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Abstract 

Existing research on acceptability of pairwise interval comparison matrices focuses on 

acceptable consistency by controlling their inconsistency levels to within a certain threshold. 

However, a perfectly consistent but highly indeterminate interval comparison matrix can be 

unacceptable as it contains little (sometimes no) useful decision information. This paper first 

analyzes the current definition of acceptable consistency for interval multiplicative comparison 

matrices (IMCMs) and shows its technical deficiencies. We then introduce a new notion of 

acceptable IMCMs, considering both inconsistency and indeterminacy levels in IMCMs. A 

geometric-mean-based index is proposed to measure the indeterminacy ratio of an IMCM, and 

useful properties are derived for consistent IMCMs and acceptable IMCMs. An indeterminacy-

ratio and geometric-mean-based transformation equation is subsequently put forward to 

convert normalized acceptable interval multiplicative weights into an acceptable IMCM with 

consistency. By introducing an auxiliary constraint, a logarithmic least square model is 

established to generate interval multiplicative weights from acceptable IMCMs. A geometric-

mean-based possibility degree formula is designed to compare and rank normalized interval 

multiplicative weights. Two numerical examples are presented to illustrate how to utilize the 

proposed framework.  

Keywords: Decision analysis, Interval multiplicative comparison matrix, Consistency, 

Acceptability, Logarithmic least square 

1.  Introduction  
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In a classical Analytic Hierarchy Process (AHP), a decision-maker (DM) carries out pair-

wise comparison to elicit his/her preference over decision alternatives. The resulting crisp 

preference ratios are represented as a multiplicative comparison matrix (Saaty, 1980). Since 

real-life decision problems are often complex and indeterminate, it is often challenging for the 

DM to assign exact ratios in pair-wise comparison (Ahn & Park, 2014; Dubois, 2011; Scholten 

et al., 2015; Zhu & Xu, 2014). As such, different types of comparison matrices have been put 

forward to model DMs’ pair-wise comparison with imprecision and indeterminacy, such as 

interval multiplicative comparison matrices (IMCMs) (Saaty & Vargas, 1987) and interval 

additive comparison matrices (Xu & Chen, 2008; Wang & Li 2015). Modeling indeterminacy 

in multi-criteria decision analysis has received increasing research attention in the past decades 

(Borgonovo & Marinacci, 2015; Dede, Kamalakis & Sphicopoulo, 2015; Durbach, Lahdelma, 

& Salminen, 2014; Merigó, Casanovas  & Yang, 2014; Rezaei & Ortt, 2013; Song, Ming & Xu, 

2013; Yan & Ma, 2015). 

Consistency of comparison matrices directly affects final ranking of decision alternatives. 

Consistency refers to certain transitivity property in the DM’s pair-wise comparison to ensure 

that the DM’s judgment is consistent in some sense. Different transitivity properties have been 

put forward to characterize consistency (Brunelli, Canal & Fedrizzi, 2013), and these 

properties are expected to be invariant with respect to alternative re-labelling. This invariance 

in measuring inconsistency of a pair-wise comparison matrix is identified as an axiomatic 

property by Brunelli and Fedrizzi (2014). Since the DM’s comparisons are subjective and an 

alternative is compared with others in diverse contexts, the resulting comparison matrix often 

contains inconsistent elements. It is natural that a comparison matrix with low consistency 

stands for poor decision input and will inevitably result in a misleading decision result 

(Brunelli & Fedrizzi, 2015; Dong et al., 2008; Siraj, Mikhailov & Keane, 2012a,b). To 

measure the inconsistency level of a crisp multiplicative comparison matrix, Saaty (1980) 

proposed a consistency index (CI) and a consistency ratio (CR). A geometric consistency index 

and the corresponding thresholds were also developed by Aguaron and Moreno-Jimenez 

(2003). Dong et al. (2010) put forward a group consensus model based on a row geometric 

mean prioritization method. Recent research conceives to treat inconsistency of a 

multiplicative comparison matrix as some kind of indeterminacy by constructing an IMCM 

(Entani & Tanaka, 2007; Guo & Tanaka, 2010; Sugihara, Ishii & Tanaka, 2004; Wang, 2015b), 

and the indeterminacy level is then measured by interval probabilities or weights using the 

ideas of entropy, interval width and ignorance (Entani & Sugihara, 2012). 
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Current research on consistency of IMCMs can be roughly categorized into two groups. The 

first group adopts a feasible region idea and asserts consistency of an IMCM if there exists a 

consistent crisp comparison matrix within the original interval judgment (Wang et al., 2005a, 

2007). The other category defines consistency based on some mathematical constraints (Liu, 

2009; Wang, 2015a; Wu et al., 2009; Xu, 2010). For instance, Wang et al. (2005a) employed 

convex feasible regions to define consistent IMCMs. Wang et al. (2005b) proposed a method 

to test consistency of an IMCM. Liu (2009) introduced consistency and acceptable consistency 

of IMCMs based on two converted crisp multiplicative comparison matrices. Liu (2009)’s 

consistency model was reformulated as an equivalent mathematical constraint in Xu (2010).  

A host of interval weight derivation methods have been developed for IMCMs. Based on 

the feasible region of normalized crisp multiplicative weights, Wang et al. (2005a) developed a 

two-stage logarithmic goal program to derive interval multiplicative weights from IMCMs. 

Similarly, Wang et al. (2007) established a goal program to obtain interval additive weights 

from both consistent and inconsistent IMCMs. Liu (2009) put forward a method to deduce 

interval multiplicative weights from acceptable IMCMs. Guo and Wang (2012) developed two 

linear programs to elicit interval probabilities from an IMCM, in which the interval pair-wise 

comparisons are approximated by the ratios of the obtained interval probabilities from exterior 

and interior directions. 

The aforementioned research reveals that consistency and acceptability constraints are 

always used in deriving priority weights from comparison matrices. Therefore, it is critical to 

ensure that these constraints are reasonable and logical. The consistency definition in Wang et 

al. (2005a, 2007) is built upon the concept of convex feasible regions without considering 

transitivity among three or more comparisons in an IMCM. This implies that this consistency 

constraint tends to be loose and highly indeterminate comparisons are often judged to be 

consistent. While the acceptable consistency definition by Liu (2009) utilizes the original 

comparison data in an IMCM, a further analysis in Section 3 demonstrates that it is inherently 

flawed due to its sensitivity to alternative re-labelling. 

To overcome abovementioned deficiencies, we adapt the consistency definition for IMCMs 

in (Wang, 2015a) by using an interval-arithmetic-based transitivity equation. By examining 

properties of consistent IMCMs and introducing an acceptable indeterminacy ratio threshold, 

we define acceptable IMCMs and derive their basic properties. The key innovation of this 

acceptable IMCM notion is to consider both inconsistency and uncertainty levels in interval 

judgments: a highly indeterminate IMCM with little or no useful decision information is 
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deemed unacceptable even if it is consistent or its inconsistency level is low. An indeterminacy 

index is defined to measure the indeterminacy ratio of an IMCM, and a geometric-mean-based 

formula is provided to gauge the difference ratio between any two IMCMs. Subsequently, we 

define normalized interval multiplicative weights and introduce a notion of normalized 

acceptable interval multiplicative weight vectors. An indeterminacy-ratio and geometric-mean 

based transformation equation is furnished to convert a normalized acceptable interval 

multiplicative weight vector into an acceptable IMCM with consistency. Based on the 

transformation equation, we put forward logarithmic least square (LLS) multi-objective models 

for generating interval multiplicative weights. By introducing an auxiliary constraint and 

minimizing the squared deviation between the logarithms of the two sides of the transformation 

equation, an LLS model is established to generate a normalized acceptable interval 

multiplicative weight vector from an acceptable IMCM. Finally, a new possibility degree 

formula is presented to compare and rank normalized interval multiplicative weights. 

The organization of the article is as follows. Section 2 covers preliminaries on Saaty’s 

consistent multiplicative comparison matrices and IMCMs. Section 3 points out the technical 

deficiencies of an existing acceptable consistency definition of IMCMs. An adapted 

consistency definition and new acceptability notion are put forward in Section 4 along with 

useful properties of consistent and acceptable IMCMs. An LLS model is developed to elicit 

interval multiplicative weights from acceptable IMCMs in Section 5. Two illustrative 

numerical examples and comparative studies are furnished in Section 6 to demonstrate the 

proposed framework. Section 7 concludes the paper with a brief comment on future 

opportunities. 

