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Abstract 

Since aromatic and charged residues are often present in various locations of 

transmembrane helices of integral membrane proteins, their impacts on the molecular properties 

of transmembrane proteins and their interactions with lipids are of particular interest in many 

studies. In this work, I used solid-state deuterium NMR spectroscopy in designed model peptide 

GWALP23 [GGALW(LA)6LWLAGA] with selective deuterium labels to addresses the pH 

dependence and influence of single and multiple “guest” histidine residues in the orientation and 

dynamic behaviors of transmembrane proteins. The mutations include Gly to His (G2/22 to 

H2/22), Trp to His (W5/19 to H5/19) and Leu to His (L8/16 to H8/16). For the glycine to 

histidine substitutions, either one or both, the peptides show similar biophysical properties to the 

host GWALP23 peptide, with modest motional averaging and tilted transmembrane orientations 

that scale with bilayer thicknesses. Yet, the dynamic motion about the average azimuthal rotation 

increases significantly when the helix carries only H22. However, when the tryptophan residues, 

W5 and/or W19 are replaced by histidines, the new histidine residues effectively anchor the 

transmembrane α-helix, providing similar transmembrane topology. A consistent ~30° shift in 

helix rotation is observed for Trp to His substitutions and found to be terminal-dependent. 

Modifying the core sequence of GWALP23 with His residues at positions 8 and 16 provides 

some interesting insights. The peptide is significantly tilted in DLPC, has multiple orientations in 

DMPC and surface bound in DPoPC and DOPC lipid bilayers, where the bilayer thicknesses 

increase consecutively from DLPC to DOPC. Further analysis for peptide with only H8 was 

performed. Results indicate multiple signal resonances, similar to -H8,16, but in a thicker lipid 

bilayer. Moreover, the helix with H8 alone significantly responds with pH in DLPC and DMPC 

lipids and two titration points for H8 was calculated. Finally, mutation of GWALP23 with two 



adjacent histidines at the N-terminal end (positions 4 and 5) causes a large increase in the 

motional averaging about helix azimuthal rotation, which in turn obscures the actual orientation 

and the peptide is found to adopt a very small tilt angle (). 
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1. Chapter 1: Introduction 

With the known significance of biological membrane and their constituent proteins, great 

efforts have been made for many years to understand the structures of lipid membranes and their 

interactions with membrane proteins. The lipid bilayers of biological membranes do not simply 

provide the matrix to embed proteins but they actively participate in the regulation of local 

structure, dynamics, and even the activity of a membrane 1. Very early experiments showed the 

importance of lipid components for  the glucose transport activity in red blood cells 2. Another 

relevant example is the loss of activity for mitochondrial respiratory complex I when extracted 

with  depletion of some lipid elements 3-4. Hence, the importance of the protein–lipid interactions 

in biology and medicine encourages the need to preserve the lipid environment while extracting 

proteins from membranes or even when studying membrane proteins.  

Membrane proteins, covering an estimated  30% of the entire human proteome 5, are a 

crucial class of macromolecules in living systems. Their functional roles including transferring 

specific molecules, ions and other types of signals into and out of the cell as well as being 

involved in enzyme catalysis make them one of the main focal points of pharmaceutical research 

recently. About 60% of the current drug and therapeutic targets nowadays are membrane proteins 

6. However, membrane proteins have been much less studied than globular proteins since their 

structural analysis is extremely challenging. Most of the membrane proteins fold into their native 

structures with proper amount of stability only when associated with lipids. These issues cause 

difficulties to crystallize and solubilize such proteins and hence complicates the experimental X-

ray crystallographic system. Until now most high resolution structures of membrane protein are 

from X-ray crystallography (although cryo-electron microscopy has recently contributed 3.4 Å  

resolution range structures), whereas another powerful technique called solid-state nuclear 
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magnetic resonances (ss-NMR) spectroscopy provides unique,  detailed, dynamically sensitive 

and biologically authentic information about membrane protein structure and dynamics while 

avoiding the complexities of crystallography. As an added bonus, with solid-state NMR 

experiments it is possible to study membrane proteins in their native-like membrane 

environments using a variety of lipid compositions ranging from lipid vesicles to bicelles, planar 

or stacked bilayers, and sometime even mimicking the cellular membrane environment.  

Among the important segments of membrane proteins are the transmembrane domains 

that may constitute ∼20-30 amino acids with an overall hydrophobic character. This 

hydrophobicity 7-9 as well as the thermodynamic equilibrium 10 are the primary driving forces for 

transmembrane domains to form  -helical structures and insert into the membrane. Then the 

orientation of  a such segment relative to the bilayer plane is determined largely by positive-

inside rule 11, which states that the positively charged extra-membrane domain should be 

exposed to the cytoplasmic side, while the neutral or negatively charged extra-membrane domain 

should orient on the opposite outer side of the membrane. But these rules are not always strictly 

followed by all transmembrane domains. In many proteins functionally important positively 

charged Lys and Arg residues can be found within the bilayer core. For example, in the four-

helix voltage sensor of voltage-gated potassium channels multiple Lys and Arg residues reside in 

their charged state and their movement with the membrane potential is vital for channel opening 

and closing 12-13.  

As mentioned earlier, the structures of lipid molecules and their compositions in the 

surrounding membrane modulate the functional activities of membrane proteins, but this is not 

the only factor to consider when researching membrane proteins. Membrane proteins are 

associated with a complex mixture of other proteins and are prone to aggregation in solution 14. 
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Moreover, most membrane proteins are quite large in size and often contain multiple membrane 

spanning domains bundled together. Thus, the orientation of each transmembrane domain is 

affected by the inter- or intra-molecular interactions between neighboring domains and lipids in 

the bilayer  as well 15. All of these factors make this system very complicated to study and that is 

why the interaction of membrane protein with lipid molecules and how it affects the overall 

activity of a protein are still not understood properly. To simplify the overall environment of the 

cell membrane system, several model systems that mimic the actual cell have been developed. 

This approach allows one to substitute the complex biological lipid bilayer membrane with 

individual synthetic lipids of particular hydrocarbon chain length. For mimicking the 

transmembrane segments of membrane proteins small single span α-helical peptides can be used. 

These model systems are simple enough to experimentally derive a fundamental understanding 

of the underlying mechanisms of cell biology, and yet can still approximate aspects of biological 

processes only emergent in more complex systems. The short alpha-helical model peptides are 

also advantageous for labeling selective residues isotopically through solid phase peptide 

synthesis. Because these systems provide results that are very comparable with the natural 

protein folding and unfolding behavior and allow for specific well-defined changes in the peptide 

sequence, these systems can be utilized to investigate the direct consequences of single- residue 

sequence  changes on the interactions with the surrounding lipid membrane.  

A model WALP peptide sequence (GWW(LA)nLWWA) was  an early model peptide that 

was primarily developed to study the general rules that govern peptide-lipid interactions such as 

hydrophobic mismatch and lipid phase behavior 16-18.The WALP peptides do not appear to 

aggregate, are strongly α-helical and consist of a repeating hydrophobic Leu-Ala core sequence  

flanked by two amphipathic Trp residues on each end. The next generation peptide framework, 
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GWALP23, which I have employed to initiate my research, is a WALP-like analog,  that features 

only a single Trp residue on each end, with Gly replacing the other Trp residues 19. This newer 

peptide has the same benefits of the WALP model yet with advantages of demonstrating much 

greater sensitivity to the lipid bilayer. GWALP23 also exhibits less dynamic averaging of solid-

state NMR observables including the 2H quadrupolar splitting and the 15N-1H dipolar coupling 19-

20. Therefore, it has been successfully used for various type of experimental research to study 

protein-lipid interactions and related features such as the anchoring properties of different 

interfacial aromatic residues 21-23, the influence of “guest” residues in the hydrophobic core of 

the peptide 24-27 and terminal α-helical fraying 28-29. This system is also utilized to elucidate the 

titration properties and pKa values  of several amino acid residues present at various depths of 

the bilayer 24, 26-27. In this dissertation model peptide GWALP23 has acted as a host framework 

for studying the influence of aromatic residues, particularly histidine, in different locations 

throughout the sequence. 

Histidine is a crucial residue in several functional roles of proteins. The unique structural 

characteristic of histidine is its side chain imidazole ring that is an aromatic motif which also is 

ionizable.  The ring can coordinate metallic cations (such as Ca2+ and Zn2+) and serve as a 

hydrogen bond donor and acceptor. These features of histidine side chains make this residue play 

multiple roles in molecular interactions. This residue has been shown to stabilize proteins 

through long range aromatic and electrostatic interactions with neighboring residues 30-33.  

A well characterized histidine-containing transmembrane helix is the M2 proton channel 

from Influenza A virus 34-35 that plays a critical role in virus replication. This tetrameric channel 

opens upon acidification and allows protons to flow from the endosome into the virion, which 

further leads to release of the virus’s genetic material into the cytoplasm. The histidine residue 



5 

 

(His 37) present near the center of  the transmembrane helix of each segment of the channel 

serves as the gating mechanism for the proton flow 36-37.  

The identified histidine residues in transmembrane domains of several membrane 

proteins have been found to play meaningful functional roles. Histidine is frequently present in 

protein active or binding sites. Its roles include the binding of prosthetic groups in the 

photosynthetic reaction center 38 and hemes in cytochrome c oxidase 39, participating in rat 

prostaglandin receptor PGF2 binding and forming a series of stacked rings in the pore formed by 

the mammalian copper transporter 1 homo-trimer that is required for maximal copper transport. 

Histidine also stabilizes the protein folding by forming a salt bridge with a negatively charged 

residue or by hydrogen bonding 39-40. The pH sensitivity of histidine is also critical for proteins. 

With the imidazole side chain pKa of about 6.5, it is a key catalytic residue in many enzymes. 

One of the most interesting examples is the catalytic triad of serine proteases that is comprised of 

residues His57, Asp102 and Ser195. The histidine residues (His57) in the triad acts as the 

general acid and base during the enzymatic reaction and makes Ser195 an unusually strong 

nucleophile and permits peptide bond hydrolysis 41. Histidine also has important participation in 

pH sensing of ion channels, especially the acid-sensing ones. Multiple histidine residues, located 

adjacent to one another 42 or in nearby positions 43-44, are present in the acid-sensing component 

of these channels. These important aspects of histidine have driven this research work to 

understand the particular impact of this versatile amino acid in protein-lipid interactions when 

present at different depths in lipid bilayer membranes and also when present by itself or in 

conjunction with other aromatic amino acids (i.e. tryptophan). 

Because the use of model peptides is an attractive way to study such protein-lipid 

interactions, including the orientations and dynamic properties of transmembrane peptides, 
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throughout this work GWALP23 has served the “parent” or host peptide where a histidine 

residue is inserted in different locations. Each section of this work addresses multiple related 

mutants of GWALP23 having single or pairs of histidine residues in different locations. The 

characterization of each of the new peptides was performed using solid-state 2H NMR 

spectroscopy with peptides incorporated in macroscopically aligned lipid bilayers. This 

technique is a powerful tool for determining the orientation and dynamics adopted by a 

transmembrane α-helix 45 such as that of the GWALP23 family peptides, since the multiple  

alanine residues within  the core of GWALP23 can be 2H-labeled to produce unique signals from 

each of the 2H-labels of the alanine methyl side chains. These signals, more specifically the 

quadrupolar splittings of 2H can be used to calculate the overall tilt and azimuthal rotation of the 

helix as described previously 18.  

Additionally, the ionization properties of histidine residues in different location of the 

sequence can be tested using solid-state deuterium NMR.  Similar research work has revealed the 

titration behavior of other polar residues such as Lys, Arg 24, Glu 27 and even His in different 

locations 26. Mutations involving  histidine in this study are completely different from previous 

work 26 and hence these two studies do not merge. Rather, this work provides more detailed ideas 

about the overall behavior of histidine containing peptides, which was initially introduced in the 

previous work 26.  

In Chapter 2, the histidine residue/s are introduced at the ends of peptide sequence, in 

positions 2 and/or 22, resulting three peptides, H2, 22WALP23; H2GWALP23 and H22GWALP23 

(sequences in Table 1). Previous research work performed with similar replacement involved 

charged (lysine, arginine) and aromatic (tryptophan) amino acid residues 19. Results from those 

studies revealed that tryptophans at positions 2 and 22 led (surprisingly) to highly dynamic 
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behavior of the transmembrane peptide helix, while the polar and charged residues Lys and Arg 

do not affect the helix orientation significantly. The choice of histidine substitution into these 

positions allowed comparison of the effect of the imidazole ring to compared to the indole ring 

for the dynamics of the transmembrane helix. Additionally, it was possible to test whether the 

His residue acts more as an aromatic residue and shows results similar to Trp or behaves more as 

a polar residue like Lys and Arg. It turns out from the results of Chapter 2 that the orientations 

and motional averaging of H2,22WALP are quite different from the Trp containing peptide 

(W2,22WALP), but instead are rather similar to the properties of the K2,22WALP and R2,22WALP 

analogs. Removal of either H2 or H22 from the sequence of H2,22WALP provides additional 

information. It is observed that an absence of H2 or H22 has no significant effect on peptide 

orientation, but interestingly the helix with only H22 (H22WALP) possesses higher dynamic 

averaging than the peptides with only H2 (H2GWALP23) or both H2 and H22 (H2,22WALP).  

Because interfacial aromatic or charged residues are notorious for anchoring 

transmembrane helices by forming hydrogen bonds with lipid head groups or with water 

molecules and thereby providing stable peptide orientation, tryptophan is frequently found at the 

interfaces of membrane proteins. The indole ring hydrogen bonding of Trp is important for the 

preference of this residue for an interfacial position. Histidine has an imidazole ring side chain 

which also forms hydrogen bonds in many proteins and helps in protein function (as explained in 

previous section). So, to obtain the probable “anchoring” properties of histidine, in Chapter 3 I 

have analyzed three peptides having one histidine (H5 or H19) and one tryptophan (W19 or W5), 

and then with only histidines (both H5 and H19) at positions 5 and 19 that are originally 

occupied by tryptophan residues in GWALP23 sequence (Table 1). Previous studies showed that 

single replacement of a Trp residue by Phe 46 or Tyr 23 near the N-terminal interface of the 
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GWALP23 results in similar transmembrane orientations. Replacement of only W19 or both W5 

and W19 with tyrosine also retained the defined orientation and low dynamics 22. Based on these 

precedents, in Chapter 3 peptides with H5 or H19 or both were examined to see the effect of 

such mutation on protein-lipid interactions. Results indicate that the orientations of all three 

peptides are essentially comparable, notably with an interesting aspect of the peptide fraying. 

When H5 is present in the helix, in both H5GWALP23 and GH5,19ALP23, the peptide 

experiences helical unwinding all the way up to core residue A7. This result is interesting since 

similar unwinding of residue 7 was also observed for a related mutant having histidine at 

position 5, H4,5GWALP23 29 (see Chapter 5).  

Several membrane proteins contain multiple histidine residues within their 

transmembrane domains 42-44. Histidine has the ability to shuttle protons with other functional 

groups or between two nitrogen atoms of its imidazole ring side chain. It also can transfer a 

proton with another histidine residue adjacent to it. This property of histidine could have an 

influence on the peptide-lipid interaction within the membrane bilayer. In Chapter 4, the possible 

effect of multiple histidine residues positioned within the hydrophobic core is tested, by 

incorporating a pair of histidine residues at positions 8 and 16 (Table 1). This results in the 

GWALP23-H8,16 peptide with two partially buried histidine residues that are equidistant from the 

peptide center and from their corresponding ends. Arg residues were previously introduced into 

the same locations within the helix and  produced some dramatic results 47. Notably, the helix 

with R8 and R16 shifts orientations from transmembrane to surface-bound depending on the 

bilayer thickness. In the case of GWALP23-H8,16 a similar transition of orientation is observed, 

but with a different lipid dependence, possibly due to the length of histidine residues. To further 

investigate such behavior, another similar peptide but with only histidine 8 (GWALP23-H8) is 
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examined (Table 1). Results indicate that the orientation transition occurs also for this single 

histidine peptide helix, although the second target orientation remains unclear. In addition, this 

single His 8 mutant responded dramatically with pH, such that the titration point for H8 in the 

GWALP23 framework was determined in two different lipids. 

Introduction of adjacent double aromatic residues at the N-terminal ends of GWALP-

family peptides was previously studied using tyrosine and phenylalanine 23 46. Results indicated 

that the presence of two neighboring Tyr residues leads to high dynamic averaging and makes it 

difficult to predict the azimuthal rotation (ρ) of the helix in membranes of different thickness. 

Moreover, the helix tilt angle becomes less sensitive to the bilayer thickness and the peptide 

exhibits high dynamics similar to W2,317,18ALP19, W2,3,21,22ALP23 and W2,22W5,19ALP23. But 

interestingly, Phe residues provides the peptide a well-defined and low-dynamic transmembrane 

orientation which is quite similar to GWALP23. To have some idea about the effect of adjacent 

aromatic residues, in Chapter 5 peptides with histidine residues at positions 4 and 5 were 

analyzed for comparison with a number of other peptides with pairs of identical residues at 

positions 4 and 5, including tryptophan, glycine and others. Results seem very promising. H4,5 

displays a high dynamic averaging with very low tilt in DMPC and DOPC lipid bilayers, but 

unlike Y4,5 its tilt angle changes slightly with membrane thickness. The -W4,5 peptide on the 

other hand, despite having adjacent tryptophans has no such issue with high dynamics and 

exhibits a well-defined tilted transmembrane orientation with low motional averaging. 

Importantly, the helix terminal unwinding or end “fraying” could also be assessed for each of the 

helices, by analyzing the signals from the juxta-terminal alanines A3 and A21. Interestingly, only 

H4,5GWALP23 shows an exceptional unraveling that involves residue A7. These observations 

along with those from peptides discussed in Chapter 3 indicates the possible direct involvement 
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of residue H5 for the unwinding of peptides that draws residues A7 away from the helical 

geometry of the core transmembrane segment. 

Overall, I have investigated multiple analogs of GWALP23 with single or pairs of 

histidine residue throughout various locations of the helix. As noted, these experiments are 

relevant for understanding fundamental properties of membrane proteins, generally speaking. 

Key findings include: i) terminal histidine residue/s present along with tryptophans preserve the 

overall properties of the parent peptide, with modest motional averaging and tilted 

transmembrane orientations that scale with the bilayer thickness; ii) in the absence of tryptophan 

anchors, the helices having histidine residues instead, exhibit similar orientations and other 

biophysical properties; iii) when a pair of histidine residues is  inserted into the hydrophobic core 

of the membrane, the peptides become more sensitive to bilayer thickness than the parent 

GWALP23 helix and display transitions from one orientation to another; iv) helices with only 

one partially buried histidine reveal similar results but with a different lipid dependence; and v) 

two adjacent histidine residues at the N-terminus of a peptide helix promote unraveling, increase 

the overall dynamics of helix and therefore obscure the actual orientation. These features will be 

explored in the following chapters. 
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 Table 

Table 1: Sequence of GWALP23 with histidine substitutions studied here 

 

Name of peptide Sequence Chapter 

discussed 

GWALP23 Ac-GGALWLALALALALALALWLAGA-amide  

H2,22WALP23 Ac-GHALWLALALALALALALWLAHA-amide Chapter 2 

H2GWALP23 Ac-GHALWLALALALALALALWLAGA-amide 

H22GWALP23 Ac-GGALWLALALALALALALWLAHA-amide 

GH5,19ALP23 Ac-GGALHLALALALALALALHLAGA-amide Chapter 3 

H5GWALP23 Ac-GGALHLALALALALALALWLAGA-amide 

H19GWALP23 Ac-GGALWLALALALALALALHLAGA-amide 

GWALP23-H8,16 Ac-GGALWLAHALALALAHALWLAGA-amide Chapter 4 

GWALP23-H8 Ac-GGALWLAHALALALALALWLAGA-amide 

H4,5GWALP23 Ac-GGAHHLALALALALALALWLAGA-amide Chapter 5 

W4,5GWALP23 Ac-GGAWWLALALALALALALWLAGA-amide 

G4,5GWALP23 Ac-GGAGGLALALALALALALWLAHA-amide 
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2. Chapter 2: Ionization Properties of Single and Paired Histidine Residues When Present 

Outside the Tryptophan Cage of a Transmembrane Alpha Helix. 

 Abstract 

GWALP23, a constructive low-dynamic model peptide framework, widens the range of 

protein-lipid interactions that can be investigated when potentially charged residues are present. 

In this context, I have examined the effects of single or pairs of histidine residues when present 

in close proximity to the stabilizing interfacial tryptophan residues W5 and W19 of the 

GWALP23 helix. To this end, I substituted residues H2 and H22 into the parent sequence 

(acetyl- GGALW5LALALALALALALW19LAGA-amide) of GWALP23. Specific 2H-labeled 

alanine residues within core of the helix were incorporated for detection by means of solid-state 

2H NMR. The signals from NMR spectroscopy and orientational analysis suggest marked 

differences between the peptide helices with H2,22 compared to those having W2,22 at the same 

positions. Notably, the properties of membrane-spanning H2,22WALP23 helices are similar the 

those glycine, arginine or lysine at positions 2 and 22. Additionally, to address the effect of 

single histidine residue at the peptide terminus, I removed either H2 or H22 from the sequence of 

H2,22GWALP23. Peptide helices having H2 or H22 display tilted transmembrane orientations in 

bilayers of DLPC or DOPC, with little or no pH dependence of the orientations from pH 2 to pH 

8. Comparing the results from H2,22WALP23 with those observed when only H2 or H22 is 

present, I surmise that the presence, locations and number of histidine residues is more important 

for the motional averaging of a transmembrane helix than for the average preferred helix 

orientation.  
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 Introduction 

Membrane-spanning proteins have distinct segments composed of hydrophobic amino 

acid residues flanked by interfacial loops that tend to be rich in aromatic amino acids. In integral 

membrane proteins and peptides, it has been found from statistical analysis 1-6 and genomic 

databases 6-8 that the aromatic amino acids are not uniformly distributed but rather are 

significantly localized at the membrane-water interfaces. The major driving force causing the 

aromatic amino acids to prefer the interfacial location is thought to be the hydrophobic effect, but 

their involvement in hydrogen bonding with lipid carbonyl groups or interfacial water molecules 

as well as the dipole-dipole interactions in the interface region are additional contributing factors 

9-11. 

