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ABSTRACT 

 In biomedical optics and microscopy, the organization and morphology of organelles 

have been widely studied. In spite of novel imaging techniques, there is still a lack of 

quantitative tools to easily measure cellular characteristics from image data. Previous studies 

have explored multiple approaches to assess organelle organization and alignment, resulting in 

complicated and extensive algorithms that are both subject to multiple steps of image processing 

and influenced by non-cellular artifacts. In this thesis, a technique called the Modified Blanket 

Method (MBM) is introduced to quantify organelle organization through measurements of fractal 

dimension (FD) on a pixel-by-pixel basis. With the use of simulated fractal clouds, it is 

demonstrated that the MBM is capable of accurately and rapidly quantify FD, having a higher 

sensitivity to a wider range of FD values compared to previous methods. Furthermore, the MBM 

could differentiate mitochondrial organization of radiation-resistant A549 lung cancer cells at 

different time points post-radiation. 

 In later experiments, the MBM is combined with similar computational techniques to 

quantify fiber alignment and nuclear shape through measurements of directional variance (DV) 

and nuclear aspect ratio (NAR). The simultaneous use of these tools demonstrated that the 

organization and alignment of mitochondria and actin of NIH 3T3 cells treated with L-

buthionine-sulfoximine (BSO) change over time, having different nuclear shapes as well. It is 

then concluded the this set of computational tools is capable of providing significant cellular 

data, which could potentially be employed to understand the cellular dynamics of multiple 

pathological conditions such as diabetes, Alzheimer’s, Leigh’s syndrome, and myopathy, all of 

which are known to be influenced by dysfunctional organelles. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation for this Research 

 The organization and morphology of organelles have been of major interest in biomedical 

sciences in recent years [1-3]. Understanding the dynamics of cellular components have 

significantly contributed to the diagnoses and development of treatments of multiple pathological 

disorders [4-6]. Biologically, assessments with techniques such Seahorse [7, 8], ELISA [9, 10], 

and gel electrophoresis [11] have made it possible to interpret the physiological and molecular 

properties of many of these conditions. In addition, thanks to the latest advancements of 

technology and the inclusion of sophisticated imaging techniques through the use of optics and 

microscopy, it is now possible to correlate what is known from biology with the visible behavior 

of specific cellular structures and organelles as they interact to both internal and external stimuli 

[12, 13]. For example, multiple studies have employed fluorescent microscopy to isolate 

organelles such as the mitochondria as they evaluate the properties and changes experienced 

under certain conditions [14-16]. Similarly, structural components such as the cytoskeleton have 

been studied to understand its role in maintaining a proper cell membrane [17, 18]. Also, a vast 

number of studies employ imaging techniques just to visually differentiate cells [19, 20]. 

Multiphoton and laser scanning confocal microscopes are able to acquire state of the art 

images that clearly depict some of the intrinsic characteristics of multiple cellular structures [21, 

22]. Because of this, a wide variety of published studies have employed image processing 

techniques such as skeletonization [23], power spectral density [24], and fiber orientation [25, 

26] to assess organelle properties from this type of images through computational algorithms. 

However, most of the current image analysis techniques are still difficult to apply and require 
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multiple steps of pre-processing prior to the actual quantification. As a result, there is still a lack 

of quantitative tools capable of easily, rapidly, and simultaneously measuring organelle 

characteristics. Because of this, the motivation behind this research was to explore and develop 

new techniques to potentially overcome these obstacles and assess organelle dynamics in a rapid 

and accurate manner.  

1.2 Objective of Thesis 

The objective of this thesis is to introduce new automated computational tools that are 

able to rapidly quantify multiple organelle characteristics in conjunction. Following this, 

programming using MATLAB was utilized to develop and execute three different types of 

cellular assessments: organization through fractal dimension (FD) [27], fiber orientation and 

alignment through directional variance (DV) [28, 29], and nuclear shape through nuclear aspect 

ratio (NAR) [30]. 

1.3 Organization of Thesis 

The first part of this thesis focuses on the Modified Blanket Method (MBM), which is 

initially introduced to measure mitochondrial fractal dimension (FD) of both simulated and A549 

lung cancer cells while being compared to a previously published technique called power 

spectral density (PSD) [24, 27]. The second part of the thesis explores the organization and 

alignment of mitochondria and actin, as well as the nuclear shape of of NIH 3T3 cells. Using L-

buthionine-sulfoximine (BSO), cellular changes were induced for a period of 24 hours. FD, DV, 

NAR measurements were simultaneously obtained using the developed set of tools and then 

correlated to understand the relationship between actin, mitochondria, and cell nuclei as the cells 

are exposed to different treatment concentrations.  
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Abstract 

 An improved technique for fractal characterization called the Modified Blanket method is 

introduced which can quantify surrounding fractal structures on a pixel by pixel basis without 

artifacts associated with scale-dependent image features such as object size. The method 

interprets images as topographical maps, obtaining information regarding the local surface area 

as a function of image resolution.  Local fractal dimension (FD) can be quantified from the 

power law exponent derived from the surface area and image resolution relationship. We apply 

this technique on simulated cell images of known FD and compared the obtained values to power 

spectral density (PSD) analysis. Our method is sensitive to a wider FD range (2.0 – 4.5) having a 

mean error of 1.4% compared to 6% for PSD analysis. This increased sensitivity and an ability to 

compute regional FD properties enabled the discrimination of differences in radiation resistant 

cancer cell responses that could not be detected using PSD analysis. 

2.1 Introduction 

Fractal patterns are very common in nature and can be observed in different types of 

biological structures and functions [1, 2]. Image analysis of these self-repeating patterns over 

length- or time-scales is an attractive approach to quantify changes in biological structures [3]. 

For example, mitochondria undergo fission and fusion based on the metabolic needs of the cell 

[4], and it has been demonstrated that mitochondrial organization follows the statistical 

properties of self-similar fractals [5-8]. Previous studies have demonstrated that mitochondrial 

reorganization occurs in a wide variety of pathological conditions, including Parkinson’s disease 

[5, 9], cancer [4, 6, 10-15], and mitochondrial diseases [16]. However, there are several 

challenges in quantifying the fractal organization of organelles within cells. 
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 Various techniques have been developed to estimate fractal dimension. One of the oldest 

and simplest approaches for fractal analysis is known as the box counting method, which 

superimposes boxes of decreasing size over a region of interest within an image [17]. The power 

law relationship between the number of boxes intersected by the pattern of interest and the size 

of the boxes is used to estimate fractal organization [1, 17]. However, box counting can only be 

performed on binary images and is most commonly used to characterize the border of objects.  

To quantify the fractal dimension of grayscale images, Fourier-based approaches have been used, 

particularly in mitochondrial clustering analysis.  Through radial sampling of two-dimensional 

power spectral density (PSD) maps, fractal dimension (FD) can be determined from images by 

measuring the exponent, β, from the power law relationship between PSD and spatial frequency 

as shown in Eq. (1) [8].  

   R k A k


                                                         (1) 

 This PSD approach can be used to quantify mitochondrial textures within cells through a 

pre-processing step that segments cells and replicates intracellular patterns in the background of 

images, providing accurate measurements of mitochondrial organization over a range of FD or β 

values.  Using this approach, Xylas et al. [10] calculated the power exponent β from NADH 

autofluorescence images as a measure of mitochondrial clustering and identified depth-

dependent changes between normal and precancerous epithelial tissue. Pouli et al. [4] also 

utilized PSD analysis to evaluate mitochondrial dynamics from NADH intensity images in 

different epidermal layers of human skin. Similarly, Liu et al. [18] used PSD analysis of NADH 

images to measure mitochondrial clustering in relation to structural metabolic changes caused by 

controlled perturbations such as extrinsic and intrinsic mitochondrial uncoupling, glycolysis, and 

fatty acid oxidation. However, this PSD approach is susceptible to errors when cell segmentation 
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is inaccurate and scale-dependent features remain visible after pre-processing.  Furthermore, the 

PSD approach is also only able to obtain the overall FD of an image and cannot provide region-

specific information, such as the FD of individual cells.  To overcome these issues, MacDonald 

et al. [7], utilized an autocorrelation technique capable of analyzing patterns within individual 

cells.  However, this autocorrelation technique is particularly time consuming and not suitable 

for mapping FD in large image sets. 

