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Abstract 

Background 

Gene expression profiling by microarray has been used to uncover molecular variations in many 

different diseases. Complementary to conventional differential expression analysis, differential 

co-expression analysis can identify gene markers from the systematic and granular level. There 

are three aspects for differential co-expression network analysis, including the network global 

topological comparison, differential co-expression cluster identification, and differential co-

expressed genes and gene pair identification. To date, most of the methods available still rely 

on Pearson’s correlation coefficient despite its nonlinear insensitivity.  

Results 

Here we present an approach that is robust to nonlinearity by using the edge-count test for 

differential co-expression analysis. The performance of the new approach was tested with 

synthetic data and found to have significant results. For real data, we used a human cervical 

cancer data set prepared from 29 pairs of cervical tumor and matched normal tissue samples. 

Hierarchical cluster analysis resulted in the identification of clusters containing differentially co-

expressed genes associated with the regulation of cervical cancer.  

Conclusion 

The proposed approach targets all different types of differential co-expression and it is sensitive 

to nonlinear relations. It is easy to implement and can be applied to any sequencing data to 

identify gene co-expression differences between multiple conditions.  
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Chapter 1 - Introduction   

Networks provide a straightforward depiction of interactions between the nodes. Intuitive 

network concepts (e.g. connectivity and module) have been found useful for analyzing complex 

interactions such as gene co-expression networks (Gov & Arga, 2017). Gene co-expression 

networks can be reconstructed from gene expression data using pair-wise correlation 

metrics that identify sets of genes that are expressed in a coordinated fashion. Altered co-

expression patterns of genes between two states (for instance, healthy vs. tumor)  may 

indicate rewiring of transcriptional networks in response to disease or adaptation to different 

environments. Analysis of such an alteration, also called differential co-expression analysis (de 

la Fuente, 2010), represents significant potential to identify gene clusters affected by state 

transition, and provide valuable insights on elucidation of the disease mechanisms and 

identification of molecular signatures of the disease (Farahbod & Pavlidis, 2018).  

 

In general, the first step in differential co-expression analysis requires defining individual 

connections between genes based on correlation measures or mutual information between 

each pair of genes (van der Graaf, Franke, Võsa, van Dam, & de Magalhães, 2017) and a 

correlation cut-off given to filter the low-correlation pairs. This usually involves the assumption 

that genes are jointly normally distributed, i.e., there exists a linear correlation between genes, 

such that the hypothesis test can be written as: 

    𝐻0: 𝜌1 = 𝜌2 vs. 𝐻𝛼: 𝜌1 ≠ 𝜌2 

where 𝜌1 and 𝜌2 represent the true correlation coefficients between gene A and gene B in two 

phenotypes. Fisher’s z-transformation is then employed to stabilize the variance of sample 

correlation coefficients in each condition, and serve as a normalizing transformation (McKenzie, 

Katsyv, Song, Wang, & Zhang, 2016): 

 𝑧1 = 
1

2
𝑙𝑜𝑔

1 + r1
1 − r1

→ 𝑁(
1

2
𝑙𝑜𝑔

1 + 𝜌1
1 − 𝜌1

,
1

√𝑛1 − 3
), 

𝑧2 = 
1

2
𝑙𝑜𝑔

1 + r2
1 − r2

→ 𝑁(
1

2
𝑙𝑜𝑔

1 + 𝜌2
1 − 𝜌2

,
1

√𝑛2 − 3
), 
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where 𝑟1 and 𝑟2are the sample correlation coefficients, and 𝑛1 and 𝑛2 stand for the sample 

sizes of two phenotypes. A two-sided p-value is calculated using the standard normal 

distribution: 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 2𝑃

(

 𝑍 >
|𝑧1 − 𝑧2|

√
1

𝑛1 − 3
+

1
𝑛2 − 3)

 , 

where Z represents a standard normal random variable. The false discovery rate is controlled 

using Benjamini-Hochberg’s procedure (Benjamini & Hochberg, 1995) with an adjusted p-

value threshold to determine the statistical significance of differential co-expression. 

 

Chapter 2 – Materials & Methods 

Numerous methods have been developed to detect and measure the differential co-expression 

of genes including methods to identify differentially co-expressed gene clusters which use 

newly detected gene sets or predefined set of genes. Most of these methods use Pearson’s 

product-moment correlation which implicitly assumes linear correlation and joint normal 

distribution in the previously described framework (Ihmels, Bergmann, Berman, & Barkai, 2005; 

Kendziorski & Choi, 2009; Southworth, Owen, & Kim, 2009). However, the assumption of joint 

normality is over simplistic as gene expression data can strongly deviate from normality. It has 

been suggested that the sampling distribution of Pearson’s product-moment correlation is 

insensitive to the effects of non-normality and is underpowered in detecting nonlinear changes 

in gene co-expression (Bishara & Hittner, 2012). For instance, nonlinear transformations such as 

taking the square root or the reciprocal of variable x (increases or decreases) linear 

relationships between variables, changes the correlation between variables and handicaps the 

performance of Pearson’s correlation.  

With the exception of Southworth et al. (2009), who used Spearman’s correlation to build 

weighted co-expression networks, most existing methods use a targeted approach. For 

example, Kendziorski et al. (Kendziorski & Choi, 2009) proposed a targeted approach  that 

focused on the analysis of modules based on known gene annotations, and used dispersion 

indices to test for the significance of resulting gene set co-expression changes. Though the 
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method has the advantage of not requiring strong correlations between gene sets, it relies on 

the study of known functional gene sets and is not able to identify novel, non-annotated 

modules or modules that would only partially match annotated categories.  