Because membrane proteins are inherently complex in structure, there are difficulties for 

the structural and functional characterization of membrane proteins using experimental 

techniques. Implementation of synthetic model peptides has proven invaluable to overcome the 

difficulties of research focused on fundamental principles of protein-lipid interactions. A good 

example model peptide is GWALP23 12which not only solves the issues related to complexity of 

biological membrane proteins, but also allows for a wealth of information derived from single or 

multiple residue replacements throughout its sequence. In historical sequence, GWALP23 

peptides were derived primarily from “WALP” model peptides 13 by reducing the number of 

tryptophan (W) residues 12. Since the development of GWALP23, this peptide has been used as 

“host” for several amino acid residues to study the influence of particular amino acids such as 

those having aromatic, charged or polar residues in various locations on the scaffold of a 

transmembrane helix. 
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GWALP23 was developed by introducing two interfacial glycine residues G2 and G22, 

which were incorporated by removing two tryptophans from the original sequence of WALP2314-

15.  These paired W to G substitutions lead to less molecular dynamic averaging than was 

observed with the WALP23 and WALP19 helices 13. Indeed, when four tryptophans flank a core 

helix, whether W2,3,21,22 or W2,5,19,22, the high dynamic behavior of the transmembrane peptide 

helix is maintained, indicating the probable incompatibility of more than one nearby aromatic 

ring at a membrane interface 12. In this context, a choice of histidine for these positions allows 

me to verify this probability and to compare the effect of imidazole ring versus indole ring for 

the dynamics of the transmembrane peptide helix. Alternatively, charged residues such as lysine 

and arginine are known to have only minor effects on the peptide orientation and dynamics 12. 

Here, I have incorporated histidine residues H2 and H22 in the sequence of GWALP23 

(with G2 and G22) to address whether the high dynamic averaging in WWALP23 (with W2 and 

W22) is specific only for tryptophan residues or whether any aromatic residue can give rise to 

such behavior. Another important aspect to test here is the possibility of cation-π interactions 

involving histidine, that have been described to have a critical role in ligand binding 16-17 and 

catalysis in ion-channels 18-20 and G-protein-coupled receptors 21 The interaction between 

protonated histidine and an aromatic side chain can stabilize -helices 22-23. In my study, the H2 

and W5, or H22 and W19, pairs within the modified version of GWALP23 are very close to each 

other in the helix geometry, such that the results from this system could provide insight into 

possible cation- π interactions between residues on adjacent helical turns. Moreover, I have 

expanded the experiments with two additional peptides that have either H2 or H22 (but not both), 

to understand which interaction (N-terminal or C-terminal) might have more effect in stabilizing 

a peptide helix. My results reveal that histidine residues at positions 2 and 22 behave quite 



19 

 

differently from the tryptophans observed previously 12, and this behavior also differs depending 

on the location of the histidine residue.  

 Materials and Methods 

N-Fmoc protected amino acids and rink amide resins were purchased from NovaBiochem 

(San Diego, CA) and (Louisville, KY). Commercial L-alanine, deuterated at C and C carbons 

(Ala-d4), from Cambridge Isotope Laboratories (Andover, MA) was derivatized with an Fmoc 

protecting group as described previously 24-25.1H-NMR spectroscopy was then used to confirm 

the successful Fmoc-Ala-d4 synthesis. DLPC and DOPC synthetic lipids were purchased from 

Avanti Polar Lipids (Alabaster, AL). Histidine and tryptophan side chains were protected with 

trityl and t-butoxycarbonyl protecting groups and were purchased from Novabiochem and 

Bachem.  

Peptides were synthesized on a model 433A solid-phase peptide synthesizer (Applied 

Biosystems; Foster City, CA) using modified FastMoc® chemistry, with extended deprotection 

and coupling times where needed. Two deuterium-labeled alanines at ~50% and 100% isotope 

abundance levels were incorporated in a single peptide, allowing the NMR signals to be 

distinguished and assigned based upon the relative intensities. The final residue on each peptide 

was acetyl-Gly to yield a blocked, neutral N-terminal.    

After synthesis, peptides were simultaneously deprotected and cleaved from rink amide 

resin with a peptide cleavage solution containing TFA:phenol:triisopropylsilane:water in a 

85:5:5:5 ratio. Crude peptides were purified on a reversed-phase HPLC octyl-silica Zorbax Rx-

C8 column with 9.4 x 250 mm dimensions and 5 m particle size from Agilent Technologies 

(Santa Clara, CA). A gradient of 92-96% methanol (with 0.1% trifluoroacetic acid (v/v)) at a 
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flow rate of 1.7 ml/min or about 15 minutes was used for each peptide purification. Finally the 

peptides were lyophilized multiple times with 1:1 mixture of acetonitrile:water  to ensure 

complete removal of TFA. The identity of peptide and deuteration pattern was then confirmed by 

MALDI mass-spectrometry (Fig. S1).  

Circular dichroism measurements were performed on peptides incorporated into small 

unilamellar vesicles of DOPC at 1/60 (mol/mol) peptide/lipid (P/L) in unbuffered water, 

obtained by ultrasonic treatment. Spectra were recorded at 22 °C on a Jasco J-1500 

spectropolarimeter, using a scan speed of 20 nm/min   in a cell of1.0 mm path length, 1.0 nm 

band width, and 0.1 nm slit. An average of six scans were recorded to enhance the signal-to-

noise ratio. 

Solid-state NMR samples were prepared, as described previously 26 using 

macroscopically aligned lipid bilayers. After quantification of obtained purified peptides, 1.33 

mol (~ 3 mg) peptide was aliquoted and mixed with 80 mol of lipid to achieve 1:60 P/L molar 

ratio. Solvents were removed under a stream of nitrogen and samples were dried under vacuum. 

The mixture peptide-lipid was redissolved in methanol:water 95:5 and distributed evenly among 

34 glass slides (4.8 × 23 mm; Marienfeld, Germany) and then dried under vacuum for 48 h. The 

dried P/L films were then hydrated with buffers of required pH, made from 2H-depleted water 

(Cambridge), sealed in a glass cuvette and incubated at 40°C for minimum 24 h (or more 

depending on pH) before measurement. 

Solid-state NMR spectra were recorded at 50°C using two Bruker Avance spectrometers 

(Billerica, MA), each operating at a proton frequency of 300 MHz. For each NMR sample 

spectra were recorded with the membrane normal either parallel (=0°) or perpendicular (=90°) 
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to the applied magnetic field. At first the samples were subjected to 31P NMR, decoupled with 

1H, to confirm bilayer alignment within each sample. For 2H NMR spectroscopy, spectra were 

obtained using a quadrupole echo pulse sequence 27, with full phase cycling, 3.2 s pulse length, 

105 s eco delays and 120 ms of recycle delay. Typically, 0.9 to 1.5 million free induction 

decays were recorded, with applied exponential weighting function of 100 Hz line broadening 

(prior to Fourier transformation). For a peptide with fast averaging around the lipid bilayer 

normal the 2H quadrupolar splittings (q) observed at =90° have absolute magnitude of ½ 

those at =0° 28. 

The signals of 2H NMR, arose from CD3 groups of Ala-d4 residues  of peptides were 

analyzed according to Geometric Analysis of Labeled Alanines (GALA) method described 

previously 26 29. This is a semi-static analysis based on a relationship between the alanine CD3 

quadrupolar splitting (q) and the angle  between the alanine C-C bond vector and the 

applied magnetic field 26. GALA analysis provides information of helix orientation, by means of 

the average tilt τ of the helix axis, the azimuthal rotation ρ, and the principal order parameter Szz 

as variables. Additionally, we have employed another method called “Modified Gaussian 

Analysis” 30 to reconfirm and elaborate the results from GALA analysis.  

 Results 

In this study, I investigate the interactions of interfacial histidines, present alongside 

trypotophans, flanking a transmembrane segment that is similar to helices of biological proteins. 

I also examine the ionization and role of the His imidazole ring side chain in orienting the helix 

in a lipid bilayer. GWALP23 is an ideal model system for studying the ionization properties of 

charged residues as have been carried out in recent years with Arg, Lys, His and Glu residues 31-
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34. Previous studies with Lys, Arg and Trp along with Gly in the positions 2 and 22 show some 

very interesting results. For peptides with positively charged Lys and Arg residues, the apparent 

tilt angle generally increases by a small amount in X2,22WALP23, as compared to GWALP23 

where X is Gly 12. Furthermore, Arg causes marginally larger tilts than does Lys in the 

equivalent positions 2 and 22. The tilt direction and more importantly the dynamics change more 

dramatically when two Trp residues are incorporated in these two positions. Based on these 

results, I have decided to incorporate histidine residues at positions 2 and 22, outside the 

tryptophan cage of GWALP23, to give the sequence acetyl-GH2ALW5LALALALALALAL-

W19LAH22A-amide (Table 1). Then, for comparison, I removed one histidine from either 

position 2 or 22 and replaced it with glycine, to yield peptides anchored by two aromatic chains 

(imidazole and indole) at one end, while the other side is anchored only Trp. This type of 

substitution resulted in two assymetrically anchored peptides, H2GWALP23 and 

H22GWALP23. The former one has two anchors at N-terminal side (H2GWALP23) and one 

anchor at the C-terminal side, while the later peptide has the reversed scenario. The sequences of 

each peptide mentioned here are listed in Table 1.  

After successfully synthesizing the peptides, their molecular weights as well as 

deuteration patterns were verified by MALDI-TOF Mass Spectrometry (Figure S1).  Because all 

of the peptides have a hydrophobic core composed of alternating Leu-Ala residues, they are 

expected to adopt an -helical conformation. To check the secondary structures, I recorded CD 

spectra for the H2,22WALP23, H2GWALP23 and H22GWALP23 peptides incorporated into 

hydrated DLPC bilayer membranes. Each peptide exhibited mean residue ellipticity profiles 

typical of an -helix, characterized by minima at 208 and 222 nm and by the ratio 222/ 208 

between 0.74 and 0.86 (Figure S2). For the aligned samples, the sample orientation was checked 
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with solid-state 31P NMR, performed on a 300 MHz Bruker spectrometer with broadband 1H 

decoupling, to test for correct bilayer alignment. Figure S3 shows the peaks at =0° and =90° 

sample orientations for all three peptides considered in this study in DLPC lipid membranes. The 

DLPC bilayers that hold the embedded peptides are well aligned.  

Comparison of H with G, K, R and W at positions 2 and 22 

Solid-state 2H NMR spectroscopy reveals well-defined signals for the 2H-Ala methyl 

groups of H2,22WALP23 in DLPC and DOPC lipid bilayers (Figure 2 top panel). Each 2H-label at 

the core of this peptide also produces a distinct quadrupolar splitting magnitude (|q|). These 

signals as well as quadrupolar splitting values are indicative of a single predominant tilted 

transmembrane orientation in each lipid. The spectra observed previously for XWALP23 

peptides with similar mutations, where X = G, R, K and W suggest that depending on the size 

and identity of side chains at positions 2 and 22, the overall peptide behavior can vary 

significantly 12. For the G2 and G22 peptide, as mentioned earlier, the varying quadrupolar 

splittings for the alanine CD3 groups suggest a relatively well-defined tilted transmembrane 

orientation, which changes with the thickness of bilayer. Very similar features are observed 

when the X residues are either arginine or lysine. However, when two additional tryptophans 

(W2 and W22) are present outside the anchoring tryptophan residues (W5 and W19), the spectra 

for core alanine 2H-labels and their quadrupolar splitting magnitudes changes drastically, which 

eventually resulted in a peptide orientation with significant low apparent tilt and high dynamic 

averaging. 

To investigate how histidine side chain in the same positions affect the peptide behavior, 

I have compared the spectra and 2H quadrupolar splitting magnitudes of the H2,22 peptide with the 
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G2,22; K2,22; R2,22 and W2,22 analogs. I observe that the measured quadrupolar splittings (Table 2) 

for H2,22 are quite different from the W2,22 peptide, even though both carry aromatic side chains. 

HWALP displays a |q| range from 4-35 kHz in DLPC and 1-17 kHz in DOPC (Table 2). 

Conversely, these ranges for WWALP are moderate in DOPC (about 2-14 kHz) and significantly 

narrow in DLPC (1-14 kHz). Interestingly, the q magnitudes of HWALP are in close proximity 

to those for GWALP, RWALP or KWALP (Table 2 and 12), which implies that the orientations 

of this double-histidine peptide in DLPC and DOPC lipid membranes are likely to be similar to 

those of the GWALP, RWALP and KWALP helices.  

Using the Geometric Analysis of Labeled Alanines (GALA) method to plot quadrupolar 

splittings |q| vs. radial locations, I have analyzed the apparent tilt () and rotation () of the 

HWALP23 helix. Figures 6 and 7 show the wave plots of HWALP23 along with the control 

peptide GWALP23 (with G2 and G22) and two other single histidine peptides (which will be 

discussed later) in DOPC and DLPC lipid membrane respectively. These plots and the variables 

calculated from the GALA method (listed in Table 3) indicate minor changes in the orientations 

of peptides when G2 and G22 are replaced by histidines. The HWALP peptide exhibits a tilted 

transmembrane orientation that scales with the membrane thickness to adjust hydrophobic 

mismatches. In DLPC, the apparent tilt () angle of HWALP in DLPC is 26o, about 5o higher 

than GWALP23. This minor change in tilt angle is absent when the helix is moved to thicker 

DOPC membrane, meaning the tilt angles of HWALP and GWALP are essentially identical 

(about 6o).  As expected, the modified Gaussian analysis 30 more accurately addresses the 

dynamic averaging and predicts slightly higher tilt angles, about 10o for the G2,22 and H2,22 

helices (Table 3). The observed azimuthal rotations () for H2 and H22, on the other hand, are 
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slightly different in DOPC and almost same in DLPC. Now these observations remain consistent 

when we compare the results of HWALP with RWALP and KWALP.  

Comparison of H2,22 with H2 and H22 

For further analyzing the residue/s that control the orientation of the HWALP23 peptide 

in lipid bilayers of DLPC and DOPC, I extended the study with two more peptides by removing 

either of the two histidines from the HWALP sequence and incorporating glycine in that position 

(Table 1 and Figure 1), resulting H2GWALP23 and H22GWALP23. Figure 2 displays and 

compares the 2H NMR spectra for labeled core alanine residues 7, 9, 11, 13, 15 and 17 for 

H2,22WALP, H2GWALP and H22GWALP peptides in DOPC lipid bilayer. The spectra for the 

same peptides in DLPC lipid membranes are shown in Figure S4. Each spectrum in Figures 2 

and S4 represents signals for two deuterated alanines, labeled with different 2H isotope 

abundancy (50% and 100%). Both H2 and H22 peptides exhibit sharp signals and well-resolved 

spectra for labeled core alanines, with wide ranges of 2H quadrupolar splittings. In DOPC lipid 

membranes, these magnitudes range from 1.5 kHz to 19.5 kHz for the H2 peptide, slightly larger 

compared to the previous peptide with H2,22 (1-17 kHz) (Table 1).  Similar ranges of quadrupolar 

splittings are also observed in DLPC (1-36 kHz for H2 and 4-35 kHz for H2,22). For the other 

peptide H22, with histidine near C-terminal end, the |q| ranges are 1-14 kHz in DOPC and 7-26 

kHz in DLPC. Although these ranges are not significantly narrow, they are somewhat reduced 

and one observes similarity of these magnitudes with those of the highly dynamic W2,22 peptide, 

especially in DOPC (Table 2 and ref. 12).  This similarity suggests the possibility of an increased 

extent of motional averaging (discussed in next section) of the 2H NMR signals when H22 is 

present.  
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Comparing the quadrupolar wave plots and the apparent tilt () and azimuthal rotation 

() obtained from GALA analysis (Figure 6, Figure 7 and Table 3), it is evident that all three -

helices with single or a pair of histidine residues close to the termini adopt stable transmembrane 

orientations in bilayers of two different thicknesses (C12:0 and C18:1), without any significant 

change in overall orientation. To adjust the hydrophobic mismatch between lipid and peptide, all 

three peptides scale their tilt () and rotation angles () when moved from thinner DLPC to 

thicker DOPC membranes. For the H2 peptide in DLPC bilayers the resulting tilt angle is 

identical to the observed tilt for H2,22 peptide (Table 3), whereas in DOPC it is ~3o more tilted. 

The H22 peptide, conversely, has same tilt magnitude to H2,22 in DOPC but ~3o less in DLPC.  

The observed azimuthal rotation angle for both of these single histidine peptides remains similar 

to the peptide containing H2 and H22 in DLPC and about 10o – 15o different in DOPC. The 

combined results suggest that the presence of only one histidine, either at the N- or C-terminal, 

does not much affect the overall peptide orientation.  Rather, the helices align themselves with an 

orientation similar to the helix carrying histidines at both ends. These features suggest that the 

more interior Trp residues at positions 5 and 19 remain the primary determinants of the helix tilt 

and rotation.  

To further assess and verify the results obtained from the semi-static GALA analysis, I 

used a second three-variable method known as the modified-Gaussian approach 30(described in 

materials and method section). This approach generally agrees with the predictions of the GALA 

calculations and provides some additional information about the motional averaging of the 

peptides with histidine. I find that the helix with H2 displays only modest values of rotational 

slippage (σρ) ranging from about 36o in DLPC to 46o in DOPC (Table 3). The H22 isomer, on 

the other hand, has a very low σρ value of 8o in DLPC, which is lower than that observed for 
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GWALP23. Interestingly, nevertheless, the value of σρ increases significantly to about 70o in 

DOPC (Table 3). When the two histidines are combined in a single peptide to produce the 

H2,22WALP helix, the rotational slippages are intermediate, with values of about 16o in DLPC 

and 56o in DOPC (Table 3). These results indicate significant motional differences, suggesting 

that although the apparent tilt and rotation of the H2 and H22 isomers are not very different, their 

motional averaging changes markedly when the location of the histidine side chain is moved 

from position 2 to 22.  Also notable, and perhaps due to an averaging of effects, the peptide 

having both H2 and H22 displays an intermediate range of dynamics.  

Ionization of histidine in H2, H22 and H2,22 peptides 

In attempts to determine the titration point of the histidine side chain/s present at different 

locations of the transmembrane -helices, I have used solid-state NMR to monitor the changes in 

the quadrupolar splittings of 2H-labeled alanine residues A7 and A9 of the three peptides studied 

here. The underlying concept is that a change in ionization might affect the properties of the 

global helix which in turn might alter aspects of the 2H NMR spectra 32.  The spectral changes 

with pH are nevertheless small to nonexistent for these particular helices. Changing the pH 

environment of peptides from acidic to basic (pH 2-8) causes little change in the spectral quality 

or the magnitude of quadrupolar splittings |q| of GH2,22ALP23 (Figure 3B), H2GWALP23 

(Figure 4B) or H22GWALP23 (Figure 5B) in DOPC bilayers. For the DLPC lipid, there are some 

minor changes in the signals between pH 4 and pH 6 in each peptide, with the A7 signal being 

more visible and slightly shifted from A9 signal (Figure 3A, 4A and 5A). But these changes are 

not enough to plot any titration curves. Therefore, it is probable that the helices with either H2 or 

H22 or both respond slightly with the titration of histidine side chains when the membrane is 
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thinner and thus the side chains are more exposed to the surface. In the thicker lipid DOPC, the 

loss of pH-dependent peptide response could be due to the lower amount of tilt displayed by the 

peptides. 

 Discussion 

It has been well established that model peptides are useful tools for the investigation of 

fundamentals of protein–lipid interactions and their dynamic aspects 35-36. An example of such a 

model system that has been widely used since the last decade is the GWALP23 family of 

peptides. With a developed single-span model peptide helix, with amino acid sequences typical 

of and similar to biological transmembrane protein segments, GWALP23 allows easier access to 

and interpretation of single or multiple-residue replacement experiments 32 31 30 37 33-34. I have 

taken advantage of this feature of GWALP23 and performed some mutations at the N- and C-

terminus of the helix. The analysis involved incorporation of histidine residues at positions 2 and 

22 or either one of them, to analyze the direct consequences of histidine side chain interaction 

with neighboring tryptophan residues and surrounding lipid membrane as well. This approach 

also allows investigations of the ionization of histidine side chain/s present and how the peptides 

respond to it.  

In GWALP23 peptide, when the two glycine residues from positions 2 and 22, are 

substituted by positively charged amino acids such as lysine or arginine, the properties of the 

peptide remain quite similar, with a small increase in apparent tilt angle and no change in tilt 

direction 12. But when two tryptophan residues are incorporated in these positions, giving rise to 

extra tryptophan residues, the direction of tilt becomes less well defined and the magnitude of tilt 

also loses its tendency to scale with lipid bilayer thickness 12. These behaviors are also observed 
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for few other GWALP-like peptides WALP19 and WALP23 26 29. Notably, the common feature 

among these mentioned high dynamic peptides is the presence of multiple tryptophan residues at 

both ends of the transmembrane segment, which possibly compete with each other for a 

preferred position and thereby give rise to extensive dynamic averaging of solid-state NMR 

observables. Because no other aromatic residues at positions 2 and 22, one helical turn away 

from the Trp side chains at positions 5 and 19, have been investigated yet, I decided to perform 

the experimental investigations of the dynamics of peptide helices with histidine residues, which 

are both aromatic and positively charged (at low pH), in these two positions. 