 The goal of our study was to develop a rapid and automated method for quantifying 

fractal patterns within images on a pixel-by-pixel basis. We modified a previously developed 

technique known as the Blanket method [11, 19, 20].  The Blanket method interprets images as a 

three-dimensional surface topography, where the intensity at each pixel corresponds to the height 

along the z axis. The surface area (SA) of the topographic map is computed as a function of scale 

(pixel size) [11, 21], and the power law relationship between SA and pixel size is used to 

determine FD. Caldwell et al. [11] and Byng et al. [19] employed this approach for the fractal 

analysis of mammographic parenchymal morphologies, which are strongly related to the 

development of breast cancer. Chappard et al. [22] also used the Blanket method to characterize 

the texture of trabecular bone in X-Rays. In the current study, we propose a Modified Blanket 

Method (MBM), which utilizes convolution to rapidly compute local measurements of SA, and 

thus produce maps of FD within images. By acquiring local FD values at each pixel, the analysis 

of specific structures or individual cells is possible.  Here, we present a series of studies in which 

we analyze simulated cell images containing fractal patterns of known FD to show that the MBM 

is sensitive to a wide range of FD values. We evaluate the effects of different convolution 

kernels on the accuracy of the FD measurements and compare them to PSD analysis. Moreover, 
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we demonstrate the biomedical application of the MBM on NADH autofluorescence images 

obtained from parental and radiation resistant A549 lung cancer cells.  

2.2 Methods 

2.2.1 Modified Blanket Method 

 The MBM was developed as an automated technique to convolve gradient images at 

different resolutions and compute FD. The image analysis algorithm was coded and executed in 

MATLAB. The length scale over which the local fractal dimension is analyzed is based on a 

convolution kernel defined by a binary disk with a user-defined radius.   The algorithm begins by 

resampling both the image of interest and convolution kernel (Fig. 2.1a) proportionally. The 

number times the image is resampled at different image resolutions is determined by the size of 

the kernel.  Once the image has been resampled, the horizontal (X) and vertical (Y) gradients of 

the image are computed using X- and Y- gradient kernels [1,-1,0] and [0,-1,1]T respectively (Fig. 

2.1b). The absolute value of the gradient in the X- and Y- directions are then summed by 

convolving with a binary disk kernel (Fig. 2.1c).  The summed horizontal and vertical gradients 

are added together to compute a local surface area (SA) map (Fig. 2.1d). This SA map is 

subsequently resampled back to the original dimensions of the image and stored (Fig. 2.1e). 

These steps (Fig. 2.1a-e) are repeated as the convolution kernel is reduced in size by increments 

of 1 pixel until a 1x1 kernel remains, ultimately producing a set of SA maps derived from 

different image resolutions (Fig. 2.1f).  The power law exponent (β) relating local surface area 

measurements and pixel sizes at each pixel location can be derived from the linear change in log-

transformed values between SA maps (Fig. 2.1g).  Fractal dimension at each pixel location (Fig. 

2.1g) can then be determined through the equation:  
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2 2
log ( )

log ( )

SA
FD

pixel size
   




                                       (2) 

In order to observe the changes in local fractal dimension, a FD map (Fig. 2.1h) can be generated 

by assigning the corresponding FD value to each individual pixel. 
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Figure 2.1. Steps of the Modified Blanket Method. (a) Resize the image of interest and a disk 

kernel. (b) Compute the horizontal (x) and vertical (y) gradients of the image. (c) Convolve the 

absolute value of each gradient image with a disk kernel to sum up local changes in intensity. (d) 

Compute the sum of the convolved x- and y- gradient images to create a surface area (SA) map. 

(e) Resize the SA map to the original image size, and record SA at each pixel. (f) Repeat steps 

(a)-(e) at different image resolutions (i.e. pixel sizes) to produce a set of SA maps. (g) Compute 

the FD from the power law exponent of the local surface area vs. pixel size curve at each pixel. 

(h) Assign the corresponding FD value to each pixel to produce a FD map. 
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2.2.2 Validation:  Simulated cell images 

 To assess the accuracy of the MBM to approximate fractal values, we created simulated 

cells containing intensity clouds of known fractal dimension as in previous studies [8]. The 

fractal clouds were obtained by filtering white noise in the frequency domain and transforming it 

back to the spatial domain [8].  These fractal clouds were overlaid using masks of circular cells 

with varying diameter and cellular nuclei. We evaluated these simulated cell images over a range 

of fractal dimension values (FD=2.0 to FD=4.5) and cell diameters (d=80, d=120, and d=160 

pixels) commonly observed in biomedical images. FD values were obtained from five repetitions 

of each combination of FD and cell diameter. The fractal clouds and cell positions were 

randomized during each repetition of the simulation, and FD was derived using our MBM 

method. This process was then repeated for three different cell densities (10, 20, and 30% of the 

total image area) to measure differences caused by increasing cell quantities. Mean error and 

standard deviation were computed using the measured FD values obtained from the simulation 

repetitions. 

 In addition to the varying fractal clouds and cell diameters, we analyzed the simulated 

cell images over a range of different convolution radii (CR=5, CR=10, CR=15, and CR=20 

pixels) to obtain local fractal dimension values. Errors in FD measurements associated with 

abrupt intensity changes at cell borders have been previously described [8] and at larger CR 

values it is possible to visualize these edge effects. In order to estimate the differences in the 

average FD caused by such artifacts, we examined the effect of cell mask erosion to isolate the 

regions of interest (i.e. the center of simulated cells) from edge effects. We ran simulations with 

different combinations of convolution radii (CR) and erosion radii (ER) and computed the 

average FD (Fig. 2.2).  
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2.2.3 Comparison to Power Spectral Density approach 

 To compare the results obtained with the MBM, we also employed PSD analysis as in 

previous work [4, 8, 10, 18]. The PSD approach computes a radial average of the 2D Fourier 

transform of the image, resulting in a 1D PSD curve [8]. To reduce abnormalities caused by 

regions that do not contain intercellular features, a clone stamping pre-processing step was used, 

which fills the background with copies of the intracellular image features [8].  The 1D PSD 

curve was fit to a specific range of frequency values, corresponding to the most linear portion of 

the plot as in previous studies [4, 8]. The power law exponent (β) commonly reported in other 

studies [1, 8] can be related to fractal dimension using Eq. (3). 

             
(8 )

2
FD





                                                              (3) 

 The accuracy of both methods (MBM and PSD) over a wide range of FD values (FD=2.0 

to FD=4.5) was evaluated using the simulated cell images. The computational time of each 

method was also measured using five repetitions at different image resolutions (128 x 128, 256 x 

256, 512 x 512, 1024 x 1024, 2048 x 2048, and 4096 x 4096 pixels). For the MBM, we evaluated 

three different CR values (CR=5, CR=10, and CR=25) to assess their effect on the speed of the 

fractal analysis. The computational times recorded at each repetition were then used to compute 

mean times and their standard deviation. 

2.2.4 Biomedical application to understanding cancer metabolism 

 To demonstrate the sensitivity of this MBM technique using experimental data, we 

compared FD values obtained from NADH autofluorescence images of cell mitochondria from 

parental and radiation-resistant A549 lung cancer cells. In order to generate radiation resistant 

A549 cells, the parental cell line was subjected to multiple doses of 2 Gy radiation [23]. Images 
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from both cell lines were then acquired at different post-radiation time points (t=0, t=1, t=12, and 

t=24 hours), with a total of nine images per time period. Two-photon excited fluorescence from 

NADH was collected using a 20x water-immersion objective (NA=0.75) with a 460/40 nm 

bandpass filter and a Ti:Sapphire laser source tuned to 755 nm. Image resolution was set to 512 x 

512 pixels (130 µm x 130 µm) with 16-bit depth. FD values were obtained using both the MBM 

and PSD method.  

2.2.5 Statistical Analysis 

 An ANOVA design with image fields nested within cell culture dishes was used to 

identify differences in FD between cell lines (parental and radiation-resistant) and time points. 

Significance was based on an α=0.05. 

2.3 Results 

2.3.1 Method Validation 

 Utilizing simulated microscopy images of cells with intracellular fractal clouds of known 

FD, we demonstrated that the MBM can compute FD values that successfully estimate true FDs 

ranging from 2.00 to 4.50 (Fig. 2.2a, b).  For 120 pixel diameter simulated cells, a CR of 5 

produced a mean error of 1.4±1.0%. However, increasing the convolution radius (CR) over 

which the FD is computed slightly decreased accuracy (Fig. 2.2a), with mean errors of 2.1±1.9%, 

3.6±3.3% and 5.0±3.7% for radii of 10, 15 and 20, respectively.  The FD values obtained from 

the MBM were insensitive to differences in cell size (d=80, d=120, and d=160 pixels), cell 

density (10, 20, and 30% cell coverage per image), or overall image intensity. Using cell images 

with FD=2.5, the MBM analysis resulted in a mean error of 0.72±0.49%, 1.08±0.34%, and 

1.76±0.76% for cell diameters of 80, 120, and 160 pixels respectively. A similar analysis was 



 16  
 

performed with varied cell densities, resulting in a mean error of 1.97±0.88%, 2.07±0.78%, and 

2.14±0.54% for 10, 20, and 30% cell coverage respectively.  