On the other hand, DCA (differential clustering analysis) (Ihmels et al., 2005) is an example of a 

“semi-targeted” approach which uses the modules defined in one condition as a reference for 

the second condition.  In order to avoid bias towards one of the conditions, Ihmels et al. 

suggested doing a reciprocal analysis, switching the reference and target conditions, while 

Southworth et al. used a third dataset as reference whilst applying hierarchical clustering using 

the difference in pair-wise correlations between both conditions as a similarity metric for two 

genes  (Southworth et al., 2009). A drawback of this approach is the neglect of weak but 

significant condition-dependent correlation structures between groups of genes that might 

otherwise belong to distinct, strongly co-expressed and conserved clusters. 

 

Other methods (Hyojin, Junehawk, & Seokjong, 2016; Liesecke et al., 2018) attempt to correct 

for Pearson’s limitation by ranking correlation coefficients.  For example, (Hyojin et al., 2016) 

successfully applied Differential Co-Expression Networks (DCENs) to identify dynamic changes 

in gene regulatory networks through graphical representation of the differences of co-

expression correlation changes of gene pairs between conditions. Though the co-expression 

networks were generated using Pearson’s correlation, the meta-analysis was conducted using 

rank-based methods. (Liesecke et al., 2018) ranked Pearson’s correlation coefficients and 

compared them with Spearman’s, and found that ranking partially corrects for the range 

restriction effect though the correlations were robust for high variance genes only.  

 

Above all, weighted gene co-expression network analysis (WGCNA) is the most commonly used 

tool to detect differentially co-expressed clusters (Langfelder & Horvath, 2008). It constructs 

the co-expression network using Pearson’s correlation and defines a dissimilarity measure for 

gene nodes. Then, average linkage hierarchical clustering is applied, coupled with the 

dissimilarity matrix to identify differentially co-expressed clusters. A preservation analysis can 
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be applied to test whether clusters detected in one condition are preserved in another 

condition.  

A comparable method DiffCoEx (Tesson, Breitling, & Jansen, 2010) provides two types of 

differential co-expression: within-cluster differential co-expression and cluster-to-cluster 

differential co-expression. They build an adjacency matrix using Pearson’s correlation 

coefficient, and calculate the topological overlap measure to identify genes that share similar 

neighbors. The clusters are identified by the dissimilarity matrix. The statistical significance of 

differential co-expression is assessed using a statistical measure. This method can be extended 

to studies of more than two conditions. 

As discussed, previous methods focused on identification of differentially co-expressed gene 

pairs, revealing many insightful biological hypotheses. However, these methods rely on 

Pearson’s correlation which is insensitive to nonlinear changes. Therefore, the field of 

differential co-expression analysis would benefit from a nonlinear sensitive method for 

identifying differentially correlated modules. Here we present an approach for differential co-

expression analysis by incorporating the edge-count test by Chen and Friedman (Chen & 

Friedman, 2017). We first describe the algorithm and then, to illustrate the method's 

effectiveness, we perform a simulation study comparing it to Pearson’s correlation before 

presenting the results of an analysis performed on a dataset gathered from a public functional 

genomics data repository, the NCBI Gene Expression Omnibus (GEO).  

 

Methods 

To maneuver around the assumption of normality, we reformulate the search for differentially 

co-expressed genes as a nonparametric comparison between two joint distributions and use 

the following hypothesis: 

𝐻0:  𝐹1 =  𝐹2 𝑣𝑠 𝐻𝛼:  𝐹1 ≠  𝐹2 ,  

where  𝐹1 and  𝐹2 represent the joint distributions of genes A and B in two phenotypes after 

quantile normalization. Quantile normalization is a global adjustment method that minimizes 

any non-biological differences by controlling the marginal distributions and removing inter-

dataset variations. Bolstad proposed a reliable non-linear method that quickly can quickly 
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normalize within a set without choosing either a baseline to which all samples are normalized 

or working in a pairwise manner (Bolstad, 2001). Given N datasets with p variables (genes), 

form a matrix X of dimension p X N where each dataset is a column. We first set 𝑑 =

(
1

√𝑁
, … ,

1

√𝑁
), sort each column of X to give 𝑋𝑠𝑜𝑟𝑡 , and then project each row of 𝑋𝑠𝑜𝑟𝑡  onto d to 

get 𝑋𝑠𝑜𝑟𝑡
′  . Finally, we can get the normalized version of X by rearranging each column of 𝑋𝑠𝑜𝑟𝑡

′  

to have the same ordering as original X.  

𝑝𝑟𝑜𝑗𝒅𝒒𝑖 =
𝒒𝑖 ∙ 𝒅

𝒅 ∙ 𝒅
𝒅 =

1

√𝑁
∑𝑞𝑖𝑗𝒅

𝑁

𝑗=1

= (
1

𝑁
∑𝑞𝑖𝑗

𝑁

𝑗=1

, … ,
1

𝑁
∑𝑞𝑖𝑗

𝑁

𝑗=1

) 

where 𝑞𝑖 = (𝑞𝑖1, … , 𝑞𝑖𝑁) is a row in 𝑋𝑠𝑜𝑟𝑡 and 𝑋𝑠𝑜𝑟𝑡
′  is given by 𝑞𝑖

′ = 𝑝𝑟𝑜𝑗𝒅𝒒𝑖. 

