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ABSTRACT

This dissertation focuses on event detection within streams of Tweets based on sen-
timent quantification. Sentiment quantification extends sentiment analysis, the analysis of
the sentiment of individual documents, to analyze the sentiment of an aggregated collection
of documents. Although the former has been widely researched, the latter has drawn less
attention but offers greater potential to enhance current business intelligence systems. In-
deed, knowing the proportion of positive and negative Tweets is much more valuable than
knowing which individual Tweets are positive or negative. We also extend our sentiment
quantification research to analyze the evolution of sentiment over time to automatically de-

tect a shift in sentiment with respect to a topic or entity.

We introduce a probabilistic approach to create a paired sentiment lexicon that models
the positivity and the negativity of words separately. We show that such a lexicon can be used
to more accurately predict the sentiment features for a Tweet than univalued lexicons. In
addition, we show that employing these features with a multivariate Support Vector Machine
(SVM) that optimizes the Hellinger Distance improves sentiment quantification accuracy ver-
sus other distance metrics. Furthermore, we introduce a mean of representing sentiment over
time through sentiment signals built from the aforementioned sentiment quantifier and show
that sentiment shift can be detected using geometric change-point detection algorithms. Fi-
nally, our evaluation shows that, of the methods implemented, a two-dimensional Euclidean
distance measure, analyzed using the first and second order statistical moments, was the

most accurate in detecting sentiment shift.
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EPIGRAPH

It is by logic that we prove, but by intuition that we discover. To know how to criticize is
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1 Introduction

The rapid growth of online commerce, or e-commerce, has allowed online retailers to
make it possible for customers to share their opinions about products and items. One issue
is that it is hard to define what an opinion is. The difference between an opinion or a fact is
very small and people will often disagree on which is which [2, 3]. Despite this, opinions can
be useful not only to online e-commerce but also in government intelligence, business intel-
ligence, and other online services [4] that benefit from summarizing and analyzing collective
viewpoints.

The number of online reviews has increased tremendously over the years, and it is
now possible to read the opinions of thousands of people all over the Internet on movies,
restaurants, hotels, books, products, and professionals. The large amount of information
available online today allows researchers to study how individuals express opinions and to
mine the collections of opinions to identify trends and consensus. Two new research area
have arisen from this phenomenon: sentiment analysis and sentiment quantification. Thus,
sentiment analysis is the computational analysis of opinions in text, which aims to identify
the semantic orientation, or polarity, of such textual data. In contrast, sentiment quantifi-
cation aims to estimate the proportion of document that belong to each polarity classes.

Sentiment analysis has therefore found its place in various areas, for instance, in
politics. Indeed, Wang et al. [5] applied real-time sentiment analysis to Twitter data to
analyze public sentiment toward presidential candidates in the U.S elections of 2012. The
most prominent and perhaps the most prevalent utilization of sentiment analysis, however,

is in business intelligence, since customer’s feedback directly reflects their opinion about a



product or service. Sentiment analysis can be used as a concept testing tool when a new
product, campaign, or logo is launched. It can be used to improve a company’s own perfor-
mances by analyzing competitor’s sentiment data and gain competitive advantage. It can
also be applied to gain insight from the opinions of customers to diagnose possible problems
and make improvement. Additionally, sentiment analysis can be used to track customer
sentiment over time. Although a lot of work has been conducted in sentiment analysis, we
believe that the last application aforementioned can be further exploited to open new hori-
zons for businesses and for sentiment analysis research.

Today, although customer’s opinions are being tracked over time, they are most of
the time saved to be analyzed offline later. Sentiment analysis techniques can then be ap-
plied to automatically extract the sentiment of each opinion. By looking at the graph of the
number of positive opinions and negative opinions over time, one could potentially identify
if and when a shift of sentiment happened. To our knowledge, this task is generally operated
manually by a human which cost time and resources. Besides, this approach does not allow
one to analyze real-time data, which is an issue when dealing with fast online data sources
such as Twitter. In addition, it could have economic consequences in the business world,
take for instance the following scenario. A major company releases a new advertisement
that customers find scandalous and therefore negatively comment upon on Twitter. If no
automatic sentiment shift detection system is in place, the company’s reputation could be
heavily hurt and the company’s sales could also be affected. A fast automatic sentiment shift
detection system could identify such phenomenon and trigger an adequate response which
would prevent the catastrophe.

One can clearly see that having the ability to promptly detect when customers report nega-

tive experiences, poor service, or other complaints is of high importance from a business per-



spective. Similarly, automatically detecting and identifying common causes for dissatisfied
customers is crucial to making immediate corrections to improve the customer experience.
To the best of our knowledge there are currently no research that focuses on automatically
detecting a shift of sentiment. In this document we attempt to provide a solution to the
problem of automatically detecting a shift of sentiment with respect to a topic or an entity.

To tackle this problem we will divide our work into 3 goals, each of which will aim at

providing an answer to the following questions:

1. How to represent a Tweet in a way such that (i) its representation embeds the sentiment
it reflects, (ii) the computer understands, and (iii) computations can be performed by

the computer

2. How could we accurately quantify the prevalence of the positive class and the negative

class of a collection of tweet given a representation that satisfies (1)

3. How to identify a shift of sentiment after that inquiry (2) was satisfied

To achieve goal 1 we will use a probabilistic approach to create a sentiment lexicon
from a collection of Tweets. The sentiment lexicon can then be used to represent a Tweet
in the Vector Space Model through a feature vector. We can use the resulting feature vector
in goal 2 to perform sentiment quantification in the Vector Space Model through a SVM
machine. Finally, a sentiment signal can be built using the quantification resulting from goal

2, and change-point detection methods can be employed to automatically detect a shift.



2 Literature Review

2.1 Sentiment Analysis

2.1.1 Sentiment Analysis

Mining and summarizing online reviews to determine sentiment orientation has be-
come a popular research topic often broken into two main areas of research: opinion sum-
marization and opinion mining. Opinion summarization is the task of identifying and ex-
tracting product features from product’s reviews in order to summarize them. Hu and
Liu proposed [6] a method to find and extract key features and the opinions related to
them among several reviews. In contrast, opinion mining consists of analyzing a product’s
review in order to determine whether or not it reflects a positive or negative sentiment
[7]. There are traditionally two ways of doing sentiment analysis, using either supervised
learning techniques or unsupervised learning techniques. In the former approach, sentiment
classification is often seen as a two-class classification problem and we typically use a naive
Bayes classifier or build a Support Vector Machine (SVM) that is trained on a particular
dataset[8, 9, 10, 11, 12, 13, 14]. SVM are supervised learning models for classification and
regression analysis. Other methods such as hierarchical classification using a Sentiment
Ontology Tree [15], have also been used. These approaches generally perform well on the
domain for which they are trained. In contrast, unsupervised approaches (also referred to as
lexicon-based approaches), consist of computing the semantic orientation of a review from
the semantic orientation of each word found in that review. It can be seen as an unsuper-

vised learning method [10, 16, 17, 18, 19, 20]. It is not uncommon to have reviews that are



rated within a range, e.g., from 1 to 5, to express a degree of positiveness or negativeness.
Sentiment rating prediction or rating-inference research focuses on the task of predicting
the rating rather than the sentiment orientation. Pang and Lee [21] tackled this problem
using an SVM regression approach and a SVM multiclass approach. Goldberg and Zhu [22]

implemented a graph-based semi-supervised approach and improved upon the previous work.

2.1.2 Sentiment Analysis in Twitter

With over 500 million tweets shared every day (6,000 tweets per second), Twitter has
become the fastest growing source of information. Users generally tweet about their feelings
or opinions about what’s happening around the world. This makes Twitter a valuable source
of data for sentiment analysis. However, tweets differ from regular text in many ways: the
length of a tweets is restricted to 280 characters and, because they are often posted from cell-
phones, the language used contains many spelling mistakes, abbreviations, and slang words.
These characteristics make traditional Natural Language Processing techniques, language
models, and traditional sentiment analysis tasks trickier to apply. Despite these challenges,
numerous projects have investigated Twitter sentiment classification [23, 24, 25, 26, 27].
One of the pioneer works is that of Go et al. [28] wherein they compared a SVM classifier
(with feature vectors composed of unigrams, bigrams, or unigrams+bigrams), a Maximum
Entropy (MaxEnt) classifier, and a Naive Bayes classifier. Their results suggest that Part Of
Speech (POS) tags are not useful in Twitter sentiment classification. They achieved their
best accuracy with the MaxEnt classifier and the lowest accuracy with the Naive Bayes clas-
sifier. Mohammad et al. [29] and [30] tackled the same problem through a SVM classifier
that uses sentiment lexicons as part of the feature vector. They showed that lexicons-related

features were valuable features that improved the accuracy of the SVM classifier by more



than 8.5%. More recently, Tang et al. [31] employed a machine learning approach that
uses word embedding in different neural networks to capture the sentiment information of
sentences as well as the syntactic contexts of words. Although their approach outperformed
Mohammad’s approach by 1.85%, the computational power and complexity of their model

makes this improvement less compelling in practice.

In our work, we will build on the approach of [32] but extend it to take into consid-

eration the nature of Tweets.

2.2 Sentiment Quantification

2.2.1 Quantification

More recently, a new research focus has emerged from automated classification: quan-
tification. In contrast to classification that aims to estimate the class label of individual
instances, the purpose of quantification is to evaluate the population or prevalence of the
different classes in the dataset. Although the tasks sound similar, a method with a high
accuracy on the individual level can be biased and achieve poor performance when esti-
mating the proportion of the different classes, requiring new techniques. We therefore need
to tackle the quantification problem with new techniques. Hopkins and King [33] studied
the question using a non-parametric statistical model and applied it to estimate the pro-
portion of politically related blog posts in 7 classes. Results suggest that their approach
outperforms a traditional SVM classification approach. Gonzales-Castro [34] et al. focused
on quantification for a 2-class problem. They implemented a class distribution estimator

(named HDy) that minimizes the Hellinger Distance of the predicted distribution with the



validation distribution. They contrasted HDy with several state-of-the-art class distribution
estimators (such as CC, AC, MS, and PP) and concluded that it performs best with ev-
ery classifier they tested. Baranquero et al [35] focused on optimizing classification as well
as quantification through a SV M,.,; machine, and introduced a metric called Q-measure.
They concluded that optimizing both classification and quantification (by the mean of the
Q-measure) performs better than optimizing quantification only. Similarly, Esuli and Sebas-
tiani [36] focused on text quantification using multivariate SVM, i.e., SV M., s, that uses the
Kullback-Leibler divergence as a loss function (KLD is a measure of the divergence between
two probability distributions).They found that SVM(KLD) outperform every other linear
SVM approach or other quantification method and is therefore a more appropriate choice

for text quantification.

2.2.2 Sentiment Quantification in Twitter

Sentiment quantification is simply quantification techniques applied to sentiment
data. There have been several projects that apply sentiment quantification to Twitter data.
One of the first works to tackle this problem was published by Gao and Sebastiani [1] wherein
the authors apply the SV M(KLD) approach from [36] to Twitter data. They compared
SVM(KLD) with an SVM classifier that minimizes the well known Hinge Loss function
(HL). The Hinge Loss function is a loss function commonly used for maximum-margin clas-
sification problems. They concluded that SV M (K LD) outperforms SVM(HL). In 2016,
the high-impact conference ” International Workshop on Semantic Evaluation”, i.e., SemEval,
held a track on sentiment quantification. The 2nd best-performing approach was contributed
by Vilares et al. [37] who tackled the problem by training a Convolutional Neural Network

(CNN) and using its hidden activation values as features to train a SV M (K LD) classifier.



They compared it to a simple ”classify and count” approach that employed a regular SVM
and concluded that their approach performed better. However, the overall best approach
from SemEval 2016 was by Stojanovski et al. [38]. They used a combination of a Convo-
lutional Neural Network (CNN) and a Gated Neural Network (GNN), which was then fed
into a softmax layer. They concluded that the combination of the two neural network is
well suited for quantification. Their CNN alone achieved a KLD (note that KLD is the most
commonly used metric for evaluating quantification) of 0.053 versus 0.045 for the GNN alone.
Since the CNN’s performance alone is very close to that of the CNN+4+GNN, the benefit of
adding the GNN to the CNN is marginal. In the 2017 edition of the International Workshop
on Semantic Evaluation, Mathieu Cliche [39] achieved first place on the sentiment quantifi-
cation task. He used a deep-learning method that uses both a Convolutional Neural Network

(CNN) and a LSTM (Long Short-Term Memory) neural networks that uses word embedding.

In our work, we will build upon the approach of [36] by comparing various statistical

distances optimized through a multivariate SVM.

2.3 Event Detection

2.3.1 Event Detection in Text Stream

Event detection aims to automatically detect and identify novel events from a text
stream. The question has been heavily studied in the past with one of the first approach
published in 1998 by Yang et al. [40]. Event detection is traditionally divided into two
approaches: document-pivot, wherein the goal is to cluster documents based on the semantic

distance of their textual content, and feature-pivot, wherein the goal is to study the distri-



bution and frequency of features such as words. We will focus on work that uses the latter
approach. Kleinberg [41] detected events using an infinite-state automaton wherein events
are modeled as state transitions. In contrast, Fung et al. [42] focus on detecting events by
identifying ”bursty” words (that is, a word that shows a spike in its frequency) using their
distribution and by then grouping similar bursty features. While the previous work focus
on analyzing words on the time domain, He et al. [43] considered the frequency domain and
employed the Discrete Fourier Transform (DFT) on word’s signals. Indeed, burst in the time
domain will produce a spike in the frequency domain. They combined this information with
a Gaussian Mixture model to identify and locate events in time. In other work, Chen and
Roy [44] focused on identifying events in Flickr using images’ tags. They employed wavelet
transformations which are localized in both time and frequency domain, allowing them to

have both temporal and locational distributions of features.

2.3.2 Event Detection in Twitter

Event detection has been applied to Twitter data in recent years. Sakaki et al. [45]
focused on detecting earthquake and typhoon events on Twitter using an SVM machine.
They modeled the problem as a classification problem. Patrovic et al. [46] tackled the prob-
lem of identifying event on Twitter that have never appeared in previous tweets. They used
an approach based on the cosine similarity between documents. Ozdikis et al. [47] detected
events by clustering tweets that are retrieved through the semantic expansion of their hash-
tags. They concluded that focusing on hashtags instead of the entire tweet improves the
clustering accuracy. Weng and Lee [48] employed a wavelet transformation-based approach
to tackle the problem. They built wavelet signals from individual words and modeled the

change over time of each word through a sliding window and the H-measure of the signals.



Signals are then clustered with a modularity-based graph partitioning technique and events
are represented as subgraphs. Cordeiro [49] also used wavelet transformations. He built sig-
nals (wavelets) from hashtags and clustered them into clusters in interval of 5 minutes. The
hashtag signals were constructed over time by simply counting the number of occurrence
of the hashtag within each interval, resulting in time series. A wavelet transformation is
then applied to obtain a time-frequency representation of each signal. After identifying an
event, the Latent Dirichlet Allocation (LDA) is applied to reduce the dimensionality of the
feature space. More recently, Zhang et al. [50] implemented an event detection system on
Twitter that considers the geo-localization of the tweets. Their main intuition is that if a
considerable amount of tweets (i.e., a burst) appears and if the semantics of the tweets is
significantly different than that of regular tweets at this particular geo-location, then there
is an event happening. The candidate events are then identified as true local events through

a logistic regression classifier.

Our work differ from the approaches mentioned above as we will be building and
analyzing sentiment signals. Our approach consists of analyzing the signal’s trend over a
short period of time using a sliding window w, and comparing that trend with the upcoming

sentiment point.
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3 Research Plan

The overall goal of this research is to design and build algorithms to automatically
detect a shift of sentiment on Twitter with respect to a given subject. Most current research
focuses heavily on accurately evaluating the sentiment of textual data, ignoring the problem
of automatically detecting when a shift of sentiment happens. In order to detect these
sentiment shifts, we will approach the problem as a special case of event detection, algorithms
that automatically detect events from signals. Event detection has previously been applied
to text streams in which the signal is typically considered to be word frequency. To our
knowledge, it has never been used on sentiment signals. We therefore propose to combine
sentiment quantification techniques along with event detection methods to achieve our goal.
Sentiment quantification is generally measured by estimating the proportion of positive and
negative occurrences within a stream of text. In our case, we will focus on stream of tweets
from Twitter. The problem that we are tackling rises three important questions that we

ought to answer throughout this document:

(i) How to represent a tweet in a way such that (a) its representation embeds the sentiment
it reflects, (b) the computer understands, and (c) computations can be performed by

the computer

(i) How can we accurately quantify the prevalence of the positive class and the negative

class of a collection of tweet given a representation that satisfies (i)

(iii) How can we identify a shift of sentiment after inquiry (ii) is satisfied

The first goal of this document will answer (i) by exploring sentiment lexicons and feature
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Figure 3.1: Overall architecture of the system

vectors. A vector of real values in the Vector Space Model (VSM) can encode information.
Moreover, vectors operations are easy to compute, and the computer can work very efficiently
with them. The second goal addresses issue (ii) for which SVM (Support Vector Machine)
machines will be explored in combination with statistical distances. Given that the Vector
Space Model was chosen to answer (i), Support Vector Machine is a natural choice for trying
to answer the sentiment quantification question. The third goal of this document builds on
top of (ii), sentiment quantification, and tries to answer (iii) by identifying sentiment shifts.
The main idea consists of building sentiment signals from the result of the quantification

task, and applying event detection methods to analyze such signals and detect a potential
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shift of sentiment. Figure 3.1 depicts the architecture of the system.

3.1 Goal 1: Representing Tweets in the Vector Space Model

From a collection of tweets, we will first build a sentiment lexicon, that is, a list of
words with associated sentiment scores. The sentiment scores will be calculated using a
probabilistic approach. We will use the resulting sentiment lexicon to represent each tweet
in the Vector Space Model (VSM) and use such vectors in a traditional Support Vector

Machine (SVM) classifier.

3.1.1 Capturing Word Sentiment

Our method to estimate the sentiment of a word is based on our pilot work [32]
in which we estimated the sentiment of a word through a probabilistic approach and an
information theoretic approach. Although our formulae worked well for our test set of Ama-
zon product reviews, they might not produce accurate scores with Twitter’s data. Indeed,
Twitter’s language is much different than that of product reviews, and the sentiment score
calculation will likely need to be adapted. However, one of the main advantages of the afore-
mentioned approach is that our sentiment scores are accurate whether or not the training
dataset is balanced (that is, whether or not there is an equal amount of positive labeled data
and negative labeled data in the training dataset).

We believe that this is a very important point to take into consideration and it is the
main reason why our new approach is inspired by it. Based on our previous work [32], which
produced accurate sentiment scores, we define the score of a word w, Score(w), to be the
difference between its positivity, pos(w), and its negativity, neg(w). The positivity of a word

is calculated by dividing the positive document frequency of the word with the aggregated
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positive document frequency of every word, which basically represents how frequently a word
is used in positive tweets. A word w; that is used in positive tweets more often than a word
ws should have a higher positive score. However, this statement is no longer true if w; is also
used in more negative tweets than wy. To account for that, the positivity is then normalized
by the overall frequency of the word. By doing so, a word that appears in many positive
documents and few negative documents will have a higher positive score than a word that
appears in the same amount of positive documents but more negative documents. The same
calculation is done on the negative documents as well. The score of a word is therefore

calculated as follows:

Score(w) = pos(w) — neg(w) (1)
where:
_ pdf (w) 1
pos(w) = Npos df (w) )
neg(w) = ndf (w) 1
Nieg df (w)
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and:

r=1 ifwet

otherwise

=1 ifwet

otherwise

r=1 ifwet
df(w):Zx

teT )
z =0 otherwise

= pdf (w) + ndf (w)

Npos - Z pdf(w)

wEvocab

Npeg = Z ndf (w)

wEvocab

We first define three terms: pdf(w), ndf(w), and df (w) where pdf (w) is the positive
document frequency of w, i.e., the number of time w occurs in positive tweets from the tweet
collection T'; ndf(w) is the negative document frequency of w, i.e., the number of time w
occurs in negative tweets from the tweets collection T'; and df (w) is the total number of
occurrences of w in the tweet collection T". Furthermore, N, is the proportion of positive
words in the collection of tweets, i.e., it is the sum of the the positive document frequency
pdf of every word in the dictionary; Likewise, N,., is the proportion of negative words in
the collection of tweets, i.e., the sum of the negative document frequency ndf(w) of every

word in the dictionary.
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3.1.2 Building Sentiment Lexicons

The next step is to build a sentiment lexicon. A sentiment lexicon is a list of words
associated with, or mapped to, one or several sentiment polarities. There are several ap-
proaches to word polarity annotations. Discrete polarity annotation label words with a
discrete value among positive, negative, or neutral. Such a polarity annotation is used in
the MPQA Subjectivity lexicon [51]. Continuous polarity annotation assigns words a real
value within a range (typically -1.0 to +1.0) that reflects the strength and the orientation
of a word. One common polarity annotation is called fractional polarity annotation that is
defined as a 3-tuple of positive numbers that sums up to 1, wherein each value corresponds to
the positivity, negativity and neutrality of the word respectively. The popular SentiWordNet
lexicon uses this type of polarity lexicon [52, 53].