The experiments and analysis indicate that, although the histidine imidazole ring 

possesses some properties similar to the tryptophan indole ring, the presence of an imidazole ring 

close to a tryptophan indole ring causes very different properties than two closely located indole 

rings. The histidine side chain is quite compatible with a nearby tryptophan side chain, which is 

indicated by the sharp resonances and wide ranges of quadrupolar splitting magnitudes from 2H-

NMR (Figure 2 and Table 2). With the presence of H2 and H22, rather than G2 and G22, I 

expected this peptide to exhibit NMR observables similar to W2 and W22, but in actuality it is 

completely opposite. The GH2,22ALP peptide adopts a well-defined tilt in lipid bilayers and 

expresses only moderate levels of dynamic averaging (). Its tilt (0) also scales with bilayer 

thicknesses, from 26o in DLPC to 6o in DOPC. The rotational preferences (0) also remain very 

similar to those of the host peptide GWALP23. This means that histidine despite being aromatic 

residue, prefers orientations displayed previously by non-aromatic residues such as glycine, 

lysine or arginine 12. These results suggest favorable interactions between the tryptophan and 

histidine side chains (both H2, W5 and W19, H22), positioned approximately one helical turn 

apart (4.5 Å) and near the membrane interface  
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Now these types of interactions between histidine and tryptophan side chains are not 

unusual. A relevant example of such an interaction is in the M2 proton channel of Influenza-A 

virus. The transmembrane segment of the M2 proton channel contains a HxxxW motif with a His 

residue at position 37, which interacts with Trp41, and this interaction is essential for the proton 

selective activity of M2 channels 38-39. The protonated form of the imidazole ring of His37 of one 

helix interacts with the indole ring of Trp 41 to facilitate the activity of channel gating 19-20, 38 39. 

The presence of the same sequence motif in the Influenza-B M2 channel (His19 and Trp23) 40-41 

strengthens the importance of this type of interaction. With the HxxxW motif, the B/M2 channel 

has an additional histidine residue His27 22, which indicates an interaction also between Trp23 

and His27.  Indeed, it is found that the proton conductance decreases to about 60% for a 

mutation of His27 to Ala 42.  

My results strongly support the stabilizing effect of such interactions. Rather than 

competing for favorable interactions with the polar head groups as observed for the tryptophan 

side chains in W2,22WALP, the histidine side chains are able to find proper orientation to interact 

possibly more with tryptophan side chains than lipid head groups. This preference toward Trp 

side chain over lipid head group could be due to a continued protonation state up to pH 8, giving 

rise to His-aromatic cation-π interaction, but at this point it is complicated to explain as we do 

not observe much change in the resonances in DOPC lipid bilayers. Nevertheless, in DLPC the 

spectra below pH 6 are comparatively better resolved, which may indicate the change in 

ionization state of His between pH 4 and 6. Another possibility could be that both Trp and His 

find favorable positions to interact with lipid groups as their radial separation is not exactly one 

helical turn but rather 300°. The -carbons of H2 and H22 are about 4.5 Å apart from the -

carbons of W5 and W19. 
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Removal of H22 from the sequence of H2,22WALP23 does not affect the helix dynamics 

or orientation much. The peptide continues to display well-defined tilted transmembrane 

orientations in DLPC and DOPC membranes, which do not change over a pH range of 2-8 in 

DOPC. In DLPC, there are some changes in the spectral resolution which agrees with the similar 

observations for H2,22WALP and therefore may provide additional support about the 

deprotonation of histidine at pH above 4. The key variables defining the dynamic properties 

remain similar, especially the “rotational slippage” () of the helix, which remains below 50o in 

both lipid bilayers.  

In the case of H22GWALP23, with only one aromatic Trp ring at N-terminal end, all the 

interactions between histidine and tryptophan are at the C-terminus of the helix. I found that 

although the orientations and pH dependent behaviors are almost same when H22 is introduced 

in the absence of H2, in DLPC and DOPC lipids, their dynamic behavior changes significantly. 

The  “wobble” value drastically increases from 8o to a very large 70o when the helix is moved 

from DLPC to DOPC membrane (Table 3). This means that the interactions between W19 and 

H22 stabilize the helical motions in thinner lipid when the helix is more tilted. Conversely in 

thicker DOPC lipid, due to the low tilt angle (0), there may arise some competitions between 

two aromatic rings (imidazole and indole) for interaction with lipid head groups, which add more 

motion in the helix. Now more interestingly, this type of competition is diminished when a 

second histidine is added to position 2 (producing H2,22WALP). As mentioned earlier, the helix 

wobble () of H2,22WALP in both DLPC and DOPC is somewhat in between the respective 

values observed for H2GWALP and H22GWALP. The results indicate that H2 and H22 may 

affect only the motional averaging of the helix, while the actual preferred mean orientations are 

still controlled by tryptophans W5 and W19. When a total of four aromatic rings are present near 



32 

 

the interface, each of them possibly finds a suitable position to either interact with a lipid head 

group or each other, which could result in a well-behaved moderately dynamic tilted 

transmembrane orientation.  

In the present work, I have sought to understand the effect of adding a histidine residue 

outside the hydrophobic core sequence of a transmembrane helix and near the anchoring 

tryptophan residues. The findings reveal that a single or pair of histidine residues near the 

tryptophan anchors does not greatly affect the overall orientation of a transmembrane peptide. 

Histidine side chain play relatively little effect in defining the peptide tilt and rotation as these 

magnitudes are probably controlled primarily by the tryptophan side chains. Yet the dynamic 

properties of the peptide helices are somewhat altered by the presence and location of histidine 

residues as well as the bilayer thickness.  

 Acknowledgement 

This work was supported in part by NSF MCB grant 1713242, and by the Arkansas 

Biosciences Institute.  The peptide, NMR and mass spectrometry facilities were supported in part 

by NIH grant GM103429.  



33 

 

 References 

1. Ulmschneider, M. B.; Sansom, M. S. P., Amino acid distributions in integral membrane 

protein structures. Biochim. Biophys. Acta, Biomembr. 2001, 1512 (1), 1-14. 

2. Granseth, E.; von Heijne, G.; Elofsson, A., A Study of the Membrane–Water Interface 

Region of Membrane Proteins. J. Mol. Biol. 2005, 346 (1), 377-385. 

3. Ulmschneider, M. B.; Sansom, M. S. P.; Di Nola, A., Properties of integral membrane 

protein structures: Derivation of an implicit membrane potential. Proteins: Struct., 

Funct., Bioinf. 2005, 59 (2), 252-265. 

4. Adamian, L.; Nanda, V.; DeGrado, W. F.; Liang, J., Empirical lipid propensities of 

amino acid residues in multispan alpha helical membrane proteins. Proteins: Struct., 

Funct., Bioinf. 2005, 59 (3), 496-509. 

5. Senes, A.; Chadi, D. C.; Law, P. B.; Walters, R. F. S.; Nanda, V.; DeGrado, W. F., Ez, a 

Depth-dependent Potential for Assessing the Energies of Insertion of Amino Acid Side-

chains into Membranes: Derivation and Applications to Determining the Orientation of 

Transmembrane and Interfacial Helices. J. Mol. Biol. 2007, 366 (2), 436-448. 

6. Wimley, W. C., Toward genomic identification of beta-barrel membrane proteins: 

composition and architecture of known structures. Protein Sci. 2002, 11 (2), 301-312. 

7. Landolt-Marticorena, C.; Williams, K. A.; Deber, C. M.; Reithmeier, R. A., Non-random 

distribution of amino acids in the transmembrane segments of human type I single span 

membrane proteins. J. Mol. Biol. 1993, 229 (3), 602-608. 

8. Wallin, E.; von Heijne, G., Genome-wide analysis of integral membrane proteins from 

eubacterial, archaean, and eukaryotic organisms. Protein Sci. 1998, 7 (4), 1029-1038. 

9. Wimley, W. C.; Creamer, T. P.; White, S. H., Solvation Energies of Amino Acid Side 

Chains and Backbone in a Family of Host−Guest Pentapeptides. Biochemistry 1996, 35 

(16), 5109-5124. 

10. Wimley, W. C.; White, S. H., Membrane partitioning: Distinguishing bilayer effects from 

the hydrophobic effect. Biochemistry 1993, 32 (25), 6307-6312. 

11. Yau, W.-M.; Wimley, W. C.; Gawrisch, K.; White, S. H., The Preference of Tryptophan 

for Membrane Interfaces. Biochemistry 1998, 37 (42), 14713-14718. 

12. Vostrikov, V. V.; Daily, A. E.; Greathouse, D. V.; Koeppe, R. E., II, Charged or aromatic 

anchor residue dependence of transmembrane peptide tilt. J. Biol. Chem. 2010, 285 (41), 

31723-31730. 

13. Killian, J. A.; Salemink, I.; De Planque, M. R.; Lindblom, G.; Koeppe, R. E., II; 

Greathouse, D. V., Induction of non-bilayer structures in diacylphosphatidylcholine 



34 

 

model membranes by transmembrane -helical peptides.  Importance of hydrophobic 

mismatch and proposed role of tryptophans. Biochemistry 1996, 35, 1037-1045. 

14. Vostrikov, V. V.; Grant, C. V.; Opella, S. J.; Koeppe, R. E., II, On the combined analysis 

of 2H and 15N/1H solid-state NMR data for determination of transmembrane peptide 

orientation and dynamics. Biophys. J. 2011, 101 (12), 2939-2947. 

15. Strandberg, E.; Esteban-Martin, S.; Ulrich, A. S.; Salgado, J., Hydrophobic mismatch of 

mobile transmembrane helices: Merging theory and experiments. Biochim. Biophys. Acta. 

2012, 1818, 1242-1249. 

16. Feinberg, H.; Torgersen, D.; Drickamer, K.; Weis, W. I., Mechanism of pH-dependentN-

Acetylgalactosamine Binding by a Functional Mimic of the Hepatocyte 

Asialoglycoprotein Receptor. J. Biol. Chem 2000, 275 (45), 35176-35184. 

17. Williams, S.; Bledsoe, R. K.; Collins, J. L.; Boggs, S.; Lambert, M. H.; Miller, A. B.; 

Moore, J.; McKee, D. D.; Moore, L.; Nichols, J.; Parks, D.; Watson, M.; Wisely, B.; 

Willson, T. M., X-ray Crystal Structure of the Liver X Receptor β Ligand Binding 

Domain: REGULATION BY A HISTIDINE-TRYPTOPHAN SWITCH. J. Biol. Chem 

2003, 278 (29), 27138-27143. 

18. Li, H.-L.; Galue, A.; Meadows, L.; Ragsdale, D. S., A Molecular Basis for the Different 

Local Anesthetic Affinities of Resting Versus Open and Inactivated States of the Sodium 

Channel. Mol. Pharmacol 1999, 55 (1), 134. 

19. Okada, A.; Miura, T.; Takeuchi, H., Protonation of Histidine and Histidine−Tryptophan 

Interaction in the Activation of the M2 Ion Channel from Influenza A Virus. 

Biochemistry 2001, 40 (20), 6053-6060. 

20. Takeuchi, H.; Okada, A.; Miura, T., Roles of the histidine and tryptophan side chains in 

the M2 proton channel from influenza A virus. FEBS Lett. 2003, 552 (1), 35-38. 

21. Inoue, Y.; Nakamura, N.; Inagami, T., A review of mutagenesis studies of angiotensin II 

type 1 receptor, the three-dimensional receptor model in search of the agonist and 

antagonist binding site and the hypothesis of a receptor activation mechanism. J 

Hypertens 1997, 15 (7), 703-714. 

22. Fernández-Recio, J.; Vázquez, A.; Civera, C.; Sevilla, P.; Sancho, J., The 

Tryptophan/Histidine interaction in α-helices J. Mol. Biol. 1997, 267 (1), 184-197. 

23. Fernández-Recio, J.; Romero, A.; Sancho, J., Energetics of a hydrogen bond (charged 

and neutral) and of a cation-π interaction in apoflavodoxin. J. Mol. Biol. 1999, 290 (1), 

319-330. 

24. Greathouse, D. V.; Koeppe, R. E., II; Providence, L. L.; Shobana, S.; Andersen, O. S., 

Design and characterization of gramicidin channels. Methods Enzymol. 1999, 294, 525-

550. 



35 

 

25. Kortenaar, P. B. W.; Dijk, B. G.; Peeters, J. M.; Raagen, B. J.; Adams, P. J.; Tesser, G. I., 

Rapid and efficient method for the preparation of Fmoc-amino acids starting from 9-

fluorenylmethanol. Int. J. Pept. Prot. Res. 1986, 27, 398-400. 

26. van der Wel, P. C. A.; Strandberg, E.; Killian, J. A.; Koeppe, R. E., II, Geometry and 

intrinsic tilt of a tryptophan-anchored transmembrane alpha-helix determined by 2H 

NMR. Biophys. J. 2002, 83, 1479-1488. 

27. Davis, J. H.; Jeffrey, K. R.; Valic, M. I.; Bloom, M.; Higgs, T. P., Quadrupolar echo 

deuteron magnetic resonance spectroscopy in ordered hydrocarbon chains. Chem. Phys. 

Lett. 1976, 42, 390-394. 

28. Aisenbrey, C.; Bechinger, B., Investigations of Polypeptide Rotational Diffusion in 

Aligned Membranes by 2H and 15N Solid-State NMR Spectroscopy. J. Am. Chem. Soc. 

2004, 126 (50), 16676-16683. 

29. Strandberg, E.; Özdirekcan, S.; Rijkers, D. T. S.; van der Wel, P. C. A.; Koeppe, R. E., II; 

Liskamp, R. M. J.; Killian, J. A., Tilt angles of transmembrane model peptides in oriented 

and non-oriented lipid bilayers as determined by 2H solid-state NMR. Biophys. J. 2004, 

86, 3709-3721. 

30. Sparks, K. A.; Gleason, N. J.; Gist, R.; Langston, R.; Greathouse, D. V.; Koeppe, R. E., 

II, Comparisons of Interfacial Phe, Tyr, and Trp Residues as Determinants of Orientation 

and Dynamics for GWALP Transmembrane Peptides. Biochemistry 2014, 53 (22), 3637-

3645. 

31. Vostrikov, V. V.; Hall, B. A.; Greathouse, D. V.; Koeppe, R. E.; Sansom, M. S. P., 

Changes in Transmembrane Helix Alignment by Arginine Residues Revealed by Solid-

State NMR Experiments and Coarse-Grained MD Simulations. J. Am. Chem. Soc. 2010, 

132 (16), 5803-5811. 

32. Gleason, N. J.; Vostrikov, V. V.; Greathouse, D. V.; Koeppe, R. E., Buried lysine, but not 

arginine, titrates and alters transmembrane helix tilt. Proc. Natl. Acad. Sci. U. S. A. 2013, 

110 (5), 1692. 

33. Martfeld, A. N.; Greathouse, D. V.; Koeppe, R. E., Ionization Properties of Histidine 

Residues in the Lipid Bilayer Membrane Environment. J. Biol. Chem 2016, 291 (36), 

19146-19156. 

34. Rajagopalan, V.; Greathouse, D. V.; Koeppe, R. E., Influence of glutamic acid residues 

and pH on the properties of transmembrane helices. Biochim. Biophys. Acta, Biomembr. 

2017, 1859 (3), 484-492. 

35. de Planque, M. R. R.; Bonev, B. B.; Demmers, J. A. A.; Greathouse, D. V.; Koeppe, R. 

E.; Separovic, F.; Watts, A.; Killian, J. A., Interfacial anchor properties of tryptophan 

residues in transmembrane peptides can dominate over hydrophobic matching effects in 

peptide-lipid interactions. Biochemistry 2003, 42 (18), 5341-5348. 



36 

 

36. van der Wel, P. C. A.; Reed, N. D.; Greathouse, D. V.; Koeppe, R. E., 2nd, Orientation 

and motion of tryptophan interfacial anchors in membrane-spanning peptides. 

Biochemistry 2007, 46 (25), 7514-7524. 

37. Gleason, N. J.; Greathouse, D. V.; Grant, C. V.; Opella, S. J.; Koeppe, R. E., II, Single 

Tryptophan and Tyrosine Comparisons in the N-Terminal and C-Terminal Interface 

Regions of Transmembrane GWALP Peptides. J. Phys.Chem. B 2013, 117 (44), 13786-

13794. 

38. Tang, Y.; Zaitseva, F.; Lamb, R. A.; Pinto, L. H., The Gate of the Influenza Virus M2 

Proton Channel Is Formed by a Single Tryptophan Residue. J. Biol. Chem 2002, 277 

(42), 39880-39886. 

39. Venkataraman, P.; Lamb, R. A.; Pinto, L. H., Chemical Rescue of Histidine Selectivity 

Filter Mutants of the M2 Ion Channel of Influenza A Virus. J. Biol. Chem 2005, 280 (22), 

21463-21472. 

40. Paterson, R. G.; Takeda, M.; Ohigashi, Y.; Pinto, L. H.; Lamb, R. A., Influenza B virus 

BM2 protein is an oligomeric integral membrane protein expressed at the cell surface. 

Virology 2003, 306 (1), 7-17. 

41. Mould, J. A.; Paterson, R. G.; Takeda, M.; Ohigashi, Y.; Venkataraman, P.; Lamb, R. A.; 

Pinto, L. H., Influenza B Virus BM2 Protein Has Ion Channel Activity that Conducts 

Protons across Membranes. Dev. Cell 2003, 5 (1), 175-184. 

42. Otomo, K.; Toyama, A.; Miura, T.; Takeuchi, H., Interactions Between Histidine and 

Tryptophan Residues in the BM2 Proton Channel from Influenza B Virus. J. Biochem. 

2009, 145 (4), 543-554. 

43. DeLano, W. L., The PyMOL Molecular Graphics System. Delano Scientific, San Carlos, 

CA 2002. 

 

 

 

  



37 

 

 Tables 

Table 1: Sequence of GWALP23 peptides with single and double substitutions of tryptophan to 

histidine 

 
Name of peptide Sequence Reference 

GWALP23 acetyl-GGALWLALALALALALALWLAGA-amide 12 

H2,22WALP23 acetyl-GHALWLALALALALALALWLAHA-amide This work 

H2GWALP23 acetyl-GHALWLALALALALALALWLAGA-amide This work 

H22GWALP23 acetyl-GGALWLALALALALALALWLAHA-amide This work 

 

 

 

Table 2: 2H-NMR quadrupolar splitting magnitudes of labeled core alanines of GWALP23 

family peptides with single and double histidine substitution 

 
Lipid Peptide pH [d4] Ala CD3 quadrupolar splittingsa 

7 9 11 13 15 17 

DLPC GWALP23 - 26.4 25.5 26.9 14.6 20.7 3.4 

H2,22 4 30.8 35 29.3 19.4 24.7 4.2 

H2 31.9 35.6 31.4 23.7 25.8 1.2 

H22 26.3 24.3 25.4 11.7 19.0 7.2 

DOPC GWALP23 - 16.6 1.7 16.7 1.5 15.4 2.6 

H2,22 4 15.4 1.2 17.0 1.6 16.0 2.1 

H2 19.1 6.3 19.5 5.2 17.4 1.6 

H22 14.0 1.4 14.1 1.1 12.5 4.1 

a Values listed are for  = 00 sample orientations 
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Table 3: Semistatic GALA and Modified Gaussian analysis results for H2,22WALP23, 

H2GWALP23, and H22GWALP23 

 
Peptide Lipid GALA Analysis Results Modified Gaussian Analysis Results 

τ ρ Szz RMSD τo ρo   RMSD 

GWALP DLPC 20.7 307 0.71 0.66 23 304 15 33 0.7 

H2,22 26 304 0.74 1.05 24 303 10 16 1.43 

H2 26 308 0.77 0.86 33 305 10 36 0.61 

H22 22.7 297 0.67 0.66 17 299 10 8 1.22 

GWALP DOPC 6 323 0.87 0.61 9 321 9 48 0.7 

H2,22 6 329 0.86 0.33 10 326 10 56 0.56 

H2 8.7 319 0.83 0.52 12 318 10 46 0.52 

H22 6 315 0.73 0.35 9 319 10 70 0.45 
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 Figure Legends 

Figure 1: Pymol 43 representations of oriented helices of GWALP23, G H2,22ALP23, 

H2GWALP23, and H22GWALP23. The sequences are shown in Table 1 

Figure 2: 2H NMR spectra of H2,22WALP23, H2GWALP23 and H22GWALP23in DOPC lipid 

bilayer. The samples were hydrated with acetate buffers of pH 4. Spectra for  =90o sample 

orientations are shown 

Figure 3: Selected 2H NMR spectra to show the titration of H2,22WALP23 in DLPC (A) and 

DOPC (B) lipid bilayers. Sample orientation is  =90o and temperature is 50oC 

Figure 4: Selected 2H NMR spectra to show the titration of H2GWALP23 in DLPC (A) and 

DOPC (B) lipid bilayers. Sample orientation is  =90o and temperature is 50oC 

Figure 5: Selected 2H NMR spectra to show the titration of H22GWALP23 in DLPC (A) and 

DOPC (B) lipid bilayers. Sample orientation is  =90o and temperature is 50oC 

Figure 6: Quadrupolar wave plot for oriented GWALP23 family peptides with terminal single 

and double histidine residues in DOPC lipid bilayer 

Figure 7: Quadrupolar wave plot for oriented GWALP23 family peptides with terminal single and 

double histidine residues in DLPC lipid bilayer 
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 Figures 

 

 

Figure 1: Pymol 43 representations of oriented helices of GWALP23, G H2,22ALP23, 

H2GWALP23, and H22GWALP23. The sequences are shown in Table 1 
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Figure 2: 2H NMR spectra of H2,22WALP23, H2GWALP23 and H22GWALP23in DOPC lipid 

bilayer. The samples were hydrated with acetate buffers of pH 4. Spectra for  =90o sample 

orientations are shown 
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Figure 3: Selected 2H NMR spectra to show the titration of H2,22WALP23 in DLPC (A) and 

DOPC (B) lipid bilayers. Sample orientation is  =90o and temperature is 50oC 
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Figure 4: Selected 2H NMR spectra to show the titration of H2GWALP23 in DLPC (A) and 

DOPC (B) lipid bilayers. Sample orientation is  =90o and temperature is 50oC 
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Figure 5: Selected 2H NMR spectra to show the titration of H22GWALP23 in DLPC (A) and 

DOPC (B) lipid bilayers. Sample orientation is  =90o and temperature is 50oC 
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Figure 6: Quadrupolar wave plot for oriented GWALP23 family peptides with terminal single and 

double histidine residues in DOPC lipid bilayer 
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Figure 7: Quadrupolar wave plot for oriented GWALP23 family peptides with terminal single and 

double histidine residues in DLPC lipid bilayer 
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 Supporting Figures 

 

 

Figure S1: MALDI mass spectrum of synthesized H2,22WALP23, H2GWALP23 and 

H22GWALP23 
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Figure S2: Circular Dichroism spectra of H2,22WALP23; H2GWALP23, and H22GWALP23 

helices in DLPC lipid vesicles 
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Figure S3: 31P NMR spectra of H2,22WALP23, H2GWALP23 and H22GWALP23 in DLPC lipid 

bilayers 
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Figure S4: 2H NMR spectra of H2,22WALP23, H2GWALP23, H22GWALP23 in DLPC lipid 

bilayer. The samples were hydrated with acetate buffers of pH 4. Spectra for  =90o sample 

orientations are shown 
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3. Chapter 3: Comparing the Mutations of Tryptophan to Histidine at the Terminal 

Regions of GWALP23 and pH Dependent Orientations of Transmembrane Peptides 

Flanked by Histidine Anchors. 