2.  Preliminaries 

Let 1 2{ , ,..., }nX x x x=  be a finite set of n alternatives and  1/ ,S S
 
be a generic ratio-based 

bipolar scale with a neutral value of 1, a multiplicative comparison matrix A
 
on X

 
is denoted 

by ( )ij n nA a = , where 
ija  denotes a comparison ratio of alternative ix

 
 to 

jx  such that  

1/ , 1, 1ij ij ji iiS a S a a a  = = ,     , 1, 2,...,i j n=                             (2.1) 

A crisp ratio 
ija  is interpreted as ix  being 

ija
 
times preferred to 

jx . The greater the 
ija , the 

stronger alternative ix
 
is preferred to

jx . 1ija =  indicates an indifference between ix
 
and 

jx .  

    Saaty (1980) proposed a consistency definition for multiplicative comparison matrices.  

Definition 2.1. (Saaty, 1980) A multiplicative comparison matrix ( )ij n nA a =  is 
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multiplicatively consistent if  

ik ij jka a a= ,          , , 1, 2,...,i j k n=                                           (2.2) 

  As  1ij jia a =  for all i, j = 1, 2, …, n, (2.2) yields 

ij jk ki ik kj jia a a a a a= ,      , , 1, 2,...,i j k n=                                   (2.3) 

  Saaty (1980) confirmed that ( )ij n nA a =  is multiplicatively consistent if and only if there 

exists a normalized crisp weight vector 
1 2( , ,..., )T

n   =  such that   

                                          
/ij i ja  = ,   , 1, 2,...,i j n=                                                  (2.4) 

where 
1

1
n

i

i


=

=  and 0i   1,2,...,i n =  .  

Saaty (1980) introduced a 1-9 scale, i.e., 9S = , and developed an eigenvector method to 

obtain priority weights from multiplicative comparison matrices. He also put forward the 

following CI and CR to measure the level of inconsistency of the DM’s judgments in A . 

max( )
1

A n
CI A

n

 −
=

−
 ,  

( )
( )

( )

CI A
CR A

RI n
=                                           (2.5) 

where 
max

A
 
is the largest eigenvalue of the eigenvector problem A =  and n is the order of 

A . ( )RI n  is an average value of CIs derived randomly from a large number of multiplicative 

comparison matrices. 

Saaty (1980) suggested an acceptable threshold of 0.1: If ( ) 0.1CR A  , then the 

multiplicative comparison matrix A  is called acceptably consistent. In this case, the preference 

intensity of alternative 
ix (i =1, 2, …, n) is adequately captured by the priority weight 

i   

obtained from the eigenvector method. If ( ) 0.1CR A  , the consistency of A  is deemed 

unacceptable, and the judgment matrix A  should be revised by the DM to improve its 

consistency.  

In many decision situations, pair-wise comparisons are often made with indeterminacy and 

vagueness. To characterize this indeterminacy, Saaty and Vargas (1987) introduced the notion 

of interval multiplicative comparison matrices (IMCMs). 

Definition 2.2. (Saaty & Vargas, 1987) An IMCM A  on X  is characterized by an interval 

judgment matrix ( )ij n nA a =  with 

[ , ],1/ , 1, 1,ij ij ij ij ij ij ji ii iia a a S a a S a a a a− + − + − + − +=    = = =
      

, 1, 2,...,i j n=                  (2.6) 
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where ija
 
is an interval preference ratio and indicates that 

ix  is between 
ija−

 
and

ija+

 
times 

preferred to 
jx . 

    Let [ , ]a a a− +=
 
and [ , ]b b b− +=

 
be two interval numbers, interval arithmetic operation laws 

are described as follows:  

(1) Addition: [ , ]a b a b a b− − + + = + + ; 

(2) Subtraction: [ , ]a b a b a b− + + −− = − − ;  

(3) Multiplication: [ , ]a b a b a b− − + + = , where , 0a b− −  ; 

(4) Division: [ , ]
a aa

b b b

− +

+ −
= , where , 0a b− −  ;  

(5) Scalar multiplication: [ , ], 0a a a   − +=  . Especially, if 0 = , then [0,0]a = . 

Based on interval arithmetic, (2.6) is rewritten as: 

 
1

[ , ] 1/ , , , , 1,ij ij ij ij ii ii

ji

a a a S S a a a
a

− + − + =  = =        
, 1, 2,...,i j n=                             (2.7) 

It is noted that we often have 1ij jia a 
 
for an IMCM ( )ij n nA a = , but A

 
has to satisfy 

reciprocity of 
1

, , 1,2,...,ij

ji

a i j n
a

=  = . 

3.  Analysis of existing acceptable consistency  

This section analyzes an existing notion of acceptably consistent IMCMs. A numerical 

example is developed to illustrate its technical deficiency. 

Liu (2009) introduced two formulas (Eq. (6) on page 2690) to construct two multiplicative 

comparison matrices, which are then employed to define consistency of IMCMs (Definition 3 

on page 2691). The definition is rewritten by using the notation in this paper as follows. 

Definition 3.1. (Liu, 2009) Let ( )( ) [ , ]ij n n ij ij n n
A a a a− +

 
= =

 
be an IMCM, A  is called 

consistent if two constructed multiplicative comparison matrices ( )L L

ij n n
A a


=

 
and 

( )U U

ij n n
A a


=

 
have Saaty’s multiplicative consistency, where 

L

ija
 
and 

U

ija
 
are determined by: 

1 ,       1

ij ij

L U

ij ij

ij ij

a i j a i j

a i j a i j

a i j a i j

− +

+ −

  
 

= = = = 
   

                                            (3.1) 
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  Liu (2009) further employed LA
 
and UA  to check acceptable consistency of IMCMs. If LA

 

and UA  are both acceptably consistent, then A  is said to have acceptable consistency; 

otherwise, A  is unacceptable. 

  Next, a numerical example is provided to illustrate that acceptable consistency given by 

Liu (2009) yields contradictory results for the same judgment matrix after the alternatives are 

re-labeled, thereby revealing its technical deficiency. 

Example 1:  Consider a decision problem with three alternatives E, F and G. A DM 

compares each pair of the three alternatives, and furnishes his/her results as shown in Table 1. 

Table 1. Interval pairwise comparisons  

Pair of the three alternatives Value 

E vs. 
F [2, 3] 

G [3, 5] 

F vs. 
E [1/3, 1/2] 

G [3, 4] 

G vs. 
E [1/5, 1/3] 

F [1/4, 1/3] 

Interval comparisons in Table 1 can be shuffled by different labeling for the three alternatives 

and yield six equivalent IMCMs. If the alternatives E, F and G are labelled by 1 2,x x  and 3x , 

respectively, then the DM’s comparisons are expressed as the following IMCM:  

( )

1

1 3 3 2
3 3

3

:
1 2 3
: :

:

:

:

                           

( ) ,

1 [2,3] [3,5]

[1/3,1/2] 1 [3,4]

[1/5,1/3] [1/4,1/3] 1

ij ij ij

GE F
E

F

G

x x x
x

A a a a x

x

− +




 = = = 

 
 
 
  

 

  By (3.1), the constructed multiplicative comparison matrices ( )1 3 3

L L

ijA a


=
 
and ( )1 3 3

U U

ijA a


=  

are determined as: 

( )

1

1 23 3

3

:
1 2 3
: :

:

:

:

           

1 2 3

1/2 1 3

1/3 1/3 1

L L

ij

GE F
E

F

G

x x x
x

A a x

x


= =

 
 
 
  

, ( )

1

1 23 3

3

:
1 2 3
: :

:

:

:

           

1 3 5

1/3 1 4

1/5 1/4 1

U U

ij

GE F
E

F

G

x x x
x

A a x

x


= =

 
 
 
  

 

 As 13 12 23

L L La a a  and 13 12 23

U U Ua a a , 1

LA
 
and 1

UA  are both deemed inconsistent. By Definition 

3.1, 1A  is an inconsistent IMCM. On the other hand, as per (2.5), we have 1( ) 0.0516LCR A =
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and 1( ) 0.0825UCR A = . Obviously, the CRs of 
1

LA
 
and 1

UA  are within the acceptable threshold 

of 0.1. Therefore, both 
1

LA
 
and 1

UA  have acceptable consistency. Thus, 
1A  is considered to be 

an acceptably consistent IMCM as per Liu (2009).  