The formulae described in the previous section produce real values, so we will use the
continuous polarity annotation in our work. After preprocessing the tweets from our train-
ing dataset, each unique word will be extracted from the remaining text in order to build
a dictionary. Using the formulae from section 3.1.1, we will compute each word’s polarity
score. We will then compare two scaling techniques in order to get scores in the range [-1,
1]. We will compare the scaling formulae (3) and (4):

T — min_score

=2 x —1 (3)

maxr_score — min_score

3377 — T » (4)
max (| maz_score |,| min_score |)

Scaling (3) guaranties that the scores are mapped to the interval [-1, +1] and the minimum

score will be -1 whilst the maximum score will be +1. Scaling (4) guaranties that the scores
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are within the range [-1, +1] but one of the edge values might not be reached, i.e., if the
highest score is +1 the minimum score might be less than or equal to -1 and vice-versa.
We will assess the effect of scaling with both formulae through a straightforward
sentiment analysis approach. That is, for each word w in a tweet ¢ we will look up the score
in the lexicon [ and sum them up. If the resulting score is positive then the tweet is deemed

to be positive, if the resulting score is negative the tweet is deemed negative:

x = score(w) ifw €l

score(t) = Z x

wet .
z=0 otherwise

While a single sentiment score gives us information about the polarity strength (its
score) and the polarity orientation (its sign) of a word, it does not capture the word’s
distribution across positive and negative occurrences. For example, consider a word w
with a score of 0.4, based on formula (1). It could be that its positivity is 0.8 and its
negativity is 0.4, or it could be that its positivity is 0.6 and its negativity 0.2, or 0.5 and
0.1. Furthermore, if two words have the same sentiment score, it does not necessarily mean
that they have the same positivity and negativity. For instance, if two words have a score
of —0.6, they could be the results of 0.11 — 0.71 or 0.3 — 0.9. In other words, we are losing
information about the word’s distribution across the dataset. We will consider two words
similar sentiment-wise if their positivity and negativity scores are similar.

We believe that using both the positivity and negativity of words could improve the
accuracy of a sentiment analysis machine since it embeds more information than using a
single score. Thus, we will build a second lexicon that uses a polarity annotation that is

a combination of the fractional polarity annotation and the continuous polarity annotation.
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Using the formula in equation (2) from section 3.1.1, we will build a lexicon that maps
each word to a pair of scores w :< pos,neg >: its positivity, also referred as pos(w), and
its negativity, also referred as neg(w). We will compare the effectiveness and accuracy of
each of the single-score lexicon and paired-score lexicon through a sentiment analysis task

described later in this document.

3.1.3 Representing Tweets as Feature Vectors

We will investigate and compare two ways of representing a tweet in the Vector Space
Model. We will extract each word’s sentiment score from the lexicons constructed in the
previous section, and derive numerical features from them. A common way of representing
documents in the Vector Space Model is through the Bag-Of-Word (BOW) model. In this
approach each document is represented by a vector wherein each feature is a word from the
dictionary. Therefore, the size of the vector is equal to the size of the vocabulary. We will
explore two variations of the BOW model. One wherein each word feature is a binary value (0
or 1) that indicates whether or not the i word is present in the document. And one wherein
each word feature is the computed tf-idf (term-frequency inverse document frequency) value
of the i*" word within the document. Each feature vector will then be added the sentiment
features derived using the lexicon. We will describe these sentiment features below. We do
not take into consideration the Part-Of-Speech (POS) of the words based on results from
Go et al. [28] that demonstrated that POS is not helpful in Twitter data. We will perform
sentiment analysis on a collection of tweets to assess which feature vector is more effective.
We will build a sentiment classifier using a Support Vector Machine (SVM). Since it is known
to be very effective on text classification [54], a linear kernel will be used for this SVM, based

on Mohammad et al. [29] who stated that a linear kernel outperformed other kernels as well
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Figure 3.2: Architecture of the SVM classifier for sentiment analysis

as a Maximum Entropy classifier. Figure 3.2 illustrates this process.

3.1.3.1 Feature vector with single score lexicon

The feature vector for the SVM classifier that uses the single-score lexicon will be

composed of the following features:

® Wi, Wy, ...,wy: for each of the m words in the vocabulary If the word is in the tweet

then the feature will be equal to 1 or its tf-idf, and 0 otherwise

e i: the number of word that were actually found in the lexicon

e j: the number of token, i.e., the number of word in the tweet

e sum: the overall sentiment score of the tweet calculated by adding up each word’s

sentiment score

e maz: the maximum sentiment score present in the tweet

e mun: the minimum sentiment score present in the tweet

e avg: the average sentiment score of the tweet calculated by averaging each word’s

sentiment score

19



e nb pos: the number of positive token in the tweet

e nb neg: the number of negative token in the tweet

3.1.3.2 Feature vector with paired score lexicon

The feature vector for the SVM classifier that uses the paired-score lexicon will be

composed of the following features:

® Wy, Wy, ...,w,: for each of the m words in the vocabulary If the word is in the tweet

then the feature will be equal to 1 or its tf-idf, and 0 otherwise

e i: the number of word that were actually found in the lexicon

e j: the number of token, i.e., the number of word in the tweet

e maz pos: the maximum positive score in the tweet

e min pos: the minimum positive score in the tweet

e max neg: the maximum negative score in the tweet

e min neg: the minimum negative score in the tweet

e sum pos: the sum of all positive scores

e sum neg: the sum of all negative scores

e sum: the overall sentiment score of the tweet calculated by subtracting neg from pos

e avg pos: the average positive sentiment score of the tweet calculated by averaging each

word’s positive sentiment score
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e avg neg: the average negative sentiment score of the tweet calculated by averaging

each word’s negative sentiment score

e ratio: the ratio of avg pos over avg neg

3.1.3.3 Choosing a vector representation

We will study the impact of each feature on the classification performances. Specif-
ically, we will start with the first vector representation, i.e., the bag-of-words model, and
measure the performances of the classifier. Then we will add one feature at a time and
evaluate the performances of the system after each addition to evaluate the impact of the
new feature. The vector features that yields the most accurate results will be used for our

tweet vector representation.

3.2 Goal 2: Quantifying Sentiment from Tweets

Given a set of tweets, our goal is to quantify the proportion of tweets that are deemed
positive and the proportion of tweets that are deemed negative in the set. We will build
several multivariate SVM machines that use the feature vectors resulting from Goal 1, and
compare them to the univariate SVM machine from Goal 1 to evaluate which is better suited

for tweet quantification.

3.2.1 Classification vs Quantification

A classifier evaluates the class label of individual instances while a quantifier evaluates
the class label on the aggregate level (which is the objective of Goal 1). It is important to
keep in mind that a perfect classifier is a good quantifier, but the inverse is not true. Also,

a good classifier is not necessarily a good quantifier. Let’s look at the example in Figure 3.3
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wherein two classifiers C1 and C2 classified 6 documents. 3 documents are labeled black and
3 are labeled white. The class distribution is therefore 0.5 for the black class and 0.5 for the
white class.

The binary classifier C1 has a false positive rate (FPR) that differs from its false negative
rate (FNR) but it correctly classified 5 out of 6 document. It is therefore a very good
classifier. However, the distribution of the black class in C1 is 0.33 and the distribution
of the white class is 0.66. It is therefore a poor quantifier, since the class prevalence was
not kept. The binary classifier C2 has a FPR equal to its FNR. It correctly classified 2
documents out of 6 and is thus a terrible classifier. However, the distribution of the black
class is 0.5 and the distribution of the white class is 0.5. It is a good quantifier because it
did predict the right prevalence of both classes. Since the FPR and FNR are equal in C2,
they will compensate each other so that the distribution of the classes is estimated correctly.
We call C2 a perfect quantifier. If all misclassifications were toward a particular class, i.e.,

what we call a statistical bias, it would not affect a classifier but would affect a quantifier.

3.2.2 Sentiment Quantification of Tweets

A traditional SVM machine can be used to quantify by classifying each unlabeled

documents and by then counting how many documents belong to the positive class and how
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many documents belong to the negative class. We call this approach univariate SVM and
we will use it as our baseline for Goal 2.

Because a traditional SVM optimizes a univariate loss function, it classifies each item
one by one, independently of each other, i.e., an item does not impact how another item is
classified. Even if the classifier correctly quantifies the positive and negative class propor-
tions in the training set, there is no guarantee that the proportion of positive documents
and negative documents will be the same in the training test set. In fact, we are explicitly
expecting a change in the proportion of the positive class and negative class ratios when a
shift of sentiment happens. Thus, such a quantifier will most likely suffer from statistical
bias.

To overcome this problem, we will use a Support Vector Machine (SVM) for mul-
tivariate performance measures. That is, we will use a SVM that optimizes a nonlinear
multivariate loss function rather than an univariate loss function. It considers hypotheses
h : ¥ — 7 that maps an entire set of documents into a set of labels instead of mapping
an individual document to an individual label as in h : x — 7. So, it allows items to be
arranged in structures (graphs of items, trees of items, sets, etc.) in which each item has an
attributed label. However, the way an item is labelled is influenced by other items. Thorsten
Joachims [55] developed such an SVM machine named SV MPer/.

We will perform quantification using SV MP?*"/ similarly to our baseline, that is, by
classifying each unlabeled documents and then counting how many documents belong to
the positive class and how many documents belong to the negative class. Specifically, we
will use SV MPe"f with several statisticaldistance metrics and compare them to our baseline

univariate SVM.

The Kullback-Leibler Divergence (KLD) is a loss function that measures how one
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probability distribution p diverges from a second predicted distribution ¢g. It is defined as

follows:

(i)
(i)

KLD(p,q chz log (5)

We will use the SVM(KLD) from [36] and compare it to our own approaches de-
scribed below. The idea here is to compare various measures of statistical distance that have
different mathematical properties and comparing their performance in a sentiment quantifi-
cation task. To our knowledge, this work has not yet been investigated.

Our first sentiment quantification machine is a SV MP"f that optimizes the Hellinger
Distance instead of KLD. The Hellinger Distance is a statistical distance used to measure

the similarity between two probability distributions. HD is defined as follows:

HD(p,q) = \/2 N1V (p) — Vall» (6)

The second SV MP*"/ will optimize the Bhattacharyya distance. The Bhattacharyya
distance is another statistical distance that measures how similar two probability distribu-

tions are. It is defined as follows:

Dg(p,q) = —In(BC(p,q)) (7)

where:

=Y Vp(@)(w) (8)

rzeX
is the Bhattacharyya coefficient.

The third statistical distance that we will optimize through SV MP"f is the Jensen
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Shannon Divergence. The Jensen Shannon Divergence is a smoothed and symmetrized ver-

sion of the Kullback-Leibler Divergence. It is defined as follows:
1 1
J5D(p,q) = 5 KLD(p,m) + 5 KLD(q,m) (7)

where:

1
m—§@+@

The next statistical distance that we will use in the multivariate SVM machine is the
Total Variation Distance. It is yet another metric used to measure the distance between two

probability distributions and is defined as follows:

TVD(p, ) = 5 3 Ip() — a()] )

zeX

The last statistical distance that we will use is another symmetrized version of KLD
called Resistor-Average Distance introduced by Johnson and Sinanovié¢ [56]. It is equal to
the harmonic mean of both Kullback-Leibler distances K LD(p,q) and KLD(q,p) and is

formally defined as follows:

1 1 -1
RAD(p,q) =

= |KLD(p,q) ' KLD(q,p) (10)

We will call these SVM SV M*e"f (K LD), SV MPerf (HD), SV MPef (BD), SV MP (JSD),

SV MPerf(TV D), and SV MPrf(RAD) respectively.
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3.2.3 Notes on Statistical Distances

From a mathematical perspective, a function d in a space y is said to be a distance

if for any x,y, z € x the following three axioms are satisfied:
(i) d(z,y) > 0 when z # y and d(x,y) =0 if and only if x =y

(ii) d(z,y) = d(y, z)

(ili) d(z,y)+d(z,z) > d(y, z)

The axiom (i) implies that the distance must be non-negative and respect the iden-
tity of indiscernible, axiom (ii) implies that the distance must be symmetric, and axiom (iii)
implies that the distance satisfies the triangular inequality.

If a distance measure only satisfies axiom (i) i.e., it is non-negative but not symmetric,
it is called a directed divergence measure whereas if a distance measure satisfies both axioms
(i) and (ii), i.e., it is non-negative and symmetric, it is called a non-directional divergence
measure [57] [58]. A true distance measure can be considered a divergence measure, but
a divergence measure does not always satisfies all three axioms and is therefore not a true
distance. We warn the reader that the term distance must not be taken rigorously when dis-
cussing some distance measures throughout this document, e.g., the Bhattacharrya distance,
as they might not obey all three fundamental axioms mentioned above, and are therefore
not a distance in the proper sense. We will now discuss a few properties of all 6 statistical

measures mentioned in the previous section.

Kullback-Leibler Divergence

e The Kullback-Leibler Divergence does not satisfy axiom (ii) and (iii), that is, it is not

symmetric and it does not satisfy the triangular inequality
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e KLD is therefore not a distance but a pseudo-distance or directed divergence measure

e [t is considered a measure of divergence because of its ratio %, that is, the difference

in the probability distributions is large when the ratio is far from 1
e KLD(p,q) is undefined if there exists a ¢(z) = 0 for which p(z) # 0

e K LD(p,q) has no upper bound, that is, KLD’s limit goes to +o0o when ¢(z) is infinitely

small

Hellinger Distance

The Hellinger Distance satisfies all three axioms, it is symmetric, non-negative, and

satisfies the triangular inequality

HD is therefore a true distance

HD(p,q) is bounded, it has a lower bound of 0 and an upper bound of 1 (due to the

1/4/2 term in the formula)

HD(p,q) is well defined

Bhattacharrya Distance

e The Bhattacharyya Distance does not satisfy axiom (iii), that is, is does not satisfy

the triangular inequality

e The Bhattacharrya Distance is symmetric

e BD is therefore not a distance in the proper sense but a non-directional divergence

measure
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e As per its definition that employs the natural logarithm, BD is undefined is there exists

a q(x) = 0 for which p(x) =0

e BD has an upper bound

Jensen-Shannon Divergence

e The Jensen-Shannon Divergence does not satisfy axiom (iii), that is, it does not satisfy

the triangular inequality

e JSD is symmetric

e JSD is therefore not a distance in the proper sense but a non-directional divergence

measure

e JSD is a smoothed and symmetrized version of the Kullback-Leibler Divergence

e JSD(p,q) is bounded, it has a lower bound of 0 and an upper bound of In(2)

e Because it uses the KLD, JSD(p, q) is undefined if there exists a p(z) = 0 or ¢(x) =0

Total Variation Distance

e The Total Variation Distance satisfies all three axioms, it is symmetric, non-negative,

and satisfies the triangular inequality

e TVD is therefore a true distance

e TV D(p,q) is bounded, it has a lower bound of 0 and an upper bound of 1

e TV D(p,q) is well defined
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Resistor-Average Distance

e The Resistor-Average Distance does not satisfy axiom (iii), that is, it does not satisfy

the triangular inequality

e RAD is symmetric

e RAD is therefore not a distance in the proper sense but a non-directional divergence

measure

e RAD is another symmetrized version of KLLD. It is equal to the harmonic mean of both

KLD(p,q) and KLD(q,p)

e RAD(p,q) is not defined when either K LD(p, q) or KLD(q,p) is equal to 0

Although these are only a few of the numerous distance measures and divergence
measures available, for no apparent reason, the Kullback-Leibler Divergence has become the
de facto standard measure for statistical divergence. Our work will compare other distance
measures to see which is best for sentiment quantification.

In this section, we have described how we intend to improve current sentiment quan-
tification methods so as to be able to quantify the class distribution (positive, negative) of
a set of tweets. The next section will describe the third goal of this document, i.e., how to

automatically detect a shift of sentiment with respect to an entity or subject.

3.3 Goal 3: Detecting Sentiment Shifts

Once we are able to accurately quantify the prevalence positive class instances and
negative class instances from a set of tweets, we use our best-performing approach to build

a sentiment signal over time that we will analyze in order to identify a shift of opinion.
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3.3.1 Building a Sentiment Signal

From Goal 2 we are be able to extract the distribution, i.e., the proportion of positive
tweets and negative tweets during the time interval from ¢;_; to ¢; from a set T" of tweets
(where t;_1 to t; is equivalent to one time unit e.g., day, hour, minutes etc...). We can then
compute the volume of positive tweets ¢(pos); and the volume of negative tweets g(neg), for
point ¢ in terms of percentage. Then, similar to [48], we consider this sentiment signal as
a time series that is composed of a sequence of discrete-time sentiment points S(¢;) where
each S(t;) is the sentiment towards a given entity during the interval ¢;_; to ¢;, defined as

follows:

S(t) = [S(t1), o, S(t), S(tisr), s S(tn)] (11)

A sentiment point is represented through a single value computed from the difference
between the volume of positive tweets ¢(pos); and the volume of negative tweets g(neg);.
This way, if the proportion of positive tweets if greater than the proportion of negative
tweets, the sentiment point will carry a positive value, similarly, if the proportion of positive
tweets is less than the proportion of positive tweets, the sentiment point will carry a negative

value. Thus, a sentiment point is defined as follows:

S(t;) = q(pos):, — q(neg)y, (12)

3.3.2 Detecting a Sentiment Shift

Thenceforth, we define a sentiment shift as:

Definition 1. A sentiment shift is a sudden change in the sentiment signal S(t) of a given

entity that occurred in the time interval t;_1 to t;.
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Once our sentiment signal is represented as a time series of sentiment points, we can
analyze it to detect a possible shift in the sentiment signal. The intuition is that although
most sentiment signals will vary gradually over time, occasionally there will be a sudden
and dramatic change. If a sentiment shift happens, the next incoming sentiment point will
not follow the previous pattern, or trend, and that is an indicator of a potential sentiment
shift. The idea thus consists of analyzing the signal’s trend over a short period of time using
a sliding window and compare that trend with the upcoming sentiment point as soon as it
becomes available. In particular, let w be a sliding window of size |w|. If the new sentiment
point does not fit the trend determined by w, it would indicate that an unexpected sentiment
value was detected.

From the perspective aforementioned, our detection algorithms should then have two

components:

1. a mathematical mean to try to capture and represent the signal’s trend inside the

window

2. a mathematical mean of comparing the incoming data point to the window’s trend to

decide whether or not the point belongs to the trend

We must detect the sentiment shift as soon as the data point becomes available, thus
requiring our algorithms to be computable in real time. We will explore several window sizes
and compare the detection accuracy to see the impact of having more data points within
the window. In addition we will explore the several questions raised by the choice of window
size. Particularly, does having a larger window add more noise or value? What happens
when the trend window is large enough to encompass a prior sentiment shift, partially, and

fully? How would it impact the detection accuracy?
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We will investigate several algorithms to detect a sentiment shift and compare their
effectiveness. Such algorithms belong to the class of ”change point detection” algorithms,
these are usually divided into two categories: offline algorithms, and online algorithms. The
former contain algorithms that consider all points within the data set and they therefore do
not work on streaming data. Thus, we cannot use such algorithms. The latter class, on the
other hand, contains algorithms that are real-time and therefore process data points as they
become available. Their goal is to detect a change point as soon as they come in. Online
algorithms fit our needs, thus we will focus this class.

