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 A DEA model is proposed for preferential voting with abstentions.  

 Raw votes are expressed as intervals with the width characterizing uncertain votes. 
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Consensus Decision Models for Preferential Voting with Abstentions

Abstract

Proper use of the data envelopment analysis (DEA) for aggregating preferential rankings helps improve

efficiency of a voting system. It has been observed that many recent elections often have low turnouts, a

large number of abstentions and invalid ballots. If these voters can be influenced to cast their votes for

or against a candidate, it is understandable that the voting result can be quite different. The purpose

of this research is to incorporate abstentions into preferential voting models. To this end, we first

introduce a preferential voting DEA model with abstentions, in which the raw votes are expressed as

interval values and the width of the interval characterizes the number of uncertain votes, the objective

function is to maximize a candidate’s weighted voting score, and the constraints put restrictions on

the place weights to ensure a proper importance order of different places. Secondly, given the fact that

opinion leaders often employ different means such as social media and advertisement to influence voters

in real-world elections, we explicitly incorporate these opinion leaders/brokers as a moderator into a

preferential voting model with abstentions and introduce a moderator-involved-consensus preferential

voting (MICPV) model. This model aims to capture the moderator’s influences on the uncertain voters

from a consensus perspective. The optimal allocation of all uncertain votes allows the moderator to

maximize his/her influence over the voters to achieve the minimum deviation between his/her expected

and the aggregate scores of the candidates. At the optimality, for those candidates where a complete

consensus is achievable, the model identifies the optimal allocation scheme. We also analyze the

economic significance of the MICPV model.

Keywords: Group decision making, Consensus, Preferential voting, Data envelopment analysis

(DEA).

1. Introduction

In the industrial engineering discipline, decision making plays a key role in properly managing

complex social, economic, and engineering systems such as group decision support (Beruvides, 1995),

product development partner selection (Büyüközkan and Güleryüz, 2016), and ballot system design

(Sivagami et al., 2011). Group decision-making (GDM) (Arrow, 1950; Fishburn, 1970) is the process

of aggregating multiple decision-makers’ (DMs’) preferences over different alternatives into a compro-

mised collective preference order for an entire group according to some rules (Hwang and Lin, 2012).

GDM has a number of advantages: It helps to obtain more complete information and knowledge from

different perspectives, generate more feasible alternatives, improve the group’s acceptance of alterna-
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tives, and enhance the legitimacy of the decision making process. Thus, GDM can be a valuable tool

to avoid individual irrational decisions caused by “bounded rationality” (Simon, 1991), risk aversion or

risk appetite (Kahneman and Tversky, 1979). Based on a Bayesian approach, Altuzarra et al. (2010)

constructed an AHP-group decision model for the consensus reaching process. On the other hand,

GDM is not immune to pitfalls. For instance, it may lead to dangerous tendencies such as “group-

think” (Janis, 1972), “group polarization” (Stoner, 1961), and “escalation of commitment” (Myers

and Lamm, 1975). To counter this downside risk, an experienced moderator with a global view of the

issue at hand may be introduced to help avert these tendencies and improve decision results and the

consensus reaching process (Palomares et al., 2014; Tan et al., 2017a,b; Zhang et al., 2017; Gong and

Wang, 2017).

A preferential election is a special GDM process where multiple individuals participate in the

voting process (decision analysis), establish decision (voting) rules, select appropriate methods for

aggregating individual decisions (information aggregation), and choose a satisfactory alternative for

the group (alternative selection). Three main processes are involved in a preferential election:

(1) Aggregating the voting information. Information aggregation is expected to satisfy the sys-

tematicity and integrity requirements of voting systems by exploiting different methods such as ag-

gregation operators (i.e., weighted average operators), regression analysis, and function simulations

(González-Pachón and Romero, 1999; Hummel, 2011; Bouton et al., 2015).

(2) Constructing voting rules. Efficient voting rules must be adaptable to different voting scenarios

and help to improve the fairness of the voting process (Chandrasekher, 2015; Burnett and Kogan, 2015;

Procaccia et al., 2016).

(3) Optimizing voting alternatives (i.e., voting system efficiency). An efficient voting system is

expected to maximize the use of voting information, to obtain the best result based on an optimization

model (Angiz et al., 2012; Gans and Smart, 1996; Tavares, 2012).

Generally speaking, the value of a voting system can be measured by its efficiency. The DEA

model is a well known tool for evaluating efficiency because it takes a systematic approach to ag-

gregate each candidate’s score by incorporating the voting system information to optimize variable

weights and ensure the rationality of voting ranks. As such, Cook and Kress (1990) proposed to use

a DEA model to aggregate preferential ranking with a focus on the efficiency of a voting system. The

research question therein is to select k members out of m candidates and rank them according to

the importance of their places. Subsequently, Cook et al. (1997) presented a general distance-based

consensus framework for deriving ordinal ranking. To solve the problem of preference ranking, Wang

et al. (2005, 2007) put forward an interval utility function and ordered weight averaging operators.

Gong et al. (2015a) constructed consensus models to deal with interval preference opinions and inter-

preted their economic significance. Franceschini and Maisano (2015) introduced a new quantitative

tool to check the consistency of the solution in ordinal semi-democratic decision-making problems. By
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integrating interval 2-tuple linguistic TOPSIS into DEA, Geng at al. (2016) investigated a component

oriented remanufacturing decision-making problem. Over the past 20 years, voting efficiency also at-

tracted significant interests from many researchers (Oukil and Amin, 2015; Ebrahimnejad et al., 2016;

Llamazares and Pen̈a, 2009; Sun and Ma, 2015).

In recent elections, low turnout ratios have been a consistent and notorious problem. To increase

turnouts, different measures have been proposed. For instance, some jurisdictions have experimented

with mandatory voting. It has been observed that these measures often result in a large number of

invalid ballots and abstentions (Power and Roberts, 1995). It is understandable that these votes may

have a significant effect on the voting result depending upon whether they can be converted to approval

votes. For instance, we often observe different social media conduct polls prior to the final preferential

voting and predict who will win/lose the election. In their questionnaires, undecided is typically one

of the choices for potential voters who take the survey. These undecided votes can be conveniently

characterized as interval-valued voting counts. During the campaign, the candidates can then use the

poll results to adjust their running strategies and launch advertisements to influence those undecided

voters. Our proposed models can be of use for the runners and their managers in allocating their

campaign resources to maximize their chance of winning over these uncertain voters. Building upon

Borda’s (1784) voting method and Cook and Kress (1990)’s DEA model, this paper firstly proposes a

novel preferential voting paradigm to incorporate abstentions (hereafter, invalid ballots are treated as

abstentions in this article) by introducing interval values for the raw vote counts where the interval

width measures the magnitude of abstention votes. Furthermore, since voting efficiency evaluation

aims to adequately aggregate the voting information, the derived result presumably represents the

collective choice of the voters. From this perspective, the voting process can be treated as a consensus

decision problem, which is an active research topic in the industrial engineering field. For instance,

recent studies examined consistency and consensus with different types of decision input such as

hesitant fuzzy linguistic preference relations (Wu and Xu, 2015; Wang and Gong, 2017), interval fuzzy

preference relations (Meng et al., 2016), and heterogeneous preference relations (Chen et al., 2015).

Labella et al. (2017) conducted a comparative analysis of the performance of classical consensus models

in large-scale GDM.

Contemporary elections have presented a common scenario in which different lobby groups, think

tanks, and opinion leaders express their opinions on the candidates and some may even launch cam-

paigns to promote their preferred candidate and/or undermine others. Their goal is to influence voters

so that their preferred candidate can be elected as the winner. To properly consider their role in an

election, a second proposal is presented in this paper that explicitly introduces them into a consensus

decision model (Liu et al., 2017; Wu et al., 2018, 2017) and collectively refers them to as a modera-

tor (Ben-Arieh and Easton, 2007; Herrera-Viedma et al., 2007; Gong et al., 2015a). Consistent with

the idea in (Dong et al., 2018), where a moderator can strategically manipulate attribute weights or
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allocate resources to obtain her/his desired alternatives’ ranking, this second novel approach, a so-

called moderator-involved consensus preferential voting (MICPV) model, aims to achieve consensus

between the moderator’s expectations and the voters’ aggregate voting scores of the candidates by

minimizing their deviations. This type of research and treatment has been widely used in industrial

engineering and engineering management. We also explore the economic significance of different model

components in MICPV and its dual models using the primal-dual linear programming theory.

Key features of both proposed models are:

(a) Abstentions are allowed and accommodated by allowing raw voting counts to assume interval

values. Without loss of generality, invalid ballots are treated as abstentions in this article.

(b) The place weights differ and are functions of a discriminating factor.

(c) The objective function of the primal model minimizes the difference between the moderator’s

expected scores and the weighted voting scores for all candidates. The purpose is to reach the

highest possible consensus between the moderator’s opinion and those of the voters.

(d) The objective function of the dual model aims to measure the total utility that the moderator’s

opinion influences the voting scores of the candidates.

The rest of this paper is structured as follows. Section 2 introduces Cook and Kress’s DEA model

for aggregating preference rankings. Section 3 presents a generalization of the DEA model allowing

for abstentions. Section 4 proposes an MICPV model with abstentions. Different primal and dual

linear programs are also discussed for the consensus reaching process. Section 5 explores economic

significance of key model components. Illustrative examples are provided in Section 6 to analyze

a hypothetical preferential voting scenario with and without a moderator’s influence. The paper

concludes with some remarks in Section 7.

