency on the fundamental resonant frequency, 

the analysis is repeated with the quartz crystal microbalance of 10MHz range which 

(b) 

(c) (d) 

(a) 
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exhibited a higher response for the electrode mass compared to the 5MHz range as shown 

in the Figure 4.14 and 4.15. 

 

Fig. 4.14: COMSOL simulation results illustrating the relationship between the resonant 

frequency and the radius of gold electrode for the 5MHz range. 

 

Fig. 4.15: COMSOL simulation results illustrating the relationship between the resonant 

frequency and the radius of gold electrode for the 10MHz range. 

4.4 Conclusion 

 In this chapter the analytical modeling has been presented and the modeling 

results have shown the effects of thickness of quartz on the fundamental resonant 

frequency of the sensor and the relationship between the mass change frequency change 
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relationship. For the parameters where the analytical modeling cannot be applied due to 

the design complications, the finite element analysis has been employed. The accuracy of 

the simulations is ensured with the meshing characteristic analysis and a comparison 

between the theoretical calculations and the simulation results which exhibited a 99.99% 

accuracy rate. During the analysis of the radius of electrode in this chapter, it is been 

found that the sensitivity of the sensor is concentrated towards the center of the electrode. 

This phenomenon of higher sensitivity on the center of the electrode is analyzed further 

in the upcoming chapter to obtain an approximately uniform distribution of the 

sensitivity. 
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CHAPTER 5 

ANALYSIS OF ELECTRODE STRUCTURES AND DISPLACEMENT PROFILE 

– ELECTRODE DESIGN 

5.1 Introduction 

 The structure and size of the electrode greatly influences the overall sensitivity of 

the quartz crystal microbalance sensor, which indeed provides possibilities for 

optimization and improvement of the sensitivity distribution over the surface of electrode 

[91]. The conventional quartz crystal microbalance sensor with the circular electrodes has 

its sensitivity concentrated towards the centre of the electrode. Energy trapping effect of 

the quartz is responsible for this accumulation of higher sensitivity towards the centre of 

the electrodes [92]. With this phenomenon of energy trapping, the conventional 

electrodes fail to utilize the complete potential of the sensing area, which in return 

degrade the device performance [93]. Moreover, due to this energy trapping effect, the 

circular electrodes are usually reduced in terms of size for better sensitivity by sacrificing 

the mass loading area on the electrode [94]. In this work, a proposed approach to address 

the drawbacks of these conventional sensors is to design a new electrode configuration 

that provides a high-performance and efficient electrodes. In this approach, there are 

possibilities of attaining high uniform sensitivity over the entire electrode surface 

irrespective of the sensitivity attained through fundamental resonant frequency. A quartz 

crystal microbalance sensor can be considered to be utilizing its full potential when it has 

a larger mass loading area on the electrode with high uniform sensitivity over the whole 

electrode. With configurations such as larger mass loading area and higher uniform 

sensitivity on the electrode, the sensor could be able to exhibit larger shift in the resonant 
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frequency when the target gas is absorbed on the sensing electrode. In order to achieve 

these qualities in the electrode, in this chapter, the finite element analysis and modelling 

are performed on several designs with various electrode structures and investigated. A 

novel design of electrode pattern called as the concentric electrodes has been further 

proposed, studied and compared with the conventional electrode.  

5.2 Relationship between Electrode Structures and Mass Sensitivity 

 The mass sensitivity at a particular point of the electrode is directly proportional 

to the vibrational amplitude produced at that particular point of the electrode during the 

thickness shear mode of oscillation. In other words, the local mass sensitivity of the 

sensor depends on the local intensity of the inertial field developed on the crystal surface 

during crystal vibration, which is proportional to the vibrating amplitude in that particular 

point [95]. Thus, the displacement produced during the vibration can state the range of 

the sensitivity produced at the active sensing electrode. In the past decades, Sauerbrey‟s 

equation has been used to calculate the mass sensitivity of the quartz crystal 

microbalance sensor [96] but it fails to account the effect of electrode structure and type 

of metal used to calculate the sensitivity which results in inaccuracy for complex sensor 

array designs. The mass sensitivity of the quartz crystal microbalance can be described as 

a Gaussian curve across the active sensing electrode which can be described with the 

Bessel equation [97] which is derived as follows. 

        
|      | 

  ∫  |      |   
 

 

                                                 

where,         is the mass sensitivity function with a unit of Hz/Kg, Cf is the 

Sauerbrey‟s sensitivity constant with a value of 1.78 × 10
11

 Hz. Cm
2
 /kg.         is the 
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particle displacement amplitude function and r is the distance from the centre. The 

particle displacement amplitude function A(r) is the solution of the following Bessel 

equation. 

  
   

   
  

  

  
 

  
   

 
                                                       

where, N = 2.0443 according to the materials constant of the AT-cut quartz crystal, 

  
        

     , where i = E,P,U (E, P and U represents the full electrode region, 

partial electrode region and non-electrode region, respectively),   √       is the 

acoustic wave velocity in the crystal, where c66 is the elastic stiffness constant,    is the 

density of the quartz,    is the cut off frequency of full electrode region   , partial 

electrode region    and non-electrode region   [97]. On a 10 MHz quartz crystal 

microbalance, the mass sensitivity at r(0) of the electrode position has the highest 

sensitivity due to the energy trapping effect and it decreases exponentially with Gaussian 

curve when the distance from the centre increases [97]. In order to study and analysis the 

applications of these equations in conventional and proposed configuration in a complex 

array structure and to achieve a more uniform mass sensitivity across the electrode, the 

finite element analysis and modelling have been done using COMSOL Multiphysics 

simulation tool. 

5.3 Finite Element Analysis on Various Electrodes 

 The objective of this finite element analysis is to achieve a more uniform 

distribution of sensitivity to achieve larger effective mass loading area comparative to the 

other conventional electrode of quartz crystal microbalance sensor.  

5.3.1 Investigation of Conventional Circular Electrode 
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 The conventional circular electrode has the advantage of easier fabrication 

process. However, the displacement is highly concentrated at the centre of the electrode, 

which limits the potential to react with all the target gas in an environment to achieve 

high detection capability. 

 In order to verify the Gaussian distribution of the sensitivity in the circular 

electrodes, the finite element analysis is conducted with an electrode radius of 4.25mm 

on a 12mm radius of quartz substrate. The fundamental resonant frequency of 5MHz 

range has been adopted to test the electrodes in this chapter. Commercially available 

quartz substrate with thickness of 333μm and resonant frequency of 5MHz has been used 

for all the analysis in this work. As previously investigated and identified, the meshing 

characteristics have been set to finer conditions to attain accurate results. The resonant 

frequency of the quartz crystal microbalance is studied by the adaptive frequency study 

performed between the range of 4.4 to 4.5 MHz in which the Eigen frequency is found to 

be 4.43MHz for the investigated design. Followed by this, the total displacement 

distribution on the electrode surface is plotted on a 2 dimensional plot. The results 

verified that the total displacement is distributed as a Gaussian curve as shown in the 

Figure 5.1 (b) and (c). From the displacement profile in Figure 5.1 (b), it can be seen that 

the total displacement is concentrated towards the inner area of the circular electrode 

which attained a displacement of 8nm compared to the outermost point on the electrode 

which attained a displacement of 1nm. Due to this peak variation in the displacement 

profile of the circular electrodes, the sensitivity varies from center part to the outer part of 

the electrode. Thus, the target gas which comes into contact with the 8nm displaced 

electrode point will have a much greater influence on the resonant frequency shift 
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compared to that of the area with 1nm displacement level. In order to balance this 

unequal distribution of the displacement profile, alternate electrode structure are 

proposed and analyzed. 