Online algorithms are further divided into two subcategories: supervised methods,
which require sufficient amount and diversity of data for training purposes, and unsupervised
methods which work with unlabeled data, and do not require prior training data. Supervised
methods include traditional classifier such as Naive Bayes, Support Vector Machine, Decision
Tree, Nearest Neighbor and so forth. We will focus on online unsupervised methods in this
work.

Unsupervised change point detection methods can be labeled under 6 categories based
upon how they work and behave. Although we will not describe all 6 categories in this docu-
ment, we will discuss why some cannot apply to our situation. Descriptions and examples of
the various categories can be found in the work of Aminikhanghahi and Cook [59]. Likelihood
ratio methods, subspace model methods, and kernel-based methods require the use of several
windows and are therefore qualified as as not complete online (they are n + k-real time) and
therefore do not fit our requirements. Probabilistic methods are n-real time (requiring n
points before the incoming point) but they usually estimate probability distributions and

therefore require a large number of data points to be accurate. Graph-based methods are
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Figure 3.4: Baseline detection illustration

also n-real time but they rely upon the definition of the graph structure rather than the
data properties and observations. Finally, while some clustering methods are offline, some
are n-real time and only use one single window of size n, which fits our requirements.

There are 3 approaches as to using a window to capture and monitor incoming data
points: periodic, incremental, and reactive. In the periodic techniques the model is updated
time to time. In the incremental approach the model is updated when the data changes.
Finally, in the reactive approach the model is updated when it no longer suits the data
(typically when a change point is detected).

We will compare our algorithms to a baseline implemented by Dang-Hoan Tran[60]
who investigated change point detection in streaming data using a reactive approach. We

adapted his approach to our case.

3.3.2.1 Baseline: Reactive model-fitting approach

This approach consists of having two windows characterized by a Centroid and a
Radius both of size n. The reference window is static and is updated when a change point
is detected, in our case we will update the window when the incoming data point was is

believed to carry a sentiment shift. The second window is a sliding window that slides
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over time, this window eventually becomes the reference window upon the detection of a
sentiment shift. The distance between the Centroid of the sliding window and the new data
point is computed and used as a threshold to determine whether or not the point carries
a sentiment shift. The Centroid X, of the window, the Radius R of the window, and the
distance between the Centroid and the new data point X are computed as follows:

Zi‘ih Xi

Xy =
|w]

R(w) — \/lell(Xz - X0)2 (13)

|w|
d(X, Xo) = /(X0 — X)? = [(Xo — X)
The decision to make then becomes:
Sentiment shift = d(X, Xo) > R(w) (14)

If the distance between the Centroid of the sliding window and the new data point
is greater than the Radius of the window, then a shift is detected, and the sliding window
becomes the reference window, otherwise the sliding window keeps sliding forward. Figure

3.4 illustrates this process.
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3.3.2.2 Our approaches

While the baseline algorithm uses a reactive approach, all of our techniques will use
an incremental approach, that is, the trend window will slide one time unit at a time, thereby

updating the model upon receiving a data point.

Discrete signal properties: Sig prop

Our first approach consists of using discrete signal properties such as energy E and
power P. The energy of the signal is a quantitative measure of its strength while the
power measures how the energy is divided over a certain period of time. Additionally, the
instantaneous power is the energy of a single data point at a fixed instant . The energy F,
power P, and instantaneous power Pi of the sentiment signal over the window w are defined

as follows:

|w|

Blw) =Y (i)
w]
Plw) =) = 3 ) (15)

|wl

Pi(w(i)) = w(i)*

The idea in this approach is to compute the power in the window that contains the
new data point upon receiving it. Then we can compare that power to a range of acceptable
power, derived from the power contained in the trend window at time ¢ — 1, that is, prior to
receiving the new data point.

We first compute the energy of the trend window and derive its power P(w); 1.
From P(w);—; we can derive minp, and maxp, which are the minimum expected power

and maximum expected power respectively. Upon receiving the new data point, the trend
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Figure 3.5: Sig prop detection illustration

window slides by one time unit and we can then compute the new power P(w),;. Finally, we
compare P(w);—1 to minp, and maxp,. While we know how to compute both P(w);_; and

P(w);, we now show how to compute minp, and maxp,:

|w]
1
plw) = — > w(i)
vl =
|wl
1 . (16)
o(w) = ] > (w(i) = p(w))?
i=1
minp, = P(w);—1 — o(w)
maxp, = P(w);—1 + o(w)
The decision to make then becomes:
Sentiment shift = (P(w); < minp,) V (P(w); > maxp,) (17)

Intuitively, if the new power falls within the range minp, - mazrp,, the data point was

expected and is therefore not carrying a sentiment shift. However, if the new power is out-
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side the range, i.e., lower than the minimum expected power or greater than the maximum
expected power, then it means that the new data point was not an expected value and could

therefore indicates a sentiment shift. Figure 3.5 illustrates this process.

Distance point to point: Dist p2p

This approach consists in capturing the signal’s trend inside the window by computing
the Pythagorean distance point to point between each consecutive point in the window, and
derive the average distance needed to travel from one point to another. The distance from
the last point inside the window to the new data point is then compared to a threshold value
computed from the standard deviation of the distances and their average, since the standard
deviation is a measure of how widely a distribution of values is spread out from their average.

Although very similar to the baseline method, our approach differs in several ways:

1. Our method uses an incremental approach as opposed to reactive approach. This
implies that an incoming data point is compared to the trend that it precedes, as

opposed to be compared to the latest trend that encompassed a sentiment shift

2. We use the average of the distances point to point to capture the trend as opposed to

using the average values within the window

3. Any distances computed in our model is computed through the Pythagorean theo-
rem (also known as two-dimension FEuclidean distance) which uses a two dimensions

Euclidean plane as opposed to using a one-dimension plane.

Note: Although the baseline algorithm was designed for multiple dimensions, we adapted it

for a single dimension to fit our data.
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The Pythagorean distance d between two sentiment points s1(v1, t1) and s1(v2, t2),

the standard deviation o of the distances, and the threshold Threshold,s, are defined as

follows:

d(s1,52) = \/(v] —v2)2 + (t1 — 12)2

lw|—1

) = =g 3 dfw(i). i+ 1)

Thresholdyy, = p(w) + o(w)

The decision to make then becomes:

Sentiment shift = d(last point in w,new point) > T'hreshold,s,

(18)

(19)

Similar to the previous approach, if the distance d between the last point in the trend win-

dow and the new data point is greater than the threshold distance T'hreshold,s,, the point

is deemed to carry a sentiment shift, otherwise the point is deemed to belong to the trend.

Figure 3.6 illustrates this process.

In order to see the impact of the window size on the detection accuracy, we introduce

Dist p2p* from this method, where the only difference resides in the threshold calculation
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Figure 3.6: Dist p2p detection illustration

which becomes:

Thresholdyx = p(w) + |w| x o(w) (20)

Distance point to vector: Dist p2v

This approach follows the same process as the Distance point to point (Dist p2p)
approach, but differs in the way the distances are calculated. Indeed, rather than calculating
the distance from one point to the next, the idea here is to consider the distance between the
point at ¢; to the vector that connects both points prior to it: ¢;,_s and ¢;,_;. Thus, we are
no longer using the Pythagorean distance but the distance d between a point Py(xg,y) and

a line that is defined by two points Pj(x1, ;) and Pa(xs,y2). We then compute the average
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distance and the standard deviation similarly to equation 17:

|(y2 - yl)% — (29 — xl)yo + Zoy1 — y21?1|

d(P17P27P0> =
V(Y2 = yi)! + (2 — 21)?
1 |w|—2
plw) = g D dlw(@),wli+ 1), wli +2))
i=1
(21)
1 |w|—2
o) = | o 2 (i) wli+ 1), (i +2) = p(w))?
i=1
Thresholdpyy, = p(w) + o(w)
The decision to make then becomes:
Sentiment shift = d(last vector, new point) > T'hreshold,s, (22)

and follows the same idea as Dist p2p. Figure 3.7 illustrates this process.
Equivalently to Dist p2p*, we introduce Dist p2v* from Dist p2v, where the only difference

resides in the threshold calculation which becomes:

Thresholdyg, = p(w) + |w| X o(w) (23)

Distance point to aggregated vector: Dist p2av

Our last approach resembles Dist p2v with the major difference that the computed
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Figure 3.7: Dist p2v detection illustration
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Figure 3.8: Dist p2av detection illustration

distance is the distance from a point to the aggregated vectors prior to the point within the
window. For the n'* point in the trend window, we compute the distance from the point
to a vector which is the sum of all vector from 0 to n — 1 inside the window that precede
the point. The average distance remains the average of all distances computed inside the

window. The computation of the distance d, and the standard deviation remain the same as
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equation 21 while the average u(w) changes:

A(Py, Py, Py) = (W2 =900 = (T2 1) + Tt = yor
\/(yz —y)t + (22 — 1)

|2
pl) = g 37 dw(). (). w()
21
w| -2
o) =\ Tormg D0 ().l w(i) — pw)?

Thresholdpa, = pw(w) + o(w)

The decision to make then becomes:

Sentiment shift = d(sum of all vectors prior to point, new point) > Thresholdys, (25)

and follows the same idea as Dist p2p. Figure 3.8 illustrates this process. Equivalently to
Dist p2v*, we introduce Dist p2av* from Dist p2av, where the only difference resides in the

threshold calculation which becomes:

Thresholdyg = p(w) + |w| x o(w) (26)

In this chapter, we have discussed our three goals which answer the questions of (1)
how to represent a Tweet as a vector of features which captures its sentiment, (2) how to

accurately quantify the proportion of positive Tweets and negative Tweets from a set of
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Tweets, and (3) how to create a sentiment signal over time of a given topic which is then
analyzed to detect when a shift of sentiment happen. We have also provided a description
of the methods that we developed to address each of the aforementioned goals. In the next
chapter, we will describe the datasets being used as well as the methods employed to evaluate

each of our goals.
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4  Experimental Evaluation

4.1 Evaluation of Goal 1

4.1.1 Dataset

We will evaluate our approach over several commonly used datasets. The datasets
that we will use are sets of tweets annotated with a class label chosen from positive, negative,
or neutral. Because we are dealing with 2-class sentiment analysis and 2-class sentiment

quantification, we will ignore tweets that are labeled neutral for both training and testing.

4.1.1.1 Sentiment Scores

To evaluate the sentiment scores, we plan to use the datasets from the International
Workshop on Semantic Evaluation Task 4 A: Sentiment Analysis in Twitter, from 2013
through 2016 (namely SemEval2013-task_A, SemEval2014-task A, SemEval2015-task_A, and
SemEval2016-task_A). We will also use the Sentiment Strength Twitter (SST) dataset created
by [64] and modified by [65] to have the positive, negative, or neutral classes. Additionally,
we will use the Sanders dataset. Table 4.1 depicts the size of each of these datasets. The
datasets are publicly available on the Internet and the tweets contained in each of them were
annotated manually to ensure a high quality of class labels.

Although the SemEval-task_A (2013-2016) datasets are partitioned into three subsets
(training, dev, test), the Sanders and the SST datasets are not. We will split those into two
subsets with 80% used for the training set and 20% reserved for the testing set. For the

SemEval datasets, the training and dev subsets will be combined and used for training while
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the test sets will be used for testing.

4.1.1.2 Feature Vector - Univariate SVM

To evaluate which feature vector representation is best, we will use the datasets from
the International Workshop on Semantic Evaluation Task 4 D: Sentiment Analysis in Twit-
ter 2016 and 2017 (namely SemEval2016-task_D and SemEval2017-task_D).

The SemEval2016-task_D and SemEval2017-task_D) datasets are split into 4 subsets:
train, dev, devtest, and test. We will combine the train, dev, and devtest subsets for training
and use the remaining test subset for testing. In addition, both the SemEval2016-task_D
and SemEval2017-task_D datasets are composed of tweets that belong to a particular topic
(that is the twitter query), and are labeled either positive or negative. While the topic is
ignored during the training part, i.e., all tweets are combined and used for training, the topic
will actually be used during the testing phase. We will use each topic from the test set as a
separate test subset during testing. Table 4.2 depicts the size of each of these datasets.

Due to terms imposed by Twitter, the datasets available online cannot contain the
tweets themselves, rather they contain the tweet IDs. Scripts are provided to download the
actual tweets from Twitter. Since some tweets become unavailable over time, our datasets

will consequently be a subset of the collection of IDs.
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Table 4.1: Twitter sentiment analysis datasets

Train Dev Test,
e | 2 = e | =
2 = E 2 £ = 2, = =
| I | TS T | % =
SemEval || 3,640 | 1,458 | 5,098 || 575 | 340 | 915 1,475 | 559 2,034
2013-
task_A
SemEval || 3,640 | 1,458 | 5,098 || 575 | 340 | 915 982 202 1,184
2014-
task_A
SemEval || 3,640 | 1,458 | 5,098 || 575 | 340 | 915 1,038 | 365 1,403
2015-
task_A
SemEval || 3,094 | 863 | 3,957 || 843 | 391 | 1,234 || 7,059 | 3,231 | 10,290
2016-
task_A
Train (80%) Test (20%) Train + Test
© D ) D [5) D
> 2 > 2 > 2
2 = = 2 2| = 3 = E
| E | % %] B | =
SST 989 842 | 1,831 || 263 | 195 | 458 1,252 | 1,037 | 2,289
Sanders 418 54 872 101 | 118 | 219 519 572 1,091
Table 4.2: Twitter sentiment quantification dataset
H Topics ‘ Positive Negative H Total
SemFEval2016-train-task_D 60 2,841 582 3,423
SemEval2016-dev-task_D 20 778 279 1,057
SemEval2016-devtest-task_D 20 893 216 1,109
SemFEval2016-test-task_D 100 8,212 2,339 10,551
SemEval2017-train-task_D 100 8,212 2,339 10,551
SemEval2017-test-task_D 125 2,463 3,722 6,185
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4.1.2 Method
4.1.2.1 Evaluation of the sentiment scores

Commonly used metrics will be used to assess the effectiveness and accuracy of the

normalized scores obtained from formulae (3) and (4). Specifically, we will use the following

metrics:
A #of correctly labeled tweets
ceuracy =
of tweets in the datase
Y = T4of tweets in the dataset
Precisi > True positive
recision =
> predicted conditon positive
Recall > True positive
ecall =
>~ conditon positive
FLS 5 5 precision - recall
-Score =

precision + recall

From this point forward, score(w) will use the scores that yields the best results according

to these metrics.

4.1.2.2 Evaluation of the univariate SVM

The performance of the lexicons will be evaluated through sentiment quantification
using a traditional univariate SVM classifier. We will train a SVM classifier with a linear
kernel using the training data to create the lexicons as stated in section 3.1. The effectiveness
of the sentiment lexicons will be evaluated using the testing data.

Commonly used metrics will be used to evaluate the univariate quantifier: the Kullback-
Leibler Divergence (KLD), the Mean Absolute Error (MAE), and the Relative Absolute Er-

ror (RAE). The Kullback-Leibler Divergence measures how one probability distribution p
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diverges from a second predicted distribution p and is defined as follows:

p(Ci)
plci)

KLD(p,p) = Y _ p(c) - log

The Mean Absolute Error and the Relative Absolute Error are the absolute error

between the class prevalence of two quantities and are defined as follows:

MAE(p Z h(c)
CEC’
|p(c)
RAE(p
e ; p(c

We will calculate the macro average KLD, MAE, and RAE, the harmonic means of

each metric. For instance, the macro average KLD will be defined as follows:

Yoo KLD;

n

Macro Average KLD =

where n is the number of instances, i.e., the number of datasets in our case.
As discussed in Chapter 3, KLD is not defined in some special cases, namely when
the predicted prevalence p is zero. To circumvent this problem we smooth both prevalence

p and p through additive smoothing, that is, p(¢;) becomes:

s _p(cz)+6
Pe) =T

where € is the smoothing factor and is defined as follows:

€) = 12 x |dataset|
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p will be smoothed similarly. We will use the smoothed KLD throughout the rest of the
document. We will use the most accurate univariate SVM classifier as a baseline for Goal 2,

through a ”classify and count” approach.

4.2 Evaluation of Goal 2

4.2.1 Dataset

To evaluate the performances of the various multivariate SVM, we will use the same

datasets that we have used in Goal 1.

4.2.2 Method

We will evaluate the performance of a quantifier using commonly used metrics: the
Kullback-Leibler Divergence (KLD), the Mean Absolute Error (MAE), and the Relative
Absolute Error (RAE) that we described previously.

We will train the multivariate SVM using the train subsets and test on the test
collection. Additionally, when using both SemEval2016-task_ D and SemEval2017-task_D
datasets we will train each quantifier on each individual topic (that is a total of 100 topics
when combining train, dev, devtest) and test each quantifier on each of the 100 topics for
SemEval2016-test-task_ D, and each of the 125 topics for SemEval2017-test-task_D . The

metrics will be computed for each run and will then be averaged to yield the final score.

49



Table 4.3: Sentiment shift detection dataset

HSl‘82‘83‘84‘85‘86‘87‘88‘89‘810
Total points || 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20
# Truelabel || 2 | 2 | 2 [ 2] 0]0]0|01]0 2
# False label || 18 | 18 | 18 | 18 | 20 | 20 | 20 | 20 | 20 | 18

4.3 Evaluation of Goal 3

4.3.1 Dataset

The dataset to evaluate Goal 3 is composed of 10 synthetic sentiment signals that
were manually created. The sentiment signals were hand-build so as to be able to emulate
various situations that could happen with real data that we might not have been able to
collect through real Twitter streams. Each signal consists in a total of 20 points where
each individual data point either carries a sentiment shift or not. A data point that carries
a sentiment shift is therefore labeled as "true” whereas a data point that does not carry
a sentiment shift is labeled as "false”. Table 4.3 summarizes the statistics of each signal.
As shown in Table 4.3, there are 5 signals that each contain 2 sentiments shifts while the
remaining 5 signals do not contain any sentiment shift. Although the dataset seems to
be biased and unbalanced, it actually reflects what would be expected from real sentiment
signals, that is, a much higher number of data points that do not carry a sentiment shift.
Indeed, sentiment shifts are expected to be sparse and infrequent in real life applications,
so we replicated this behavior in our synthetic data. All signals were built so as to cover
various situations that could potentially occur with real sentiment signals. Thus, our signals

were designed to account for the following factors:

e Nature of signal: positive signal or negative signal
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Duration of shift: brief (1 data point) or long (4 data points)

Direction of shift: positive shift or negative shift

Amplitude of shift: small amplitude vs large amplitude

Number of shifts: If more than one shift occurs in a signal, several cases are to be
considered that could affect the accuracy of the detection algorithms: (a) The trend
window does not encompass the former shift, (b) the trend window encompasses the

former shift partially, and (c) the trend window encompasses the entire former shift

e Brevity of shift: As opposed to the duration, the brevity of the shift indicates the
number of data point necessary for the shift to occur. That is, if the shift takes several
data points to occur, it is not considered sudden and does not fit the definition of a

sentiment shift. Consequently, it shall not be considered as an actual sentiment shift.