 

Normalization is achieved by taking the average of each quantile in a particular row and 

substituting the average value for each of the individual elements in that row (Bolstad, 2001).  

 

One can then be sure that any significant difference between  𝐹1 and  𝐹2 is attributed to 

differential co-expression in two phenotypes (Q. Zhang, 2018).  

 

Edge-count test 

Identification of co-expression clusters starts with an adjacency matrix defined between all the 

genes under consideration, based on pair-wise correlations using Chen and Friedman’s 

modified edge-count test (Chen & Friedman, 2017). Like other edge-count tests, the modified 

version requires a similarity graph such as the minimum spanning tree (MST) that has been 

constructed over the pooled samples from different groups (Q. Zhang, 2018). The reasoning is if 

two groups are of different distributions, samples from the same group would be inclined to be 

closer than those from the other group. Therefore, edges in the MST would be more likely to 

connect samples from the same group. The test rejects the null if the number of between-

group edges is significantly less than expected. To compare two multivariate distributions, 

𝑥1, … , 𝑥𝑛~𝑖𝑖𝑑𝐹𝑋 , 𝑦1, … , 𝑦𝑚~𝑖𝑖𝑑𝐹𝑌, we test 𝐻0: 

𝐻0:  𝐹1 =  𝐹2 𝑣𝑠 𝐻𝛼:  𝐹1 ≠  𝐹2 . 
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Let 𝐺 be the MST constructed on pooled samples from two groups,1,2, … ,𝑁 = 𝑛 +𝑚, using 

Kruskal’s algorithm with |𝐺| denoting the number of edges, 𝑒, in 𝐺, and | ∙ |  representing the 

number of elements in the set. As illustrated from Chen and Friedman, let 𝑔𝑖 = 0 if sample 𝑖 is 

from group X and 𝑔𝑖 = 1  otherwise. For 𝑒 = (𝑖, 𝑗), define: 

     𝐽𝑒 = {

 0,             𝑔𝑖 ≠ 𝑔𝑗
1, 𝑔𝑖 = 𝑔𝑗 = 0

2, 𝑔𝑖 = 𝑔𝑗 = 1 
,  

𝑅𝑘 =∑𝐼𝐽𝑒=𝑘, 𝑘 = 0,1,2 ,

𝑒∈𝐺

 

where 𝑅0 is the number of between-group edges (which is the test statistic for the edge-count 

test), and 𝑅1and 𝑅2 are the numbers of edges connecting samples both from their respective 

groups. The new test statistic is defined as follows:  

𝑆 = (𝑅1 − 𝜇1, 𝑅2 − 𝜇2)Σ
−1 (

𝑅1 − 𝜇1
𝑅2 − 𝜇2

), 

 

where 𝜇1 = 𝐸(𝑅1), 𝜇2 = 𝐸(𝑅2), and Σ = 𝑉(𝑅1, 𝑅2)
′ is shown in the following lemma: 

Lemma 1 

𝜇1 = |𝐺|
𝑛(𝑛 − 1)

𝑁(𝑁 − 1)
, 

𝜇2 = |𝐺|
𝑚(𝑚 − 1)

𝑁(𝑁 − 1)
, 

Σ11 = 𝜇1(1 − 𝜇1) + 2𝐶
𝑛(𝑛 − 1)(𝑛 − 2)

𝑁(𝑁 − 1)(𝑁 − 2)
+ (|𝐺|(|𝐺| − 1) − 2𝐶)

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

𝑁(𝑁 − 1)(𝑁 − 2)(𝑁 − 3)
, 

Σ22 = 𝜇2(1 − 𝜇2) + 2𝐶
𝑚(𝑚 − 1)(𝑚 − 2)

𝑁(𝑁 − 1)(𝑁 − 2)
+ (|𝐺|(|𝐺| − 1) − 2𝐶)

𝑚(𝑚 − 1)(𝑚 − 2)(𝑚 − 3)

𝑁(𝑁 − 1)(𝑁 − 2)(𝑁 − 3)
, 

Σ12 = Σ21 = (|𝐺|(|𝐺| − 1) − 2𝐶)
𝑛𝑚(𝑛 − 1)(𝑚 − 1)

𝑁(𝑁 − 1)(𝑁 − 2)(𝑁 − 3)
− 𝜇1𝜇2 . 

where 𝐶 =
1

2
∑ |𝐺𝑘|

2 − |𝐺|𝑁
𝑘=1 , with 𝐺𝑘 being the subgraph in 𝐺 that includes all edge(s) that 

connect to node 𝑘. 

This algorithm can easily be extended to the study of differential co-expression over more than 

two conditions. The only required change is in the edge-count test, where in the case of 

multiple groups, a sequence of pair-wise comparisons needs to be conducted. Recently, (Q. 
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Zhang, 2018) extended Chen and Friedman’s test to a multiple-group case and proposed an 

overall test to compare more than two groups simultaneously. In the report (Zhang et al., 

2017), it was proven that the test statistic for p groups asymptotically follows a Chi-square 

distribution with p degrees of freedom as N goes to infinity and the bootstrap null becomes a 

multivariate normal distribution. For an edge 𝑒 ∈ 𝐺,  let 

  𝐴𝑒 = {𝑒} ∪ {𝑒
′ ∈ 𝐺: 𝑒′𝑎𝑛𝑑 𝑒 𝑠ℎ𝑎𝑟𝑒 𝑎 𝑛𝑜𝑑𝑒}, 

𝐵𝑒 = 𝐴𝑒 ∪ {𝑒
′′ ∈ 𝐺: ∃𝑒′ ∈ 𝐴𝑒 ,  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑒′′𝑎𝑛𝑑 𝑒′ 𝑠ℎ𝑎𝑟𝑒 𝑎 𝑛𝑜𝑑𝑒}. 