 Abstract 

For better understanding of the orientation and dynamic interactions between a 

transmembrane protein segment and a lipid bilayer, a variety of model membrane systems are 

widely used for different experimental applications. One such model peptide that has been used 

extensively for characterizing peptide-lipid interaction is alpha-helical transmembrane peptide 

GWALP23 (acetyl-GGALW5(LA)6W
19LAGA-amide), that contains six Leu-Ala repeats in the 

core and single Trp flanking residues near each end. This model peptide, due to its reduced 

dynamic properties, demonstrates sensitivity to the lipid identity and bilayer thickness and has 

been useful in elucidating the importance of “anchoring” residues.  GWALP23 furthermore 

illustrates well the effects of hydrophobic matching.  In this work, I have modified GWALP23 to 

include one or two histidine residues that replace either W5 or W19 or both tryptophans within 

the sequence of GWALP23. The variations in dynamics and helix orientation of peptides 

anchored by only histidine or both histidine and tryptophan have been addressed, in addition to 

the ionization properties of single or double histidines and their effects on peptide helix behavior. 

Application of solid-state 2H NMR spectroscopy to detect deuterium-labeled alanines in the core 

of the helix allowed us to report the effect of terminal histidine residues on the orientation of the 

transmembrane segment when present with or in absence of tryptophan anchors in DOPC lipid 

membranes. We observe that the presence of either H5 or H19 or both does not greatly affect the 

apparent tilt magnitude, but some changes in the helix rotational preference are noticeable. 

Nevertheless, the presence of only H5 in the helix (with W19) does affect the helical integrity, 
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which also has been found previously when H4 and H5 are both present. In an attempt to titrate 

the histidine residue(s), we found that the peptide doesn’t change its orientation over a pH range 

from 2 to 8. Therefore, the analysis of orientation and dynamic properties shows little sensitivity 

to pH and reveals that the behavior of the model transmembrane helices with interfacial 

histidines remains very similar to the tryptophan and tyrosine analogs with similar mutations.  

 Introduction 

Generally, transmembrane α-helices are composed primarily of hydrophobic residues 

with a very few strongly polar amino acids. Hydrophilic residues, if present in transmembrane 

domain, tend to be highly conserved. This conservation suggests their necessity either in 

structure or function of the specific protein 1. Many transmembrane proteins have bands of 

aromatic and/or positively charged residues near the membrane interface which could serve as 

“anchors” for a particular protein orientation and promote favorable protein-lipid interactions. It 

has been found that aromatic residues such as Trp are localized to the carbonyl region of 

phospholipids, whereas charged residues such as Lys or Arg tend to be positioned outside of the 

membrane, interacting with lipid phosphate moieties 2 as well as with water.  

The indole ring hydrogen bonding of Trp, which is invariable with pH, is important for 

stabilizing the transmembrane orientation and allows this amphipathic residue to be located in 

interfacial positions 34. Histidine, with an imidazole ring in its side chain, also has the ability to 

form hydrogen bond with surface water. But the histidine imidazole group can be charged or 

neutral depending on the pH, which might have some effects on the interactions with lipid head 

groups, leading to peptide stability in membrane. As histidine usually has a pKa value close to 

physiological pH, it is able to function as both acid and base in many enzymes, including serine 
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proteases and some other unconventional proteases such as cytomegalovirus protease and 

rhomboid protease. The cytomegalovirus protease has a catalytic triad containing one serine and 

two histidines, in which both histidines are critically important for catalytic activity of the 

enzyme under certain conditions 5. Multiple histidine residues, either directly adjacent 6 or 

closely located 7-8, were identified in the pH sensing components of acid-sensing ion channels, 

which implies the importance of histidine in pH sensing. Replacement of a specific histidine 

residue with alanine in specific ion channels causes lower sensitivity 9 and in some cases 

elimination of sensitivity 6 7 to proton concentration. These mutations may cause some 

conformational or structural changes which directly affect the function of protein. Therefore, it is 

crucial to investigate how this aromatic residue with the ability of being ionized interacts with 

the hydrophobic environment of a lipid membrane.  

The understanding of how membrane proteins interact with the bilayer of a lipid 

membrane 10 has been aided by studies of “simple” model transmembrane (TM) α-helices such 

as the WALP series of peptides having the prototype sequence of GWW(LA)nLWWA11. The 

modified version of WALP peptide, GWALP23 (acetyl-GGALW(LA)6LWLAGA-amide) 12-13 

has only two interfacial Trp residues.  This arrangement contributes to a preferred and well-

defined tilted transmembrane helix orientation for GWALP23 with low dynamic averaging of the 

helix 14-15. These properties of GWALP23 provide exceptional opportunities for investigating the 

influence of guest residues upon the properties and lipid interactions of membrane-spanning 

peptide helices. Previously, this framework has been used to study several guest residues 

including arginine 16 17, lysine 18, tyrosine 19 20, histidine 21 and glutamic acid 22 in various 

locations throughout the sequence of transmembrane helix. Now this type of study is crucial 

because the identity, number and position of such residues greatly influence the overall peptide 
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orientation in the membrane. For example, peptides with single Trp → Tyr substitution at either 

end of the GWALP sequence (Y5 or Y19) exhibit similar transmembrane orientations and 

dynamics as those of GWALP23 or a double Tyr mutant GY5,19ALP23.  However, with two 

adjacent Tyr residues (Y4,5GWALP23) the peptides exhibit very high levels of dynamic 

averaging 23, which is comparable to the earlier WALP peptides. When two His residues are 

introduced in the same positions to produce H4,5GWALP23 peptides, the extent of dynamic 

averaging also increases and gives rise to very low “apparent” tilt angles, similar to 

Y4,5GWALP23. In this context, it is important to determine the biophysical properties of peptides 

carrying a single interfacial histidine residue and compare them with the peptide with two 

adjacent interfacial histidines as well as with tryptophan and tyrosine in the membrane-water 

interface.  

In this study I focus on examining the similarities and differences between His, Trp and 

Tyr as interfacial aromatic anchoring residues at the interfacial positions of 5 and/or 19, flanking 

a core hydrophobic helix, in bilayer membranes of DOPC. I furthermore examined the ionization 

behavior of the histidine imidazole side chains when present alone or as a pair. My key findings 

indicate that when one or both Trp residues are replaced by one or two His residues from the 

sequence of GWALP23, the overall orientation and dynamics of the transmembrane helix 

remains nevertheless quite similar.  Histidine 5, however, may disrupt the core helix under some 

conditions.  While the His residues may titrate, the core helix often shows little response to the 

titration of His residues near the membrane interface.  This minimal response to pH contrasts 

with the larger response of similar transmembrane helices to the titration of more buried His 

residues 21.   
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 Materials and methods 

Synthesis of 2H-labeled peptides in solid phase 

The 2H isotope enriched alanines were purchased from Cambridge Isotope Laboratories 

(Andover, MA) and then were modified by manual derivatization with the N-fmoc protecting 

group, using a protocol that was optimized previously 24-25. 1H-NMR spectroscopy was used to 

confirm the successful Fmoc-Ala-d4 synthesis. Other N-fmoc amino acids and acid-labile “Rink” 

amide resins were purchased from Novabiochem (San Diego, CA). Histidine and tryptophan side 

chains were protected with trityl and t-butoxycarbonyl protecting groups, respectively. All 

peptides were synthesized using an Applied Biosystems 433A Peptide Synthesizer from Life 

Technologies (Foster City, CA), in solid phase on a 0.1 mmol scale with monitoring of the 

deprotection reaction.  Extended times were employed for deprotection or coupling where 

needed. Typically, d4-alanines were introduced into the synthetic sequence in pairs at 50% and 

100% isotope abundance levels, respectively, to distinguish and assign the 2H signals when 

observed later by solid-state deuterium NMR spectroscopy. The N-terminal end of each peptide 

was blocked by adding an acetyl-Gly as final residue.  

Following the completion of synthesis, the peptide cleavage from Rink amide resin was 

accomplished by treatment at 22 °C for over a 2 h period using a mixture of trifluoroacetic 

acid/triisopropyl silane/water/phenol (85/5/5/5, v/v/v/w). This treatment yielded a neutral, 

amidated C-terminal.  The crude peptides were then precipitated by adding ice-cold 50/50 

methyl-t-butyl ether/hexane solution and lyophilized several times from acetonitrile:water 

(50:50) to remove traces of solvent.  After lyophilization, peptides were purified by reversed-

phase HPLC on an octyl-silica Zorbax Rx-C8 column (9.4 x 250 mm, 5 m particle size) from 
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Agilent Technologies (Santa Clara, CA) using a gradient of 88–92% (for H5H19) or 94-98% 

methanol (for both H5W19 and W5H19 peptides) with 0.1% trifluoroacetic acid (v/v). Due to the 

absence of tryptophan groups in H5H19 peptides, the detector wavelength was set to 220 nm 

while purifying and quantifying this peptide, whereas the Trp-containing peptides (H5W19 and 

W5H19) were detected based on absorbance at 280 nm, using a molar extinction coefficient of 

5,600 M-1cm-1 for each Trp in the sequence. MALDI-TOF mass spectrometry was used to verify 

the molecular masses and deuteration patterns. 

2H and 31P NMR Spectroscopy using Oriented Bilayer samples  

Samples for solid-state 2H NMR were prepared by mechanical alignment, as described 

previously 20, 23. Bilayers were formed using 1.33 mol peptide and 80 mol (1:60 mol:mol) 

DOPC lipid (Avanti Polar Lipids, Alabaster, AL) and hydrated (45%, w/w) with 20 mM  buffer 

at specified pH values between pH 2 and pH 8. Alignment of phospholipid head groups in 

bilayers within each sample was confirmed by means of 31P NMR in a wide-line probe from 

Doty Scientific (Columbia, SC) with broad-band 1H decoupling on a Bruker Avance 300 

spectrometer (Billerica, MA) at 50 ˚C. Signals for both β = 0˚ (bilayer normal parallel to 

magnetic field) and β = 90˚ macroscopic sample orientations (Figure S3) were collected. 

Deuterium (2H) NMR spectra, at both β = 90° and β = 0° sample orientations, were recorded at 

50 °C by employing a quadrupolar echo pulse sequence 26 with full phase cycling, 105 s echo 

delay, 3.2 s pulse length and 120 ms recycle delay.  During each 2H NMR experiment 

approximately 0.9 to 1.5 million free induction decays were recorded. An exponential weighting 

function with 100 Hz line broadening was applied prior to Fourier transformation.  
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Buffers used for hydrating the oriented samples were prepared at room temperature using 

vacuum-dried reagents and prepared in deuterium-depleted water. Buffers include: pH 2-3.5 

glycine-HCl buffer, pH 4 acetate buffer (sodium acetate and acetic acid, MilliporeSigma, St. 

Louis, MO); pH 6 Citrate buffers (EMD, Gibbstown, NJ); pH 8 HEPES buffer (MilliporeSigma)   

Analysis of helix orientation and dynamics from 2H NMR data 

Geometric Analysis of Labeled Alanines (GALA) 27 28 was employed to analyze the 

orientation of peptides in lipid bilayers. This is a semi-static analysis method that uses the 

quadrupolar splitting values from 2H-NMR spectra to fit a generalized order parameter Szz, and 

the apparent peptide tilt magnitude () and direction (), to a model of a tilted -helical peptide, 

with an // angle between the alanine C-C bond vector and peptide helix axis equal to 59.4° 27. 

We additionally employed a modified Gaussian approach 29 involving three variables, 0, 0 and 

 (rotational slippage), with fixed values for Szz and  (helix wobble), as described previously 

20. This method provides more detailed results toward the dynamic properties of -helical 

peptides.  

Circular Dichroism (CD) Spectroscopy 

Samples for circular dichroism spectroscopy were prepared by forming small lipid 

vesicles incorporating 0.0626 mol peptide and 3.75 μmol lipid (1/60 peptide:lipid) using 

ultrasonication in unbuffered water. The peptide concentrations were determined by UV-Vis 

spectroscopy using a molar extinction coefficient of ε280=5600 M-1cm-1Trp-1. An average of ten 

scans was recorded on a Jasco J-1500 spectropolarimeter, using a 1 mm cell path length, 1.0 nm 

bandwidth, 0.1 nm slit and a scan speed of 20 nm/min.  
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 Results 

Previous studies on insertion of aromatic residues like Phe and Tyr in place of Trp 

anchors indicate similar transmembrane orientations for the helix as that of the GWALP23 helix 

19-20. These findings along with evidence that aromatic amino acids play crucial roles in 

anchoring transmembrane protein function prompted us to employ GWALP23 as a host peptide 

for insertion of the other aromatic and potentially charged amino acid histidine. Our recent study 

reveals that the peptide dynamic properties change drastically when a pair of adjacent histidine 

residues at the N-terminal end (H4,5) are incorporated 30. To address this further, I have now 

replaced H4 with L4, which resulted in a GWALP23 mutant with a single histidine (H5) residue 

at the N-terminal end. Then I replaced the W19 from GWALP23 with H19 to compare the 

similarities and/or differences of histidine with tryptophan or tyrosine, which was previously 

studied 19 as well as its H5 counterpart. In addition to comparing the N- and C-terminal single 

histidine placements, pair of histidines were introduced to replace W5 and W19 to examine the 

properties displayed by a transmembrane helix flanked only by two histidines, rather than 

tryptophans.  

The designed peptides (Figure 1 and Table 1) were successfully synthesized and their 

molecular masses confirmed by MALDI-TOF mass spectrometry (Figure S1). All three peptides 

contain single or pair of histidine in presence (for H5W19 and W5H19 mutants) or absence 

(H5H19) of tryptophan residues. To confirm that the expected  -helical secondary structure of 

peptides is retained with the substitution of tryptophan to histidine residue/residues, CD spectra 

were recorded in DOPC vesicles (Figure S2). The mean residue ellipticity (MRE) profiles of 

each peptide were generally found comparable and displayed double minima at wavelengths 208 

and 222 nm, indicative of α-helical secondary structures.  
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We have applied solid-state NMR spectroscopy in mechanically-aligned samples of 

peptides incorporated within hydrated DOPC lipid-bilayer membranes to investigate the 

ionization properties and influence of histidine imidazole side chain on transmembrane peptide 

in lipid bilayers. We first analyzed the alignment of phospholipid head groups using 31P NMR. 

The spectra from all peptide-lipid systems exhibit characteristic resonances of 31P isotopes 

located close to -14.5 ppm for β = 90° and +29 ppm for β = 0° sample orientations.  

Helix orientation and dynamic behavior of folded transmembrane peptides were studied 

with the help of solid-state 2H NMR spectroscopy. In addition, the responses of each peptides 

with the ionization of histidine imidazole side chain, which in turn provide information of the 

pKa values of histidine in varying locations throughout the membrane, were also examined. 

Finally, I have compared the results of transmembrane peptides flanked by both histidine and 

tryptophan as well as only by histidine.  

In each of the GWALP23 peptides with single or double Trp to His mutations, pairs of 

alanines within the core (LA)6 helix were 2H-labeled to different extents (50% and 100% 

deuteration). Figures. 2, 3 and 4 show examples of 2H-NMR spectra for labeled core alanines A7 

and A9 of H5GWALP23 with Y5GWALP23 (Figure 2), H19GWALP23 with Y19GWALP23 

(Figure 3) and GH5,19ALP23 with GY5,19ALP23 and GW5,19ALP23 (Figure 4) cousins. For the Y 

and W analogs, the spectra for labeled A7 and A17 are shown in Figures 2, 3 and 4, which were  

studied previously 13, 19. The 2H-NMR spectra recorded for oriented samples of -H5, -H19 and -

H5,19 peptides display the two expected pairs of resonances corresponding to the quadrupolar 

splittings from the two labeled core Ala methyl side chains in DOPC lipid bilayers (Figures 2, 3 

4 S4). For some cases such as A15 and A17 spectra of H5GWALP23 (Figure S4), single set of 
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peaks with attached shoulders were observed due to spectral overlap arising from similar 2H 

quadrupolar splittings from the two alanines.  

Now examining the quadrupolar splittings magnitudes |Δνq| of the 2H signals for peptides 

listed in Table 2, it is evident that H5GWALP23 produced a relatively large range of 2H 

quadrupolar splitting magnitudes, from 1 to 22 kHz in DOPC membrane than the parent 

GWALP23 (1-17 kHz) and two other similar peptides Y5GWALP23 (0.5-16 kHz) and 

F5GWALP23 (1-18 kHz) 19 20 (Table 2). This wide range of quadrupolar splittings suggests a 

tilted orientation of the peptide helix with low dynamic averaging in DOPC membrane. When 

compared the individual Δνq values of all core alanines of H5GWALP23 with -W5, -Y5 and -F5 

analogs we see that these magnitudes are within 1−5 kHz in each case. These results indicate 

relatively similar membrane orientations and dynamic properties for the -H5, -Y5, -F5 and 

GWALP23 model peptides, with possibly a slight increase in the helix tilt when histidine is 

present at the N-terminal membrane water interface.  

In case of C-terminal replacement of Trp to His, the range of quadrupolar splittings for 

H19GWALP23 (4-21 kHz) is slightly smaller compared to the N-terminal histidine mutant 

H5GWALP23 (Table 2), but are relatively consistent with those seen previously for GWALP23 

and Y19 (0.5-15 kHz) analogue, implying that all these GWALP23-like peptides are tilted to 

similar extents, and exhibit similar dynamics, in the DOPC lipid bilayer membranes. 

Moving forward to the double mutation of GWALP23 peptides, where both W5 and W19 

are substituted by H5 and H19, producing GH5,19ALP peptide, the sets of 2H quadrupolar 

splittings for the six labeled alanines of the Leu-Ala core, indeed are comparable to those of H5 
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and H19GWALP23. Thus, the results for single and double histidine trading are consistent when 

compared them with similar tyrosine and tryptophan analogs. 

To address the ionization of N-terminal histidine and its effect on the peptide behavior, 

we have recorded 2H NMR signals for A7 and A9 of all three histidine containing peptides under 

consideration here at pH range from 2-8. Results indicate that each peptide exhibit sharp signals 

in DOPC membrane over this pH range, meaning they adopt well-defined transmembrane 

orientations, but there is no observable change in the spectra of H5, H19 or H5,19 peptides (Figure 

5, 6,7) when the pH is lowered from 8 to 2. This implies that the peptide doesn’t respond to the 

titration of histidine residue/residues present at the terminus of the helix. Thereby a titration plot 

of quadrupolar splittings versus pH would show straight lines, which is why the pKa values of 

histidines possibly cannot yet be calculated by means of 2H quadrupolar splittings. Another way 

to determine the titration dependency is by observing the signal intensity, but similar to 

quadrupolar splitting magnitude the signal intensities remain unchanged under pH conditions 

from 2 to 8.  