Figure 4.1 through 4.10 show the shape of each sentiment signals. Table A.1 (Appendix 1)

provides a detailed description of each individual signal.
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Figure 4.2: Sentiment Signal 2

Signal 1 is a positive signal containing 1 positive sentiment shift on data point 6 with
a duration of 4 points, and a positive shift on data point 18 with a duration of 1 point. Signal
2 is a positive signal containing 1 negative sentiment shift on data point 6 with a duration
of 4 points, and a negative shift on data point 18 with a duration of 1 point. Signal 3 is a
negative signal containing 1 negative sentiment shift on data point 6 with a duration of 4
points, and a negative shift on data point 18 with a duration of 1 point. Signal 4 is a negative

signal containing 1 positive sentiment shift on data point 6 with a duration of 4 points, and

52



Sentiment Over Time

0.5
-
=
a
E o
[ =
] e —
u 1
 —— d
0.5
1
1 2 3 4 s & 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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Figure 4.4: Sentiment Signal 4

a positive shift on data point 18 with a duration of 1 point. Signal 5 is a monotonously
decreasing signal containing 0 sentiment shift. Signal 6 is a monotonously increasing signal
containing 0 sentiment shift. Signal 7 is a decreasing signal with a gradual decline containing
0 sentiment shift. Indeed, although a change of sentiment can be observed, the brevity is too
large for it to be considered a sentiment shift. Signal 8 is an increasing signal with a gradual
incline containing 0 sentiment shift. Indeed, although a change of sentiment can be observed,

the brevity is too large for it to be considered a sentiment shift. Signal 9 is a fluctuant signal
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Figure 4.5: Sentiment Signal 5
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Figure 4.6: Sentiment Signal 6

containing 0 sentiment shift. Indeed, although sentiment shifts are thought to be observed,
the ubiquitous fluctuations indicate that the signal is constantly changing, and shifts are
therefore considered "normal”. Signal 10 is a random signal containing 1 positive sentiment
shift on data point 7 with a duration of 1 point, and a negative sentiment shift on data point

15 with a duration of 1 data point.
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Figure 4.8: Sentiment Signal 8
4.3.2 Method

We will evaluate the sentiment shift detection algorithms described in Section 3.3.2
using. As a consequence, a data point is deemed true positive if it carries a sentiment shift
and the algorithm detected a shift on that point whereas a data point is deemed true negative
if it does not carry a sentiment shift and the algorithm did not detect a shift on that point.

Similarly, a data point is said to be false positive if it does not carry a sentiment shift and

55



Sentiment Over Time

0.5
= o~ |
- |
E o | —
€ |
] |
L J
-0.5
-1
1 2 3 4 5 [ 7 8 9 i0 11 12 13 14 15 16 17 18 19 20
Figure 4.9: Sentiment Signal 9
Sentiment Over Time
1
0.5
£ —
o | {
E o | l
=
{Q
[V
-0.5

1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 19 20

Figure 4.10: Sentiment Signal 10

the algorithm detected a shift on that point whereas a data point is said to be false negative
if it carries a sentiment shift but the algorithm did not detect a shift on that point.

The sentiment shift detection algorithms use a window of various sizes to capture the
signal’s trend. The window size will range from 3 to 10 with an increment of 1, yielding a
total of 8 different windows. The points contained within the trend window are not being
evaluated. Consequently, the bigger the trend window, the lesser the number of points to

evaluate within the signal. For example, for a window size of 6, there will be 14 points left
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Table 4.4: Sentiment shift detection dataset - signal combined

H w3 ‘ w4 ‘ wbH ‘ W6‘W7‘W8 ‘ w9 ‘WlOHtotal
Total points || 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 || 1080

# True label | 10 | 10 | 10 6 5 ) 3 ) o6
# False label || 160 | 150 | 140 | 134 | 125 | 115 | 105 | 95 | 1024

to be considered, since all signals are made of 20 points.

For all 8 windows and for all 10 signals within that window, we will compute all
4 metrics described below. For each algorithm, we then compute and report the micro-
average. We will also compute and report the macro-average, that reports the average with
no knowledge about the shape of the signals nor the size of the window (c.f. Table 4.4), as

opposed to computing each metric per window.

Metrics
To evaluate the performances we will use the Accuracy, Fall-out (or False Positive

Rate), Miss rate (or False Positive Rate), and the balanced accuracy, defined as follows:

true positive + true negative
Accuracy =

true positive 4 true negative + false positive + false negative

false positive

Fall-out = FPR = — :
false positive + true negative

false negative

Miss rate = FNR = _ _
false negative + true positive

TPR+TNR

Balanced Accuracy = +

where TPR is the True Positive Rate, and TNR is the True Negative Rate, defined as follows:

true positive
TPR = P :
true positive + false negative
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TNR — true negative

true negative + false positive

Note: Signals that do not contain sentiment shift (i.e., Signal 5, Signal 6, Signal 7, Signal
8, Signal 9) will not be evaluated using the Miss rate, since they lack data points labeled as

“true”, and therefore have 0 true positive data points.

The evaluation of the performances of the algorithms focuses on three aspects: (1)
the overall performances, (2) type I errors (i.e., False Positive), and (3) type II errors (i.e.,
False Negative). The Type I error is evaluated through the Fall-out (or FPR), and measures
the capacity of an algorithm to detect a shift when no shift is actually occurring whilst the
Type II error is evaluated through the Miss rate (or FNR), and measures the capacity of
an algorithm to not detect a shift when a shift is actually occurring. Both (2) and (3) are
therefore important metrics to consider for such an application. Naturally, the lower the
FPR and the lower the FNR, the better the algorithm.

Although the accuracy is a very good indicator of the algorithms’ overall performance,
it will be biased since 94.8% of the dataset is composed of data points labeled as ”false”
against 5.2% of the data points labeled as ”true”. The balanced accuracy will circumvent
this problem by taking the average of the True Positive Rate (TPR) and the True Negative

Rate (TNR), thereby normalizing the true positive and true negative predictions.
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5 Experimental Results and Discussions

5.1 Results of Goal 1: Representing Tweets in the Vector Space Model

5.1.1 Capturing Word Sentiment
5.1.1.1 Results

We implemented four variations of the sentiment score formula described in Section

3.1.1:
(i) unmodified formula as described in equation (2)

(ii) equation (2) where pdf, ndf, and df are normalized by the size of the tweet, that is,

pdf = 2L ndf =

Ttweet]

and df =

\tweet| \tweet\

(ili) equation (2) where we remove duplicate words from the tweet, e.g., This restaurant

was so so good becomes This restaurant was so good

(iv) equation (2) where we remove duplicate word and use the relative pdf, ndf, df as

explained up above

Then for each scaling formulae (c.f. equation 3 and equation 4) we compared all four varia-
tions of the sentiment score formula. Table 5.1 depicts the averaged results while Table 5.2

depicts the detailed results, i.e., the results for each dataset.

As we can see in Table 5.1 (avg) the scaling formula (4) achieves a slightly higher

accuracy (74.25% against 73.76%) and a higher precision (0.85 vs 0.74) while the scaling
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Table 5.1: Averaged performance of the different formulae
Scaling Formula (3)

Variation i | Variation ii | Variation iii | Variation iv | Average

Accuracy 73.69% 73.73% 73.78% 73.84% 73.76%

Precision 0.75 0.73 0.74 0.74 0.74
Recall 0.89 0.93 0.90 0.93 0.91

F1-Score 0.80 0.82 0.81 0.82 0.81

Scaling Formula (4)

Variation i | Variation ii | Variation iii | Variation iv | Average

Accuracy 73.98% 74.33% 74.00% 74.71% 74.25%

Precision 0.85 0.85 0.85 0.85 0.85
Recall 0.73 0.73 0.73 0.74 0.73

F1-Score 0.78 0.79 0.78 0.79 0.79

formula (3) achieves a higher recall (0.91 vs 0.73) and Fl-score (0.81 vs 0.79). These results
are not statistically significant and do not allow us to distinguish which scaling formula per-
forms best, it is therefore necessary to look at the detailed results depicted in Table 5.2 and
Table 5.3. Tables 5.2 and 5.3 reveal that the scaling formula (3) often yields a recall of 1 or
very close to 1, while the scaling formula (4) does not. As per the definition of the Recall,
having a recall of 1 implies having a true positive rate (TPR) of 1 and a false negative rate
(FNR) of 0. Such a system is very good at predicting the positive class but is unable to
predict the negative class. Since we are dealing with sentiment quantification, such a system
is inappropriate. We will choose the scaling formula (4) to scale our sentiment scores.

We now focus on the performances of all four variations of the scaling formula (4).
Since all four variations yields very similar results, we are unable to distinguish which would
better capture the sentiment of words. However, the nature of variation (i) and variation
(iii) implies that the pdf, ndf, and df of the words are not normalized with the size of the
tweet. Consequently, words that share a similar document frequency will most likely have
the same sentiment. Intuitively, it is preferable to use variation (ii) or variation (iv) which

use the normalized pdf, ndf, and df. Both variation (ii) and variation (iv) yield equivalent
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Table 5.2: Detailed performances of the different formulae for each dataset
Scaling Formula (3) H Variation i ‘ Variation ii ‘ Variation iii ‘ Variation iv

Accuracy 71.83% 63.10% 67.47% 63.10%
Precision 0.73 0.61 0.72 0.61
Recall 0.80 0.97 0.71 0.97
F1-Score 0.77 0.75 0.72 0.75
Sanders
Accuracy 72.15% 72.60% 72.15% 72.60%
Precision 0.79 0.69 0.69 0.69
Recall 0.54 0.73 0.73 0.73
F1-Score 0.64 0.71 0.71 0.71
SemEval 2013
Accuracy 72.62% 75.86% 73.80% 75.96%
Precision 0.73 0.76 0.74 0.76
Recall 1 0.96 0.99 0.97
F1-Score 0.84 0.85 0.85 0.85
SemEval 2014
Accuracy 82.94% 83.28% 83.19% 83.28%
Precision 0.83 0.85 0.83 0.85
Recall 1 0.97 1 0.97
F1-Score 0.91 0.91 0.91 0.91
SemEval 2015
Accuracy 73.98% 76.48% 74.77% 77.05%
Precision 0.74 0.78 0.75 0.78
Recall 1 0.96 0.99 0.63
F1-Score 0.85 0.86 0.85 0.86
SemEval 2016
Accuracy 68.61% 71.05% 71.29% 71.05%
Precision 0.69 0.70 0.71 0.70
Recall 1 1 1 1
F1-Score 0.81 0.83 0.83 0.83

results, however, variation (ii) is slightly more computationally efficient and scales better

with the size of the dataset since the removal of duplicated words is omitted.

Experimental results show that the scaling formula (4) with the sentiment score vari-
ation (ii) is the best. It is therefore the sentiment score formula that we will use throughout

the rest of the document.
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Table 5.3: Table 5.2 (Cont)

Scaling Formula (4) H Variation i ‘ Variation ii ‘ Variation iii ‘ Variation iv

SST
Accuracy 70.96% 72.49% 71.18% 72.27%
Precision 0.74 0.76 0.74 0.76
Recall 0.76 0.76 0.76 0.76
F1-Score 0.75 0.76 0.75 0.76
Sanders
Accuracy 73.06% 75.80 73.52% 77.63%
Precision 0.71 0.74 0.73 0.75
Recall 0.69 0.73 0.68 0.76
F1-Score 0.70 0.74 0.70 0.76
SemEval 2013
Accuracy 72.76% 71.73% 73.21% 72.37%
Precision 0.89 0.89 0.89 0.89
Recall 0.71 0.70 0.72 0.71
F1-Score 0.79 0.78 0.80 0.79
SemEval 2014
Accuracy 81.50% 81.08% 80.83% 81.08%
Precision 0.94 0.95 0.94 0.95
Recall 0.83 0.82 0.82 0.82
F1-Score 0.88 0.88 0.88 0.88
SemEval 2015
Accuracy 71.42% 70.85% 70.99% 70.49%
Precision 0.92 0.92 0.92 0.91
Recall 0.67 0.67 0.67 0.66
F1-Score 0.78 0.77 0.77 0.77
SemEval 2016
Accuracy 74.16% 74.05% 74.28% 74.40%
Precision 0.88 0.88 0.88 0.88
Recall 0.72 0.72 0.72 0.72
F1-Score 0.79 0.79 0.79 0.79

5.1.1.2 Discussions

Sentiment Score Formula Variations

In variation (ii) a word will have a stronger sentiment (positive or negative) when
used in a concise manner, that is, in a short tweet rather than a long one. Indeed, when
a tweet is short then each word potentially contains "more” sentiment since the contribu-

tion of the word to the overall sentiment of the tweet is greater. For instance, consider two
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Table 5.4: Effect of normalizing the document frequency of words
Sentiment score H lame ‘ insane ‘ scandal ‘ excellent ‘ fabulous ‘ congrats
without normalization || -0.106 | -0.106 | -0.106 0.342 0.342 0.342
with normalization -0.081 | -0.038 | -0.021 0.175 0.246 0.228

positive tweets related to a restaurant’s service, such as Fxcellent drinks and great food and
Excellent!!. Although the former provides more information, the positivity of the tweet is
mainly due to two words, e.g., Ezcellent and great, thus both words each contribute about
50% to the overall positivity of the tweet. While in the latter, the overall positivity of the
tweet is due to one single word, e.g., Ezcellent. Clearly, the same word expresses a stronger
sentiment in the latter tweet rather than in the former. However, variation (i) would assign
both FEzcellent and great a pdf of 1. Through the use of variation (ii), the pdf of Ezcellent
would be 1/5 = 0.2 in the long tweet and 1/1 = 1 in the short tweet, which is what we are
expecting.

In variation (iii) the sentiment of a word is not affected by its repetition within one
tweet. For example, consider two positive tweets such as This burger was good good good
good!!! and This burger was good!. Although the tweet sounds more positive in the former
case than in the latter, the sentiment of the word good itself will not be stronger. In other
word, although a tweet might sound more positive, the words that it contains might not
always be more positive. Experimental results show that the repetition of words within a
tweet does not impact the sentiment score of words. That could be explained by the fact
that tweet are so short that most of the words actually only appear once within a tweet.

We now illustrate how the normalization of pdf, ndf, and df used in variation (ii)
could affect the sentiment score of some words. We compared the sentiment scores of three
negative words and three positive words with and without the normalization feature. Table

5.4 shows that all three words lame, insane, and scandal have the same negative sentiment
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score (-0.106) and all three words excellent, fabulous, and congrats have the same positive
sentiment score (0.342) when the document frequencies of the words are not normalized.
Contrariwise, when the sentiment score formula accounts for the length of the Tweet all
three negative words have a different sentiment score and all three positives words have a
different positive score. Not only the sentiment scores are different but they sometimes differ
greatly, take for instance the word scandal which score changed from -0.106 to -0.021, or
excellent which score changed from 0.342 to 0.175.

Another consequence is that some words no longer bear the same sentiment strength,
e.g., they are no longer "equal” in terms of sentiment. For instance, scandal is no longer as
negative as lame, or insane, but instead lame is almost 4 times more negative than scandal.
Similarly, while excellent was as positive as fabulous without normalization, it is less positive

with normalization.

This confirms our intuition that normalizing the document frequency of a words in

Tweets impacts the sentiment scores and therefore impact the performances of the lexicon.

Inverse-Document Frequency in Tweets vs Amazon Products Reviews

The sentiment score formula used in this work is highly inspired by our preliminary
work published in [32] on Amazon customer review data. One key difference, however, is that
the T'witter sentiment score formula presented in this document does not use the information-
theoretic scores (which employs the Term Frequency Inverse Document Frequency (TF-IDF)
of the words).

Our intuition is that Tweets are by nature different from traditional text such as

customer reviews, blog posts, or news articles. Indeed, Tweets are very short pieces of text
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Figure 5.1: Frequency of IDF of words from Twitter vs words from Amazon

(280 characters maximum) that are often typed rapidly from a small portable device such as
a smart phone or a tablet. They are prone to misspelling, slang words, and abbreviations.
We therefore expect words within a tweet to have a very low term-frequency (TF). Likewise,
we expect most words within a tweet to be very common words that carry little meaning,
e.g., lol. That is, we expect most words in a tweet to have a low inverse-document frequency
(IDF), which would add noise or very little value to our sentiment score calculation.

To validate our intuition we compute and plot the frequency of the IDF of words from
several Twitter datasets and words from an Amazon products reviews dataset. The result
is depicted in Figure 5.1.

We first notice from Figure 5.1 that despite having four different Twitter datasets,
the IDF frequency are very similar, indeed the IDF frequencies are clustered around the same
value. Furthermore, words from the Amazon dataset have a much higher IDF than words

from the Twitter datasets. Indeed, most words belonging to the Amazon dataset have an
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Figure 5.2: Boxplots of the IDF of words from Twitter vs words from Amazon

IDF between 5 and 5.8 whereas most words from the Twitter datasets have an IDF between
3 and 3.8. The lower the IDF of a word, the less important, and the more frequent the
word is within the collection of documents. We also notice that the size of the vocabulary
in Amazon is drastically bigger than that of the Twitter datasets. Thus, it appears that a
common feature among Twitter datasets is having a small vocabulary that is composed of
frequent and common words. These results confirm our intuition about the nature of Tweets.

We further analyze the IDF distribution of the words from the Amazon dataset and

the distribution of the words from the Twitter datasets.

Figure 5.2 depicts the boxplots of the IDF of words from four Twitter datasets and
one Amazon dataset. Boxplots are a useful tool that provides information on the distribution

of the data. We notice that all five datasets are left-skewed, that is, majority of the words

66



IDF distribution of words from several datasets

—Amazon
—Twitterl6
—Sanders
—55T

Twitter

o4

0z

o 1 2 3 4 5 6 7 8

Figure 5.3: IDF distribution of words from Twitter vs words from Amazon fitted into a
normal distribution

have an IDF that is close to the highest IDF of the corpus. Consequently, the median
(represented by a red line on the boxplots) is higher than the average and is also very close
to the maximum IDF. These observations indicate that majority of the words have a similar
IDF, and that it is close to the maximum IDF of the dataset. Although the distribution of
the IDF of words is similar in Twitter datasets and the Amazon dataset, the variability of
the IDF of words is different. Indeed, the boxplots show that the Twitter datasets have a
smaller interquartile range (IQR) than that of the Amazon dataset, which indicates a lesser

variability of the IDF in the Twitter datasets.

Finally, we study the mean and variance of the IDF values for all five datasets. To
better visualize how different they are from Twitter and Amazon, we fit the IDF distribu-

tions into a Gaussian distribution as showed on Figure 5.3. From the shape of the Gaussian
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curves, it appears that all four Twitter IDF distributions have a very similar mean and vari-
ance, which differ greatly from the mean and variance of the IDF distribution of Amazon.
The shape of the Gaussian curves also indicates that the IDF of words in Twitter have a very
low variance and a low mean while the IDF of the words from Amazon have a high variance
and a high mean. More specifically, the IDF of the words from the SST dataset have a mean
of 3.05 and a variance of 0.15, the IDF of the words from the Sanders dataset have a mean
of 2.68 and a variance of 0.16, the IDF of the words from the Twitter dataset have a mean
of 3.48 and a variance of 0.22, the IDF of the words from the Twitter2016 dataset have a
mean of 3.41 and a variance of 0.24, and the the IDF of the words from the Amazon dataset
have a mean of 5.27 and a variance of 0.48.

The variance is a measure of how spread the numbers are around their mean value.
Therefore, a low mean IDF combined with a low variance indicates that (1) most words in
Twitter are not rare within the collection, and (2) most words in Twitter appear in the same
number of Tweets. On the contrary, a high mean IDF combined with a high variance indi-
cates that not only words in the Amazon dataset are not so common within the collection,
but they appear in a wide range of frequency, e.g., many words appear in few documents

and many words appear in many documents.

These results confirm our intuition that the inverse document frequency (IDF) of

words would not contribute much to estimate and capture the sentiment of words from

Twitter data.
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Table 5.5: Performances of binary BOW and tf-idf BOW models on the sentiment quan-
tification task

Binary BOW tf-idf BOW

model model
BOW X X X X
Feature i X X
] X X

KLD | 0.126 | 0.107 || 0.126 | 0.096
SemEval2016 ~ AE 0.144 | 0.140 || 0.145 | 0.136
RAE | 1.321 | 1.421 || 1.397 | 1.538
KLD | 0.286 | 0.215 || 0.274 | 0.192
SemEval2017  AE 0.289 | 0.247 || 0.280 | 0.235
RAE | 3.954 | 3.413 || 3.891 | 3.203

KLD | 0.206 | 0.161 || 0.200 | 0.144
Average AE 0.216 | 0.194 || 0.213 | 0.185
RAE | 2.638 | 2.417 || 2.644 | 2.371

5.1.2 Representing Tweets as a Feature Vector
5.1.2.1 Results

As explained in Section 3, our feature vectors are based on the bag-of-word (BOW)
model, therefore it is necessary to first assess which of the two BOW approaches perform
best. We compare both BOW feature vectors without including any sentiment features, e.g.,
features derived from our lexicons. We report the results in Table 5.5. The reported KLD,
AE, and RAE are the macro averaged metrics of each topics.