 Mean error in average FD measurements from simulated cell images also significantly 

increased if the cell borders were not removed from analysis through the morphological 

operation of erosion (Fig. 2.2c).  When using a CR of 5, the lack of an erosion step prior to FD 

averaging resulted in a mean error of 3.6±2.6%. This error was even greater for CR of 10, which 

increased error from 2.1±1.9% to 7.1±4.5% (Fig. 2.2d). Pixelwise FD maps indicate that 

inaccurate measurements of FD approaching a value of 2 are observed along the cell-background 

border (Fig. 2.2e) in simulated images.  An erosion radius equivalent to the convolution radius is 

necessary to remove these artifacts produced when abrupt, non-fractal changes in image intensity 

are present.   

 Unlike the MBM, PSD analysis was not accurate at FDs below 2.75 (Fig. 2.3a). While 

the MBM had a mean error of 1.4±1.0% and maximum error of 4.26% over FDs from 2.0-4.5, 

PSD yielded a mean error of 6.0±10.9% and maximum error of 35.50% (Fig. 2.3a, b). The MBM 

was also able to compute FD with significantly shorter computational times than the PSD 

approach, particularly at image resolutions of 1024x1024 and higher (Fig. 2.3). MBM analysis 

with CR=5 had computational times on a standard desktop computer that were up to 42-times 

faster on 4096x4096 images and 3-times faster on 128x128 images than PSD analysis. Increasing 

the CR resulted in longer computational times, but CR=10 was still 17-times faster than PSD 

analysis of 4096x4096 images and 1.5-times faster on 128x128 images (Fig. 2.4).  For both the 

PSD and MBM, image resolution and computational time scaled according to a power law.    
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Figure 2.2. Modified Blanket Method Simulation. (A) Effect of utilizing convolution and 

erosion radii (CR & ER) of equal size in the measured fractal dimension of cells with a diameter 

of 120 pixels. The black line represents the true FD. (B) Effect of utilizing convolution and 

erosion radii of varied size in the measured fractal dimension. Red lines represent CR=5, Blue 

lines represent CR=10. Erosion radius is set to ER=0, 5, or 10. (C) Percentage error of the 

analysis with equal convolution and erosion radii size. (D) Percentage error of the analysis with 

varied convolution and erosion radii size. (E) Representative FD maps with a true FD value of 

3.5 show the edge effects produced by cell boundaries when cell mask erosion is not applied 

prior to computing the average FD value.  
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Figure 2.3. Comparison of the accuracy of the MBM and PSD analysis of simulated images (120 

pixel diameter cells). (A) The MBM (red) is accurate over a larger range of FD values than PSD 

analysis (blue). (B) Mean error in PSD analysis is significantly higher when FD < 2.75. (C) 

Representative FD maps of cells with FD of 2.5 and 3.5 demonstrate the accuracy of the MBM. 

(D) Representative clone-stamped images and PSD curves indicate the PSD is less accurate for 

smaller FD values. 
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Figure 2.4. Average time required to compute FD through the MBM and PSD analysis on 

simulated circular cells images for increasing image resolutions of 128 x 128, 256 x 256, 512 x 

512, 1024 x 1024, 2048 x 2048, and 4096 x 4096 pixels. An increase in CR from 5 to 25 results 

in a modest increase in computational time.   

 

2.3.2 Lung Cancer Cells 

The MBM revealed a significant change in the mitochondrial FD of radiation-resistant 

lung cancer cells between 12 and 24 hours after radiation (p<0.0001) (Fig. 2.5). Previous work 

demonstrated that the optical redox ratio of FAD/(NADH+FAD) decreases in the radiation-

resistant cell line at 24 hours post-radiation (p=0.0141), indicating a shift towards glycolytic 

metabolism [23], which matches the changes in FD observed here with the MBM.  Interestingly, 

erosion did not produce significant differences in the FD values, despite providing a noticable 

improvement in the accuarcy of simulated images. While the MBM results matched biochemical 

changes in cell metabolism observed over time, a change in FD between post-radiation time 

points was not detectable through the conventional PSD analysis (p=0.9991). Unlike the MBM 

and previous redox ratio measurements [24], PSD analsyis indicated significant differences 

between parental (control) and radiation-resistant cancer cell lines at every time point (Fig. 2.5c).  
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Figure 2.5. Lung Cancer Cells Study (A) Representative FD maps corresponding to lung cancer 

cells of both the control (left) and radiation-resistant (right) group. Top row shows FD maps 

without erosion and bottom row shows FD maps with erosion. The images were obtained at time 

periods of 1 and 24 hours post radiation. (B) Clone stamped images obtained during the PSD 

analysis at time periods of 1 and 24 hours as shown in panel (A).  (C) Summary data 

demonstrate that the differences of eroding and not eroding the cell objects with the MBM 

approach are minimal. The MBM method detects significant temporal changes in the 

mitochondrial organization of radiation resistant cell line at 24 hours, which matches 

independent measurements of the optical redox ratio of FAD/(NADH+FAD) autofluorescence 

intensities detailed in [23, 24].  Interestingly, the PSD approach does not reveal the temporal 

changes detected using the optical redox ratio and MBM.   
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2.4 Discussion 

  Our study demonstrates that the MBM is capable of rapidly and accurately quantifying 

FD within individual cells. By computing local changes in intensity gradients at different image 

resolutions, the MBM can obtain fractal dimension values from the power law exponent relating 

surface area and pixel size [8]. Cell simulations demonstrated that the MBM yields accurate FD 

measurements over a wide range of FD values (2.00-4.50). In addition, the improved accuracy of 

the MPM relative to PSD analysis, allowed for the detection of structural changes in parental and 

radiation-resistant A549 cell mitochondria over time, which was supported by previous optical 

redox ratio measurements that suggested a shift in cellular metabolism [23, 24] (Fig. 2.5c). 

 Compared to PSD analysis, the MBM offers accuracy over a greater range of FD in 

biomedical images. Cell simulations using the PSD method resulted in inaccurate FD 

approximations for FD<2.75 (Fig. 2.3a) with a high maximum error of 19.9% (Fig. 2.3b). This 

reduced accuracy for the PSD approach is caused by the susceptibility of the method to scale-

dependent image features (i.e. cell boundaries). We employed a technique proposed by Xylas et. 

al. [8] to minimize the effect of scale-dependent features by replicating cellular patterns in the 

background of the image through clone stamping.  However, Xylas et al. and the current study 

demonstrate that this pre-processing step cannot recover FD values below 2.5 when using PSD 

analysis.  At lower FD values, the image intensity patterns vary over lengths that can approach or 

exceed the size of the cell, resulting in cell boundaries visible in the clone-stamped images (Fig. 

2.3d).   These cell boundaries were also visible in experimentally-derived clone-stamped images 

(Fig. 2.5b) as well, suggesting possibly inaccurate measures of fractal dimension through the 

PSD.  The MBM does not demonstrate this same sensitivity to cell boundaries in experimentally-
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derived images (Fig. 2.5a), regardless of whether pixels at the edge of the cell are removed 

through erosion prior to calculating average values. 

 The effects of cell or object boundaries can be still observed in the MBM-derived FD 

maps of the simulated images.   However, compared to the PSD, the MBM’s edge-effects are 

limited to the relatively small number of pixels at the boundary of cell objects (Fig. 2.2e).  

Increasing the size on the convolution disk can increase the number of pixels affected by these 

large (non-fractal) changes in intensity (e.g. cell or nuclei borders). To overcome the 

consequences of these artifacts, erosion of the cell mask using the same kernel size as that used 

during convolution yielded more accurate average FD values in simulated images (Fig. 2.2e). 

The erosion procedure thins the cell mask by a specific number of pixels and enables 

computation of an average FD value from only unaffected pixels within the cell or region of 

interest. In general, the simulations revealed that using the MBM with equal CR and ER size 

yields a better FD approximation. However, erosion did not have a large impact in the average 

FD value when it was performed on the A549 cell images (Fig. 2.5). This might be related to the 

more gradual intensity change between cell and background regions within actual biomedical 

images. It is important to highlight that although cell boundaries can influence the MBM in some 

cases, they are not as sensitive to the final FD measurement as they are when using the PSD 

approach. 