With the same judgment information, one can re-label G  by 1x , E  by 2x , and  F  by 3x . In 

this case, the DM’s comparisons in Table 1 are represented as the following IMCM. 

( )

1

' ' ' '

1 3 3 2
3 3

3

:
1 2 3
: :

:

:

:

                           

( ) ,

1 [1/5,1/3] [1/4,1/3]

[3,5] 1 [2,3]

[3,4] [1/3,1/2] 1

ij ij ij

FG E
G

E

F

x x x
x

A a a a x

x

− +




 = = = 

 
 
 
  

 

As per (3.1), the constructed multiplicative comparison matrices ( )' '

1 3 3

L L

ijA a


=
 
and 

( )' '

1 3 3

U U

ijA a


=  are determined as: 

( )

1

' '

1 23 3

3

:
1 2 3
: :

:

:

:

       

1 1/5 1/4

5 1 2

4 1/2 1

L L

ij

FG E
G

E

F

x x x
x

A a x

x


= =

 
 
 
  

, ( )

1

' '

1 23 3

3

:
1 2 3
: :

:

:

:

       

1 1/3 1/3

3 1 3

3 1/3 1

U U

ij

FG E
G

E

F

x x x
x

A a x

x


= =

 
 
 
  

 

By (2.5), it is confirmed that 
'

1( ) 0.0236LCR A =
 
and '

1( ) 0.1279UCR A = . Since '

1( ) 0.1UCR A  , 

'

1

UA ’s consistency is unacceptable. As per Liu (2009), '

1A  is an unacceptable IMCM. This is 

apparently self-contradictory and unreasonable as both IMCMs 1A
 
and '

1A  represent the same 

pair-wise comparison results with the only difference in re-labelling the three alternatives. 

Let   be a permutation of {1, 2, 3} with (1) 3, (2) 1 = =  and (3) 2 = , then we have 

( )'

1 ( ) ( ) ( ) ( )
3 3

,i j i jA a a   

− +


 =   , i.e., the IMCM 

'

1A  is a permutation of 1A . The aforesaid example 

clearly demonstrates the technical deficiency of the acceptable consistency proposed by Liu 

(2009): the judgment of an IMCM’s acceptable consistency depends on how the alternatives 

are labeled and a new permutation with the same IMCM may lead to a contradictory result.  

This analysis indicates that the existing acceptable consistency and acceptability definitions 

are problematic in modeling transitivity and indeterminacy in a DM’s pair-wise comparison. 

Next, we shall introduce new acceptable consistency and acceptability definitions for IMCMs.  

4.  New acceptable consistency and acceptability of IMCMs 
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This section first introduces an interval-arithmetic-based transitivity equation to define 

consistency of IMCMs. We then put forward acceptable consistency of IMCMs and a 

definition of indeterminacy ratio of an IMCM, thereby introducing the notion of acceptable 

IMCMs and defining a geometric-mean-based indeterminacy index for an IMCM. Useful 

properties are subsequently derived for consistent IMCMs and acceptable IMCMs.  

4.1 Acceptable consistency of IMCMs 

Definition 4.1 Let ( )( ) [ , ]ij n n ij ij n n
A a a a− +

 
= =

 
be an IMCM, if A  satisfies the transitivity 

condition: 

,     , , 1,2,...,ij jk ki ik kj jia a a a a a i j k n  =   =                               (4.1) 

then A  is called consistent.   

By interval arithmetic, if all interval comparisons  ( , 1,2,..., )ija i j n=  in A  are reduced to 

ratio-based crisp values, i.e., , , 1, 2,...,ij ija a i j n− +=  = , then IMCM A
 
is equivalent to a 

multiplicative comparison matrix ( )ij n n
A a


= , where ij ij ija a a− += =

 
for all , 1, 2,...,i j n= . In this 

case, (4.1) is reduced to (2.3), which is equivalent to the multiplicative transitivity condition 

(2.2) given by Saaty (1980). Therefore, the consistency (4.1) is a natural generalization of 

Saaty's original multiplicative consistency. 

Obviously, (4.1) is independent of the index order of , ,i j k  and, hence, Definition 4.1 is 

robust when alternative labels are permutated. By Definition 4.1, 1A  and 
'

1A  in Example 1 are 

two inconsistent IMCMs. Hereafter, when an IMCM is called consistent, it is always under 

Definition 4.1 unless otherwise stated. Similarly, whenever a multiplicative comparison matrix 

is referred to be consistent, it is always in terms of consistency given in Definition 2.1. 

Theorem 4.1 An IMCM ( )( ) [ , ]ij n n ij ij n n
A a a a− +

 
= =  is consistent if and only if 

,   , , 1,2,...,ik ik ij ij jk jka a a a a a i j k n− + − + − += =                                          (4.2) 

Proof.  Sufficiency: As per multiplicative reciprocity of IMCMs, we have 1ij jia a− + =  

, 1, 2,...,i j n = . It follows from (4.2) that ij jk ki ik kj jia a a a a a− − − − − −=  and ij jk ki ik kj jia a a a a a+ + + + + += . By 

interval arithmetic described in Section 2, one can obtain 

 , ,ij jk ki ij jk ki ij jk ki ik kj ji ik kj ji ik kj jia a a a a a a a a a a a a a a a a a− − − + + + − − − + + +     = = =      . 

By Definition 4.1, A  is consistent. 
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Necessity: As A  is consistent, by Definition 4.1, we have ij jk ki ik kj jia a a a a a  =    for 

all , , 1,2,...,i j k n= . By reversing the proof of sufficiency, one gets 
ik ik ij ij jk jka a a a a a− + − + − +=  for all 

, , 1,2,...,i j k n= .                                                             ■ 

Theorem 4.1 means that the transitivity constraint (4.1) can be equivalently formulated as a 

crisp arithmetic equation (4.2), implying Definition 4.1 is equivalent to the consistency 

introduced by Wang (2015a). The following theorem further indicates that (4.2) can be 

simplified by checking only the upper diagonal elements for consistency.  

Theorem 4.2 Let ( )( ) [ , ]ij n n ij ij n n
A a a a− +

 
= = be any IMCM, then the following two statements 

are equivalent: 

(i) ,   , , 1,2,...,ik ik ij ij jk jka a a a a a i j k n− + − + − += = .                  

(ii) ,   ik ik ij ij jk jka a a a a a i j k− + − + − +=    . 

  Proof.  (i)=>(ii) is obvious.  

(ii)=>(i). As 1ii iia a− += =  and 1ij jia a− + =
 
for all , 1, 2,...,i j n= , (i) always holds if three or any 

two of indices , ,i j k  are equal. Next, we consider the case that i j k  . Six subcases may 

arise for distinct index orderings: 

 (a) i j k  . In this case, (i) is identical to (ii). Thus, (i) holds. 

(b) i k j  . By (ii), we have ij ij ik ik kj kja a a a a a− + − + − += . Dividing kj kja a− +
 on both sides and applying 

reciprocity of 1, , 1,2,...,kj jka a j k n− + =  = , one can obtain ik ik ij ij jk jka a a a a a− + − + − += . 

(c) j i k  . It follows from (ii) that 
1 1

jk jk ji ji ik ik jk jk ik ik

ij ij

a a a a a a a a a a
a a

− + − + − + − + − +

+ −
=  = 

 

ik ik ij ij jk jka a a a a a− + − + − += . 

Similarly, we obtain that (i) holds true for the remaining subcases: (d) j k i  ,  (e) 

k j i   and (f) k i j  .                                                                                      ■ 

Based on Theorems 4.1 and 4.2, we can directly derive the following result. 

Corollary 4.1 An IMCM ( )( ) [ , ]ij n n ij ij n n
A a a a− +

 
= =  is consistent if and only if  

,   ik ik ij ij jk jka a a a a a i j k− + − + − +=                                                   (4.3) 

Let 
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1 log 1        

1 log 1, 1

1           Otherwise   

ij

ij

ij ija

L

ij ij ij ija

a a

p a a a

+

−

− −

+ − +

 + 


= +  



,     

1 log 1        

1 log 1, 1

        Otherwise   

ij

ij

ij ija

U

ij ij ij ija

a a

p a a a

−

+

+ −

− − +

 + 


= +  

+

          (4.4) 

, 1,2,...,, 1,2,...,
max { },    min { }L L U U

ij ij
i j ni j n

p p p p
==

= =                                                (4.5) 

Obviously, 1 2L

ijp   and 2U

ijp   for all , 1, 2,...,i j n= . As per (4.5), we have 1 2Lp   

and  2Up  . Thus, Lp
 
 and Up

 
constitute a real interval ,L Up p    

containing 2. 