We study the effect of using the tf-idf instead of the binary model by comparing the
average KLD of both models. Results from Table 5.5 indicate that for both feature vectors
the tf-idf model outperforms the binary model. Indeed, the binary model has an average
KLD of 0.183 whereas the average KLD of the tf-idf model is 0.172. The aforementioned
results valid our intuition that using the tf-idf in place of a binary value for the bag-of-word
feature improves the classification of the SVM machine.

We then focus on the effect of the feature i and feature j to the vector. We com-
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pare the average KLD yielded by both feature vectors from the binary BOW model. We
do likewise with the tf-idf BOW model. Results clearly show the effect of i and j on the
performances of the SVM machine. Adding i and j to the BOW feature vector yielded a
decrease of the average KLD (which reflects an improvement) of 0.045 (from 0.206 to 0.161)
for the binary model and a decrease of the average KLD of 0.056 (from 0.200 to 0.144) for
the tf-idf model. This improvement is considerable. Clearly, knowing the length of the tweet
as well as the number of word that our dictionary covers provides helpful information in the
quantifying task.

We therefore use the tf-idf BOW model as a base for our feature vector. Note that
none of these features make use of the sentiment lexicon from Goal 1, so they do not provide
information on the sentiment reflected by the Tweet.

Next, we study the effect of each sentiment feature derived from the single score lex-
icon and report our findings in Table 5.6. We separately study the effect of each sentiment
feature derived from the paired score lexicon and sum up the results in Table 5.7. For both

tables the reported KLD, AE, and RAE are macro the macro-averaged.
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Table 5.6: Contribution of each sentiment feature extracted from the single score lexicon

univariate SVM single score Features
tf-idf BOW X X X X X X X X
i X X X X X X X X
j X X X X X X X X
sum X X X X X
max X X X X X
min X X X X X
avg X X
nb pos X X X X
nb neg X X X X
KLD 0.096 | 0.099 | 0.100 | 0.069 | 0.094 | 0.087 | 0.090 | 0.090
SemEval2016 AE 0.136 | 0.137 | 0.138 | 0.118 | 0.132 | 0.126 | 0.130 | 0.129
RAE 1.538 | 1.278 | 1.278 | 1.210 | 1.269 | 1.247 | 1.369 | 1.353
KLD 0.192 | 0.179 | 0.176 | 0.363 | 0.174 | 0.173 | 0.182 | 0.187
SemEval2017 AE 0.235 | 0.221 | 0.219 | 0.326 | 0.216 | 0.217 | 0.222 | 0.225
RAE 3.203 | 3.016 | 2.978 | 4.355 | 2.972 | 2.985 | 3.091 | 3.140
KLD 0.144 | 0.139 | 0.138 | 0.216 | 0.134 | 0.130 | 0.136 | 0.139
Average AE 0.185 | 0.179 | 0.178 | 0.222 | 0.174 | 0.172 | 0.176 | 0.177
RAE 2.371 | 2,147 | 2.128 | 2.783 | 2.121 | 2.116 | 2.230 | 2.247
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Table 5.7: Contribution of each sentiment feature extracted from the paired score lexicon

univariate SVM paired score Features
tf-idf BOW X X X X X X X X
i X X X X X X b X
] X X X X X X X b
max pos X X X X
min pos X X X X
max neg X X X X
min neg X X X X
sum pos X
sum neg X
sum X
avg pos X
avg neg X
ratio X
KLD 0.097 | 0.096 | 0.097 | 0.100 | 0.097 | 0.096 | 0.095 | 0.090
SemEval2016 AE 0.139 | 0.136 | 0.139 | 0.134 | 0.139 | 0.136 | 0.131 | 0.130
RAE 1.731 | 1.671 | 1.729 | 1.336 | 1.728 | 1.669 | 1.298 | 1.378
KLD 0.185 | 0.181 | 0.183 | 0.186 | 0.184 | 0.181 | 0.207 | 0.138
SemEval2017 AE 0.228 | 0.225 | 0.228 | 0.224 | 0.228 | 0.225 | 0.242 0.188
RAE 3.175 | 3.090 | 3.162 | 3.085 | 3.167 | 3.105 | 3.324 | 2.559
KLD 0.141 | 0.138 | 0.140 | 0.143 | 0.141 | 0.138 | 0.151 | 0.114
Average AE 0.184 | 0.181 | 0.183 | 0.179 | 0.183 | 0.180 | 0.187 | 0.159
RAE 2.453 | 2.380 | 2.445 | 2.210 | 2.448 | 2.387 | 2.311 | 1.969



Table 5.6 shows that the base feature vector has an average KLD of 0.144. The best
performance is achieved by a feature vector composed of the following features: tf-idf BOW,
i, j, sum, max, min, nb pos, and nb neg, with an average KLD of 0.130 which is a decrease
of 0.014 from the base feature vector. The worst performance is achieved by a feature vector
having the following features: tf-idf BOW, i, j, sum, max, min, avg and yielded an average
KLD of 0.216, which is a worse performance than the base vector. It is interesting to note
that all feature vectors performed much better on the SemEval2016 dataset than the Se-
mEval2017 dataset. Indeed, the average KLD for the SemEval2016 is 0.091 while it is 0.203
on the SemEval2017 dataset.

Table 5.7 shows that the base feature vector has an average KLD of 0.141. The best
performance is achieved by a feature vector composed of the following features: tf-idf BOW,
i, j, max pos, min pos, max neg, min neg, and ratio, with an average KLD of 0.114 which
is a decrease of 0.027 from the base feature vector. The worst performance is achieved by
a feature vector having the following features: tf-idf BOW, i, j, max pos, min pos, max
neg, min neg, and sum, and yielded an average KL.D of 0.151, which is a worse performance
than the base vector. Here again, all feature vectors performed better on the SemEval2016
dataset than they did on the SemEval2017 dataset, with an average KLD of 0.096 against
0.162 respectively.

These results show that adding sentiment features derived from a sentiment lexicon
greatly improve the performances of the quantification task. Finally, we compare the best
feature vector that uses the single score lexicon with the best feature vector that uses the
paired score lexicon. The feature vector that uses the paired score sentiment lexicon outper-
formed the feature vector that uses the single score lexicon, with an average KLD of 0.130

against 0.114 respectively and represents a decrease of 0.016. The feature vector that uses

73



the single score lexicon performed slightly better on the SemEval2016 dataset with a KLD
of 0.087 against 0.090 for the feature vector that uses the paired score lexicon. However,
the feature vector that uses the paired score lexicon outperformed the feature vector that
uses the single score lexicon on the SemEval2017 dataset, with a KLLD of 0.138 against 0.173

respectively.

Our experimental results show that although the sentiment features derived from
the paired score lexicon perform as well as the sentiment features derived from the single
score lexicon on one dataset, they clearly perform better on the second dataset. Therefore,
from this point forward we will represent Tweets in the Vector Space Model with a feature
vector that uses sentiment features derived from the paired score lexicon, specifically, the fol-

lowing features will be used: tf-idf BOW, i, j, max pos, min pos, max neg, min neg, and ratio.

From this experiment, we conclude that the sentiment of a T'weet is better represented
through features derived from a lexicon that models the positivity and the negativity of words

separately.

5.1.2.2 Discussions

Single Score Lexicon vs Paired Score Lexicon

Recall from Section 3.1.1, equation (1) that the sentiment score of a word is com-
posed of its positivity score and its negativity score. The single score lexicon is the difference
between these two quantities and therefore words have a dimension of 1, while the paired
scored lexicon make use of both quantities and therefore words have a dimension of 2. Our

intuition is that some word can have the same positivity but different negativity, while some

74



Table 5.8: Sample words having different single score with either an equal positivity or

equal negativity

Word H single score ‘ positivity | negativity
reason -0.0261 0.1543 0.1804
support 0.0959 0.1544 0.0584
boo 0.0641 0.2835 0.2193
poor -0.2196 0.0000 0.2196
knows 0.3523 0.4444 0.0921
redeemed -0.0921 0.0000 0.0921

words can have a same negativity but different positivity. In such cases the single sentiment
will have different values. However, if two words have a different positivity and a different
negativity the difference could also yield two different values. The single score lexicon cannot
distinguish between both cases while the paired score lexicon will.

Furthermore, the single scores capture information about the difference between the
positivity and negativity of the words, while the paired scores in fact quantify how much
positive and how much negative a word is. Consequently, every sentiment features derived
from the single scores are actually related to the difference between the positivity and the
negativity (for instance, the feature max actually reflects which word has the highest differ-
ence), whereas sentiment features derived from the paired scores are related to the quantity
of the positivity and negativity of the words (here, max pos or max neg actually reflects what
the maximum quantity of positivity or negativity is in the Tweet). This would explain why
the sentiment features derived from the paired score perform much better than the features
derived from the single score. Table 5.8 shows a few sample words extracted from one of our
lexicon that illustrates our intuition:

From Table 5.8 we can see that the words reason and support have a different single
score, reason is deemed positive while support is deemed negative. Yet, they have an equal

positivity, which means that the difference of sentiment for these two words is due to the
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negative aspect that they reflect. Note that the single sore could not reveal this informa-
tion. Similarly, the words knows and redeemed have different sentiment scores, in fact, one
is deemed positive while the other is deemed negative. However, here again the single scores
will not provide information as to what cause this difference. The paired scores of these two
words reveal that they have a same negativity but a different positivity, specifically, knows

has a much higher positivity than redeemed.

To have a better intuition of how the positivity and negativity of words relates, we
plotted the positivity versus negativity of the words extracted from one of our paired score
lexicon onto a 2-dimensional plane. The scatter plot is reported in Figure 5.4.

Figure 5.4 shows that most positive words either have a moderate positivity with
a very small negativity or a very high positivity with a small negativity. Likewise, most
negative words either have a moderate negativity with a very low positivity or a very high
negativity with a very small negativity. Neutral words seem to have a moderate positivity
with a moderate negativity. The case of having neutral words with a high positivity and a

high negativity seems to be nonexistent.

Paired Score Lexicon Feature Vector

As we previously said, the feature vector that yielded the best quantification is the
feature vector that uses sentiment features derived from the paired score lexicon and has
the following features: tf-idf BOW, i, j, max pos, min pos, max neg, min neg, and ratio. In
our experiments we did not actually evaluate the role of each individual sentiment feature
but rather what is the effect of adding this feature in combination with other features.

In other words, we do not evaluate the absolute effect of a sentiment feature but rather its
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Figure 5.4: Words represented on a 2-dimension plane

relative effect when combined with other features.

From Table 5.7, adding the features max pos and min pos, or max neg and min neg
very slightly improve the performances of the quantifier, since the KLD only decreases of
0.03 and 0.01 respectively, when compared to the base feature vector. Similarly, adding
either the sum pos and sum neg, or the average pos and average neg almost has no effect
on the quantification task. When adding all four features max pos, min pos, max neg and
min neg to the base vector, we notice a very small improvement of 0.03, so we choose to
continue with this feature vector. Adding the sum feature to the aforementioned feature

vector negatively impacts the performances with an increase of KLD of 0.13, meaning that
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the sum combined to this vector actually adds more noise. Finally, adding the ratio feature

to the vector drastically improves the performance with a decrease of KLD of 0.027.

The i and j features tells us how many words from the Tweet we have sentiment
knowledge about and therefore how many words actually contribute to the sentiment. The
max pos, max neg, min pos and min neg features provide further information about the
spread or range of the positivity and negativity contained in the Tweet, e.g., it tells us how
much positivity and how much negativity is in the Tweet. Finally, the ratio feature (which
from our results seem to play an important role for the quantification task and which is
computed from the average positivity and average negativity) provides information on how
much stronger the positivity for each word on average is as compared to their negativity.

We will use this feature vector with the univariate SVM as our baseline for Goal 2.

5.2 Results of Goal 2: Sentiment Quantification

5.2.1 Results

We now compare the baseline univariate SVM from Goal 1 to several multivariate
SVM approaches described in Section 3 and report our findings in Table 5.9. The reported
KLD, AE, and RAE are the macro-averaged.

Table 5.9 shows that all but one multivariate SVM outperform the univariate SVM.
Precisely, the multivariate SVM(perf) (which is the original multivariate SVM) did not
perform better than our baseline univariate SVM. However, this is not surprising since
SVM(perf) optimizes the error rate which is not a statistical distance and therefore must

not be suitable to perform sentiment quantification. Our experimental results show that the
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best performances are achieved with our SVM(HD) which outperforms all other multivariate
SVM with an average KLD of 0.007, against 0.041 for our baseline. The worst performances
are achieved by the SVM(perf) with an average KLD of 0.063. SVM(HD) is closely followed
by SVM(TVD) which has an average KLD of 0.008. SVM(KLD) and SVM(RAD) both
performed well with an average KLD of 0.022, followed by SVM(BD) with an average KLD
of 0.024 and SVM(JSD) with an average KLD of 0.028. Clearly, a multivariate SVM that
optimizes a statistical distance is best suited for sentiment quantification.

We further compare our best approach (SVM(HD)) to results from various works
that uses the same datasets that we used. We therefore compare our SVM(HD) with the
results from [1] who are the authors of SVM(KLD) on the following datasets: SST, Sanders,
SemEval2013 Task A, SemEval2014 Task A, and SemEval 2015 task A. Furthermore, to
assess the effectiveness of our feature vector rather than the effectiveness of the SVM, we
compare the results obtained from our feature vectors using their SVM(KLD). We report

our results in Table 5.10.
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Table 5.9: Results of the quantification using univariate SVM vs multivariate SVM

Metrics | univariate SVM | SVM(perf) | SVM(KLD) | SVM(HD) | SVM(BD) | SVM(JSD) | SVM(TVD) | SVM(RAD)
KLD 0.031 0.011 0.036 0.005 0.044 0.046 0.000 0.030
SST AE 0.124 0.148 0.266 0.100 0.295 0.301 0.028 0.245
RAE 0.254 0.149 0.268 0.101 0.296 0.303 0.029 0.246
KLD 0.000 0.004 0.010 0.001 0.007 0.028 0.000 0.007
Sanders AE 0.005 0.088 0.138 0.037 0.115 0.230 0.005 0.115
RAE 0.010 0.088 0.138 0.037 0.115 0.231 0.005 0.115
SemEval | KLD 0.003 0.046 0.019 0.000 0.018 0.024 0.003 0.019
2013 AE 0.032 0.275 0.194 0.006 0.191 0.219 0.080 0.194
task A RAE 0.081 0.290 0.204 0.006 0.201 0.230 0.084 0.204
SemEval | KLD 0.011 0.018 0.022 0.001 0.020 0.026 0.001 0.022
2014 AE 0.059 0.171 0.204 0.040 0.197 0.222 0.045 0.204
task A RAE 0.208 0.191 0.228 0.045 0.221 0.249 0.050 0.228
SemEval | KLD 0.017 0.041 0.032 0.001 0.030 0.036 0.002 0.031
2015 AE 0.085 0.260 0.251 0.047 0.244 0.267 0.058 0.248
Task A RAE 0.220 0.276 0.266 0.050 0.259 0.283 0.061 0.263
SemEval | KLD 0.090 0.069 0.010 0.013 0.014 0.011 0.018 0.014
2016 AE 0.130 0.242 0.098 0.111 0.108 0.098 0.136 0.106
Task D RAE 1.378 0.266 0.111 0.125 0.121 0.111 0.156 0.119
SemEval | KLD 0.138 0.254 0.024 0.028 0.034 0.025 0.031 0.033
2017 AE 0.188 0.577 0.171 0.182 0.207 0.176 0.192 0.203
Task D RAE 2.559 0.676 0.200 0.213 0.241 0.205 0.225 0.237
KLD 0.041 0.063 0.022 0.007 0.024 0.028 0.008 0.022
Average AE 0.089 0.252 0.189 0.075 0.194 0.216 0.078 0.188
RAE 0.673 0.276 0.202 0.082 0.208 0.230 0.087 0.202




Table 5.10: Comparison of our SVM(HD) and SVM(KLD) to the SVM(KLD) of [1]

Metrics | our SVM(KLD) | SVM(HD) | SVM(KLD) from Gao et al.

KLD 0.036 0.005 0.011

SST AE 0.266 0.100 0.041
RAE 0.268 0.101 0.146

KLD 0.010 0.001 0.001

Sanders AE 0.138 0.037 0.013
RAE 0.138 0.037 0.063

SemEval | KLD 0.019 0.000 0.029
2013 AE 0.194 0.006 0.072
Task A RAE 0.204 0.006 0.172
SemEval | KLD 0.022 0.001 0.033
2014 AE 0.204 0.040 0.084
Task A RAE 0.228 0.045 0.227
SemEval | KLD 0.032 0.001 0.076
2015 AE 0.251 0.047 0.119
Task A RAE 0.266 0.050 0.379

We notice from Table 5.10 that our SVM(HD) outperform the SVM(KLD) from Go
et al. on all datasets but the Sanders dataset, where both approaches perform equivalently.
In addition, the feature vector that we use outperforms the feature vector used by Go et al.
when used with the SVM(KLD). Indeed, our approach achieved an average KLD of 0.024
against 0.030 for their approach. These results show that not only SVM(HD) approach
might be a better choice, but also that the feature vector that we use to represent a Tweet
is more suitable in the sentiment quantification task.

We then compare the results of our SVM(HD) with that of Stojanovski et al. [38] and
Mathieu Cliche [39] using the SemEval2016 Task D dataset and the SemEval2017 Task D
dataset. The approach from Stojanovski et al. ranked first and achieved a KLD of 0.034 on
the SemEval2016 Task D dataset, likewise, the approach from Mathieu Cliche ranked first

and achieved 0.036 on the SemEval2017 task D dataset. We report our results in Table 5.11.

As shown in Table 5.11, our approach outperform both best approaches from SemEval
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Table 5.11: Comparison of our SVM(HD) with the best approaches from SemEval 2016
and SemEval 2017

Metrics | SVM(HD) | Stojanovski et al
SemEval | KLD 0.013 0.034
2016 AE 0.111 0.074
Task D RAE 0.125 0.707
Metrics | SVM(HD) | Mathieu Cliche
SemEval | KLD 0.028 0.036
2017 AE 0.182 0.080
Task D RAE 0.213 0.598

2016 and SemEval 2017.

Our experimental results show that (1) our feature vector that uses sentiment features
derived from our paired score lexicon is a strong model to represent Tweet sentiment in the
Vector Space Model, and (2) the multivariate SVM machine that minimizes the Hellinger

Distance is a very effective approach to the sentiment quantification problem.

5.2.2 Discussions

The following discussions analyze different perspectives of the performances achieved
by the multivariate SVM so as to better understand how the statistical distances compare

to each other.

5.2.2.1 Performances vs Size of Dataset

We first take a look at the relationship between the size of the dataset and the per-
formances of the multivariate SVMs. Table 5.12 reports the average KLD achieved by each
multivariate SVM as well as the size of each dataset.

From Table 5.12 we notice that TVD seems to outperform all other statistical dis-

tances on the two smallest datasets (namely Sanders and SST which have a size of 872 and
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1831 respectively) and achieved a KLD of 0.0000 and 0.0004 respectively. This is closely
followed by HD which yielded a KLD of 0.0007 and 0.0050.

On the dataset of size 5589 the best performance was achieved by KLD with a KLD
of 0.0103 closely followed by JSD with 0.0111 and HD with a KLD of 0.0126.

The next three dataset (namely SemEval2013 Task A, SemEval2014 Task A, and
SemEval2015 Task A) are actually the same but they were used with three different testing
dataset. HD outperform all other statistical distances on all three with a respective KLLD of
0.0007, 0.0000, and 0.0012. These results were closely followed by TVD which achieved a
KLD of 0.0035, 0.0012, and 0.0018 respectively.

Finally, on the very large dataset which has a size of 10,551 KLD outperformed all
other statistical distances.