 The MBM offers improvements in accuracy and speed relative to PSD analysis of 

mitochondrial clustering, but the primary advantage of the MBM is the ability to report FD on a 

pixel-by-pixel basis. Given that single cell assessments of mitochondrial function are possible 

using time-resolved and intensity-based NADH and FAD autofluorescence imaging [14, 25], the 

ability to also assess rapidly mitochondrial structure on a cell-by-cell basis can enable 
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complementary information to assess disease and repair [18].  Fractal analysis has been 

employed in a number of biomedical applications beyond mitochondrial clustering, including the 

characterization of electroencephalogram (EEG) signals [26], the morphology of the brain in 

MRI images [27], and the anisotropy degree of bone structures [28].  The MBM may be 

particularly useful in detecting changes in vasculature surrounding tumors produced by aberrant 

angiogenesis [29]. Changes in extracellular matrix organization in different disease or repair 

states may also offer new applications for this method capable of rapidly measuring regional 

differences in structural organization.  In summary, the modified blanket method for computing 

fractal dimension offers a unique ability to rapidly map out changes in local image patterns for a 

variety of biomedical applications beyond mitochondrial organization. 
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CHAPTER 3 

A QUANTITATIVE APPROACH TO ASSESS THE RELATIONSHIPS AMONG ACTIN 

AND MITOCHONDRIAL ORGANIZATION 

Abstract 

 Multiple pathological conditions are known to present subcellular abnormalities. 

Unfortunately, many subcellular structural characteristics are difficult to quantify, because 

standard image processing techniques require multiple user inputs to segment, denoise, and 

measure structural features. A versatile set of automated techniques developed to assess the 

organization of actin and mitochondria through measurements of fractal dimension, fiber 

orientation, and directional variance is introduced. We combined these techniques with other 

computational methods to also quantify changes in nuclear elongation through the nuclear aspect 

ratio. In addition, these techniques can be executed simultaneously at different length scales and 

on a pixel-by-pixel basis, without any kind of image pre-processing or segmentation. We apply 

these tools to quantify changes in organelle dynamics of mice fibroblasts (NIH 3T3), specifically 

those corresponding to actin, mitochondria, and nuclei after being treated with L-buthionine-

sulfoximine (BSO) at increasing concentrations for a period of 24 hours. We validate that BSO 

treatment produces oxidative stress and a variety of changes to the mitochondria and actin.  

Specifically, we demonstrate that the orientation and fractal organization of actin and 

mitochondria are highly affected by BSO, and there are strong correlations among these 

measurements of subcellular features.   

3.1 Introduction 

Cellular organization and dynamics have proven to be of major significance in 

understanding the complexity of a variety of biological mechanisms [1]. It has been demonstrated 
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that cells have the capacity to react to certain stimuli and adapt accordingly to meet the needs of 

the organism [2, 3]. Processes such as the transmission of signals via proteins [4], cell to cell 

communication [5], and the interaction with the extracellular matrix (ECM) [5], stimulate cells to 

continuously undergo a variety of chemical and physical changes. Within cells, organelles and 

other cellular structures are responsible for controlling key reactions and carrying on responses 

that ultimately decide the fate of the cell and tissue physiology [6]. Conditions such as cancer [7], 

heart disease [8], myopathy [9], Leigh syndrome [10], Alzheimer’s [11], and several others arise 

when dysfunction in the actin cytoskeleton, mitochondria, or other organelles produce structural 

and functional changes. 

With modern advances in imaging techniques involving immuno-specific fluorescent dyes, 

we are now able to observe the structural dynamics within individual cells. Numerous recent 

studies have used fluorescence microscopy to characterize certain cellular properties, observing 

the reaction resulting from interactions with specific mediums/treatments, the relationship of some 

cellular characteristics to a particular disease, and the differences among cell lines. For instance, 

using a phalloidin-based marker, previous studies have labeled and observed F-actin, a main 

component of the cytoskeleton, to find its relationship to dendritic spine loss [12] and to classify 

changes in rat basophilic leukemia (RBL) cells following bisdemethoxycurcumin (BDCM) 

treatment [13]. In addition, some cancer studies have reported using Mitotracker, a fluorescent dye 

that labels mitochondria, to measure mitochondrial density in pancreatic cells [14], to classify 

mitochondrial shapes in different breast cancer cells [15], and to evaluate the efficacy of synthetic 

antioxidants in primary striatal neuronal cultures obtained from mice models of Huntington disease 

[16]. The development of image analysis techniques has provided quantitative information on 

observed changes in mitochondrial networks [17-19], actin orientation [20], and nuclei shape [21], 
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which have been critical in the understanding of certain cellular responses and pathological 

conditions. However, the vast majority of current analysis techniques lack the ability to rapidly 

assess organelle organization and orientation within individual cells without significant user input 

and feature segmentation.  As a result, a quantitative understanding of the relationships between 

the cytoskeleton and mitochondria is not well understood.    

We have recently developed two distinct image analysis techniques capable of quantifying 

fractal dimension and fiber orientation over different length scales within biomedical images 

without the need for subcellular feature segmentation. These tools were developed to automatically 

obtain information relevant to structure morphology and organization by providing accurate 

measurements of fractal dimension (FD) [22], fiber orientation (FO) [23] and fiber directional 

variance (DV) [24] within a user-specified length-scale.  These analysis methods have been 

successfully applied to autofluorescence images of mitochondria [22] and assessments of collagen 

fiber orientation in tissue histology [24], but have not been combined to understand relationships 

among subcellular features in triple-labelled fluorescence microscopy images.  Here we 

demonstrate with the development and integration of these tools, we are able to quantitatively 

investigate the interactions and dynamics of cellular components, specifically those occurring in 

the cytoskeleton (F-actin), the mitochondria, and the cell nuclei. In order to induce abrupt cellular 

changes and demonstrate the utility of our techniques, we applied treatments of L-buthionine-

sulfoximine (BSO) to mouse fibroblasts (NIH 3T3) during 24 hours in culture medium. In previous 

studies, BSO has been used to impair the production of glutathione (GSH), an antioxidant that 

plays a critical role in preventing damage by reactive oxygen species. Depletions of GSH have 

been linked to delays in wound healing [25], oxidative stress [26], the manifestation of dense 

cataracts [27], and the depolymerization of actin-binding proteins in the cytoskeleton [28]. Our set 
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of analysis techniques demonstrated a dose-dependent sensitivity to changes in the organization 

and orientation of F-actin and mitochondria, as well as nuclear shape following BSO treatment. 

Our analysis toolset also enabled us to characterize strong associations between different 

subcellular features during dynamic changes in cell morphology as oxidative stress increased 

within cells.   

3.2 Results 

3.2.1 Cell viability and oxidative stress 

BSO treatment induces a dose-dependent increase in oxidative stress 

To understand the effects of BSO treatment on fibroblasts, cell viability and oxidative 

stress were first assessed. Mice fibroblasts (NIH 3T3) were incubated for 24 hours in media with 

BSO concentrations of 0, 2.5, 5, or 12.5 mM. Following this, the cells were stained with Calcein-

AM and Ethidium homodimer-1 (EthD1) to quantify live and dead cells respectively. Images of 

Calcein-AM (green) and EthD1 (red) obtained through confocal microscopy showed a clear 

increase in the number of dead cells at higher BSO concentrations (Fig. 3.1A) as well as cells 

with disrupted plasma membranes (Fig. 3.1B (a-d)). At low BSO concentrations (2.5mM), the 

average percentage of live cells (91.2±4.43%) was somewhat similar to untreated controls 

(97.4±3.5%). However, at higher treatment concentrations, this percentage decreased 

significantly to 77.4±11.3% at 5mM and 53.6±12.1% at 12.5mM) (Fig. 3.1C (top)) (p<0.0001). 

To assess oxidative stress, MitoSOX staining was also performed and measured by computing 

the average intensity of image fields at each treatment concentration. Cells treated with BSO 

demonstrated a clearly stronger signal from MitoSOX (p<0.0001) than controls (Fig. 3.1B, C), 

suggesting a linear increase in mitochondrial oxidative stress following increasing BSO 

treatment.  
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Figure 3.1. Assessment live/dead cell viability and oxidative stress of NIH 3T3s treated with 

BSO at 0, 2.5, 5, and 12.5 mM for 24 hours. Representative laser scanning confocal images 

acquired at 20x showing live and dead cells detected with Calcein-AM (staining the cytoplasm) 

and EthD1 (staining the cell nuclei) respectively (A). Image fields acquired at 60x after BSO 

treatment (B). Field composites of Calcein-AM and EthD1 (a-d). MitoSOX intensity images 

acquired at similar laser power and sensitivity representing oxidative stress as measured by the 

differences in image intensity (a’-d’). Average percentage of live cells (top) and oxidative stress 

(bottom) at different BSO treatments (C).  
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3.2.2 Fractal Dimension and Directional Variance 

Fractal dimension and directional variance change in response to BSO treatment 

After confirmation of the induction of oxidative stress via BSO treatment, fluorescent 

labeling of F-actin, mitochondria, and cell nuclei was performed at concentrations of 0, 2.5, 5, and 

12.5 mM (n=6 dishes per dose). Changes in fractal dimension (FD) were measured from both the 

F-actin and mitochondria fluorescence images on a pixel by pixel basis using established 

automated computational techniques in MATLAB [22]. FD values can be interpreted as inversely 

related to the level of organelle clustering. Additionally, an orientation vector summation 

algorithm was used to detect fiber orientation (FO) at each pixel [23], and directional variance 

(DV) within a 25-pixel radius was computed to assess the strength of feature alignment [23, 24] in 

the mean orientation direction. These analysis techniques revealed significant variations in both 

FD and DV for actin and mitochondria (Fig. 3.2 and Fig. 3.3).  

