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Abstract 

 

Highly conserved throughout evolution, lipins are dual functioning proteins found from yeast to 

humans. Functioning in the cytoplasm as phosphatidate phosphatase enzymes (PAP), lipins 

produce diacylglycerol that serves as a precursor for neutral fats and membrane phospholipids. 

Alternatively, nuclear lipins are responsible for the regulation of metabolic genes. Interestingly, 

both the mammalian lipin 1 paralog and the single Drosophila Lipin ortholog are highly 

phosphorylated proteins. Target of rapamycin (TOR) has previously been identified as one of the 

kinases that controls the subcellular localization of both lipin 1 and Drosophila Lipin. However, 

other serine and threonine kinases are predicted to be important for the phosphorylation of Lipin. 

Here, I implement both the GAL4/UAS system as well as CRISPR/Cas9 mutagenesis to 

systematically mutate individual amino acid residues or clusters of phosphorylation sites of 

Drosophila Lipin to identify their functional importance. Phenotypic characterization of the 

phosphosite mutants included fat body histology and fat droplet staining, triglyceride and protein 

content, starvation resistance, and potential developmental delays. Lipin antibody staining was 

employed to reveal intracellular distribution of the mutant protein. Results support the prediction 

that these phosphorylation sites are important for both nuclear function and the role of the 

protein in fat storage. Data reported here will support the understanding of how the activities of 

these proteins could be specifically targeted.   
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 1 

I.  Introduction 

1. Functions of Lipin 

 

Lipins are dual-function proteins that act according to their subcellular localization (Fig. 

1) (Reue et al. 2009; Péterfy et al. 2010). In the cytoplasm, lipins function in the glycerol-3-

phosphate pathway where they work as enzymes aiding in the production of diacylglycerol 

(DAG), the direct precursor for triacylglycerol (TAG), the main energy store used by eukaryotes 

(Fig. 2) (Csaki et al. 2013). Additionally, cytoplasmic Lipin is responsible for to synthesis of 

phospholipids, phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine. Nuclear 

lipins function as transcriptional coactivators and are responsible for the regulation of metabolic 

genes (Reue, 2009; Peterson et al., 2011).  

Phosphatidic phosphatase activity (PAP) of Lipin has been well studied and is necessary 

for survival. Animals which lack PAP activity experience deficiencies in TAG synthesis (Harris 

et al., 2011). As mentioned, PAP activity of Lipin plays a fundamental role in the glycerol-3 

phosphate pathway resulting in the production of TAG. TAG is then stored in specialized cells 

referred to as fat droplets. Membrane bound phospholipids are also a product of the PAP activity 

of Lipin, as the DAG produced serves as a precursor for their production (Csaki et al., 2013). In 

addition, PAP activity of Lipin is also required for normal insulin pathway activity in the 

Drosophila fat body (Schmitt et al., 2015). 

 The nuclear functions of Lipin, however, remain somewhat elusive. In mammals, Target 

of rapamycin complex 1 (TORC1) is a kinase responsible for the phosphorylation of lipin 1, 

inhibiting its translocation to the nucleus under fed conditions. However, during times of 

starvation, TORC1 is downregulated, and lipin 1 is able to enter the nucleus to act as a 

transcriptional co-regulator for metabolic genes (Peterson et al., 2011). Lipin in the fat body of 
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Drosophila melanogaster has also been observed to translocate into the cell nucleus during times 

of starvation and also when TORC1 is down-regulated by RNAi (Schmitt et al., 2015). 

 

 

 

 

 

 

 

Fig 1. Lipin is a dual functioning protein. In the cytoplasm, specifically, the endoplasmic 

reticulum (ER), Lipin serves as a PAP enzyme and is responsible for the production DAG. In the 

nucleus, Lipin works as a transcriptional co-regulator. Figure from adapted from Chen et al., 

2014.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Lipins function as phosphatidic phosphatases in the Glycerol 3-phosphate pathway. 

Lipins function in the ER as a PAP enzymes and are responsible for the production of DAG. 

DAG is the precursor for TAG and phospholipid synthesis. Figure from adapted from Csaki et 

al., 2013.  
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1a. lipin gene family  

 

i. Drosophila Lipin 

 

The single Lipin ortholog in Drosophila (Péterfy et al. 2001) is essential for normal fat 

body (adipose tissue) development and TAG storage (Ugrankar et al., 2011).  Loss of Lipin in 

Drosophila results in reductions of whole-animal TAG content, lipid droplet size, and larval fat 

body mass. Overall reduction in the fat body and ultrastructural defects of individual fat body 

cells in the autophagosomes, mitochondria, and cell nuclei have been observed in Drosophila 

Lpin mutants (Ugrankar et al., 2011). Defects displayed by Lipin mutants are associated with 

impairment of starvation resistance and reduced fertility and viability (Ugrankar et al., 2011).  

ii. Mammalian Lipin 

 

Studies done in mice have revealed three lipin paralogs in mammals (Péterfy et al., 2001). 

Lipin 1, is encoded in the Lpin1 gene, where the other two paralogs, Lpin2 and Lpin3, are 

encoded by different genes. Lipin 1 is most highly studied of the mammalian Lpin genes and is 

the most similar to Drosophila Lpin (Csaki et al., 2013). Mice with a lipin 1 deficiency 

experience a variety of metabolic disorders including lipodystrophy, insulin resistance, 

peripheral neuropathy, and neonatal fatty liver (Péterfy et al., 2001).   

Independent physiological roles are expected for the three Lpin genes of mammals as they 

exhibit unique patterns of tissue expression (Reue, 2009). Lpin1 is expressed predominantly in 

the muscle and adipose tissue, and has lower expression in bone, brain, kidney, and liver (Csaki 

et al., 2013).  Lpin2 expression extends to many tissues including lung, brain, kidney and liver. 

Lpin3 has been detected at low levels in the liver and other visceral tissues (Reue, 2009).  
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iii. Additional homologs  

 

Lipin is found in species well beyond mammals and Drosophila. Homologs of mouse lipin 

genes have been found in Trypanosoma brucei, Plasmodium falsiparum, Shizosaccharomyces 

pombe, Caenorhabditis elegans (C. elegans), Arabidopsis thaliana, Saccaromyces cerevisa, and 

Homo sapiens (Péterfy et al., 2001). Yeast as well as most invertebrates contain a single lipin 

ortholog, whereas plants and some worm species (excluding C. elegans) contain two lipin 

paralogs (Harris et al., 2011).  

Loss of the single lipin ortholog in yeast results in increases in phosphatidic acid (PA) and 

decreases in TAG production. In C. elegans, loss of the single lipin homolog impacts the 

nuclear structure and morphology of the endoplasmic reticulum (ER). Loss of the lipin 

homologs in Arabidopsis increases PA levels but TAG content in the plant seeds remains 

unaltered (Harris et al., 2011).  

2. Structure of Lipin 

 

Both mammalian lipin1b and Drosophila Lipin proteins have conserved domains located 

in the NH2- and COOH- terminal regions, known as the NLIP and CLIP domains (Fig. 3). 

Contained within the CLIP domain is the DXDXT motif which is responsible for the PAP 

activity of Lipin and the LXXIL motif, which is a transcriptional co-regulator motif (Finck, 

2006). A comparison of the Lipin protein structure across species is depicted in Figure 3.  
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Fig 3. A cross-species comparison of Lipin protein structure reveals evolutionary 

conservation of protein domains. Homologs of Lipin show conservation of the NLIP and CLIP 

domains (yellow). Nuclear localization sequence (blue). The CLIP domain contains the catalytic 

motif, PAP (green) and transcriptional co-regulator motif (orange). Image adapted from Csaki et 

al., 2013. 
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3. Regulation of Lipin 

 

3a.  Regulation by phosphorylation  

 

Phosphorylation of proteins is a highly dynamic and reversible modification that 

influences the function of the protein. There are several key differences between the post-

translational modifications of lipins that exist between yeast and higher organisms (Harris et al., 

2011). Phosphorylation is known to alter the intrinsic PAP activity in yeast but not in mammals 

(Harris et al., 2011). Rather, phosphorylation of lipins in vertebrates is suggested to control the 

activity of the protein by altering its subcellular localization (Reue, 2009). The activity of 

Drosophila Lipin is also predicted to be controlled by subcellular localization. Phosphorylation 

by protein kinases and removal of the phosphate groups by phosphatases is predicted to mediate 

the cellular location of Lipin (Harris et al., 2011). 

One of the kinases suspected to be responsible for phosphorylation of lipins is Target of 

rapamycin (TOR). It has been directly shown that the mammalian paralog, lipin 1, is 

phosphorylated by TOR (Peterson et al., 2011). TOR kinase is also believed to be responsible for 

phosphorylation of Drosophila Lipin. During fed conditions, when TOR activity is high, Lipin is 

located in the cytosol in both mammals and Drosophila (Peterson et al., 2011; Schmitt et al., 

2015).  

How TOR kinase works to control the intracellular localization of Drosophila Lipin is 

only somewhat understood. During times of starvation or when TOR is knocked down by 

RNAi, Lipin translocates to the nucleus (Schmitt et al., 2015), suggesting that phosphorylation 

by TOR restricts nuclear import of Lipin. However, it is predicted that other kinases also 

contribute to the regulation of Lipin in Drosophila (Bodenmiller et al., 2008; Bridon et al., 

2012). Serine and threonine residues are targets for other protein kinases and/or phosphatases 
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and may contribute to the regulation of lipins. Such kinases may include mitogen-activated 

protein kinases (MAPK) (Steinhauer, 2017) or kinases of the insulin/PI3K pathway (DiAngelo 

et al., 2009).  

Phosphorylation of mammalian and Drosophila lipins has only ever been studied in cell 

culture lines. The cell lines used to study these phosphorylation events in Drosophila, Kc and S2 

cells, are embryonic cell lines, and are not representative of different cell types (Bridon et al., 

2012). Similarly, in mammals, these phosphorylation events were studied in NIH 3T3 cells, 

originating from mouse embryonic fibroblast, adipocyte-like cell derivatives of cultured 3T3-L1 

fibroblasts, and HEK293T cells, originating from embryonic kidneys (Peterson et al., 2011). 

Since these studies were done in cell culture, the observed phosphorylation events may not be 

representative of all the kinases which are responsible for the phosphorylation of lipins. This idea 

is supported by the evidence that lipins are differentially regulated depending on the tissue type 

in which they reside (Reue, 2009). This is true for mammalian lipin (Reue, 2009) and it is 

therefore likely that additional kinases are responsible for the phosphorylation of lipins in a 

tissue-specific manner in other organisms, such as Drosophila.  

3b. Comparison of putative phosphorylation sites 

Amino acid residues that are targets of phosphorylation have previously been identified 

by mass spectrometry in two studies which used cultured Drosophila cells. Lipin was identified 

as one of the genes from the PhosphoPep project which mapped over 10,000 high-quality 

phosphorylation sites from roughly 3,500 Drosophila genes in Kc167 cells (Bodenmiller et al., 

2008).  Drosophila S2 cells were used in a different study where Lipin was identified as a 

phosphoprotein that is differentially regulated in response to stimulation by insulin (Bridon et al., 

2012). The phosphosites identified from these two studies are illustrated in Figure 4 and are 
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compared to the distribution of phosphosites in mouse lipin1b. Most of the phosphorylation sites 

identified in both Drosophila Lipin and mouse lipin 1 are located between the conserved N-

terminal NLIP and C-terminal CLIP domains. Clusters of phosphorylation sites are present in 

similar regions of the two proteins, suggesting that the sites and clusters are likely functionally 

conserved. Based on the distribution of the phosphosites, five clusters can be resolved (Fig. 4). 

Despite the presence of similar sites and clusters of phosphorylation sites in the two proteins, 

only two of these sites are conserved on the sequence level between Drosophila Lipin and mouse 

lipin1b, Drosophila S103, which corresponds to mouse S106, and Drosophila S820, which 

corresponds to mouse S720.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4. Comparison of mapped serine and threonine phosphorylation sites of Drosophila Lipin and mouse lipin1b. Distribution 

of phosphosites is similar between the two proteins. S103 and S820 in Drosophila Lipin correspond to sites S106 and S720, 

respectively, in mouse lipin1b. Homologous sites are found within the NLIP and CLIP regions whose sequences are conserved 

between species. PPSP (http://ppsp.biocuckoo.org) and ELM (http://elm.eu.org/index.html) where used to map the consensus 

sequences for MAPK phosphorylation and docking sites. NLS, nuclear localization sequence (Image adapted from: Lehmann, 2018).

9
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4. Control of lipid metabolism in D. melanogaster  

 

The Drosophila fat body has functions that are equivalent to the functions of both white 

adipose tissue and the liver in vertebrates (DiAngelo et al., 2009). Fat in Drosophila is stored in 

the form of lipid droplets. In addition to the fat body, oenocytes have been shown to aid in 

metabolic regulation and help in storage functions similar to the mammalian liver (Liu et al. 

2013).  

Basic metabolic and signaling pathways involved in lipid metabolism are also 

evolutionarily and functionally conserved between Drosophila and mammals (Liu et al., 2013). 

Such pathways include the glycerol-3-phosphate (Fig. 2) (Csaki et al., 2013), insulin (Fig. 5) 

(DiAngelo et al., 2009; Schmitt et al., 2015), and TOR (Fig. 5) (Zhang et al., 2000; Schmitt et al., 

2015) pathways. In vivo studies of well-established biochemical pathways in the fly have 

revealed a striking similarity between fly and mammalian lipid metabolism while also revealing 

distinctive features of fly lipid metabolism (Kühnlein, 2012; Lehmann, 2018).  
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Fig 5. Lipin is regulated by TOR and insulin signaling. Nutrient sensing TOR kinase 

phosphorylates Lipin in the cytoplasm. Drosophila insulin-like peptides (Dilps) bind to the 

insulin receptor initiating the insulin/PI3K signaling cascade.   
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5. Functions of the Akt and MAPK pathways in lipid metabolism 

 

 Conserved amongst all metazoans, the insulin pathway is imperative for regulation of 

growth and development in Drosophila melanogaster and mammals alike. Insulin signaling 

mediates biological activities on a metabolic level aiding in lipid biosynthesis and glucose 

uptake; as well as on the level of energy expenditure and production where it plays a role in cell 

growth, proliferation, and survival. Examples of systematic disorders resulting from dysregulated 

insulin signaling include obesity, cancer, high cholesterol, and diabetes (Vinayagam et al., 2016).  

 Binding of insulin to a membrane bound insulin receptor results in activation of the 

receptor, triggering a cascade of phosphorylation events within the cell (Saltiel et al., 2001). The 

insulin receptor is then responsible for enlisting two major signaling pathways, the PI3K/Akt 

pathway and the MAPK pathway. The phosphatidylinositol 3-kinase (PI3K) pathway is 

responsible for mediating the metabolic effects of insulin, whereas the MAPK pathway 

facilitates the mitogenic effects of insulin acting jointly with the PI3K pathway (Vinayagam et 

al., 2016).  

 In Drosophila, insulin-like peptides, known as Dilps, enter the circulatory system 

following feeding and stimulate glucose uptake in the cell while also prompting the storage of 

excess energy as TAG (Saucedo et al., 2002; DiAngelo et al., 2009). Dilps bind to the insulin 

receptor (InR) activating the insulin pathway. Activation of this pathway stimulates fatty acid 

uptake, the import of glucose, and the synthesis of lipids, proteins and glycogen (Saucedo et al., 

2002). Key regulators of TAG storage and the development of fat tissue in both Drosophila and 

mammals include lipin family proteins. Lipin deficient animals have higher levels of insulin 

(Reue et al., 2000) and experience insulin resistance in mammals as well as in Drosophila 

(DiAngelo et al., 2009). In fact, PI3K signaling in the fat body cells of Drosophila is reduced 
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when Lipin is deficient (Schmitt et al., 2015). Drosophila Lipin contains many serine/threonine 

phosphorylation sites, some of which are predicted to be regulated by kinases of the insulin 

pathway. Thus, it is possible that an insulin-sensitive kinase or phosphatases could aid in the 

regulation of Lipin (Fig. 4).  

 An insulin-kinase which is predicted to target Lipin is Akt (Bridon et al., 2012). Akt is 

the downstream intermediary or the insulin/PI3K pathway. In response to insulin, 

phosphorylation of FOXO by Akt causes the relocation of FOXO out of the nucleus, where it is 

then degraded (DiAngelo et al., 2009). 