Results from Table 5.12 does not allow us to conclude any clear relationship between
the size of the training dataset and the performances of the multivariate SVM. However, re-
gardless of the size, it seems that HD always performs almost as good as the best statistical
distance, and is therefore much better on average. Disclaimer: These results should in any
case be treated as a proof or an evidence, but rather as what they truly are: observations
on our data.

The previous observations illuminate the effect of the size of the dataset on the per-
formances of the multivariate SVM. We now focus on the effect of the size of the dataset
on each statistical distance. To better visualize this, we plotted on Figure 5.5 the resulting
KLD of each method versus the size of the training datasets.

From Figure 5.5 it seems that the performances of each individual statistical dis-
tance has no clear relationship with the size of the datasets, as shown by the very fluctuating

curves. However, two distinct patterns seem to be apparent: The first pattern shows that
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Figure 5.5: KLD of multivariate SVMs vs size of datasets

JSD, RAD, and BD follow a very similar behavior. Additionally, the linear trends

(represented by the straight dashed lines on the graph) of KLD, BD and RAD seem to in-

dicate that the performance of these 3 statistical distances slightly decreases as the dataset

gets bigger whereas that of RAD suggests that it performs better. The second pattern shows

that HD and TVD both have a strongly increasing linear trend meaning that their perfor-

mances worsen as the dataset gets bigger.

Overall, our experimental results suggest that no clear relationship exists between

the size of the training dataset and the performances of the multivariate SVM for any

of the statistical distances that we explored. However, the Hellinger Distance on average

outperforms all other statistical distances and seems to be robust regardless of the size of
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the training dataset. We therefore suggest to minimize the Hellinger Distance with the

multivariate SVM for the sentiment quantification task.

5.2.2.2 Performances vs Skewness of Data

We now investigate the effect of the skewness of the data on the performances of
each statistical distance. Table 5.13 shows the skewness of each dataset along with the KLD
achieved by all our approaches. The skewness will be expressed in percentage difference
(positive percentage - negative percentage) where we arbitrarily consider a dataset to be
skewed if the percentage difference is greater than 10%, and will consider the dataset bal-
anced otherwise.

We will first analyze the effect of the skewness in the dataset on the different ap-
proaches, then we will study how the skewness impacts each statistical distance individually.
From Table 5.13 we notice that KLLD achieves the best performance for the balanced dataset
Sanders while TVD achieves the best performance on the balanced dataset SST. However,
the Hellinger Distance achieves a KLLD of 0.0146 on average on the balanced datasets against

0.0168 and 0.0201 for KLLD and TVD respectively.
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Table 5.12: Effect of the size of the data on the quantification task

size | SVM(KLD) | SVM(HD) | SVM(BD) | SVM(JSD) | SVM(TVD) | SVM(RAD)
Sanders 872 0.0097 0.0007 0.0067 0.0277 0.0000 0.0067
SST 1831 0.0360 0.0050 0.0443 0.0464 0.0004 0.0302
SemEval2016 Task D || 5589 0.0103 0.0126 0.0143 0.0111 0.0182 0.0137
SemEval2013 Task A || 6013 0.0241 0.0007 0.0229 0.0285 0.0021 0.0239
SemEval2014 Task A || 6013 0.0190 0.0000 0.0184 0.0242 0.0035 0.0190
SemEval2015 Task A || 6013 0.0318 0.0012 0.0300 0.0358 0.0018 0.0310
SemEval2017 Task D || 10551 0.0239 0.0285 0.0335 0.0252 0.0310 0.0325
Average 0.0218 0.0070 0.0239 0.0280 0.0080 0.0221
Table 5.13: Effect of skewness on the quantification task
pos % | neg % | % difference | skewness | KLD HD BD JSD TVD | RAD
Sander 47.93% | 52.07% 4.14% balanced | 0.0239 | 0.0285 | 0.0335 | 0.0252 | 0.0310 | 0.0325
SST 54.01% | 45.99% 8.02% balanced | 0.0097 | 0.0007 | 0.0067 | 0.0277 | 0.0000 | 0.0067
SemEval2013 Task A || 70.10% | 29.90% 40.20% skewed 0.0190 | 0.0000 | 0.0184 | 0.0242 | 0.0035 | 0.0190
SemEval2014 Task A || 70.10% | 29.90% 40.20% skewed | 0.0318 | 0.0012 | 0.0300 | 0.0358 | 0.0018 | 0.0310
SemEval2015 Task A || 70.10% | 29.90% 40.20% skewed | 0.0103 | 0.0126 | 0.0143 | 0.0111 | 0.0182 | 0.0137
SemEval2017 Task D || 77.83% | 22.17% 55.66% skewed 0.0216 | 0.0009 | 0.0202 | 0.0256 | 0.0012 | 0.0216
SemEval2016 Task D || 80.73% | 19.27% 61.46% skewed 0.0360 | 0.0050 | 0.0443 | 0.0464 | 0.0004 | 0.0302
macro avg balanced | 0.0168 | 0.0146 | 0.0201 | 0.0264 | 0.0155 | 0.0196
macro avg skewed 0.0237 | 0.0039 | 0.0254 | 0.0286 | 0.0050 | 0.0231
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Figure 5.6: KLD of multivariate SVMs vs skewness of datasets

On the 5 skewed datasets, the Hellinger Distance achieved the best results on 3 while
KLD and TVD both performed best on 1.
On average, the Hellinger Distance outperforms all other metrics on both the balanced

datasets and the skewed datasets, with an average KLD of 0.0146 and 0.0039 respectively.

We will now study how the skewness of the data affect each statistical distance indi-
vidually. Figure 5.6 shows the plot of the KLD of each approach versus the skewness of the
training dataset.

Figure 5.6 does not reveal any clear relationships between the skewness of the data
and the performance of each statistical distance. However, based on the high fluctuations of
the KLD, RAD, JSD, and BD curves these four metrics seem to be sensitive to the skew-
ness. In contrast, the HD and TVD seem to yield very good performance regardless of the

skewness of the data.
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Overall, our experimental results indicate that the Hellinger Distance and the Total
Variation Distance are both very robust to the skewness of the data as compared to the other
metrics, which is in accordance with what Cieslak and Chawla observed as well[66]. Fur-
thermore, the Hellinger Distance outperforms the Total Variation Distance on both balanced

and skewed datasets.

5.2.2.3 Observing the Behavior of Statistical Distances

Finally, we aim at trying to understand why the Hellinger Distance and Total Vari-
ation Distance perform much better than the Kullback-Leibler Divergence, the Resistor-
Average Distance, the Jensen-Shannon Divergence, and the Bhattacharyya Distance. The
underlying mathematical definitions and properties of each of these metrics must directly
impact how they perform. Specifically, it must impact how they behave when used to mea-

sure the distance between two probability distributions in the Vector Space Model.

Our first intuition is that the behavior of these metrics in function of the inputs p and
p (the true probability distribution and the estimated probability distribution respectively)
greatly differs as p and p become further apart. In other words, we suspect that the rate of
growth of these statistical distances is different and could play a role in their performances.
We study the rate of growth of each statistical function with the following experiment:
we measure div(p, p) in function of MAE(p, p), where (div) is either HD, TVD, KLD, JSD,

RAD, or BD and MAE is the Mean Absolute Error between p and p and is defined as follows:

T = 12‘]51' —pz‘|
2

MAE(p,p) = 2
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Figure 5.7: fdiv(x) versus MAE

We will compare statistical distances for each value of MAE within the range [0, 100]
with an increase of 1 in between each run. That is, when M AFE(p,p) = 0 there is a perfect
prediction, e.g., p = p, whereas when M AFE(p,p) = 100 p and p are opposite. i.e., p =
[1.0,0.0] and p = [0.0, 1.0]. We set the true probability to p = [1.0,0.0] throughout the entire
experiment and we only update the predicted probability p at each run. Figure 5.7 shows
the resulting plot of the experiment.

From Figure 5.7 we can clearly observe the difference in the behavior of the statistical
distances. KLD, BD, and RAD have an exponential growth meaning that as the Mean
Absolute Error gets larger (p gets further away from the truth p), the measure of the distance
between the true probability distribution and the estimated probability distribution becomes

exponentially larger. While JSD seems to have a polynomial growth, HD seem to have a
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logarithmic growth and TVD has a linear growth. As a consequence, as the M AFE(p, p) gets
bigger, JSD, HD, and TVD will still evaluate the distance to be larger, but not drastically.

From an optimization perspective, these observations mean that the feedback returned
by KLD, BD, and RAD when p is far from the truth is much bigger than the feedback
returned when p is close to p. We suspect this behavior to negatively impact the SVM
machine as it could make the classification more difficult.

Our second intuition is that unlike KLD, BD, JSD, and RAD, both the Hellinger
Distance and the Total Variation Distance are true distance metrics, that means that they
perfectly capture the notion of distance within a space, since they satisfy all three axioms.
While property (i) is satisfied by all six metrics that we compared, property (ii) and (iii) are
not always satisfied.

The symmetrical property (ii) states that the distance between p and ¢ must be equal
to the distance between ¢ and p, e.i., d(p,q) = d(q,p). We notice that both the HD and the
TVD are symmetrical distances. However, the JSD and RAD are both symmetrized version
of KLLD and yet provide no improvement upon KLD. Hence, we cannot positively assert that
the symmetrical property plays a key role in evaluating statistical distances.

The triangular inequality property (iii) defined as follows: d(x,y) + d(y, z) > d(z, 2)
states that for any z,y, z € x, the distance d(y, z) is the shortest distance from y to z in the
space . If this property is not met then the distance measured by a function d between two
points is not guaranteed to be the shortest in that space.

The triangular inequality is one key difference between a true distance metric such as
the Hellinger Distance or the Total Variation Distance and a pseudo-distance measure (also
named divergence measure) such as KLD, RAD, JSD, or BD. When optimizing a divergence

measure through SVM we are minimizing a distance that is not guaranteed to be the minimal
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distance between both points.

Therefore, we believe that optimizing a true distance metric through a multivariate

SVM is more effective for the sentiment quantification task.

5.3 Results of Goal 3: Sentiment Shift Detection

5.3.1 Results

We will compare the effectiveness of all of our sentiment shift detection algorithms
to each other as well as against the baseline in order to see which one achieves the best
performances. Detecting a sentiment shift is the primary objective of the algorithms, it is
not the only criteria to evaluate nonetheless. Indeed, an algorithm that detects a sentiment
shift on every new data point would then be 100% accurate whilst it would obviously provide

poor results. The approaches must therefore answer two criteria to be considered effective:

1. They should accurately detect a sentiment shift when one has occurred

2. They should accurately not detect a sentiment shift when none has occurred

We will first analyze the results on the micro level, that is, when for each approach the
metrics are computed per window size and per signal. Then we will present the results of
the macro analysis which computes the metrics for each approach with no knowledge about
the shape of the signals nor the size of the window, in other words, all data points are
combined and analyzed together as if they were one unique signal. As explained in Section
4, we will evaluate the effectiveness through the accuracy, fall-out (or FPR), miss rate (or

FNR), and balanced accuracy.
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5.3.1.1 Micro results

Table 5.14 shows the average of the accuracy while Table 5.15 shows the average
balanced accuracy achieved across all 10 signals. The last column represents the average
across all window sizes. Furthermore, Table 5.16 shows the average fall-out and Table 5.17
shows the average miss rate achieved across all 10 signals for each window size ranging from

3 to 10. The last column represents the average across all window sizes.

Accuracy and Balanced accuracy

We notice from Table 5.14 that the highest accuracy, on average, is achieved by the
Dist p2av* approach with 94.44% accuracy while the lowest is achieved by the baseline
with an average accuracy of 44.87%. Although we could conclude that the approach Dist
p2av* is best, these results are not reliable since our dataset is extremely unbalanced with
approximately 95% of the points belonging to one class (not carrying a sentiment shift) and
5% belonging to the other class (carrying a sentiment shift). The accuracy therefore is biased
towards the dominant class. Since the balanced accuracy normalizes the accuracy obtained
in both classes, it is a more reliable metric to use. The balanced accuracy from Table 5.15
indicates that the approach Dist p2p is in fact a better approach with 88.32% balanced
accuracy, closely followed by Dist p2p* with 87.34%. The approach Dist p2av* achieved
70.95% balanced accuracy. These results show that Dist p2av* was very accurate in the
dominant class and not so accurate in the minute class, which does not meet both necessary
requirements. The lowest balanced accuracy was achieved by Sig prop with 68.35%. In
addition, the approaches Dist p2p and Dist p2p* introduced in this work outperform the

baseline which achieved 71.40% balanced accuracy.
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The balanced accuracy gives a general feeling as to which approach performs well
in both classes. Yet, a deeper analysis is necessary to ensure that both criteria mentioned

above are met. An analysis of the fall-out and miss rate is thus required.
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Table 5.14: Micro average Accuracy achieved across all 10 signals

w3 w4 W) w6 w7 w8 w9 w10 average

baseline 38.51% | 43.75% | 44.00% | 42.14% | 46.15% | 50.00% | 46.36% | 48.00% | 44.87%
Sig Prop || 65.29% | 83.75% | 93.33% | 96.43% | 96.92% | 97.50% | 95.45% | 95.00% | 90.46%
Dist p2p || 72.35% | 75.63% | 75.33% | 77.14% | 80.00% | 80.83% | 75.45% | 85.00% | 77.72%
Dist p2p* || 78.24% | 89.38% | 92.00% | 95.00% | 96.92% | 97.50% | 89.09% | 97.00% | 91.89%
Dist p2v || 81.18% | 70.00% | 66.00% | 69.29% | 73.08% | 79.17% | 70.00% | 78.00% | 73.34%
Dist p2v* || 92.35% | 88.13% | 94.00% | 95.71% | 95.38% | 96.67% | 95.45% | 95.00% | 94.09%
Dist p2av || 84.12% | 79.38% | 79.33% | 79.29% | 80.00% | 77.50% | 77.27% | 79.00% | 79.49%
Dist p2av* || 92.94% | 87.50% | 96.00% | 95.00% | 96.92% | 96.67% | 95.45% | 95.00% | 94.44%

Table 5.15: Micro average Balanced Accuracy achieved across all 10 signals

w3 w4 wH w6 w7 w8 w9 w10 average

baseline 67.65% | 70.40% | 70.51% | 70.24% | 72.37% | 74.43% | 72.41% | 73.22% | 71.40%
Sig prop || 72.73% | 82.14% | 78.00% | 74.29% | 69.62% | 70.00% | 50.00% | 50.00% | 68.35%
Dist p2p || 85.31% | 87.23% | 86.90% | 88.21% | 89.71% | 90.08% | 86.95% | 92.17% | 88.32%
Dist p2p* || 88.41% | 94.33% | 95.59% | 97.39% | 88.85% | 89.17% | 75.00% | 70.00% | 87.34%
Dist p2v || 89.84% | 84.29% | 81.77% | 84.03% | 86.03% | 89.13% | 84.00% | 78.89% | 84.75%
Dist p2v* || 77.27% | 84.33% | 78.23% | 73.93% | 68.85% | 69.58% | 50.00% | 50.00% | 69.02%
Dist p2av || 82.18% | 89.06% | 89.00% | 89.28% | 89.65% | 88.30% | 78.59% | 79.61% | 85.71%
Dist p2av* || 86.98% | 74.64% | 88.67% | 78.13% | 69.62% | 69.58% | 50.00% | 50.00% | 70.95%




Fall-out and Miss rate

The fall-out and miss rate both are metrics used to analyze errors, therefore the
lower the values the fewer errors and the better the approach. The fall-out is also called
False Positive Rate and therefore relates to criteria 2 mentioned earlier while the miss rate
is equivalent to the False Negative Rate and therefore relates to criteria 2.

Results from Table 5.16 show that the lowest fall-out achieved is Dist p2av* with
3.09% closely followed by Dist p2v* with 3.20%, meaning that these two approaches are
good at not detecting a shift when none has occurred. The highest fall-out was achieved by
the baseline with 57.19%, meaning that this approach often detects a sentiment shift when
none has happened. The second highest fall-out is our approach Dist p2v with 28.01%.

Results from Table 5.17 indicate that the lowest miss rate obtained are by the base-
line and Dist p2p, with a miss rate of 0.00%, meaning that these two approaches have never
failed to detect a sentiment shift when one occurred. These results are closely followed by
Dist p2v with a miss rate of 2.50%. The highest miss rate was obtained by Dist p2v* with
58.75%, closely followed by Sig prop with 56.25%, indicating that both of these approaches

highly failed to detect a shift that actually occurred.

These results give us a first feeling as to which approaches perform well in the detec-
tion task, but are insufficient to draw a conclusion. Indeed, the balanced accuracy indicates
that Dist p2p and Dist p2p* are the best in detecting sentiment shift, the fall-out indicates
that Dist p2v* and Dist p2av* are best, and the miss rate tells us that the baseline and Dist

p2p are more appropriate.
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Table 5.16: Micro average Fall-out achieved across all 10 signals

w3 w4 W) w6 w7 w8 w9 w10 average
baseline 64.71% | 59.20% | 58.97% | 59.51% | 55.26% | 51.14% | 55.18% | 53.56% | 57.19%
Sig prop || 34.55% | 15.71% | 4.00% | 1.43% | 0.77% | 0.00% | 0.00% | 0.00% | 7.06%
Dist p2p || 29.37% | 25.54% | 26.21% | 23.58% | 20.58% | 19.85% | 26.09% | 15.67% | 23.36%
Dist p2p* || 23.18% | 11.34% | 8.82% | 5.22% | 2.31% | 1.67% | 10.00% | 0.00% | 7.82%
Dist p2v || 20.31% | 31.43% | 36.46% | 31.94% | 27.95% | 21.74% | 32.00% | 22.22% | 28.01%
Dist p2v* || 5.45% | 11.34% | 3.54% | 2.14% | 2.31% | 0.83% | 0.00% | 0.00% | 3.20%
Dist p2av || 15.65% | 21.88% | 22.00% | 21.44% | 20.71% | 23.41% | 22.82% | 20.78% | 21.08%
Dist p2av* || 6.04% | 10.71% | 2.67% | 3.74% | 0.77% | 0.83% | 0.00% | 0.00% | 3.09%
Table 5.17: Micro average Miss rate achieved across all 10 signals
w3 w4 wH w6 w7 w8 w9 w10 average
baseline 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% 0.00% 0.00% 0.00%
Sig prop || 20.00% | 20.00% | 40.00% | 50.00% | 60.00% | 60.00% | 100.00% | 100.00% | 56.25%
Dist p2p 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% 0.00% 0.00% 0.00%
Dist p2p* || 0.00% | 0.00% | 0.00% | 0.00% | 20.00% | 20.00% | 40.00% | 60.00% | 17.50%
Dist p2v 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% 0.00% 20.00% | 2.50%
Dist p2v* || 40.00% | 20.00% | 40.00% | 50.00% | 60.00% | 60.00% | 100.00% | 100.00% | 58.75%
Dist p2av || 20.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 20.00% | 20.00% | 7.50%
Dist p2av* || 20.00% | 40.00% | 20.00% | 40.00% | 60.00% | 60.00% | 100.00% | 100.00% | 55.00%




Table 5.18: Macro Accuracy, Fall-out, Miss rate, and Balanced accuracy for all algorithms
Accuracy | Miss rate | Fall-out | bAcc
baseline 44.34% 0.00% 58.71% | 70.65%
Sig prop 89.17% 48.21% 8.79% | 71.50%
Dist p2p 77.22% 0.00% 24.02% | 87.99%
Dist p2p* || 91.20% | 12.50% | 8.59% | 89.45%
Dist p2v 73.24% 1.79% 28.13% | 85.04%
Dist p2v* 93.80% 51.79% 3.71% | 72.25%
Dist p2av 79.72% 7.14% 21.00% | 85.93%
Dist p2av* 94.17% 46.43% 3.61% | 74.98%

5.3.1.2 Macro results

Table 5.18 reports the macro average accuracy, fall-out, miss rate, and balanced
accuracy achieved for each algorithm ignoring all individual signals and window sizes, that
is, by considering the 1080 data points at once.