2. Background

In Cook and Kress (1990)’s DEA model, there exist k places in a preferential election. Each voter

must select k winners from m candidates in a preferential order of their places. Assume that the vote

of candidate i in place j is vij , i ∈ M = {1, . . . ,m}, j ∈ K = {1, . . . , k}, and the importance of place

j is ωj. Then, the candidate i’s overall score is Wi =
k
∑

j=1
ωjvij. Specifically, for a particular candidate

i0 ∈ M , to determine an optimal set of {ω∗
j } that maximizes his/her weighted score Wi0 , Cook and

Kress (1990) proposed to employ the following DEA model for aggregating preference ranking (DEA
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voting model):

Max Wi0 =
k
∑

j=1
ωjvi0j

s.t.























k
∑

j=1
ωjvij ≤ 1, i ∈ M (1− 1)

ωj − ωj+1 ≥ d(j, ε), j = 1, . . . , k − 1 (1− 2)

ωk ≥ d(k, ε) (1− 3)

(1)

Constraint (1-1) indicates that the upper bound for any candidate i’s score is 1. Constraints (1-

2) and (1-3) put restrictions on the weights of the places. The importance of the places are listed

in a descending order, where the lower bound d(j, ε) on the gap between the importance of two

successive places is referred to as the discrimination intensity function. The parameter ε is called the

discrimination factor. Assume that d(j, ε) = f(j)ε is a monotonically non-decreasing linear function,

and f(j) is a positive constant with respect to j. The objective function is candidate i0’s weighted

voting score (hereinafter referred to as score)
k
∑

j=1
ωjvi0j , which is to be maximized.

The characteristics of the DEA voting model can be briefly summarized as follows:

(a) The place weights are objectively determined as an optimal solution to the DEA voting model.

(b) The differences in importance of places are modeled as constraints in a linear programming model,

which is computationally easier to solve compared to a nonlinear model.

(c) The candidate’s final score is computed as a linear weighted sum based on the optimal weights

derived from the DEA model.

Cook and Kress’s original DEA model assumes that all votes are valid without abstentions. But as

it is noted in Section 1, a large number of invalid ballots and abstentions often arise in elections. To

make the aforesaid DEA model more applicable, Section 3 proposes a preferential voting DEA model

with abstentions. The voting score of candidate i in place j, vij, assumes an interval value, where

the interval width (distance between the lower and the upper bounds of the interval) is the maximum

number of invalid votes or abstentions. The optimal weight of candidate i in place j is obtained by

using a DEA method, thereby determining the final candidate ranking.

3. A preferential voting DEA model with abstentions

In a preferential election with abstentions, k places are vacant. Each voter selects k winners from

m candidates and ranks them accordingly. Assume the voting score interval of candidate i in place j is

[vLij , v
U
ij ], i ∈ M , j ∈ K. vLij and vUij denote the lower and upper bounds of votes for candidate i in place

j. The interval [vLij , v
U
ij ] can be viewed as a crisp number vLij+αij(v

U
ij−vLij), where 0 ≤ αij ≤ 1. vUij−vLij

is the number of uncertain votes, which may be valid abstentions or invalid ballots. Understandably, at
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an aggregate level, voters often have different opinions toward the same candidate in different places,

and the number of uncertain votes (or interval widths) for the same candidate can vary considerably

for distinct places. For instance, if the interval voting score for candidate 1 in place 1 is [2, 6], then at

least 2 and at most 6 voters vote candidate 1 in place 1; while candidate 1 obtains an interval voting

score of [1, 7] in place 2 , then at least 1 and at most 7 voters vote the same candidate in place 2. When

αij = 0, none of the uncertain votes is treated as approval of candidate i in place j, providing the

minimum votes vLij . Conversely, when αij = 1, all uncertain votes are viewed as approvals of candidate

i in place j, providing the upper bound of possible votes vUij . Thus, αij indicates the allocation scheme

of uncertain votes for candidate i in place j, and the adjusted number of votes is vLij + αij(v
U
ij − vLij)

after uncertain votes are reallocated. As αij represents how the uncertain votes are reallocated as

approval votes for candidate i in place j, for the same candidate i, the allocation schemes αij are

independently determined for different places j’s and αi1, αi2, and αik are independent of each other.

Additionally, the importance of place j is denoted by ωj , and the weighted score of candidate i is given

by
k
∑

j=1
ωj[v

L
ij + αij(v

U
ij − vLij)]. A preferential voting DEA model with abstentions is thus proposed as

Zi0(ε) = Max
k
∑

j=1
ωj[v

L
i0j

+ αi0j(v
U
i0j

− vLi0j)]

s.t.







































k
∑

j=1
ωj[v

L
ij + αij(v

U
ij − vLij)] ≤ 1, i ∈ M (2− 1)

ωj − ωj+1 ≥ d(j, ε), j = 1, 2, · · · , k − 1 (2− 2)

ωk ≥ d(k, ε) (2− 3)

0 ≤ αij ≤ 1, i ∈ M, j ∈ K (2− 4)

(2)

The k place weights (ωk, k ∈ K) can be objectively obtained using Model (2). Then, candidate

i0’s overall score is calculated as a weighted average of the optimal interval values ([vLi0j, v
U
i0j

]). A final

ranking for all candidates can then be determined by their overall scores.

Model (2) is nonlinear. Let mij , ωjαij, as 0 ≤ αij ≤ 1, we have 0 ≤ mij ≤ ωj, then Model (2) is

transformed into linear programming Model (3) as follows:

Zi0(ε) = Max
k
∑

j=1
[ωjv

L
i0j

+mi0j(v
U
i0j

− vLi0j)]

s.t.







































k
∑

j=1
[ωjv

L
ij +mij(v

U
ij − vLij)] ≤ 1, i ∈ M (3− 1)

ωj − ωj+1 ≥ d(j, ε), j = 1, 2, · · · , k − 1 (3− 2)

ωk ≥ d(k, ε) (3− 3)

0 ≤ mij ≤ ωj, i ∈ M, j ∈ K (3− 4)

(3)

Theorem 1. For any i0 ∈ M , Zi0(ε) is a monotonically non-increasing function of ε.

Proof. For any given ε and ε′, ε′ ≥ ε ≥ 0, as d(j, ε′) = f(j)ε′ and d(j, ε) = f(j)ε, and f(j) > 0, we

have d(j, ε′) ≥ d(j, ε). Let ϕ(ε) and ϕ(ε′) be the feasible region of Model (3). Then, it implies that

ϕ(ε′) ⊆ ϕ(ε). Therefore, Zi0(ε
′) ≤ Zi0(ε). �
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Theorem 1 shows that the smaller the discrimination factor ε, the bigger the candidate’s overall

score, i.e., reducing the discrimination factor decreases the gaps among the place weights and makes

places more competitive. For a particular candidate, places with more votes tend to be assigned

heavier weights, thereby increasing the candidate’s overall score.

Corollary 1. If Zi0(ε
′) = 1, then Zi0(ε) = 1 for all ε ≤ ε′.

Proof. ε ≤ ε′ and Zi0(ε) is a monotonically non-increasing function, so Zi0(ε) ≥ Zi0(ε
′) = 1. From

Constraint (3-1), one has Zi0(ε) ≤ 1. As such Zi0(ε) = 1. �

Equivalently, for ε, ε′ ≥ 0, if Zi0(ε
′) = 1 and Zi0(ε) < 1, then ε > ε′.

Corollary 1 shows a higher discrimination factor increases the differences between place weights

and makes the places less competitive. In this case, places with relatively high votes tend to be

assigned smaller weights, thereby decreasing the candidate’s weighted score.

For any i ∈ M , let ε∗max be the largest value of ε such that Zi(ε) = 1, ε∗max = Maxi{ε
∗
i }, where

ε∗i = Max{ε|Zi(ε) = 1}.

Theorem 2. For ∀ε ∈ [0, ε∗max], there exists a candidate i0 such that Zi0(ε) ≥ Zi(ε), ∀i ∈ M .

Proof. Let ε∗i0 , ε∗max, then Zi0(ε) = 1 holds for any ε ∈ [0, ε∗max]. For any candidate i, if

ε ≤ ε∗i ≤ ε∗max, Zi(ε) = 1; if ε∗i ≤ ε ≤ ε∗max, Zi(ε) < 1.

In conclusion, Zi0(ε) ≥ Zi(ε) holds for ε ∈ [0, ε∗max]. �

If the discrimination factor ε falls within a certain range, Theorem 2 demonstrates that there must

exist a candidate who achieves the highest score, implying that Model (3) can always find a winning

candidate.

Theorem 3. ε∗max is the largest value of ε such that Model (3) is still feasible.

Proof. Without loss of generality, assume that ε∗max < ∞. We prove this theorem by contradiction.