To analyze and verify the helix orientations and motional averaging, we used “Geometric 

Analysis of Labeled Alanines (GALA)” method, described previously 27. The results from this 

analysis, listed in Table 3 and illustrated in Figure 8, demonstrate that the hydrophobic -helices 

anchored by one histidine and one tryptophan as well as two histidines with no tryptophan adopt 

very similar transmembrane orientations. The resulting tilt angles for these new peptides are in 

the proximity of 9o (8.7o for H5 and H5,19; 9.7o for H19) which is slightly larger (~ 3o) than the 

W5,19 peptide (Table 3) , The W/Y5, W/Y19 and W5,19/Y5,19 mutations of GWALP23 produce 

very minimal change in tilt (Δτ). These comparisons suggest that the presence of H5 or H19 or 
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both results in very similar scaling of  with the other two aromatic residues tyrosine and 

tryptophan in the same positions.  

With very minor change in tilt angles, the Trp to His mutations display some changes in 

azimuthal rotations () about the helix axis. The H5 and H19 peptides show approximately 30o 

and 20o changes in rotation in DOPC lipid membrane compared to the W5,19 counterpart, but the 

direction of rotation is opposite for the H5 and H19 substitutions (Table 3). When both H5 and 

H19 are present, the changes in peptide rotation appear to cancel each other and thereby the helix 

rotation of double-histidine peptide does not differ much from that of the parent GWALP23 

helix. These results are again consistent when the tryptophans were substituted by tyrosine 

residues in Y5, Y19 and Y5,19 peptides 19, 23.   

To re-evaluate the results from semi-static analysis, we used a second method known as 

the modified-Gaussian approach.20, 29 As mentioned previously this method uses , , a 

distribution width σρ, and a fixed στ, to find the lowest RMSD and gives a more detailed idea on 

the dynamic averaging of peptides. For each peptide under consideration here the modified 

Gaussian approach shows further agreement, with similar values for tilt (0) and rotation (0) 

with low slippage () values not exceeding 40o.  

A noteworthy feature observed here is the 2H |νq| magnitude for deuterated A7, near the 

beginning of the core helix fails to fit the core helix backbone geometry, when only H5 or both 

H5 and H19 are present, in bilayers of DOPC and is therefore markedly unraveled from the 

transmembrane core helix (Figure 8). This type of unravelling involving an additional core 

residue was observed previously for H4,5GWALP23, when two adjacent histidine residues are 

present at the N-terminal end 30. Now more interestingly, this unraveling disappears when only 
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H19 is present with a tryptophan at N-terminal end (W5) and A7 fits into the GALA plot. 

Because the behavior of unraveling or unwinding has been observed for several GWALP23-like 

model peptides and is thought to have a significant contribution to the dynamic stability of 

transmembrane peptides 30-32, it is very likely that the extended unwinding in H5 and H5,19 

peptides involving residue A7 plays important role in helical stability. Since histidine is not as 

bulky as tryptophan the peptide achieves stability by fraying residue 5 to accommodate the N-

terminal histidine toward the interface while the C-terminal residue, either histidine or 

tryptophan anchors the peptide. This scenario is different in case of H19 peptide, where H19 

probably anchors the peptide and W5 finds a better position to access to interface by only 

changing the rotation and without any additional structural change due to the size of tryptophan 

side chain. These results could also imply the importance of having a tryptophan at the N-

termini, at position 5 in case of GWALP23, of a transmembrane peptide to obtain a more perfect 

helix. 

 Discussion 

With the ability to provide interaction between a positively charged imidazole side chain 

and negatively charged lipid head groups, histidine offers the potential to promote protein-lipid 

interaction at the interface in membrane proteins 21 33 34 35. Yet this residue is not as frequently 

present as tyrosine or tryptophan at the membrane-water interface, possibly due to its less 

thermodynamically favorable nature 36 37 38 39. Another recent study tested this hypothesis by 

mutating the highly conserved F161 residue of eight-stranded OMP enzyme PagP to H161 and 

generating a library of PagPX160H mutants with X160 being any amino acid. Their analysis 

resulted in thermodynamically unstable PagP -barrel because of the absence of a compact 
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structure 40. The stabilization was then recovered partially by incorporating a hydrophobic 

residue (Y, M, I, V, L) at the X position. 

To readdress such instability of membrane proteins with interfacial histidine residues, I 

have employed the well-established GWALP23 host peptide framework, with the replacement of 

tryptophan residue/s that help in maintaining a defined orientation, with moderate to low 

dynamics, to adjust the hydrophobic mismatch. My aim has been to the compare the anchoring 

properties of histidine when present at the interface of a transmembrane peptide, alone or in pair. 

I also have focused on titrating the imidazole side chain of histidine located in various positions.  

Titration could possibly orient the His side chain in a different manner and could influence the 

aggregation or unfolding of the resulting transmembrane -helical peptide. 

A similar comparison involving another potential aromatic residue Tyr was accomplished 

previously 19 where the two aromatic residues, Tyr and Trp were found to behave quite similarly 

in each position considered. Here we have further analyzed the system by comparing histidine 

with tryptophan as well as tyrosine at the N- and/or C-terminal interfaces of the -helical 

segment.  

My investigations reveal that neither histidine nor tyrosine alters fundamentally the 

behavior of GWALP-like peptides. The alanine 2H quadrupolar splittings for GWALP23 with 

single or a pair of interfacial histidines do not vary much. The resulting 2H quadrupolar wave 

plots observed for the core helices of H5GWALP23, H19GWALP23 and GH5,19ALP23 are 

similar to those of the parent helix GWALP23. The helix of GWALP23 is moderately dynamic 

with tilted transmembrane orientations that changes with lipid thicknesses 13. With H5 at N-

terminal end and W19 at C-terminal end the new helix adopts a very similar well-defined 
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orientation in DOPC, with a 3o higher tilt (o) and 30o change in azimuthal rotation. The 

rotational slippage remains modest of about 35o, meaning that the replacement of indole ring side 

chain with an imidazole one doesn’t affect the helix dynamics. The only important difference we 

notice for H5GWALP23 and the host peptide is a long-unwound N-terminal end which not only 

unravels a portion of the core helix but also includes the mutated H5 residue. When the histidine 

is moved from position 5 to 19 (with tryptophan occupying position 5), we observe almost no 

change in peptide tilt but about 50o change compared to its H5 isomer. The dynamic properties, 

by means of  value, also remain lower and unchanged. But very interestingly, for this histidine 

mutant no unwinding or helix fraying is observed. The H19GWALP23 peptide stays helical from 

at least residue 7 to 17 unlike H5GWALP23.  Furthermore, when both H5 and H15 are present, 

the predicted  doesn’t increase, rather displays very identical tilted orientation with moderate 

rotational slippage and helical wobbling. Surprisingly, for this GH5,19ALP23 peptide, residue A7 

falls off the helical plot and deflects by about 5.0 kHz, resulting in extended N-terminal 

unraveling, possibly from residue 1 to 7, which is also observed for the H5GWALP23 peptide. 

Thus, we confer that the N-terminal histidine residue may contribute more in determining the 

helical integrity for such transmembrane peptide segments, than the C-terminal residue. At this 

point as we do not have additional data to examine the terminal unwinding involving residue 3 

and 21, which were found to participate in helix to non-helix transitions for most of the GWALP 

family peptides studied previously 30, 32, it is not possible to complete the study of unwinding in 

these cases. Rather we can speculate that because terminal unwinding is a very common feature 

for transmembrane proteins, the histidine analogs of GWALP23 doesn’t differ from this general 

feature. Their unwinding behavior may be modified by the number and locations of interfacial 

histidine residues. 
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Now why does the loss of one or two tryptophan indole rings not affect the helix 

dynamics? I speculate that the histidine imidazole ring/s at the interfaces may behave as a 

combination of aromatic as well as polar rings in the absence of tryptophan indole rings, to 

accommodate the hydrophobic lipids and simultaneously anchor the peptide helix by forming 

stable interactions with lipid head groups and surface water molecules through hydrophilic 

interactions, including hydrogen bond formation. Since the imidazole ring is smaller than the 

indole ring, the helices with imidazole rings (in case of H5, H19 and H5,19 mutations) are 

slightly more tilted than their indole or tyrosyl cousins, suggesting an adjustment to the lipid 

bilayer thickness. Thus, the histidines may be able to find appropriate orientations at the interface 

and minimize the consequences of the loss of tryptophan anchors.  

Even though histidine is a polar residue, its behavior depends on the polarity of its 

environment. With two –NH groups and a pKa of around 6-7, the imidazole ring can be charged 

as well as neutral depending on small changes in pH. Additionally, the pKa may be modulated 

by the local membrane environment and can drop by 2 to 4 units when the imidazole side chain 

is buried withing the hydrophobic core of a lipid bilayer 21. To test whether I observe any change 

in the histidine pKa when present at the membrane-water interface, I have employed buffers of 

varying pH, ranging from acidic to basic, attempting to titrate the interfacial imidazole side chain 

of histidine residues. The properties of the global helix, as detected from the 2H NMR spectra for 

the labeled alanines, serve as an indirect “read-out” for the titration behavior as the pH is 

changed.  The one or two histidine residues in these peptides are the only titratable groups.  

NMR spectral changes will require two events; namely, (i) a His residue would need to change 

its ionization state, and (ii) the global helix would need to respond to the change in the His 

ionization.  If the helix does not respond to a change in His ionization, then the titration will not 
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be detected.  Indeed, there is no observable change in the 2H NMR spectra from pH 2 to 8 for 

any of the labeled alanines in the peptides with the H5, H19 or H5,19 substitutions. This could 

imply that when present at the interface, the histidine side chains prefer only one ionization state, 

either charged or neutral, although such a scenario would seem unlikely. Another possibility, as 

noted, is that the interfacially located imidazole ring of histidine does titrate with the change of 

pH, but the peptide helix does not respond with any change in its preferred orientation or 

dynamics from pH 2-8.  Notably, a similar helix does respond to the titration of more buried His 

residues 21.   

In this study, I have characterized three peptides, H5GWALP23, H19GWALP23 and 

GH5,19ALP23 each containing one or a pair of interfacial histidine residues in DOPC lipid 

membranes.  I note that the identities and locations of the interfacial aromatic residues govern the 

azimuthal rotation of the transmembrane helix. It was previously seen that introduction of two 

adjacent histidine residues at N-terminal end, in the case of the H4,5GWALP23 peptide, increases 

the rotational slippage () around helix axis in DOPC membranes 30. Here I observe that 

removal of H4 drastically reduces , while maintaining a well-defined helix tilt angle and 

azimuthal rotation. The present experiments also show that a change from W5 to H5 causes a 

shift of -30o in ρo, while the change from W19 to H19 causes a shift of +20o in ρo, compared to 

the parent GWALP23 helix with W5 and W19 as a control.  Overall, the rotational preferences of 

H5W19 and W5H19 peptides differ by ∼50°.  Notably, residues 5 and 19 project 40° apart on a 

helical wheel. With both H5 and H19 present in the same helix, the rotational “corrections” 

cancel, and the rotational preference then once again matches that for GWALP23, when W5 and 

W19 are present. Moreover, these results projecting the trend of helix rotation are consistent with 

similar previously studied peptides in which tyrosines replace the tryptophan residues 19. 
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Therefore, the differences in orientation in terms of helix tilt and rotation with respect to anchor 

group identity (H or W or Y) and location (position 5 or 19) remain similar. Only one difference 

I have observed here is the helical unwinding, that involves a portion of core helix (alanine 7), 

that is displayed in the presence of histidine H5, but not with tryptophan or tyrosine in the same 

position. Indeed, this particular helix unraveling is only observed when H5 is present in the helix, 

as in the case of H5GWALP23 and GH5,19ALP23, even for another histidine analog 

H4,5GWALP23 30.  Such behavior is absent when the histidine is moved to the C-terminal end (in 

the case of H19GWALP23).  

In summary, the present study indicates that single or multiple histidine residues at the 

interfacial region of a transmembrane peptide does not significantly perturb the orientation or 

dynamics of a transmembrane alpha helix.  Apparently, the His side chains do not cause 

crowding of aromatic rings at either of the membrane interfaces. The identity of the aromatic 

seems not to affect the helix dynamics as long as there are not “too many” aromatic rings.  

Histidine H5 does nevertheless extend the N-terminal unraveling up to residue 7.  The influence 

of pH furthermore becomes complicated when the His residues, either one or both, are present at 

the membrane-water interface. 
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 Tables 

Table 1: Sequence of GWALP23 peptides with single and double substitutions of tryptophan to 

histidinea 

 
Name of peptide Sequence Reference 

GWALP23 acetyl-GGALW5LALALALALALALW19LAGA-amide 13 

H5GWALP23 acetyl-GGALHLAH8ALALALALALWLAGA-amide This work 

H19GWALP23 acetyl-GGALWLAH8ALALALALALHLAGA-amide This work 

GH5,19ALP23 acetyl-GGALHLALALALALALALHLAGA-amide This work 

Y5GWALP23 acetyl-GGALYLALALALALALALWLAGA-amide 23 

Y19GWALP23 acetyl-GGALWLALALALALALALYLAGA-amide 19 

GY5,19ALP23 acetyl-GGALYLALALALALALALYLAGA-amide 19 
a Mutations with histidine performed in this study are shown as bold and underlined 

 

 

Table 2: 2H-NMR quadrupolar splitting magnitudes (|q|) of labeled core alanines of 

GWALP23 family peptides with single and double interfacial histidine residue in DOPC lipid 

bilayersa 

 
Alanine 

positions 

DOPC 

H5 H19 H5,19 Y5 Y19 Y5,19 W5,19 

7 22.1 17.3 22.3 16.2 14.2 13.9 16.6 

9 6.0 4.6 7.3 0.5 0.5 0.5 1.7 

11 16.8 19.8 18.6 13.6 14.9 14 16.7 

13 1.2 8.2 3.8 0.5 0.5 0.5 1.5 

15 11.7 20.5 17.5 13.6 14.9 14 15.4 

17 8.5 5.4 1.1 4.8 1.0 3.9 2.6 
a The values listed are for  = 0o sample orientations 
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Table 3: Semi-static GALA and modified Gaussian analysis results for H5GWALP23, 

H19GWALP23 and GH5,19ALP23 in DOPC lipid bilayer 

 
Peptide pH GALA Modified Gaussiana Ref 

0  0 Szz RMSD 0  0   RMS

D 

 

W5,19  6.0° 323° 0.87 0.57 9° 321° 9 48o 0.7 13 

bH5 

 

4 8.7o 292o 0.76 0.37 9° 290° 10° 32° 0.6 This 

work 

H19 9.7o 343o 0.83 0.97 11° 342° 10° 28° 0.84 This 

work 

bH5,19 8.7o 319o 0.80 0.97 10° 319° 10° 34° 1.1 This 

work 

Y5 - 5o 310o 0.81 0.88      23 

Y19 5o 336o 0.83 0.77      19 

Y5,19 5o 325o 0.83 0.50      19 

a The modified Gaussian analysis was followed Sparks et al 20, with fixed στ value of 10° and Szz 

of 0.88.  

b Calculations were performed without the A7 data point 
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 Figure Legends 

Figure 1: Pymol 41 representation of GWALP23 family peptides with histidine mutations in 

different locations 

Figure 2: 2H NMR spectra of labeled alanines A7(50%) and A9 (100%) of H5GWALP23 (A) and 

A7(50%) and A17(100%) of Y5GWALP23 (B) in DOPC lipid bilayer. For the H5GWALP23 

peptides, samples were hydrated with acetate buffers of pH 4. Spectra for both  =90o and  =0o 

sample orientations are shown 

Figure 3: 2H NMR spectra of labeled alanines A7(50%) and A9 (100%) of H19GWALP23 (A) 

and A7(50%) and A17(100%) of Y19GWALP23 (B) in DOPC lipid bilayer. For the 

H19GWALP23 peptides, samples were hydrated with acetate buffers of pH 4. Spectra for both  

=90o and  =0o sample orientations are shown 

Figure 4: 2H NMR spectra of labeled alanines A7(50%) and A9 (100%) of GH5,19ALP23 (A) and 

A7(50%) and A17(100%) of GY5,19ALP23 (B) and GW5,19ALP23 (C) in DOPC lipid bilayer. For 

the histidine peptide, samples were hydrated with acetate buffers of pH 4. Spectra for both  = 

90o and  = 0o sample orientations are shown 

Figure 5: Selected 2H NMR spectra to show the titration of H5GWALP23 in DOPC lipid bilayer. 

Sample orientation is  =90o for each spectrum and temperature is 50oC 

Figure 6: Selected 2H NMR spectra to show the titration of H19GWALP23 in DOPC lipid 

bilayer. Sample orientation is  =90o for each spectrum shown and temperature is 50oC 

Figure 7: Selected 2H NMR spectra to show the titration of GH5,19ALP23 in DOPC lipid bilayer. 

Sample orientation is  =90o and temperature is 50oC 

Figure 8: Quadrupolar wave analysis for oriented H5GWALP (red), H19GWALP (blue) and 

GH5,19ALP23 (black) peptides in DOPC lipid bilayer. The analysis for host peptide 

GW5,19ALP23 in the same lipid membrane id shown as dotted green plot. 
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 Figures 

 

 

Figure 1: Pymol 41 representation of GWALP23 family peptides with histidine mutations in 

different locations 
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Figure 2: 2H NMR spectra of labeled alanines A7(50%) and A9 (100%) of H5GWALP23 (A) and 

A7(50%) and A17(100%) of Y5GWALP23 (B) in DOPC lipid bilayer. For the H5GWALP23 

peptides, samples were hydrated with acetate buffers of pH 4. Spectra for both  =90o and  =0o 

sample orientations are shown 
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Figure 3: 2H NMR spectra of labeled alanines A7(50%) and A9 (100%) of H19GWALP23 (A) 

and A7(50%) and A17(100%) of Y19GWALP23 (B) in DOPC lipid bilayer. For the 

H19GWALP23 peptides, samples were hydrated with acetate buffers of pH 4. Spectra for both  

=90o and  =0o sample orientations are shown 
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Figure 4: 2H NMR spectra of labeled alanines A7(50%) and A9 (100%) of GH5,19ALP23 (A) and 

A7(50%) and A17(100%) of GY5,19ALP23 (B) and GW5,19ALP23 (C) in DOPC lipid bilayer. For 

the histidine peptide, samples were hydrated with acetate buffers of pH 4. Spectra for both  = 

90o and  = 0o sample orientations are shown 
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Figure 5: Selected 2H NMR spectra to show the titration of H5GWALP23 in DOPC lipid bilayer. 

Sample orientation is  =90o for each spectrum and temperature is 50oC 
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Figure 6: Selected 2H NMR spectra to show the titration of H19GWALP23 in DOPC lipid 

bilayer. Sample orientation is  =90o for each spectrum shown and temperature is 50oC 

 

 

  



82 

 

 

 

Figure 7: Selected 2H NMR spectra to show the titration of GH5,19ALP23 in DOPC lipid bilayer. 

Sample orientation is  =90o and temperature is 50oC. 
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Figure 8: Quadrupolar wave analysis for oriented H5GWALP (red), H19GWALP (blue) and 

GH5,19ALP23 (black) peptides in DOPC lipid bilayer. The analysis for host peptide 

GW5,19ALP23 in the same lipid membrane id shown as dotted green plot.  
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 Supporting Figures 

 

 

 

Figure S1: MALDI mass spectrum of synthesized GH5,19ALP; H5GWALP and H19GWALP 
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Figure S2: Circular Dichroism spectra of H5GWALP23, H19GWALP23 and GH5,19ALP23 in 

DOPC lipid vesicles 
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Figure S3: 31P NMR spectra of GWALP23 like peptides with tryptophan to histidine 

replacements in single or multiple positions. Spectra shown are in DOPC lipid bilayers. 
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Figure S4: 2H NMR spectra of labeled core alanines of H5GWALP23, H19GWALP23 and 

GH5,19ALP23 in DOPC lipid bilayers. Spectra for sample orientation =90o are shown 
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4. Chapter 4: Examination of pH Dependency and Orientation Differences of Membrane 

Spanning Alpha Helices Carrying a Single or Pair of Buried Histidine Residues 

 Abstract 

Despite being scarce, polar amino acids within the helical core of a transmembrane 

sequence play essential roles in the function of many membrane proteins. To examine the 

interactions of such polar residues with lipid bilayer membranes, the peptide framework of 

GWALP23 (acetyl-GGALWLALALALALALALWLAGA-amide) is a useful tool. In this 

context, I have examined the orientation, dynamics and pH dependence of peptides having 

buried single or pairs of histidine residues. First, two residues from the hydrophobic core of the 

transmembrane GWALP23 helix, residues L8 and L16, were substituted by histidines, to yield 

the GWALP-H8,16 peptide, acetyl-GGALWLAH8ALALALAH16ALWLAGA-amide. The 2H-

NMR spectra of 2H-labeled core alanine residues for GWALP23-H8,16 show, interestingly, no 

titration dependency from pH 2-8, yet a bilayer thickness-dependent orientation difference. The 

helix is found to adopt a transmembrane orientation in thin bilayers of DLPC, a combination of 

transmembrane and surface orientations in DMPC, and then a complete transition to a surface 

bound orientation in the thicker DPoPC and DOPC lipid bilayers. However, in the surface 

orientations, alanine A7 no longer fits within the core helix. To further analyze the effects of 

individual histidine residues, peptides with only H8 were examined. It is observed that although 

the helix with only H8 does not encounter any multiple orientations in DMPC similar to -H8,16, 

the multi-state behavior now switched to bilayers of DOPC. Moreover, the single histidine 

residue H8 of GWALP23-H8 is also sensitive to pH and produces broad and overlapped signals 

when the pH is high. Two titration points for the deprotonation of H8 ranging from 3.3 to 3.9 are 

calculated in two different lipid bilayers of DLPC and DMPC. These results along with previous 
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studies with different locations of histidine residues suggest that hydrophobic thickness is a first 

determinant and pH a second determinant for the helical orientation when the His residues are 

incorporated into the hydrophobic region of a lipid bilayer.  