Treatment with BSO resulted in clear alterations in cellular morphology and actin filament 

organization (Fig. 3.2A). A decrease in FD measurements following BSO treatment reflected high 

levels of actin clustering, with significant differences between the control and BSO treatments at 

2.5mM (p=0.0230), 5mM (p=0.0023), and 12.5mM (p=0.0006) (Fig. 3.2B). In addition, 

orientation of actin filaments was considerably altered after BSO treatments, presenting less 

consistency in actin fiber direction within each cell when compared to the control (Fig. 3.2A). As 

a result, actin fiber DV maps showed a linear increase with increasing BSO concentration resulting 

in significant differences between control and 5mM (p=0.0172), control and 12.5mM (p=0.0002), 

and 2.5mM and 12.5mM (p=0.0052). 

BSO treatment had smaller effects on the FD and DV of mitochondria (Fig. 3.3). Although 

cell morphology differed with BSO treatment, the size of mitochondria did not (Fig. 3.3 (a-d, a’-
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d’)). As a result, only a minor decrease in FD following BSO treatment (Fig. 3.3 (a’’-d’’)) was 

observed with no statistically significant differences (Fig. 3.3B). Although orientation of 

mitochondria was more random than the actin (Fig. 3.3A (a’’’-d’’’)), DV maps demonstrated that 

mitochondria became less aligned after BSO treatment (Fig. 3.3A (a’’’’-d’’’’)), which produced 

significantly higher values at concentrations of 5mM (p=0.0339) and 12.5mM (p=0.0011) relative 

to untreated controls. 
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Figure 3.2. Laser confocal imaging of actin (Phalloidin) in NIH 3T3 cells treated with BSO at 0, 

2.5, 5, and 12.5 mM for 24 hours. Representative 60x averaged z-stack images showing the 

substantial depolymerization of F-actin caused by depletions of GSH levels (A). Field 

composites of Mitotracker Red, Phalloidin and NucBlue (a-d). Phalloidin signal representing F-

actin (a’-d’). Resulting MBM maps (a”-d”), Fiber orientation maps (a”’-d”’), and DV maps 

(a””-d””) of actin. Average FD (B) and DV (C) bar graphs. 
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Figure 3.3. Laser confocal imaging of mitochondria (Mitotracker Red) in NIH 3T3 cells treated 

with BSO at 0, 2.5, 5, and 12.5 mM for 24 hours. Representative 60x averaged z-stack images 

showing the reorganization of mitochondria due to cellular stress (A). Field composites of 

Mitotracker Red, Phalloidin and NucBlue (a-d). Mitotracker Red signal representing 

mitochondria (a’-d’). Resulting MBM maps (a”-d”), Fiber orientation maps (a”’-d”’), and DV 

maps (a””-d””) of mitochondria. Average FD (B) and DV (C) bar graphs. 
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3.2.3 Nuclear Aspect Ratio 

Nuclear Aspect Ratio (NAR) decreases in response to BSO treatment 

BSO treatment also caused a change in the shape of the nucleus. To quantify these changes, 

each nucleus within an image field was approximated as an ellipse. Using the regionprops function 

in MATLAB, the size of the major and minor axis (in pixels) of each ellipse was measured. 

Average NAR was then calculated based on the total number of cells per image field. Following 

BSO treatment, the cells presented a smaller cell nucleus cross-section that could be related to a 

change in nuclear shape or size (Fig. 3.4A (a-d, a’-d’). Nuclear aspect ratio maps showed the 

nucleus of many cells becoming less elongated after treatment (Fig. 3.4A (a’’-d’’)), resulting in a 

significant decrease in nuclear aspect ratio at BSO concentrations of 5mM (p=0.0336) and 12.5mM 

(p=0.0013) relative to untreated controls (Fig. 3.4B).  
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Figure 3.4. Laser confocal imaging of nuclei (NucBlue) in NIH 3T3 cells treated with BSO at 0, 

2.5, 5, and 12.5 mM for 24 hours. Representative 60x averaged z-stack images showing the 

morphological changes of cell nuclei caused by a depolymerized cytoplasm (A). Field 

composites of Mitotracker Red, Phalloidin and NucBlue (a-d). NucBlue signal representing 

nuclei (a’-d’). Resulting Nuclear Aspect Ratio maps (a”-d”). Average Aspect Ratio bar graph 

(B). 
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3.2.4 Correlations 

Correlations among subcellular features demonstrates interconnected behavior in response to 

BSO treatment 

Correlations Significant correlations among FD, DV, and NAR were identified from the 

images of actin, mitochondria, and cell nuclei (Table 3.1). Nuclear aspect ratio was significantly 

correlated with mitochondria (FD and DV) as well as actin (FD and DV) changes (Table 1). 

Among the strongest relationships, there was a negative correlation between nuclear aspect ratio 

and actin DV (R=-0.533, p<0.0001) (Fig. 3.5). There also were strong positive correlations 

between mitochondria DV and actin DV (R=0.5038, p<0.0001), as well as between actin FD and 

mitochondria FD (R=0.443, p<0.0001) (Fig. 3.5). Actin FD and mitochondria DV (R=-0.3633, 

p<0.0001) also were weakly correlated. Interestingly, measurements of actin (FD and DV) were 

correlated with each other (R=-0.5891, p<0.0001), while measurements of mitochondria (FD and 

DV) were not (R=-0.086, p=0.1899). 

Structural feature Structural feature Correlation p-value 
Actin FD Actin DV -0.5891 <.0001 

Nuclear Aspect Ratio Actin DV -0.533 <.0001 

Mitochondria DV  Actin DV 0.5038 <.0001 

Actin FD Mitochondria FD 0.443 <.0001 

Nuclear Aspect Ratio Actin FD 0.3883 <.0001 

Actin FD Mitochondria DV -0.3633 <.0001 

Nuclear Aspect Ratio Mitochondria DV -0.2822 <.0001 

Mitochondria FD  Actin DV -0.1519 0.0201 

Mitochondria FD  Mitochondria DV -0.086 0.1899 

Nuclear Aspect Ratio Mitochondria FD 0.0477 0.4673 

 

Table 3.1. Correlation table of cell structure measurements. Table showing the correlation of FD, 

DV, and NAR measurements between the stained cellular structures (mitochondria, actin, and 

cell nuclei). 
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Figure 3.5. Correlation scatterplots of structural features showing the relationship among 

measurements of FD, DV and NAR of NIH 3T3 cells in response to BSO treatments at 0, 2.5, 5, 

and 12.5 mM. 

 

3.3 Discussion 

Our study demonstrates that the set of automated techniques we developed is capable of 

simultaneously quantifying structural changes in alignment and organization of both the 

mitochondria and the actin cytoskeleton (Fig. 3.2 & Fig. 3.3), which correlated with changes in 

the elongation of the cell nuclei (Fig. 3.4). Furthermore, we also demonstrated that values of FD 

and DV in both the actin and mitochondria were closely correlated with each other, providing a 

quantitative measure of the relationship between the cytoskeleton and mitochondrial network 

following exposure to a cellular stressor such as BSO (Fig. 3.5). Many of these changes (Fig. 3.2-

3.3) occurred in a dose-dependent manner that matched the level of oxidative stress (Fig. 3.1), 

suggesting our toolset may provide a sensitive approach to quantifying the structural changes 

resulting from other pathological conditions that are associated with oxidative damage, such as 

diabetes [29, 30], cancer [31, 32], Alzheimer’s [33, 34], Parkinson’s [35, 36], and cardiovascular 

disease [37].  
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Glutathione (GSH) is the most abundant thiol molecule synthesized by cells [38, 39], and 

as an antioxidant, its main role is to neutralize xenobiotic compounds and reactive species, thus 

preventing oxidative damage [38]. However, GSH is also involved in multiple cellular dynamics 

that play a key role in maintaining the cell cycle. For instance, a decline in the homeostatic levels 

of GSH can promote mitochondrial ROS, impairing bioenergetics and encouraging mitochondrial 

permeability transition pore (mPTP) opening, which is crucial for cell death in both apoptosis and 

necrosis [40]. In addition, GSH also monitors cellular division in the cell nucleus [41] and 

modulates multiple signaling cascades [40]. Although GSH has been widely studied in the past, 

few experiments have been performed to address and quantify the morphological effects of 

reducing the abundance of such a molecule in mammalian cells. Using BSO as a GSH depletion 

drug in our experiments, we were able to validate that lowering the GSH levels of cells such as 

fibroblasts not only disrupts homeostasis and cell morphology, but also affects the morphology of 

multiple subcellular structures (Fig. 3.2-3.4).  