If |𝐺| = 𝑂(𝑁), ∑ |𝐺𝑘|
2 − 4|𝐺|2/𝑁𝑁

𝑘=1 = 𝑂(𝑁),  ∑ |𝐴𝑒|𝑒∈𝐺 |𝐵𝑒|=o(𝑁1.5), 𝑙𝑖𝑚𝑁→∞𝑛𝑖/𝑁=𝜆𝑖 ∈

(0,1),  𝑡ℎ𝑒𝑛 𝑆 → 𝜒 𝑝
2  under the permutation null. 

 

Chen and Friedman has proven that these conditions can be satisfied by k-MST based on 

Euclidean distance where the topology of 𝐺 completely determines the permutation 

distribution of the test statistic. This facilitates the application of the test for large multi-group 

sample sizes where permutation computation can become progressively intensive. For small 

sample sizes, 𝑚𝑖𝑛(𝑛,𝑚) = 20, direct p-value approximation is feasible (Q. Zhang, 2018). 

According to Chen and Friedman (Chen & Friedman, 2017), the power of the modified edge-

count test can be increased (at a computational cost) when the similarity graph becomes 

slightly denser for k-MST, where 𝑘 ∈ {1,2, . . . ,5}. To the other extreme, if the similarity graph 

becomes too dense, it becomes difficult to distinguish edges that have similarity and edges that 

do not provide any “similarity” or counter information. This reduces the power of the test. For 

practicality, 3-MST is a reasonable initial choice as our sample sizes are in the hundreds. Our 

computational pipeline consists of the following steps:  

 

Minimum Spanning Tree 

Expanding on the idea of the minimum spanning tree (MST), a similarity graph such as a 

minimum spanning tree (MST) defines a measure of similarity between the gene expression 

profiles (B. Zhang & Horvath, 2005).  

Let 𝐷 = {𝑑𝑖} be a set of expression data with each 𝑑𝑖 = (𝑒𝑖
1, … , 𝑒𝑖

𝑡) representing the expression 

levels at time 1 through time t of gene 𝑖 . Given an edge-weighted (undirected) and connected 
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graph 𝐺(𝐷) = (𝑉, 𝐸) with the vertex set 𝑉 = {𝑑𝑖|𝑑𝑖 ∈ 𝐷}and the edge set 𝐸 =

{(𝑑𝑖, 𝑑𝑗)|𝑓𝑜𝑟 𝑑𝑖, 𝑑𝑗 ∈ 𝐷 𝑎𝑛𝑑 𝑖 ≠ 𝑗}, a spanning tree of the graph 𝐺(𝐷) is a tree that spans 

𝐺(𝐷)(i.e., it includes every vertex of 𝐺(𝐷)) and is a sub-graph of 𝐺(𝐷) (every edge in the tree 

belongs to 𝐺(𝐷)). Each edge (𝑢, 𝑣) ∈ 𝐸  has a weight that represents the distance (or 

dissimilarity), 𝜌(𝑢, 𝑣) between 𝑢 and 𝑣, which could be defined as the Euclidean distance, the 

correlation coefficient, or some other distance measures. The cost of the spanning tree is the 

sum of the weights of all the edges in the tree (of which there can be many). A minimum 

spanning tree is the spanning tree where the cost is minimized among all spanning trees. A k-

MST has exactly k vertices and forms a sub-graph of a larger graph (Knecht & Jungnickel, 2016). 

 

Adjacency Matrix 

The MST is transformed into an adjacency matrix and the associated edge list to create the un-

weighted network object needed by the edge-count test. The adjacency matrix encodes the 

connection strength between each pair of nodes by which the column and row names are the 

nodes of the network.  It is defined such that an entry of 1 indicates a connection between the 

nodes, and a 0 indicates no connection. The edge list contains all of the information necessary 

to create network objects, and has a minimum of two columns, one column of nodes that are 

the source of a connection and another column of nodes that are the target of the connection.  

 

The false discovery rate is then controlled using Benjamini-Hochberg’s method (Benjamini & 

Hochberg, 1995) with an adjusted p-value threshold to assess for statistical significance in 

differential co-expression.  

 

Agglomerative Hierarchical Clustering 

Hierarchical clustering is an unsupervised method that proceeds either by iteratively merging 

small clusters into larger ones (agglomerative algorithm), or by splitting large clusters into 

smaller ones (divisive algorithm) (Grira, Crucianu, & Boujemaa, 2004).  

The agglomerative algorithm requires formation of a similarity-dissimilarity matrix in which 

each cell of the matrix describes the degree of similarity between the two entities. From this 
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matrix, clusters are built by the addition of similar entities into the same cluster. At each step of 

the procedure, the similarity-dissimilarity matrix is recalculated in order to compute the 

relationship of the new clusters with the remaining entities. This generates solutions which can 

be graphically presented as a hierarchy of clusters or a dendrogram which can be partitioned by 

cutting at a desired level (K. Blashfield, 1976).  