 

  

Fig. 5.1: Conventional circular electrode (a) Geometry - Radius of quartz (RQ) – 12mm, Radius 

of electrode (RE) – 4.25mm (b) Displacement profile along the electrode axis of RE – 4.25mm 

(c) 2D plot of displacement profile exhibiting Gaussian curve 

5.3.2 Investigation of Ring Electrode 

 The ring electrodes are proposed as an alternative to the conventional circular 

electrodes. These electrodes are designed to indirectly cut and reduce the energy trapping 

effect by providing an approximately uniform sensitivity distribution on the surface of the 

electrode. Rings with various dimensions are analyzed to study their displacement 

(a) 

(c) 

(b) 
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profile. The ring width of 2.125mm and 1mm with an overall radius of 4.125mm 

electrode has been modelled to have a better comparison with the latter electrode. The 

displacement profile is modelled and shown below in Figure 5.2.  

 

 

Fig. 5.2: Ring electrode (a) Geometry - Radius of quartz (RQ) – 12mm, Radius of electrode (RE) 

– 4.25mm, Ring width (RW) – 2.125mm (b) Displacement profile along the electrode axis with 

RW – 2.125mm (c) Geometry - Radius of quartz (RQ) – 12mm, Radius of electrode (RE) – 

4.25mm, Ring width (RW) – 1mm (d) Displacement profile along the electrode axis with RW – 

1mm. 

 The displacement profile of the 2.125mm ring width in Figure 5.2 (b), shows that 

the ring electrode structure has reduced the higher displacement in the centre of the 

electrode. The results further demonstrate that the energy trapping is comparatively 

(a) 

(c) 
(d) 

(b) 
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reduced than the circular electrodes in an indirect way. The displacement profile in the 

Figure 5.2 demonstrates 8nm displaced region around the outer part of the electrode 

while the centre part of the electrode provides 1nm displacement. Despite having a less 

mass loading area on the sensing surface compared to the circular electrodes, the ring 

electrodes exhibited better distribution of displacement.  

5.3.3 Investigation of Ring Dot Electrode 

 The ring dot electrodes are designed as an improved version of the ring 

electrodes. Since the latter electrode‟s displacement profile has shown minimal 

displacement in the centre of the electrode, a dot in placed in this ring dot electrode to 

overcome the disadvantage. The ring dot electrode also has the comparative advantage of 

more mass loading area than the ring electrode with a potential improved distribution 

profile. The same ring width dimensions of 2.125mm and 1mm with a circle (dot) of 

500μm in the middle of the electrode has been designed and analyzed for the 

displacement profile in order to compare them later.  

 
(a) 

(b) 



 

61 
 

 

Fig. 5.3: Ring dot electrode (a) Geometry - Radius of quartz (RQ) – 12mm, Radius of electrode 

(RE) – 4.25mm, Ring width (RW) – 2.125mm with dot radius (RD) - 500μm  (b) Displacement 

profile along the electrode axis with RW – 2.125mm (c) Geometry - Radius of quartz (RQ) – 

12mm, Radius of electrode (RE) – 4.25mm, Ring width (RW) – 1mm with dot radius (RD) - 

500μm  (d) Displacement profile along the electrode axis with RW – 1mm. 

 The simulation results from Figure 5.3 show that the displacement profile of the 

ring dot electrode has provided a better distribution of the displacement compared to the 

ring electrodes because of the circular dot in the middle of the electrode. The circular 

structure in the middle region has contributed for the displacement in the middle region 

which has increased the displacement in the middle region of the electrode to 2nm. The 

ring dot width of 1mm provided better distribution compared to the 2.125mm ring dot 

electrode. Moreover, it also has extra surface area than the ring electrodes due to the 

circular structure of 500μm radius in the middle of the electrode 

5.3.4 Comparison between Circular, Ring and Ring Dot Electrodes 

 In order to compare the various electrode‟s potential in the distribution of 

sensitivity or displacement, the displacement profile results for the similar overall 

electrode radius of 4.25mm are plotted using the MATLAB and shown in the Figure 5.4. 

The results indicate that the ring and ring dot electrode which are designed as an 

(c) (d) 
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alternative to the circular electrodes, have exhibited better distribution of the 

displacement along the axis of the electrodes. The electrode structures and dimensions 

contribute towards the distribution of displacement is wide range. The ring dot electrode 

has a variation in the displacement in the range of 3 – 5nm which along the electrode axis 

while the circular and the ring electrodes exhibited a variation in the range of 1 – 8nm 

and 2 - 8nm variation along the electrode axis. The ring electrode design provides a 

comparatively uniform displacement profile in the range of variation from 3 – 5nm. This 

means that the ring dot electrode structure has fairly even displacement profile. Thus, the 

ring dot electrode structure are concluded as a more suitable candidate for the uniform 

distribution of displacement comparative to the widely used conventional electrodes and 

further the ring dot electrode is further analyzed and improved. 

 

Fig. 5.4: Comparison of displacement profiles of circular, ring and ring dot electrodes. 

5.4 Multiple Ring Design 

 Due to the factors such as the comparatively better uniform distribution in the 

displacement profile and higher mass loading area, the ring dot electrode is added with 
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multiple rings in order to improve the distribution and provide more area for mass 

loading. The multiple ring structure can provide the quartz crystal microbalance sensor 

electrode with higher area for the sensitive membrane and the target gas to react which in 

turn produces more shift in the frequency. Thus, an initial ring with similar ring width has 

been designed and studied as shown in the Figure 5.5 (a) and (b) which experienced a 

better distribution with higher surface area compared to the prior designs including the 

ring dot electrode. Dimensions of the following multiple ring design are listed in the 

Table 5.1.  

Table 5.1: Dimensions of multiple rings with equal ring width and ascending ring width. 

Multiple Rings Equal Ring Width Ascending Ring Width 

Radius of quartz (RQ) 12mm 12mm 

Radius of electrode (RE) 2.5mm 2.75mm 

Ring width 1 (RW1) 500μm 500μm 

Ring width 2 (RW2) 500μm 750μm 

Dot radius (RD) 500μm 500μm 

 

 Furthermore, in order to extract the displacement from the centre of the electrode, 

on the next design as shown in Figure 5.5 (c) and (d), the outer rings are designed to be 

larger than the ring closer to the centre. In other words, the ring widths are designed in 

ascending order pattern in order to extract the displacement to the outer area of the 

sensing electrode. The results from the Figure 5.5 has demonstrated that the multiple 

rings in ascending ring width has delivers much better displacement profile compared to 

the previous designs, more rings are added and this ascending ring width pattern is 

studied and further analyzed as concentric electrodes in the upcoming section. 
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Fig. 5.5: Multiple ring electrode (a) Equal ring width (b) Displacement profile along the electrode 

axis with RE – 2.5mm (c) Ascending ring width (d) Displacement profile along the electrode axis 

with RE – 2.75mm. 

5.5 Concentric Electrode Design  

 The concentric electrode structure is designed in a way that the adjacent rings are 

bigger than the previous rings in an ascending order pattern which enables a better 

distribution of the displacement across the electrode surface and thereby providing an 

approximately uniform sensitivity. These ascending rings encompasses the displacement 

in a way that it becomes approximately uniform despite providing a mass loading area 

almost equal to that of a circular electrode. Thus, due to its advantage of better even 

distribution of displacement and larger surface area for the target gas to react, it can 

(b) (a) 

(c) (d) 
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provides a higher level of shift in the frequency compared to all the previous electrodes 

which is the significant advantage of this electrode pattern in the QCM.  

5.5.1 Design and Geometry 

 The rings are designed in a concentric pattern, in which the centre area is covered 

with a small 500μm circular electrode. The ring widths are set in ascending order in the 

ratio of 1:1.5:2. The gap is set constant with a constant dimension between the rings of 

500μm. For example, if the radius of the centre circle is 500μm, then the rings width is in 

the order of 500μm, 750μm and 1mm which make the overall electrode size of 4.25mm 

with a constant gap between the adjacent structures of 500μm as shown in the Figure 5.6. 