6. Functions of the TOR pathway in lipid metabolism 

 

 Target of Rapamycin (TOR) is an evolutionarily conserved serine/threonine kinase 

responsible for cell growth and proliferation (Peterson et al., 2011). TOR has the ability to sense 

nutrients and is responsible for maintaining a balance between protein synthesis and degradation 

(Schmelzle et al., 2000). Processes such as autophagy are downregulated when TOR is active 

and inactivation of TOR in both mammalian cell culture and yeast can lead to an increase in 

autophagy even in nutrient-rich medium (Schmelzle et al., 2000).  

Drosophila TOR mutants experience reductions in cell size, cell proliferation, and have 

arrests or delays in development (Zhang et al., 2000). Drosophila TOR is required for proper 

animal development by coupling growth factor signaling to nutrient availability (Zhang et al., 

2000).  
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7. Goals of Master’s research 

 

Goals: To determine the nuclear function(s) of Lipin and to identify signaling pathways 

that act on Lipin through functionally significant phosphorylation sites.  

 

 This study had two main goals. The first goal was to help in determining the nuclear 

function(s) of Drosophila Lipin by creating a form of Lipin that was constitutively nuclear. 

Having a form of Lipin which persisted in the nucleus would allow for subsequent experiments, 

such as RNA sequencing, which would help determine the genes in which Lipin acts as a 

transcription factor.  

The second goal of this study was to examine the functional importance of specific 

serine/threonine phosphorylation sites by rendering these sites either non-phosphorylatable or by 

replacing them with phosphomimetic amino acid residues. The functional significance of these 

individual sites or groups of phosphorylation sites would help in better understanding the 

regulation of Lipin. Studying putative phosphorylation sites could potentially lead to the 

identification of additional kinases and/or phosphatases that aid in the regulation of the protein.  
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II. Materials and Methods  

 

1. Fly stocks 

 

Table 1. List of fly stocks.  Fly stocks used in experiments. List includes a brief description of 

the fly stock as well as the source. 

 

Simplified genotype Genotype Description Source 

w1118 w1118 white mutant control 

stock in UAS-Lipin 

20 S/T>A 

experiments 

Bloomington 

Drosophila Stock 

Center (BDSC) 

Injection stocks    

RFP.attP y[1] M{vas-

int.Dm}ZH-2A w[*]; 

M{3xP3-

RFP.attP}ZH-86Fb 

attP injection stock 

for construction of 

UAS lines 

BDSC: 24749 

vas-Cas9 y[1]M{vas-Cas9}ZH-

2A w[1118]/FM7c 

CRISPR injection 

stock 

BDSC: 51323 

nos-Cas9  y[1] M{w[+mC]=nos-

Cas9.P}ZH-2A w[*] 

 

CRISPR injection 

stock 

BDSC: 54591 

nos-Cas9(III-attp2) y1 w1118; attP2{nos-

Cas9}/TM6C, Sb Tb 

CRISPR injection 

stock 

Kondo Lab- Japan 

Balancer Stocks 

Sp-1/CyO w[1118]; wg[Sp-

1]/CyO 

 

2nd chromosome 

balancer stock 

BDSC: 6326 

w; Xa/CyO; Tm3, Sb w[*];  T(2,3)ap[Xa]; 

ap[Xa]/CyO; TM3, 

Sb[1] 

2nd & 3rd 

chromosome 

balancer stock 

BDSC: 2475 

w; Xa/SM5; TM6B, 

Tb 

 

w[*];  T(2,3)ap[Xa]; 

ap[Xa]/In(2L)Cy, 

In(2R)Cy, 

Doux[Cy];TM6B, 

Tb[1]; TM3, Sb[1] 

2nd & 3rd 

chromosome 

balancer stock 

BDSC: 3234 

UAS Responder Lines 

AktmyrlacZ yw; UAS-Dakt[myr] 

UAS-lacZ; on 3rd   

UAS-Akt responder 

on 3rd chromosome 

Tien Hsu 

UAS Lipin 20 UAS-Lipin 20 S/T>A UAS line where 20 

of the putative 

serine/ threonine 

phosphorylation sites 

of Lipin have been 

rendered to alanine 

Stephanie Hood 
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Table 1 (Cont.) 

Simplified genotype Genotype Description Source 

GAL4 Driver Lines 

r[4]-GAL4 yw; r[4]-GAL4 (III); 

on 3rd 

 

Strong fat body 

driver, active 

throughout 

development in fat 

body and saliv 

glands 

BDSC: 33832 

FB-GAL4 w[1118]; 

P{w[+mC]=Cg-

GAL4.A}2 On1;2 

Moderate fat body 

driver. Also 

expressed in 

hemocytes and 

lymph gland 

BDSC: 7011 

da-GAL4 w[1118]; P{da-

GAL4.w[-]}3 On1;3 

Ubiquitous GAL4 

driver. Moderate 

strength driver 

BDSC: 8641 

(No longer carried) 

Lsp-GAL4 y[1] w[1118]; 

P{w[+mC]=Lsp2-

GAL4.H}3 

 

Fat body driver 

activated in 3rd instar 

larvae 

BDSC: 6357 

Lipin Deficiency Stocks 

Df(2R)Exel7095/ 

CyO 

Df(2R)Exel7095/CyO  

 

Deficiency stock 

lacking chromosomal 

regions 44B3-44C2 

which removes the 

entire lipin gene at 

44B4-44B5 

BDSC: 7860 

Df(2R)Exel7095/ 

CyO-GFP 

Df(2R)Exel7095/CyO-

GFP  

  Bloom Stock 7890 

CRISPR Mutant Stocks 

Lipin S147A Lipin Sl47A/Lipin 

S147A 

Lipin S147A mutant 

vas-Cas9 injection 

stock (BDSC: 

51323) 

Austin Morgan 

 

Stephanie Hood 

 

Lipin S147E Lipin Sl47E/Lipin 

S147E 

Lipin S147E mutant 

vas-Cas9 injection 

stock (BDSC: 

51323) 

Austin Morgan 

 

Stephanie Hood 
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Table 1 (Cont.) 

Simplified genotype Genotype Description Source 

CRISPR Mutant Stocks 

Lipin 5/CyO-GFP Lipin 5 S/T>A / CyO-

GFP 

Lipin Group 1 

mutant 

nos-Cas9 (III-attp2) 

injection stock 

Heidi O’Dell 

 

Stephanie Hood 

 

 

Lipin 9/CyO-GFP 

 

Lipin 9 S/T>A / CyO-

GFP 

 

Lipin Group 2 

mutant 

nos-Cas9 (III-attp2) 

injection stock 

 

Hannah Davis 

Josephine Gottsponer 

 

Stephanie Hood 

 

Lipin S820A Lipin S820A / CyO-

GFP 

Lipin S820A mutant 

nos-Cas9 injection 

stock (BDSC: 

54591)  

Stephanie Hood 

 

 

2. Plasmids 

 

Table 2. List of plasmids.  Plasmids used in experiments. List includes a brief description of the 

plasmid as well as the source. 

 

Name Description  Source 

GH19076 Lipin cDNA in POT2 vector Berkley Drosophila Genome 

Project -(BDGP) 

pUASTattB Drosophila transformation 

vector containing attB site 

Basler Laboratory, University 

of Zurich 

pBluescriptSKII Cloning vector (used for 

ampicillin resistance) 

Stratagene 

pCFD3-dU6:3gRNA Expresses a single gRNA 

under the control of the U6:3 

Drosophila promoter 

Addgene: 49410 

pCFD4-

U6:1_U6:3tandemgRNAs 

Expresses two gRNAs under 

the control of the U6:1 and 

U6:3 Drosophila promoters  

Addgene: 49411 
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3.  Antibodies 

 

Table 3. List of primary and secondary antibodies. Primary antibody list includes host, 

dilution used for experiments and source. Secondary antibody list includes host, conjugate, 

dilution used for experiments and source 

 

Primary Antibodies 

Name Host Dilution Source 

anti-Lipin Rabbit Immunohistochemistry 

1:200 

Lehmann 

Laboratory, 

Fayetteville AR 

Secondary Antibodies 

Name Host Conjugate Dilution Source 

anti-rabbit Donkey Cy-3 1:1000 Jackson 

ImmunoResearch 

 

4. Primers 

 

Table 4. List of primers.  Primers used in experiments. List includes sequence of the primers as 

well as how they were used. 

 

Name Sequence Description 

Generation of Lipin20 S/T>A cDNA plasmid 

Position_103 (F) 5’-[Phos]AACCTGGCCACCGCCCCCA 

TACCCAACAGC-3’ 

Primer used to 

generate S103A 

Position 147 151 

(R) 

5’-[Phos]GGGCTCCTCCTTGGCGAA 

GTCAATGGCGTTGCGCCGCGG-3’ 

Primer used to 

generate 

S147A/S151A 

Positions 178 181 

(F) 

5’-[Phos]CAGCGCAGGCACGCCGAC 

AACGCCCTGGAGCGTCGC-3’ 

Primer used to 

generate 

T178A/T181A 

Positon_221 (R) 5’-[Phos]GCTTTGGTTGTCCAGGGC 

GTCCGAGTCCGC-3’ 

Primer used to 

generate S221A 

Position_356 (F) 5’- [Phos]CTCGCACTGGGGACGATGCCC 

CGCTCAGCG-3’ 

Primer used to 

generate S356A 

Pos_364_366_ 

367 (F) 

5’[Phos]AGATTCCCCACGCCCCCG 

CCGCCAATCCACGTCTGGATTTG-3’ 

Primer used to 

generate 

T364A/T366A/ 

S367A 

Pos403404408 

410 (R) 

5’[Phos]GGTTTCCAGTTCGGCGTCGGCTT 

GGATGGGGGCGGCAGGTCGTCCGCC-3’ 

Primer used to 

generate 

S403A/T404A/ 

S408A/S410A  

Position_430 (F) 5’-[Phos]GAAAGCACCGCAGCCTGGAA 

GTGGGGC-3’ 

 

Primer used to 

generate S430A 
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Table 4 (Cont.) 

Name Sequence Description 

Generation of Lipin20 S/T>A cDNA plasmid 

Position 527 531 

(R) 

5’-[Phos]CAGCGAGCTGGGGGCGT 

GAGGCAGGGCGGTGCCATTGCC-3’ 

Primer used to 

generate 

S527A/S531A 

Position_544 (F) 5’-[Phos]CAGAAGAGTATTGACGCCG 

ACTTTGACGAGACCAAGC-3’ 

Primer used to 

generate S544A 

Positions 748 751 

(F) 

5’-[Phos]GCTAACCATGGCCGCCAA 

CAAGGCCGACGAGCCCAAAGAGCG-3’ 

Primer used to 

generate 

S748A/S751A 

PCR_7_F_Repair 5’-[Phos]TGCTACTTGTTCCGCTGGAAGC 

ACAAC-3’ 

Primer used to 

switch back AA 

changed 

accidently 

during site-

directed 

mutagenesis 

R801R 

(different 

codon) 

PCR_7_R_Repair 5’-[Phos]GTCCGTCCGGCAGCATC 

ACGTTGCCCTG-3’ 

Primer used to 

switch back AA 

changed 

accidently 

during site-

directed 

mutagenesis 

V880A back to 

V880 
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Table 4 (Cont.) 

Name Sequence Description 

Generation of Lipin20 S/T>A cDNA plasmid 

K156_RepairNew 

(F) 

5’-[Phos]CTTCGCCAAGGAGGAGC 

CCAAGGAAGCCGTTGTTGAGGGC-3’ 

Primer used to 

switch back AA 

changed 

accidently 

during site-

directed 

mutagenesis 

K156E back to 

K156 

NonMutant 

Reverse  

5’- [Phos]GGCGGTCGAACTCCTCGT 

CCGAGGGTGGTGCTCCCTGCTCCG-3’ 

Non-mutant 

primer used for 

amplification of 

plasmid without 

introducing 

mutations 

gRNA Sequencing Primers for CRIPSR 

pCDF3_gRNA_F 5’-ACCTACTCAGCCAAGAGGC-3’ Sequencing 

primer for 

pCFD3 plasmid 

pCFD4_gRNA_F 5’-GACACAGCGCGTACGTCCTTCG-3’ Sequencing 

primer used for 

pCFD4 plasmid 

Generation of gRNA plasmid for Lipin S147 Mutants 

ProtoS147-1 5’-GTCGATGGAGTTGCGCCGCGGCAA-3’ Protospacers 

annealed and 

used for gRNA 

insert into 

pCFD3 plasmid 

ProtoS147-2 5’-AAACTTGCCGCGGCGCAACTCCAT-3’ 

Screening Primers used to recover Lipin S147 Mutants 

S147PrimerPair2-

F 

5’-TCCTTCATTCAGGTGGACATTGA-3’ Sequencing 

primers to 

screen for S147 

mutants 
S147PrimerPair2-

R 

5’-CTTTGGTTGTCCAGCGAGTC-3’ 
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Table 4 (Cont.) 

Name Sequence Description 

Generation of gRNA plasmid for Lipin Group1 Mutant 

Lipin5_gRNA1 5’-TATATAGGAAAGATATCCGGGTGAACTTC 

GAAAATGGTTTCGCAAATGATGTTTTAGAGCT

AGAAATAGCAAG-3’ 

Forward primer 

containing 

protospacer for 

gRNA plasmid 

Lipin5_gRNA2 5’-ATTTTAACTTGCTATTTCTAGCTCTAAA 

ACGCGCAAGAACTCTTCAAGCACGACGTT 

AAATTGAAAATAGGTC-3’ 

 

Reverse primer 

containing 

protospacer for 

gRNA plasmid 

Generation of Lipin5 S/T>A Donor Plasmid 

5’HR_Forward_ 

Lipin5 

5’-CGAATTGGAGAAAGTACCGCCAAATA 

CGCC-3’ 

 

Used to amplify 

the 5’HR region 

of the donor 

plasmid 

 
5’HR_Reverse_ 

Lipin 5 

5’-GTTTCGCAAATGATAGAGTGAGACTGGTG 

GATC-3’ 

 

Generation of Lipin5 S/T>A Donor Plasmid 

Group 1_Insert_ 

Forward_Lipin 5 

5’- 

CTCACTCTATCATTTGCGAAACCATTTTAGA 

AACG-3’ 

 

Used to amplify 

the gBlock 

containing 

desired 

mutations  Group 1_Insert_ 

Reverse_Lipin 5 

5’- GCTGAGCATTCTTCTTCATTTGCGACTT 

CTTG -3’ 

 

3’HR_Forward_ 

Lipin5 

5’- GCAAATGAAGAAGAATGCTCAGCGCAA 

GAAC-3’ 

 

Used to amplify 

the 3’HR region 

of the donor 

plasmid 3’HR_Reverse_ 

Lipin 5 

5’- AAGCTGGGTTGGGCCATTTGAACAATACT 

CACG -3’ 

 

Vector_Forward_

Lipin5 

5’- 

AAATGGCCCAACCCAGCTTTTGTTCCCTTTA 

GTGAG -3’ 

Used to amplify 

the pBSK 

backbone of the 

donor plasmid Vector_Reverse_

Lipin5 

5’- GCGGTACTTTCTCCAATTCGCCCTATAGTG 

AGTCGTATTACGC -3’ 
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Table 4 (Cont.) 

Name Sequence Description 

Screening Primers used to recover Lipin Group1 Mutant 

Oligo710_PP4_F 5’-AGATGAAGCTGGGCGATTCT-3’ 

 

Sequencing 

primer to screen 

for Group1 

mutant 

Oligo710_PP4_R 5’-TTGTGACCGTGGTGAGGTTA-3’ 

 

Generation of Lipin9 S/T>A cDNA 

Lipin_T438A_ 

Fwd 

5’-[Phos]GCCTGGAAGTGGGGCGAGTTG 

CCCGCCCCGGAGCAGGCCAAG-3’ 

 

In-vitro 

mutagenesis 

primer for 

T438A 

substitution 

LipinT385A_Rev 5’-[Phos]GCACCACCGCCACCCAC 

GGGGGCGGTGATCTCCGTGTCGCTG-3’ 

 

In-vitro 

mutagenesis 

primer for 

T385A 

substitution 

Lipin11_cDNA_F

OR 

5’-AGACGCCATCACTGGGAG-3’ 

 

Sequencing 

Primer to detect 

in-vitro 

substitutions  

Generation of Lipin9 S/T>A Donor Plasmid  

5'HR_FOR_ 

Lipin11 

5’- CGAATTGGGTGTGCTCAGGAGTC-3’ 

 

Used to amplify 

the 5’HR region 

of the donor 

plasmid 

 

5'HR_REV_ 

Lipin11 

 

5’- TCGCTGGTTGTGACGGTGGTGAGG-3’ 

 

Group2_FOR_ 

Lipin11 

 

5- CTCACCACCGTCACAACCAGCGAAGCC-3’ 

 

Used to amplify 

the cDNA 

region of the 

donor plasmid 

 
Group2_REV_ 

Lipin11 

 

5- GGGAAGTAGAGGGCGGCCATCTCGG-3’ 

 

3'HR_FOR_ 

Lipin11 

 

5’- CCGAGATGGCCGCCCT 

CTACTTCCCTAGTC-3’ 

 

Used to amplify 

the 3’HR region 

of the donor 

plasmid 3'HR_REV_ 

Lipin11 

 

5’- CAAAAGCTGGAGGTCGGGCGAGG-3’ 
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Table 4 (Cont.) 