The four most popular methods of agglomerative hierarchical clustering are single linkage, 

complete linkage, average linkage, and the minimum variance method. It has been argued that 

the only difference between these methods concerns the step in which the similarity-

dissimilarity relation between the new cluster and the remaining entities is computed (Johnson, 

1967). 

The general equation used to compute this relation is: 

𝑑ℎ𝑘 = 𝛼𝑖𝑑ℎ𝑖 + 𝛼𝑗𝑑ℎ𝑗 + 𝛽𝑑𝑖𝑗 + 𝛿|𝑑ℎ𝑖 − 𝑑ℎ𝑗| 

where 𝑑𝑖𝑗 refers to the euclidean distance between the entities 𝑖 and 𝑗 which have been joined 

to form the new cluster 𝑘. The relation expressed as euclidean distance between the new 

cluster 𝑘 and the remaining entities ℎ is denoted by 𝑑ℎ𝑘. The designations 𝛼𝑗, 𝛽, and 𝛿 are 

parameters whose values are specified by the agglomerative hierarchical clustering procedure 

(K. Blashfield, 1976). We will focus on the complete linkage method as that is the method used 

in the hierarchical clustering procedure.  

In complete linkage cluster analysis (also known as the ‘maximum method’ (Johnson, 1967) 

since the proximity between two clusters is the proximity between their two most distant 

members), a cluster is defined as a group of entities in which each member is more similar to all 

members of the same cluster than it is to all members of any other cluster (K. Blashfield, 1976). 

The values of the parameters of the general equation above are (K. Blashfield, 1976): 

𝛼𝑖 = 𝛼𝑗 =
1

2
;  𝛽 = 0; 𝛿 =

1

2
 

Complete linkage also has the property of being invariant under monotonic transformations of 

the similarity-dissimilarity matrix (K. Blashfield, 1976). While this solves the problem of chaining 

(where several clusters are joined together simply because one of their members is within close 

proximity of a member from a separate cluster), one criticism is that it is a space-diluting 

method (Johnson, 1967). This lies in the fact that an entity cannot join a cluster until it obtains a 
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given similarity level with all members of a cluster, the probability of a cluster obtaining a new 

member becomes smaller as the size of the cluster increases. This increases the effective 

distance between the cluster and some non-member and prevents similar clusters from 

merging together, thus diluting the multi-dimensional space (K. Blashfield, 1976).  

Since agglomerative hierarchical clustering does not yield a discrete number of clusters, we use 

the Gap statistic to determine the optimal number of clusters (or where to cut the tree). The 

Gap statistic is the only proposed automated method (Tibshirani, Walther, & Hastie, 2000) that 

is capable of accurately estimating single clusters.  

 

Gap statistic 

The Gap Statistic is constructed from the within-cluster distances and comparing their sum to 

the expected value under a null distribution. As noted by Tibshirani (Tibshirani et al., 2000) we 

have, for 𝑟 clusters 𝐶𝑟: 

𝐺𝑎𝑝𝑛(𝑘) = 𝐸𝑛
∗[𝑙𝑜𝑔𝑊𝑘] − [𝑙𝑜𝑔𝑊𝑘], 

where 𝐸𝑛
∗  denotes expectation under a sample size 𝑛, and, with 𝑛𝑟 = |𝐶𝑟| and 𝐷𝑟 being the 

sum of the pair-wise distances for all points in cluster 𝑟, 

𝑊𝑘 =∑
1

2𝑛𝑟
𝐷𝑟

𝑘

𝑟=1

=∑
1

2𝑛𝑟

𝑘

𝑟=1

∑ 𝑑𝑖,𝑖′

𝑖,𝑖′∈𝐶𝑟

 

where distance 𝑑 as the squared Euclidean distance, and 𝑊𝑘 is the pooled within-cluster sum of 

squares around the cluster means. Computationally, the estimate of the optimal number of 

clusters is found to be: 

�̂�𝐺 = 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑘|𝐺𝑎𝑝(𝑘) ≥ (𝑘 + 1) − 𝑠𝑘+1 

where 𝑠𝑘 is the standard error from the estimation of 𝐺𝑎𝑝(𝑘). Tibshirani considers both a 

uniform distribution approach and a principal component construction (Tibshirani et al., 2000). 

In many cases, the uniform distribution performs better since it is the most likely to produce 

spurious clusters by the gap test (Tibshirani et al., 2000). The estimate of the optimal clusters 

will then be the value that maximizes the gap statistic.  
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Assessing true cluster structure 

To ensure clusters represent true structure in the data, we use bootstrap resampling (the 

clusterboot() function of the package fpc in R v2.1-11.1) with the hclust() implementation 

(Hennig, 2007). 

clusterboot‘s algorithm uses the Jaccard coefficient, a similarity measure between sets. The 

Jaccard similarity between two sets A and B is the ratio of the number of elements in the 

intersection of A and B over the number of elements in the union of A and B. The basic general 

strategy is as follows: 

1. Cluster the data as usual. 

2. Draw a new dataset by re-sampling the original dataset with replacement. Cluster the new 

dataset. 

3. For every cluster in the original clustering, find the most similar cluster in the new clustering 

giving the maximum Jaccard coefficient. If the maximum Jaccard coefficient is less than 0.5, the 

original cluster is considered to be ‘dissolved’ and not a real cluster. Repeat steps 2-3 several 

times. 