Let 

                                ( ) ( )( ) ( ) p
ij ij ijn n n n

A p a p a a− +

 

= =                                                       (4.6) 

where 
L Up p p  . Based on Theorem 4.1, we have the following corollary. 

 Corollary 4.2. An IMCM ( )( ) [ , ]ij n n ij ij n n
A a a a− +

 
= =  is consistent if and only if the 

multiplicative comparison matrix ( )A p
 
defined by (4.6) is consistent for any ,L Up p p   .  

Proof.  As per (4.4) and (4.5), for ,L Up p p   , we have  

( ) ( )

, 1,2,...,, 1,2,...,

1 1

max { } min { } , , 1,2,...,

1 1 1, , 1,2,...,

( 1) ln ln , ln ( 1) ln , , 1,2,...,

, , , 1, 2,

L L L U U U

ij ij ij ij
i j ni j n

L U

ij ij

ij ij ij ij

p p

ij ij ij ij

p p p p p p p i j n

p p p i j n

p a a a p a i j n

a a a a i j

==

− + − +

− −
− + − +

 =   =   =

 −  −  −  =

 −   −  =

    =

( ) ( )

...,

, , 1, 2,...,

( ) , , 1, 2,..., .

p p

ij ij ij ij

p
ij ij ij ij ij

n

a a a a i j n

a a a a p a i j n

− − + +

− − + +

    =

  =   =

 

As 1/S  , 1ij ij ii iia a S a a− + − +   = = , it is natural that ( ) 1iia p = and 1/ ( )ijS a p S   for all 

, 1, 2,...,i j n= . By the reciprocity of 1ij jia a− + = , one has ( ) ( ) p p
ij ji ij ij ji jia p a p a a a a− + − += =

 

1p p
ij ji ji ija a a a− + − + = . According to (2.1), ( )A p  is a multiplicative comparison matrix for any 

,L Up p p   . 

Moreover, for each ,L Up p p   , we have 

( ) ( ) ( ) ( ) ( )
1/ 1/ 1/ 1/ 1/

                            ( ) ( ) ( ),         , , 1,2,...,

p p p p p

ik ik ij ij jk jk ik ik ij ij jk jk ik ik ij ij jk jk

ik ij jk

a a a a a a a a a a a a a a a a a a

a p a p a p i j k n

− + − + − + − + − + − + − + − + − +=  =  =

 =  =
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Thus, by Theorem 4.1, the proof of Corollary 4.2 is completed.                                                 ■ 

Corollary 4.2 reveals that, for a consistent IMCM, there often exist numerous Saaty’s 

consistent comparison matrices within it.  

Let 

( ) ( )gm gm

ij ij ijn n n n

A a a a− +

 

= =                                                    (4.7) 

It is obvious that (2)gmA A= . From Corollary 4.2, the following result is directly obtained. 

Corollary 4.3. An IMCM ( )( ) [ , ]ij n n ij ij n n
A a a a− +

 
= =  is consistent if and only if the 

multiplicative comparison matrix gmA defined by (4.7) is consistent. 

Corollary 4.3 specifies a particular crisp consistent comparison matrix within a consistent 

IMCM: each element of the crisp comparison matrix is given by the geometric mean of the 

upper and lower bounds of the corresponding interval judgment.  

In real-world decision situations, DMs often furnish their preference over alternatives as 

IMCMs based on their subjective assessment and the transitivity property is not always 

honoured.  By Corollary 4.3, the consistency of an IMCM A  can be characterized by that of 

the associated crisp geometric mean matrix gmA  defined by (4.7). Next, we introduce 

acceptable consistency of IMCMs as follows. 

Definition 4.2 Let ( )( ) [ , ]ij n n ij ij n n
A a a a− +

 
= = be an IMCM with 1/ ,ij ijS a a S− +  , A  is 

acceptably consistent if the crisp judgment matrix gmA  defined by (4.7) is acceptably 

consistent.  

Definition 4.2 intentionally keeps the notion of acceptable consistency generic. Several 

consistency indices, such as Saaty’s CI, the geometric consistency index (Crawford & 

Williams, 1985), and the harmonic consistency index (Stein & Mizzi, 2007), have been devised 

to measure consistency of crisp judgment matrices. Different thresholds have been proposed 

for checking acceptable consistency (Aguaron & Moreno-Jimenez, 2003). Despite the fact that 

Saaty’s CR has been criticized for yielding unreasonable consistency result with respect to the 

condition of order preservation (Bana e Costa & Vansnick, 2008; Kułakowski, 2015), it 

remains the most widely used acceptable consistency in literature (Ishizaka & Labib, 2011). 

Based on this consideration, we employ Saaty’s CR to verify acceptable consistency of the 

multiplicative comparison matrix gmA , i.e.,  ( ) 0.1gmCR A  . However, it should be stressed 

that our general acceptable consistency framework can be readily extended to other notions 

such as the aforesaid geometric and harmonic consistency indices. 
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Sometimes, DMs may give extremely indeterminate interval judgment such as [1/S, S] in a 

bipolar [1/S, S] scale with a neutral element of 1, indicating the DM’s outright uncertainty 

about the comparison. For instance, if a DM furnishes an IMCM with all nondiagonal elements 

being [1/S, S], such a judgment matrix is technically consistent, but it discloses nothing about 

the DM’s preference and does not help at all in deducing a reliable decision result (Dubois & 

Prade, 2012; Durbach & Stewart, 2012; Scholten et al., 2015; Wang & Li, 2015).  In this case, 

even if the IMCM is consistent or acceptably consistent, we should still treat it as unacceptable 

due to its high indeterminacy. Therefore, it is the authors’ opinion that both the indeterminacy 

and consistency levels must be considered when determining acceptability of IMCMs. If an 

IMCM is too indeterminate or too inconsistent, it should be judged as unacceptable and 

returned to the DM for a revision.  This holistic view differs from existing research on 

assessing acceptability of an IMCM: current literature tends to consider only the consistency 

level in line of Saaty’s acceptable consistency without examining the indeterminacy level. It is 

inappropriate for IMCMs due to inherent indeterminacy in interval judgments.  

4.2 Indeterminacy measurement and acceptability of IMCMs 

The interval width is often adopted to measure the indeterminacy level of an interval 

judgment (Entani & Sugihara, 2012; Guo & Tanaka 2010; Guo & Wang 2012). However, the 

interval width sometimes does not properly capture the indeterminacy level of an interval 

judgment, especially when an element is expressed as a preference ratio. For instance, given 

two interval comparison ratios [2,3]a =  and [1/ 6,1/ 2]b =
 
on a [1/9, 9] scale, it is obvious that 

the width of a  is larger than that of b , but the indeterminacy level of a  is smaller than that of 

b  from a ratio perspective. To model acceptability of IMCMs, it is necessary to consider how 

to measure indeterminacy of a DM’s interval comparison data. 

Definition 4.3 Let [ , ]a a a− +=  be an interval comparison judgment on a bounded scale 

 1/ ,S S
 
, then its indeterminacy ratio, denoted by ( )IR a , is defined by /a a+ −

, i.e.,  

( )
a

IR a
a

+

−
=                                                                   (4.8) 

Obviously, 21 ( )IR a S  . If a a− += , then ( ) 1IR a = , implying a  is a crisp value without 

any indeterminacy. The larger the ( )IR a , the more indeterminate the judgment a  is. Moreover, 

( ) ( )cIR a IR a= , where 
ca  is the reciprocal of [ , ]a a a− += , i.e., 

1
1/ ,1/ca a a

a

+ − = =   . 
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From (4.8), we have ( ) / ( ) / 1IR a a a a a a+ − + − −= = − + . It is clear that ( ) /a a a+ − −−  can be 

regarded as a growth rate relative to the lower bound of the interval judgment. Therefore, it is 

relatively easy to determine an acceptable indeterminacy ratio threshold for an IMCM.   

Definition 4.4 Let ( )( ) [ , ]ij n n ij ij n n
A a a a− +

 
= =

 
be an IMCM and urt ( 1urt  ) be an acceptable 

indeterminacy ratio threshold, if ( )ij urIR a t
 
for all , 1, 2,...,i j n= , and A  is acceptably 

consistent under Definition 4.2, then A  is called acceptable; otherwise, A  is unacceptable. 