Let ε > ε∗max, and there exists a feasible solution ω = (w1, . . . , ωk)
T to Model (3) with a discrimination

factor ε. According to the definition of ε∗max, we have Zi(ε) < 1 for all i ∈ M . The dual of primal

Model (3) is

Hi0(ε) = Min
m
∑

i=1
xi −

k
∑

j=1
yjd(j, ε)

s.t.



















































m
∑

i=1
(vLi1xi − ni1)− y1 ≥ vLi01 (4− 1)

m
∑

i=1
(vLijxi − nij) + yj−1 − yj ≥ vLi0j , j = 2, 3, · · · , k (4− 2)

(vUij − vLij)xi + nij ≥ 0, i 6= i0, i ∈ M, j ∈ K (4− 3)

(vUi0j − vLi0j)xi + ni0j ≥ vUi0j − vLi0j , j ∈ K (4− 4)

xi, yj , nij ≥ 0, i ∈ M, j ∈ K (4− 5)

(4)

From the principle of complementary slackness, the optimal solution to Model (4) is x∗1 = · · · =

x∗m = 0, which contradicts (4-1) or (4-2). This completes the proof. �

The contrapositive of Theorem 3: If there does not exist a feasible solution to Model (3), then
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the discrimination factor ε exceeds the maximum ε∗max, implying that the difference between place

weights f(j)ε∗max exceeds an upper bound.

Theorem 3 establishes an upper bound ε∗max for the discrimination factor such that a feasible

solution exists for Model (3). Model (3) will not be able to identify the best candidate if the discrimi-

nation factor exceeds ε∗max (i.e., the difference between two successive place weights exceeds a certain

threshold).

Clearly, the discrimination factor affects the place weights and ultimately influences candidates’

scores. Therefore, it is convenient to explore how sensitive place weights and the optimal choice of

the candidate are affected by the discrimination factor. Additionally, at the maximum discrimination

factor εmax, two drawbacks of the Cook and Kress DEA model can be overcome: (i) different candidates

will receive distinct scores and (ii) unified place weights will be derived for all candidates. Thus, a

preferential voting model with abstentions is introduced below to maximize the discrimination factor:

Max ε

s.t.



















































k
∑

j=1
[ωjv

L
ij +mij(v

U
ij − vLij)] ≤ 1, i ∈ M (5− 1)

ωj − ωj+1 − d(j, ε) ≥ 0, j = 1, 2, · · · , k − 1 (5− 2)

ωk − d(k, ε) ≥ 0 (5− 3)

0 ≤ mij ≤ ωj, i ∈ M, j ∈ K (5− 4)

ωj, ε ≥ 0, j ∈ K (5− 5)

(5)

Theorem 4. For an optimal solution to Model (5), at least one of the constraints in (5-1) is

binding and holds as an equality.

Proof. According to Theorem 3, the optimal objective value of Model (5) is ε∗max, which satisfies

all the constraints. Assume that
k
∑

j=1
[ωjv

L
ij +mij(v

U
ij − vLij)] < 1 holds for all i ∈ M under the optimal

solution to Model (5), its dual model is given as

Min
m
∑

i=1
xi

s.t.























































m
∑

i=1
(vLi1xi − ni1)− y1 ≥ 0 (6− 1)

m
∑

i=1
(vLijxi − nij) + yj−1 − yj ≥ 0, j = 2, 3, · · · , k (6− 2)

(vUij − vLij)xi + nij ≥ 0, i ∈ M, j ∈ K (6− 3)
k
∑

j=1
yj ≥ 1, j = 2, 3, · · · , k (6− 4)

xi, yj , nij ≥ 0, i ∈ M, j ∈ K (6− 5)

(6)

Based on the principle of complementary slackness, the optimal solution to Model (6) is x∗1 =

· · · = x∗m = 0. Then, either (6-1) or (6-2) in Model (6) is violated. Therefore, there exists i0 such that
k
∑

j=1
[ωjv

L
i0j

+mi0j(v
U
i0j

− vLi0j)] = 1. �
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Theorem 4 indicates that the optimal discrimination factor guarantees the existence of a candidate

with the highest score in a voting system with abstentions.

Theorem 5. Under the optimal solution to Model (5), all the constraints in (5-2) and (5-3) are

binding.

Proof. Denote Model (5)’s optimal solution by

(ω∗
1 , . . . , ω

∗
k,m

∗
11, . . . ,m

∗
m1, . . . ,m

∗
1j , . . . ,m

∗
mj , . . . ,m

∗
1k, . . . ,m

∗
mk, ε

∗
max)

T .

Let ω∗ = (ω∗
1, . . . , ω

∗
k)

T , we shall prove this theorem by contradiction. Suppose that ω∗
s − ω∗

s+1 −

d(s, ε∗max) = Γ > 0 for some s. Define

ω
′

j =







ω∗
j − Γ, j = 1, 2, · · · , s

ω∗
j , j = s+ 1, · · · , k

Since mij = ωjαij and 0 ≤ αij ≤ 1, one has

m
′

ij =







m∗
ij − α∗

ijΓ, j = 1, 2, · · · , s

m∗
ij, j = s+ 1, · · · , k

Let I0 = {i|
k
∑

j=1
[ω∗

j v
L
ij +m∗

ij(v
U
ij − vLij)] = 1} and, without loss of generality, assume that vUij > 0 for

all i ∈ I0. For ∀i ∈ I0, if i ∈ {i|vLij 6= 0}, we have

k
∑

j=1

[ω′
jv

L
ij +m′

ij(v
U
ij − vLij)]

<
k

∑

j=1

[ω∗
j v

L
ij +m∗

ij(v
U
ij − vLij)] = 1 (7)

If there exists at least an i ∈ {i|vLij = 0, i ∈ I0}, then there must exist one j0 such that m∗
ij0

=

ω∗
j0
α∗
ij0

6= 0 and

• if j0 ∈ {1, 2, . . . , s}, then m′
ij0

= (ω∗
j0
− Γ)α∗

ij0
6= 0.

• if j0 ∈ {s + 1, . . . , k}, for m∗
ij0

= ω∗
j0
α∗
ij0

> 0, then ω∗
j0

> 0. In the meantime, as ω∗
s − ω∗

s+1 −

d(s, ε∗max) = Γ > 0, then ω∗
j ≥ Γ for j ∈ {1, 2, . . . , s}. Therefore, there must exist a j1 such that

ω∗
j1

> Γ for j1 ∈ {1, 2, . . . , s − 1}. Thus we have m′
ij1

= (ω∗
j1
− Γ)α∗

ij1
6= 0.

In sum, there must exist one j such that m′
ij = (ω∗

j − Γ)α∗
ij 6= 0 for j ∈ {1, 2, . . . , s}. Clearly,

k
∑

j=1

[ω′
jv

L
ij +m′

ij(v
U
ij − vLij)]

=

s
∑

j=1

[ω′
jv

L
ij +m′

ij(v
U
ij − vLij)] +

k
∑

j=s+1

[ω∗
j v

L
ij +m∗

ij(v
U
ij − vLij)]

<

k
∑

j=1

[ω∗
j v

L
ij +m∗

ij(v
U
ij − vLij)] = 1 (8)

9



From Eqs. (7) and (8), if ∀i ∈ I0, we have

k
∑

j=1

[ω′
jv

L
ij +m′

ij(v
U
ij − vLij)]

<

k
∑

j=1

[ω∗
j v

L
ij +m∗

ij(v
U
ij − vLij)] = 1 (9)

If ∀i /∈ I0, we have

k
∑

j=1

[ω′
jv

L
ij +m′

ij(v
U
ij − vLij)]

<
k

∑

j=1

[ω∗
j v

L
ij +m∗

ij(v
U
ij − vLij)] < 1 (10)

ω′
j − ω′

j+1 − d(j, ε∗max) ≥ 0, and ω′
s − ω′

s+1 − d(j, ε∗max) = 0.

Thus, (ω′
1, . . . , ω

′
k,m

′
11, . . . ,m

′
m1, . . . ,m

′
1j , . . . ,m

′
mj , . . . ,m

′
1k, . . . ,m

′
mk)

T is also an optimal solution

to Model (5).

Consequently, from Eqs. (9) and (10), we conclude that all constraints in (5-1) are non-binding,

which contradicts Theorem 4. �

Theorem 5 demonstrates that, when the discrimination factor is maximized, the place weight

differences reach the lower bound of the discrimination intensity function. In this case, different

candidates receive distinct scores. Thus, Model (6) can be viewed as an effective evaluation model for

ranking candidates.

4. A moderator-involved-consensus preferential voting model with abstentions

Section 3 extends Cook and Kress’s preferential voting DEA model (1990) to allow for abstentions

by assuming interval values for candidates’ raw votes. The model assumes that each voter casts his/her

ballot on his/her own consideration without external influences. However, in many elections around

the globe nowadays, it is typical that influential opinion leaders publish their preferences on different

candidates and try to influence the voters’ decision. These opinion leaders usually represent certain

interests and are often knowledgeable about the issues at hand. They may exploit their resources to

launch campaigns on different media to support their preferred candidate and undermine competitors

before the voters go to the poll to cast their ballots. It is understandable that their purpose is to

influence the voters’ opinion so that their preferred candidate can receive the best voting score. In

this section, we shall extend the model in Section 3 by explicitly considering the role of opinion leaders

in preferential voting. This idea is consistent with the notion of leader’s role in opinion dynamics in

(Dong et al., 2017). Following the terminology used in (Ben-Arieh and Easton, 2007; Herrera-Viedma

et al., 2007; Gong et al., 2015a,b), opinion leaders are referred to as a moderator hereafter (Palomares

et al., 2014). From the moderator’s perspective, he/she expects that the voters consider both their
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individual and his/her opinions. His/her objective is to reach a consensus between the voters and

him/herself so that his/her expected ranking can be realized or approximated as much as possible

through the voting process. In the proposed MICPV model, the objective is to minimize the deviation

between the moderator’s expected score and the weighted voting score for each candidate subject to

various constraints on place weights.