Name Sequence Description 

Generation of Lipin9 S/T>A Donor Plasmid 

pBSK_FOR_ 

Lipin11 

 

5’- CCTCGCCCGACCTCCAGCTTTTG-3’ 

 

Used to amplify 

the pBSK 

backbone of the 

donor plasmid pBSK_REV_ 

Lipin11 

 

5’- TCCTGAGCACACCCAATTCGCCC-3’  

 

Generation of gRNA plasmid for Lipin Group2 Mutant 

Lipin11 

fwdprimer 

5’-TATATAGGAAAGATATCCGGGTGAA 

CTTCGACCAGACGTTAACCTCACCA 

GTTTTAGAGCTAGAAATAGCAAG-3’ 

Forward primer 

containing 

protospacer for 

gRNA plasmid 

Lipin11 revprimer 5’_ATTTTAACTTGCTATTTCTAGCTCTA 

AAACCCATCTCGGGGTCCATGCTGCGA 

CGTTAAATTGAAAATAGGTC-3’ 

 

Reverse primer 

containing 

protospacer for 

gRNA plasmid 

Screening Primers used to recover Lipin Group2 Mutant 

Lipin11_SCR_F 5’-GATGCCCCCATATCCAGTGCC-3’ 

 

Sequencing 

primer to screen 

for Group2 

mutant 
Lipin11_SCR_R 5’-GGCCTCATTCTTGGCCTGCTC-3’ 

 

Group2_Seq_For 5’- GCAAGAAGTCGCAAATGAAGAAG-3’ 

 

New 

sequencing 

primer to screen 

for Group2 

mutant 

 

Group2_Seq_Rev 5’- GGCATCCAGATCAGACAGGTAG-3’ 

 

Lipin11_3HR_ 

REV 

5’-GTCGCTCTTGCTCAGCGTGG-3’ 

 

Primer outside 

cDNA donor 

plasmid  

Generation of gRNA plasmid for Lipin S820A Mutant 

S820_FWD_ 

Primer 

5’-TATATAGGAAAGATATCCGGGTGAACTT 

CGCTGGAAGCACAACGACAAGGGTTTTAGAG

CTAGAAATAGCAAG-3’ 

Forward primer 

containing 

protospacer for 

gRNA plasmid 

S820_REV_ 

Primer 

5’-ATTTTAACTTGCTATTTCTAGCTCTAAA 

ACAGATCACCACCTTGTCGTTGCGACGTTAA 

ATTGAAAATAGGTC-3’ 

Reverse primer 

containing 

protospacer for 

gRNA plasmid 
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Table 4 (Cont.) 

Name Sequence Description 

Screening Primers used to recover Lipin S820A Mutant 

S820PrimerPair1 

F 

5’- GCGTTACAAGAAGTCGCTGC-3’ Sequencing 

primers to 

screen for 

S820A mutant 
S820PrimerPair1 

R 

5’- GAAGGCCGATATCAGGGACG-3’ 

 

 

5.. Guide RNAs 

 

Table 5. List of guide RNAs.  Guide RNAs used in experiments. List includes targeted regions 

as well as the gRNA sequence and PAM.  

 

Targeted Residue(s)/Region gRNA Sequence + PAM 

S147 5’-ATGGAGTTGCGCCGCGGCAA TGG-3’ 

Group1_gRNA_1 5’-AAAATGGTTTCGCAAATGAT AGG-3’ 

Group1_gRNA_2 5’-TGCTTGAAGAGTTCTTGCGC TGG-3’ 

Group2_gRNA_1 5’-ACCAGACGTTAACCTCACCA CGG-3’ 

Group2_gRNA_2 5’-CAGCATGGACCCCGAGATGG CGG-3’ 

S820_gRNA_1 5’-CTGGAAGCACAACGACAAGG TGG-3’ 

S820_gRNA_2 5’-CAACGACAAGGTGGTGATCT CGG-3’ 

 

6.  Single-stranded oligonucleotide donors 

 

Table 6. List of single-stranded oligonucleotide donors.  Single-stranded oligonucleotides 

used in experiments. List includes targeted residues as well as sequences.  

 

Targeted 

Residue 

ssOligo Sequence  

S147A 5’-ATCATTTGCGAAACCATTTTAGAAACGCTAGCGAGGAGCTGCTTC 

TGCCACTGCCATTGCCGCGGCGCAACGCCATTGACTTCTCCAAGGAGG

AGCCCAAGGAAGCCGTTGTTGAGGGCAGCAAG-3’ 

S147E 5’-ATCATTTGCGAAACCATTTTAGAAACGCTAGCGAGGAGCTGCTTC 

TGCCACTGCCATTGCCGCGGCGCAACGAGATTGACTTCTCCAAGGAGG

AGCCCAAGGAAGCCGTTGTTGAGGGCAGCAAG-3’ 

S820A 5’-GCCACACCGAGTTGCGCCCAATCCTTGCCCACCATGGGTAAAATG 

TGGCCCAGCACGTCGGCCTTGGTGATGGTGCCGTCAATGTCCGAGATC

ACCACCTTGTCGTTGTGCTTCCAGCGGAACAAGTAGCA -3’ 
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7. Double-stranded DNA templates  

 

Table 7. Sequences of double-stranded templates.  Double-stranded DNA templates used for 

construction of donor plasmids which contains base exchanges for S/T>A substitutions.  

 

Mutant 

Template 

gBlock DNA Sequence for CRIPSR/Cas9 Donor Plasmid 

Lipin 

Group 1 

5’-ATTTGCGAAACCATTTTAGAAACGCTAGCGAGGAGCTGCTTC 

TGCCACTGCCATTGCCGCGGCGCAACGCCATTGACTTCGCCAAGGAGG

AGCCCAAGGAAGCCGTTGTTGAGGGCAGCAAGTTCGAGAATCAAGTC

TCGGACTACACGCAGCGCAGGTACATAATGCCTTTTCATGCTCCTCAA

ACGAAGGACAAAGTTAGCTAACATCATCCTTGACCCAAACAGGCACG

CCGACAACGCCCTGGAGCGTCGCAACCTAAGCGAAAAGCTCAAGGAG

TTCACCACGCAGAAGATCCGGCAGGAGTGGGCCGAGCACGAAGAGCT

GTTTCAGGGCGAGAAGAAGCCGGCGGACTCGGACGCCCTGGACAACC

AAAGCAAAGCTTCAAACGAAGCTGAGACGGAGAAGGCAATTCCGGCG

GTCATTGAAGACACGGAAAAAGAAAAGGATCAGATCAAACCAGACGT

TAACCTCACCACGGTCACAACCAGCGAAGCCACCAAGGAGGTGTCCA

AGAGCAAAACCAAGAAGCGGCGCAAGAAGTCGCAAATGAAGAA-3’ 

 

 Lipin cDNA Sequence for CRISPR/Cas9 Donor Plasmid 

Lipin 

Group 2 

5’-CAACCAGCGAAGCCACCAAGGAGGTGTCCAAGAGCAAAACCAA 

GAAGCGGCGCAAGAAGTCGCAAATGAAGAAGAATGCCCAGCGCAAG

AACTCTTCAAGCAGCTCATTGGGCAGCGCCGGCGGCGGTGATTTGCCT

TCGGCGGAGACGCCATCACTGGGAGTGAGCAACATCGATGAAGGAGA

TGCCCCCATATCCAGTGCCACAAACAACAACAACACCTCGTCGTCGAA

CGATGAACAGCTATCCGCTCCCCTGGTGACAGCTCGCACTGGGGACGA

TGCCCCGCTCAGCGAGATTCCCCACGCCCCCGCCGCCAATCCACGTCT

GGATTTGGACATTCACTTCTTCAGCGACACGGAGATCACCGCCCCCGT

GGGTGGCGGTGGTGCTGGGTCAGGTCGTGCCGCCGGCGGACGACCTG

CCGCCCCGATCCAAGCCGACGCCGAACTGGAAACCACCATGCGAGAC

AACCGTCACGTGGTGACTGAAGAAAGCACCGCAGCCTGGAAGTGGGG

CGAGTTGCCCGCCCCGGAGCAGGCCAAGAATGAGGCCATGAGCGCCG

CCCAGGTGCAGCAAAGCGAGCACCAATCGATGCTCAGCAACATGTTC

AGCTTCATGAAGAGGGCAAATCGGCTACGCAAAGAGAAGGGCGTCGG

CGAAGTGGGTGACATCTACCTGTCTGATCTGGATGCCGGCAGCATGGA

CCCCGAGATGGCGGCCC-3’ 
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8. Fly Husbandry 

 

Flies were kept on standard fly food for all experiments. Fly food contained 8.2% malt 

extract, 1.1% agar, 1.3% corn syrup, 6.1% cornmeal and 1.8% yeast in tap water. To prevent 

bacterial or fungal growth, 0.75% propionic acid and 1% Tegosept were added. Unless otherwise 

stated, flies were kept at 25oC for all experiments.  

9. Media 

Lysogeny broth (LB) was prepared using LB Broth MILLER (EMD:1.10285.0500). LB 

broth was used to grow overnight bacterial cultures. To prepare 1 L, 25 g of the LB Broth 

MILLER was re-suspend in 800 mL of ddH2O on a hot plate set to 100oC, stirring. Once the 

powder was dissolved, the broth was measures in a 1 L graduated cylinder and the volume was 

brought up to 1 L.  Media was then poured into respective glassware before sterilization by 

autoclave. Autoclave was used on the 30-minute liquid cycle setting. For LB plates, LB agar 

MILLER (EMD:1.10283.0500) was prepared using the same method as the LB broth, using 37 

g/L. LB agar was cooled to 55oC before antibiotics were added. Antibiotic working 

concentrations were as follows: Ampicillin (100 μg/mL):  and Chloramphenicol (34 μg/mL).  

10. Transformation of competent cells 

Competent cells used for transformations, unless otherwise stated, were NEB 5-alpha 

Competent E. coli (High Efficiency) purchased from New England BioLabsinc. (NEB-C2987H). 

Cells were stored at -80oC until needed.  

Competent cells were thawed on ice for 10 minutes. 2-5ul of chilled ligation/assembly 

product was added to the cells. Components were mixed gently by pipetting up and down or 

swirling with the pipette tip. Do not vortex the mixture. Mixture was placed on ice for 30 

minutes. Tube was then heat-shocked at 42oC for 30 seconds, being careful not to mix. Tube was 
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transferred back to ice for 2-5 minutes. 950 μL of room temperature SOC media (Super Optimal 

Broth with Catabolite repression: (NEB-B9020S)) was then added to the cells. Reaction was 

incubated in a 37oC incubator for 60 minutes. Shaker on incubator was set for 250 rpm. While 

the cell mixture was allowed to shake, the selection plates were warmed to 37oC.  Spread 100-

200 μL of the cells onto the selection plate. If transformation rate was known to be low, 

remaining cells were spun-down at 3800 RCF for 5 minutes. Supernatant was decanted to 100-

200 μL and cells were resuspended in the remaining volume and plated on an additional selection 

plate. Plates were incubated at 37oC overnight; agar side up.  

11. Ligation 

Plasmid ligations were done using T4 DNA ligase (NEB-M0202S) following the 

recommendations of the manufacturer. Reactions were kept at room-temperature for a minimum 

of 2 hours before heat inactivation of the ligase at 65oC for 10 minutes. Transformations of 

ligations were done using 4 μL of the ligation mixture in 50 μL of competent cells.  

12. Site-directed mutagenesis and generation of Lipin20S/T>A construct 

 

 Putative phosphorylation sites were selected for site-directed mutagenesis (Fig. 4). Base 

pair exchanges were introduced to replace the codons for serine and threonine of Lipin to those 

coding for alanine using a USB Change-IT Multiple Mutation Site Directed Mutagenesis Kit 

(Affymetrix-78480) following the protocol described by the manufacturer. The Lipin cDNA 

GH19076 plasmid (cloned into vector pOT2) served as the DNA template. Plasmid GH19076 

was grown on an LB plate with chloramphenicol as the selective marker. Individual colonies 

were selected and grown up overnight in liquid culture, LB broth + chloramphenicol at 37oC in 

3-5 mL. Plasmid DNA was extracted from overnight cultures using a QiaPrep Spin Miniprep Kit 

(Qiagen-27106) and concentration was checked on an agarose gel.  
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To create the Lipin20S/T>A cDNA, phosphorylated mutagenic primers were designed to 

contain 1-4 codon substitutions where the selected serine or threonine codon was exchanged with 

the preferential codon for alanine used in Drosophila, GCC (Table 4 Primers: Generation of 

Lipin20 S/T>A cDNA plasmid/ Fig. 6). Nine subsequent rounds of PCR were done to introduce 

the 20-desired substitutions. Between each round of mutagenesis, clones were screened by 

sequencing (Eurofins Genomics) for the presence of the intended mutations for that round. If 

clones only contained some of the intended residue substitutions, the same primer was used in a 

repeat reaction in an attempt to incorporate all desired exchanges. Unintended codon mutations 

were switched back to the endogenous codon using the same technique.    

 

 

 

 

 

 

 

 

 

 

Once all the mutations were introduced to the Lipin cDNA, the cDNA portion of the 

pOT2 vector was removed and incorporated into the pUASattB plasmid by restriction enzyme 

digest. XhoI and Eco53KI were used to cut the pOT2 vector overnight at 37oC. Enzymes were 

Fig 6. List of amino acid residues changed from S/T>A in UAS Lipin20 transgenic line.  
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heat inactivated at 65oC for 20 minutes and the reaction was kept at -20oC until an agarose gel 

was run for gel extraction of the cDNA insert (3.8 kb).  

 The pUASattB plasmid was linearized using XbaI in an overnight digest at 37oC. XbaI 

was heat inactivated at 65oC for 20 minutes before adding dNTPs, followed by Klenow enzyme 

to fill the 5’overhangs created by the digestion. The reaction mixture was incubated at 25oC for 

15 minutes and 5.5 μL of 100 mM EDTA was added to the reaction. A 30-minute heat 

inactivation was done at 75oC and the reaction was cleaned up using a Qiaquick PCR 

Purification Kit (Qiagen-28104). Concentration and size of the linear pUASattB plasmid were 

verified on an agarose gel.  

 A subsequent overnight digestion was then done at 37oC with Xho1. The linear 

pUASattB plasmid was treated with 1 μL of Shrimp Alkaline Phosphatase (NEB-M0371S) to 

prevent re-ligation, 37oC for 30 minutes. Enzyme and phosphatase were heat inactivated at 65oC 

for 5 minutes. An agarose gel was run to confirm the size and concentration of the dual digested 

pUASattB plasmid (8.5 kb).  

 Ligation of the cDNA insert and the pUASattB plasmid was done using T4 DNA ligase 

(NEB-M0202S) with a 3:1 ratio of insert to vector. After the overnight ligation, the ligase was 

heat inactivated at 65oC for 10 minutes. Transformation into competent cells was done using 5 

μL of the ligation reaction. Cells were plates on LB-AMP and allowed to grow overnight at 

37oC. Individual colonies were selected and grown overnight at 37oC in 3-5 mL LB-AMP. 

Plasmid DNA was extracted from overnight cultures using a QiaPrep Spin Miniprep Kit 

(Qiagen-27106) 

 Analytical digests of the overnight cultures were done to verify that the plasmids were the 

correct size. A single digest was done with AflII, and two double digests were done with HindIII 
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+ AflII, and HindIII + NcoI-HF to be sure that the clones were correct. Reactions were incubated 

for 90 minutes at 37oC and run on an agarose gel to analyze. Positive clones were sent off to the 

BestGene Inc. where they a received Service Z1, regular plasmid DNA Midiprep, which 

guaranteed the DNA quality for injection before into Drosophila embryos containing attP sites 

(Bloomington Stock- 24749) to create the UAS-Lipin20S/T>A fly stock. 