Definition 4.4 stipulates that, for an IMCM to be acceptable, it must have both an acceptable 

indeterminacy level and an acceptable consistency level. An unacceptable IMCM A  may 

contain extremely inconsistent or highly indeterminate information. In this case, the IMCM A
 

should be returned to the DM for an update.  

Based on this holistic view of acceptability for IMCMs, a consistent IMCM may be deemed 

unacceptable due to high indeterminacy. For instance, let 5urt = , the IMCM with all 

nondiagonal elements being [1/9, 9] is consistent, but it is unacceptable due to 

( ) 81 5ij urIR a t=  =  for all i j . In essence, this acceptability notion furnishes an important 

vehicle to control the quality of DMs’ decision input IMCMs from two aspects: consistency 

and indeterminacy. It is simply not enough to be consistent; the indeterminacy has to be 

controlled to be within an acceptable threshold as well. This new quality control mechanism is 

presumably helpful for the DM to elicit more meaningful input and make better decisions. 

Definition 4.5 Let ( )ij n nA a =
 
be an IMCM with [ , ]ij ij ija a a− += , then a geometric-mean-

based indeterminacy index of A
 
is defined as

 

2
2

1
1

( ) ( )
n n

n n ij

ij
i j i j

ij

a
II A IR a

a

+ −
−

−
 

   =  =           

                                          (4.9) 

It is obvious that ( ) 1II A  . If ( ) 1II A = , then ij ija a− +=
 
for all i, j =1, 2, …, n, and ija

 

becomes a crisp value and A
 
is thus reduced to a multiplicative comparison matrix; otherwise, 

A
 
contains indeterminacy, and the greater the ( )II A , the more indeterminate the A . Moreover, 

if A  is an acceptable IMCM, by Definition 4.4, ( ) urII A t . 

Since 1ij jia a− + =  and 1ij jia a+ − =
 
in A

 
for all i, j =1, 2, …, n,  one can get  

ij ji

ij ji

a a

a a

+ +

− −
= . Thus, (4.9) 

can be rewritten as 
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2

2

( )
n n

ij

i j
ij

a
II A

a

+ −

−


  
=     

  

                                                          (4.10) 

     Eq. (4.10) allows us to use only the upper diagonal elements to determine the indeterminacy 

index of an IMCM.  

     Using the geometric mean idea, we introduce a ratio-based concept to gauge the difference 

between two IMCMs.  

Definition 4.6 Let ( )( ) [ , ]ij n n ij ij n n
A a a a− +

 
= =  and ( )( ) [ , ]ij n n ij ij n n

B b b b− +

 
= =  be any two 

IMCMs, then the difference ratio between A  and B  is defined as: 

                      

2

1

2( )max{ , } max{ , }
( , )

min{ , } min{ , }

n n
ij ij ij ij

i j
ij ij ij ij

a b a b
DR A B

a b a b

− − + + −

− − + +


   
=       

   

                             (4.11) 

Obviously, ( , ) 1DR A B  and ( , ) ( , )DR A B DR B A= . The smaller the ratio ( , )DR A B , the 

closer A  is to B . In particular, if ( , ) 1DR A B = , A  = B . 

As 1ij jia a− + =  and 1ij jia a+ − =  in A
 
, and 1ij jib b− + =  and 1ij jib b+ − =   in B

 
for all i, j =1, 2, …, n,  

another equivalent but simpler expression of (4.11) is 

2

1

( )max{ , } max{ , }
( , )

min{ , } min{ , }

n n
ij ij ij ij

i j
ij ij ij ij

a b a b
DR A B

a b a b

− − + + −

− − + +


   
=       

   

                                   (4.12) 

  Let ( )( ) ( ) ( ) ( )( ) [ , ]l l l l

ij n n ij ij n n
A a a a− +

 
= = ( 1, 2,...,l m= ) be m IMCMs, we next introduce a 

geometric-mean-based formula to aggregate individual IMCMs into a group judgment. 

( ) ( ) ( )( ) ( )

1 1

( ) [ , ] ,
l l

m m
G G G G l l

ij n n ij ij ij ijn n l l
n n

A a a a a a
 

− + − +

  = =


  
= = =      

                           (4.13) 

where  
1

1
m

l

l


=

=  and 0l   for all 1, 2,...,l m= . 

One can easily prove that the aggregated matrix GA  is an IMCM. To facilitate future 

discussions, the following lemma is furnished.  

Lemma 4.1.
 
(Horn & Johnson, 1985) Let 

max

T  be the largest eigenvalue of a positive matrix 

( )ij n n
T t


= , then 

max
1

1

min max
n

n
jT

ij
i nY R

j i

y
t

y


+  
=

   
=   

   
   

                                               (4.14) 
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where  1 2( , ,..., ) | 0, 1,2,...,T

n n iR Y y y y y i n+ = =  = . 

Based on Lemma 4.1 and Definition 4.4, we have the following result. 

  Theorem 4.3 Let urt ( 1urt  ) be an acceptable indeterminacy ratio threshold, and ( )lA =
 

( )( ) ( ) ( )( ) [ , ]l l l

ij n n ij ij n n
a a a− +

 
=  ( 1, 2,...,l m= ) be m IMCMs with 

( ) ( )1/ 9 9l l

ij ija a− +   , then the 

aggregated IMCM GA
 
defined by (4.13) is acceptable if all ( )lA

 
( 1, 2,...,l m= ) are acceptable. 

Proof.  As ( )lA
 
is acceptable, we have 

( )

( )
1

l

ij

url

ij

a
t

a

+

−
   for all 1, 2,...,l m=  and

 
, 1, 2,...,i j n= . It 

follows that   

( ) ( )
( )

( )

( )
( ) ( )

1

( ) ( )
1 1 ( )

1

      

l
l l

l l

l

m
l

l l G
m m ij

ij ij ijl
ur ur ur ur urml l G

l l l
ij ij ij

ij
l

aa a a
t t t t t

a a aa


 

 



+
+ + +

=

− − −
= = −

=

   
    =          

    

 

for all , 1, 2,...,i j n= . 

 On the other hand, as per Definition 4.4, one has 
( )( ) 0.1l gmCR A  ( 1, 2,...,l m= ), where 

( )l gmA
 
is defined by (4.7), i.e., ( ) ( )( ) ( ) ( ) ( )l gm l gm l l

ij ij ijn n n n

A a a a− +

 

= = . It follows from (2.5) that  

( )

max 0.1
( 1) ( )

l gmA n

n IR n

 −


−
 for all 1, 2,...,l m= .  Since 

1

1
m

l

l


=

=  and 0l   for all 1, 2,...,l m= , one gets 

( )

max

1 0.1
( 1) ( )

l gm
m

A

l

l

n

n R nI

 
=

−


−


                                                (4.15) 

Let ( )( ) ( ) ( ) ( )

1 2, ,...,
T

l l l l

n   =  ( 1, 2,...,l m= ) be the normalized eigenvector corresponding to 

the largest eigenvalue 
( )

max

l gmA of ( )l gmA  =
 
, and 

( )

( ) ( )

( )

l

jl l gm

ij ij l

i

d a



=  for all , 1, 2,...,i j n= , and 

1, 2,...,l m= ,  then we have 
( ) ( )

max

1

l gm
n

A l

ij

j

d
=

=  and 
( )

( ) ( )

( )
=

l
l gm l i

ij ij l

j

a d



. 

  As per (4.7) and (4.13), it is obvious that 

( ) ( ) ( ) ( )G ( ) ( ) ( )

1 1

l
l

m m
gm Ggm G G l l l gm

ij ij ij ij ij ijn n l ln n n nn n

A a a a a a a
 

− + − +

 = = 

   
= = =  =   

  
. 

  It follows from Lemma 4.1 that 
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( )
G ( )

max
1 1 1

1 1

( )
( )

( )1 1
1

min max min max

min max

gm l

n n

l

n

n n m
j jA Ggm l gm

ij ij
i n i nY R Y R l

j ji i

ln m
jl i

ij li nY R l
j j i

y y
a a

y y

y
d

y











+ +

+

     =
= =

  =
=

          
= =       

          
       =           

 







 

This implies that ( )( )

1

0
l

m
l

i

l




=

  for all 1, 2,...,i n= . Thus, 

 ( ) ( ) ( )( ) ( ) ( )

1 2

1 1 1

, ,...,
l l l

T
m m m

l l l

n n

l l l

Y R
  

    +

= = =

 
=  
 
    

Consequently,  

( )

( )

G

( )

( ) ( )
( ) ( ) 1

max ( ) ( )1 11 1 ( )1 1

1

min max max

max

l

l l

gm

ln

m
l

l l jn nm m
jA l li i l

ij ij ml li n i nY R l l lj jj i j
i

l

y
d d

y


 




 


 


+

=

    = =
= =

=

  
                  =                                  

=


 



( )
( )( ) ( ) ( )

max
1 1 11

1 1 1 1 1 1

max max
l gml

n n m m n mm
l l l A

ij l ij l ij l
i n i n i nl

j j l l j l

d d d


   
     =

= = = = = =

          
  = =         
           

     

          (4.16) 

where the last inequality is confirmed because a weighted geometric mean is always no more 

than the corresponding weighted arithmetic mean.  