Similar to our study, previous work has reported the use of BSO in inducing changes in 

cellular dynamics. For instance, BSO has been applied to decrease the levels of GSH in MSN 

neuroblastoma cells, leading to the depolymerization of the cytoskeleton [28]. In that study, GSH 

levels were depleted 70% compared to the control while preventing oxidative stress. As a result, 

the expression of actin binding proteins decreased, leading to morphological changes in the 

cytoskeleton. Similar findings were also reported in a study exploring the relationship of actin 

glutathionylation and cell spreading [42]. We complemented these observations by quantifying the 

changes in the alignment and organization of the cytoskeleton through DV and FD measurements 

of actin following similar BSO treatments (Fig. 3.2). We showed that the depletion of GSH through 

increasing BSO concentrations disrupts the shape of the cells, increasing the clustering and the 
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directional variance of the cytoskeleton as shown by the dynamic changes in actin filament 

organization (Fig. 3.2). Oxidative stress has also been reported to be linked to the depletion of 

GSH [26, 28] and the presence of mitochondria superoxide and other reactive species [43, 44]. 

BSO treatments produced an increase in mitochondrial oxidative stress (Fig. 3.1B,C), which also 

coincided with an increase in mitochondrial directional variance, suggesting more of a punctate 

organization (Fig. 3.3), which has been reported to occur in oxidative stress conditions [33, 45]. 

Quantitative assessments of the organization of certain subcellular structures have been 

previously explored. For example, Fourier-based techniques have been widely used in the 

quantification of actin fiber orientation [46, 47]. Although these techniques proved to be sufficient 

to approximate changes in fiber alignment, they tend to be highly influenced by edge effects and 

secondary methods of thresholding. Other techniques have also been employed to quantify the 

mitochondrial organization. For example, skeletonization has been used in the past to measure the 

dynamics and branching of mitochondrial filaments following the introduction of external agents 

[48, 49]. In addition, computational techniques such as box counting [50] and power spectral 

density [51] have been employed to understand the behavior of mitochondria in multiple scenarios. 

Similar to Fourier-based techniques, these methods require extra steps of image processing, 

segmentation, and de-noising prior to the actual quantification, making them unsuitable for the 

analysis of large data sets or images with inherently low signal-to-noise ratios, such as 

autofluorescence imaging [22, 52]. In comparison, our techniques do not require pre-processing 

of any kind and can be applied at different length scales of spatial resolution on a pixel-by-pixel 

basis without thresholding or segmentation. In addition, our methods proved to be accurate and 

sensitive to changes in the organization of both actin and mitochondria. More importantly, they 

can quantify both fiber alignment and fractal organization simultaneously, allowing a 
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comprehensive assessment of organization that can be compared to additional measurements, such 

as nuclear aspect ratio [46]. 

Combining both feature clustering and orientation analysis techniques that do not rely on 

time-consuming pre-processing steps represents a significant advantage in fluorescence 

microscopy. Since we are now capable of assessing the relationships among actin, mitochondria, 

nuclei, and potentially other subcellular structures, we can more objectively assess structural 

dynamics and the relative effects of different cellular perturbations, whether they are chemical, 

mechanical, internal, or external. Due to the low computational costs and the rapid speed of this 

analysis, we could also employ these techniques on larger image data sets, such as tissue samples 

or 3D organoid cultures, in which we could evaluate the heterogeneity of subcellular structures in 

complex pathological conditions such as diabetes, cancer, or aging. As microscopy techniques 

continue to generate larger and larger data sets through enhancements in imaging depth, resolution, 

and speed, these rapid and automated image analysis techniques will be critical in understanding 

complex biological relationships and disease states. 

3.4 Materials and Methods 

3.4.1 Cell culture and L-buthionine-sulfoximine (BSO) treatment 

Frozen mice fibroblasts (NIH 3T3) were thawed and passaged to 75mL treated cell 

culture flasks (VWR 10861-646) at a density of 500,000 cells/mL to reach a stable cell growth 

prior to experimentation. The cells’ necessary nutrients were provided in complete media, 

containing Dulbecco's Modified Eagle Medium (DMEM) (VWR VWRL0101-0500) with 10% 

Fetal Bovine Serum (FBS) and 1% L-glutamine. Upon reaching confluency, the cells were 

passaged to 35 mm glass bottom dishes (MatTek Corporation P35G-1.5-10-C) previously treated 

with human fibronectin (Corning® VWR 47743-654), which promoted cell adhesion and 
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prevented the cells from detaching after treatment. Cells were seeded at a density of 60,000 

cells/mL on each dish and allowed to grow for 24 hours at 37°C. Cells were monitored for 

accurate confluency prior to treatment after this period of time. BSO (Sigma-Aldrich B2515-1G) 

was diluted in cold distilled water following the supplier’s protocol to create a stock solution. 

Under sterile conditions, the BSO stock solution was further diluted in complete media to a final 

volume of 1 mL at 0, 2.5, 5, or 12.5 mM separately. Cells were incubated in BSO media for 24 

hours at 37°C.  

3.4.2 Cell viability assessment 

A live/dead fluorescent staining kit was employed to assure the viability of the cells after 

BSO treatment. LIVE/DEAD™ Viability/Cytotoxicity Kit (Thermo Fisher Scientific L3224) was 

used to label live and dead cells. Following the supplier’s protocol, live and dead cells were stained 

with Calcein-AM and Ethidium homodimer-1 (EthD1) respectively. Calcein-AM indicated 

intracellular esterase activity in green, and EthD1 showed loss of membrane integrity in red. 

Images of each BSO treatment were acquired using a laser scanning confocal microscope and the 

average percentage of live cells was calculated. 

3.4.3 Oxidative stress assessment 

After BSO treatment, cells were washed with complete DMEM and labeled with MitoSOX 

Red (Thermo Fisher Scientific M36008) following the manufacturer’s protocol. MitoSOX labels 

mitochondria, where it becomes oxidized by superoxide and fluoresces red. Images were acquired 

on a laser scanning confocal microscope with the same detector sensitivity and laser power, and 

the average intensity of the acquired images was calculated. 
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3.4.4 Cellular staining 

After being in BSO treatment for 24 hours, the cell culture dishes (n=6 per concentration) 

were stained with MitoTracker™ Red CMXRos (Thermo Fisher Scientific M7512) and 

NucBlue™ Live ReadyProbes™ Reagent (Thermo Fisher Scientific R37605), which labeled 

mitochondria and cell nuclei respectively. The cells were incubated in the staining solutions for 45 

minutes at 37°C. The staining solution was then aspirated, and the cells were washed with complete 

media two times. Following this, the cells were fixed using a warm solution of 3.7% 

Paraformaldehyde (PFA) (Sigma-Aldrich 158127) in DMEM for 20 minutes at 37°C. The cells 

were washed three times with phosphate-buffered saline (PBS) (Sigma-Aldrich P4417) to remove 

any remaining PFA. Afterwards, blocking was performed using a 10% bovine serum albumin 

(BSA) (VWR 0332) solution in PBS for 1 hour at 37°C. Lastly, actin was labeled with a staining 

solution containing 1% BSA in PBS and Alexa Fluor™ 488 Phalloidin (Thermo Fisher Scientific 

A12379). The cells were incubated in the staining solution for 25 minutes at room temperature 

covered from light. The solution was aspirated and the cells were washed three times with PBS. 