 PhiC31 integrase-mediated transgenesis was employed to produce the UAS-

Lipin20S/T>A stock. The site-specific bacteriophage PhiC31 integrase was used to mediate 

sequence-directed, highly efficient, and irreversible integration between a phage attachment site, 

attP, and a bacterial attachment site, attB. Embryos from a fly line containing an attP docking 

site were injected with an attB-containing plasmid, pUASTattB, which contained a Lipin cDNA 

where 20 of the codons for the putative serine/threonine phosphorylation sites that were rendered 

to the codon coding for alanine via site-directed mutagenesis. Injections were done by the 

BestGene, Inc. (Chino Hills, CA, USA). Injected animals were then crossed with fly stock 

w1118, a w- (white eyed) fly stock, and successful transformants were selected based on the w+ 

screening marker (red eyes) in the F1 progeny and were used to establish the UAS-Lipin20S/T>A 

stock.    

13. Fat droplet staining 

 

Bodipy 493/503 (Invitrogen #D2191) was used to stain fat droplets. Routine staining was 

done using 3rd instar wandering larvae. Larvae were transferred to depression slides where they 

were dissected in cold 0.1M phosphate buffered saline (1XPBS). Fat body was separated from 

the other tissues and placed in a depression well containing freshly prepared cold 3.7% 

formaldehyde, making sure that all tissue was submerged to ensure even fixation. Alternatively, 

the fixation process was done using a 1.5 mL micro-Eppendorf tube to maximize likelihood of 
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homogeneous fixation. Samples were placed on shaker and allowed to fix for 30-60 minutes at 

room temperature (RT). (Longer fixation seemed to help with eliminating uneven staining). 

Tissue was then transferred to a depression well or 1.5 mL micro-Eppendorf tube containing a 

1:1000 dilution of Bodipy in 1XPBS. Samples were placed back on the shaker/mixer and 

allowed to stain for 40-60 minutes, covered, at RT. Fat body was mounted using a mounting 

media containing DAPI (EMS Shield Mounting Medium with DAPI & DABCO (EMS:17989-

20) or ProLong Gold Antifade Mountant with DAPI (ThermoFisher Scientific-P36931)), sealed 

with clear nail polish and imaged using a Zeiss Axio or Nikon fluorescence microscope.  

14. Lipin antibody staining  

 

Affinity purified anti-Lipin antibody created by the Lehmann Laboratory was used to 

stain for presence, concentration, and intracellular location of the Lipin protein. Before starting 

the protocol, freshly prepared 3.7% formaldehyde in 0.1M phosphate buffered saline (1XPBS) 

was prepared and kept on ice. Tissue was dissected in cold (4oC) 1XPBS (pH 7.4) in depression 

slides. Samples were fixed in 3.7% formaldehyde in PBS for 60 minutes in a 1.5 mL Eppendorf 

tube on a nutating mixture to ensure that all tissue would be evenly fixed. Samples were then 

transferred to large depression wells and washed in cold 1XPBST (0.1M PBS + 0.2% Tween20) 

4X10 minutes, shaking lightly. 995 μL of cold blocking buffer, 1XPBST/1% Normal Donkey 

Serum (NDS), was added to a 1.5 mL micro-Eppendorf tube. Samples were transferred to the 

tubes and kept at room temperature (RT) for 2 hours, shaking gently. To achieve a 1:200 dilution 

of primary antibody, 5 μL of affinity purified Lipin antibody was added to the tube containing 

the blocking buffer and tissue. Tubes were place on a shaker at 4oC overnight, shaking gently.  

Following primary antibody incubation, tissue was washed as stated above, 4X10 

minutes in cold PBST. While samples were washing, a 1:1000 dilution of secondary antibody 
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was prepared, 1ul of donkey anti-Rabbit IgG (Jackson ImmunoResearch:711-165-152) in 999 μL 

of cold 1XPBST. Amber 1.5 mL micro-Eppendorf tubes were used for the secondary antibody 

staining to help protect the samples against light. Samples were transferred to the tubes 

containing the secondary antibody and stained at RT for 2 hours, shaking gently, covered. 1X 

cold PBST was used to wash the samples, 4X10 minutes, following secondary antibody 

incubation. Samples were mounted using ProLong Gold Antifade Mountant with DAPI 

(ThermoFisher Scientific-P36931) or EMS Shield Mounting Medium with DAPI & DABCO 

(EMS:17989-20), sealed with clear nail polish and allowed to dry before imaging. Imaging was 

done using a Zeiss Axio or Nikon fluorescence microscope. 

15. Single Fly Genomic Preparation 

Genomic DNA used for experiments was obtained by extracting DNA from single flies. 

Squishing buffer (SB) was prepared fresh and kept on ice using the following components per 1 

mL: 965 μL of ddH2O, 10 μL of 1M Tris-CL pH 8.0, 10 μL of 100 mM EDTA, 5 μL of 5M 

NaCl and 10 μL of 20 mg/mL proteinase K (NEB-P8107S). Each single fly genomic preparation 

used 50 μL of SB. For genotyping purposes, flies could also be pooled; and volumes of squish 

buffer are added proportionally (ex. 3 flies= 150 μL SB).  

Single adult flies were anesthetized with CO2 and transferred to empty 1.5 mL micro-

Eppendorf tubes. Tubes containing flies were placed on ice to assure that flies remained knocked 

out. 50 μL of SB was then aspirated into a 200 μL pipette tip and the fly was squished using the 

tip without expelling the SB. Once the fly was completely homogenized, the remainder of the SB 

was expelled. When all flies were squished, a timer was set for 20 minutes and samples were 

kept at room temperature (RT) for incubation. At the end of the RT incubation, the sample were 
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transferred to a 95oC hot block for 5 minutes. Samples were then transferred to ice for 2-5 

minutes and then spun down at max speed at RT in a table top centrifuge for 5 minutes.  

Genomic DNA preps were used for subsequent polymerase chain reactions (PCR) and 

stored at 4oC for up to 6 weeks. Routinely, 2.5 μL of genomic DNA is used as a template in a 25 

μL PCR reaction.  

16. Gibson/HiFi Assembly  

 

Gibson Assembly or HiFi DNA Assembly cloning kits were obtained from New England 

BioLabs (NEB-E2611S/E5520S). Optimal quantity guidelines were followed per the 

recommendation of the manufacturer. Assembly reactions were prepared on ice, following the 

recommended DNA molar ratios. (Half-reaction yielded the same success rate and were used 

when applicable). All assembly reactions, regardless of number of fragments were incubated at 

50oC for 60 minutes in a thermal cycler to help improve assembly efficiency. Samples were 

either put on ice for immediate transformation (2 μL of assembly reaction used in 50 μL 

competent cells (provided with kit)) or stored at -20oC until used for subsequent transformation.  
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17. CRISPR/Cas-9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7. Schematic of approaches used to induce mutations by CRISPR-Cas9 mutagenesis. 

CRISPR-Cas9 mutagenesis was used to create phosphosite mutants. A guide RNA plasmid was 

co-injected with a repair template: either a single-stranded mutagenic oligonucleotide or a donor 

plasmid. Repair templates rendered phosphosite(s) either non-phosphorylatable by replacement 

with alanine or phosphomimetic by substitution with glutamate. Figure modified from Redman 

2016.  
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17a. Selection of guide RNAs 

 

Guide RNAs (gRNAs) were chosen using the online tool CRISPR Optimal Target Finder 

(http://targetfinder.flycrispr.neuro.brown.edu). Drosophila melanogaster (r_6) was used as the 

genome, and guide length was set to 20 nt. 

While ideal to limit the number of off-target regions when selecting a gRNA, proximity 

to the location of interest often took precedence. Therefore, the stringency selected was “High” 

not “Maximum” as not to narrow the selection of gRNAs too far. PAM was restricted to “NGG 

only”. If gRNAs contained off-target region(s) on a different chromosome, then they still were 

considered. 

17b.  pCFD3 

 

If the intended mutations were close in the genome or a single amino acid was to be 

substituted, one gRNA can be used to direct the Cas-9 endonuclease to cut at a location 

upstream of the desired mutation(s). The pCFD3 gRNA plasmid (Addgene:49410) was used in 

these circumstances. The following protocol taken from www.crisprflydesign.org was followed 

to generate the pCFD3 gRNA plasmid targeting the region of interest.  

 

 

 

 

 

 

 

 Fig 8. Schematic for protospacer design for use with pCFD3 plasmid.  

Sense and anti-sense protospacers were designed with the appropriate overlaps.  

(Image: www.crisprflydesign.org)  

Sense: 5’-GTCG-N19/20 

Anti-sense: 5’-AAAC-N19/20 reverse compliment 
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The protospacers were designed based on the selected gRNA. Protospacers do not 

include the PAM sequence but do include sticky ends for ligation back into the pCFD3 plasmid 

(see Fig. 8 above). The sense strand contains the selected gRNA, where the anti-sense strain is 

the reverse complement. Single stranded oligos were purchased (Eurofins Genomics, Louisville 

KY) and resuspended to 100uM concentration. Oligos were used in a phosphorylation and 

annealing reaction and incubated at 37oC for 30 minutes, brought to 95oC for 5 minutes and 

ramped down to 25oC at 5oC/minute as described at: http://www.crisprflydesign.org/wp-

content/uploads/2014/05/Cloning-with-pCFD3.pdf. 

A ligation reaction was then setup using linear pCFD3 plasmid which had been digested 

by the BbsI enzyme (NEB-R0539S). Annealed oligos were diluted in ddH2O to a 1:50, 1:100, or 

1:200 dilution. Ligation was done at room temperature for 30 minutes or overnight at 16oC 

(longer ligation increased transformation efficiency).  

Transformations were set up using 4 μL of ligation reaction in 50 μL of competent cells 

and plated on Ampicillin plates. Individual colonies were screened for the presence of the 

protospacer. 3-5 mL LB-AMP cultures were set up overnight and grown to saturation (16-20 

hours), shaking at 250-300 RPM. The QIAprep Spin Miniprep Kit (Qiagen-27106) protocol was 

followed to isolate plasmid DNA. After confirming DNA concentration on an agarose gel, clones 

were sent for sequencing (Eurofins Genomics) to identify successful transformants.   

  17c. pCFD4  

 

In cases where two gRNA were needed, whether it where to increase the likelihood that a 

gRNA would cut the target region or because two gRNAs where required based on the template 

used for repair, the pCFD4 gRNA plasmid was used. Like the pCFD3 plasmid, single stranded 
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oligonucleotides where purchased. However, in this case, the two protospacers were incorporated 

into primers used for PCR to amplify the gRNA insert region. 

 

 

 

 

 

 

 

 

 

 

Fig 9. Schematic for protospacer design for use with pCFD4 plasmid. 

Protospacers are introduced into the pCFD4 vector by PCR and are located downstream of two 

separate U6 promoters. (Image: www.crisprflydesign.org)                                                 

 

A high-fidelity DNA polymerase (Phusion Flash, Thermo Scientific-F548L) was used to 

amplify the target region of the pCFD4 plasmid using the primer design indicated in Figure 9.  

Circular pCFD4 plasmid (10 ng total) was used as the DNA template and the annealing 

temperature was set to 60oC. Following the PCR reaction, 1 μL DPN1 (NEB-R0176S) was added 

to the reaction and incubated at 37oC for 2-4 hours to ensure the DNA template used for the 

reaction was removed. The PCR reaction (600 bp) was cleaned up using a PCR purification kit 

rather than being gel extracted to prevent product loss (Zymo-D4013).  

 Following the recommendations of the manufacturer, BbsI-HF (NEB-R3539S) was used 

to linearize the pCFD4 plasmid. The restriction enzyme digest was extended to 1-2 hours to 

ensure total digestion of the plasmid. A Qiagen QIAquick Gel Extraction Kit (Qiagen-28704) 

was used to gel extract the linear plasmid backbone (6.4 kb) on a 1% agarose gel.  

Once the linear plasmid backbone and PCR insert were recovered, the gRNA plasmid 

was assembled. Plasmid was created using Gibson or HiFi assembly (NEB-E2611S/E5520S) 
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following the manufacturer’s instructions and 2 μL of the reaction assembly was used for 

subsequent transformation into competent cells and plated on Ampicillin plates. Single colonies 

were chosen, as they were for the pCFD3 gRNA plasmid (see section II.17c: pCFD3) and 

screened for the presence of the gRNA insert.  

17d. Single-stranded oligonucleotide donor templates  

 

 Single-stranded oligonucleotides (ssOligos) were used as donor templates when only one 

codon was to be exchanged or if the cluster of putative phosphorylation sites targeted were 

grouped close together. Single-stranded donor templates where purchased from Integrated DNA 

technologies. The upper length limit of ssOligos was 200 nucleotides. Desired point mutations 

were introduced to the donor template and co-injected into Drosophila embryos containing a 

Cas-9 endonuclease.  

Design of ssOligos was closely modeled after the method described in Richardson et al., 

2016, choosing a template that was the reverse complement of the DNA strand which contained 

the PAM sequence. Further specifications on how ssOligos were designed are described in their 

manuscript.  

17e. Donor plasmids  

 

 Donor plasmids were used when multiple sites were targeted and arranged over a larger 

genomic region (Fig. 10). Plasmid design was done using SnapGene. To create the donor 

plasmid, the pBluescript KS(-) backbone (pBSK) was used and the multiple-cloning site was 

removed. Genomic DNA from the would-be injection stock was chosen to create homology arms 

on the 5’ and 3’ ends.  The Lipin cDNA or a synthetic double-stranded DNA was used 

(Integrated DNA technologies) to integrate the desired mutations.  For information of the 

specifics of the donor plasmid used, see Table 8. 
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Primer design for the amplification of the fragments for the donor plasmid was done 

using SnapGene. As a general rule, primers were designed to have no fewer than a 12 bp overlap 

with the adjacent fragments.  

 Once primers were chosen, PCRs were done using a high-fidelity DNA polymerase 

(Phusion Flash, Thermo Scientific-F548L). In some cases, genomic DNA reactions failed using 

Phusion Flash polymerase and therefore were amplified using a Taq polymerase (OneTaq 2X 

Master Mix with Standard Buffer, NEB-M0482L). When plasmids were used as DNA templates, 

following the PCR reactions, 1 μL DPN1 (NEB-R0176S) was added directly to the reaction and 

incubated at 37oC for 2-4 hours to remove any starting template. Reactions were then cleaned up 

using a PCR purification kit (Zymo-D4013) and fragment sizes were verified on a gel.  

 

 

Fig 10. Diagram of donor plasmid design for CRISPR/Cas9 mutagenesis. Region of 

interest (cDNA or gBlock) is flanked by 5’ and 3’ homology arms from genomic DNA 

and cloned into the pBSK backbone.  (Image: https://dharmacon.horizondiscovery.com) 
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 Before the assembly reaction, concentrations were verified using a NanoDrop 

spectrophotometer and the components of the reaction were calculated based on the 

concentrations of the purified PCR products (see manufacturer’s instructions: Gibson Assembly / 

HiFi DNA Assembly cloning kits, New England BioLabs (NEB-E2611S/E5520S)). 

Manufacturer’s instructions were followed very closely as assembly of the plasmid was highly 

dependent on the correct of insert: vector ratios. Transformation of the assembly reactions were 

done using 2 μL of the assembled product on ampicillin plates. Individual colonies were selected 

and grown in 3-5 mL of LB-AMP overnight at 250-300 RPM at 37 oC.  A QiaPrep Spin 

Miniprep Kit (Qiagen-27106) was used to isolate plasmid DNA and concentrations and size were 

verified on an agarose gel. Clones were sent to Eurofins Genomics, were the entire insert regions 

(excluding the pBSK backbone) were sequenced. 

17f. Preparing injection mixtures 

 

 Individual components, repair template(s) and guide RNA plasmids were sent to 

BestGene Inc., (Chino Hills, CA, USA), or Rainbow Transgenic Flies, Inc. 

(Camarilla, CA, USA) for injection. Plasmids sent off for injection to BestGene Inc. received 

Service Z1, a regular plasmid DNA Midiprep, which ensured the DNA quality and plan RG was 

used CRISPR injections.  

18. Screening for CRISPR Induced Mutations 

 

 Transgenic Drosophila lines containing a Cas-9 endonuclease were used for CRISPR 

injections. Injection stocks used for each of the mutant stocks are listed in Table 8. Bloomington 

stock #54591 is non-isogenic and results in homozygous lethality for the second chromosome. 

Because of this, stock y1 w1118; attP2{nos-Cas9}/TM6C, Sb Tb, was used to create subsequent 
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mutants. Injected animals were shipped back by the injection company as larvae and allowed to 

pupariate before being separated into individual vials.  