As per (4.15) and (4.16), one has 

( )

max

max 1( ) 0.1
( 1) ( ) ( 1) ( )

l gm

Ggm

m
A

A l
Ggm l

n
n

CR A
n R n n RI I n

 
 =

−
−

=  
− −


. 

Therefore, GgmA  is acceptably consistent. By Definition 4.4, the IMCM GA
 
is acceptable.     ■ 

Theorem 4.3 demonstrates that the aggregation method (4.13) for m acceptable IMCMs 

always results in an acceptable group IMCM. This implies that it is reasonable to employ (4.13) 

to aggregate individual IMCMs with acceptability into a collective IMCM in group decisions. 

5.  Elicitation and ranking of interval multiplicative weights 

This section first defines a notion of normalized acceptable interval multiplicative weights, 

then establishes an LLS model to elicit a normalized interval multiplicative weight vector from 

an acceptable IMCM. Subsequently, a geometric-mean-based method is developed for ranking 

interval multiplicative weights.  

In a similar way to normalizing an interval additive weight vector (Wang & Elhag, 2006), 

we introduce a notion of normalized interval multiplicative weights. 
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Definition 5.1. Let 
1( , , )T

nw w w= be an interval multiplicative weight vector satisfying 

[ , ]i i iw w w− +=
 
and 0 i iw w− +  ( 1, ,i n= ), then w  is called a normalized interval 

multiplicative weight vector if  

1,   1,     1,2, ,i j i j

j i j i

w w w w i n+ − − +

 

    =                           (5.1) 

Definition 5.2. Let urt ( 1urt  ) be an acceptable indeterminacy ratio threshold, then a 

normalized interval multiplicative weight vector w  is acceptable if it satisfies: 

,     1, 2, ,
i j

ur

i j

w w
t i j n

w w

+ +

− −
  =                                                 (5.2) 

Inequalities in (5.1) and (5.2) can be equivalently reformulated as  

1 1

ln ln 0,   ln ln 0,    1,2, ,
n n

i j i j

j j
j i j i

w w w w i n+ − − +

= =
 

+  +  =                            (5.3) 

ln ln ln ln ln ,     1,2, ,i j i j urw w w w t i j n+ + − −+ − −   =                              (5.4) 

  For an IMCM ( )( ) [ , ]ij n n ij ij n n
A a a a− +

 
= = , if there exists an acceptable normalized interval 

multiplicative weight vector w  such that  

,    ,     i i
ij ij

j j

w w
a a i j

w w

− +
− +

+ −
= =                                             (5.5) 

then it is easy to prove that gmA  defined by (4.7) is a crisp judgment matrix with consistency. 

As per Corollary 4.3, the IMCM A  is consistent. By (4.8), we have 

( ) 1,  1,2,...,ii
ii

ii

a
IR a i n

a

+

−
= = =

 
and ( ) ,  

ij i j

ij

ij i j

a w w
IR a i j

a w w

+ + +

− − −
= =  . It follows from (5.2) and 1urt 

 

that ( )ij urIR a t  for all , 1, 2,...,i j n= . According to Definition 4.4, A  is an acceptable IMCM 

with consistency. 

Eq. (5.5) is equivalent to the following indeterminacy ratio and geometric-mean-based 

formulae. 

,        ,        
ij i ji i

ij ij

j j ij i j

a w ww w
a a i j

w w a w w

+ + +− +
− +

− + − − −
= =                                       (5.6) 

Eq. (5.6) can be equivalently rewritten as 

ln ln ln ln ln ln ,      ij ij i i j ja a w w w w i j− + − + − ++ = + − −                                   (5.7) 
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ln ln ln ln ln ln ,       ij ij i j i ja a w w w w i j+ − + + − −− = + − −                                  (5.8) 

Eqs. (5.7) - (5.8) hold only for consistent IMCMs.  For an inconsistent IMCM with 

acceptable consistency, the equations in (5.7) and (5.8) will be relaxed by allowing deviations. 

The smaller the squared deviation, the closer the IMCM A  is to have consistency.  According 

to this modeling notion, the following multi-objective LLS models are developed to generate 

interval multiplicative weights from an acceptable IMCM ( )( ) [ , ]ij n n ij ij n n
A a a a− +

 
= = . 

( )
2

1

1 , 1

min ln ln ln ln ln ln
n n

ij ij i i j j

i j i j

J a a w w w w− + − + − +

=  =

= + − − + +                            (5.9) 

( )
2

2

1 , 1

min ln ln ln ln ln ln
n n

ij ij i j i j

i j i j

J a a w w w w+ − + + − −

=  =

= − − − + +                            (5.10) 

1

1

ln ln 0,                              1, 2,...,

ln ln 0,                               1, 2,...,. .

0 ,   ln ln ,                      1, 2,...,     

ln ln ln

n

i j

j
j i
n

i j

j
j i

i i i

i j

w w i n

w w i ns t

w w w i n

w w w

+ −

=


− +

=


− − +

+ +

+  =

+  =

  =

+ −





ln ln .     , 1, 2,..., ,i j urw t i j n i j− −










−  = 

                             (5.11) 

where urt is an acceptable indeterminacy ratio threshold and the first three lines of inequalities 

are the logarithms of the normalization constraints for interval multiplicative weights, and the 

last line of the constraints is due to (5.4) and ensures the derived interval multiplicative weights 

to be acceptable.  

Obviously, ( )1 1 2 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ],[ , ],...,[ , ]

T

n nw w w w w w w− + − + − +=  with ˆ ˆ0 , 1,2,...,i iw w i n− + = =  and 

1

ˆ 1
n

i

i

w−

=

=
 

satisfies (5.11) for any 1urt  , thus it is a feasible solution to (5.9) and (5.10). 

Moreover, the following result can be easily proved. 

Theorem 5.1 Let ( )1 1 2 2[ , ],[ , ],...,[ , ]
T

n nw w w w w w w− + − + − +=  be an optimal solution of (5.9) and 

(5.10), then ( )'

1 1 2 2[ , ], [ , ],..., [ , ]
T

n nw w w w w w w  − + − + − +=  is also an optimal solution, where the 

parameter   satisfies 

1, 1,

0,    1,   1,     1,2,...,
n n

n n

i j i j

j j i j j i

w w w w i n  + − − +

=  = 

   =                            (5.12) 
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Theorem 5.1 shows that multiple solutions may exist for the multi-objective optimization 

models (5.9) and (5.10). To narrow down the optimal solutions and provide a benchmark, we 

add the following constraint into (5.11). 

1

1
n

i i

i

w w− +

=

=                                                      (5.13) 

Let  

gm

i i iw w w− +=                                                       (5.14) 

we have ( )
1

ln ln ln
2

gm

i i iw w w− += +
 
and 

1

1
n

gm

i

i

w
=

= . Therefore, a normalized geometric-mean-

based benchmark is found by solving the following two LLS models: 

( )( )
2

1

1 , 1

1

min 4 ln ln ln

1,
. .

0.   1,2,...,

n n
gm gm

ij ij i j

i j i j

n
gm

i

i

gm

i

J a a w w

w
s t

w i n

− +

=  =

=

= − +


=


  =

 


                               (5.15) 

where gm

iw   ( 1, 2,...,i n= ) are decision variables. 

( )
2

2

1 , 1

1 1

min ln ln ln ln ln ln

ln ln 0,  ln ln 0,        1, 2,...,

. . 0 ,   ln ln ,                                  1, 2,...,

ln ln

n n

ij ij i j i j

i j i j

n n

i j i j

j j
j i j i

i i i

i i

J a a w w w w

w w w w i n

s t w w w i n

w w

+ − + + − −

=  =

+ − − +

= =
 

− − +

−

= − − − + +

+  +  =

  =

+

 

 

*2ln ,                               1, 2,...,

ln ln ln ln ln .              1, 2,...,

gm

i

i j i j ur

w i n

w w w w t i j n

+

+ + − −





 = =


+ − −   =

                     (5.16) 

where ( )* * *

1 2, ,...,
T

gm gm gm

nw w w   is the optimal solution to (5.15), 
iw− and 

iw+  ( 1, 2,...,i n= ) are 

decision variables. 