 Introduction 

Many important functional roles such as pH sensing, ligand binding and metal transport 

in the transmembrane domains of membrane proteins are served by histidine 1-3. The unique 

structural characteristics of histidine that combine properties of both polar and aromatic residues 

as well as its participation in a variety of intermolecular interactions make histidine a highly 

versatile amino acid 4-5. Indeed, the histidine side chain engages in several aromatic interactions 

with neighboring residues which help to stabilize proteins 4, 6-8. The crucial role of His residues 

for the activation 9 and selectivity 10of the M2 proton channel of influenza A is well established. 

The pH dependency of the histidine imidazole side chain is equally important for functions of a 

variety of membrane proteins. For example, the protonation of some histidine residues in 

Diphtheria Toxin triggers the conformational changes of the T domain 11-12 that is necessary for 

catalysis. The electrostatic repulsion between protonated states of two histidine residues, H257 

and H223, initiates the initial conformational change 13. In case of prion proteins (PrP), whose 

misfolding is believed to be the cause of a group of rare and fatal neurodegenerative diseases 14, 

the protonation of some important histidine residues destabilizes the proteins 15. Given the 

functional importance of these histidine residues, relatively little is known about the effect of this 

particular amino acid on protein or model peptide behavior when incorporated within the lipid 

bilayer. 
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To explore the influence of particular histidine residues on transmembrane peptide 

behavior, especially when located within the hydrophobic region of membranes, I utilized the 

well-studied model peptide framework of GWALP23 (acetyl-GGALW[LA]6LWAGA-amide). 

Many sequence variants of this host peptide have been reported previously, and those results 

revealed some very important insights regarding the identities and locations of specific amino 

acids in the general protein-lipid interactions as determinants of the individual peptide 

orientations. For example, the presence of more than two interfacial Trp or Tyr residues tends to 

increase the extent of the motional averaging dramatically 16-17, while only two interfacial 

tryptophans reduces dynamic averaging 18.  Moreover, the presence of a charged residue, 

whether lysine19 or arginine, 20-21 located within the central region of the helix, reveal dramatic 

effects when examined using this model system.  

The advantages of GWALP23 framework are not limited to studies of the influence of 

specific amino acid residues upon the overall behavior of the peptide helix. GWALP23 (or its 

closely related analog having Tyr5 instead of Trp5) has also been employed to reveal the pKa 

values of several membrane-embedded charged residues including histidine 22, glutamic acid 23, 

lysine 19and arginine 19, 21 in the lipid membrane environment. In many of the studies, these 

charged residues are located close to the center of the transmembrane helix sequence and found 

to titrate with pKa values lower than the aqueous pKa when the side chain is cationic. For 

example, a lipid-exposed lysine side chain located close to the center of a DOPC bilayer 

membrane exhibits a pKa of about 6.5 at 37oC 19, while the pKa of histidine at the same location 

is about 4.3 22. In each case, the pKa value is lowered by 2-4 pH units. Nevertheless, the arginine 

side chain is observed not to titrate 19, 21, and the Arg guanidinium group would prefer to exit the 

lipid bilayer rather than to deprotonate 20. In the case of histidine, which is of particular interest 
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of this work, the imidazole side chain has also shown pH sensitivity in the GWALP23 

framework. When located at the center of the helix, the protonation of residue H12 drives the 

helix toward the membrane surface, whereas residue H14 responses only with some 

modifications in the helix tilt angle 22.Nonetheless , in each case the pKa values of the histidine 

side chains were successfully measured. 22  

To further analyze the significance of the histidine side chain and its ionization behavior 

with respect to protein-lipid interactions, I have incorporated a pair of histidine residues at 

positions 8 and 16 in the hydrophobic core of GWALP23, but not adjacent to each other and not 

at the center of the helix.  Rather, the two His residues are partially buried and equidistance from 

the center of the peptide sequence. Residues H8 and H16 are also closer to each other than the 

previous double histidine mutants of GWALP23 reported in previous two chapters. It is of 

interest to note that positions 8 and 16 were previously studied with incorporated arginine 

residues 24. Therefore, I aim to compare the changes in the helix orientation induced by the 

double arginine as opposed to double histidine replacements at positions 8 and 16 in GWALP23. 

Additionally, for better understanding of the behavior of GWALP23-H8,16, a second peptide with 

only one histidine at position 8, naming GWALP23-H8 is also characterized and compared with 

previous results for GWALP23-H16 25.  Analysis of these related peptides provides deeper 

understanding of the principal effects of a single or pair of buried histidine residues as well as 

their ionization properties for the interaction of an -helix with lipid bilayer membranes. 

 Materials and Methods 

The designed peptides were synthesized on a model 433A solid-phase peptide synthesizer 

(Applied Biosystems) from Life Technologies (Foster City, CA) using a modified FastMoc™ 
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chemistry on a 0.1-mmol scale, with extended times for deprotection or coupling where needed. 

Prior to synthesis, commercial L-alanine-d4 (Cambridge Isotope Laboratories) was Fmoc-

protected using Fmoc-ON-succinimide as described 26-27. Other N-fmoc amino acids and rink 

amide resins were purchased from NovaBiochem (San Diego, Ca), Anaspec (Fremont, CA) and 

Bachem (Torrence, CA). Histidine and tryptophan side chains were additionally protected with 

trityl and t-butoxycarbonyl protecting groups. For each peptide synthesis, typically two 

deuterium-labeled alanines with 50% and 100% isotope abundance were used to enable 

subsequent distinguishing and assigning the 2H NMR signals of labeled alanines based on 

relative intensities.  

Synthesized peptides were cleaved from resin using a cleavage cocktail of 85:5:5:5 

mixture of trifluoroacetic acid:phenol:triisopropylsilane:water at 22 °C for 2 h. After filtering off 

the resin support and precipitation of free peptides, purification of crude peptides was performed 

be means of reversed-phase HPLC. A Zorbax SB-C8 column (9.4 × 250 mm) packed with 3.5 

μm octyl-silica from Agilent Technologies was used for purification. Following the purification 

step, the purified peptides were quantified using UV-Vis spectroscopy to measure the absorbance 

of Trp residues present in the peptide sequence at 280 nm 28. MALDI-TOF analysis was used for 

to verify the peptide molecular mass. 

Oriented samples for solid-state NMR experiments were prepared mechanically using 

glass slides with 1:60 peptide:lipid (mol:mol) ratio. The DLPC, DMPC, DpoPC and DOPC 

lipids from Avanti Polar Lipids (Alabaster, AL) were used as synthetic lipids to form the 

membrane. Peptide-lipid mixtures were hydrated following the procedure described previously 29 

with buffers made from 2H-depleted water (Cambridge Isotope Laboratories)  
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Solid-state NMR spectra for 31P nuclei (for confirming the alignment of phosphate head 

groups in lipid bilayers) and 2H nuclei (for analysis of peptide orientations and dynamics based 

on 2H-labeled alanines in the peptide) were recorded using a Bruker Avance 300 spectrometer 

(Billerica, MA). The 31P NMR spectra were recorded in a Doty 8 mm wide line probe (Doty 

Scientific Inc., Columbia, SC) with broadband 1H decoupling on a Bruker Avance 300 

spectrometer at both β=0° (bilayer normal parallel to magnetic field) and β=90° (bilayer normal 

perpendicular to magnetic field) macroscopic sample orientations. Before Fourier 

transformation, an exponential weighting function with 100 Hz line broadening was applied. The 

chemical shift was referenced externally to 85% phosphoric acid at 0 ppm.  

The 2H NMR spectra were recorded at 50 °C with macroscopic sample orientations of 

β=90°  and β=0° A quadrupolar echo pulse sequence 30 was employed with full phase cycling, a 

pulse length of 3.2 µs, echo delay of 105 µs and a 120-ms recycle delay.  Between 0.7 and one 

million free induction decays were accumulated during each 2H experiment.  Fourier 

transformation was accomplished after applying an exponential weighting function with 100 Hz 

line broadening. 

Samples for circular dichroism spectroscopy were prepared by forming small lipid 

vesicles incorporating 0.0626 mol peptide and 3.75 μmol lipid (1/60 peptide:lipid) using 

ultrasonication in unbuffered water. The peptide concentrations were determined by UV-Vis 

spectroscopy using a molar extinction coefficient of ε280=5600 M-1cm-1Trp-1. An average of ten 

scans was recorded on a Jasco J-1500 spectropolarimeter, using a 1 mm cell path length, 1.0 nm 

bandwidth, 0.1 nm slit and a scan speed of 20 nm/min.  
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Helix orientation and dynamics were analyzed using two methods, a semi-static 

Geometric Analysis of Labeled Alanines (“GALA”) 29 and a modified Gaussian approach 16, 31 

for fitting the 2H NMR signals from the CβD3 groups of Ala-d4 residues.  The GALA method 

uses the quadrupolar splitting values from 2H-NMR spectra and fits a principal order parameter 

Szz, an average tilt magnitude τ0 and the direction of tilt also known as azimuthal rotation (), 

while maintain an ε∥ angle between the alanine Cα−Cβ bond vector and the helix axis fixed at 

59.4° 29. The modified Gaussian approach involves three variable parameters, an average helix 

tilt τ0, mean azimuthal rotation 0 and rotational slippage , with fixed values for Szz and  

(helix wobble) following 31. In the case of two completely different orientations,  is 

maintained constant with different values. For transmembrane orientations it is maintained at 100 

while for surface orientation an  of 25o or 35o is used in order to reduce the complexity with 

respect to , as has been validated previously 24.  

 Results 

The desired peptides listed in Table 1 and shown in Figure 1 were successfully 

synthesized and characterized with MALDI-TOF mass spectrometry for confirmation of the 

successful synthesis and extent of isotope labeling. Indeed, the mass spectra of GWALP23-H8,16 

and GWALP23-H8 shown in Figure S1confirm the expected isotopic mass distributions for 

labeled peptides with full or partial deuteration of two alanines. CD spectroscopy yields spectra 

characteristic of α-helices for both peptides in DLPC, DMPC and DOPC lipid vesicles, with a 

distinct minimum at 208 nm and a broad shoulder around 222 nm (Figure S2). The alignment of 

lipid molecules in the bilayers with the peptides has been assessed and confirmed by means of 

31P NMR spectroscopy (Figure S3, S4, S5). 
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GWALP23-H8,16 

2H NMR in bilayers formed by shorter DLPC and longer DOPC lipids 

Solid-state 2H NMR spectra of the 2H-labeled alanines in the peptide containing H8 and 

H16 and incorporated into mechanically oriented glass plate samples produce distinct signals for 

each side-chain methyl group of alanine residues 7, 9, 11, 13, 15 and 17 in DLPC and DOPC 

lipid bilayers (Figure 2A and 2D). The quadrupolar splittings (|q|) of this -H8,16peptide are 

different, but well-defined, when comparing the magnitudes in DLPC with those observed in 

DOPC lipid bilayers. The displayed quadrupolar splitting range of GWALP23-H8,16 is 8-34 kHz 

in DLPC and 1-24 kHz in DOPC, indicating some possible changes in orientations of -H8.16 

peptide in lipid membranes of two different thicknesses (Table 2).  Notably, the |q| for alanine 

residues next to H8 and H16 i.e. A7, A9, A15 and A17 produce sharp and distinct resonances for 

the incorporated 2H labels.  Further analysis by the semi-static GALA method using measured 

|q| values reveals that in DLPC and DOPC membranes, although the peptide is stable and has a 

single orientation in both lipids, these orientations are quite different from each other (Table 3, 

Figure 4A, black line and 4B, blue line ). In DLPC, the helix of GWALP23-H8,16 resides in the 

membrane as a transmembrane helix with a tilt angle (0) of ~25o.  Interestingly in the case of 

DOPC lipid membranes, where the peptide experiences negative hydrophobic mismatch, the 

quadrupolar wave plot shown as blue in Figure 4B indicates a surface bound orientation for the 

peptide helix. The variables calculated using GALA methods also provide proof for the surface 

orientation with a tilt (0) of ~87.3o (Table 3), meaning that the helix axis is essentially 

perpendicular to the bilayer. Furthermore, residue A7 fails to fit in the quadrupolar wave plot for 

the surface helix (Figure 4B) and deviates by about 5.4 kHz. This deviation suggests that residue 
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A7 misses the helical geometry and thereby is possibly unraveled from the surface-bound core 

helix. 

To confirm these results, I employed a modified Gaussian analysis, described previously 

16, 31. This analysis further agrees with the results found for GWALP23-H8,16 in DLPC and 

DOPC membranes, by showing similar values of 0 and 0 as those derived from the GALA 

analysis (Table 3).  Importantly, the surface orientation with respect to DOPC bilayers is 

confirmed by the modified Gaussian analysis.  The rotational slippage  remains always low, 

although it is even lower for the surface orientation (Table 3). 

One very interesting aspect is, this lipid-dependent transition of GWALP23-H8,16 helix 

orientation from transmembrane to surface bound was previously observed for related 

GWALP23 peptide with similar mutations, GWALP23-R8,16 24. This peptide had arginine 

residues at positions 8 and 16, where I have incorporated the histidines for GWALP23-H8,16. 

Notably, the -R8,16 peptide helix displayed a transition from transmembrane to surface bound 

orientation when the helix was moved from 16-carbon acyl-chain DpoPC bilayers to 18-carbon 

acyl-chain DOPC bialyers. In that case the transition of orientation initiated in DOPC, indicated 

by multiple resonances in the NMR spectra, and was continued in the 20-carbon acyl-chain 

bilayers of DeiPC 24. This means when a helix experiences two completely different orientations 

in bilayers of different thickness, it may be expected to display multiple orientations in bilayers 

that are of intermediate thickness compared to the other two. In the case of GWALP23-H8,16, 

with alteration of orientations from DLPC to DOPC, it may be possible to observe multi-state 

behavior of this peptide in either DMPC or DpoPC, since each of these lipids has thickness 
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intermediate to DLPC and DOPC. Therefore, I investigated the orientations of GWALP23-H8,16 

helix in DMPC and DpoPC bilayers as well (described in next section).  

2H NMR in intermediate-thickness DMPC and DpoPC lipid bilayers 

In contrast to the well-defined 2H quadrupolar splittings observed in the spectra from 

helices of GWALP23-H8,16 in the DLPC and DOPC bilayers, in DMPC, with nearly equal 

hydrophobic length of the bilayer and the core helix, it is observed that the 2H NMR spectra from 

the labeled core alanines of GWALP23-H8,16 are poorly resolved and display multiple resonances 

for each alanine residue (Figure 2B). These multiple low-intensity broad peaks for GWALP23-

H8,16 suggest two or more states for this peptide with respect to the lipid bilayer membrane, in 

slow exchange on the NMR time scale. By measuring the quadrupolar splitting for each signal, 

one deduces two distinct sets of these magnitudes for the set of alanine labels. One set of 

quadrupolar splittings matches closely with the signals observed in DLPC, while the other 

overlaps closely with the signals from DOPC (Table 2). Now due to a low signal to noise ratio, 

we could not resolve the quadrupolar splitting values for A15 and A17 in DMPC. Therefore, I 

have performed semi-static GALA analysis using only the signals from alanines 7, 9, 11 and 13.   

Results obtained from the analysis using the GALA method reveal two orientations of the 

GWALP23-H8,16 helix in DMPC membranes, one being a transmembrane orientation with a tilt 

(0) of ~22o, slightly lower than the tilt in DLPC, while the other orientation is surface bound 

similar to that found on the surface of DOPC membranes (Figure 4A and 4B, Table 3). The 

azimuthal rotation (0) for the helix in the surface orientation remains remarkably identical to the 

orientation on DOPC membranes.  For the transmembrane orientation, the helix azimuthal 

rotation (0) is slightly different than in DLPC, reflecting the difference in hydrophobic thickness 
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between DMPC and DLPC. Since the signal intensity for transmembrane orientation 

predominates (although nottremendously) over that for the surface orientation, we note that more 

than half of the peptide helix population adopts the transmembrane orientation in DMPC, while a 

significant minority population leaves the membrane and embraces a surface orientation.  

For comparison with results in the 14-carbon and 18-carbon acyl-chain DMPC and 

DOPC bilayers, we have performed NMR experiments with oriented samples in oriented 16-

carbon acyl-chain DpoPC bilayers. From the 2H NMR spectra of helices in this 16 carbon 

unsaturated DpoPC lipid environment, it is evident that GWALP23-H8,16 exhibits a major set of 

distinct pairs of signals for the CD3 methyl side chains of all six core alanines (Figure 2C), with 

quadrupolar splittings almost identical to those observed for DOPC experiments (Table 2). 

Nevertheless, the spectral quality is not as well resolved as for the DOPC spectra, although the 

resonances are prominent and overlap closely with the DOPC signals (Figure 2C). Interestingly, 

there are some additional signals with very low intensity, whose quadrupolar splitting values are 

similar those from the transmembrane helix in DMPC and DLPC. The minor peaks indicate the 

existence of a minor membrane-embedded population in DpoPC. Further orientational analysis 

confirms that the major orientation of GWALP23-H8,16 on DpoPC bilayers is surface bound, as 

shown by the quadrupolar wave plot in Figure 4B, with identical 0 and 0 values as the surface 

population on DOPC membranes. Modified Gaussian analysis shows agreement with the semi-

static analysis results (Table 3). 

Titration of H8 and H16 

Solid-state NMR can be used to determine the pH dependence of the properties of the 

GWALP23-H8,16 helix by monitoring the changes in the quadrupolar splitting of any of the core 
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alanine residues.  The results will reflect the titration of either or both of the ionizable residues 

H8 and H16 in the helix.  To address pH dependence, oriented samples of GWALP23-H8,16 with 

2H-labeles at A11 and A13 were prepared in bilayers of DOPC under both acidic and basic 

conditions. Figure 3 shows the spectra in DOPC lipid membranes hydrated with buffers having 

pH from 2 to 8. Quadrupolar splittings and overall spectral quality remain universally unchanged 

over this pH range (Figure 3), indicating no change in the orientation of the GWALP23-H8,16 

peptide helix, whether or not the ionization of histidine side chains changes over this range of 

pH. I have also attempted these experiments in DLPC and DMPC lipid membranes where, once 

again, no noticeable changes are observed observed in either membrane. In DMPC the peptide 

continues to display multiple signals irrespective of pH, with almost no changes in the positions 

of peaks or signal intensity. These results involving no pH dependency in the peptide 

orientations are consistent with two other double histidine peptides GWALP23-H12,16 and 

GWALP23-H12,14 25 studied previously, where the histidines are partially buried in the 

hydrophobic membrane, in similar fashion to GWALP23-H8,16.  

GWALP23-H8 

To examine whether one particular histidine residue is causing the bilayer thickness 

dependent orientation variation in GWALP23-H8,16, I have removed H16 from the sequence of 

GWALP23-H8,16 and incorporated a leucine at position 16. This produces a single histidine 

mutant of the parent GWALP23 peptide, namely GWALP23-H8. Now, the other mutation with 

histidine residue at position 16 (GWALP23-H16) was previously studied 25 and in this study the 

results from GWALP23-H8 will be compared with -H16 as well as -H8,16 to analyze whether H8 

or H16 or both are affecting the transmembrane to surface orientation transition of the 

GWALP23-H8,16 helix in lipid membranes.  
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2H NMR in shorter DLPC and DMPC 

The 2H NMR spectra for the aligned samples of GWALP23-H8 reveal well-defined 

signals and distinct quadrupolar splittings of core alanine residues in lipid bilayers of two 

different thicknesses (C12:0-C14:0). DLPC and DMPC (Figure 6). Now these results are quite 

dramatic because in DMPC the -H8,16 helix displays multiple resonances for the alanine residues, 

while when only H8 is present the multiple signals are completely absent. Rather the peptide 

exhibits signals for a single predominant tilted transmembrane orientation in each lipid (Figure 

6). More interestingly, these signals change with pH from the acidic to basic range, which will be 

discussed later. The quadrupolar splitting magnitudes |q| of GWALP23-H8 range from 2 kHz 

to 24 kHz in DLPC and 1.5 kHz to 23 kHz in DMPC (pH 2 in each case), which are significantly 

smaller ranges than those for the GWALP23-H8,16, even in the case of the major signals in 

DMPC membranes (Table 2). These observations of the GWALP23-H8 |q| ranges suggest a 

lower tilt compared to GWALP23-H8,16 in the same bilayer membranes. Therefore, residue H8 

seems to have a large effect on peptide helix properties. 

The combined analysis using semi-static and gaussian approaches reveals in DLPC and 

DMPC lipid bilayers, the addition of H8 decreases the helix tilt remarkably especially in DLPC 

(Figure 10). The GWALP23-H8 helix adopts tilt angles ranging from 10-120 in DLPC and DMPC 

(Table 3) which in each case is only about half of the tilt magnitude observed for the helix 

having both H8 and H16. Moreover, the helix of GWALP23-H8 loses the sensitivity of tilt angle 

relative to bilayer thickness, indicated by the approximately same tilt angles in two different 

lipids (Table 3). The azimuthal rotation () ranges from 150-1600 in the two bilayers and differs 

by about 300 when compared to the double histidine counterpart. Conversely when compared 

with the parent GWALP23 peptide, there is considerable change in the azimuthal rotation (Table 
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3). The observed azimuthal rotation for GWALP23 in DLPC to DMPC bilayers varies from 3050 

to 3110, whereas in the case GWALP-H8 the rotations are 1600 and 1560 respectively. The 

modified Gaussian analysis shows further agreement, with similar values of 0 and 0, while 

maintain a moderate rotational slippage  of about 400.   