In the proposed model, it is assumed that the moderator’s expected score for candidate i is oi,

i ∈ M , and the interval value of the votes for candidate i in place j is [vLij , v
U
ij ], i ∈ M, j ∈ K. For

instance, o1 = 7 means the moderator’s expected score for candidate 1 is 7. Similar to Section 3, vLij

and vUij denote the lower and upper bounds of votes for candidate i in place j and the interval [vLij , v
U
ij ]

can be transformed into a crisp number vLij+αij(v
U
ij−vLij), where 0 ≤ αij ≤ 1 and can be interpreted in

the same way as before. Under the influence of the moderator, the voting result tends to come closer to

the expected score of the moderator. The closer the candidate i’s overall weighted score Si(ωj , αij) =
k
∑

j=1
ωj[v

L
ij + αij(v

U
ij − vLij)] to oi (i.e., the deviation di(ωj , αij) = |

k
∑

j=1
ωj[v

L
ij + αij(v

U
ij − vLij)] − oi| is

small), the better the voting result obtained by the moderator in terms of his/her expectation.

In other words, the moderator can adjust the importance (or weights) of the places to influence

the voters, thereby making the voting score
k
∑

j=1
ωj[v

L
ij + αij(v

U
ij − vLij)] approach oi, and achieving the

best voting consensus. Therefore, an MICPV model with abstentions is formulated as

Min W (ε) =
m
∑

i=1
|

k
∑

j=1
ωj[v

L
ij + αij(v

U
ij − vLij)]− oi|

s.t.



















ωj − ωj+1 ≥ d(j, ε), j = 1, . . . , k − 1 (11 − 1)

ωk ≥ d(k, ε) (11 − 2)

0 ≤ αij ≤ 1, i ∈ M, j ∈ K (11 − 3)

(11)

In Model (11), the objective function can be interpreted as the overall consensus degree between

the moderator’s expectation and all voters’ aggregate voting scores for all candidates. A smaller
m
∑

i=1
di(ωj , αij) corresponds to a higher consensus. The place weights ωj satisfy constraints (11-1)–(11-

3).

Let mij , ωjαij . As 0 ≤ αij ≤ 1, we have 0 ≤ mij ≤ ωj. Let ai ,
1
2{[|

k
∑

j=1
[ωjv

L
ij +mij(v

U
ij − vLij)]−

oi|+(
k
∑

j=1
[ωjv

L
ij+mij(v

U
ij−vLij)]−oi)]}, and bi ,

1
2{[|

k
∑

j=1
[ωjv

L
ij+mij(v

U
ij−vLij)]−oi|−(

k
∑

j=1
[ωjv

L
ij+mij(v

U
ij−

vLij)]−oi)]}. One has ai+ bi = |
k
∑

j=1
[ωjv

L
ij +mij(v

U
ij −vLij)]−oi|, ai− bi =

k
∑

j=1
[ωjv

L
ij +mij(v

U
ij −vLij)]−oi.

11



Thus, Model (11) is equivalent to the following linear programming model:

Min W (ε) =
m
∑

i=1
(ai + bi)

s.t.



















































k
∑

j=1
[ωjv

L
ij +mij(v

U
ij − vLij)]− ai + bi = oi, i ∈ M (12− 1)

ωj − ωj+1 ≥ d(j, ε), j = 1, . . . , k − 1 (12− 2)

ωk ≥ d(k, ε) (12− 3)

ωj ≥ mij, i ∈ M, j ∈ K (12− 4)

ai, bi,mij ≥ 0, i ∈ M, j ∈ K (12− 5)

(12)

Theorem 6. W (ε) is a monotonically non-decreasing function of ε.

Proof. For any given ε and ε′, ε′ ≥ ε ≥ 0, let ϕ(ε), ϕ(ε′), respectively, be the feasible region of

Model (12) corresponding to ε and ε′, it is clear ϕ(ε′) ⊆ ϕ(ε). Thus, W (ε′) ≥ W (ε). �

Recall that the smaller the objective function in Model (12), the higher the consensus level. The-

orem 6 shows that the consensus level increases as the discrimination factor decreases. This article

assumes that d(j, ε) = f(j)ε, where f(j) is a nonnegative constant. So, a reduction in ε leads to

smaller gaps among the place weights. Therefore, the consensus level can be improved by reducing

ε or the differences between place weights. Since ε affects the consensus level, the following three

scenarios are considered for the place weight constraints in the MICPV model with abstentions.

1. Nonnegative place weight constraints (ωj ≥ 0, ε = 0, j ∈ K);

2. Lower bound place weight constraints (ωj ≥ ε, ε > 0, j ∈ K) and;

3. Descending place weight constraints (ωj − ωj+1 ≥ d(j, ε), j = 1, . . . , k − 1, ωk ≥ d(k, ε)).

Specific properties of these three cases and their dual models are established next in Sections

4.1–4.3.

4.1. An MICPV Model with Abstentions under Nonnegative Place Weight Constraints

With nonnegative place weight constraints, Model (11) can be simplified to

Min
m
∑

i=1
|

k
∑

j=1
ωj[v

L
ij + αij(v

U
ij − vLij)]− oi|

s.t.







ωj ≥ 0, j ∈ K

0 ≤ αij ≤ 1, i ∈ M, j ∈ K

(13)

Let mij , ωjαij . Model (13) is converted to an equivalent linear programming Model (14):

Min
m
∑

i=1
(ai + bi)

s.t.























k
∑

j=1
[ωjv

L
ij +mij(v

U
ij − vLij)]− ai + bi = oi, i ∈ M

ωj ≥ mij, i ∈ M, j ∈ K

ai, bi, ωj ,mij ≥ 0, i ∈ M, j ∈ K

(14)
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The dual of Model (14) is

Max
m
∑

i=1
oiyi

s.t.



































m
∑

i=1
(vLijyi + nij) ≤ 0, j ∈ K

(vUij − vLij)yi − nij ≤ 0, i ∈ M, j ∈ K

−1 ≤ yi ≤ 1, i ∈ M

nij ≥ 0, i ∈ M, j ∈ K

(15)

The following theorems or properties are mainly derived by the principle of complementary slack-

ness from the primal-dual linear programming theory. They are useful in our economic significance

interpretations of MICPV models with abstentions in Section 5.

Corollary 2. When ε = 0,
m
∑

i=1
{

k
∑

j=1
[ωjv

L
ij +mij(v

U
ij − vLij)]}yi = 0.

Proof. It is understandable that each place weight satisfies ωj > 0. According to the principle of

complementary slackness,
m
∑

i=1
(vLijyi + nij) = 0 holds for ∀j ∈ K. Thus,

m
∑

i=1

k
∑

j=1

(ωjv
L
ijyi + ωjnij) = 0 (16)

Denote A1 , {(i, j)|αij = 0}, A2 , {(i, j)|αij = 1}, and A3 , {(i, j)|0 < αij < 1}. Obviously,

A1 ∪A2 ∪A3 = M ×K.

• When (i, j) ∈ A1. As mij = 0 and ωj − mij > 0, we have nij = 0. On the other hand,

mij(v
U
ij − vLij)yi = 0, so mij(v

U
ij − vLij)yi − ωjnij = 0.

• When (i, j) ∈ A2. Since mij = ωj > 0, we have (vUij − vLij)yi − nij = 0. Therefore, mij[(v
U
ij −

vLij)yi − nij] = mij(v
U
ij − vLij)yi −mijnij = mij(v

U
ij − vLij)yi − ωjnij = 0.

• When (i, j) ∈ A3. As mij = ωjαij > 0 and ωj − mij > 0, we have (vUij − vLij)yi − nij = 0 and

nij = 0. Thus, (vUij − vLij)yi = 0. As such, one has mij(v
U
ij − vLij)yi − ωjnij = 0.

In summary, mij(v
U
ij − vLij)yi − ωjnij = 0 holds for ∀i ∈ M, j ∈ K. Therefore,

m
∑

i=1

k
∑

j=1

[mij(v
U
ij − vLij)yi − ωjnij] = 0 (17)

From Eqs. (16) and (17), we have
m
∑

i=1

k
∑

j=1
[ωjv

L
ijyi + mij(v

U
ij − vLij)yi] = 0. Thus,

m
∑

i=1
{

k
∑

j=1
[ωjv

L
ij +

mij(v
U
ij − vLij)]}yi = 0. �

Let I0 , {i|oi =
k
∑

j=1
[ωjv

L
ij + mij(v

U
ij − vLij)]}, I1 , {i|oi >

k
∑

j=1
[ωjv

L
ij + mij(v

U
ij − vLij)]}, and I2 ,

{i|oi <
k
∑

j=1
[ωjv

L
ij +mij(v

U
ij − vLij)]}, then I0 ∪ I1 ∪ I2 = M .

Corollary 3. For i ∈ I1, yi = 1; for i ∈ I2, yi = −1.
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Proof. In Model (14), if i ∈ I1 (i.e., oi >
k
∑

j=1
[ωjv

L
ij +mij(v

U
ij − vLij)]), ai = 0 and bi > 0. According

to the complementary slackness property, yi = 1. If i ∈ I2, we can similarly show that yi = −1. �

Theorem 7. Let w∗
j ,m

∗
ij be the optimal solution to Model (14), if I0 = ∅ then

∑

i∈I1

k
∑

j=1
[ω∗

j v
L
ij +

m∗
ij(v

U
ij − vLij)] =

∑

i∈I2

k
∑

j=1
[ω∗

j v
L
ij +m∗

ij(v
U
ij − vLij)].