 

Fig. 5.6: Schematic illustration of the concentric circle electrode geometry with ascending ring 

width and equal gap. 

5.5.2 Optimizing the Distribution Profile 

A. Concentric Electrode with Increasing Ring Width 

 In order to study and analyze this ascending ring width pattern, various 

dimensions have been modelled to analyze the displacement profile. The ratios are set in 

the format of [Inner circle radius : Gap : Ring width 1 : Ring width 2 : Ring width 3]. 

Two ratios have been studied and analyzed for displacement profile as follows 1) ratio 1 

– [1:1:1.5:2], 2) ratio 2 – [1:0.5:1:2:3] 
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Fig. 5.7: Designed concentric circle electrode geometry with ascending ring width and equal gap 

with quartz substrate in COMSOL. 

 Initially, ratio 1 as shown in Figure 5.7 and 5.8 has been analyzed with C = 

250μm and 500μm which provided a displacement pattern in which the distribution of the 

displacement from the outer to inner layer is contained between 2 – 3 nm. Then the ratio 

2 set with the decreased gap to analyze the minimal gap required to sustain this uniform 

distribution. The results of the ratio 2 with C = 250μm and 500μm has shown lower 

distribution of displacement compared to the ratio 1. Thus the ratio 1 is adopted and 

analyzed further for different gap pattern in the upcoming section.   

 

(b) (a) 
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Fig. 5.8: Displacement profile of concentric electrodes (a) Ratio 1 [1:1:1.5:2] with C = 250μm (b) 

Ratio 1[1:1:1.5:2] with C = 500μm (c) Ratio 2 [1:0.5:1:2:3] with C = 250μm (d) Ratio 2 

[1:0.5:1:2:3] with C = 500μm. 

B. Concentric Electrode with Ascending Ring Width and Descending Gap 

 In order to further reduce the overall size of the electrode, in addition to the 

increasing ring width pattern, the gap parameters are designed in descending order from 

the centre instead of a constant gap as shown in Figure 5.9. Thus, in addition to the ratio 

of 1:1:1.5:2, the gap ratio from the centre has been set to 1:0.3:0.5 in the descending 

order. The inner smaller rings have a larger gap to its neighbouring structures compared 

to that of the outer larger rings. 

 

Fig. 5.9: Schematic illustration of the concentric circle electrode geometry with ascending ring 

width and descending gap. 

(d) (c) 
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 The results as shown in the Figure 5.10 has given a much better distribution in the 

displacement profile with high overall electrode size of 4.25mm while providing the 

distribution within the average range of 2 – 4 nm variations across the axis of the 

electrode. The outermost point on the electrode has given a displacement of 

approximately 5nm compared to the 7nm in the centre of the electrode surface. Thus, the 

concentric electrode pattern can provide a more uniform sensitivity all over the electrode 

much better than its predecessors.  

 

Fig. 5.10: Concentric electrode with ascending ring width and descending gap (a) Geometry - 

Radius of quartz (RQ) – 12mm, Radius of electrode (RE) – 4.25mm, Ring width 1 (RW1) – 

500μm, RW2 - 750μm and RW3 – 1mm  with dot radius (RD) - 500μm, Gap 1 (G1) - 500μm, G2 

- 350μm, G3 - 200μm (b) Displacement profile along the electrode axis with RE – 3.8mm. 

 A comparison is made between the displacement profile of the final concentric 

electrode design and the initial conventional circular electrode in the Figure 5.11. The 

distribution profile ratios of the concentric electrode are fairly linear in the electrode 

region compared to the circular design while having the similar overall size of radius 

4.25mm. It can be concluded that the concentric electrodes has provided a better uniform 

distribution of the total displacement across the axis of electrodes compared to the 

conventional electrode design.  

(a) (b) 
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Fig. 5.11: Comparison of displacement profiles of conventional circular electrode and concentric 

electrode.   

5.6 Conclusion 

 The displacement profile in the quartz crystal microbalance electrode is 

investigated and optimized to provide an enhanced uniformity of the displacement, which 

results in an improved sensitivity. The designed ascending ring width and descending gap 

pattern electrode has provided the highest uniform distribution without losing the surface 

area for interaction of the target gas. Moreover, the proposed concentric electrode design 

has similar dimension of a conventional circular electrode while providing an enhanced 

displacement performance. Furthermore these electrodes are deigned in an array 

configuration to enable the multiple target detection in the next chapter. 
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CHAPTER 6 

MONOLITHIC MULTIPLE CHANNEL DESIGN – ARRAY CONFIGUARTION 

6.1 Introduction 

 A multichannel quartz crystal microbalance (QCM) sensor, which is an array of 

QCM sensors is designed, simulated and analyzed in this chapter. Two types of arrays 

have been proposed in this chapter. The first design is the un-etched 5MHz QCM array 

that is developed with multiple concentric electrode channels where it still benefits from 

the simplified fabrication process without quartz etching process offered by advance 

micromachining techniques. The un-etched QCM array can be used only up to 5MHz 

range. If the resonant frequency is increased in the un-etched QCM array, the overall size 

of the array gets large which is the limitation of this un-etched QCM array. Therefore an 

alternate design called as the advanced high frequency etched QCM array has been 

proposed with 33.3MHz and 10MHz resonant frequencies which involves etching of the 

quartz for accommodating high resonant frequency operation within a small overall size 

for the miniaturized applications. It employs a dual inverted mesa structures on a 

monolithic quartz substrate to increase the frequency of the device without compromising 

the overall size. It has comparative advantages such as the high sensitivity due to high 

resonant frequency, smaller size and comparatively uniform distribution of displacement. 

Concentric electrodes are utilized in his design to overcome the disadvantage of high 

energy trapping of this design. Both the array designs has been investigated and analyzed 

for frequency interference between the channels and the minimal distance between the 

adjacent channels on the monolithic substrate without interference are further determined 

for each arrays.   
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6.2 Un-etched QCM Array – Multi Channel Design 

6.2.1 Design and Frequency Interference 

 The un-etched QCM array design comprises of multiple electrodes on the same 

quartz substrate accompanied by their own pair of reference electrodes positioned on the 

bottom of the quartz substrate as shown in the Figure 6.1. This array structure is proposed 

by utilizing the previously proposed and designed concentric electrode configuration. 

Each electrode pair on the monolithic substrate acts as a channel. Every channel can 

operate as an independent QCM sensor and sense the target gas without any influence 

from the neighboring electrodes if they are placed at an optimal distance from each other 

in order to avoid the interference. This necessary optimal distance between the adjacent 

channels in the monolithic substrate ensures the absence of frequency interference 

between the adjacent channels [98]. In order to achieve this optimal distance, the 

electrodes are initially placed at the minimal distance to each other and then the distance 

is increased and the frequency interference pattern is investigated with the adaptive 

frequency study in COMSOL Multiphysics which is done in the following section. After 

optimization of the optimal distance, each QCM channel acts as an individual sensor 

utilizing the same quartz substrate [99]. In other words, a monolithic quartz crystal is 

utilized to operate multiple channels without interference. For instance, each QCM 

channels can be coated with different sensing materials and can be employed to detect a 

target gas in a complex environment using their measured unique patterns in the 

frequency shift [100].  
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Fig. 6.1: Design of un-etched multichannel QCM design in which c2c is the distance between the 

center to center of adjacent electrodes (a) Top view showing four concentric electrodes (b) Side 

view of the un-etched QCM array. 

6.2.2 Optimization and Elimination of the Frequency Interference 

 The optimal distance between the electrodes should preferably be as small as 

possible between the individual channels with the same resonant frequency across all the 

channels. The similar resonant frequency across the channels assures the absence of 

interference between the adjacent electrodes that is necessary for an accurate detection. 