2H NMR in longer and unsaturated DOPC lipid membranes 

In the case of GWALP23-H8, as the acyl chain length and bilayer lipid thickness increase 

from DLPC to DOPC, there is a drastic decrease in spectral quality. The spectra are 

characterized by poor signal-to-noise ratio where individual quadrupolar splittings are no longer 

distinguishable (Figure 7); rather the multiple overlapped signals give rise to broad peaks for 

each labeled alanine. This means that the GWALP23-H8 peptide does experience multi-state 

behavior that may be similar to that of GWALP23-H8,16, but interestingly in a thicker membrane. 

Due to a high noise level in the spectra of the DOPC samples that complicates the individual 

assignment of quadrupolar splittings, the |q| magnitudes listed in Table 2 for the DOPC 

experiments are approximate.  For the same reason, the GALA quadrupolar wave plot for 

GWALP23-H8 in DOPC cannot be analyzed at this time. 

Titration of H8  

Because the sequence of GWALP-H8 contains no ionizable residue other than H8, it 

provides an opportunity to observe any change, involving either spectral quality or quadrupolar 

splittings, that is directly linked to the ionization state of the H8 side chain.  Changes in the 2H 

NMR spectra therefore might enable calculation of the titration point of H8 in the membrane 

environment.  The 2H NMR spectra of GWALP23-H8 under pH conditions from acidic to basic 

are shown in Figure 8 and supplementary Figure S6. In DLPC, although the spectral quality 
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remains unchanged from pH 2 to pH 8, the methyl 2H quadrupolar splittings of A11 and A13 

decrease from 6 kHz to 3.5 kHz and from 12 kHz to 10 kHz, respectively (Table 4). Using the 

|q| values over a pH range from 2 to 8, titration curves are obtained for A11 and A13 in DLPC 

(Figure 9A), both showing midpoints at pH ~ 3.9, which indicates the pKa of H8 imidazole ring 

side chain in DLPC.  

In DMPC, there are some additional spectral changes, including changes in the 

quadrupolar splittings. When the peptide is in acidic pH environment, i.e. from pH 2 to pH 4, the 

signals from the 2H-alanine labels of GWALP-H8 are well resolved with noticeable movement of 

the peaks for labeled A11 and A13, resulting from changes in quadrupolar splitting values. As 

the sample pH is raised incrementally from 4 to 8, there is then a progressive decrease in spectral 

quality leading to overlapping of the primary peaks (Figure 8). To confirm these dramatic 

changes between pH 2 and pH 8, samples with other 2H-labeled core alanines were also hydrated 

with pH 8 buffer, and similar poorly resolved spectra were observed at pH 8 in each case (Figure 

6B, rightmost panel).  These results confirm the deprotonation of H8 side chain in DMPC when 

the pH is in the basic range. Plotting the |q| values of A11 and A13 versus pH in DMPC, a pKa 

of 3.3 is predicted for the H8 imidazole ring in DMPC bilayers (Figure 9B), which is similar 

although slightly lower than that observed in DLPC.  

I attempted also similar pH experiments in DOPC lipid membranes, with an aim to 

improve the spectral quality, but no change is observed. The GWALP23-H8 peptide continues to 

display weak resonances and possibly remains multi-state or perhaps somewhat aggregated 

irrespective of the pH (Figure S6).  
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As the quadrupolar splittings for GWALP23-H8 change with pH in DLPC and DMPC 

membranes, it is also reasonable that the orientation of the helix may change with pH. The 

GALA analysis results of GWALP23-H8 at pH 2 and pH 8 are listed in Table 3 and the 

quadrupolar wave plots are shown in Figure 10. The GWALP23-H8 helix in DLPC is found to 

decrease its tilt by 3o with no significant change in the azimuthal rotation when the pH is raised 

from 2 to 8 (see Table 3 and Figure 10). In DMPC, because of the overlapping of signals, the 

number of quadrupolar splittings that could be measured was insufficient for determination of 

the change in helix orientation with pH.   

 Discussion 

In this study, I have addressed the question of how the relative positions and number of 

histidine residues present within the central hydrophobic region of a lipid-bilayer membrane 

affects the orientation and dynamics of a transmembrane helix.  I have used a -helical model 

transmembrane helix GWALP23 as the initial host into which the “guest” histidine residue/s 

were then introduced singly or as a pair, to determine the properties and influence of this 

aromatic and potentially positively charged residue in a hydrophobic lipid bilayer. The effects of 

the His residue/s will be considered and compared with the baseline properties of the host 

peptide helix, as well as with the influence of some other similar mutations performed 

previously.  

GWALP23-H8,16 

In the modifications of GWALP23 with histidines studied here, the His residues are 

located at positions 8 and 16, with their -carbons are about 12 Å apart from each other. A 

previous study with mutations involving arginine residues at the same positions showed some 
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very interesting results 24. Because of the potential “snorkeling” of arginine guanidinium side 

chains, the distance between R8 and R16 can increase and provide access of the side chains to 

the membrane-water interface. As a result, the peptide helix with R8 and R16 adopts 

transmembrane orientations in thinner membranes such as DLPC and DMPC, while having a 

transition state in the thicker DOPC bilayer, where the major orientation is surface bound and the 

minor orientation is transmembrane. However, the minor transmembrane orientation is 

completely absent when the peptide is transferred to DeiPC, a bilayer with 20-carbon acyl chains 

that is even thicker than DOPC 24. These results support the snorkeling behavior of arginine side 

chains, which were introduced by others in earlier studies 32-33.Similar snorkeling of lysine 

residue was also studied 34. Here, I have investigated whether histidine, another potentially 

positively charged residue but with less steric flexibility than Lys or Arg, has similar ability to 

confer a bilayer thickness dependence to a transmembrane helix.  Although the snorkeling effect 

may allow positively charged residues to place near the negatively-charged phospholipid head 

groups 32 34 35, the situation could be more complicated because the histidine side chain has a ring 

and not a flexible chain.  Histidine furthermore can titrate with a pKa that typically is close to 

physiological pH. For these reasons, my analysis involved experiments with different pH 

environments ranging from acidic to basic, pH 2 to 8, to investigate how histidine behaves when 

its side chain titrates from positive to neutral.  

The results from the 2H NMR spectroscopy of GWALP23-H8,16 reveal similar orientation 

transitions in bilayer membranes that depend solely on the thicknesses of bilayers. GWALP23-

H8,16 exhibits a tilted transmembrane orientation in DLPC lipid membrane with a tilt angle of 

250, which is slightly higher compared to GWALP23. With arginines present at the same 

positions, the tilt of the GWALP23-R8,16 helix peptide () is even higher (290) 24. Thus, the 
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observed magnitude of  is possibly tuned by the length of the positively-charged side chains of 

residues 8 and 16. Since the arginine side chain is longer than the histidine side chain, the R8 and 

R16 side chains stretch more to position the guanidine groups closer to the interface than is 

possible for the imidazole rings of H8 and H16, which may cause the 40 change in the overall tilt 

angle. Moreover, the aromaticity of histidine may also have some role to play here, rendering the 

side chain somewhat compatible with the hydrophobic region of the bilayer. In DMPC, this 

hydrophobic region increases by 4 Å and hence H8 and H16 may fail to snorkel to the 

membrane-water interface. While some of the subtle details are unknown, the combined effects 

eventually lead to multiple orientations for the GWALP23-H8,16 helix with respect to DMPC 

lipid bilayers.  Although the major population remains oriented as a transmembrane helix, a 

significant fraction of the GWALP23-H8,16 helix population goes to the surface of DMPC 

bilayers (Figure 5). Interestingly in the case of the arginine cousin, a similar transition happens in 

DOPC membranes as opposed to DMPC membranes 24. Due to the length of arginine side chain 

the GWALP23-R8,16 peptide apparently is able to preserve its membrane spanning orientation in 

DMPC, while histidines with shorter side chains fail to do so in the same membrane. Notably, 

when the helix of GWALP23-H8,16 is moved to the comparatively thicker DpoPC or DOPC 

bilayers, the surface orientation dominates as the major population of the peptide (Figures 4 and 

5). (Note:  the thicknesses of DLPC, DMPC and DOPC at 250 C are 20.8, 24.8 and 26.2 Å  36-37.) 

Two other GWALP23 family peptide with pairs of histidine residues (with H12,14 and 

H12,16) displayed such surface-bound orientations in DOPC. In each case, due to a failure to 

accommodate both histidine residues within the bilayer, the helices leave the membranes and 

prefer to sit close to the interface 25 These peptides too exhibited transmembrane orientations in 

the thinner DLPC bilayer. All of these results involving histidine residues tested in present work 



106 

 

as well as previous works suggest that, histidine may to a small extent extend or “snorkel” its 

side chain, although to a lesser extent than lysine or arginine.  

To test the effect of histidine ionization states in the two different orientations 

experienced by GWALP23-H8,16, I have done experiments with labeled A7 and A9 of this 

peptide at acidic and basic pH. Having an aqueous pKa value near physiological pH (6.5), 

histidine imidazole side chains tend to protonate at low pH and thus carry a positive charge, 

which is necessary for the “snorkeling” of Lys and Arg side chains to reach toward the interface. 

At high pH, with the deprotonation of imidazole rings, the His side chain loses the positive 

charge and that may result in some conformational changes. Since in the hydrophobic region of a 

lipid bilayer, the pKa of a histidine chain is expected to be lower, in my experiments I have 

maintained the pH range from 2 to 8, with an aim to observe any spectral change within this 

range in DLPC, DMPC and DOPC lipid bilayers.  Interestingly, no changes in spectral quality or 

quadrupolar splittings are observed in any of the lipid membranes when the peptide helix is 

placed in lipid environments with different pH (Figure 3). Although the spectra for the helix in 

DLPC at pH 2 are broader compared to the other pH values, that result does not seem to change 

the overall peptide conformation or helix orientation. The helix persists as transmembrane in 

DLPC, multi-state in DMPC and surface-bound in DOPC. Now these results are not very 

surprising because it has been found previously that pairs of buried histidine residues lose the pH 

response, whereas a single isolated histidine is very sensitive to pH when present alone 25. 

Therefore, in the case of GWALP23-H8,16, it is likely that the peptide prefers to maintain the 

same orientation irrespective of pH, even though the side chains may or may not be titrating. An 

alternative yet unlikely explanation could be that the imidazole rings preserve their positive 
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charge up to pH 8, to help the peptide helix adopt a modest orientation. Nevertheless, a plausible 

reason for such behavior would remain obscure. 

GWALP23,H8 

The results for GWALP23-H8 help us to understand the behavior observed for GWALP-

H8,16. Similar to the double histidine counterpart, this peptide too exhibits multiple broad 

resonances of 2H-labels present in the core alanines, but not in the same lipid membranes. My 

findings in DLPC and DMPC bilayers include well resolved 2H-NMR resonances for the helix 

with the buried H8 residue, which interestingly change with pH (discussed later). The GALA 

analysis of GWALP23-H8 indicates a transmembrane orientation but distinct from that of 

GWALP23-H8,16 in DLPC as well as DMPC bilayers. This new orientation corresponds to a tilt 

value about 50% lower than that of the double histidine -H8,16 peptide and also lower than the 

parent peptide GWALP23 helix (Table 3). As discussed earlier, in DLPC the tilt () of 

GWALP23-H8,16 is ~250, large enough for the H8 and H16 side chains to reach the surface. 

When H16 is removed from the helix, however, this tilt angle decreases to ~120 in DLPC. In 

addition, the helix with only H8 also loses the sensitivity of tilt angle to bilayer thickness and 

adopts about same amount of tilt in DMPC (Table 3). However, in the case of DMPC, the 

orientation of GWALP23-H8 is comparable to that of GWALP23, as their tilt angles are similar. 

Comparing the azimuthal rotation  the GWALP23-H8 helix changes its rotation by about 400 

when compared to GWALP23-H8,16, but this change is quite large compared to the helix with 

leucine at position 8. This may mean that the introduction of H8 alters the helix rotation angle 

largely to reposition the Trp side chains. This alteration in rotation also allows the side-chain 

snorkeling of H8.  Thereby the combination of helix rotation and tilt could permit the H8 
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imidazole group to interact with the interfacial region and allow the helix to retain a 

transmembrane orientation despite having a positively charged side chain in the bilayer-spanning 

hydrophobic region. However, this well-defined transmembrane orientation is disrupted when 

the H8 imidazole ring loses its charge (discussed later). 

In DOPC, the behavior of GWALP23-H8 is strikingly different. In this thicker bilayer, the 

spectra observed for each core alanines of GWALP23-H8 peptide are poorly resolved, broad and 

overlapped with each other, indeed similar to the spectra of GWALP23-H8,16 in DMPC. Due to 

the low signal to noise ratio, the individual quadrupolar splittings are obscured and I have 

reported the approximate values of quadrupolar splittings n Table 2. For the same reason, it was 

not possible to assign these values with respect to particular alanines and therefore GALA 

analysis of the helix orientation was not feasible for GWALP23-H8 in DOPC. It is likely that two 

populations of this helix are present in DOPC, as was seen for GWALP23-H8,16 in DMPC. To 

assess whether GWALP23-H8 adopts a single orientation in a membrane thicker than DOPC, I 

performed some experiments the longer DeiPC lipid (C20:1, data not shown). But interestingly 

the peptide continued to display multiple resonances, meaning the orientation transition is not yet 

complete and the peptide seems to struggle to move to a single orientation. With the presence of 

two histidine side chains, this transition is comparatively easier for the GWALP23-H8,16 helix; 

seemingly, its larger tilt angle helps to provide greater access to the interfacial region and later 

supports an exit from the bilayer. But with H16 removed, the adjusted tilt angle in thinner lipids 

significantly decreases to orient H8 and apparently fails to adjust when the bilayer thickness 

increases. 

The extreme effects of residue H8 on the overall behavior of the peptide helix raises 

questions about the impact of H16. What happens if only H16 is present? Surprisingly, H16 itself 
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has no effect on transitioning the helix from one orientation to another 25, whether in DOPC or 

thinner lipid bilayers.  The GWALP23-H16 peptide is transmembrane in bilayers from DLPC to 

DOPC, with relatively low tilt angles and no evidence for multi-states orientation in these 

bilayers of varying thickness. These results suggest the multi-state behavior shown by 

GWALP23-H8,16 is mostly influenced by H8, although in a different lipid membrane than the 

transition membrane when H8 is alone in GWALP23-H8. 

Ionization of H8 

In addition to lipid bilayer thickness, GWALP23-H8 is also sensitive to pH and responds 

when the pH of the bilayer environment varies. As previously observed for the some other 

GWALP23 mutations with a single histidine such as H12, H14 22 orH16 25, changes in the peptide 

helix behavior as a function of pH are observed also for the GWALP23-H8 peptide, especially in 

DLPC and DMPC lipid bilayers. In the case of DOPC, the changes with pH are complicated due 

to the multiple signals (Figure S6). The response to pH is nevertheless straightforward and more 

prominent in DLPC and DMPC bilayers At low pH, this peptide shows well resolved NMR 

spectra in both DLPC and DMPC lipid bilayers. These spectra reveal minor yet measurable 

changes in the core 2H-alanine quadrupolar splittings in DLPC when H8 is introduced (Figure 

S6). A significant reduction in the 2H NMR spectra quality is nevertheless observed at pH higher 

than 4 in DMPC bilayers. In each of these lipid membranes, titration points are observed, near 

pH 4 in the thinner DLPC and near pH 3 in the somewhat thicker lipid DMPC. These low pKa 

values of a buried histidine residue show general agreement with those observed previously for 

GWALP23-H12, GWALP23-H14 and GWALP23-H16, in the vicinity of pH 2.5, 4 and 3.5, 

respectively 22, 25. The results therefore suggest that the pKa of the His side chain may vary 

somewhat (as expected) depending on the depth of burial of the imidazole ring, which also is 
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observed for soluble proteins. 38 Among all these mutants studied so far, the depth of burial of 

H12 is highest and that probably is the reason that H12 exhibits the lowest pKa compared to the 

others.  

The shift of pKa for the histidine imidazole ring in membrane environments is indeed 

biologically relevant. For example, a pKa value of < 2.3 was found for a buried histidine residue 

H149 in xylanase 38. On the other hand, for H72 in bovine tyrosine phosphatase the pKa is close 

to 9 39. Even in the M2 ion channel of influenza A protein, the functionally important histidine 

residue H37 generates two different pKa values as the folded protein changes its conformation 40. 

Another good example of such behavior is observed for membrane insertion peptides such as 

pHLIP, which transitions from a membrane-inserted state to a surface orientation depending on 

ionization of an Asp residue. Introduction of a histidine residue at the opposite face of the helix 

shifts the pKa to a lower value (~ 4.7) which in turn influences the pKa of the Asp residue and 

therefore stabilizes a membrane-inserted state within the 3.1−6.8 pH range 41. Our results which 

reveal varying pKa values for histidine that also affect the multi-state properties, response to 

lipid thickness, and stability of a transmembrane state, are consistent with these studies of larger 

membrane protein systems.  

In summary, I have aimed to elucidate further the histidine side chain ionization 

properties and influence on helix properties when buried within the hydrophobic core of lipid 

bilayer membranes. The influence of two buried histidine residues essentially equidistant from 

the two ends of an -helix is also addressed.  My findings suggest a minor extent of snorkeling 

behavior of histidine side chains that in line with previous observations for arginine and lysine. 
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In addition, the observed prominent effect of H8 over H16 for the properties of GWALP23-H8,16 

peptide is also revealed. 
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 Tables 

Table 1: Sequence of buried single and paired histidine and arginine mutants of GWALP23 

peptides 

 
Name of peptide Sequence Reference 

GWALP23 acetyl-GGALWLALALALALALALWLAGA-amide 42 

GWALP23, H8,16 acetyl-GGALWLAH8ALALALAH16ALWLAGA-amide This work 

GWALP23, H8 acetyl-GGALWLAH8ALALALALALWLAGA-amide This work 

GWALP23, H16 acetyl-GGALWLALALALALAH16ALWLAGA-amide 25 

GWALP23, R8,16 acetyl-GGALWLAR8ALALALAR16ALWLAGA-amide 24 
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Table 2: 2H-NMR quadrupolar splitting magnitudes of labeled core alanines of GWALP23 

family peptides with single and double histidine substitution 

 
Peptide Lipid pH [d4] Ala CD3 quadrupolar splittingsa 

A7 A9 A11 A13 A15 A17 

GWALP23 DLPC  26.4 25.5 26.9 14.6 20.7 3.4 

DMPC 21.9 8.9 20.9 3.8 17.6 2.9 

DOPC 16.6 1.7 16.7 1.5 15.4 2.6 

H8,16 DLPC 4 33.7 33.7 30.2 29.8 8.4 18.5 

DMPCb 

(major) 

28.4 29.2 24.6 25.8 -- -- 

DMPC 

(minor) 

24 24 16.2 1.8 -- -- 

DpoPC 24.1 24.0 16.1 1.7 13.7 29.0 

DOPC 22.3 23.8 16.0 1.4 13.4 31.2 

H8 DLPC 2 2.2 22.2 11.7 24.0 10.7 21.1 

8 2.3 16.1 7.5 19.7 2.2 15.2 

DMPC 2 1.4 20.7 10.7 23.0 8.3 16.8 

8c 1.0, 12.5 3.0, 13.9 1.8, 8.7 

DOPC 8c  2.2, 20.0, 6.8, 13.8 10.6, 23.4, 19.8, 7.0 6.4, 15.8, 1.8, 11.8 

a Values reported here are for = 0o sample orientations. 

b The signals from labeled alanines of GWALP23-H8,16 in DMPC display multiple broad and 

overlapped signals. To address the q
 values we have reported here the average values of 

overlapped signals. The assignments for A15 and A17 in DMPC were not possible to retrieve 

due to a poor signal to noise ratio. 

c Since multiple weak and overlapped signals are observed for each double-labeled sample, it 

was not possible to report the exact |q| values for GWALP23-H8 in DMPC or DOPC lipids at 

pH 8. 
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Table 3: Semi-static GALA and Modified Gaussian analysis results for GWALP23-H8,16 and 

GWALP23-H8 helices in lipid bilayers. 

 
Peptide Lipid pH Semi-static Modified Gaussian Ref 

  Szz RMS

D 
    RMS

D 

 

GWALP23 DLPC - 20.7° 305° 0.66 0.71 23° 304° 33 15 o 0.7 42 

DMPC 9.0° 311° 0.89 1.06 13o 308 42 10 1.19 

DOPC 6.0° 323° 0.87 0.57 9° 321° 48 9 o 0.7 

H8,16 DLPC 4 25.0o 122o 0.82 1.06 29 122 10 28 0.94 This 

work 

DMPC 

(major) 

21.7° 116° 0.8 1.15      

DMPC 

(minor) 

87° 31° 0.57 0.76      

DpoPC 87.3° 32o 0.54 0.76 84 28 35 16 1.45 

DOPC 87.6o 32o 0.55 0.82 83 28 35 16 1.18 

H8 

 

DLPC 

 

2 11.7o 160o 0.85 0.23 15o 160o 10o 38o 0.48 This 

work 

8 8.7 o 148 o 0.77 1.20 8 144 10 0 1.03 

DMPC 2 10.7o 156 o 0.81 0.90 14 156 10 42 0.98 

8b - - - - - - - - - 

DOPC 8b - - - - - - - - - 

a The GWALP23 samples were unbuffered at neutral pH.  

b Since the individual quadrupolar splitting values for GWALP23-H8 in DMPC at pH 8 and in 

DOPC were not possible to retrieve, GALA analysis was not performed for these two cases 
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Table 4: Trends for the quadrupolar splitting magnitudes (|Δνq|) with pH for labeled alanine A11 

and A13 CD3 groups in GWALP23-H8 

 

Lipid(s) 

pH / Δνq (in kHz)a 

 2.0 3.0 4.0 6.0 8.0 

DLPC A11 6.0 - 4.5 3.4 3.7 

A13 11.9 - 10.9 10 9.6 

DMPC A11 5.1 3.9 1.7 1.5 1.5 

A13 11.4 9.8 7.0 6.2 6.5 

a sample orientation for = 900 is reported 
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 Figure legends.  