Proof. If I0 = ∅, I1 ∪ I2 = M . According to Corollary 2,
m
∑

i=1
{

k
∑

j=1
[ωjv

L
ij + mij(v

U
ij − vLij)]}yi =

∑

i∈I1

{
k
∑

j=1
[ωjv

L
ij+mij(v

U
ij−vLij)]}yi+

∑

i∈I2

{
k
∑

j=1
[ωjv

L
ij+mij(v

U
ij−vLij)]}yi = 0. As per Corollary 3, when i ∈ I1,

yi = 1; and when i ∈ I2, yi = −1. So
∑

i∈I1

k
∑

j=1
[ω∗

j v
L
ij +m∗

ij(v
U
ij − vLij)] =

∑

i∈I2

k
∑

j=1
[ω∗

j v
L
ij +m∗

ij(v
U
ij − vLij)]. �

Theorem 7 implies that, if the moderator’s opinion always differs from the candidates’ aggregate

voting scores, then the candidates’ uncertain scores will be evenly split into two parts, where the sum

of the underachieved scores obtained by all candidates in I1 is equal to that of the overachieved scores

in I2.

Theorem 8. Let ω∗
j ,m

∗
ij be the optimal solution to Model (14). Dual Model (15) is equivalent

to:

Max
m
∑

i=1
{oi −

k
∑

j=1
[ω∗

j v
L
ij +m∗

ij(v
U
ij − vLij)]}yi

s.t.



































m
∑

i=1
(vLijyi + nij) ≤ 0, j ∈ K

(vUij − vLij)yi − nij ≤ 0, i ∈ M, j ∈ K

−1 ≤ yi ≤ 1, i ∈ M

nij ≥ 0, i ∈ M, j ∈ K

(18)

Proof. From Corollary 2, we have
m
∑

i=1
{

k
∑

j=1
[ω∗

j v
L
ij +m∗

ij(v
U
ij − vLij)]}yi = 0. �

From the primal and dual models (14) and (18), one can prove that the voting intervals incorpo-

rating abstentions have the following three properties.

Let I+ , {i|yi > 0}, I− , {i|yi < 0}, and I0 , {i|yi = 0}.

Property 1. If i ∈ I+, αij = 1.

Proof. If i ∈ I+, yi > 0. If vUij = vLij, v
L
ij + αij(v

U
ij − vLij) ≡ vLij, which implies that there are no

abstentions for placing candidate i at j, in this case, it is irrelevant what value αij assumes and we can

simply let αij = 1. Otherwise, as (vUij − vLij)yi − nij ≤ 0, one has nij > 0. According to the principle

of complementary slackness, we have ωj −mij = 0 and αij = 1. �

Property 1 indicates that when yi > 0, all abstentions of candidate i in place j are treated as

approval votes.

Property 2. If i ∈ I−, αij = 0.

Proof. When i ∈ I− (i.e., yi < 0), we have (vUij − vLij)yi − nij < 0. According to the principle of

complementary slackness, we have mij = 0 and αij = 0. �

14



Property 2 implies that, when yi < 0, none of the abstentions of candidate i in place j is treated

as approval votes.

Property 3. If i ∈ I0, ai = bi = 0 and 0 < αij < 1.

Proof. If i ∈ I0, yi = 0. Since −1 < yi < 1, according to the principle of complementary slackness,

we have ai = bi = 0. As such, 0 < αij < 1. �

Property 3 shows that, if yi = 0, a complete consensus between the moderator’s expectation and

the aggregate score for candidate i can be achieved by properly allocating all uncertain votes (i.e.,

adjusting the value of αij).

4.2. An MICPV Model with Abstentions under Lower Bound Place Weight Constraints

Under lower bound place weight constraints, Model (11) can be simplified to

Min
m
∑

i=1
|

k
∑

j=1
ωj[v

L
ij + αij(v

U
ij − vLij)]− oi|

s.t.







ωj ≥ ε, j ∈ K

0 ≤ αij ≤ 1, i ∈ M, j ∈ K

(19)

Let mij , ωjαij , Model (19) is equivalent to the linear programming Model (20):

Min
m
∑

i=1
(ai + bi)

s.t.







































k
∑

j=1
[ωjv

L
ij +mij(v

U
ij − vLij)]− ai + bi = oi, i ∈ M

ωj ≥ mij, i ∈ M, j ∈ K

ωj ≥ ε, j ∈ K

ai, bi,mij ≥ 0, i ∈ M, j ∈ K

(20)

Let zj , ωj − ε, Model (20) can be transformed to

Min
m
∑

i=1
(ai + bi)

s.t.























k
∑

j=1
[zjv

L
ij +mij(v

U
ij − vLij)]− ai + bi = oi − ε

k
∑

j=1
vLij , i ∈ M

zj −mij ≥ −ε, i ∈ M, j ∈ K

ai, bi, zj ,mij ≥ 0, i ∈ M, j ∈ K

(21)

The dual of Model (21) is

Max
m
∑

i=1
(oi − ε

k
∑

j=1
vLij)hi − ε

m
∑

i=1

k
∑

j=1
pij

s.t.



































m
∑

i=1
(vLijhi + pij) ≤ 0, j ∈ K

(vUij − vLij)hi − pij ≤ 0, i ∈ M, j ∈ K

−1 ≤ hi ≤ 1, i ∈ M

pij ≥ 0, i ∈ M, j ∈ K

(22)
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The following results are derived based on the principle of complementary slackness in the primal-

dual linear programming theory.

Corollary 4. If ε > 0,
m
∑

i=1
{

k
∑

j=1
[ωjv

L
ij +mij(v

U
ij − vLij)]}hi =

m
∑

i=1

k
∑

j=1
εvLijhi +

m
∑

i=1

k
∑

j=1
εpij .

Proof. It is clear that the place weights satisfy ωj > 0 for all j ∈ K. According to complementary

slackness,
m
∑

i=1
(vLijhi + pij) = 0 holds for ∀j ∈ K. As such, zj

m
∑

i=1
(vLijhi + pij) =

m
∑

i=1
(zjv

L
ijhi + zjpij) = 0.

Thus,

m
∑

i=1

k
∑

j=1

(zjv
L
ijhi + zjpij) = 0 (23)

Let A1 , {(i, j)|αij = 0}, A2 , {(i, j)|αij = 1}, and A3 , {(i, j)|0 < αij < 1}. Obviously,

A1 ∪A2 ∪A3 = M ×K.

• (i, j) ∈ A1: In this case, mij = ωjαij = 0 and zj − mij > −ε, we have pij = 0. Thus,

mij(v
U
ij − vLij)hi − (zj + ε)pij = 0 holds.

• (i, j) ∈ A2: Here mij = ωj = zj + ε > 0, we have (vUij − vLij)hi − pij = 0. Thus, mij(v
U
ij − vLij)hi −

(zj + ε)ωjpij = 0 holds.

• (i, j) ∈ A3: As mij = ωjαij > 0 and zj −mij > −ε, we have (vUij − vLij)hi − pij = 0 and pij = 0,

implying that (vUij − vLij)hi = 0. Then, mij(v
U
ij − vLij)hi − (zj + ε)pij = 0 holds.

Combining the aforesaid three cases, mij(v
U
ij − vLij)hi − (zj + ε)pij = 0 holds for ∀i ∈ M, j ∈ K.

Therefore, we have

m
∑

i=1

k
∑

j=1

[mij(v
U
ij − vLij)hi − (zj + ε)pij ] = 0 (24)

Adding Eqs. (23) and (24), we have
m
∑

i=1

k
∑

j=1
[zjv

L
ijhi + mij(v

U
ij − vLij)hi] =

m
∑

i=1

k
∑

j=1
εpij . Plugging

zj = ωj − ε into this equation and rearranging the terms, one has
m
∑

i=1
{

k
∑

j=1
[ωjv

L
ij +mij(v

U
ij − vLij)]}hi =

m
∑

i=1

k
∑

j=1
εvLijhi +

m
∑

i=1

k
∑

j=1
εpij . Corollary 4 is thus proved. �

Similarly, let I0 , {i|oi =
k
∑

j=1
[ωjv

L
ij +mij(v

U
ij − vLij)]}, I1 , {i|oi >

k
∑

j=1
[ωjv

L
ij +mij(v

U
ij − vLij)]}, and

I2 , {i|oi <
k
∑

j=1
[ωjv

L
ij +mij(v

U
ij − vLij)]}, then I0 ∪ I1 ∪ I2 = M .

Corollary 5. If i ∈ I1, hi = 1 and if i ∈ I2, hi = −1.

Proof. In Model (20), if i ∈ I1 (i.e., oi >
k
∑

j=1
[ωjv

L
ij + mij(v

U
ij − vLij)]) we have ai = 0 and bi > 0.

Based on the complementary slackness property, hi = 1. Similarly, if i ∈ I2, hi = −1. �

16



Theorem 9. Let z∗j ,m
∗
ij be the optimal solution to Model (21). Dual Model (22) is equivalent to:

Max
m
∑

i=1
{oi −

k
∑

j=1
[ω∗

j v
L
ij +m∗

ij(v
U
ij − vLij)]}hi

s.t.



































m
∑

i=1
(vLijhi + pij) ≤ 0, j ∈ K

(vUij − vLij)hi − pij ≤ 0, i ∈ M, j ∈ K

−1 ≤ hi ≤ 1, i ∈ M

pij ≥ 0, i ∈ M, j ∈ K

(25)

where ω∗
j = z∗j + ε is the optimal solution to Model (21).