 In order to find this optimal distance between the adjacent electrodes, the 

electrodes with constant dimensions of radius 500μm and thickness 300nm are placed as 

shown the Figure 6.2 with the center to center distance between the electrodes (c2c) 

started from 1.25mm and slowly increased up to 8mm with a step size of 1mm. The size 

of the quartz is kept constant with a radius of 12mm and a thickness of 333μm with a 

fundamental resonant frequency of 5MHz. Followed by this, the frequency study is 

conducted for each c2c value using the finite element modeling tools in order to find the 

resonant frequency of each individual channel. Finer meshing is utilized for this analysis. 

The resonant frequency characteristics of all the channels are analyzed in order to 

(a) (b) 
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monitor the interference. The results of this analysis are plotted in Figure 6.2 with the 

help of post processing tools, the resonant frequency across all the channels are 

investigated. 

  

Fig. 6.2: Multichannel un-etched QCM design in COMSOL (a) Top view showing the four 

concentric electrodes (b) Node point pattern in COMSOL for the un-etched QCM design. 

 

(b) 

(a) (b) 

(a) 
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Fig. 6.3: COMSOL results showing the resonant frequency characteristics in order to analyze the 

frequency interference in un-etched QCM array for (a) c2c = 1.25mm, Electrode Ⅰ, Ⅱ (b) c2c = 

1.25mm, Electrode Ⅲ, Ⅳ (c) c2c = 2.5mm, Electrode Ⅰ, Ⅱ (d) c2c = 2.5mm, Electrode Ⅲ, Ⅳ (e) 

c2c = 5mm, Electrode Ⅰ, Ⅱ (f) c2c = 5mm, Electrode Ⅲ, Ⅳ (g) c2c = 6.5mm, Electrode Ⅰ, Ⅱ, Ⅲ, 

Ⅳ. 

(c) (d) 

(e) (f) 

(g) 
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 The results of the resonant frequency analysis to monitor the interference between 

the four channels are shown in Figure 6.3 indicates that, for a c2c value of 1.25mm, the 

resonant frequencies of the electrodes are not similar across all the four electrodes. This 

is due to the fact that the displacement of a channel affects its neighboring adjacent 

electrode by causing disturbances in its thickness shear mode oscillation which further 

causes alterations in the frequency at which the electrode pair is oscillating. Therefore, it 

is concluded that the c2c distance of 1.25mm has frequency interference. Similarly the 

c2c values of 2.5mm, 5mm has frequency interference with the evident of varied resonant 

frequencies across the four electrodes as shown in the Figure 6.4. The c2c is further 

increased to 6.5mm from which the resonant frequency values across all the electrode 

pair or channels become equal. This equal resonant frequency values across all the 

channels indicate that the interference is totally eliminated and each of the electrode pairs 

or the channels operate as an individual QCM sensor with the ability to sense without any 

errors due to interference. The c2c distance above 6.5mm gives the similar zero 

interference. Thus, c2c of 6.5mm is chosen as the optimum distance between the center to 

center of electrodes for this proposed un-etched QCM array structure.  
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Fig. 6.4: COMSOL results illustrating the resonant frequency on all four un-etched QCM 

channels versus center to center (c2c) distance between the electrodes – c2c distance 6.5mm 

provides zero cross talk. 

 The designed four channel un-etched quartz crystal microbalance sensor with 

concentric electrodes has a fundamental resonant frequency of 5MHz. This proposed 

design has advantages such as the ease of fabrication, multiple target detection capability, 

approximately uniform distribution of electrodes with concentric electrodes and robust 

construction. Although it has its own advantages, the 5MHz frequency range can provide 

a limited range of sensitivity which may limit its performance due to the low resonant 

frequency. 

 Thus in order to increase the resonant frequency of the device for a further 

enhanced performance, the thickness of the quartz substrate needs to be reduced, which 

can increase the fragility of the substrate. If the resonant frequency is increased above 

5MHz in this un-etched QCM design, the c2c distance will become larger to eliminate the 

interference, and ultimately increases the overall size of the sensor array. Thus, in order 
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to overcome this disadvantage an alternate high frequency QCM is proposed in the 

upcoming section which is designed with the aim of increasing the resonant frequency of 

the QCM above 5MHz without increasing the overall size of the array or even reducing 

the size than that of a 5MHz array. 

6.3 Advanced High Frequency QCM Array  

 The advanced high frequency QCM is designed in the motive to overcome the 

limitations of the prior design such as the inability to operate at higher frequencies and 

large size between the adjacent channels if the resonant frequency is increased above 

5MHz. This advanced high frequency QCM array can operate at high fundamental 

resonant frequency such as 10MHz and above with which a high mass sensitivity can be 

achieved during the operation. This advanced high frequency QCM design requires less 

area in the substrate for a channel compared to the conventional prior designed array due 

to the minimalistic design.  

6.3.1 Proposed Design – Dual Inverted Mesa QCM with Concentric Electrodes 

 This proposed design consists of inverted mesa structures in the top and bottom of 

the quartz substrate as shown in the Figure 6.5. These two inverted mesa structures 

produce a thin quartz layer which is the vibrating area in the design with a thickness (VT) 

of 50μm in the quartz substrate. Thus, this thin quartz layer is naturally mount on the 

strong, thick walls of quartz as shown in the Figure 6.6, which are designed with the 

intent of providing them an independent area to oscillate without any cross talk from the 

adjacent channels and also to contain the displacement of a channel within its own zone 

[101]. The wall thickness is dependent on the center to center distance (c2c) of the 

adjacent electrodes. Furthermore, in order to electrically excite these thin quartz layers, a 
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concentric electrode is designed on the top of the vibrating thickness layer (VT) with a 

circular electrode on the bottom. 

 The vibrating layer thickness (VT) is six times the thickness of the actual quartz 

substrate. This high ratio of thickness difference of 6:1 ensures the stability and 

robustness to the overall structure of the device. If the VT is reduced beyond 50μm, the 

fragility of the device increases. Thus it is set to 50μm which has stability in the operation 

and providing a resonant frequency of 33.3MHz.  

 

Fig. 6.5: Schematic illustration of the side view of dual inverted mesa QCM with concentric 

electrodes showing the significant parameters. 

                      

Fig. 6.6: Schematic illustration of the top view of dual inverted mesa QCM with concentric 

electrodes array showing the etched portions of the quartz substrate with the concentric 

electrodes. 
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 When the alternating electric current is applied on these electrodes, the thin quartz 

layer with the thickness of the 50μm starts to oscillate at a fundamental frequency of 

33.3MHz and the oscillating frequency decreases when the target gas comes into contact 

which forms the working principle of this design. The width of the wall, thickness of the 

non-vibrating substrate (NVT), center to center distance between the electrodes (c2c), 

quartz radius (QR) are the significant parameters in this design which majorly contribute 

in the process of eliminating the frequency interference and they are optimized in the 

upcoming sections. 

6.3.2 Comparative Advantages and Disadvantages 

The dual inverted mesa QCM with concentric electrode design has several advantages 

over the conventional QCM array such as: 

1. High resonant frequency operation which provides a high mass sensitivity [102]. 

Most of the conventional QCMs designs operate between 5MHz and 10MHz zone 

but each channel in the dual inverted mesa QCM can operate at a fundamental 

frequency of about 33.3MHz. 

2. Comparatively small size of array due to the advanced dual inverted mesa design 

which can trap the displacements within the zone of vibration. In conventional 

QCMs, the c2c distance is larger which results in a comparatively large size of the 

array. 

3. High durability of the array due to the fact that they are supported and mounted 

by the thick walls of quartz. On the contrary, if the conventional QCMs are 

designed to operate at higher resonant frequency of 33.3MHz, the device becomes 

fragile due to the complex mounting needs for a thin substrate (50μm). 
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4. Concentric electrodes in this design provide an approximately uniform mass 

sensitivity across the electrodes during the high frequency operation which 

enhances the performance of the sensor furthermore. 