18a. Crossing scheme and identification of mutations by sequencing 

 

 Injected animals were independently crossed with animals containing a CyO balancer. F1 

animals containing the CyO balancer were selected for initial screening. Single fly genomic 

preps were completed as described above and the genomic DNA was used as a template for 

PCR. PCR reactions of the targeted region(s) were done for each mutant. In cases where point 

mutations were made, screening was only possible by sequencing. PCR products were purified 

(Zymo-D4013) and sequenced at Eurofins Genomics (Louisville, KY, USA). (Fig. 12)  

 The F1 screening identified “founder stocks” derived from animals in which the gRNA 

had led the Cas9 endonuclease to cut. Individual F1 males were then used to set up crosses with 

virgins from a balancer stock containing CyO-GFP. Once there were larvae visible on the food, 

the F1 male was sacrificed and screened for the presence of the intended mutation. GFP pupae 

were selected for crosses that contained the correct mutation(s) and mated together to test if the 

mutation was homozygous viable (indicated by the presence of non-GFP animals) (Fig. 11).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G0 Cross: Lipin Mutant Allele (+)/+ x +/CyO 

F1 Cross: Lipin Mutant Allele (+)/CyO x +/CyO-GFP 

F2 Cross: Lipin Mutant Allele /CyO-GFP x Lipin Mutant Allele /CyO-GFP 

Fig 11. Crossing scheme used to recover CRISPR mutant stocks. 

Injected animals were individually crossed to a stock containing the CyO 

balancer. F1 animals balanced over CyO were screened to identify founder 

stocks. F1 males were crossed with virgins from a stock containing the 

CyO-GFP balancer. F1 males were screened for the intended mutation once 

larvae were visible in the food. GFP pupae were selected from positive 

stocks to establish mutant lines.  
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Fig 12. Identification of amino acid substitutions by Sanger sequencing. CRISPR/Cas9 

mutagenesis was used to introduce base pair exchange into the Lipin gene that replaced 

serine/threonine phosphorylation residues with either alanine (GCC) or glutamic acid (GAG). A 

partial sequence for mutations where a single codon had been targeted are shown.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 8. Construction and Recovery of CRISPR Phosphosite Mutants. List of gRNA plasmids, donor templates used for repair, 

Cas9 injection stocks, companies used for CRISPR injections, total number embryos injected, larvae received and number of adult 

animals. In cases where more than one attempt was made to recover the mutant the data is separated as follows: first attempt/second 

attempt.  

Mutant gRNA 

Plasmid 

Donor 

Template 

Injection Stock Injection 

Company 

Embryos  

Injected 

Larvae 

Received 

Adult 

Animals 
Lipin 

S147A 

pCFD3 ssOligo y[1]M{vas-

Cas9}ZH-2A 

w[1118]/FM7c 

 

BDSC: 51323 

Rainbow 

Transgenic 

Flies, Inc. 

Camarilla, CA 

USA 

240 80 14 

Lipin 

S147E 

pCFD3 ssOligo y[1]M{vas-

Cas9}ZH-2A 

w[1118]/FM7c 

 

BDSC: 51323 

Rainbow 

Transgenic 

Flies, Inc. 

Camarilla, CA 

USA 

250 40 12 

Lipin 

Group 1 

pCFD4 Donor 

Plasmid 

y1 w1118; 

attP2{nos-

Cas9}/TM6C, Sb Tb 

 

BestGene, Inc. 

Chino Hills, 

CA USA 

~300/150 110/70 55/5 

Lipin 

Group 2 

pCFD4 Donor 

Plasmid 

y1 w1118; 

attP2{nos-

Cas9}/TM6C, Sb Tb 

BestGene, Inc. 

Chino Hills, 

CA USA 

~300 ~100 55 

Lipin 

S820A 

pCFD3/ 

pCFD4 

ssOligo y[1] 

M{w[+mC]=nos-

Cas9.P}ZH-2A w[*] 

 

BDSC: 54591 

BestGene, Inc. 

Chino Hills, 

CA USA 

>300/>300 86/~90 76/52 

4
3
 

4
3
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19._Determining viability of CRISPR Mutants 

 

CRISPR mutant stocks were balanced over the balancer chromosome CyO-GFP. To 

determine if these stocks were homozygous viable, heterozygous mutants were mated:  

Lipin mutant allele/CyO-GFP x Lipinmutant allele/CyO-GFP. If non-GFP progeny were observed, then 

the introduced mutation(s) were non-lethal and homozygous mutant stocks were established.  

Additionally, the CRISPR mutants were crossed to a stock containing a Lipin deficiency 

chromosome which lacks the entire lipin gene. Heterozygotes of the mutant stocks: Lipin mutant 

allele/CyO-GFP were crossed to the Lipin deficiency stock: Df(2R)Exel7095/ CyO-GFP and 

crosses were observed for the presence of non-GFP, non-CyO animals: Lipinmutant allele/ 

Df(2R)Exel7095. These transheterozygous animals contain one chromosome with the Lipin 

mutant allele and one chromosome with a Lipin deficiency. Transheterozygous animals were 

used as the experimental animals in all assays. Use of transheterozygotes in the experiments is 

important as it prevents any experimental artifacts that may result from using homozygous 

animals. Animals homozygous for the same mutagenized chromosome could contain addition 

unintended mutations at different loci that may result in phenotypes when homozygous for the 

mutation(s).   

20. Developmental Timing Experiments 

 

CRISPR mutants were tested for developmental delays using the following crossing 

scheme: Lipinmutant allele(males)/CyO-GFP x Df(2R)Exel7095/CyO-GFP (females). Crosses were 

set up in biological triplicates on regular food and kept at 25oC for 24 hours. Control crosses 

were also set up, injection stock (Cas9 stock used for injection (males)) x Df(2R)Exel7095/CyO-

GFP(females). Following the initial 24-hour incubation, the flies were transferred to new food 

and allowed to mate until the following morning at 25oC.  
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On the morning of the third day (Experimental day 1), the flies were transferred to new 

food and allowed to lay 6-8 hours at 25oC. This was done for three consecutive days, where the 

egg laying occurred at the same time/duration each day and the overnight vials were discarded. 

Each following day, the vials were checked for prepupae and pupae. Number of pupae/prepupae 

were counted once or twice a day making note of the number of GFP and non-GFP animals 

pupariating. Recordings were made at the same time of day. Vials were observed until all 

animals in all vials had pupariated.  

Some of the pupae (~20 for each genotype) were selected to monitor the time until 

eclosion to examine possible pupal lethality and delays in eclosion.  

The total number of GFP and non-GFP pupae was calculated for each of the experimental 

replicates. The ratio of GFP vs. non-GFP pupae was then compared to the expected number of 

animals. 

For example, consider the following cross: 

• Lipinmutant allele/CyO-GFP x Df(2R)Exel7095/CyO-GFP 

The possible genotypes from this cross include: 

• Lipinmutant allele/CyO-GFP  

• Df(2R)Exel7095/CyO-GFP  

• Lipinmutant allele/Df(2R)Exel7095 

CyO-GFP/CyO-GFP is not viable.  

Thus, the expected ratio of GFP to non-GFP animals would be 66.66% to 33.33%. A 

clear and reproducible reduction in the expected number of non-GFP animals indicates larval 

lethality of the mutant animals. 
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Graphs were generated to depict the mean percent pupariation of each of the genotypes 

over time (Y-axis: percent pupariation of a certain genotype; X-axis: time in days).  

21. Triglyceride Assays 

For this assay, 0.05% Tween 20 in 0.1 M Phosphate buffered saline was used for all steps where 

PBST is denoted.  

21a. Triglyceride assays procedure 

 To measure the TAG levels of the prepared samples, samples were thawed, if applicable, 

and well vortexed. For each sample, 2 tubes were prepared. One consisted of the sample and 

PBST, to measure free cholesterol, and the other was for the sample and Triglyceride Reagent 

(Sigma: T2449). 80 μL of the sample was used for each of those reactions and 120 μL of either 

reagent was used. Samples were mixed by pipetting and placed in a 37oC water bath for 60 

minutes, allowing lipases to release glycerol from TAGs. Additionally, two control reactions 

were also processed in the same conditions, 80 μL PBST in 120 μL PBST and 80 μL PBST in 

120 μL Triglyceride reagent. These measurements were crucial as they determine the 

background absorption from the reagents.  

 Male experimental and male control animals were processed all at once and then 

subsequently female samples were prepared or vice-versa.  

 Once samples were done incubating, they were transferred to a table-top centrifuge and 

spun at max speed (14,000 RPM) to 3 minutes at room temperature. 150 μL of the sample was 

then transferred into a 1.5 mL Eppendorf tube and 600 μL of Free Glycerol Reagent (Sigma: 

F6428) was added and mixed well by pipetting up and down. Samples were incubated at 37oC in 

a water bath for 5 minutes and then spun down briefly in a table-top centrifuge (30 seconds at 

14,000 RPM). The entire sample (750 μL) was then used to determine the absorbance readings. 
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Before taking sample readings the photometer was calibrated with PBST to an absorbance 

reading of 0 at 540 nm. Samples readings were taken at 540 nm in disposable polystyrene 

cuvettes (VWR: 97000-586).  

21b. Sample Preparation 

 Freshly eclosed adults of the desired genotype were collected over ~24 hours or, if 

sufficient numbers of animals could not be obtained, collection time was extended to 48 hours. 

Males and females were separated into vials containing comparable amounts of animals to 

ensure all animals had adequate access to food (~30 animals per vial). 7 females and 10 males 

were used for each individual sample. Each genotype was done in biological triplicates. Animals 

were aged 3 days at 25oC on standard food.  

 1.5 mL Eppendorf Safe-Lock tubes were used for TAG measurements. Tubes obtained 

from VWR (Cat. No. 20170-038) contained a contaminant that led to high background readings. 

The weight of each cohort of flies was recorded before the flies were frozen either on ice or by 

shock freezing using liquid nitrogen. Shock freezing was done in cases where eyes contained red 

pigment as the red eye pigment interferes with absorbance readings.  Shock frozen animals were 

vigorously vortexed (~15 sec), to ensure the heads were removed. Wings and legs were also 

removed as a result of the vortexing. If samples contained animals with white eyes, this step was 

omitted as long as animals of all genotypes that were compared had white eyes.  

Truncated animals were transferred to a new 1.5 mL microcentrifuge tube. Samples were 

homogenized in 300 μL ice-cold PBST using a micropestle. The pestle was rinsed with an 

additional 200 μL ice-cold PBST to remove any debris and the sample was then vortexed briefly. 

At this time, 100 μL of the homogenate was separated into a 1.5 mL Eppendorf tube for protein 

measurements to be done at a later time. The aliquots were shock frozen and stored at -80oC until 
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needed for the protein assays. The remaining 400 μL of homogenate was heated at 70oC for 10 

min to inactivate enzymes. These samples were then shock frozen and kept at -80oC until the 

triglyceride assays were performed. For performance of the assays, the samples were thawed and 

from then on handled at room temperature.  

21c. Glycerol standard curve 

 In order to determine the unknown glycerol concentration of the samples, a glycerol 

standard curve was prepared using the following serial dilution (100 μL of higher concentration 

solution +100 μL PBST). 

Table 9. Dilution scheme for glycerol standards. Used to generate the glycerol standard curve. 

Measurements were taken at 540 nm and ODs were plotted on a scatter plot.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 1 mg/mL (120 μL glycerol standard solution (Sigma: G7793) + 180 μL 

PBST) 

 

2  

 

0.5 mg/mL (100 μL 1 mg/mL + 100 μL PBST) 

3 0.25 mg/mL (100 μL 0.5 mg/mL + 100 μL PBST) 

4 

 

0.125 mg/mL (100 μL 0.25 mg/mL + 100 μL PBST) 

5 0.0625 mg/mL (100 μL 0.125 mg/mL + 100 μL PBST) 

 

6 0.03125 mg/mL (100 μL 0.0625 mg/mL + 100 μL PBST) 
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Prepared glycerol standards were stored at 4 °C but can also be kept at -20°C. Samples 

were spun down for 3 minutes at max speed in a table-top centrifuge if liquid had accumulated 

on the sides of the tubes. 

To measure the glycerol standards, 80 μL of the sample was added to 120 μL of PBST 

and mixed well by pipetting. 150 μL of this mixture was then added to 600 μL Free Glycerol 

Reagent (Sigma: F6428) and mixed by pipetting. Samples were incubated for 5 minutes at 37oC 

in a water bath. Before the absorbance readings were conducted, the standards were centrifuged 

at 14,000 RPM for 30 seconds in a table-top centrifuge. Before taking any measurements, the 

photometer was calibrated with PBST to 0 absorbance at 540 nm. Absorbance reading were 

taken for the entire sample (750 μL) at a wavelength of 540 nm in disposable polystyrene 

cuvettes (VWR: 97000-586).  

Given the values generated by the standard curve, these numbers were used to generate a 

scatter plot in Excel. The plot was fitted with a linear trendline and the equation generated by this 

line was then used to determine the unknown concentrations of the samples based on the ODs 

measured.   

22. Bradford Assays 

 

 To conduct the Bradford Assays, a Bradford Assay Kit (Thermo Scientific: 23200) was 

used. Before beginning the assays, the bottle containing the Coomassie Reagent was inverted 

several times (NOT shaken) and the volume needed for the assays was transferred to a Falcon 

tube and allowed to equilibrate to room temperature. Each sample required 1 mL of Coomassie 

Reagent, and an additional 9 mL of reagent was needed for the BSA Standard Curve. Protein 

samples used for these assays were prepared as instructed above (see section II.21b: Triglyceride 

Assays- Sample Preparation). 
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22a. Bradford Assay Procedure 

Thawed protein samples were centrifuged at max-speed (14,000 RPM) in a table-top 

centrifuge for 3 minutes. 20 μL of supernatant was transferred to a new 1.5 mL Eppendorf tube 

(Eppendorf: 022364111). 1 mL of the Coomassie Reagent was added to the sample and mixed 

well by pipetting. Samples were incubated at room temperature for 10 minutes. A photometer 

was set to 595 nm and blanked using a cuvette filled with 1 mL ddH2O. Samples readings were 

taken at 595 nm in disposable polystyrene cuvettes (VWR: 97000-586).   

22b. BSA Standard Curve 

 

 To determine the unknown protein concentrations of the samples, a BSA standard curve 

was generated using the dilution scheme below. Stock solution (2 mg/mL BSA) was included in 

the Bradford Assay kit. Prepared standards were kept at 4oC until use. 

Table 10. Dilution scheme used to generate the BSA Standard Curve. Used to determine the 

unknown sample protein concentrations. A polynomial equation generated from the curve was 

used to solve for the unknowns.  

 

 

 

 

Vial  Volume of PBST  Volume and Source 

of BSA  

Final BSA 

Concentration  

1  0  300μL of Stock  2000μg/mL  

2  125μL  375μL of Stock  1500μg/mL  

3  325μL  325μL of Stock  1000μg/mL  

4  175μL  175μL of vial 2 

dilution  

750μg/mL  

5  325μL  325μL of vial 3 

dilution  

500μg/mL  

6  325μL  325μL of vial 5 

dilution  

250μg/mL  

7  325μL  325μL of vial 6 

dilution  

125μg/mL  

8  400μL  100μl of vial 7 

dilution  

25μg/mL  

9  400μL  0  0 μg/mL = Blank 



 

 51 

 Standards were centrifuged at max-speed for 3 minutes at room temperature. 20 μL of 

supernatant for each of the standards was added to 1 mL room temperature Coomassie Reagent 

and incubated to 10 minutes at room temperature. Photometer was set to 595 nm and blanked 

with 1 mL ddH2O. Measurements for the standard curve were done using standard cuvettes 

(VWR: 97000-586) and plotted in excel to generate a polynomial equation used to determine the 

unknown protein sample concentrations.  

 To generate a graph in Excel, the OD measurements were plotted on the Y-axis and the 

protein concentrations were plotted on the X-axis. However, to determine the polynomial 

equation, the inverse was plotted, protein concentration on the Y-axis and OD on the X-axis. An 

XY scatter plot was generated and a polynomial trendline was added where the best fit (either 

2,3, or 4) was chosen. The equation generated by the polynomial trendline was then used to plug 

in the sample ODs to determine the unknown protein concentrations of each sample.  

23. Starvation Assays with Adult Flies 

 

 Recently eclosed adult flies of the desired genotype were collected over a ~24-hour time 

window and transferred to vials with standard food. Each vial contained similar numbers of 

animals (~30) containing both males and females of the desired genotypes. Animals were aged 

for 3 days, transferring to fresh food after 2 days. Experiments were done in biological 

triplicates, each vial containing 25 animals (3 x 25 males and 3 x 25 females).  

On the third day, animals were separated by sex and transferred to starvation vials. 