Proof. From Corollary 4, we have
m
∑

i=1
{

k
∑

j=1
[ω∗

j v
L
ij +m∗

ij(v
U
ij − vLij)]}hi =

m
∑

i=1

k
∑

j=1
εvLijhi +

m
∑

i=1

k
∑

j=1
εpij .

�

4.3. An MICPV Model with Abstentions under Descending Place Weight Constraints

This subsection presents an MICPV model with abstentions and descending place weight con-

straints ωj − ωj+1 ≥ d(j, ε).

In this case, Model (11) is equivalent to Model (12) and the dual of Model (12) is:

Max
m
∑

i=1
oidi +

k
∑

j=1
d(j, ε)xj

s.t.



















































m
∑

i=1
(vLi1di + qi1) + x1 ≤ 0 (26− 1)

m
∑

i=1
(vLijdi + qij)− xj−1 + xj ≤ 0, j = 2, . . . , k (26− 2)

(vUij − vLij)di − qij ≤ 0, i ∈ M, j ∈ K (26− 3)

−1 ≤ di ≤ 1, i ∈ M (26− 4)

qij, xj ≥ 0, i ∈ M, j ∈ K (26− 5)

(26)

In a similar fashion, as per complementary slackness in the primal-dual linear programming theory,

we obtain the following results.

Corollary 6.
m
∑

i=1

k
∑

j=1
[ωjv

L
ij +mij(v

U
ij − vLij)]di +

k
∑

j=1
d(j, ε)xj = 0.

Proof. Similarly, the place weights satisfy ωj > 0, j ∈ K. By the principle of complementary

slackness,
m
∑

i=1
(vLi1di + qi1) + x1 = 0 and

m
∑

i=1
(vLijdi + qij)− xj−1 + xj = 0, j = 2, 3, . . . , k. Then, we have

m
∑

i=1
(vLi1di + qi1)ω1 + x1ω1 = 0 and

m
∑

i=1
(vLijdi + qij)ωj − xj−1ωj + xjωj = 0, j = 2, 3, . . . , k. Thus,

m
∑

i=1

k
∑

j=1

(vLijdi + qij)ωj +

k−1
∑

j=1

(ωj − ωj+1)xj + ωkxk = 0 (27)

Let A1 , {(i, j)|αij = 0}, A2 , {(i, j)|αij = 1}, and A3 , {(i, j)|0 < αij < 1}. Obviously,

A1 ∪A2 ∪A3 = M ×K.

• (i, j) ∈ A1: In this case, mij = 0 and ωj−mij > 0, we have qij = 0. Thus,mij(v
U
ij−vLij)di−ωjqij =

0.
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• (i, j) ∈ A2: If mij = ωj > 0, we have (vUij − vLij)di − qij = 0. Thus, mij(v
U
ij − vLij)di − ωjqij = 0.

• (i, j) ∈ A3: Here, as mij = ωjαij > 0 and ωj − mij > 0, we have (vUij − vLij)di − qij = 0 and

qij = 0, meaning that (vUij − vLij)di = 0. Thus, mij(v
U
ij − vLij)di − ωjqij = 0.

In sum, mij(v
U
ij − vLij)di − ωjqij = 0 holds for ∀i ∈ M, j ∈ K. Therefore,

m
∑

i=1

k
∑

j=1

[mij(v
U
ij − vLij)di − ωjqij] = 0 (28)

Adding Eqs. (27) and (28), we have

m
∑

i=1

k
∑

j=1

[ωjv
L
ijdi +mij(v

U
ij − vLij)di] +

k−1
∑

j=1

(ωj − ωj+1)xj + ωkxk = 0 (29)

• If d(j, ε) = 0, in this case, ωj − ωj+1 > 0, j = 1, 2, · · · , k − 1 and ωk > 0, we have xj = 0. Thus,

k−1
∑

j=1

(ωj − ωj+1)xj + ωkxk =

k
∑

j=1

d(j, ε)xj (30)

• If d(j, ε) > 0, denote J1 , {j|xj = 0, j 6= k} and J2 , {j|xj > 0, j 6= k}.

– j ∈ J1: As xj = 0, we have
∑

j∈J1

(ωj − ωj+1)xj =
∑

j∈J1

d(j, ε)xj .

– j ∈ J2: Since xj > 0, we have ωj − ωj+1 = d(j, ε) and
∑

j∈J2

(ωj − ωj+1)xj =
∑

j∈J2

d(j, ε)xj .

Thus, we have
∑

j∈J1

(ωj − ωj+1)xj +
∑

j∈J2

(ωj − ωj+1)xj =
∑

j∈J1

d(j, ε)xj +
∑

j∈J2

d(j, ε)xj . Therefore,

k−1
∑

j=1

(ωj − ωj+1)xj =

k−1
∑

j=1

d(j, ε)xj (31)

We have two cases for xk:

– if xk = 0, we have ωkxk = 0 and d(k, ε)xk = 0, so ωkxk = d(k, ε)xk ; and

– if xk > 0, we have ωk = d(k, ε), so ωkxk = d(k, ε)xk .

Therefore,

ωkxk = d(k, ε)xk (32)

Adding Eqs. (31) and (32), we have
k−1
∑

j=1
(ωj − ωj+1)xj + ωkxk =

k−1
∑

j=1
d(j, ε)xj + d(k, ε)xk , that is,

k−1
∑

j=1

(ωj − ωj+1)xj + ωkxk =

k
∑

j=1

d(j, ε)xj , if d(j, ε) > 0 (33)

Combining Eqs. (30) and (33), we have

k−1
∑

j=1

(ωj − ωj+1)xj + ωkxk =

k
∑

j=1

d(j, ε)xj , if d(j, ε) ≥ 0 (34)
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Consequently, plugging (34) into (29) yields
m
∑

i=1

k
∑

j=1
[ωjv

L
ij +mij(v

U
ij − vLij)]di +

k
∑

j=1
d(j, ε)xj = 0. �

Let I0 , {i|oi =
k
∑

j=1
[ωjv

L
ij + mij(v

U
ij − vLij)]}, I1 , {i|oi >

k
∑

j=1
[ωjv

L
ij + mij(v

U
ij − vLij)]}, and I2 ,

{i|oi <
k
∑

j=1
[ωjv

L
ij +mij(v

U
ij − vLij)]}, then I0 ∪ I1 ∪ I2 = M .

Corollary 7. If i ∈ I1, di = 1; if i ∈ I2, di = −1.

Proof. In Model (12), if i ∈ I1 (i.e., oi >
k
∑

j=1
[ωjv

L
ij +mij(v

U
ij − vLij)]), we have ai = 0 and bi > 0.

According to the complementary slackness property, di = 1. If i ∈ I2, we prove that di = −1 in a

similar fashion. �

Theorem 10. Let ω∗
j , m∗

ij be the optimal solution to Model (12). The dual Model (26) is

equivalent to:

Max
m
∑

i=1
{oi −

k
∑

j=1
[ω∗

j v
L
ij +m∗

ij(v
U
ij − vLij)]}di

s.t.



















































m
∑

i=1
(vLi1di + qi1) + x1 ≤ 0 (35− 1)

m
∑

i=1
(vLijdi + qij)− xj−1 + xj ≤ 0, j = 2, . . . , k (35− 2)

(vUij − vLij)di − qij ≤ 0, i ∈ M, j ∈ K (35− 3)

−1 ≤ di ≤ 1, i ∈ M (35− 4)

qij, xj ≥ 0, i ∈ M, j ∈ K (35− 5)

(35)

Proof. From Corollary 6, we have
m
∑

i=1

k
∑

j=1
[ω∗

j v
L
ij +m∗

ij(v
U
ij − vLij)]di +

k
∑

j=1
d(j, ε)xj = 0. �

5. Economic significance of MICPV models with abstentions

This section focuses on the economic significance of Model (14), its dual Model (15) and its

equivalence (18). The other two scenarios of the place weight constraints in the MICPV model given

in Section 4.2 and 4.3 can be interpreted in a similar fashion.

(5.1) Economic significance of the preferential voting models with abstentions

• Without considering the moderator, the proposed preferential voting DEA model with ab-

stentions focuses on obtaining the optimal aggregated scores for candidates under different

constraints on place weights.

• By incorporating the moderator, the MICPV model with abstentions devotes to achieving

the overall consensus between the moderator’s expectation and all candidates’ aggregate

voting scores. At the same time, the model can also help to rank the candidates and select

a winner.

(5.2) Economic significance of dual variables
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• The dual variables in Model (15) are considered as the marginal value of the

moderator’s opinion.

The objective function of Model (15), W =
m
∑

i=1
oiyi can be interpreted as the overall optimal

value of the moderator’s opinions on all candidates. As yi =
∂W
∂oi

, it can be considered as

the marginal value of the moderator’s opinion on candidate i. This formulation reflects

that the value of the moderator is accomplished by influencing voters’ preferences. In other

words, the presence of the moderator is able to influence the weighted average voting scores

obtained by the candidates. Therefore, yi in (15) characterizes the marginal value of the

moderator’s opinion in changing candidate i’s score, and the objective function in (15)

gauges the overall influence of the moderator’s opinion on all candidates’ votes.