The cluster stability of each cluster in the original clustering is the mean value of its Jaccard 

coefficient over all the bootstrap iterations. As a rule of thumb, clusters with a stability value 

less than 0.6 should be considered unstable. Values between 0.6 and 0.75 indicate that the 

cluster is measuring a pattern in the data, but there isn’t high certainty about which points 

should be clustered together. Clusters with stability values above about 0.85 can be considered 

highly stable and are likely to be real clusters. 

 

Materials 

Simulation studies 

A simulation study was conducted for two purposes:  

(i) to prove superiority of the edge-count test over Pearson’s correlation,  

(ii) to show that the clustering method to be used works well with the real data in 

determining the optimal number of clusters.  
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(i) edge-count test versus Pearson’s Correlation 

A simulation study was performed to empirically compare the edge-count test with Pearson’s 

Correlation in a linear and nonlinear setting, where X and Y represent the expression levels of 

two genes and subscripts “1” and “2” stand for two conditions: 

Linear setting:  

(𝑋1, 𝑌1)
𝑇~𝑁 [(

0

0
) , (

1 𝜌
𝜌 1

)] , (𝑋2, 𝑌2)
𝑇~𝑁 [(

0

0
) , (

1 𝜌 + ∆
𝜌 + ∆ 1

)],  

where 𝜌 = 0, ∆∈ {0.3,0.4,0.6,0.8}. 

Non-linear setting: 

𝑋𝑖~𝑈𝑛𝑖𝑓(0,1), 𝑌𝑖 =
2

𝑋𝑖
+ 휀𝑖 , 휀𝑖~𝑁(0, 𝜎𝑖

2), 𝑖 = 1,2, 

where 𝜎1 = 0, 𝜎2 = 𝜎1 + ∆, ∆∈ {0.3,0.4,0.6,0.8}. 

 

For each setting, we generated data sets with sample sizes 𝑛1 = 𝑛2 = 150  and two 

approaches were applied to test for the difference between two joint distributions. For the 

edge-count test, we took 3-MST based on Euclidean distance and computed the p-value using 

the R package gTests (https://cran.r-project.org/web/packages/gTests). To evaluate the 

significance of Pearson’s Correlation, we performed a Fisher’s z-transformation introduced in 

Zhang (X. Zhang et al., 2012). This stabilizes the variance of sample correlation coefficients in 

each condition and serves as a normalizing transformation (McKenzie et al., 2016) as the 

transformed 𝑧𝑖 approaches a standard normal distribution with variance 
1

𝑛𝑖−3
: 

      𝑧1 = 
1

2
𝑙𝑜𝑔

1+r1

1−r1
→ 𝑁(

1

2
𝑙𝑜𝑔

1+𝜌1

1−𝜌1
,

1

√𝑛1−3
), 

𝑧2 = 
1

2
𝑙𝑜𝑔

1 + r2
1 − r2

→ 𝑁(
1

2
𝑙𝑜𝑔

1 + 𝜌2
1 − 𝜌2

,
1

√𝑛2 − 3
), 

where 𝑟1 and 𝑟2 are the sample correlation coefficients of (𝑋𝑖, 𝑌𝑖), and 𝑛1 and 𝑛2 stand for the 

sample sizes.  

P-values were determined through a two-sample z-test: 



13 
 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 2𝑃

(

 𝑍 >
|𝑧1 − 𝑧2|

√
1

𝑛1 − 3
+

1
𝑛2 − 3)

 , 

and adjusted via Benjamini-Hochberg’s method (Benjamini & Hochberg, 1995) where a 

threshold of  < 0.05 was used to determine the statistical significance of results:  

𝐻0:  𝐹1(𝑋, 𝑌) = ⋯ = 𝐹𝑝(𝑋, 𝑌) 𝑣𝑠 𝐻𝛼:  𝐹𝑖(𝑋, 𝑌) ≠  𝐹𝑗(𝑋, 𝑌) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖 𝑎𝑛𝑑 𝑗 

where 𝐹𝑖  represents the joint cumulative distribution of (𝑋𝑖, 𝑌𝑖). The true positive rate 

(accuracy) of each method is summarized in Fig 1 in Results section.  

 

The hierarchical clustering and cluster assignment was performed using the Gap Statistic and 

misclassification analysis was performed on the resulting clusters using the variation of 

information (Meilă, 2007).  

 

The detailed algorithm and R code used in this algorithm are given in Additional File 1. 

 

Misclassification Error – the Variation of Information 

The variation of information (VI) metric (Meilă, 2007) was used to measure the agreement of 

the observed cluster solutions with the actual classification determined by the procedure for 

generating the simulations. The VI is obtained by measuring the distance between two clusters 

(observed and predetermined) by obeying the triangle inequality. It is defined by: 

𝑉𝐼(𝑋, 𝑌) = −∑𝑟𝑖𝑗 [log (
𝑟𝑖𝑗

𝑝𝑖
) + log (

𝑟𝑖𝑗

𝑞𝑗
)]

𝑖,𝑗

, 

where 𝑋 and 𝑌 are disjoint subsets of a set 𝐴, 𝑋 = {𝑋1, … , 𝑋𝑘} and 𝑌 = {𝑌1, … , 𝑌𝑙}, and 

 𝑛 = ∑ |𝑋|𝑖 = ∑ |𝑌|𝑗 = |𝐴|, 𝑝𝑖 =
|𝑋𝑖|

𝑛
, 𝑞𝑗 =

|𝑌𝑗|

𝑛
, 𝑟𝑖𝑗 =

|𝑋𝑖∩𝑌𝑗|

𝑛
. 