Starvation vials consisted of Flugs (hard cotton plugs) which were cut in half and were pushed to 

the bottom of an empty fly vial. Flugs were saturated with tap water, vials were decanted of 

excess water and flies were transferred into the vials. Vials were then plugged with cotton balls.  
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Dead flies were counted every day at the same time and removed to prevent surviving 

animals from feeding on dead animals. Every 2 or 3 days, about 200 μL of tap water was added 

to the vial to prevent dehydration of the flies. Females were transferred frequently to prevent 

them from feeding on eggs they have laid (days 2,4,7,10, etc.). Males were transferred once 

every 5 days as they feed on mold that may form in the vials. Animals were transferred to new 

vials as needed until all animals from all replicates had died. 

Survival fit plots of these data were then generated in Excel where the Y-axis depicts % 

survival and the X-axis is the time in days. Total number of animals for each genotype were 

pooled to generate the graphs.  

24. Statistical Analysis 

 Log-rank tests were done for both the developmental timing and starvation assays. These 

tests were done to determine if there was a statistically significant difference between the 

experimental and control animals considering all data points. Numbers of animals for each time 

point for each of the biological replicates and technical replicates were pooled and the tests were 

done online here: http://bioinf.wehi.edu.au/software/russell/logrank/. For the developmental 

timing assays, graphs depict means derived from 3 biological replicates.   

 Student’s t-test were done to determine differences seen in the triglyceride and protein 

assays. Means and standard deviations for each of the biological replicates were calculated and 

unpaired t-test were done in Microsoft Excel. The standard deviations were used to generate 

error bars.  
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III. Results 

 

1. Recovery and characterization of the UAS-Lipin20S/T>A transgenic line 

 

The motivation for this experiment was to create a form of Lipin that constitutively 

localized to the nucleus. Previously published work done on lipin 1 in mammalian cell culture 

helped in the design of this project (Peterson et al., 2011). Here, the authors created a mutant 

version of Lipin where 17 of the phosphorylation sites of mammalian lipin 1 were converted 

from serine or threonine to alanine. This Lipin17 S/T>A mutant displayed robust nuclear 

translocation in cell culture. Additionally, a lipin 1 mutant where only 6 of the putative 

phosphorylation sites were rendered non-phosphorylatable showed partial nuclear translocation. 

This nuclear localization phenotype mimicked the effects seen when there is an inactivation of 

mTORC1 by the TOR inhibitor Torin1 (Peterson et al., 2011). Like mammalian lipin 1, 

Drosophila Lipin has also been shown to translocate into the nucleus when TORC1 is knocked 

down. TORC1 knockdown in the fat body of Drosophila melanogaster by RNAi leads a strong 

translocation of Lipin into the nucleus (Schmitt at al., 2015). Thus, it was hypothesized that 

nuclear translocation of Lipin would also occur in Drosophila if putative phosphorylation sites 

were rendered non-phosphorylatable. Here, in an effort to test this hypothesis, I created a UAS 

transgenic line, Lipin20S/T>A, where I replaced 20 of the predicted serine/threonine 

phosphorylation sites of Drosophila Lipin with alanine, rendering these sites non-

phosphorylatable.   

1a. Developmental timing experiments 

 

Utilizing the GAL4/UAS system, tissue specific expression of Lipin20S/T>A was 

accomplished in the fat body of Drosophila melanogaster using Cg-GAL4, which is a fat body 
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driver of moderate strength (Lee et al., 2004). For simplicity, Cg-GAL4 will be referred to as FB-

GAL4 (fat body GAL4). 

Animals that expressed UAS-Lipin20S/T>A ectopically in the fat body displayed a severe 

developmental delay and began pupariating three days later than the wild-type control animals 

(Fig. 13). Larvae collected at the same time points for both FB-GAL4 >UAS-Lipin20S/T>A and 

w1118>UAS-Lipin20S/T>A, a control cross without GAL4 driver, were compared to observe 

differences in animal size and fat body content (Fig. 14). Transgenic larvae had a dramatic 

reduction in size and contained almost no fat body, thus appearing nearly transparent as seen in 

Lipin loss-of-function mutants (Ugrankar et al., 2011).  

1b. Fat droplet staining 

 

Fat droplets of animals with ectopic expression of UAS-Lipin20S/T>A appeared to show 

increased size variability compared to the control animals (Fig. 15). Animals expressing the 

transgene also showed increased variability in cell size and shape, which is seen more clearly 

when stained with Lipin antibody (Fig. 16). Cells appeared rounded and enlarged compared to 

cells of control animals and the fat body cells were less uniform in size.  

1c. Lipin antibody staining 

 

 Lipin protein antibody staining revealed a significant decrease in the levels of Lipin in 

animals which ectopically expressed the Lipin20S/T>A transgene in the fat body. Small 

surrounding fat body cells appear to contain large amounts of Lipin protein, while the enlarged 

fat body cells contained almost none. Control animals had a more uniform distribution of Lipin 

throughout the tissue (Fig. 16).  

 Decrease in Lipin antibody staining was not due to the inability of the anti-Lipin antibody 

to recognize the mutant protein. Lipin20 S/T>A expressed in the salivary glands (Sgs-GAL4 
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>UAS- Lipin20 S/T>A), which do not normally express Lipin (Ugrankar et al., 2011), was 

detected by the Lipin antibody (Fig. 16). 

1d. Ubiquitous and transient expression of Lipin20S/T>A  

 

 Expression of Lipin20S/T>A driven by FB-GAL4 did not result in nuclear translocation 

of the protein as seen in mammalian cell culture (Peterson et al., 2011). Therefore, subsequent 

experimentation was done to reveal if expression under different GAL4 drivers would alter the 

result seen here. The da-GAL4 driver is a weak ubiquitous driver that was chosen to express the 

transgene ubiquitously at low levels. In addition, the Lsp-GAL4 driver, a transient fat body 

driver, which is only active in 3rd instar wandering larvae, was selected.  

 When expression of the Lipin20S/T>A transgene was driven by these additional GAL4 

drivers, the loss-of-function phenotype seen with the FB-GAL4 driver was no longer observed. 

Lipin antibody staining was completed for these crosses and not only were the levels of antibody 

staining for these genotypes similar to those for the control animals, but the cell morphology 

showed no apparent differences (Fig. 17). Animals appeared to have no significant differences in 

the amount of fat body as was seen when expression of the transgene was driven by the FB-

GAL4 driver.  
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Fig 13. Timing of pupariation in animals expressing Lipin20S/T>A in the fat body. Control (red) animals began pupariating 7 

days after egg laying, compared to the animals with ectopic expression of Lipin 20S/T>A (gray), where pupae began to form on day 

10. Data is statistically significant. Log-rank, p < 0.0001.  
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Fig 14. Expression of Lipin20S/T>A in Drosophila fat body dramatically decreases fat 

body content and animal size. Images of Lipin20S/T>A (left) and wild-type Lipin (right) 

larvae that were collected the same day. Ectopic expression of the transgene exclusively in 

the fat body results in a severe growth phenotype. Experimental animals are dramatically 

reduced in both body size and fat body content. Scale bar (red) = 1 cm.  



 

 

 

  

Fig 15. BODIPY 493/503 staining of larval fat body expressing Lipin20S/T>A. Fat body 

expression of the Lipin20 S/T>A (A), shows enlarged cell nuclei and increased variability in 

cell size control (B). Colored boxes indicate zoomed images. Scale bar zoomed images = 50 

μm. 
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Fig 16. Lipin antibody staining of larvae expressing Lipin20S/T>A. (A and D) Fat body expressing Lipin20S/T>A. (B and E) 

Control fat body of larvae carrying the UAS-Lipin20S/T>A responder but not the FB-GAL4 driver (from cross with w1118 flies). (C and 

F) Salivary gland driven expression of Lipin20S/T>A. Scale bar = 100 μm.  
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Fig 17. Lipin antibody staining of larval fat body expressing Lipin20S/T>A under the control of various GAL4 drivers.  

Ubiquitous driver (da-GAL4: A and D), transient fat body driver (Lsp-GAL4: B and E), control (w1118: C and F). Scale bar = 100 

μm.  
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2. Recovery and Characterization of Lipin phosphosite mutants created by CRISPR/Cas9 

mutagenesis 

 

As suggested by the effects of Lipin20 S/T>A expression in the fat body, phosphorylation 

of Lipin may be important for the growth and development of Drosophila melanogaster. 

Drosophila Lipin, like mammalian lipin, has clusters of phosphorylation sites that are thought to 

have functional importance for the regulation of the protein and that are potential target sites for 

the insulin PI3K/Akt and MAP-kinase pathways. Here, a subset of mutants was created using 

CRISPR/Cas9 mutagenesis. These mutants targeted these putative phosphorylation sites and 

clusters of sites to determine their functional importance.  

Most of the Lipin phosphosite mutants characterized here were generated by 

undergraduate students as part of their Honors Thesis projects. I aided in the project design and 

supervised the undergraduates in the laboratory. Unless otherwise noted, I carried out 

characterization of the mutants and helped the students in establishing mutant fly stocks.  

Four of the five mutants discussed here were recovered by undergraduates, who also 

determined whether the mutants were homozygous viable and/or viable when the mutant allele 

was placed over a Lipin deficiency, Df(2R)Exel7095. The names of the students are listed in 

Table 11.  
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Once the viability of the mutant animals was determined, each of the mutants was 

subjected to phenotypic characterization. Listed below are the assays which I carried out to aid in 

better understanding the functional importance of the mutated residues.  

1. Developmental timing assays: to observe for any developmental delays in either pupariation 

or eclosion. 

2. Fat droplet staining with BODIPY 493/503: to observe fat body cell morphology and fat 

droplet content. 

3. Lipin antibody staining: to determine subcellular localization and intensity of the mutant 

protein expression.  

4. Triglyceride and protein assays: to determine if the phosphosite mutations affected the TAG 

and/or total protein production of the animals. 

5. Starvation assays: to detect differences in the ability for the mutant animals to tolerate 

nutrient deprivation.  

Phenotypic characterization of the mutants was done with animals of the genotype 

Lipinmutant allele/ Df(2R)Exel7095. These animals will simply be referred to as Lipin mutants in the 

descriptions that follow. Control animals were of the genotype LipinWT/ Df(2R)Exel7095, 

carrying the wild-type allele of the injection stock used for CRISPR mutagenesis. An exception 

were the developmental timing experiments where internal control animals were used that 

developed in the same vials as the Lipin mutants (Lipinmutant allele or Df(2R)Exel7095/LipinWT).  

 



 

 

 

 

Mutant Recovered 

by: 

Homozygous 

Viable 

Viable 

over Lipin 

Deficiency 

Development 

Timing 

Fat Droplet 

Morphology 

Lipin 

Staining 

TAG/ 

Protein 

Ratio 

Starvation 

Assays 

Lipin 

S147A 

Austin 

Morgan 

Yes Yes No delays No differences Increased 

Lipin 

staining in 

mutant 

No 

differences 

Females have 

higher starvation 

resistance 

Lipin 

S147E 

Austin 

Morgan 

Yes Yes No delays No differences Increased 

Lipin 

staining in 

mutant 

No 

differences 

Males have less 

tolerance to 

starvation 

Lipin 

Group 

1 S/T>A 

Heidi O’Dell Yes Yes Mutants show 

increased rate of 

pupariation 

Mutants show 

increased 

staining 

Increased 

Lipin 

staining in 

mutant 

Mutant 

males have 

higher 

TAG 

production 

No differences 

Lipin 

Group 

2 S/T>A 

Hannah 

Davis + 

Josephine 

Gottsponer 

Yes Yes No delays Mutants show 

increased 

staining 

Increased 

Lipin 

staining in 

mutant 

No 

differences 

Males have less 

tolerance to 

starvation 

 

Lipin 

S820A 

Stephanie 

Hood 

No Yes Mutants show 

decreased rate of 

pupariation 

No differences Increased 

Lipin 

staining in 

mutant 

Mutant 

females 

have a 

lower TAG 

production 

Males and females 

have less tolerance 

to starvation 

6
3
 

Table 11. Summary table for phenotypic characterization of CRISPR mutants. Overview of results obtained for the 

characterization of the indicated Lipin phosphosite mutant. 

 



 

 

 

2a. Lipin S147A / Lipin S147E 

 

The PI3K/Akt pathway is responsible for the metabolic effects of insulin. Insulin-

sensitive kinases are predicted to aid in the regulation of Lipin. One site which has been 

predicted to be a target of Akt is the serine at position S147 of Drosophila Lipin (Bodenmiller et 

al., 2008). Mutants where the single putative phosphorylation site, S147, was rendered either 

non-phosphorylatable or phosphomimetic were used to study the functional importance of this 

residue.  

Mutants where the serine residue at position S147 has been exchanged to alanine or 

glutamic acid are referred to as Lipin S147A and Lipin S147E, respectively. Both Lipin S147 

mutants are homozygous viable and viable over a Lipin deficiency.  

i. Developmental timing experiments 

 

Developmental timing experiments revealed no significant differences in development 

when compared to the internal controls. Neither Lipin S147A or Lipin S147E showed a delay in 

pupariation (Fig. 18 + Fig. 19).  No delay in eclosion or significant pupal lethality could be 

observed for either mutant. Sample size: n (Sl47A) = 33; n (control) =35 and n (S147E) =31; n 

(control)=31.  

ii. Fat droplet staining 

 

Fat droplet staining revealed no substantial differences in the fat body morphology of 

either Lipin S147 mutant when compared to the wild-type control. Cell shape and size as well as 

fat droplet number and fat droplet size were comparable to the control (Fig. 20). 
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iii. Lipin antibody staining 

 

Lipin antibody staining unveiled that both Lipin S147A and Lipin S147E indicate an 

increase in staining intensity compared to the control (Fig. 21).  Additionally, Lipin staining 

revealed that both forms of the mutant protein were present predominantly in the cytoplasm.  

iv. Triglyceride and Protein assays 

 

There were no statistically significant differences in the TAG/protein ratio between the 

experimental and control animals for either Lipin S147 mutant (Fig. 22).  

However, despite there being no indication that residue S147 is essential for the activity 

of Lipin in TAG synthesis during normal fed conditions, it is possible that this site is only 

sensitive to high levels of PI3K/Akt activity. Additional experiments were conducted to test if 

this site would respond to increased activity of Akt. To carry out this experiment, fly lines which 

expressed constitutively active Akt in both a Lipin S147A and Lipin wild-type background were 

generated. Implementing the GAL4/UAS system the following genotypes were created: Lipin 

S147A/Df(2R)Exel7095; r[4]-GAL4/UAS-Dakt[myr] and LipinWT/Df(2R)Exel7095; r[4]-

GAL4/UAS-Dakt[myr]. The r[4]-GAL4 driver is a fat body driver which is expressed in both 

larval and adult fat body and the UAS-Dakt[myr] responder expresses constitutively active Akt 

(Cavaliere et al., 2005).  

  Constitutively active Akt in the fat body of Lipin S147A males led to a statistically 

significant increase in TAG/protein ratios as compared to mutant males with normal Akt 

expression (Fig. 23). Lipin S147A females with constitutively active Akt showed no statistically 

significant differences in TAG/protein ratios when compared to mutant females with normal Akt 

expression (Fig. 23). Control animals of either sex with constitutively active Akt showed no 
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statistically significant increases in TAG/protein ratios compared to controls with normal Akt 

expression (Fig. 23).   

v. Starvation assays 

 

Lipin S147A males showed a comparable resistance to starvation as the males of the control 

group. However, Lipin S147E males displayed a highly significantly reduced starvation 

resistance (Fig. 24). Females from the Lipin S147A stock reveal a statistically significant increase 

in starvation resistance, whereas Lipin S147E females showed no significant difference in 

starvation tolerance (Fig. 25).  

 



 

 

 
 

Fig 18. Timing of pupariation for Lipin S147A mutants. Lipin S147A animals pupariate at similar times as the internal controls. 

Differences are not statistically significant.   
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Fig 19. Timing of pupariation for Lipin S147E mutants. Lipin S147E animals pupariate at similar rates as the internal controls. 