Despite such peculiar advantages, this dual inverted mesa QCM has some amendable 

disadvantages such as: 

1. High energy trapping effect due to the strong natural mount of the thin vibrating 

quartz layer which increases and accumulates the sensitivity in the center of the 

electrodes [103]. However, with the leverage of concentric electrodes, as 

discussed in the previous chapter, the energy trapping effect can be eliminated. 

2. Due to the high resonant frequency, there are high chances of cross talk in the 

channels, if the critical design parameters of the sensor array are not fully 

investigated [103]. Thus, the critical design parameters to eliminate the frequency 

interference are analyzed and optimized in the upcoming section.  

 6.3.3 Optimization and Elimination of the Frequency Interference 

 The critical design parameters of the array need to be investigated in order to 

eliminate the frequency interference between the adjacent channels and to minimize the 

channel size. Initially, for an electrode radius of 500μm, the vibrating area size (RQ) is 

optimized in order to obtain a clear thickness shear mode oscillation with a minimum 

size. This investigation is done on a single channel high frequency QCM. 

 Then, the thickness of the non-vibrating area (NVT) is varied and the suitable 

center to center distance between the electrodes (c2c) for each NVT is studied and 

investigated. For this cross talk investigation, two channel high frequency QCM array is 

employed. If the frequency interference is eliminated in between these two channels, then 



 

81 
 

the same dimensions can be used to fabricate a high number of channels on a monolithic 

quartz substrate.  

6.3.3.1 Vibrating Area – Radius of Quartz (RQ) 

 In the process of minimizing the size of the array, the size of the vibrating area 

needs to be adjusted in such a way that it provides a fine thickness shear mode oscillation 

at a minimum radius of quartz (RQ). This is the region which undergoes the thickness 

shear mode oscillation on the application of alternating electric potential with the 

electrodes. This region has a thickness of about 50μm which provides a high resonant 

frequency of about 33.3MHz. Finite element analysis has been utilized in order to 

investigate its effect on the oscillation. This analysis is carried out on a single channel. 

With a fixed electrode radius of (ER) 500μm, the radius of quartz is increased up to 2mm 

with a step size of 1mm and the resonant frequency characteristics are obtained using the 

frequency study in the finite element modeling tools. The node point pattern for the 

resonant frequency analysis in COMSOL to analyze the TSM mode is shown in the 

Figure 6.7.  The resonant frequency analysis for various RQ values are simulated and the 

results are plotted using the post processing tools and are shown in the Figure 6.8. 

 

Fig. 6.7: Node point pattern in COMSOL for a single channel high frequency dual inverted mesa 

QCM design. 
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Fig. 6.8: COMSOL simulation results showing the resonant frequency characteristics for various 

radius of quartz (RQ) (a) RQ = 0.75mm (b) RQ = 1mm (c) RQ = 1.5mm (d) RQ = 2mm. 

 The results indicate that the resonant frequencies are varying below RQ = 2mm, 

while the resonant frequencies are getting constant from RQ = 2mm. The unstable 

resonant frequencies below RQ = 2mm is due to the insufficient area for thickness shear 

mode oscillation. The insufficient vibrating area produces a stress in the thickness shear 

mode oscillation from the boundaries which causes the resonant frequency to vary. When 

the RQ is 2mm or higher, the area to undergo thickness shear mode oscillation is 

sufficient without any barrier to cause stress and the resonant frequency remains constant 

as shown in Figure 6.9. Thus the RQ value of 2mm which is the minimum value at which 

the resonant frequency becomes constant and it is chosen for the further upcoming 

interference test in the array with multiple channels. 

(a) (b) 

(c) (d) 
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Fig. 6.9: COMSOL simulation results illustrating the characteristics of resonant frequency versus 

the radius of quartz (RQ) in which RQ is observed to be constant from 2mm. 

6.3.3.2 Non-Vibrating Thickness (NVT) and Center to Center Distance (c2c) 

A. For Vibrating Thickness (VT = 50μm) with a Resonant Frequency of 33.3 MHz 

 In order to test the interference between neighboring channels in the array, a high 

frequency 33.3MHz QCM array with two channels are considered. By eliminating 

interference between the two channels, the same array can be replicated with the similar 

dimensions on a large scale substrate with multiple channels. The electrode radius of 

500μm and a quartz radius of 2mm for each channel are fixed from the previous 

investigations. The vibrating thickness (VT) is kept constant as 50μm which has a 

fundamental resonant frequency of 33.3MHz. There are two critical design parameters in 

the design that needs investigations in order to eliminate frequency interference between 

the channels. They are the non-vibrating thickness (NVT) and the center to center 

distance between the electrodes (c2c). The non-vibrating thickness (NVT) is the measure 

of the actual quartz substrate without the inverted mesa structures and the center to center 
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distance between the electrodes (c2c) is the parameter that decides the distance between 

the adjacent channels and the width of the quartz wall separating the neighboring 

adjacent channels. To eliminate frequency interference between the two high frequency 

QCM channels, the non-vibrating thickness (NVT) is kept constant for each iteration and 

the frequency interference is investigated with the different value of center to center 

distance (c2c) starting with the minimum c2c value. The most common quartz wafer 

thicknesses available are 333μm and 168μm. 

 For instance, the NVT is considered 168μm on the first iteration followed by the 

second iteration with 333μm. The c2c is increased starting from 4.5mm and increased up 

to 20mm with a step size of 2mm till it reaches zero interference. The resonant frequency 

analysis is initiated with c2c = 4.5mm because if it is reduced below 4mm, the vibrating 

zones of the two adjacent channels will overlap. The node point pattern for the resonant 

frequency analysis in COMSOL to analyze the interference is shown in the Figure 6.10. 

The resonant frequencies characteristics are studied in order to analyze the interference 

pattern for the two iterations with different c2c values using the finite element modeling 

tools and the results are plotted as shown in the Figure 6.11.  

 

Fig. 6.10: Node point pattern in COMSOL for the two channel high frequency dual inverted mesa 

QCM design. 
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 When NVT = 168μm, the c2c is increased starting from 4.5 to 20mm with the 

step size of 2mm. 

 

 

     

 

Fig. 6.11: COMSOL results showing the resonant frequency plot of the two 33.3MHz frequency 

channels which indicates the level of interference for various c2c values with NVT = 168μm. (a) 

c2c = 4.5mm (b) 6.5mm (c) 10mm (d) 15mm. 

 The simulation results of the analysis indicate that the frequency interference 

gradually decreases when the c2c is increased and finally attains the zero interference 

state when c2c = 15mm for NVT of 168μm. The results also state that the c2c value 

needs to be large enough for a given NVT value in order to attain the zero interference 

state. Similarly, the interference analyzes between the two high frequency QCM channels 

are conducted for NVT = 333μm.  

(a) c2c = 4.5mm (b) c2c = 6.5mm 

(c) c2c = 10mm (d) c2c = 15mm 
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 When NVT = 333μm, the c2c is increased starting from 4.5mm to 20mm with the 

step size of 2mm and the resonant frequency characteristics to analyze the interference 

are plotted in the Figure 6.12. 

 

 

     

Fig. 6.12: COMSOL results showing the resonant frequency plot of the two 33.3MHz frequency 

channels which indicates the level of interference for various c2c values with NVT = 333μm. (a) 

4.5mm (b) 6.5mm (c) 10mm (d) 13mm. 

  The resonant frequency analysis is done in order to monitor the interference 

between the channels and the results are shown in Figure 6.10 indicate that the frequency 

interference slowly decreases when the c2c is increased and is eliminated when c2c is 

13mm. A higher quartz substrate thickness reduces the distance between the electrodes 

and provides a zero interference state. Thus, the NVT and c2c are directly proportional to 

each other to eliminate interference zone. If the NVT is large, the zero-interference zone 

(b) c2c = 6.5mm 

(c) c2c = 10mm 

(a) c2c = 4.5mm 

(d) c2c = 13mm 
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can be obtained with a smaller value of c2c compared to that of a small NVT value. Thus 

if the non-vibrating thickness (NVT) is large, then the c2c value gets comparatively 

small.  