  One can see that the LLS model (5.15) is equivalent to generating crisp multiplicative 

weights from the comparison matrix gmA  defined by (4.7). According to the well known 

geometric mean procedure proposed by Crawford and Williams (1985), one can obtain 

1/

*

1

,    1, 2,..., .

n
n

gm

i ik ik

k

w a a i n− +

=

 
= = 
 
                                  (5.17) 

On the other hand, as per the reciprocity of 1, , 1,2,...,ij jia a i j n− + =  = , we have 

( ) ( )
2 2

ln ln ln ln ln ln ln ln ln ln ln lnji ji j i j i ij ij i j i ja a w w w w a a w w w w+ − + + − − + − + + − −− − − + + = − − − + +  . 



 21 

Therefore, an optimal solution to (5.16) is found by solving the following optimization model:  

( )
1

2

1 1

1 1

min ln ln ln ln ln ln

ln ln 0,  ln ln 0,        1, 2,...,

0 ,   ln ln ,                                  1, 2,...,. .

ln ln

n n

ij ij i j i j

i j i

n n

i j i j

j j
j i j i

i i i

i i

J a a w w w w

w w w w i n

w w w i ns t

w w

−
+ − + + − −

= = +

+ − − +

= =
 

− − +

− +

= − − − + +

+  +  =

  =

+



 

( )
1

1
ln ln ,              1, 2,...,

ln ln ln ln ln .              

n

ik ik

k

i j i j ur

a a i n
n

w w w w t i j

− +

=
+ + − −






 = + =

 + − −  



                     (5.18) 

Solving (5.18) yields an optimal interval multiplicative weight vector denoted by 

( ) ( )* * * * * * * * * *

1 2 1 1 2 2, ,..., [ , ],[ , ],...,[ , ]
T T

n n nw w w w w w w w w w− + − + − += = .  

If all interval comparisons of ( )( ) [ , ]ij n n ij ij n n
A a a a− +

 
= =  are reduced to crisp ratio values, i.e., 

, , 1, 2,...,ij ija a i j n− +=  = , A  is reduced to a crisp comparison matrix ( )ij n n
A a−


= . In this case, 

for any 1urt  , the optimal value of the objective function (5.18) is equal to zero, and we have 

the optimal solution

1/

* *

1

 ( 1,2,..., )

n
n

i i ik

k

w w a i n− + −

=

 
= = = 

 
 , leading to the same result derived by 

the geometric mean procedure by Crawford and Williams (1985). 

Let  

* * * * *

* *

[1,1]          

[ , ]
,

ij ij ij i i

j j

i j

a a a w w
i j

w w

− + − +

+ −

=

 = = 

 
  

                                                   (5.19) 

we obtain a consistent and acceptable IMCM ( )* * *,ij ij
n n

A a a− +


 =    based on A . 

Once multiplicative priority weights are generated from IMCMs, the next issue is to 

compare them and deduce a rank. Wang et al. (2005a) and Liu (2009) developed interval 

midpoint-based methods to compare two interval multiplicative weights, which are equivalent 

to an arithmetic mean approach. To be consistent with the geometric-mean-based modeling 

idea in this article, we introduce an alternative geometric-mean-based possibility degree 

formula and employ it to compare and rank interval multiplicative weights [ , ]i i iw w w− +=
 

( 1,2,..., )i n= . 

max{0, ln ln } max{0, ln ln }
( ) ,      0, 0

ln ln ln ln

i j i j

M i j i j

i i j j

w w w w
P w w w w

w w w w

+ − − +

+ − + −

− − −
 =  

− + −
     (5.20) 
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It is apparent that ( )M i jP w w satisfies the following properties: 

(a) 0 ( ) 1M i jP w w   ;    

(b) ( ) ( ) 1M i j M j iP w w P w w +  = . Especially, ( ) 0.5M i iP w w = ; 

(c) ( ) 1M i jP w w =  i jw w− + ;   

(d) ( ) 0M i jP w w =  i jw w+ −  ; 

(e) ( ) 0.5M i j i i j jP w w w w w w− + − +    . Especially, ( ) 0.5M i j i i j jP w w w w w w− + − + =  = ; 

(f) For any three interval multiplicative weights ,i jw w and
kw , if ( ) 0.5M i jP w w 

 
and 

( ) 0.5M j kP w w  , then ( ) 0.5M i kP w w  . 

In summary, for any acceptable IMCM ( )( ) [ , ]ij n n ij ij n n
A a a a− +

 
= = , its interval multiplicative 

weights are generated and ranked as per the procedure below: 

(i)  Solving the LLS model (5.18) to generate its optimal solution * * *[ , ]i i iw w w− −=
 
( 1,2,..., )i n= . 

(ii) Construct a possibility matrix ( )* *( ) ( )ij n n M i j n n
P p P w w 
= =  as per (5.20). 

(iii) Calculate ranking indices of the interval multiplicative weights * * *[ , ]i i iw w w− −=
 

( 1,2,..., )i n=  as per the formula
1

n

i ij

j

p
=

= . 

(iv)  A ranking order of the decision alternatives is derived by a decreasing order of the 

indices i  
( 1, 2,...,i n= ), and “ ix  being superior to

jx ” is denoted by

* *( )iM jP

i jx x
 

. 

6.  Numerical examples 

Next, two numerical examples are provided to illustrate the validity and applicability of the 

proposed models. 

Example 2. Consider the following IMCM 
2A , which was examined by Liu (2009) and 

Wang et al. (2005a). 

( )2 4 4 4 4

1 [2,5] [2,4] [1,3]

[1/ 5,1/ 2] 1 [1,3] [1,2]
( ) [ , ]

[1/ 4,1/ 2] [1/ 3,1] 1 [1/ 2,1]

[1/ 3,1] [1/ 2,1] [1,2] 1

ij ij ijA a a a− +

 

 
 
 = = =
 
 
 
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Assume that an acceptable indeterminacy ratio threshold is set at  3urt = . As per (4.8), we 

have ( )ij urIR a t for , 1, 2,3, 4i j = . By (2.5), one confirms 
2( ) 0.0981 0.1gmCR A =  . According 

to Definition 4.4, the IMCM 
2A is acceptable. 

Plugging 
2A  into (5.18), we obtain an optimal interval multiplicative weight vector as 

* * * * *

1 2 3 4( , , , ) ([1.5540,2.5329],[0.7348,1.1977],[0.5105,0.7442],[0.7219,1.0525])T Tw w w w w= =  

By (5.20), the following possibility degree matrix is established.   

0.5 1 1 1

0 0.5 0.9853 0.5849

0 0.0147 0.5 0.0404

0 0.4151 0.9596 0.5

P

 
 
 =
 
 
 

 

  Consequently, we have 1 2 3 43.5, 2.0702, 0.5551, 1.8747   = = = = , and a ranking of the 

four interval multiplicative weights is determined as 
100% 58.49% 95.96%

* * * *

1 2 4 3w w w w .  

This ranking order is consistent with the result given by Liu (2009) and Wang et al. (2005a). 

However, the possibility degrees differ. This difference is ascribed to the fact that their models 

use different consistent properties of IMCMs and apply different possibility degree formulae, 

which utilize the arithmetic means of interval multiplicative weights while our approach here 

adopts their geometric means. 

To further validate the proposed models, a comparative analysis with the results from Liu 

(2009) and Wang et al. (2005a) is conducted by examining the associated consistent IMCMs 

generated by the obtained interval multiplicative weights. 