Differences are not statistically significant. 
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Fig 20. BODIPY 493/503 staining of Lipin S147 mutant fat body. Lipin S147A (A) and Lipin S147E (B) mutants have 

apparently similar fat body morphology when compared to the wild-type control (C). Animals have similar amounts of fat body and 

fat droplets and comparable cell size. Fat droplet size in both mutants is similar to fat droplet size in the control. Scale bar = 50 μm. 
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Fig 21. Lipin Antibody Staining of Lipin S147 mutant fat body. Lipin S147A (A) and Lipin S147E (B) mutants suggest higher 

expression levels of Lipin as compared to the control (C). Protein expression for all animals is predominantly cytoplasmic. Scale 

bar = 50 μm.  
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Fig 22. Triglyceride/protein ratio of Lipin S147 mutants. Lipin S147A(blue) and Lipin S147E (orange) mutants show 

comparable TAG/protein ratios when compared to the control (gray). Error bars: SD.  
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Fig 23. Triglyceride/total protein ratio of Lipin S147A mutants vs. Lipin S147A mutants expressing constitutively active 

Akt. Lipin S147A/Df(2R)Exel7095; r[4]-GAL4/ UAS-Dakt[myr] (light blue; (+)) mutant males but not females have a 

statistically significant increase in TAG/protein ratios as compared to animals where Akt is not constitutively active, Lipin 

S147A/Df(2R)Exel7095 (blue, (-)). Student’s t-test, p = 0.035. Control animals, LipinWT/Df(2R)Exel7095; r[4]-GAL4/ UAS-

Dakt[myr] (light gray) with constitutively active Akt (+) suggest a trend in the increase of TAG/protein ratios as compared to 

genotypes without active Akt (-); however, these data are not statistically significant. Error bars: SD.    
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Fig. 24. Starvation resistance of Lipin S147 mutant males. Lipin S147E (orange) but not Lipin S147A (blue) flies have less 

resistance to starvation than control males, LipinWT (gray).  Differences are highly significant. Log-rank, p < 0.0001.  
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Fig 25. Starvation resistance of Lipin S147 mutant females. Lipin S147A (blue) but not Lipin S147E (orange) flies have a higher 

resistance to starvation than control females, LipinWT (gray). Differences are statistically significant. Log-rank, p = 0.0029.  
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2b. Lipin Group 1 S/T>A  

 

Lipin Group 1 contains the putative Akt phosphorylation site, S147, as well as an 

additional 4 serine/threonine phosphorylation sites, S151, T178, T181, and S221. Interestingly, 

this cluster of putative phosphorylation sites is found in Drosophila Lipin but not mouse lipin1b 

(Fig. 4).  

A mutant where the serine/threonine residues of Lipin Group 1 were rendered non-

phosphorylatable was created. The Lipin Group 1 mutant is homozygous viable and viable over 

the Lipin deficiency.   

i. Developmental timing experiments 

 

When compared to the control animals, Lipin Group 1 animals experienced a small but 

statistically significant increase in pupariation rate (Fig. 26). No delay in eclosion or significant 

pupal lethality could be observed. Sample size: n (Group 1) = 151; n (control) =151.  

ii. Fat droplet staining 

 

BODIPY 493/503 staining of the mutant fat body showed no apparent differences in cell 

size compared to the control. However, the intensity of the staining for the Lipin Group 1 

mutants appears stronger when compared to the control animals (Fig. 27). 

iii. Lipin antibody staining 

 

Immunostaining of Lipin Group 1 third instar wandering larvae with an anti-Lipin 

antibody indicated an increase in Lipin expression in the Lipin Group 1 mutants as compared to 

the control animals (Fig. 28). Mutant and control protein resided in the cytoplasm.  

 

 

 



 

 

iv. Triglyceride and Protein assays 

 

Mutant Lipin Group 1 males had an elevated TAG/protein ratio. Mutant females showed 

no significant difference in TAG/protein ratio compared to the control (Fig. 29).    

v. Starvation assays 

 

Lipin Group 1 mutant males and females appear to have a similar resistance to starvation 

as the control animals (Fig. 30 + Fig. 31).  
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Fig 26. Timing of pupariation for Lipin Group 1 mutants. Lipin Group 1 (purple) animals appear to pupariate at slightly elevated 

rate compared to the internal control (black). Log-rank, p = 0.0011.   
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C D 

Fig 27. BODIPY 493/503 staining of Lipin Group 1 mutant fat body. Lipin Group 1 

mutants (A and C) have similar fat body cell size when compared to the control (B and D). 

Animals have comparable amounts of fat body. Intensity of staining appears stronger in the 

Lipin Group 1 mutants. Nuclear staining (A and B): DAPI (Blue). Scale bar: 100 μm.  
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Fig 28. Lipin Antibody Staining of Lipin Group 1 mutant fat body. Lipin Group 1 

mutants (A) appear to have an increase in expression of Lipin compared to the control (B). 

Protein expression for all animals is predominantly cytoplasmic. Colored boxes indicate 

zoomed images. Scale bar zoomed images = 50 μm. 

 

 

   79 

Lipin 

Lipin Group1/Df(2R)Exel7095 

 
Lipin WT/Df(2R)Exel7095 

 



 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M WT M WT

TA
G

/P
ro

te
in

Males Females
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 29. Triglyceride/total protein ratio of Lipin Group 1 mutants. Lipin Group 1 (purple) males have an elevated TAG/protein 

ratio compared to control (gray) males. Student’s t-test, p = 0.032. Lipin Group 1 and control females have similar TAG/protein 

ratios. Error bars: SD.  
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Fig 30. Starvation resistance of Lipin Group 1 mutant males. Lipin Group 1 (purple) flies have a similar resistance to starvation 

as control flies (gray). Differences are not statistically significant.  
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Fig 31. Starvation resistance of Lipin Group 1 mutant females. Lipin Group 1 (purple) flies have a similar resistance to 

starvation as control flies (gray). Differences are not statistically significant.  
 

 

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0 2 4 6 8 10 12

P
ro

p
o

rt
io

n
 S

u
rv

iv
in

g

Days of Starvation

Survival Fit

Lipin Group 1/Df(2R)Exel7095
Females

LipinWT/Df(2R)7095 Females

8
2

 

8
2

 



 

 83 

2c. Lipin Group 2 S/T>A mutant 

 

The putative phosphosites of Lipin Group 2 are predicted to be phosphorylated by MAP 

kinases (Fig. 4). MAP kinases mediate mitogenic effects and are key regulators in cell growth 

and proliferation (Vinayagam et al., 2016). These serine/threonine residues, therefore, may have 

functional importance for the regulation of Lipin.  

A mutant containing amino acid substitutions at all but the last 2 putative serine/threonine 

phosphorylation sites of Drosophila Lipin Group 2 was generated. Serine and threonine residues 

target here included: S356, T364, T366, S367, T385, S403, T404, S408, and S410. The Lipin 

Group 2 mutant is both homozygous viable and viable over the Lipin deficiency.   

i. Developmental timing experiments 

 

Lipin Group 2 mutants show no delays in development timing. Pupariation rates show no 

significant differences to the control (Fig. 32). No delay in eclosion or significant pupal lethality 

could be observed. Sample size: n (Group 2) = 20; n (control) = 20.  

ii. Fat droplet staining 

 

Cell size and shape were similar between the control and experimental animals (Fig. 33). 

However, BODIPY 493/503 staining appeared stronger in the Lipin Group 2 mutant.   

iii. Lipin antibody staining 

 

Lipin Group 2 mutant fat body showed a higher level of antibody staining than the 

control fat body (Fig. 34). Lipin staining was cytoplasmic in both the experimental and control 

animals.  

iv. Triglyceride and Protein assays 

 

Analysis of Lipin Group 2 mutants revealed no significant differences in the TAG/protein 

ratios for either male or female animals compared to the control (Fig. 35). 
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v. Starvation assays 

 

Males of the mutant background displayed a statistically significant decrease in starvation 

resistance compared to the control animals (Fig. 36). Lipin Group 2 mutant and control females, 

however, showed no statistically significant differences in starvation resistance (Fig. 37).  
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Fig 32. Timing of pupariation for Lipin Group 2 mutants. Lipin Group 2 (green) animals pupariate at the same rate as the 

internal control (black). Differences are not statistically significant.   
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B 

Fig 33. BODIPY 493/503 staining of Lipin Group 2 mutant fat body. Lipin Group 2 

animals (A and C) have similar amounts of fat body when compared to the control animals, 

(B and D). Animals have comparable cell size. Intensity of the staining, however, appears 

more prominent in the experimental genotype.  
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Fig 34. Lipin Antibody Staining of Lipin Group 2 mutant fat body. Lipin Group 2 

animals (A) show an increased expression of Lipin compared to the control (B). Protein 

expression for all animals is predominantly cytoplasmic. Colored boxes indicate zoomed 

images. Scale bar zoomed images = 50 μm. 
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Fig 35. Triglyceride/total protein ratio of Lipin Group 2 mutants. Lipin Group 2 (green) males and females have comparable 

TAG/protein ratios to the control animals (gray). Differences are not statistically significant. Error bars: SD.  
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Fig 36. Starvation resistance of Lipin Group 2 mutant males. Lipin Group 2 (green) flies have less resistance to starvation than 

the control flies. Log-rank, p < 0.0001.  
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Fig 37. Starvation resistance of Lipin Group 2 mutant females. Lipin Group 2 (green) flies have a similar resistance to 

starvation as control flies (gray). Differences are not statistically significant.  
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2d. Lipin S820A 

 

Amino acid residue S820 was of particular interest as it resides in the CLIP domain of the 

Drosophila Lipin protein and it is homologous to the residue at site S720 in mouse lipin1b. S820 

is situated between the catalytic and transcriptional co-regulator motifs and therefore was 

suspected to be functionally important for the regulation of the protein. 

 The Lipin S820A mutant was not homozygous viable. However, Lipin 

S820A/Df(2R)Exel7095 animals were viable. These results indicate that lethality of the 

homozygotes was not caused by the Lipin allele but by homozygosity for a secondary site 

mutation on the mutagenized chromosome. Viability of animals carrying the Lipin S820A allele 

over the Lipin deficiency verifies that a single copy of Lipin S820A is sufficient for survival. 

i. Developmental timing experiments 

 

Developmental timing experiments for the Lipin S820A mutant showed a slight but 

statistically significant delay in pupariation (Fig. 38). There appeared to be no delay in eclosion 

or significant pupal lethality. Sample size: n (S820A) = 20; n (control) = 20.  

ii. Fat droplet staining 

 

 BODIPY 493/503 staining of Lipin S820A mutants did not show any apparent 

differences in cell shape or size as compared to control animals (Fig. 39). Additionally, the 

number and size of fat droplets were similar between the animals.  

iii. Lipin antibody staining 

 

 Increased levels of Lipin antibody staining were seen in Lipin S820A animals (Fig. 40). 

Fat body tissue appeared to have higher intensity and more homogenous Lipin staining in the 

Lipin S820A animals compared to the control. Lipin subsided in the cytoplasm in the 

experimental and control animals.  



 

 

iv. Triglyceride and Protein assays 

 

 Lipin S820A males have similar ratios of TAG/protein as the control males (Fig. 41). 

However, Lipin S820A males have statistically significant differences in both the mean TAG 

(Fig. 42) and mean protein (Fig. 43) content per sample compared to wild-type animals. 

Lipin S820A females, show a statistically significant decrease in TAG production 

compared to control females (Fig. 41). Mutant females also display a statistically significant 

decrease in mean TAG per sample when compared to the control females (Fig. 42).  

v. Starvation assays 

 

Starvation assays were completed for animals with Lipin S820A males and females. 

Mutant males and females both showed statistically significant decreases in starvation resistance 

as compared to the controls (Fig. 44 and Fig. 45), respectively.  
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Fig 38. Timing of pupariation for Lipin S820A mutants.  Lipin S820A (red) animals pupariate at a delayed rate as compared to 

the internal control (black). Differences are statistically significant. Log-rank, p < 0.0001.  
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Fig 39. BODIPY 493/503 staining of Lipin S820A mutant fat body. Lipin S820A (A) mutants have similar fat body morphology 

when compared to the control (B). Animals have equivalent amounts of fat body and have comparable cell size. Scale bar = 50 μm. 
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Fig 40. Lipin Antibody Staining of Lipin S820A mutant fat body.  Lipin S820A mutants 

(A/C) have increased expression of Lipin compared to the control (B/D). Nuclear staining: 

DAPI (Blue). Scale bar = 100 μm.  
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Fig 41. Triglyceride/total protein ratio of Lipin S820A mutants. Lipin S820A (red) females display a statistically significant 

decrease in TA 40/protein ratio when compared to control females (gray). Student’s t-test, p =0.0098. However, Lipin S820A males 

have a similar TAG/protein ratio when compared to control males. Differences are not statistically significant. Error bars: SD.   
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Fig 42. Mean TAG content per sample for Lipin S820A mutants. Lipin S820A (red) males and females have statistically 

significant lower TAG content than control animals (gray). Student’s t-test, p = 0.0025 (males) and p = 0.0005 (females). Error 

bars: SD.   
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Fig 43. Mean protein content per sample for Lipin S820A mutants. Lipin S820A (red) males show a statistically significant 

decrease in total protein compared to control males (gray). Student’s t-test, p =0.0007 (males). Mean protein content for Lipin 

S820A females showed no statistically significant differences compared to control females. Error bars: SD.   
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Fig 44. Starvation resistance of Lipin S820A mutant males. Lipin S820A (red) flies have a statistically significant decrease in 

starvation resistance when compared to the control (gray). Log rank, p <0.0001.  
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Fig 45. Starvation resistance of Lipin S820A mutant females. Lipin S820A (red) flies have a statistically significant decrease in 

starvation resistance when compared to the control (gray). Log-rank p <0.0012.  
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IV. Discussion  

 

1. Characterization of the UAS-Lipin20S/T>A transgenic line 

 

1a. UAS-Lipin20S/T>A expression in the fat body results in Lipin loss-of-function  

phenotype 

 

 Lipin is a highly phosphorylated protein containing many serine and threonine 

phosphorylation sites of unknown importance. Unlike mammalian lipin 1 (Peterson et al., 2011), 

Drosophila Lipin does not translocate into the nucleus when the majority of these serine and 

threonine phosphorylation sites are exchanged with alanine (Fig. 16). Here, I created a transgenic 

UAS reporter line, referred to as Lipin20S/T>A, where 20 of the 26-presumed serine/threonine 

phosphorylation sites of Drosophila Lipin were rendered non-phosphorylatable. When expressed 

using the FB-GAL4 driver these animals had fat body cells which were extremely enlarged. 

These enlarged fat body cells sometimes contained two nuclei, experienced loss of cell adhesion, 

had minimal expression of Lipin, and contained few fat droplets (Fig. 16 & Fig. 15). The 

phenotypes displayed by animals with ectopic expression of Lipin20S/T>A in the fat body are 

similar to those of a Lipin loss-of-function mutant, which displays severely reduced fat body 

mass and fat droplet size (Ugrankar et al., 2011).  

While the large fat body cells with ectopic expression of Lipin20S/T>A displayed 

minimal Lipin staining, clusters of small cells surrounding the fat body contained considerable 

amounts of Lipin (Fig. 16, A/C). Given the intensity of the Lipin antibody staining, these small 

surrounding cells are likely fat body cells which contain almost no cytoplasm, concentrating the 

protein. This phenotype has previously been observed in Lipin hypomorphic mutants, 

dLipine00680/ dLipine00680 (Ugrankar et al., 2011).  

 In addition to the dramatic decrease in the fat body amount, the larval size was severely 

reduced when Lipin20S/T>A was expressed in the fat body (Fig. 14). However, despite stunted 
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growth and reduced fat body, these animals were still able to pupariate. However, pupariation 

was delayed. Experimental animals began to pupariate 10 days after egg laying as compared to 

the control which began pupariation at day 7 (Fig. 13). Pupariation occurred later than normal in 

the control animals, which was likely due to overcrowding. Since the experimental conditions 

were the same for both genotypes, this experiment was not repeated. However, in the future, the 

developmental timing crosses should be set up with less animals to avoid overcrowding the vials. 

Since there was a small number of experimental animals which pupariated, they were collected 

to see if eclosion would occur. Of the pupae collected, only 23% eclosed, indicating a high 

percentage of pupal lethality.  

 Because there was such a robust phenotype when Lipin20S/T>A was driven by the FB-

GAL4 driver, a relatively strong fat body driver, additional experiments were performed to see if 

Lipin20S/T>A would translocate to the nucleus if expressed with a weaker driver. The da-GAL4 

driver was chosen as a weaker, ubiquitous driver, and could be used to express Lipin20S/T>A 

throughout the entire animal at lower levels. Lower, ubiquitous expression of the Lipin20S/T>A 

did not result in a loss-of-function phenotype. Lipin antibody staining revealed that fat body was 

similar in size, shape, and quantity when compared to the control (Fig. 17). Increased nuclear 

staining could not be observed. Use of a stronger ubiquitous driver, such as a tubulin driver, may 

yield different results.   

Furthermore, the Lsp-GAL4 driver, a fat body driver which is switched on specifically in 

3rd instar larvae, was also chosen for additional experimentation. Since Lipin20 S/T>A would not 

be expressed until larvae enter their final stage before pupariation, animals would have normal 

functioning endogenous Lipin until they were done feeding. Despite fat body specific expression, 

these animals expressing Lipin20S/T>A under the control of the Lsp-GAL4 driver lacked any 
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noticeable phenotype when compared to the control animals (Fig. 17). This result suggests that 

ectopic expression of Lipin20S/T>A in the fat body during later larval stages does not seem to 

impact development. Again, increased nuclear localization of Lipin could not be observed. 