𝑉𝐼(𝑋, 𝑌) is always non-negative and runs from 0 to 1, with 𝑉𝐼(𝑋, 𝑌) = 0 if and only if 𝑋 = 𝑌.  

For each cluster construction k = 2,3,4,5, we compute the VI metric for each correlation setting 

(𝜎𝑋 = 0.3,0.4,0.6,0.8) of 150 samples, and for correlation setting, 𝜎𝑋 = 0.6, with sample sizes 

of 𝑛 = 50,75,100,200. These are represented in Figure 2. in Results.  

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-497#MOESM1
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Real Data - Gene expression dataset 

A human cervical cancer data set prepared from 29 pairs of cervical tumor and matched 

normal tissue was used to illustrate our proposed computational pipeline. Of the twenty-nine 

cases with paired specimens, 21 patients had a diagnosis of squamous cell carcinoma, six had 

adenocarcinoma and two had an intermediate diagnosis of adenosquamous cell carcinoma. The 

data were restricted to a set of the 375 most varying genes, and log-transformed for further 

processing. The raw data was obtained from the NCBI Gene Expression Omnibus (GEO) 

(Witten, Tibshirani, Gu, Fire, & Lui, 2010)(Tibshirani), a public functional genomics data 

repository.    

Quantile normalization was performed (via normalize.quantiles() of the package 

preprocessCore in R v1.34.0) for each group so as to match the marginal distributions of the 

genes across groups (Figure 3). The purpose of quantile normalization is to avoid the rejection 

of H0 due to marginal difference (differential expression) instead of different dependency 

patterns (differential co-expression). 

For each gene pair, the inter-sample distances and an edge-count test with 3-MST was 

implemented, followed by a BH procedure with FDR<0.05 for multiplicity adjustment. With the 

edge list from the gene pairs forming a network, we use the Gap statistic to determine the 

optimal number of clusters Figure 4. Figure 5 depicts the overall network clusters.  

 

 

 

 

 

 

 

 

 

 

 



15 
 

Chapter 3 - Results 

We present results of simulations for a range of correlations to test for the true positive rate of 

each method under both settings.  

 

Figure 1A. Performance comparison of two methods under a linear setting. The x-axis is the 
value of Δ, and y-axis is the true positive rate. 
 

 

Figure 1B. Performance comparison of two methods under a nonlinear setting. The x-axis is 
the value of Δ, and y-axis is the true positive rate. 
 

As seen from Fig 1, the two methods achieved comparable accuracy in the linear setting. For 

the non-linear (inverse transformation) setting, the edge-count test substantially outperforms 
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the Pearson’s method which fails to identify any differences. This underlines the strength of the 

edge-count test, not only in capturing linear changes but demonstrating significantly better 

sensitivity for nonlinear settings.  

 

Comparing Clusters 

We evaluate the misclassification error of the clustering algorithm by using the information 

metric: the variation of information (Figure 2). The results are presented on a 𝑘 = 2, 3, 4, 5 

cluster construction with each cluster comprised of 𝑛 = 150 samples for the correlation setting 

{0.3,0.4,0.6,0.8}, and 𝑛 = 50,75,100,200 for the correlation setting 0.6. 

 

Figure 2A.Variation of Information for Nonlinear edge-count Test with fixed correlation 0.6. 

 

Figure 2B. Variation of Information for Nonlinear Pearson’s Correlation with fixed correlation 
0.6. 
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Figure 2C. Variation of Information for Nonlinear edge-count Test with fixed sample size 150. 

 

Figure 2D. Variation of Information for Pearson’s correlation with fixed sample size 150. 
 

As we can see in Figure 2, the VI metric agrees with the nonlinear sensitivity of the edge-count 

test over Pearson’s correlation in Figure 1.  The misclassification error for the edge-count test 

has the largest decrease for five clusters by 1.367 for fixed correlation of 0.6, and a decrease of 

2.433 for fixed sample size of 150. The misclassification error for the Pearson’s correlation has 

the largest decrease for five clusters by 0.756 for fixed correlation of 0.6, and a decrease of 

0.456 for three clusters for fixed sample size of 150.  
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Real Data 

Agglomerative hierarchical clustering is used to group genes that have a similar expression 

pattern in multiple samples. The resulting modules often represent biological processes and can 

be phenotype specific. In order to assess the difference between normal and tumor samples, 

we performed an unsupervised hierarchical clustering of the samples using the complete 

linkage method (previously describe in Chapter 2. The results of the analysis are summarized in 

Figure 5. We identified a total of 4 differentially co-expressed clusters comprising a total of 

10135 gene pairs. From the dendrogram, we can see there are clusters that are significantly 

more correlated than one would expect due to chance. This suggests that these genes may be 

controlled by common regulatory factor(s). The data are consistent with several previous 

findings (Witten et al., 2010). 

 

Figure 3A. Distributions before Quantile Normalization. “1” = Normal, “2” = Tumor. 
 

 

Figure 3B. Distributions after Quantile Normalizaton. “1” = Normal, “2” = Tumor. 
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Figure 4. Optimal number of clusters via the Gap Statistic 

  

Figure 5A. Clustering analyses of differentially co-expressed genes – Dendrogram. 
 