The c2c value on an array also depends on the fundamental resonant frequency of the 

vibrating quartz plane. Due to the high resonant frequency of 33.3MHz with VT = 50μm, 

the zero resonant frequency state has been achieved at 15mm and 13mm for the substrate 

thickness (NVT) of 168μm and 333μm. This is due to the fact that oscillation of high 

frequency quartz produces more displacement than a less frequency quartz. In order to 

prove this, the same analysis has been carried out on a 10MHz array with the same design 

which should provide a comparatively small c2c value than 33.3MHz array.  

B. For Vibrating Thickness (VT = 168μm) with a Resonant Frequency of 10 MHz 

 The frequency interference analysis has been repeated with the dimensions similar 

to that of the 33.3 MHz except for the vibrating thickness (VT) of 168μm in order to 

attain 10MHz. The substrate thickness (NVT) of 333μm is chosen for the analysis and the 

finite element analysis is conducted and the results are shown below in the Figure 6.13. 

When NVT = 333μm, the c2c is increased starting from 4.5mm to 10mm with the step 

size of 0.5mm. 

 

 

(a) c2c = 4.5mm (b) c2c = 5.5mm 
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Fig. 6.13: COMSOL results showing the resonant frequency plot of the two 10MHz frequency 

channels which indicates the level of interference for various c2c values with NVT = 333μm. (a) 

4.5mm (b)  5.5mm (c) 6mm. 

 The results indicate that the frequency interference between the 10MHz channels 

in the array are slowly decreasing from c2c = 4.5mm and has been completely removed 

from c2c value of 6mm. Thus compared to 33.3 MHz array, the c2c value in the 10MHz 

is smaller.  

 Furthermore, with this 10MHz dual inverted mesa design QCM array, c2c value 

of 6mm achieved which is lower than the c2c value of 6.5mm achieved on the 

conventional non-etched 5MHz QCM array. With this dual inverted mesa QCM design, 

the array size has been made smaller although the fundamental resonant frequencies of 

the QCM channels are increased. 

6.4 Conclusion 

 Two types of QCM arrays has been proposed in this chapter. The initial 

fundamental QCM array is a monolithic multiple channel design with a resonant 

frequency of 5MHz without altering the structure of the quartz substrate. The un-etched 

QCM array has achieved zero frequency interference at a c2c value of 6.5mm. Followed 

by this, the second type of QCM array is proposed which is an advanced high frequency 

(c) c2c = 6mm 
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multiple channel QCM with a resonant frequency of 33.3MHz and 10MHz. These design 

involved alterations in the structure of the quartz with the dual inverted mesa design. The 

frequency interference has been eliminated between the multiple channels in the etched 

monolithic quartz array and the size of the array has been reduced than the lower 5MHz 

array design despite being equipped with high resonant frequencies of 33.3MHz and 

10MHz. The concentric electrodes in these advanced high resonant frequency arrays will 

increase the performance in terms of uniform distribution of the displacement as 

discussed in the previous chapter. The fabrication procedure of this advanced high 

frequency QCM array will be discussed in the next chapter. 
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CHAPTER 7 

PROPOSED FABRICATION PROCEDURE 

7.1 Introduction 

 The procedure for the micro and nano fabrication of the multichannel dual 

inverted quartz crystal microbalance sensor is proposed and discussed in this chapter. The 

quartz crystal microbalance sensor benefits from a noncomplex micromachined 

fabrication process compared to most of the other gas sensors in its range such as the 

metal oxide semiconductor sensor, surface acoustic wave sensor, and optical sensor 

[104]. This is due to the advantage of absence of complex structures or other assisting 

operational units such as the temperature stabilizing micro heater. The simple structure of 

the quartz crystal microbalance sensor contributes to the low cost manufacturing and 

fabrication of the device [105]. The fabrication process is discussed for four channels in 

this chapter but based on the size of the substrate, the number of channels in the array can 

be increased accordingly which is explained furthermore in this chapter. 

7.2 Developed Fabrication Process Steps 

The fabrication procedure of the dual inverted mesa QCM array with a fundamental 

resonant frequency of 33.3MHz has been proposed further. 

A. Cleaning the substrate 

 The initial step of the fabrication process is the cleaning of AT cut quartz crystal 

with a thickness of 333μm which involves native oxide and contamination removals in 

the chemical solution such as the piranha solution which has sulphuric acid (H2SO4) and 

hydrogen peroxide (H2O2) in the ratio of 3:1 at a temperature of 110 
0
 C [106]. A clean 

quartz crystal without impurities is necessary in order to have a better cohesion between 
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the quartz and the electrodes. The impurities present during the fabrication process 

contaminate the device and affects the performance of the device.  

B. Photolithography – Patterning the etch area on top 

 Photolithography is the process of patterning the substrate with the help of a 

predesigned mask and exposing it to UV light in order to make a pattern in the substrate. 

The photolithography is carried out on the AT cut quartz substrate to pattern the area for 

the etching process of the quartz. The photolithography is started with the deposition of 

the photoresist layer on the quartz substrate as shown in the Figure 7.1. Followed by this, 

the mask with the top electrode pattern is aligned on the photoresist layer and it is 

exposed to the UV light. The substrate is then immersed in a developer solution that 

further removes the exposed area of the photoresist. This transferred circular patterned 

area from the mask to the substrate has a radius of about 2mm which is the area that 

needs to be etched further. 

     

              

(a) 

(b) 
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Fig. 7.1: Schematic views of photolithography process to pattern the quartz etch area (a) 

deposition of photoresist on the quartz crystal (b) Alignment of mask and UV light exposure (c) 

patterned quartz crystal. 

C. Deep reactive ion etching (DRIE) – To build inverted mesa structures on top 

 After patterning the area for etching through photolithography, the patterned area 

needs to be etched in order to fabricate the inverted mesa structure in the quartz substrate. 

The quartz can be etched either by wet etching with chemicals such as hydrofluoric acid 

of 16% or the deep-reactive ion etching process. The deep reactive ion etching has many 

comparative advantages such as the good anisotropic etching ability and more accurate 

structures without structural defects. Thus, deep reactive ion etching is preferred in quartz 

etching. The deep reactive ion etching can be carried out with the SF6 and Xe gases 

[107]. The following DRIE process can be carried out at a process pressure of 1.5mTorr, 

and cathode temperature of 20
0 

C. The etch rate is usually within the range of 0.4 – 0.5 

μm/min [107]. Thus the inverted mesa structure of depth of 141.5μm is be obtained on 

the top side of the device. The etched area is washed with the dilute HF solution of 1% in 

order the remove the reaction products on the etched quartz surface and then the 

photoresist layer is removed. Thus the inverted mesa structures are developed in the top 

side of the quartz substrate as shown in the Figure 7.2. 

(c) 
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Fig. 7.2: Schematic view of AT cut quartz etching process (a) Deep reactive ion etching process 

(b) Etched quartz with inverted mesa structures. 

D. Deposition and patterning of top electrodes 

 The deposition of top electrodes is carried out by electron beam evaporation 

process. Electron beam evaporation is the process in which the current is passed through 

the tungsten element, which leads to electron emission. High voltage is used to accelerate 

the electrons and a strong magnetic field focuses these electrons into the target gold metal 

which in turn evaporates and sublimate into the quartz substrate. The electron beam 

evaporation has many advantages such as the high directional control, low level of 

impurity, high efficiency in utilizing the metal, excellent uniformity, high deposition rate 

of 100Å/s which is better than sputtering and resistive thermal evaporation for high 

throughput [108]. The chromium layer of thickness 20nm is deposited on the patterned 

area and gold layer of 300nm thickness are then deposited using the electron beam 

evaporation process as shown in the Figure 7.3 (a). The chromium layer of thickness 

20nm increases the adhesion between the gold electrodes and the quartz substrate. 