As per (5.19), the associated consistent and acceptable IMCM is determined from the 

interval multiplicative weight vector *w
 
as 

*

2

1 [1.2975,3.4471] [2.0881,4.9616] [1.4765,3.5087]

[0.2901,0.7707] 1 [0.9874,2.3461] [0.6981,1.6591]

[0.2015,0.4789] [0.4262,1.0128] 1 [0.4850,1.0309]

[0.2850,0.6773] [0.6027,1.4324] [0.9700,2.0619] 1

A

 
 
 =
 
 
 

 

  By (4.9) or (4.10), the indeterminacy indices of 2A  and *

2A are calculated as 

2( ) 2.3762II A = ,     *

2( ) 2.3763II A =  

As per (4.11) or (4.12), the difference ratio between 2A  and *

2A  is determined as 

*

2 2( , ) 1.2291DR A A =  
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From 
2A , Liu (2009) and Wang et al. (2005a) derived their interval multiplicative weight 

vectors 
1 2 3 4

( , , , ) ([1.4142, 2.7832],[0.8409,1.0466],[0.5373,0.7071],[0.6389,1.1892])
L L L L L T T

w w w w w= =  

and 
1 2 3 4( , , , ) ([1.6818,2.4495],[0.7598,1.1067],[0.5,0.8409],[0.6866,1])W W W W W T Tw w w w w= = , respectively. By 

applying (5.19), one can obtain their corresponding IMCMs as follows. 

 
2

1 [1.3512,3.3098] [2.0000,5.1800] [1.1892,4.3562]

[0.3021,0.7401] 1 [1.8922,1.9479] [0.7071,1.6381]

[0.1931,0.5000] [0.5285,0.5134] 1 [0.4518,1.1067]

[0.2296,0.8409] [0.6105,1.4142] [0.9036,2.2134] 1

LA

 
 
 =
 
 
 

 

2

1 [1.5143,3.2239] [2.0000,4.8990] [1.6818,3.5676]

[0.3102,0.6604] 1 [0.9036,2.2134] [0.7598,1.6119]

[0.2041,0.5000] [0.4518,1.1067] 1 [0.5000,1.2247]

[0.2803,0.5946] [0.6204,1.3161] [0.8165,2.0000] 1

WA

 
 
 =
 
 
 

 

    As per (4.9) or (4.10), their indeterminacy indices of 
2

LA  and 
2

WA are 

2( ) 2.2671LII A = ,    
2( ) 2.2809WII A =  

By (4.11) or (4.12), one has 

2 2( , ) 1.3307LDR A A = ,    
2 2( , ) 1.2535WDR A A =  

Obviously, in terms of the indeterminacy level, *

2A  is virtually identical to the original 

IMCM
2A  while both 2

LA and 2

MA have a larger margin of error. Compared to 2

LA and 2

MA , *

2A
 

also has the smallest difference ratio with the original IMCM. These comparative results 

demonstrate that the interval multiplicative weight vector *w and the associated *

2A
 
obtained by 

the proposed model in this article capture the DM’s original indeterminate judgments the best 

in terms of the indeterminacy index and difference ratio. In addition, Wang et al. (2005a) did 

not consider acceptability of IMCMs. While the priority method in Liu (2009) entertains 

acceptable consistency for IMCMs, our analysis in Section 3 indicates that the acceptable 

consistency therein suffers from the drawback of being sensitive to alternative label reshuffling.   

Example 3. Recent rapid growth of graduate education in China creates a great need for 

Chinese universities to establish objective and fair criterion weighting schemes for evaluating 

graduate applications. It is typical to evaluate applicants based on four criteria: academic 

records and reputation of the undergraduate institution ( 1c ), research potentials ( 2c ), English 

proficiency and communication skills ( 3c ), and teamwork ( 4c ). Three experts 
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 ( 1,2,3)le l = with an importance weight vector 
1 2 3( , , ) (0.25,0.35,0.40)T T   = = are asked 

to generate a proper distribution of criterion weights. Each expert le ( 1,2,3)l =  carries out pair-

wise comparisons and provides his/her evaluations on the four criteria as the following IMCMs 

( )( ) ( ) ( ) ( )

4 4 4 4
( ) [ , ]l l l l

ij ij ijA a a a− +

 
= = . 

(1)

1 [5 / 3,  2] [4 / 3,  3] [5 / 6,  3/2]

[1/ 2,  3/5] 1 [7 / 4,  3] [1,  3]

[1/ 3,  3 / 4] [1/ 3,  4/7] 1 [3/ 2,  2]

[2 / 3,  6 / 5] [1/ 3,  1] [1/ 2,  2/3] 1

A

 
 
 =
 
 
 

 

(2)

1 [1/ 3,  4/5] [4 / 3,  8/3] [3/ 2,  7/2]

[5 / 4,  3] 1 [7 / 3,  4] [4,  6]

[3/8,  3 / 4] [1/ 4,  3 / 7] 1 [1,  2]

[2 / 7,  2 / 3] [1/ 6,  1/ 4] [1/ 2,  1] 1

A

 
 
 =
 
 
 

 

(3)

1 [2,  3] [3/ 2,  5/2] [3,  5]

[1/ 3,  1/2] 1 [3/ 2,  7/2] [2,  3]

[2 / 5,  2 / 3] [2 / 7,  2 / 3] 1 [3/ 2,  2]

[1/ 5,  1/ 3] [1/ 3,  1/ 2] [1/ 2,  2/3] 1

A

 
 
 =
 
 
 

 

To calibrate our model, assume that the three experts agree that the acceptable indeterminacy 

ratio is set at 3urt = . It follows from (4.8) that 
( )( )l

ij urIR a t
 
for , 1, 2,3,4, 1,2,3i j l= = . As per 

(2.5), one can obtain (1) (2)( ) 0.0858, ( ) 0.0018gm gmCR A CR A= = and (3)( ) 0.0521gmCR A = , 

implying that the multiplicative comparison matrix ( )l gmA  has Saaty’s acceptable consistency 

for 1,2,3l = . By Definition 4.4, the three IMCMs ( )lA ( 1,2,3l = ) are all acceptable.  

As per the aggregation method (4.13), a group acceptable IMCM is computed as 

1 [1.0206,  1.7068] [1.3976,  2.6764] [1.7088,  4.4132]

[0.5859,  0.9798] 1 [1.8196,  3.5288] [2.1435,  3.8237]

[0.3736,  0.7155] [0.2834,  0.6463] 1 [1.3015,  2.0000]

[0.3074,  0.5852] [0.2615,  0.4665] [0.5000,  0.7683] 1

GA



=


 
 
 
 
 

 

Solving (5.18) yields the four interval multiplicative criteria weights as follows. 

* * * *

1 2 3 4[1.3151,2.0132],  [1.3532,1.7325],  [0.6855,0.8716],  [0.4625,0.6551]w w w w= = = = . 

As per (5.20), the following possibility degree matrix is obtained: 
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0.5 0.5904 1 1

0.4096 0.5 1 1

0 0 0.5 1

0 0 0 0.5

P

 
 
 =
 
 
 

 

As 1 2 3 43.0904, 2.9096, 1.5, 0.5   = = = = , the four criteria are ranked as 

59.04% 100% 100%

1 2 3 4c c c c .  

In practice, interval criteria weights offer more decision flexibility and choices for DMs.  In 

the context of this example, interval values can be interpreted as a general guideline for 

different faculties on campus. For an individual faculty, distinct real-valued weights may be 

derived from these interval values by assessing its specific characteristics and needs in 

graduate admissions.  

It is noted that the approach by Liu (2009) cannot be employed to solve this group decision 

problem: by (2.5) and (3.1), one has (1)( ) 0.1161 0.1UCR A =  . Thus, the IMCM (1)A  is deemed 

unacceptably inconsistent and the process has to be terminated without yielding a solution.  

7.  Conclusions 

This paper first shows that the acceptable consistency for IMCMs in Liu (2009) is not 

robust with respect to permutation of alternatives. An interval-arithmetic-based transitivity 

equation is then introduced to define consistency of IMCMs. By incorporating both 

consistency and indeterminacy levels of interval judgments, we put forward a new notion of 

acceptable IMCMs. Subsequently, an indeterminacy ratio of an interval comparison is 

introduced to define an indeterminacy index for measuring overall indeterminacy of an IMCM. 

We propose a notion of acceptable normalized interval multiplicative weights. An 

indeterminacy-ratio and geometric-mean based transformation equation is devised to convert 

an acceptable normalized interval multiplicative weight vector into a consistent and acceptable 

IMCM. An LLS model is developed to derive normalized interval multiplicative weights from 

an acceptable IMCM. A geometric-mean-based possibility degree is furnished for comparing 

and ranking normalized interval multiplicative weights. Two numerical examples are offered to 

demonstrate the effectiveness and applications of the proposed framework.  

Future endeavours are needed to extend the paradigm for decision problems with incomplete 

IMCMs and addressing consensus reaching processes in group decision.  
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