 
Figure 5B. Clustering analyses of differentially co-expressed genes – Unrooted Dendrogram 
 

As shown in Figure 5B, the clustering analysis resulted in the identification of two major 

subgroups that show an almost perfect separation between genes in normal and tumor 
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samples. The Gap Statistic optimized the number of clusters to be 4 (Figure 4) with cluster sizes 

of 72, 32, 250 and 21 with Jaccard coefficient of 0.7105, 0.6346, 0.9202 and 0.8058 

respectively, indicating high stability of cluster formation.  

 

Of these 4 clusters exhibiting significant differential co-expression (P < 0.05), miR-

200b~429, miR-34b~34c, miR-503~424, miR-29c~29b, miR-15b~16, miR-200c~141, miR-

99b~125a and miR-25~106b were identified. Seventeen of the sub-clusters were associated 

with gene up-regulation in cervical cancer and 13 sub-clusters were associated with gene down- 

regulation in cancer. Interestingly, the two clusters that are most associated with the cervical 

cancer versus normal class labels both belong to the miR-200 family. 

 

Chapter 4 - Discussion 

Hierarchical clustering, a classic clustering method commonly used by clinical researchers, was 

used primarily due to its consistency of results in the simulation data and its ease of use, as it 

requires the setting of few parameters. Hierarchical clustering is also available in standard gene 

expression databases, such as the Gene Expression Omnibus from which the data was obtained 

(de Souto, Costa, de Araujo, Ludermir, & Schliep, 2008).  

 

Other clustering methods such as k-means (McQueen, 1967), mixture of multivariate Gaussians 

(McLachlan, Bean, & Peel, 2002), spectral clustering (Ng, Jordan, & Weiss, 2002) and nearest 

neighbor-based methods (Ertoz, Steinbach, & Kumar, 2002) have also been used in analyzing 

gene expression data. However, common limitations of these new methods include the 

requirement of using particular programming environments and the specification of a number 

of different parameters, which makes their implementation difficult for non-expert users. 

 

Differential co-expression via the edge-count test provides information that would be missed 

using classical methods focusing on the identification of differentially expressed genes. The 

algorithm presented has the advantage of comparing two (or more) datasets in a global, 

unbiased and unsupervised manner. It represents a major improvement over earlier 



21 
 

comparisons due to its nonlinear sensitivity. We demonstrate an example in the simulation 

study where differential co-expression patterns were uncovered using the edge-count test but 

that were missed by Pearson’s correlation. As seen from Figure 2B & 2C, non-linear 

transformations away from normality greatly reduce the absolute magnitude of Pearson’s 

correlation and inflate the error rates.   

 

A fundamental advantage of using the edge-count test is that it requires no model assumptions 

and is an efficient approach. This is useful in our case as differential co-expression may be 

caused by different biological mechanisms. For example, a group of genes may be under the 

control of a common regulator (e.g. a transcription factor or epigenetic modification) that is 

active in one condition, but absent in the other condition. In such a case, the correlation 

structure induced by variation in the common regulator would only be present in the first 

condition. Another possible interpretation relates to the presence or absence of variation in 

some factors driving a gene cluster. To observe correlation of a group of genes responding to a 

common factor, this factor needs to vary. In the absence of variation of the driving factor, no 

correlation can be observed, even though the actual biological links that form the network are 

not altered. It is therefore important to ensure that the perturbations which give rise to 

variation within each condition are: (i) biologically relevant (as opposed to batch effects, for 

example) and (ii) comparable in nature and amplitude. 

 

However, a drawback of the edge-count test is that it can be computationally and time 

intensive due to the calculation of the minimum spanning tree. Moreover, it only works well 

with genes that are highly differentially correlated or with large sample sizes. We see evidence 

of this in Figure 2 where there are sharp increases in misclassification error for samples less 

than 100 (Fig. 2.a.) and for correlation less than 0.5 (Fig. 2.b.). Therefore, more research is 

required to adjust for this. 

 

Our algorithm constitutes a valuable tool of broad applicability in studying gene regulatory 

networks or performing exploratory data analysis. This approach illustrates the high value of 
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the proposed test not only in quantitative analysis of DCE genes but is also broadly applicable to 

the analysis of any large scale gene expression data. Future possibilities for this algorithm 

include implementing the new pipeline into software tools such as R package, giving a 

competitive edge over other algorithms such as WGCNA (Langfelder & Horvath, 2008).  

 

Chapter 5 - Conclusion 

Differential co-expression may be caused by different biological mechanisms. For example, a 

group of genes may be under the control of a common regulator (e.g. a transcription factor or 

epigenetic modification) that is active in one condition, but absent in the other condition. In 

such a case, the correlation structure induced by variation in the common regulator would only 

be present in the first condition. Another possible interpretation relates to the presence or 

absence of variation in some factors driving a gene module. To observe correlation of a group 

of genes responding to a common factor, this factor needs to vary. In the absence of variation 

of the driving factor, no correlation can be observed, even though the actual biological links 

that form the network are not altered. It is therefore important to ensure that the 

perturbations which give rise to variation within each condition are biologically relevant and 

comparable in nature and amplitude. 

 

Motivated by the fact that these perturbations are generally non linear, the algorithm 

presented provides a tailored approach in studying how different sample groups respond. A 

fundamental advantage of this algorithm is that it requires no model assumptions and though it 

requires a series of intermediate steps, is a tailored approach through a powerful graph-based 

test. This constitutes a valuable tool of broad applicability in gene regulatory network analysis.  
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