• The dual variables in Model (18) can be further interpreted as the marginal

utility of the moderator’s influence on candidate i’s score.

Theorem 8 establishes the equivalence of Model (15) and Model (18), so the optimal solution

ω∗
j , y

∗
i , m

∗
ij , α

∗
ij , i ∈ M , j ∈ K satisfy

m
∑

i=1

oiy
∗
i =

m
∑

i=1

{oi −
k

∑

j=1

[ω∗
j v

L
ij +m∗

ij(v
U
ij − vLij)]}y

∗
i

=

m
∑

i=1

{oi −
k

∑

j=1

ω∗
j [v

L
ij + α∗

ij(v
U
ij − vLij)]}y

∗
i

where vLij+α∗
ij(v

U
ij−vLij) denotes the optimal votes of candidate i in place j after accounting

for abstentions, and Si(ω
∗
j , α

∗
ij) =

k
∑

j=1
ω∗
j [v

L
ij+α∗

ij(v
U
ij−vLij)] represents candidate i’s optimal

weighted voting score for all places. Mathematically, oi−
k
∑

j=1
ω∗
j [v

L
ij+α∗

ij(v
U
ij−vLij)] measures

the deviation between the moderator’s expectation for candidate i and the candidate’s per-

formance in the voting, and yi is a partial derivative of W , yi =
∂W

∂{oi−
k∑

j=1

[ωjv
L
ij+mij(vUij−vLij)]}

.

Consequently, yi can also be interpreted as the marginal utility of the moderator’s influence

on the candidate i’s score Si(ωj, αij), and
m
∑

i=1
{oi−

k
∑

j=1
[ω∗

j v
L
ij +m∗

ij(v
U
ij − vLij)]}y

∗
i as the total

utility of the moderator’s influence on all candidates. Next we shall discuss the implications

of this influence on different categories of candidates.

(5.3) A partition of candidates based on the moderator’s influence over the voters
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Since
m
∑

i=1
oiyi =

m
∑

i=1
{oi −

k
∑

j=1
[ωjv

L
ij +mij(v

U
ij − vLij)]}yi, we have

m
∑

i=1

oiyi

=
∑

i∈I0

{oi −
k

∑

j=1

[ωjv
L
ij +mij(v

U
ij − vLij)]}yi (36 − 1)

+
∑

i∈I1

{oi −
k

∑

j=1

[ωjv
L
ij +mij(v

U
ij − vLij)]}yi (36 − 2)

+
∑

i∈I2

{oi −
k

∑

j=1

[ωjv
L
ij +mij(v

U
ij − vLij)]}yi (36 − 3) (36)

Let I0 = {i|oi ,
k
∑

j=1
[ωjv

L
ij + mij(v

U
ij − vLij)]}, I1 , {i|oi >

k
∑

j=1
[ωjv

L
ij + mij(v

U
ij − vLij)]}, and

I2 , {i|oi <
k
∑

j=1
[ωjv

L
ij+mij(v

U
ij−vLij)]}, which are referred to as, from the moderator’s perspective,

consistent, underachieved, and overachieved candidates, respectively. Obviously, I0∪I1∪I2 = M .

(i) For an underachieved candidate i ∈ I1, the moderator expects that he/she should receive

more votes. When his/her uncertain votes [vLij , v
U
ij ] are accounted for, as mij = ωjαij , a

larger αij brings up his/her score
k
∑

j=1
[ωjv

L
ij + mij(v

U
ij − vLij)], thereby closing in the gap

between the moderator’s expectation and candidate i’s performance. As per Corollary 3,

yi = 1 > 0, we have αij = 1 by Property 1. This indicates that, to minimize the deviation

between oi and
k
∑

j=1
[ωjv

L
ij+mij(v

U
ij−vLij)], all abstentions casted for underachieved candidate i

should be converted to approval votes, thereby achieving maximum consensus level between

the moderator’s expectation and the weighted voting score for this underachieved candidate

i. The significance of the expression in (36 − 2) is that, to maximize the influence of the

moderator, all uncertain votes for those candidates whose voting scores underperform the

moderator’s expectations should be ascribed to approval votes.

(ii) For an overachieved candidate i ∈ I2, the moderator does not think that he/she deserves

such a high vote. In this case, if all uncertain votes [vLij, v
U
ij ] are reallocated, since mij =

ωjαij , a smaller αij brings down his/her score
k
∑

j=1
[ωjv

L
ij + mij(v

U
ij − vLij)], thereby leading

to a smaller deviation between the moderator’s opinion and the voters’ aggregate choice.

Based on Corollary 3, yi = −1 < 0, thus we have αij = 0 according to Property 2. This

indicates that, to minimize the deviation between oi and
k
∑

j=1
[ωjv

L
ij +mij(v

U
ij − vLij)], none

of the uncertain votes for overachieved candidate i should be converted to approvals. The

significance of the expression in (36 − 3) is that, to maximize the moderator’s influence

on the voting scores for candidates whose voting scores exceed expectation, none of the

abstentions should be treated as approval votes.
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(iii) For consistent candidates i ∈ I0, by properly adjusting the values of ωj and mij (or αij

indirectly), the model is able to achieve complete consensus between the moderator’s prefer-

ence and the voters’ collective choice. In this case, Model (15) helps to find the moderator’s

optimal marginal influence yi ∈ (−1, 1), i ∈ I0 and to achieve a complete accord.

Thus, Eq. (36) demonstrates that the moderator’s optimal influence over the voters can be parti-

tioned into three categories as per the difference between his/her expectation and the voting scores of

the candidates. Based on the specific category, the optimal marginal value of the moderator’s opinion

yi can be determined accordingly.

This result sheds structural insights into the role of the moderator in influencing the outcomes in a

preferential voting. The moderator can use the statistics from polls as a proxy of the voters’ collective

choice and compare this information with his/her expectations. After assessing the differences, the

moderator can devise optimal strategies to maximize his/her influence on voters: For overachieved

candidates, the moderator can launch campaigns to undermine their positions; For underachieved

candidates, the moderator has to work harder to promote them; For consistent candidates, our model

helps the moderator to find the means to maintain the balance.

6. Numerical examples

This section provides different numerical examples to illustrate how the proposed models can be

applied. First, we consider an example under the preferential voting DEA model with abstentions

without accounting for a moderator’s influence. Subsequently, various scenarios of the moderator’s

opinions are entertained to illustrate how the moderator influences the voting result differently. As

illustrated by the numerical examples below, the original optimal solutions derived from the two

models may result in fractional votes. We then employ the standard branch-and-bound method to

find integer solutions for reallocated votes.

6.1. A preferential voting DEA example with abstentions

Assume that four candidates are competing for two places in a preferential election. The number

of votes that candidate i receives for place j is denoted by vij , i ∈ M = {1, 2, 3, 4}, j ∈ K = {1, 2} as

shown in Table 1.

Table 1: A preferential voting DEA example with abstentions

Candidate i

Votes

vi1 vi2

1 [2,6] [3,8]

2 [1,4] [6,8]

3 [6,8] [0,2]

4 [0,3] [1,3]
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In Table 1, the interval value [2,6] for candidate 1 at place 1 indicates that the candidate receives

a minimum of two and a maximum of six votes placing him/her at No. 1. Other interval values can

be interpreted similarly. By assuming d(1, ε) = d(2, ε) = 0 in Model (3), the optimal solution for the

four candidates is derived as shown in Table 2 1.

Table 2: Results of the preferential voting DEA example with abstentions

Candidate i

Votes Optimal solutions Maximum objective value
Ranking

vi1 vi2 ω
∗

1 m
∗

i1 ω
∗

2 m
∗

i2 Z
∗

i

1 4.2768 6.6039 0.1149 0.0654 0.0770 0.0555 1 1

2 3.0901 7.4572 0.1121 0.0781 0.0877 0.0639 1 1

3 7.0863 1.5761 0.1274 0.0692 0.0618 0.0487 1 1

4 3 3 0.1667 0.1667 0.1389 0.1389 0.9167 2

The optimal solution in Table 2 fails to distinguish the priority of the first three candidates because

their optimal scores are all 1. To increase the discrimination power, we shall apply Model (5) next,

this helps to circumvent Model (3)’s pitfall of assigning the same score for multiple candidates. It

also overcomes another weakness of the DEA voting model: for the same place, different weights are

derived for different candidates.

Let d(j, ε) = ε. Plugging the input information in Table 1 into Model (5) yields the maximum

objective value of 0.0833.

The optimal solution leads to fractional votes for the candidates after abstentions are reallocated.

To ensure that all candidates receive integer votes, we shall employ the branch and bound method for

integer programming (Little et al., 1963). In this case, vij = vLij +αij(v
U
ij − vLij) and αij(v

U
ij − vLij) must

be integers. Because αij =
mij

wj
, we need to consider two branches vLij +

mij

wj
(vUij − vLij) 6 ⌊vij⌋ and

vLij +
mij

wj
(vUij − vLij) > ⌊vij⌋+1, where ⌊vij⌋ returns the integer part of vij . It is apparent that one and

only one of these two branches is feasible, which will be added to the original model and the other

infeasible branch will be discarded. This process is repeated for other decision variables progressively

and sometimes multiple rounds are needed for the same decision variable in order to ensure integer votes

for all candidates. Eventually, the candidates’ final weighted voting scores Si(ω
∗
j , α

∗
ij) =

k
∑

j=1
ω∗
j [v

L
ij +

α∗
ij(v

U
ij − vLij)] are obtained and shown in Table 3. Without considering external influence from any

moderator, candidate 3 arises as the winner.