The macro results from Table 5.18 indicate that the highest balanced accuracy is
achieved by Dist p2p* with 89.45% while the lowest is the baseline with 70.65%. The lowest
fall-out is achieved by the Dist p2av* approach with 3.61% whilst the highest is the baseline
with 58.71%. Finally, the lowest miss rate are equally the baseline and Dist p2p 0.00% and
the highest is Dist p2v* with 51.79%.

The macro results are strongly similar to the micro results with the exception that
the highest balanced accuracy is the Dist p2p* as opposed to Dist p2p. In the following
section we will discuss these results in more detail in order to select which approach is best
suited for sentiment shift detection. Moreover, we will take a closer look at the effect of the
window size on the performances.

Our experimental results show that both our algorithms Dist p2p* and Dist p2av
outperform the baseline approach, and both yield high detection accuracy, and are therefore

well suited for sentiment shift detection.
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Figure 5.8: Micro averaged accuracy, fall-out, miss rate, and balanced accuracy for all
signals across all window size

5.3.2 Discussions

Ideally, a good sentiment shift detection algorithm should achieve a very low fall-out
and a very low miss rate while having a high enough balanced accuracy at the same time in

order to satisfy both criteria explained in the previous section.

5.3.2.1 Algorithms Performances

Micro results
Figure 5.8 shows a bar plot of the fall-out and miss rate side by side as well as the
accuracy and balanced accuracy performed by all algorithms on the micro level. We notice

that the balanced accuracy by itself is insufficient to determine whether an algorithm is well-
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Figure 5.9: Macro averaged accuracy, fall-out, miss rate, and balanced accuracy for all
signals across all window size

suited for sentiment shift detection. Similarly, the miss rate or fall out by themselves are not
good indicators of the performances of an algorithm. Therefore, we need to consider all three
evaluation metrics all together in order to evaluate the performances of each algorithm. We
can see from Figure 5.8 that most of the time, a very low fall-out is coupled to a very high
miss rate and vice-versa. Indeed, although Dist p2v and Dist p2p achieve a high balanced
accuracy and very low miss rate, they both suffer from a high fall out, indicating that they
perform well in our first requirement but very poorly in our second requirement. The baseline
despite having a miss rate of 0.0% has an extremely high fall out, meaning that it tend to
detect sentiment shift when they do not occur. Likewise, Sig prop, Dist p2v* and Dist p2av*
have very low fall-out but very high miss rate, meaning that they perform well in our second
requirement but very poorly in our first requirement.

On the other hand, both Dist p2p* and Dist p2av are much better suited for detecting
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sentiment shift since they both achieve a low fall-out and a low miss rate while achieving a
high balanced accuracy. They are therefore the two best candidates for our sentiment shift

detection algorithm. We will analyze the macro result plot in order to confirm these findings.

Macro results

Figure 5.9 shows a bar plot of the fall-out and miss rate side by side as well as the
accuracy and balanced accuracy performed by all algorithms on the macro level. Figure 5.9
confirms the findings discussed on the micro level, that is, the baseline, Sig prop, Dist p2p,
Dist p2v, Dist2v*, and Dist p2av* are not suited for sentiment shift detection because they
either have a high fall-out associated with a low miss rate or a high miss rate associated with
a low fall-out which does not meet both of our requirements.

Now, comparing Dist p2p* versus Dist p2av, they show similar performances which
both meet our requirements, namely, a low miss rate and a low fall-out. With a smaller fall-
out, and slightly higher miss rate, we believe that Dist p2p* is better suited for automatically
detecting a sentiment shift. However, if a particular application has a higher focus on not

missing many sentiment shift, then the Dist p2av approach could be better suited.

5.3.2.2 Impact of the window size on the results

Figure 5.10 plots the balanced accuracy versus the size of the trend window. There is
no clear pattern or correlation that is revealed on the graph, however, the algorithms seem to
perform better with a window size slightly bigger than 3, i.e., 4 or 5, and the performances,
overall, clearly decrease as the window gets bigger. That is, the lowest balanced accuracy are
achieved with a window size of 10. In order to understand and explain this observation we

can take a look at the fall-out and miss rate separately. Figure 5.11 thus is a 3D plot of the
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Figure 5.10: Accuracy vs window size for all algorithms

fall-out versus the window size, for all algorithms wile Figure 5.12 plots the miss rate. While
Figure 5.11 shows that the fall-out tend to decrease as the window gets bigger , Figure 5.12
shows the opposite trend and shows that the miss rate greatly increase as the window gets
bigger. These two observations would thus explain why the relation between the window
size and performance was not observed with balanced accuracy. Indeed, as the window size
gets bigger, the miss rate gets bigger but the fall-out gets smaller, the fall-out balances out
the loss of performances reflected in the miss rate.

Table 5.19: Averaged bAcc, fall-out, and miss rate for all algorithm for each window size

HWS‘W4‘W5‘W6‘W7‘W8‘W9‘W10
bAcc 81.30% | 83.30% | 83.58% | 81.94% | 79.33% | 80.03% | 68.37% | 67.99%

Fall-out || 24.91% | 23.39% | 20.33% | 18.63% | 16.33% | 14.93% | 18.26% | 14.03%
Miss rate || 12.50% | 10.00% | 12.50% | 17.50% | 25.00% | 25.00% | 45.00% | 50.00%

We can conclude from these observations that performance is linked to the size of the
window. Specifically, a narrow trend window induces more constraints and the algorithm

becomes more specific and restricted regarding the trend it catches. Consequently a very
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Table 5.20: bAcc, fall-out, and miss rate for the Dist p2p* algorithm for each window size
H w3 ‘ w4 ‘ W ‘ w6 ‘ w7 ‘ w8 ‘ w9 ‘ w10
bAcc 88.41% | 94.33% | 95.59% | 97.39% | 88.85% | 89.17% | 75.00% | 70.00%
Fall-out 23.18% | 11.34% | 8.82% 5.22% 2.31% 1.67% | 10.00% | 0.00%
Miss rate || 0.00% 0.00% 0.00% 0.00% | 20.00% | 20.00% | 40.00% | 60.00%

low miss rate but a high fall-out will be achieved, meaning that the algorithm does not do a
great job of catching a trend, and will detect many sentiment shifts when they actually do
not occur.

On the other hand, a wide trend window induces less constraints and the algorithm
then becomes less strict and less restricted regarding the trend in catches. As a consequence,
a high miss rate but a low fall-out will be achieved, meaning that the algorithm does not do
a great job of catching the trend, and while it will not detect a shift when none has occurred,
it will miss a high number of sentiment shift that actually have occurred.

Table 5.19 summarizes the average balanced accuracy, fall-out, and miss rate across
all algorithms for each window size. It shows that on average, the highest balanced accuracy
is achieved at a size of 5, the lowest fall-out is achieved with a window of size 10, and the
lowest miss rate is achieved with a trend window of size 4. Since the approach Dist p2p*
was chosen to be the best approach for sentiment shift detection, we take a look at its
performances against the various window sizes separately and report the results in Table
5.20.

Table 5.20 indicates that the Dist p2p* approach achieves a miss rate of 0.00% for a
window size ranging from 3 to 6. Amongst these window sizes, the lowest fall-out is achieved
with a window of size 6 with a fall-out of 5.22%. Similarly, the highest balanced accuracy is

achieved with a window size of 6 with 97.39%.
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Therefore, for an accurate automatic sentiment shift detection system, we recommend

using the Dist p2p* approach with a trend window of size 6.
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6 Conclusion and Future Work

In this chapter, we summarize our research contributions to the field of sentiment
analysis, quantification, and opinion shift detection. We also discuss possible future research

directions suggested by our results.

6.1 Conclusion

Sentiment analysis can be applied to numerous domains provided that there is textual
data to analyze. It is widely applied in the business intelligence area by tracking customers’
opinions over time. In this document, we extended the aforementioned applications by ap-
plying sentiment quantification techniques combined with change-point detection models to
automatically detect a shift of sentiment with respect to a topic or entity. To the best of
our knowledge there are currently no research that focuses on automatically detecting a shift
of sentiment. In this document we provide a solution to this problem by answering three
questions that serve as guidelines to our work: (1) how to represent a Tweet in a way such
that its representation reflects the sentiment it reflects; (2) how could we accurately quantify
the proportion of positive Tweet and the proportion of negative Tweet from a collection; and
(3) how to build a sentiment signal that captures the evolution of the sentiment over time,
and accurately identify a sentiment shift. The answers to these questions are the core of
our work. By answering these questions, we have made contributions in three areas, namely,

sentiment analysis, sentiment quantification, and sentiment shift detection.

Focusing on sentiment analysis, we introduce a probabilistic approach to create a
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paired sentiment lexicon that models the positivity and the negativity of words separately.
We show that such a lexicon can be used to more accurately derive sentiment features
for a Tweet. In addition, we show that employing these feature vectors with a multivariate
Support Vector Machine (SVM) that optimizes statistical distances metrics can improve sen-
timent quantification accuracy. We further demonstrate that such a SVM machines achieve
the best performance when they optimize the Hellinger Distance. Furthermore, we intro-
duce a mean of representing sentiment over time through sentiment signals built from the
aforementioned sentiment quantifier. Finally, we show how an automatic sentiment shift
detection system can be implemented by analyzing the sentiment signals through geometric-
based change-point detection algorithms. We find that measuring the change of sentiment
through 2 dimensional Euclidean distance and capturing a shift using first and second order

statistical moments was the most accurate of the methods we tested.

6.2 Future Work

We believe that there is potential for future contributions in all three areas men-
tioned in this work. Our techniques show that text mining techniques can automatically
create sentiment lexicons for Twitter data that outperform generic sentiment lexicons. How-
ever, further improvements may be possible by incorporating hashtags, usernames, or the
interrelationship of tweets within threads in the lexicon construction process. In addition,
unlike online reviews, Tweets do not have explicit positive or negative feedback, therefore,

efforts should also be spent in improving current Twitter datasets for sentiment analysis.

Sentiment quantification is a relatively new research area and many paths still need

to be explored. Although the use of neural networks has already been investigated for sen-
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timent quantification, they make little or no use of sentiment lexicons. Sentiment lexicons
are valuable resources that provide additional insight on the sentiment carried by words. We
believe that they could make a positive contribution and enhance current neural network
approaches for this particular problem and also improve the explainability of neural network

results.

Sentiment signal analysis is an emerging research area. Although we introduced
one way of building them, other approaches should be investigated to build that take into
consideration the quantity, i.e., the actual number of documents, as well as the proportion of
documents with respect to each sentiment. Finally, opinion shift detection has the potential
to enhance current business intelligence systems and research should focus on improving such
detection algorithms. Change-point detection (CPD) is heavily dependent on the application
it is used for, and CPD that works well in one particular area will most likely not perform
well in another. Therefore we suggest researchers to investigate CPD applied specifically to
sentiment signals which are a particular instance of online textual streams. Graph-based

CPD methods as well as clustering CPD methods are promising in this application.
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A Appendix

A.1 Raw sentiment signals description

Table A.1: Detailed description of the sentiment signals

sl s2 s3 s4 CH) s6 s7 s8 s9 s10
point 1 || 0.22 | 0.22 | -0.22 | -0.22 | 0.91 | -0.93 | 0.76 | -0.74 | -0.18 | 0.07
point 2 || 0.22 | 0.22 | -0.22 | -0.22 | 0.86 | -0.86 | 0.71 | -0.7 | 0.18 0.1
point 3 02 | 02 ] -02 | -0.2 ] 074 [-0.74| 0.69 | -0.64 | -0.05 | 0.08
point 4 || 0.23 | 0.23 | -0.23 | -0.23 | 0.66 | -0.65 | 0.7 | -0.72 0.2 0.15
point 5 || 0.25 | 0.25 | -0.25 | -0.25 | 0.57 | -0.55 | 0.68 | -0.67 | -0.03 | 0.14
point 6 || 0.15 | 0.35 | -0.35 | -0.15 | 0.44 | -0.45 | 0.68 | -0.68 | 0.14 | 0.12
point 7 || 0.12 | 0.37 | -0.33 | -0.17 | 0.36 | -0.33 | 0.65 | -0.65 | -0.24 | 0.66
point 8 || 0.13 | 0.33 | -0.34 | -0.13 | 0.22 | -0.24 | 0.55 | -0.55 0 0.65
point 9 || 0.12 | 0.32 | -0.32 | -0.16 | 0.14 | -0.12 | 0.24 | -0.37 | 0.08 | 0.37
point 10 || 0.21 | 0.21 | -0.21 | -0.23 | 0.03 | -0.03 | 0.16 | -0.16 | 0.15 | 0.34
point 11 || 0.22 | 0.22 | -0.22 | -0.22 | -0.08 | 0.09 | -0.1 0.1 -0.15 | 0.15
point 12 || 0.25 | 0.25 | -0.25 | -0.25 | -0.16 | 0.18 | -0.26 | 0.26 | -0.1 0.12
point 13 || 0.24 | 0.24 | -0.24 | -0.24 | -0.25 | 0.27 | -0.55 | 0.55 | -0.28 | 0.09
point 14 || 0.24 | 0.24 | -0.24 | -0.24 | -0.37 | 0.37 | -0.67 | 0.66 | 0.06 | 0.12
point 15 || 0.26 | 0.26 | -0.26 | -0.26 | -0.45 | 0.42 | -0.65 | 0.71 | -0.11 | -0.27
point 16 || 0.2 | 0.2 | -0.2 | -0.2 | -0.57 | 0.56 | -0.68 | 0.68 | 0 0.17
point 17 || 0.21 | 0.21 | -0.21 | -0.21 | -0.66 | 0.62 | -0.66 | 0.65 | -0.14 | 0.15
point 18 || 0.08 | 0.48 | -0.48 | -0.08 | -0.72 | 0.75 | -0.72 | 0.7 0.1 0.16
point 19 || 0.21 | 0.21 | -0.21 | -0.21 | -0.85 | 0.85 | -0.65 | 0.67 | -0.02 0.1
point 20 || 0.29 | 0.29 | -0.29 | -0.29 | -0.9 | 0.91 | -0.7 | 0.71 | 0.02 0.1
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A.2 Raw sentiment shift detection accuracy

Table A.2: Raw accuracy results for each window size

H sl s2 ‘ s3 ‘ s4 ‘ sb ‘ s6 ‘ s7 ‘ s8 ‘ s9 ‘ s10

W3
baseline 29.41% | 64.71% | 64.71% | 35.29% | 0.00% 0.00% | 17.65% | 35.29% | 73.33% | 64.71%
Sig prop 76.47% | 88.24% | 82.35% | 76.47% | 23.53% | 5.88% | 58.82% | 64.71% | 88.24% | 88.24%
dist p2p 76.47% | 70.59% | 64.71% | 76.47% | 76.47% | 82.35% | 58.82% | 58.82% | 76.47% | 82.35%
Dist p2p* || 76.47% | 76.47% | 76.47% | 76.47% | 82.35% | 82.35% | 76.47% | 70.59% | 76.47% | 88.24%
Dist p2v 76.47% | 70.59% | 70.59% | 82.35% | 76.47% | 82.35% | 88.24% | 88.24% | 88.24% | 88.24%
Dist p2v* || 88.24% | 94.12% | 94.12% | 94.12% | 94.12% | 82.35% | 100.00% | 88.24% | 94.12% | 94.12%
Dist p2av || 76.47% | 70.59% | 70.59% | 82.35% | 76.47% | 82.35% | 88.24% | 88.24% | 88.24% | 88.24%
Dist p2av* || 88.24% | 94.12% | 94.12% | 94.12% | 94.12% | 82.35% | 100.00% | 88.24% | 94.12% | 94.12%

W4
baseline 43.75% | 68.75% | 62.50% | 37.50% | 0.00% 0.00% | 25.00% | 37.50% | 81.25% | 81.25%
Sig prop 81.25% | 87.50% | 87.50% | 81.25% | 75.00% | 75.00% | 68.75% | 87.50% | 93.75% | 100.00%
dist p2p 81.25% | 81.25% | 81.25% | 81.25% | 68.75% | 68.75% | 62.50% | 62.50% | 75.00% | 93.75%
Dist p2p* || 87.50% | 87.50% | 87.50% | 87.50% | 100.00% | 93.75% | 75.00% | 87.50% | 87.50% | 100.00%
Dist p2v 81.25% | 75.00% | 68.75% | 81.25% | 50.00% | 68.75% | 50.00% | 62.50% | 68.75% | 93.75%
Dist p2v* || 81.256% | 87.50% | 81.25% | 87.50% | 93.75% | 93.75% | 75.00% | 93.75% | 87.50% | 100.00%
Dist p2av || 81.25% | 68.75% | 68.75% | 81.25% | 43.75% | 62.50% | 50.00% | 68.75% | 56.25% | 81.25%
Dist p2av* || 75.00% | 87.50% | 81.25% | 81.25% | 81.25% | 81.256% | 68.75% | 87.50% | 81.25% | 100.00%
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Table A.3: Raw accuracy results for each window size (continued)

H sl ‘ s2 ‘ s3 ‘ s4 ‘ sb ‘ s6 ‘ s7 ‘ s8 s9 ‘ s10

W5
baseline 26.67% | 73.33% | 66.67% | 46.67% 0.00% 0.00% 20.00% | 33.33% | 80.00% | 93.33%
Sig prop 93.33% | 100.00% | 100.00% | 86.67% | 93.33% | 100.00% | 80.00% | 93.33% | 93.33% | 93.33%
dist p2p 73.33% | 80.00% | 80.00% | 73.33% | 66.67% | 73.33% | 60.00% | 66.67% | 86.67% | 93.33%
Dist p2p* 86.67% | 93.33% | 93.33% | 73.33% | 100.00% | 100.00% | 86.67% | 93.33% | 93.33% | 100.00%
Dist p2v 66.67% | 60.00% | 66.67% | 60.00% | 46.67% | 66.67% | 66.67% | 73.33% | 66.67% | 86.67%
Dist p2v* 80.00% | 93.33% | 93.33% | 93.33% | 93.33% | 100.00% | 86.67% | 100.00% | 100.00% | 100.00%
Dist p2av 66.67% | 66.67% | 66.67% | 60.00% | 40.00% | 40.00% | 60.00% | 60.00% | 66.67% | 86.67%
Dist p2av* || 86.67% | 100.00% | 100.00% | 93.33% | 93.33% | 93.33% | 86.67% | 86.67% | 100.00% | 100.00%

W6
baseline 50.00% | 57.14% | 50.00% | 42.86% 0.00% 0.00% 21.43% | 28.57% | 7857% | 92.86%
Sig prop 92.86% | 100.00% | 100.00% | 92.86% | 100.00% | 100.00% | 85.71% | 100.00% | 100.00% | 92.86%
dist p2p 78.57% | 7857% | 78.57% | 85.71% | 71.43% | 64.29% | 71.43% | 64.29% | 85.71% | 92.86%
Dist p2p* 92.86% | 92.86% | 92.86% | 92.86% | 100.00% | 100.00% | 85.71% | 92.86% | 100.00% | 100.00%
Dist p2v 78.57% | 57.14% | 64.29% | 71.43% | 57.14% | 64.29% | 64.29% | 78.57% | 71.43% | 85.71%
Dist p2v* 92.86% | 100.00% | 100.00% | 92.86% | 92.86% | 100.00% | 85.71% | 100.00% | 100.00% | 92.86%
Dist p2av 71.43% | 50.00% | 57.14% | 71.43% | 42.86% | 35.71% | 64.29% | 78.57% | 71.43% | 85.71%
Dist p2av* || 85.71% | 92.86% | 92.86% | 92.86% | 100.00% | 92.86% | 92.86% | 100.00% | 100.00% | 92.86%