1b. Ectopic expression of UAS-Lipin20S/T>A results in a dominant-negative effect 

Expression of a Lipin protein that constitutively localized to the nucleus was the 

motivation to create the UAS Lipin20S/T>A transgenic line. Previous experiments done using 

mammalian cell culture were successful in creating a nuclear form of Lipin (Peterson et al., 

2011). In this mutant version of mammalian lipin 1, 17 serine/threonine phosphosites had been 

exchanged with alanine, rendering these sites non-phosphorylatable. The Lipin17 S/T>A mutant 

protein showed robust nuclear translocation in mammalian cell culture. The aim here was to 

recreate this affect with Drosophila Lipin to help better understand the nuclear function of Lipin 

and to learn how phosphorylation regulates the subcellular localization of Lipin. However, when 

Lipin20 S/T>A is expressed in the fat body of Drosophila during development, the animals 

experience a loss-of-function phenotype.  

While the Lipin proteins of both mice and Drosophila have a similar distribution of 

phosphorylation sites (Fig. 4), there are still differences in both the distribution and number of 

these amino acid residues and, thus, possibly, their potential functions. It is possible that an 

amino acid residue or cluster of residues essential for the PAP function of Lipin in Drosophila 

were rendered non-phosphorylatable in these experiments, thus resulting in a Lipin loss-of-

function phenotype.  While these animals still express endogenous Lipin, the ectopic expression 

of Lipin20 S/T>A appears to exhibit a dominant negative effect. A dominant negative effect 

occurs when a mutant form of a protein forms an oligomer with the wild-type protein, altering 

the function of the protein. It has been previously shown in mammalians that lipin proteins self-
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associate and exist predominately as stable homo and hetero oligomers (Liu et al., 2010). 

Induced mutations to mammalian lipin 1 did not affect the ability of the mutant to form 

oligomers (Liu et al., 2010). Thus, it seems likely that Lipin20 S/T>A could also from oligomers 

with the endogenous Lipin protein, resulting in a Lipin loss-of-function phenotype. 

It was shown here that ectopic expression of Lipin20 S/T>A does not lead to nuclear 

translocation of Lipin (Fig. 16). Rather, these experiments demonstrated that at least some of the 

phosphorylatable amino acid residues of Lipin are essential for proper Lipin function. To further 

investigate the functional roles of Lipin phosphorylation, and in an additional effort to create a 

constitutively nuclear form of Lipin, mutants of individual and clusters of these putative 

phosphorylation sites were created using CRISPR/Cas9 mutagenesis.  
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2.  Characterization and Analysis of Lipin Phosphosite Mutants  

 

2a. Subcellular localization may be impacted in Lipin phosphosite mutants  

The goal in creating these phosphosite mutants was to determine the functional 

importance of Lipin phosphorylation. The primary function of Lipin under normal feeding 

conditions is in triglyceride synthesis and in providing precursors for membrane lipids. Creating 

a subset of mutants that lack or mimic putative phosphorylation site(s) could provide valuable 

knowledge to better understanding the role that phosphorylation of Lipin has in energy 

homeostasis. 

Nuclear translocation of Drosophila Lipin could not observed in any of the Lipin 

phosphosite mutants created here. It is known that serine/threonine phosphorylation of lipin 1 in 

response to insulin prompts the protein to translocate away from the ER membrane and out of the 

nucleus into the soluble fraction. However, it is dephosphorylation by unknown protein 

phosphatases that is responsible for directing lipin 1 to the nucleus or ER compartments (Harris 

et al., 2011). As increased nuclear localization of the mutant protein was not observed in any of 

the phosphosite mutants, it may be possible that these phosphorylation sites are targets of 

phosphatases responsible to shuttle the protein to the ER for fat droplet synthesis rather than 

being responsible for the nuclear localization of Lipin. Thus, these animals with S/T>A 

mutations may have lost their ability to disassociate from the ER as a result of the introduced 

mutations. Co-staining with an ER antibody and the Lipin antibody could verify this hypothesis 

as intracytosolic changes in Lipin localization are subtle (Liu et al., 2010).  

Although there were no apparent differences in subcellular localization of the mutant 

protein in the Lipin antibody staining presented here, the images still provide important 

information. Antibody staining reveal increased intensity of mutant protein expression for all the 
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observed phosphosite mutants. The protein expression levels appeared more robust and 

homogenous in the mutant animals which should be further investigated. Increased Lipin 

expression levels may be a consequence of the decreased degradation of the mutant protein as a 

consequence of decreased phosphorylation of the mutant proteins (Kaushik et al., 2016). Western 

blot analysis should be done to confirm the increases in the protein levels seen with the antibody 

staining. Additionally, improved optical approaches are likely to help indicate any subtle 

differences that may have been overlooked. Confocal microscopy could provide higher 

resolution images that could help better indicate the subcellular localization of the mutant 

protein.  

Additionally, expression levels of Lipin 1 are hypothesized to influence fat droplet size 

and number in mammals and lipins are predicted to aid in expanding fat droplet size in later 

adipogenesis. This requirement for lipins in lipid droplet biogenesis could result from the role 

lipins have in phospholipid metabolism (Sembongi et al., 2013). ER structure could be altered if 

the membrane composition is changed due to altered expression of lipins and could therefore 

effect the formation of lipid droplets at the ER, leading to an increase in lipid droplet formation. 

Initial examination of the fat body morphology of all the Lipin phosphosite mutants appeared 

apparently similar to the corresponding control animals. However, in two of the mutants, Lipin 

Group 1 and Lipin Group 2, fat droplet staining revealed increased levels of staining (Fig. 27 & 

Fig. 33). As BODIPY stains for neutral fats, these data suggest that the mutant animals may 

contain more fat within each fat body cell compared to the control. However, triglyceride assays 

do not support this hypothesis. Only Lipin Group 1 males experience a statistically significant 

increase in TAG levels when compared to Lipin wild-type males (Fig. 29). Additional assays, 

such as a buoyancy-based density assays could be done to determine if there is a difference in the 
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amount of fat body between the mutant animals and the control (Hazegh et al., 2016). Again, use 

of higher resolution microscopy may also be helpful in evaluating the BODIPY 493/503 staining. 

Higher resolution images would allow for measurements of individual fat droplets and could be 

used to quantify any differences suggested by the lower resolution images.  

 Finally, it should be noted that the use of LipinWT/Df(2R)Exel7095 animals may not 

have been the best choice for the control animals for the staining experiments. As was seen with 

the developmental timing experiments, the internal controls served as a better control than the 

LipinWT/Df(2R)Exel7095 animals which may also be the case here. Additional control stains 

should be considered for the BODIPY 493/503 and the Lipin antibody staining to help resolve 

any apparent differences.  

2b.  Phosphorylation impacts starvation resistance in Lipin phosphosite mutants 

 

Knowing that the subcellular localization of Lipin determines the function of Lipin is key 

to understanding the phenotypes observed in the Lipin phosphosite mutants (Fig. 1). It has been 

shown previously that when TORC1 is downregulated by starvation or knocked-down by RNAi, 

there is a robust nuclear translocation of Lipin (Schmitt et al., 2015). Phosphorylation by TORC1 

under normal metabolic homeostasis renders Lipin to the cytoplasm. However, there are many 

other kinases and phosphatases that are suggested to have functional importance for the 

regulation of Lipin and that could impact the subcellular localization of the protein. Many of the 

Lipin phosphosite mutants presented here exhibit differences in starvation resistance that may be 

explained by the subcellular localization of the protein. A statistically significant increase in 

starvation resistance was only seen in one of the phosphosite mutants: Lipin S147A females (Fig. 

25). In contrast, statistically significant decreases in tolerance to starvation were seen in Lipin 



 

 108 

S147E males (Fig. 24), Lipin Group 2 males (Fig. 36), and Lipin S820A males (Fig. 44) and 

females (Fig. 45).  

The reduction of TAG levels may explain the reduced ability to withstand starvation for 

the Lipin S820A mutants (see section IV.2d: Functional importance of conserved Serine residue 

S820) (Fig. 42). However, for the additional phosphosite mutants presented, the inability to 

tolerate starvation is more likely a consequence of the subcellular localization of Lipin, rather 

than having to do with the total TAG levels of the animals. If Lipin is prevented from 

translocating into the nucleus, it cannot work as a transcriptional co-regulator where it helps in 

the transcription of metabolic genes. Therefore, regardless of the amount of Lipin available, if it 

is unable to translocate to the cell nucleus, it cannot work aid in gene regulation. The Lipin 

S147A females, which show a slightly higher resistance to starvation (Fig. 25), may have a more 

robust translocation of Lipin into the nucleus during starvation. Additionally, since Lipin S147E 

males display a statistically significant decrease in the ability to withstand starvation (Fig. 24), it 

is possible that by rendering the S147 phosphosite to glutamic acid that the ability for this mutant 

form of Lipin to enter the nucleus is reduced.  

As phosphorylation is known to impact the subcellular localization of Lipin, it is possible 

that these phosphosite mutants are impaired in their ability to change subcellular localization (as 

described in section 4B.1). Additionally, it may be possible that Lipin is still able to translocate 

to the nucleus during times of starvation, however, the protein may have experienced a 

conformational change as a result of the mutation(s) that may impact how it binds to other 

transcription factors. Additional experiments to examine changes in subcellular localization of 

the mutant Lipin proteins during times of starvation should be done to address these possibilities.  
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2c. Effects of ectopic Akt expression in Lipin S147A mutants 

Phosphorylation by TOR renders Lipin to the cytoplasm during fed conditions (Peterson 

et al., 2011; Schmitt et al., 2015). However, other serine/threonine protein kinases and 

phosphatases may also control the regulation of Lipin. One subset of kinases that are predicted to 

be involved in the regulation of Lipin are the insulin-sensitive kinases. Akt is an insulin-sensitive 

kinase that is responsible for the phosphorylation of FOXO in both mammals and Drosophila 

(DiAngelo et al., 2009). Drosophila Lipin has two amino acid residues that are putative targets of 

Akt including the serine residue at amino acid 147 and 1073 (Bridon et al., 2012). 

To determine if Lipin site S147 is of functional importance, a Lipin S147A and Lipin 

S147E mutant were constructed. Lipin S147A was created to study the effects when this site was 

rendered non-phosphorylatable and Lipin S147E was made to study the site when made 

phosphomimetic. However, these mutants did not show altered TAG/protein ratios (Fig. 22). 

These data suggest that while Lipin site S147 may be a target of Akt, it is not required for Lipin 

to respond to Akt signaling.  

Since there was no indication of any statistically significant differences in the TAG levels 

in the Lipin S147 mutant animals (Fig. 22), this prompted additional experiments to verify if 

amino acid residue S147 was only sensitive to high PI3K/Akt activity. Animals which expressed 

constitutively active Akt in both a Lipin S147A and Lipin wild-type background were generated 

using the GAL4/UAS system. Like the Lipin Sl47A mutants expressing normal levels of Akt, 

animals that expressed constitutively active Akt in the Lipin Sl47A background did not have a 

TAG/protein ratio that was statistically different from that of the corresponding control animals 

(Fig. 23).  
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Lipin S147A mutants expressing active Akt in the fat body were then compared to 

mutants expressing normal levels of Akt. Lipin S147A males, but not females, expressing 

constitutively active Akt had a statistically significant increase ratio of TAG/protein (Fig. 23). 

Lipin S147A males expressing constitutively active Akt showed a clear increase in TAG 

production. This result did not support the hypothesis that the S147 site was required for proper 

responses of Lipin to insulin-Akt signaling. Animals of all genotypes showed a response to the 

ectopic Akt expression (Fig. 23), which is consistent with previous work where the insulin 

receptor was activated ectopically, leading to increased triglyceride storage (DiAngelo et al., 

2009).  

While Lipin S147A males with normal Akt expression showed no differences in 

tolerance to starvation, the Lipin S147E males showed a strongly decreased starvation resistance 

(Fig. 24). Reduced starvation resistance cannot be attributed to reduced fat stores, as TAG levels 

were not different from those of the control males (Fig. 22). Again, while these data do not 

eliminate site S147 of Lipin as a target of Akt, they suggest that site S147 does not play an 

essential role in the control of Drosophila Lipin by insulin-Akt signaling. Rather, it seems more 

likely that this site is a target of TOR given that the Lipin S147E mutant males experience such a 

robust decrease in survival rate when subjected to starvation. This site may act in concert with 

TOR to render Lipin to the cytoplasm, which may explain the increase in survival rate of the 

Lipin S147A females (Fig. 25). 

To better understand the differences in starvation tolerance seen here between the Lipin 

S147A and Lipin S147E mutants, subsequent experimentation could be done. As the starvation 

assays provided the most sensitive results about these mutations, and starvation has been shown 

to cause nuclear translocation of Lipin (Schmitt et al. 2015), it would be prudent to examine the 
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fat bodies of starved larvae with both lipin antibody and fat droplet staining. These experiments 

will help indicate the subcellular localization of the mutant protein during times of starvation and 

any apparent changes in fat droplet morphology as a result of nutrient deprivation.  

 

2d. Functional importance of conserved Serine residue S820  

Of the Lipin phosphosite mutants examined only one mutant, Lipin S820A, showed a 

small, but statistically significant, developmental timing delay (Fig. 38). Located in the 

conserved CLIP domain, this serine residue is homologous to mammalian lipin 1 residue, S720 

(Fig. 4). Interestingly, this residue has been identified as being phosphorylated in mouse but not 

Drosophila (Harris et al., 2007). Since serine residue 820 is located within the conserved CLIP 

domain between the enzymatic (PAP) and transcriptional co-regulator (TRX) motifs of Lipin, the 

location of the putative phosphorylation site may have functional importance. S820 is just 3 

amino acids downstream of the PAP motif and 2 upstream of the TRX motif. Thus, the presence 

of this residue may be of importance for both functions, PAP and TRX, in Lipin. While the S820 

residue in Drosophila is homologous to S720 of mammalian lipin 1, lipin 1 in mammals has an 

additional phosphorylation site, T722, which may also be functionally important. Additionally, 

proximity to the TRX motif may imply that this residue also functions to control the 

transcriptional activity of Lipin (Reue, 2009).  

Both males and females of the Lipin S820A mutant have decreased tolerance to 

starvation (Fig. 44 & Fig. 45). This may be caused by lower levels of TAG in the animals (Fig. 

42). While there was a statistically significant difference seen in the TAG/protein ration in Lipin 

S820A mutant females, males had similar ratios of TAG/protein (Fig. 41). Reduction in the 

overall TAG levels, however, were statistically significant for both sexes (Fig. 42). However, 

mutant males also have less protein per animal (Fig. 43), suggesting that Lipin S820A males may 
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have a growth defect and/or a defect in protein synthesis. The presence of a growth defect is 

supported by an apparent reduction in body weight of the Lipin S820A males, although this 

decrease was not statistically significant. 

To further investigate the functional importance of S820, an additional mutant could be 

created, Lipin S820E, in which S820 is replaced by a phosphomimetic amino acid residue. The 

results yielded by the Lipin S820A mutant are likely either a consequence of the inability of 

S820 to be phosphorylated or a repercussion of introducing an amino acid exchange in a region 

that may be important for proper folding of the protein in its PAP and TRX domains. Further, a 

Lipin S820E mutant would be particularly interesting as this site, as previously mentioned, is 

phosphorylated in mammals but has not been identified as being phosphorylated in Drosophila. 
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V. Summary 

 

 Lipin is a dual functioning protein whose function varies based on subcellular 

localization. During times of sufficient food supply, Lipin works in the cytoplasm as a 

phosphatidate phosphatase enzyme, required for lipid synthesis. However, during times of 

starvation, Lipin translocates into the cell nucleus functioning as a transcriptional co-regulator to 

promote the expression of metabolic genes. What causes this shift in subcellular localization is 

only partly understood. Phosphorylation of Lipin by serine/threonine kinases is predicted to be 

one of the major regulators for these changes in protein localization within the cell. In my thesis, 

I used both the GAL4/UAS system and CRISPR-Cas9 mutagenesis to examine the functional 

roles of putative phosphorylation sites of the Drosophila Lipin protein. My results support the 

hypothesis that phosphorylation of specific serine and threonine residues of Lipin is of different 

functional importance. Phosphorylation of these sites can both increase and decrease pupariation 

rates, starvation resistance, and TAG production. Additionally, increased Lipin protein 

expression were seen for all Lipin phosphosite mutants. From these data, additional 

experimentation should include Lipin antibody staining of starved animals, and higher resolution 

microscopy, such as confocal, to detect subtle differences in fat body morphology and 

intracellular distribution of the mutant protein. 
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