3.4.5 Image acquisition via laser scanning confocal microscopy 

A laser scanning confocal microscope (Olympus Fluoview FV10i) was used to acquire 

images with a 60x water immersion objective (NA=1.2). In order to reduce the amount of 

background and out of focus light, image acquisition was performed using the smallest confocal 

pinhole size (ø=50 µm). Image size for acquisition was set to 1024x1024 pixels. For the cell 

viability (Calcein-AM and EthD1) and MitoSOX assessments, live cell imaging (at 5% CO2 and 

37°C) was performed. For the triple staining experiment (actin, mitochondria, and nuclei), images 

were acquired after PFA fixation. Fluorescent excitation of the dyes was achieved using three 

lasers (405, 473, and 559 nm). Emission was captured through the use of multiple filters. 
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Fluorescence from Calcein-AM and actin (Phalloidin) was acquired using the 473 nm laser for 

excitation with a 520 nm filter for emission. Fluorescent signal from EthD1, MitoSOX, and 

mitochondria (Mitotracker) was obtained with the 559 nm laser for excitation with a 618 nm, a 

581 nm, and a 598 nm filter for emission respectively. Lastly, fluorescence from nuclei (NucBlue) 

was achieved using the 405 nm laser for excitation and a 461 nm filter for emission. 

3.4.6 Fractal Dimension 

We employed a modified blanket method to assess fractal dimension that was previously 

developed [22]. Briefly, this technique interprets an intensity image as a topographical map. Both 

the vertical and horizontal gradients of the intensity image are first computed. Using a disk kernel 

of user-defined radius, the gradients are convolved multiple times at different image resolutions. 

Afterwards, they are used to compute local changes in surface area (SA) as a function of pixel size 

through the power law exponent β [22]. A FD map is then computed at each image pixel location 

from this relationship as:  

𝐹𝐷 = 2 −
Δ log  (SA)

Δ log  (pixel size)
= 2 − 𝛽           (1) 

Using the FD map, the average FD can be computed by adding the calculated FD values 

of each individual pixel over a region of interest (ROI) and dividing by the number of pixels within 

the same ROI. 

3.4.7 Fiber Orientation and Directional Variance 

Fiber orientation was computed at each pixel using a previously established vector 

summation technique [23]. To compute fiber orientation, the program identifies variations in 

image intensity along different vector orientations through each pixel and computes an orientation 

based on the summation of all vectors weighted by the maximum possible standard deviation of 
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intensity. Similar to the MBM, fiber orientation was summarized by computing a pixel-wise fiber 

orientation map. With this map, the x- and y- components of the alignment vector were separated. 

Using a disk kernel of user-defined radius, these components and a binary mask of the ROI were 

convolved, resulting in images of the average x- and y- alignment vector components and the local 

density of ROI pixels [24]. Lastly, directional variance is calculated by normalizing the magnitude 

of the resultant alignment vector (R) with the local density of ROI pixels (m) as: 

𝐷𝑉 = 1 −
R

m
                (2) 

Where alignment extends from 0 (completely aligned) to 1 (no favored direction) [24]. 

3.4.8 Nuclear Aspect Ratio (NAR) 

Cell nuclei images were isolated using a binary mask applied through thresholding of the 

NucBlue staining patterns in MATLAB. Using the function regionprops [46], which measures 

multiple properties of the binary mask, small image features and non-nuclei artifacts were isolated 

based on their pixel area. In doing so, features with areas smaller than 350 pixels were 

automatically removed from NAR calculations. Using the same function, the major and minor axis 

(in pixels) from the remaining artifacts in the binary mask (cells) were automatically computed. 

The average nucleari aspect ratio was then calculated as the ratio of the major and minor axes. 

3.4.9 Statistical Analysis 

FD, DV, and NAR values were obtained from a total of 240 image fields, each containing 

three different cellular structures (actin, mitochondria, and cell nuclei), from a total of 6 culture 

dishes per BSO concentration. A one-way ANOVA with image fields nested within dishes was 

used to quantify differences between BSO treatments for mitochondria, actin, and cell nuclei 

separately in JMP, and Tukey HSD post hoc tests were used to identify differences among BSO 
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concentrations. Correlations were performed while considering all BSO concentrations with the 

null hypothesis that R=0. Significance was set at α=0.05 for all assessments. 
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CHAPTER 4 

CONCLUSION AND FUTURE DIRECTIONS 

4.1 Conclusion 

 As explained in Chapter 1, assessing the dynamics of cellular structures through their 

organization and morphology has proven to be significantly important in understanding the 

behavior of certain pathological conditions [1, 2]. It was further explained that through novel 

imaging devices, it is possible to isolate and closely observe multiple organelles as they interact 

to a certain stimulus [3, 4]. However, it was also demonstrated that many of the current image 

analysis techniques are still behind, having problems to quantify cellular characteristics without 

multiple steps of processing and image segmentation [5, 6]. 

 Throughout the experiments performed in Chapter 2 and Chapter 3, it was proven that the 

image analysis techniques developed were useful for fractal organization, fiber alignment, and 

nuclear elongation quantification. The MBM [7], being the newest among these techniques, 

showed sensitivity to a higher range of FD values, and proved to be efficient in both assessing 

mitochondrial clustering from simulated fractal clouds and NADH auto-fluorescence pictures 

[7]. By inducing cellular changes through the depletion of GSH with BSO in Chapter 3, it was 

shown that the organization and fiber orientation of actin and mitochondria changed overtime. 

Laser scanning confocal images showed a clear disruption of the actin cytoskeleton, which in 

turned affected the alignment of the mitochondria, and lastly the shape of the nuclei. Combining 

the image analysis of the MBM with DV and NAR, showed that these techniques can measure 

organization, alignment, and nuclear elongation simultaneously within the same image field on a 

pixel-by-pixel basis and without segmentation [7-10]. Moreover, correlations of FD, DV, NAR 

measurements showed a clear relation of the cellular dynamics among actin, mitochondria, and 
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cell nuclei, which could be used to understand the consequences and effects of damaged cellular 

structures in the overall state of the cell. 

 To summarize, with the inclusion of the new developed set of computational techniques 

introduced in this thesis, it is possible to measure significant cellular changes that have been 

observed in certain pathological conditions, and in addition, correlate these findings with other 

biological assessments to aid in the study of multiple mechanisms that are still not clarified. 

4.2 Future directions 

Techniques of image analysis are important to obtain significant measurements from 

digital data. As the field continues to expand, it would possible to include different cellular 

structures which also play important roles in maintaining cell homeostasis. Moving forward, it 

could also be possible to apply similar measurements at a higher scale to also quantify properties 

of tissue sections. As previously stated, there are still multiple cellular mechanism being 

explored; and as more sophisticated imaging devices and methods to contrast cellular structures 

continue to arise, applying these techniques will aid on clarifying the dynamics and properties 

behind them. 
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APPENDIX A 

MATLAB SCRIPTS 

 

A.1 Modified Blanket Method (MBM) 

This appendix contains the Matlab files used to create fractal dimension (FD) maps from 

images obtained using the laser scanning confocal microscope, as described in Chapter 3. The 

function MBM.m computes and maps fractal dimension on a pixel-by-pixel basis. Within this 

script, the user must input the value of a few variables. These variables include the value of the 

background intensity to isolate the region of interest (create a binary mask) as marked by the 

variable “back_int”, and the size of the convolution radius as marked by the variable “xx”. In 

addition, the function MBM.m calls modified_blanket_2.m, which is responsible of computing 

and recording the changes in local surface area as a function of image resolution. Lastly, the 

function MBM.m calls doubleim2ind.m which sets up the upper and bottom limits of the FD 

map prior to mapping.  

 

 

MBM.m 
 

%% Loading images 

%% Place all images in the corresponding MATLAB folder 
tic 
clc, clear, close all 

 

%% Select input format: “png, jpeg, tif” 

files = dir('*.tif');  

 

%% Reading images 

for ii=1:length(files) 
im=imread(files(ii).name); 

 

%% Plotting original images 

figure;imagesc(im);title('Original Image');colormap gray;colorbar; 

 

%% Assigning grayscale for further analysis 

for i=1:length(files),disp(files(i).name);end 
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im=mean(double(im),3); 
imoi=mean(double(im),3); 
Windows1=mat2gray(im); 

  
%% Getting rid of background signal 

%% This number is manually set depending on the quality of the image, and is 

%% subject to change depending on acquisition criteria 
back_int=40;  
imoi=imoi-back_int; 

 

%% Assigning intensity = 0 to the background 

imoi(imoi<=0)=0; 

 

%% Changing the range of image intensity between 0 and 1 
imoi=imoi/(max(max(imoi))); 
Windows2=mat2gray(imoi); 

 
%% Plotting grayscale image  

figure;imagesc(imoi);title('Background = 0');colormap gray; colorbar; 

  
%% Modified Blanket analysis 

%% Select wanted convolution radius (CR) 

xx=25; 

Cells=im; 

 

%% Apply the MBM function: 

[sa_cells ps]=modified_blanket_2(Cells,xx); 

 

%% Extracting pixel size and surface area data after applying the MBM 

%% function: 

x=log(ps); 
y=log(sa_cells); 
 