(a) 

(b) 
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 In order to obtain a concentric pattern for the top electrode, the gold layer is 

patterned with the help of photolithography process. The photolithography process is 

carried out with the deposition of photoresist layer followed by the alignment of the 

lithographic mask layer. Then the setup is exposed to UV light which forms the required 

pattern. The following process patterns the top electrodes as shown in the Figure 7.3 (b), 

(c), (d) and prepares the region for further removal of unwanted gold and chromium 

layers. 

         

     

            

        

(b) 

(c) 

(d) 

(a) 
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Fig. 7.3: Schematic view of deposition of chromium and gold followed by the photolithography 

process to pattern the electrode area (a) deposition of chromium of 20nm and gold of 300nm (b) 

deposition of photoresist (c) Alignment of mask layer and exposure to UV light (d) Patterned 

gold layer. 

E. Formation of top electrodes and spray coating of photoresist protection 

 Using etchants, the exposed chromium and the gold layer without the photoresist 

layer protection are removed. Then the substrate is immersed in the chemical solution 

such as acetone to remove the photoresist layer to form the final top electrode structure as 

shown in the Figure 7.4 (a) which is made up of 20nm of chromium and 300nm of gold. 

 Then, the photoresist layer is spray coated in the fabricated top surface of the 

device as shown in the Figure 7.4 (b). The photoresist layer acts as a protective layer 

which protects the fabricated top surface from exposure to etching gases during the 

upcoming bottom layer fabrication of the device. 

          

         

Fig. 7.4: Schematic view of defining the top concentric electrodes (a) Using gold and chromium 

etchants, the exposed metallic layers are removed (b) Spray coating of photoresist on the top 

surface as a protective layer for further fabrication. 

F. Photolithography – Patterning the etch area on the inverted device 

(b) 

(a) 
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 The device is inverted for the further fabrication of the reference electrodes on the 

inverted mesa structures. The photoresist layer is spray coated on the surface followed by 

the alignment of the lithographic mask and exposure to UV light which pattern the 

surface for quartz etching process with a dimension of 2mm radius which is similar to the 

radius of top etched area as shown in the Figure 7.5. 

             

               

           

Fig. 7.5: Schematic views of photolithography process to pattern the quartz etch area on the 

inverted device (a) deposition of photoresist on the quartz crystal (b) Alignment of mask and UV 

light exposure (c) patterned quartz crystal. 

(b) 

(a) 

(c) 
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G. Deep reactive ion etching (DRIE) – To build inverted mesa structures on inverted 

device 

 In order to form inverted mesa structures on the inverted device, the deep reactive 

ion etching process is repeated on the patterned region of the quartz crystal for up to 

141.5μm. This develops a vibrating quartz plate of thickness 50μm in the middle region. 

Then the etched area is washed with the dilute HF solution of 1% in order the remove the 

reaction products on the etched quartz surface and then the photoresist layer is removed 

by immersing the device in the chemical solution as shown in the Figure 7.6. This 

process also removes the protective photoresist layer on the top surface which was earlier 

deposited and exposes the concentric electrodes. 

               

              

Fig. 7.6: Schematic view of deep reactive ion etching process on the inverted device (a) etched 

quartz crystal (b) Removal of photoresist layer. 

H. Deposition and patterning of reference electrodes 

 The chromium of 20nm and gold of 300nm is deposited on the inverted etched 

quartz crystal by the electron beam evaporation process. Then the deposited metal layers 

(a) 

(b) 



 

98 
 

are patterned by the photolithography process to pattern the circular reference electrodes 

with a radius of 500μm which is similar to the radius of the top electrode as shown in the 

Figure 7.7. 

           

             

                

            

(b) 

(a) 

(d) 

(c) 
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Fig. 7.7: Schematic view of deposition of chromium and gold followed by the photolithography 

process to pattern the circular reference electrode (a) deposition of chromium of 20nm and gold 

of 300nm (b) Deposition of photoresist (c) Alignment of mask layer and exposure to UV light (d) 

Patterned gold layer on quartz. 

I. Formation of reference electrodes  

 The exposed gold and chromium metal layers on the inverted quartz are removed 

away by the etchants as shown in the Figure 7.8 (a). Then the remaining photoresist layer 

on the device is removed is immersing the quartz in the chemical solution such as acetone 

to form the circular reference electrodes as shown in the Figure 7.8 (b). Thus the 

proposed 33.3MHz dual inverted mesa quartz crystal microbalance sensor array is 

fabricated. 

       

   

Fig. 7.8: Schematic view of formation of bottom circular electrodes (a) Using gold and chromium 

etchants, the exposed metallic layers are removed on the inverted quartz (b) Photoresist layers are 

removed by the developer solution.  

 The proposed fabrication process can be employed on multiple QCM channels 

depending on the substrate size. For instance, with a constant radius of electrode of 

(a) 

(b) 
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500μm and radius of vibrating quartz of 2mm, the number channels that can be employed 

are given below. 

 With a non-vibrating quartz substrate dimension of 26mm × 26mm and a 

thickness of 333μm, four dual inverted mesa channels with a fundamental 

resonant frequency of 33.3MHz can be fabricated. 

 With a non-vibrating quartz substrate dimension of 12mm × 12mm and a 

thickness of 333μm, four dual inverted mesa channels with a fundamental 

resonant frequency of 10MHz can be fabricated. 

 The 4 × 4 array of dual inverted mesa quartz crystal microbalance sensor 

dimensions for the 33.3MHz and 10MHz fundamental resonant frequency are listed in 

the Table 7.1. 

Table 7.1: Dimensions of dual inverted mesa quartz crystal microbalance for 10MHz and 

33.3MHz fundamental resonant frequency. 

Resonant frequency 10MHz  33.3MHz 

Radius of electrode (RE) 500μm 500μm 

Thickness of electrode (TE) 320nm 320nm 

Radius of quartz (RQ) 2mm 2mm 

Center to center distance (c2c) 6mm 13mm 

Vibrating thickness (VT) 167μm 50μm 

Non vibrating thickness (NVT) 333μm 333μm 

Length * breadth of each channel 6mm × 6mm 13mm × 13mm 

 

 The top and bottom view of the final design of the advanced dual inverted mesa 

quartz crystal microbalance sensor with the electrical connections has been shown in the 

Figure 7.9 and 7.10. 
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Fig. 7.9: Schematic view of dual inverted mesa quartz crystal microbalance sensor for 33.3MHz 

(a) Top view of the sensor showing four channels with concentric electrodes (b) Bottom view of 

the sensor showing four channels with circular reference electrodes. 

(a) 

(b) 
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Fig. 7.10: Schematic view of dual inverted mesa quartz crystal microbalance sensor showing side 

view of the device for 33.3MHz. 

7.3 Conclusion 

 The fabrication procedure of the multichannel dual inverted mesa structured 

quartz crystal microbalance sensor is proposed in the chapter. The deep reactive ion 

etching process has been chosen over the other quartz etching process such as the wet 

chemical etching. In order to deposit the metallic electrodes, there are various deposition 

process from which the electron beam evaporation has been chosen over the other 

deposition methods such as the sputtering, thermal evaporation because of its poor side 

wall coverage or highly directional and fast deposition. Furthermore, the complete 

fabrication steps have been analyzed and the difference in the dimensions between the 

10MHz and 33.3MHz channels are tabulated which also states the space required for each 

channel in the quartz substrate. Depending upon the number of channels, the electrical 

connections are modeled in order to save space.  
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CHAPTER 8 

CONCLUSION AND FUTURE WORK 

 Lung cancer is recognized as the second leading disease with highest death rate 

after the heart disease by the data provided by world health organization. Lung cancer has 

claimed more than 1.76 million lives in the year 2018. Due to the fact that 90% of the 

lung cancer patients are diagnosed only during the later stages, the process of treating the 

lung cancer becomes highly complicated for the medical practitioners. At the later stage 

of the cancer, the tumorous cells spread to the other parts of the body which makes the 

treatment process more complex. Thus the lung cancer patients become less probable to 

be cured completely. Various researches have suggested that the early diagnosis of the 

lung cancer provides a higher probability for the patients to be cured. Studies have 

suggested that the lung cancer patients exhale volatile organic compounds in their breath 

in very low concentrations. Therefore detecting these volatiles with appropriate gas 

sensors at the early stages can detect the lung cancer before the tumour cells have become 

difficult to treat. 