Table 3: Final score of the preferential voting DEA example with abstentions

Candidate i

Votes Score
Ranking

vi1 vi2 Si

1 2 3 0.5833 4

2 1 6 0.6665 3

3 6 0 1 1

4 3 3 0.75 2

1The result is obtained by using Matlab R2013a
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6.2. An MICPV example with abstentions

The basic setting of this example is the same as that in Section 6.1 except that the moderator’s

opinions are listed in the last column in Table 4.

Table 4: An MICPV example with abstentions

Candidate i

Votes Moderator’s Opinion

vi1 vi2 oi

1 [2,6] [3,8] 3

2 [1,4] [6,8] 7

3 [6,8] [0,2] 6

4 [0,3] [1,3] 5

Assume that d(1, ε) = d(2, ε) = 0.5 and mij = ωjαij , i = 1, 2, 3, 4, j = 1, 2, plugging the input

information in Table 4 into Model (11) leads to the result in Table 5.

Table 5: Final scores of the MICPV example with abstentions

Candidate i

Votes Moderator’s Opinion Score
Ranking

vi1 vi2 oi Si

1 2 3 3 3.5 4

2 3.1486 7.7028 7 7 1

3 6 0 6 6 2

4 3 3 5 4.5 3

Furthermore, there exists the following relationship between the optimal solution of the primal

model and that of the dual model,

(2ω∗
1 + 4m∗

11 + 3ω∗
2 + 5m∗

12)d
∗
1 + (ω∗

1 + 3m∗
21 + 6ω∗

2 + 2m∗
22)d

∗
2

+ (6ω∗
1 + 2m∗

31 + 0ω∗
2 + 2m∗

32)d
∗
3 + (0ω∗

1 + 3m∗
41 + ω∗

2 + 2m∗
42)d

∗
4 + 0.5 ∗ x∗1 + 0.5 ∗ x∗2

= 0 (37)

Eq. (37) verifies Corollary 6. Furthermore, as per Theorem 10, the objective function is equivalent

to

Max D0 = [3− (2ω∗
1 + 4m∗

11 + 3ω∗
2 + 5m∗

12)]d1 + [7− (ω∗
1 + 3m∗

21 + 6ω∗
2 + 2m∗

22)]d2

+ [6− (6ω∗
1 + 2m∗

31 + 0ω∗
2 + 2m∗

32)]d3 + [5− (0ω∗
1 + 3m∗

41 + ω∗
2 + 2m∗

42)]d4
(38)

Under a moderator’s influence, Eq. (38) clearly illustrates the role of the moderator: his/her optimal

value is reflected in the aggregate utility of the deviation between the moderator’s opinion and the

candidates’ voting scores.

Analytic results in Table 5 provide us an example to understand the economic significance of

Corollary 7. First, the voting score of candidate 1 is 3.5 and exceeds the moderator’s expectation

o1 = 3. In this case, the corresponding dual variable d∗1 = −1, implying that none of the abstentions

casted for candidate 1 will be counted as approval votes. Conversely, the voting score of candidate
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4 comes in at 4.5, below the moderator’s expectation of o4 = 5. As such, the dual variable d∗4 = 1,

meaning that all abstentions for candidate 4 will be treated as approval votes. The aforesaid treatment

of abstentions is able to maximize the moderator’s influence over the voters and achieve the maximum

consensus level (or the minimum deviation) between his/her expectation and the voters’ collective

choice.

Table 5 indicates that candidate 2 receives fractional votes, which should be integers. Therefore,

we follow the same branch-and-bound procedure as mentioned in Section 6.1 to find integer solutions.

The resulting votes of candidates vij, i = 1, 2, 3, 4, j = 1, 2, and their final scores Si are shown in

Table 6.

Table 6: Final integer scores of the MICPV example

Candidate i

Votes Moderator’s Opinion Score
Ranking

vi1 vi2 oi Si

1 2 3 3 3.5 4

2 4 6 7 7 1

3 6 0 6 6 2

4 3 3 5 4.5 3

Comparing the ranking results in Table 3 (without a moderator) and Table 6 (with a moderator),

one can easily see that the candidates’ final scores are influenced by the moderator’s opinions. Under

this influence, the candidates’ scores are closer to the moderator’s opinions if a complete consensus

is not achievable. In this example, candidate 2 arises as the winner as opposed to candidate 3 in the

previous example without a moderator.

6.3. Three cases about the moderator’s influence on the voting result

To better illustrate how the moderator’s opinions influence the voting result, we employ the raw

voting data in Table 1 and apply the same computation process in Section 6.2. By experimenting

with different scenarios of the moderator’s expected scores on candidates, we obtain the following

three cases (see Table 7 and Figure 1).

Table 7: Three cases about the moderator’s influence on the voting result

Candidate i

Case 1 Case 2 Case 3

oi Si oi Si oi Si

1 5 4.9998 3 3.5 6 5.9997

2 7 6.9996 4 4 4 4

3 6 6.3942 6 6 2 6

4 5 4.8942 9 4.5 9 4.5

Case 1 Fig. 1-1 demonstrates a case that the moderator’s expectations are attainable by influencing

the voters’ decision, resulting in two fairly close curves between the moderator’s opinion and the

output based on our proposed model.
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Figure 1: The difference between the moderator’s opinions and candidates’ final scores

Case 2 Fig. 1-2 illustrates a scenario that the moderator’s most favoured candidate 4 (with the

highest expected score of 9) cannot rise to the top after abstentions are reallocated. This is due

to the fact that candidate 4 receives the lowest raw votes (a maximum of 3 votes in the first

and second place, respectively). After the moderator exercises his/her influence, the weighted

voting score for candidate 4 rises to the second place, but can never reach the top given the

voters’ choice. For the other three candidates, consensus can by and large be reached between

the moderator and the voters.

Case 3 Fig. 1-3 displays another situation that the moderator’s opinion on the most and least

preferred candidates differs from the collective choice of the voters as reflected in their raw votes

in Table 1. As the moderator least prefers candidate 3, he/she receives none of the uncertain

votes. However, this cannot prevent candidate 3 from receiving the highest weighted score given

the voters’ strong support (candidate 3 obtains a minimum of 6 votes in the first place). On the

other hand, similar to Case 2, the moderator can influence abstention votes to increase his/her

most preferred candidate 4’s weighted score, but the final score is still subject to the voters’

collective choice as reflected in their raw votes.

In summary, the previous experiment indicates that the moderator’s opinion plays an important

role in influencing abstention votes to reach weighted vote scores that are closer to the moderator’s

expectations. However, this influence can by no means override the voters’ choice. If the moderator’s

expectation is unreasonably high or low for a particular candidate (for instance, candidate 3 or 4 in

Case 3), while his/her influence can increase or decrease the candidate’s weighted vote score, the final

score is contingent upon the voters’ choice and differs from the moderator’s opinion.

7. Conclusions

In a preferential election, invalid ballots or abstentions typically represent the voters’ uncertainty

about their choice. Whether abstentions are counted towards approval or disapproval votes can dra-

matically change the election result. This paper first generalizes Cook and Kress (1990)’s DEA model
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for aggregating preference rankings by allowing voting scores to assume interval values so that absten-

tions can be explicitly accommodated. Subsequently, an MICPV model with abstentions is proposed

to incorporate opinion leaders as a moderator. This moderator can exploit his/her resources to influ-

ence voters’ decision so that his expectations about the voting result can be achieved or approximated

as much as possible. Different versions of the model are discussed given different types of place weight

constraints. Economic interpretations of our results show how the moderator exerts his/her influence

on the voters. The key features of the proposed models are as follows:

• Invalid ballots and abstentions are collectively treated as abstentions and interval values are

employed to characterize voters’ inherent uncertainty about the voting.

• A preferential voting DEA model with abstentions is proposed.

• A moderator is introduced into an MICPV model to represent opinion leaders/brokers whose

preferences are reflected in his/her expected voting scores for candidates. The objective function

is to maximize the consensus level (or minimize the deviation) between his/her expectations and

the voters’ collective choice over the candidates.

• The proposed MICPV model and its variants incorporate different scenarios of place weight

constraints to enhance their applicability to diverse preferential election settings.

• Analytic results reveal the properties of the primal-dual variables in the MICPV models as well

as their economic interpretations.

The main contributions of this paper are as follows:

• Given that the DEA method is widely applied to evaluate relative efficiency of decision making

units, the proposed preferential voting DEA model with abstentions can optimally distribute

uncertain votes and, then, make better use of available voting information. Moreover, place

weights are objectively determined as the optimal solution to the DEA voting model, providing

a fair overall assessment of candidates’ rank in a preferential election with abstentions.

• The MICPV model with abstentions and its variants not only respect voters’ choice, but also

consider the moderator’s influence. The proposed models can also provide an optimal allocation

of voting resources from a consensus angle. Key managerial insights of the proposed MICPV

model and its variants are to furnish viable campaign strategies for opinion leaders in an election:

By using the poll statistics as reference points, they can devise suitable strategies to promote

their preferred candidates and/or undermine their non-preferred candidates, thereby exercising

the maximum influence over the voters and achieving desired voting results.
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