%% Getting rid of first value to improve accuracy: 

x=x(2:xx); 
y=y(:,:,2:xx); 
 

%% Computing slope: 

slope(:,:,1)=(y(:,:,2)-y(:,:,1))/(x(2)-x(1)); 
for i=2:(length(x)-1) 
    slope(:,:,i)=(y(:,:,i+1)-y(:,:,i-1))/(x(i+1)-x(i-1)); 
end 

slope(:,:,length(x))=(y(:,:,length(x))-y(:,:,length(x)-1))/(x(length(x))-

x(length(x)-1)); 

for i=1:xx; 
    x(i)=(mean(mean(sa_cells(:,:,i),1),2)); 

end 

  
%% Creating FD Map 
FDmap=real(2-mean(slope(:,:,1:end),3)); 
FDc=doubleim2ind(FDmap,2.7,2.5); 
FDc=ind2rgb(FDc,jet(256)); 
FDmap(isnan(FDmap))=0; 
FDmap(isinf(FDmap))=0; 

  
%% Isolating FD Signal based on image intensity 



 56  
 

%% This creates a binary mask with the ROI 
Signal=double(imoi>0.075); 
se = strel('disk',5); 

 
%% Image operations to improve mask:  

%% “erosion, dilation, closing, and opening” 

%% Recall some of these may be skipped if not needed 

Signal = imdilate(Signal,se); 
Signal = imclose(Signal,se); 
Signal = imopen(Signal,se); 
Signal = imerode(Signal,se); 

 

%% Isolating pixels within the ROI of the FD Map 

Av_FD=FDmap.*(Signal); 

 

%% Plotting binary mask and FD Map for assessment of ROI 
figure;imagesc(Signal);colormap gray 

figure;imagesc(FDc.*imoi.*Signal);title('Average Local FD (Intensity 

image)');colormap jet;colorbar;caxis([2 4]); 

  
%% Calculating average FDwithin the ROI 
Average_FD1=(sum(sum(Av_FD))/(sum(sum(Signal)))); 
Fractal_dim1(ii)=(sum(sum(Av_FD))/(sum(sum(Signal)))); 
clear('slope') 

 
%% Saving FD Maps and resultant images after processing: 
imwrite(FDc.*imoi.*Signal,sprintf('%s FD %d.png',files(ii).name,xx)) 
imwrite(Signal,sprintf('%s Mask.png',files(ii).name)) 
imwrite(Windows1,sprintf('%s.png',files(ii).name)) 
imwrite(Windows2,sprintf('%s No back.tif',files(ii).name)) 
close all 
end 

 
%% Obtaining table of average FD values: 
FD_values1=Fractal_dim1'; 
toc 

 

modified_blanket_2.m 
 

%% MBM function (separate m-file) with descriptions: 

function [side_surface_cloud pixel_size_cloud]= modified_blanket(cloud,sz); 
% This function approximates the fractal dimension of cell images. 
% cloud = original image to be analyzed 
% sz = size of the convolution disk 

  
%% Modified Blanket Method - Main image, kernels, and convolution disk 
Image=cloud; 

kernel_hor=[1 -1 0]; 
kernel_ver=[0;-1;1]; 
hk=fspecial('disk',sz)*sz^2*pi; 
j=0; 

  
%% Resizing and Convolution Loop 
for i=sz:-1:1 
    size(Image,1):-2:round(size(Image,1)/(2/sqrt(2)*sz)); 
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    newimsize=round(i/sz*size(Image,1)); 
    hk2=imresize(hk,[i i]); 

         
    j=j+1;  
    Image_resized=imresize(Image,[newimsize newimsize]); 

       
    Imagef_hor=imfilter(Image_resized,kernel_hor,'symmetric'); 
    Imagef_ver=imfilter(Image_resized,kernel_ver,'symmetric'); 
    Ih=imfilter(abs(Imagef_hor),hk2,'symmetric'); 
    Iv=imfilter(abs(Imagef_ver),hk2,'symmetric'); 
    

side_surface_cloud(:,:,j)=imresize(size(Image,1)/i/sz*(Ih+Iv),size(Image)); 
pixel_size_cloud(j)=size(Image,1)/i*sz; 
end 
end 

 

doubleim2ind.m 
 

function [B]=doubleim2ind(A,uplim,botlim)  

  
B=(A-botlim)*(255/(uplim-botlim)); 
  B=double(uint8(B)); 

   
end 
 

 

A.2 Nuclear Aspect Ratio (NAR) 

This appendix contains the Matlab files used to compute and map changes in nuclear 

aspect ratio (NAR) from images obtained using the laser scanning confocal microscope, as 

described in Chapter 3. The function NAR.m computes and maps changes in the nucleus by 

measuring the axis properties of each nuclei after being isolated with a binary mask. Within this 

script, the user must input the value of a few variables. These variables include the value of the 

background intensity to isolate the region of interest (create a binary mask) as marked by the 

variable “back_int”, and the size of the erosion radius to remove non-nuclear articfacts as 

marked by the variable “se”. The NAR.m also calls doubleim2ind.m to set up the upper and 

bottom limits of the NAR map prior to mapping.  
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NAR.m 
 

%% Place all images in the corresponding MATLAB folder 

tic 
clc, clear, close all 

 

%% Select input format: “png, jpeg, tif” 
files = dir('*.png'); 

 

%% Loading images 
for ii=1:length(files) 
im=imread(files(ii).name); 

 

%% Plotting original images 
figure;imagesc(im);title('Original Image');colormap gray;colorbar; 

 

%% Assigning grayscale for further analysis 

for i=1:length(files),disp(files(i).name);end 
imoi=mean(double(im),3); 
raw=mat2gray(imoi); 

 

%% Saving grayscale images 
imwrite(raw,sprintf('%s.png',files(ii).name)) 

  
%% Getting rid of background signal 

%% This number is manually set depending on the quality of the image, and is 

%% subject to change depending on acquisition criteria 
back_int=20;  
imoi=imoi-back_int; 

 
%% Assigning intensity = 0 to the background 

imoi(imoi<=0)=0; 

 

%% Assigning intensity = 0 to the background 

imoi=imoi/(max(max(imoi))); 

 

%% Isolating FD Signal based on image intensity 

%% This creates a binary mask with the ROI 
Signal=double(imoi>0); 

 

%% Image operations to improve mask:  

%% “erosion, dilation, closing, and opening” 

%% Recall some of these may be skipped if not needed 

se = strel('disk',5); 

Signal = imdilate(Signal,se); 
Signal = imclose(Signal,se); 
se = strel('disk',5); 
Signal = imerode(Signal,se); 

 
%% Plotting binary mask 
figure;imagesc(Signal);title('Mask');colormap gray; colorbar; 

  
%% NAR Calculations 

%% bwlabel is used to count the amount of cells 
[SG, L(ii)] = bwlabel(Signal); 
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%% Applying region props to extract characteristics of the binary mask: 
props=regionprops('table',SG,'Area','MajorAxisLength','MinorAxisLength','Peri

meter') 
Area=props.Area; 
Major=props.MajorAxisLength; 
Minor=props.MinorAxisLength; 
Perimeter=props.Perimeter; 
Circularity = (4 * pi * Area)./ (Perimeter .^ 2); 
SG1=SG; 

  
%% Getting rid of non-nuclei artifacts 

%% This is done based on the total area in pixels of the nuclei artifacts 
for nn=1:L(ii) 

    
if Area(nn)<350 
    Major(nn)=0; 
    Minor(nn)=0; 
    Ratio(nn)=0; 
    L(ii)=L(ii)-1; 

     
else 
    Ratio(nn)=Major(nn)/Minor(nn); 
end 
end 

 

%% Computing average NAR 

Av_ratio(ii)=sum(Ratio)/L(ii); 
Ratio_map=Ratio; 
clear Ratio 

  
for kk=1:max(max(SG1)) 
SG1(SG1==kk)=Ratio_map(kk); 
end 
Signal_1=SG1>0; 

 

%% Saving binary mask 
imwrite(Signal_1,sprintf('%s Mask.png',files(ii).name)) 
 

 

%% Creating Aspect Ratio Map 
FDc=doubleim2ind(SG1,2,1); 
FDc=ind2rgb(FDc,jet(256)); 
FDmap(isnan(FDc))=0; 
FDmap(isinf(FDc))=0; 

 
%% Plotting and saving NAR Map 
figure,imagesc(FDc.*imoi),colormap jet,caxis([1 2]); 
imwrite(FDc.*imoi,sprintf('%s NucMap.png',files(ii).name)) 
close all 
end 

 
%% Creating data table with Average NAR and number of cells per image field 
Nuc_data=[Av_ratio' L'] 

toc 
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