 There are various gas sensors available to detect these volatile organic compounds 

at low concentrations. Each gas sensors has their own advantages and disadvantages in 

their working capabilities. However there are certain qualities in the sensor which makes 

it highly suitable towards the lung cancer detection on a wide range scale. The problem 

with the existing detection capabilities are high cost, large in size, higher processing 

times. The suitable qualities of an ideal gas sensor to detect these volatiles are listed 

below.  

 High sensitivity to detect gas targets at low concentrations 
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 Multiple gas detection to detect multiple gas targets 

 Low cost to enable accessibility on a wide range scale 

 Comparatively easier fabrication procedure for fast and low cost manufacturing 

 Comparatively robust design 

 The focus of this research was on quartz crystal microbalance gas sensor which 

came much closer to these qualities compared to the other gas sensors. Thus, the quartz 

crystal microbalance gas sensor is studied, analyzed, investigated and customized in this 

research to improve its performance and designing the sensor in a way to detect multiple 

volatile organic compounds. The designed customized quartz crystal microbalance gas 

sensor array has provided a platform for the detection of multiple volatile organic 

compounds with the above mentioned qualities and thereby enabling the early diagnosis 

of lung cancer detection feasible. The design process of this sensor with the predefined 

qualities is explained in the summary as follows.       

8.1 Summary and Discussion 

 There are several types of the gas sensors available to detect the volatile organic 

compounds but each are constrained with various limitations that makes them unsuitable 

for the predefined qualities such as the ability to detect multiple gas targets in an array 

configuration, high sensitivity to the target gas, comparatively low cost of the materials 

used in the sensor and easier fabrication procedure which further reduce the cost of the 

device. Therefore each gas sensors are investigated for their own advantages and 

disadvantages and each of these sensors are analyzed for their ability to match closely to 

the predefined qualities. The results of this comprehensive analysis of the various gas 

sensors from different background of principle of operations have concluded that the 
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quartz crystal microbalance sensor as the sensor which is highly matching with the 

predefined qualities. Thus the quartz crystal microbalance is chosen as the research focus 

and further investigated more in order to customize it to match closely with the qualities. 

 The quartz crystal microbalance is a sensor device which works on the principle 

of inverse piezoelectric effect. It is designed with a AT cut quartz crystal sandwiched 

between two metallic electrodes. It undergoes thickness shear mode of oscillation at 

resonant frequency when electric current at alternation potentials are applied on the 

electrodes. Due to its mass sensitivity, when mass even up to nano gram comes into 

contact with the sensing top electrode, the resonant frequency of the device decreases 

which can be measured with high frequency oscilloscope. This is the basic working 

principle of the device. Furthermore, the Sauerbrey‟s equations are studied to analyze it 

concepts in the operation followed by their analysis of equivalent mechanical and 

electrical circuits. 

 By using the Sauerbrey‟s equation, the analytical modelling of the quartz crystal 

microbalance has been done which further stated the critical design parameters. The 

critical design parameters are then further investigated to obtain the results listed as 

follows, 

 The thickness of the AT quartz crystal and the resonant frequency of the device 

are directly proportional to each other. 

 The change in mass and change in frequency has a linear relationship between 

them.  

 The mass sensitivity is high on a small electrode compared to a large electrode. 
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 Then the finite element analysis of the critical design parameters has been carried 

out using the COMSOL Multiphysics modeling tool to model some of the critical design 

parameters by analyzing the resonant frequency characteristics. The finite element 

analysis has provided a better understanding of certain parameters that cannot be directly 

modeled analytically and the key results are follows. 

 Meshing characteristics are investigated in which the finer mesh is chosen to 

ensure independency of the simulation results to the chosen meshing number and 

for its high accuracy with low processing times. 

 Thickness of the quartz crystal and its resonant frequency relations are 

investigated with the analytically modeled results to estimate the accuracy level of 

the finite element modeling tool. 

 The minimum dimension of the quartz required to undergo a constant thickness 

shear mode oscillation is obtained. 

 The thickness and radius of the electrode and their corresponding displacement 

and resonant frequency relations are obtained. 

 Due to the greater influence of electrode dimensions and structure in the 

distribution profile, they are further invested to optimize the performance of the device to 

obtain an approximately uniform mass sensitivity across the active sensing top electrode. 

Displacement profiles can be directly correlated to the sensitivity at that particular part of 

the electrode. The conventional circular top electrode is found to be possessed with 

higher displacement only towards the centre portion of the electrode. Therefore alternate 

electrode structures such as the ring electrode and ring dot electrode are investigated for 
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their distribution profiles. The key significant investigations and results are listed as 

follows, 

 A comprehensive comparison between the displacement profiles of the circular, 

ring, and ring dot electrodes has been done which has shown that the alternative 

electrode structures can indirectly counter the energy trapping effect of the quartz. 

 Ring dot electrode is customized with multiple rings and the displacement profiles 

are analyzed which has given a comparatively better displacement compared to 

the latter electrode structures. 

 The multiple electrode structure has been further customized with increasing ring 

width and decreasing ring gaps and they are shown to produce an even and 

approximately uniform displacement profile which is named as the concentric 

electrodes. 

 The customized concentric electrodes are further compared with the conventional 

circular electrodes to showcase the higher efficiency of the modeling process. 

 Despite obtaining a comparatively better displacement profile across the electrode 

structure, single channel gas sensor cannot detect multiple targets. Therefore an array of 

highly sensitive and advanced quartz crystal microbalance sensors on a monolithic 

substrate has been designed and analyzed. The limitation of the monolithic array is that 

the channels are needed to be placed in such a way that the displacement of the native 

channel does not disturb the neighboring channel in order to avoid errors due to the 

crosstalk. The significant investigations in the array configuration and the accomplished 

results are listed as follows. 
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 The un-etched quartz array design with four channels has been designed and the 

frequency interference has been eliminated by analyzing its frequency profile on a 

5MHz crystal. 

 The un-etched quartz array design cannot handle frequencies above 5MHz as it 

takes wide center to center distance to attain zero frequency interference. 

Therefore an advanced dual inverted mesa quartz crystal microbalance array has 

been proposed to work with higher frequencies such as 10MHz and 33MHz. 

 Frequency interference was later eliminated in the 10MHz and 33MHz design and 

the size of the array was customized to be smaller than the 5MHz design. In short, 

high performance and sensitivity with a small overall size of the sensor with 

robust construction, 

 Furthermore, in order to fabricate the designed dual inverted mesa quartz crystal 

microbalance sensor array, there are various fabrication techniques are available. The 

suitable fabrication techniques with high accuracy in the resulting device are chosen and 

the fabrication techniques are proposed.  

8.2 Future Work 

 The major problem with most of the gas sensors is the process of designing them 

to be particularly sensitive with the target gas. Studies have suggested that there are three 

possible solutions to tackle this limitation which are, 

 Designing a large array of sensors and using particular sections of these arrays 

with different sensing materials to target different gases. 



 

109 
 

 Implementing micro heater unit in the sensor and changing the temperature of the 

sensing materials and influencing the sensing material to be more sensitive to 

various gases at different temperature cycles. 

  Implementing sensitive materials which are particularly more sensitive to the 

lung cancer specific volatile organic compounds. 

 The high sensitive array design has been already designed in this research. Thus 

the next two design factors can be implemented in to the customized dual inverted mesa 

quartz crystal microbalance array and the device can be fabricated. 
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