W7
baseline 46.15% | 69.23% | 69.23% | 53.85% 0.00% 0.00% 23.08% | 23.08% | 84.62% | 92.31%
Sig prop 92.31% | 100.00% | 100.00% | 92.31% | 100.00% | 100.00% | 92.31% | 100.00% | 100.00% | 92.31%
dist p2p 84.62% | 84.62% | 84.62% | 84.62% | 76.92% | 69.23% | 69.23% | 61.54% | 92.31% | 92.31%
Dist p2p* || 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 84.62% | 92.31% | 100.00% | 92.31%
Dist p2v 69.23% | 69.23% | 76.92% | 76.92% | 61.54% | 61.54% | 76.92% | 76.92% | 76.92% | 84.62%
Dist p2v* 92.31% | 100.00% | 100.00% | 92.31% | 92.31% | 100.00% | 84.62% | 100.00% | 100.00% | 92.31%
Dist p2av 69.23% | 61.54% | 61.54% | 76.92% | 38.46% | 38.46% | 69.23% | 92.31% | 69.23% | 84.62%
Dist p2av* || 92.31% | 100.00% | 100.00% | 92.31% | 100.00% | 92.31% | 100.00% | 100.00% | 100.00% | 92.31%
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Table A.4: Raw accuracy results for each window size (continued)

H sl ‘ s2 ‘ s3 ‘ s4 ‘ sb ‘ s6 ‘ s7 ‘ s8 s9 ‘ s10

W8
baseline 50.00% | 83.33% | 83.33% | 58.33% 0.00% 0.00% 16.67% | 25.00% | 83.33% | 100.00%
Sig prop 91.67% | 100.00% | 100.00% | 91.67% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 91.67%
dist p2p 83.33% | 83.33% | 83.33% | 83.33% | 83.33% | 66.67% | 75.00% | 66.67% | 91.67% | 91.67%
Dist p2p* || 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 91.67% | 91.67% | 100.00% | 91.67%
Dist p2v 75.00% | 75.00% | 75.00% | 83.33% | 75.00% | 75.00% | 83.33% | 75.00% | 83.33% | 91.67%
Dist p2v* 91.67% | 100.00% | 100.00% | 91.67% | 100.00% | 100.00% | 91.67% | 100.00% | 100.00% | 91.67%
Dist p2av 75.00% | 66.67% | 58.33% | 75.00% | 50.00% | 41.67% | 75.00% | 91.67% | 66.67% | 83.33%
Dist p2av* || 91.67% | 100.00% | 100.00% | 91.67% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 91.67%

W9
baseline 54.55% | 63.64% | 63.64% | 63.64% 0.00% 0.00% 18.18% | 18.18% | 81.82% | 100.00%
Sig prop 90.91% | 90.91% | 90.91% | 90.91% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 90.91%
dist p2p 9.09% 81.82% | 81.82% | 81.82% | 90.91% | 72.73% | 81.82% | 72.73% | 90.91% | 90.91%
Dist p2p* 9.09% | 100.00% | 100.00% | 90.91% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 90.91%
Dist p2v 9.09% 63.64% | 63.64% | 72.73% | 81.82% | 72.73% | 81.82% | 72.73% | 90.91% | 90.91%
Dist p2v* 90.91% | 90.91% | 90.91% | 90.91% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 90.91%
Dist p2av 9.09% 54.55% | 54.55% | 72.73% | 54.55% | 45.45% | 81.82% | 90.91% | 72.73% | 81.82%
Dist p2av* || 90.91% | 90.91% | 90.91% | 90.91% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 90.91%

W10
baseline 50.00% | 80.00% | 80.00% | 50.00% 0.00% 0.00% 20.00% | 20.00% | 80.00% | 100.00%
Sig prop 90.00% | 90.00% | 90.00% | 90.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 90.00%
dist p2p 90.00% | 90.00% | 90.00% | 80.00% | 90.00% | 70.00% | 80.00% | 80.00% | 90.00% | 90.00%
Dist p2p* 90.00% | 100.00% | 100.00% | 90.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 90.00%
Dist p2v 80.00% | 70.00% | 70.00% | 80.00% | 80.00% | 60.00% | 90.00% | 80.00% | 90.00% | 80.00%
Dist p2v* 90.00% | 90.00% | 90.00% | 90.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 90.00%
Dist p2av 60.00% | 50.00% | 60.00% | 60.00% | 50.00% | 50.00% | 90.00% | 90.00% | 60.00% | 80.00%
Dist p2av* || 90.00% | 90.00% | 90.00% | 90.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 90.00%
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A.3 Raw sentiment detection fall-out

Table A.5: Raw fall-out results for each window size

H sl s2 s3 s4 sb s6 s7 s8 s9 s10

W3
baseline 80.00% | 40.00% | 40.00% | 73.33% | 100.00% | 100.00% | 82.35% | 64.71% | 26.67% | 40.00%
Sig prop 20.00% | 13.33% | 20.00% | 20.00% | 76.47% | 94.12% | 41.18% | 35.29% | 11.76% | 13.33%
dist p2p 26.67% | 33.33% | 40.00% | 26.67% | 23.53% | 17.65% | 41.18% | 41.18% | 23.53% | 20.00%
Dist p2p* || 26.67% | 26.67% | 26.67% | 26.67% | 17.65% | 17.65% | 23.53% | 29.41% | 23.53% | 13.33%
Dist p2v 26.67% | 33.33% | 33.33% | 20.00% | 23.53% | 17.65% | 11.76% | 11.76% | 11.76% | 13.33%
Dist p2v* 6.67% | 0.00% | 0.00% | 0.00% 5.88% 17.65% | 0.00% | 11.76% | 5.88% | 6.67%
Dist p2av || 26.67% | 33.33% | 33.33% | 20.00% | 23.53% | 17.65% | 11.76% | 11.76% | 11.76% | 13.33%
Dist p2av* || 6.67% | 0.00% | 0.00% | 0.00% 5.88% 17.65% | 0.00% | 11.76% | 5.88% | 6.67%

W4
baseline 64.29% | 35.71% | 42.86% | 71.43% | 100.00% | 100.00% | 75.00% | 62.50% | 18.75% | 21.43%
Sig prop 14.29% | 14.29% | 14.29% | 14.29% | 25.00% | 25.00% | 31.25% | 12.50% | 6.25% | 0.00%
dist p2p 21.43% | 21.43% | 21.43% | 21.43% | 31.25% | 31.25% | 37.50% | 37.50% | 25.00% | 7.14%
Dist p2p* || 14.29% | 14.29% | 14.29% | 14.29% | 0.00% 6.25% | 25.00% | 12.50% | 12.50% | 0.00%
Dist p2v 21.43% | 28.57% | 35.71% | 21.43% | 50.00% | 31.25% | 50.00% | 37.50% | 31.25% | 7.14%
Dist p2v* || 21.43% | 7.14% | 14.29% | 14.29% | 6.25% 6.25% | 25.00% | 6.256% | 12.50% | 0.00%
Dist p2av || 21.43% | 35.71% | 35.71% | 21.43% | 56.25% | 37.50% | 50.00% | 31.25% | 43.75% | 21.43%
Dist p2av* || 21.43% | 7.14% | 14.29% | 14.29% | 18.75% | 18.75% | 31.25% | 12.50% | 18.75% | 0.00%
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Table A.6: Raw fall-out results for each window size (continued)

H sl ‘ s2 ‘ s3 ‘ s4 ‘ sb ‘ s6 ‘ s7 ‘ s8 ‘ s9 ‘ s10

W5
baseline 84.62% | 30.77% | 38.46% | 61.54% | 100.00% | 100.00% | 80.00% | 66.67% | 20.00% | 7.69%
Sig prop 0.00% | 0.00% | 0.00% | 0.00% 6.67% 0.00% | 20.00% | 6.67% | 6.67% | 0.00%
dist p2p 30.77% | 23.08% | 23.08% | 30.77% | 33.33% | 26.67% | 40.00% | 33.33% | 13.33% | 7.69%
Dist p2p* || 15.38% | 7.69% | 7.69% | 30.77% | 0.00% 0.00% | 13.33% | 6.67% | 6.67% | 0.00%
Dist p2v 38.46% | 46.15% | 38.46% | 46.15% | 53.33% | 33.33% | 33.33% | 26.67% | 33.33% | 15.38%
Dist p2v* || 15.38% | 0.00% | 0.00% | 0.00% 6.67% 0.00% | 13.33% | 0.00% | 0.00% | 0.00%
Dist p2av || 38.46% | 38.46% | 38.46% | 46.15% | 60.00% | 60.00% | 40.00% | 40.00% | 33.33% | 15.38%
Dist p2av* || 7.69% | 0.00% | 0.00% | 0.00% 6.67% 6.67% | 13.33% | 13.33% | 0.00% | 0.00%

W6
baseline 53.85% | 46.15% | 53.85% | 61.54% | 100.00% | 100.00% | 78.57% | 71.43% | 21.43% | 8.33%
Sig prop 0.00% | 0.00% | 0.00% | 0.00% 0.00% 0.00% | 14.29% | 0.00% | 0.00% | 0.00%
dist p2p 23.08% | 23.08% | 23.08% | 15.38% | 28.57% | 35.71% | 28.57% | 35.71% | 14.29% | 8.33%
Dist p2p* 7.69% | 7.69% | 7.69% | 7.69% 0.00% 0.00% | 14.29% | 7.14% | 0.00% | 0.00%
Dist p2v 23.08% | 46.15% | 38.46% | 30.77% | 42.86% | 35.71% | 35.71% | 21.43% | 28.57% | 16.67%
Dist p2v* 0.00% | 0.00% | 0.00% | 0.00% 7.14% 0.00% | 14.29% | 0.00% | 0.00% | 0.00%
Dist p2av || 30.77% | 53.85% | 46.15% | 30.77% | 57.14% | 64.29% | 35.71% | 21.43% | 28.57% | 16.67%
Dist p2av* || 7.69% | 7.69% | 7.69% | 0.00% 0.00% 7.14% 7.14% | 0.00% | 0.00% | 8.33%

W7
baseline 58.33% | 33.33% | 33.33% | 50.00% | 100.00% | 100.00% | 76.92% | 76.92% | 15.38% | 8.33%
Sig prop 0.00% | 0.00% | 0.00% | 0.00% 0.00% 0.00% 7.69% | 0.00% | 0.00% | 0.00%
dist p2p 16.67% | 16.67% | 16.67% | 16.67% | 23.08% | 30.77% | 30.77% | 38.46% | 7.69% | 8.33%
Dist p2p* 0.00% | 0.00% | 0.00% | 0.00% 0.00% 0.00% | 15.38% | 7.69% | 0.00% | 0.00%
Dist p2v 33.33% | 33.33% | 25.00% | 25.00% | 38.46% | 38.46% | 23.08% | 23.08% | 23.08% | 16.67%
Dist p2v* 0.00% | 0.00% | 0.00% | 0.00% 7.69% 0.00% | 15.38% | 0.00% | 0.00% | 0.00%
Dist p2av || 33.33% | 41.67% | 41.67% | 25.00% | 61.54% | 61.54% | 30.77% | 7.69% | 30.77% | 16.67%
Dist p2av* || 0.00% | 0.00% | 0.00% | 0.00% 0.00% 7.69% 0.00% | 0.00% | 0.00% | 0.00%
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Table A.7: Raw fall-out results for each window size (continued)

H sl ‘ s2 ‘ s3 ‘ s4 ‘ S5) ‘ s6 ‘ s7 ‘ s8 ‘ s9 ‘ s10

W8
baseline 54.55% | 18.18% | 18.18% | 45.45% | 100.00% | 100.00% | 83.33% | 75.00% | 16.67% | 0.00%
Sig prop 0.00% 0.00% | 0.00% | 0.00% 0.00% 0.00% 0.00% | 0.00% | 0.00% | 0.00%
dist p2p 18.18% | 18.18% | 18.18% | 18.18% | 16.67% | 33.33% | 25.00% | 33.33% | 8.33% | 9.09%
Dist p2p* 0.00% 0.00% | 0.00% | 0.00% 0.00% 0.00% 8.33% | 8.33% | 0.00% | 0.00%
Dist p2v 27.27% | 27.27% | 27.27% | 18.18% | 25.00% | 25.00% | 16.67% | 25.00% | 16.67% | 9.09%
Dist p2v* 0.00% 0.00% | 0.00% | 0.00% 0.00% 0.00% 8.33% | 0.00% | 0.00% | 0.00%
Dist p2av 27.27% | 36.36% | 45.45% | 27.27% | 50.00% | 58.33% | 25.00% | 8.33% | 33.33% | 18.18%
Dist p2av* 0.00% 0.00% | 0.00% | 0.00% 0.00% 0.00% 0.00% | 0.00% | 0.00% | 0.00%

W9
baseline 50.00% | 40.00% | 40.00% | 40.00% | 100.00% | 100.00% | 81.82% | 81.82% | 18.18% | 0.00%
Sig prop 0.00% 0.00% | 0.00% | 0.00% 0.00% 0.00% 0.00% | 0.00% | 0.00% | 0.00%
dist p2p 100.00% | 20.00% | 20.00% | 20.00% | 9.09% 27.27% | 18.18% | 27.27% | 9.09% | 10.00%
Dist p2p* || 100.00% | 0.00% | 0.00% | 0.00% 0.00% 0.00% 0.00% | 0.00% | 0.00% | 0.00%
Dist p2v 100.00% | 40.00% | 40.00% | 30.00% | 18.18% | 27.27% | 18.18% | 27.27% | 9.09% | 10.00%
Dist p2v* 0.00% 0.00% | 0.00% | 0.00% 0.00% 0.00% 0.00% | 0.00% | 0.00% | 0.00%
Dist p2av || 100.00% | 50.00% | 50.00% | 30.00% | 45.45% | 54.55% | 18.18% | 9.09% | 27.27% | 20.00%
Dist p2av* 0.00% 0.00% | 0.00% | 0.00% 0.00% 0.00% 0.00% | 0.00% | 0.00% | 0.00%

W10
baseline 55.56% | 22.22% | 22.22% | 55.56% | 100.00% | 100.00% | 80.00% | 80.00% | 20.00% | 0.00%
Sig prop 0.00% 0.00% | 0.00% | 0.00% 0.00% 0.00% 0.00% | 0.00% | 0.00% | 0.00%
dist p2p 11.11% | 11.11% | 11.11% | 22.22% | 10.00% | 30.00% | 20.00% | 20.00% | 10.00% | 11.11%
Dist p2p* 0.00% 0.00% | 0.00% | 0.00% 0.00% 0.00% 0.00% | 0.00% | 0.00% | 0.00%
Dist p2v 22.22% | 33.33% | 33.33% | 22.22% | 20.00% | 40.00% | 10.00% | 20.00% | 10.00% | 11.11%
Dist p2v* 0.00% 0.00% | 0.00% | 0.00% 0.00% 0.00% 0.00% | 0.00% | 0.00% | 0.00%
Dist p2av 44.44% | 55.56% | 44.44% | 44.44% | 50.00% | 50.00% | 10.00% | 10.00% | 40.00% | 22.22%
Dist p2av* 0.00% 0.00% | 0.00% | 0.00% 0.00% 0.00% 0.00% | 0.00% | 0.00% | 0.00%




A.4 Raw sentiment detection miss rate

Table A.8: Raw miss rate results for each window size
H sl ‘ s2 ‘ s3 ‘ s4 ‘ s10
W3
baseline 0.00% 0.00% 0.00% 0.00% 0.00%
Sig prop 50.00% | 0.00% | 0.00% | 50.00% | 0.00%
dist p2p 0.00% 0.00% 0.00% 0.00% 0.00%
Dist p2p* 0.00% 0.00% 0.00% 0.00% 0.00%
Dist p2v 0.00% 0.00% 0.00% 0.00% 0.00%
Dist p2v* 50.00% | 50.00% | 50.00% | 50.00% 0.00%
Dist p2av 0.00% 0.00% 0.00% 0.00% 0.00%
Dist p2av* 50.00% | 50.00% | 50.00% | 50.00% 0.00%
W4
baseline 0.00% 0.00% 0.00% 0.00% 0.00%
Sig prop || 50.00% | 0.00% | 0.00% | 50.00% | 0.00%
dist p2p 0.00% 0.00% 0.00% 0.00% 0.00%
Dist p2p* || 0.00% | 0.00% | 0.00% | 0.00% | 0.00%
Dist p2v 0.00% 0.00% 0.00% 0.00% 0.00%
Dist p2v* 0.00% 50.00% | 50.00% 0.00% 0.00%
Dist p2av 0.00% 0.00% 0.00% 0.00% 0.00%
Dist p2av* 50.00% | 50.00% | 50.00% | 50.00% 0.00%
W5
baseline 0.00% 0.00% 0.00% 0.00% 0.00%
Sig prop 50.00% 0.00% 0.00% | 100.00% | 50.00%
dist p2p 0.00% 0.00% 0.00% 0.00% 0.00%
Dist p2p* 0.00% 0.00% 0.00% 0.00% 0.00%
Dist p2v 0.00% 0.00% 0.00% 0.00% 0.00%
Dist p2v* 50.00% | 50.00% | 50.00% | 50.00% 0.00%
Dist p2av 0.00% 0.00% 0.00% 0.00% 0.00%
Dist p2av* 50.00% 0.00% 0.00% 50.00% 0.00%
W6
baseline 0.00% 0.00% 0.00% 0.00% 0.00%
Sig prop || 100.00% | 0.00% | 0.00% | 100.00% | 50.00%
dist p2p 0.00% 0.00% 0.00% 0.00% 0.00%
Dist p2p* 0.00% 0.00% 0.00% 0.00% 0.00%
Dist p2v 0.00% 0.00% 0.00% 0.00% 0.00%
Dist p2v* 100.00% | 0.00% 0.00% | 100.00% | 50.00%
Dist p2av 0.00% 0.00% 0.00% 0.00% 0.00%
Dist p2av* || 100.00% | 0.00% 0.00% | 100.00% | 0.00%
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Table A.9: Raw miss rate results for each window size (continued)

sl s2 ‘ s3 s4 s10
Wt
baseline 0.00% 0.00% 0.00% 0.00% 0.00%
Sig prop 100.00% | 0.00% 0.00% | 100.00% | 100.00%
dist p2p 0.00% 0.00% 0.00% 0.00% 0.00%
Dist p2p* 0.00% 0.00% 0.00% 0.00% | 100.00%
Dist p2v 0.00% 0.00% 0.00% 0.00% 0.00%
Dist p2v* || 100.00% | 0.00% 0.00% | 100.00% | 100.00%
Dist p2av 0.00% 0.00% 0.00% 0.00% 0.00%
Dist p2av* || 100.00% | 0.00% 0.00% | 100.00% | 100.00%
W8
baseline 0.00% 0.00% 0.00% 0.00% 0.00%
Sig prop 100.00% | 0.00% 0.00% | 100.00% | 100.00%
dist p2p 0.00% 0.00% 0.00% 0.00% 0.00%
Dist p2p* 0.00% 0.00% 0.00% 0.00% | 100.00%
Dist p2v 0.00% 0.00% 0.00% 0.00% 0.00%
Dist p2v* || 100.00% | 0.00% 0.00% | 100.00% | 100.00%
Dist p2av 0.00% 0.00% 0.00% 0.00% 0.00%
Dist p2av* || 100.00% | 0.00% 0.00% | 100.00% | 100.00%
W9
baseline 0.00% 0.00% 0.00% 0.00% 0.00%
Sig prop 100.00% | 100.00% | 100.00% | 100.00% | 100.00%
dist p2p 0.00% 0.00% 0.00% 0.00% 0.00%
Dist p2p* 0.00% 0.00% 0.00% | 100.00% | 100.00%
Dist p2v 0.00% 0.00% 0.00% 0.00% 0.00%
Dist p2v* || 100.00% | 100.00% | 100.00% | 100.00% | 100.00%
Dist p2av 0.00% 0.00% 0.00% 0.00% 0.00%
Dist p2av* || 100.00% | 100.00% | 100.00% | 100.00% | 100.00%
W10
baseline 0.00% 0.00% 0.00% 0.00% 0.00%
Sig prop 100.00% | 100.00% | 100.00% | 100.00% | 100.00%
dist p2p 0.00% 0.00% 0.00% 0.00% 0.00%
Dist p2p* || 100.00% | 0.00% 0.00% | 100.00% | 100.00%
Dist p2v 0.00% 0.00% 0.00% 0.00% | 100.00%
Dist p2v* || 100.00% | 100.00% | 100.00% | 100.00% | 100.00%
Dist p2av 0.00% 0.00% 0.00% 0.00% 0.00%
Dist p2av* || 100.00% | 100.00% | 100.00% | 100.00% | 100.00%
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