Figure 1: Models to illustrate positions of histidine residues introduced within the helix of 

GWALP23 and the orientations of two peptides in DLPC lipid bilayers, drawn using Pymol 43 

Figure 2: 2H NMR spectra of labeled alanines in the GWALP23-H8,16 core helix in DLPC, 

DMPC, DpoPC and DOPC lipid bilayers hydrated with 20 mM buffer at pH 4. Sample 

orientation is  = 90o, 1:60 peptide:lipid at 50oC. The numbers indicate the identities of the 2H-

Ala residues. 

Figure 3: Selected 2H NMR spectra of GWALP23-H8,16 labeled alanines A11 and A13 in the 

core helix in DLPC (A), DMPC (B) and DOPC (C) lipid bilayers hydrated with 20mM buffer at 

the indicated pH. Sample orientation is  = 90o, 1:60 peptide:lipid at 50oC  

Figure 4: Quadrupolar wave analysis depicting two different orientations of GWALP23-H8,16 

peptide in DLPC, DMPC, DpoPC and DOPC lipid membranes obtained by GALA method 29. 

Panel A shows the plots for transmembrane orientations with =   in DLPC (solid black) and 

with  =   for major population in DMPC (solid green). In panel B each plot represents 

surface orientation with tilt angles of ~ 870 for minor population in DMPC (dashed green) and 

major populations in DpoPC (solid red) and DOPC (solid blue) lipids. Detailed results are listed 

in Table 3 and the orientation transitions are represented in Figure 5. 

Figure 5: Models to illustrate the transition of GWALP23-H8,16 from its tilted transmembrane 

orientation (in DLPC) to a primary orientation at the surface of DOPC bilayer membranes. In the 

bilayer of intermediate thickness, DMPC, the major population of the helix adopts a 

transmembrane orientation with slightly smaller tilt than in DLPC, shown in the center panel. 

The minor population in DMPC has a surface bound orientation (not shown) similar to that in 

DOPC (right panel).   

Figure 6: 2H NMR spectra of labeled alanines in the GWALP23-H8 core helix in DLPC (A) and 

DMPC (B) lipids at pH 2 and 8. Sample orientation is  = 90o, 1:60 peptide:lipid at 50oC  The 

changes in quadrupolar splittings in DLPC and spectral quality in DMPC indicate the response of 

the helix to the change in ionization state of histidine H8 

Figure 7: 2H NMR spectra of labeled alanines in the GWALP23-H8 core helix in DOPC lipid 

bilayers.  Multiple peaks are observed for each labeled alanine. Sample orientation is  = 90o, 

1:60 peptide:lipid at 50oC 

Figure 8: Selected 2H NMR spectra for deuterated alanines A11 and A13 of GWALP23-H8 in 

DMPC hydrated with 20 mM buffer at the indicated pH values. Sample orientation is  = 90o, 

1:60 peptide:lipid at 50oC   

Figure 9: Plots indicating the titration points of H8 present in GWALP23-H8 in DLPC (A) and. 

DMPC (B) bilayers. The pH dependence of the q values for the CD3 groups of Ala11 and 

Ala13 are shown as black and red respectively. The curves indicate slightly different pKa values 

of 3.9 in DLPC and 3.3 in DMPC lipid bilayers (blue dashed lines). 

Figure 10: Quadrupolar wave plots for the helix of GWALP23-H8 in (A) DLPC  at pH 2 and pH 

8, and (B) DMPC at pH 2. 
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 Figures 

 

 

 

Figure 1: Models to illustrate positions of histidine residues introduced within the helix of 

GWALP23 and the orientations of two peptides in DLPC lipid bilayers, drawn using Pymol 43. 
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Figure 2: 2H NMR spectra of labeled alanines in the GWALP23-H8,16 core helix in DLPC, 

DMPC, DPoPC and DOPC lipid bilayers hydrated with 20 mM buffer at pH 4. Sample 

orientation is  = 90o, 1:60 peptide:lipid at 50oC. The numbers indicate the identities of the 2H-

Ala residues.  
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Figure 3: Selected 2H NMR spectra of GWALP23-H8,16 labeled alanines A11 and A13 in the 

core helix in DLPC (A), DMPC (B) and DOPC (C) lipid bilayers hydrated with 20mM buffer at 

the indicated pH. Sample orientation is  = 90o, 1:60 peptide:lipid at 50oC  

 

 

 



124 

 

 

 

Figure 4: Quadrupolar wave analysis depicting two different orientations of GWALP23-H8,16 

peptide in DLPC, DMPC, DPoPC and DOPC lipid membranes obtained by GALA method 29. 

Panel A shows the plots for transmembrane orientations with =   in DLPC (solid black) and 

with  =   for major population in DMPC (solid green). In panel B each plot represents 

surface orientation with tilt angles of ~ 870 for minor population in DMPC (dashed green) and 

major populations in DpoPC (solid red) and DOPC (solid blue) lipids. Detailed results are listed 

in Table 3 and the orientation transitions are represented in Figure 5. 
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Figure 5: Models to illustrate the transition of GWALP23-H8,16 from its tilted transmembrane 

orientation (in DLPC) to a primary orientation at the surface of DOPC bilayer membranes. In the 

bilayer of intermediate thickness, DMPC, the major population of the helix adopts a 

transmembrane orientation with slightly smaller tilt than in DLPC, shown in the center panel. 

The minor population in DMPC has a surface bound orientation (not shown) similar to that in 

DOPC (right panel).   
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Figure 6:  2H NMR spectra of labeled alanines in the GWALP23-H8 core helix in DLPC (A) and 

DMPC (B) lipids at pH 2 and 8. Sample orientation is  = 90o, 1:60 peptide:lipid at 50oC  The 

changes in quadrupolar splittings in DLPC and spectral quality in DMPC indicate the response of 

the helix to the change in ionization state of histidine H8. 
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Figure 7: 2H NMR spectra of labeled alanines in the GWALP23-H8 core helix in DOPC lipid 

bilayers.  Multiple peaks are observed for each labeled alanine. Sample orientation is  = 90o, 

1:60 peptide:lipid at 50oC.  
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Figure 8: Selected 2H NMR spectra for deuterated alanines A11 and A13 of GWALP23-H8 in 

DMPC hydrated with 20 mM buffer at the indicated pH values. Sample orientation is  = 90o, 

1:60 peptide:lipid at 50oC   
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Figure 9: Plots indicating the titration points of H8 present in GWALP23-H8 in DLPC (A) and. 

DMPC (B) bilayers. The pH dependence of the q values for the CD3 groups of Ala11 and 

Ala13 are shown as black and red respectively. The curves indicate slightly different pKa values 

of 3.9 in DLPC and 3.3 in DMPC lipid bilayers (blue dashed lines). 
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Figure 10: Quadrupolar wave plots for the helix of GWALP23-H8 in (A) DLPC at pH 2 and pH 

8, and (B) DMPC at pH 2.  
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 Supporting Figures 

 

 

Figure S1: MALDI-Mass spectra of GWALP23-H8,16 and GWALP23-H8 showing the isotope 

distributions in the synthetic peptides. Successive peaks within each envelope (representing the 

molecules with 4 deuterons or with 8 deuterons) differ by ± 1 atomic mass unit due to the 

statistical distribution of naturally abundant 13C (1.1% natural abundance). 
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Figure S2: Circular Dichroism spectra of GWALP23-H8,16 (A) and GWALP23-H8 (B) in DLPC, 

DMPC and DOPC lipid vesicles 
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Figure S3: 31P NMR spectra of GWALP23-H8,16 in DLPC, DMPC and DOPC lipid bilayers 
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Figure S4: 31P NMR spectra of GWALP23-H8 in DLPC, DMPC and DOPC lipid bilayers at pH 

8 
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Figure S5: 31P NMR spectra of GWALP23-H8 in DLPC and DMPC lipid bilayers at pH 3 and 

pH 8 
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Figure S6: Selected 2H NMR spectra for deuterated A11 and A13 of GWALP23-H8 in DMPC 

and DOPC lipid bilayers hydrated with 20mM buffer at indicated pH. Sample orientation is  = 

90o, 1:60 of peptide: lipid at 50oC   
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5. Chapter 5: Transmembrane Helix Integrity Versus Fraying to Expose Hydrogen Bonds 

at a Membrane-Water Interface 

 

A revised version was published  in F. Afrose, M. J. McKay, A. Mortazavi, V. S. Kumar, D.V. 

Greathouse and R.E. Koeppe 2nd. Transmembrane Helix Integrity versus Fraying to Expose 

Hydrogen Bonds at a Membrane-Water Interface Biochemistry 2019, 58, 6, 633-645 © 2018 

American Chemical Society 

 

 Abstract 

Transmembrane helices dominate the landscape for the membrane-spanning domains of 

many membrane proteins. Often flanked by interfacial aromatic amino acids, these 

transmembrane helices also contain loops and inter-helix segments, which could help in 

stabilizing a transmembrane orientation. By using 2H-NMR spectroscopy to monitor bilayer 

incorporated model GWALP23 family peptides, we address systematically the issue of helix 

fraying in relation to the dynamics and orientation of closely similar individual transmembrane 

helices. Adjacent to a core transmembrane helix, we inserted both aromatic (Phe, Trp, Tyr, His) 

and non-aromatic residues (Ala, Gly) into positions 4 and 5, to examine the side chain 

dependency of the transmembrane orientation, helix dynamics and helix integrity (extent and 

location of unraveling). Incorporation of 2H-alanine labels in terminal alanines enables one to 

assess the helicity of the core sequence and the peptide termini. For most of the peptides under 

consideration, we observed substantial unwinding involving at least 3 residues at both ends. For 

the unique case of histidine at positions 4 and 5, an extended N-terminal unwinding was 

observed up to residue 7. For further investigation regarding the onset of fraying, we employed 
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A4,5GWALP23 with 2H labels at residues 4 and 5 and found that the number of terminal residues 

involved in the unwinding is dependent on bilayer thicknesses and helps to govern the helix 

dynamics. The combined results enable us to compare and to contrast the extent of fraying for 

each of the related helices, as reflected by the deviation of experimental 2H quadrupolar splitting 

magnitudes of juxta-terminal alanines A3 and A21 from those represented by an ideal helix 

geometry. 

 Introduction 

Transmembrane alpha-helices constitute a major structural motif for many biologically 

important integral membrane proteins including, for example, the seven-helix G-protein coupled 

receptors 1-2 and a wide variety of single-span membrane proteins 3-5.  The helices often 

terminate at or near the lipid membrane-water interface, yet the molecular interactions 

responsible for helix continuation, segment looping or helix termination are not well understood. 

Computational approaches to transmembrane helices sometimes presume an uninterrupted 

helical secondary structure 6 7-8 which is not necessarily validated.  Some segments may loop 

naturally to join consecutive helices of a multi-helix membrane protein 9-12, while other 

transmembrane helices may extend beyond the membrane surface 13-14.  Well controlled 

experiments with appropriate model peptide-lipid systems can help to address some of the 

considerations for helix folding and protein-lipid interactions.   

In this work, I address the unwinding of helix terminals at a membrane/water interface, 

which we hypothesize may be a general property for many individual and bundled polypeptide 

helices that span lipid-bilayer membranes.   As a choice of model system, we employ here the 

GWALP family of transmembrane peptide helices, which like the parent WALP peptides 15 have 
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proven useful for elucidating fundamental principles. In particular, a second-generation peptide 

GWALP23, acetyl-GGALW(LA)6LWLAGA-amide, 16-17 exhibits favorable properties, including 

a well-defined tilted transmembrane orientation 16 wherein the tilt of the GWALP23 helix scales 

with the bilayer thickness 17. The helix furthermore undergoes only modest dynamic averaging 

about a principal transmembrane orientation 18-19.  Interestingly, nevertheless, the presence of 

more than two interfacial Trp or Tyr residues, flanking the central helix, tends to increase 

dramatically the extent of the motional averaging 18-20.  

Comparisons among several derivatives of GWALP23, namely similar transmembrane 

helices with different numbers or locations of interfacial Trp, Tyr or Phe residues 21-22, have 

suggested that factors other than interfacial aromatic residues might help to determine particular 

orientations for neutral transmembrane helices.  Experiments with deuterium labels on residues 

A3 and A21, separated by 18 residues or five turns on a “perfect” -helix 23, revealed the fraying 

of helix terminals for acetyl-GGAAA(LA)6LWLAGA-amide and acetyl-

GGAFF(LA)6LWLAGA-amide in bilayer membranes 24 (Figure 1). Is helix fraying therefore a 

general feature that is commonly observed for transmembrane helices? Do particular 

combinations of side chains govern the location and the extent of helix unwinding? To address 

these questions, we have examined the influence of residues 4 and 5 for the core helix integrity 

and unwinding of N- and C-terminals of a series of GWALP23-like transmembrane peptides.  In 

particular, we have compared the influence of small side chains, G4G5 and A4A5, and aromatic 

side chains, F4F5, Y4Y5, W4W5 and H4H5 (Table 1), for important properties such as the helix 

orientation, dynamic averaging and terminal fraying in bilayer membranes of DOPC, DMPC and 

DLPC.  The results give insight into the molecular interactions of protein domains that are in 

direct contact with lipids in bilayer membranes.  
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 Materials and methods 

Peptides were synthesized on a model 433A solid-phase peptide synthesizer (Applied 

Biosystems) from Life Technologies (Foster City, CA) using a modified FastMoc™ chemistry 

on a 0.1-mmol scale, with extended times for deprotection or coupling where needed.  N-fmoc 

amino acids were purchased from NovaBiochem (San Diego, Ca), Anaspec (Fremont, CA) and 

Bachem (Torrence, CA), including histidine and tryptophan whose side chains were additionally 

protected with trityl and t-butoxycarbonyl protecting groups, respectively.  Prior to peptide 

synthesis, commercial L-alanine-d4, from Cambridge Isotope Laboratories was manually 

derivatized with an N-terminal Fmoc protecting group, as described previously 25-26, with 

monitoring by 1H-NMR spectroscopy to confirm successful synthesis of Fmoc-Ala-d4.  

Typically, each peptide was synthesized with two deuterium-labeled alanines at 50% and 100% 

isotope abundance levels, to distinguish and assign the 2H NMR signals based on relative 

intensities.  

Peptides with His-trityl and Trp-butoxycarbonyl were deprotected and cleaved from Rink 

amide resin (NovaBiochem) using a cleavage cocktail containing trifluoroacetic acid (TFA): 

phenol:triisopropylsilane:water in a 85:5:5:5 ratio at 22 °C for two h, to release a peptide with a 

neutral amidated C-terminal. After filtering the free peptide solution from resin support, peptides 

were precipitated with a cold 50:50 methyl-t-butyl-ether:hexane (0 °C, 30 m) mixture and 

collected by centrifugation. To remove traces of TFA, multiple steps of washing (with 

MtBE:hexane) and lyophilization (from 1:1 acetonitrile:water) were performed.  Crude peptides 

were purified by means of reversed-phase HPLC, using a 9.4 × 250 mm Zorbax SB-C8 column 

packed with 3.5 μm octyl-silica (Agilent Technologies, Santa Clara, CA), eluted with a gradient 

of 95-99% (W4,5 peptide), 88-92% (H4,5 peptide) or 94-98% (G4,5 peptide) methanol in water 
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containing 0.1% TFA (v/v). Purified peptides were quantified by measuring the absorbance at 

280 nm based on a molar extinction coefficient of 5600 M−1 cm−1 Trp−1 in the peptide sequence 

27.  MALDI-TOF analysis was used for to verify the peptide molecular mass. 

Mechanically oriented samples for solid-state NMR experiments were prepared with 1:60 

peptide:lipid (mol:mol) ratio, using DLPC, DMPC and DOPC lipids (Avanti Polar Lipids, 

Alabaster, AL).  Peptide-lipid mixtures were hydrated with 2H-depleted water (Cambridge 

Isotope Laboratories) to achieve 45% w/w hydration following the procedure described 

previously 28.  Solid-state NMR spectra for 31P nuclei (for confirming the alignment of phosphate 

head groups in lipid bilayers) and 2H nuclei (for analysis of peptide orientations and dynamics 

based on 2H-labeled alanines in the peptide) were recorded using a Bruker Avance 300 

spectrometer (Billerica, MA). 

The 31P NMR spectra were recorded in a Doty 8 mm wideline probe (Doty Scientific 

Inc., Columbia, SC) with broadband 1H decoupling on a Bruker Avance 300 spectrometer at both 

β=0° (bilayer normal parallel to magnetic field) and β=90° (bilayer normal perpendicular to 

magnetic field) macroscopic sample orientations. Measurements were performed at 50° C using 

the zgpg pulse program, a 6 μs 90° pulse, and a recycle delay time of 5 s. Before Fourier 

transformation, an exponential weighting function with 100 Hz line broadening was applied. The 

chemical shift was referenced externally to 85% phosphoric acid at 0 ppm.  

The 2H NMR spectra were recorded at 50 °C with macroscopic sample orientations of 

β=90° (bilayer normal perpendicular to magnetic field) and β=0° (bilayer normal parallel to 

magnetic field). A quadrupolar echo pulse sequence 29 was employed with full phase cycling, a 

pulse length of 3.2 µs, echo delay of 105 µs and a 120-ms recycle delay.  Between 0.7 and one 
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million free induction decays were accumulated during each 2H experiment. Fourier 

transformation was accomplished after applying an exponential weighting function with 100 Hz 

line broadening. 

Circular dichorism measurements were performed on peptides incorporated into small 

unilamellar vesicles of lipids (1:60, peptide: lipid), obtained by ultrasonication treatment. Peptide 

concentrations were in 100 µM range, determined by UV-Vis spectroscopy. Spectra were 

recorded in a Jasco J-1500 spectropolarimeter, using a 1 mm cell path length, 1.0 nm bandwidth, 

0.1 nm slit and a 20 nm/min scan rate. An average of six scans typically were recorded to 

enhance signal to noise ratio 

Helix integrity, end fraying, orientation and dynamics were analyzed using two methods, 

a semi-static geometric analysis of labeled alanines (“GALA”) 28 and a modified Gaussian 

approach 22, 30 for fitting the 2H NMR signals from the CβD3 groups of Ala-d4 residues.  The 

GALA method fits a principal order parameter Szz, an average tilt magnitude τ0 of the helix axis 

with respect to the bilayer normal and azimuthal rotation τ0 about the helix axis, while 

maintaining an ε∥ angle between the alanine Cα−Cβ bond vector and the helix axis fixed at 59.4° 

28.  The modified Gaussian approach also involves three variable parameters, an average helix tilt 

τ0, mean azimuthal rotation 0 and rotational slippage , while maintaining fixed values for Szz 

(principal order parameter) and  (helix wobble) that were held constant at 0.88 and 10°, 

respectively, following 22.  The helix integrity, or lack thereof, was assessed by observations of 

alanine side-chain CD3 |q| values that deviated from the quadrupolar wave plot for the core 

helix, following 24.  
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For the A4,5GWALP23 helix, a full Gaussian analysis 31 was performed using eight data 

points, quadrupolar splittings for deuterated alanines 4, 5, 7, 9, 11, 13, 15 and 17. For this 

analysis, the search increments were 0-90° for 0, 0-360° for 0, 0-40° for  and 0-120° for .  

Then the best fits for each of the variables τ0, 0,  and  were determined.   

 Results 

Favored by (Leu-Ala)6 repeats, synthetic model peptides of the GWALP23 family adopt 

primarily transmembrane alpha-helical secondary structures within the hydrophobic region of a 

lipid bilayer, which may be further stabilized by two flanking tryptophan residues. In the 

modified peptides under consideration here, the L4W5 sequence of GWALP23 is replaced by 

neutral Gly or Ala, or by aromatic residues that may be neutral, polar or amphipathic, resulting in 

G4,5, A4,5, F4,5, H4,5, Y4,5 and W4,5GWALP23 peptides (Table 1). After synthesizing and purifying 

the peptides, their molecular masses and 2H labeling patterns were confirmed by MALDI-TOF 

mass spectrometry (Figure S1 of the Supporting Information). The helicity of peptides was 

checked using circular dichorism (CD) spectroscopy in DLPC, DMPC and DOPC lipid bilayers.  

The CD spectra generally show double minima near 208 nm and 222 nm, which are 

characteristic features for alpha-helical structure (Figure S2 of the Supporting Information).  

(The situation may be complicated by the Trp residues in W4,5GWALP23, for which the ratio 

222/208 in DOPC is about 1.1 instead of the more usual observation of about 0.9.)  In the 

macroscopically oriented samples, the peptide-lipid mixtures are well aligned in bilayers, as 

indicated by the 31P NMR spectra for the lipid head groups in the  = 0° and  = 90° sample 

orientations (Figure S3 of the Supporting Information). 
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To evaluate the helix orientations, as well as the helix integrity in more detail, we 

recorded 2H NMR spectra of d4-labeled alanine residues of G4,5, H4,5 and W4,5GWALP23 in 

DLPC, DMPC and DOPC bilayer-incorporated samples, for comparison with previously 

reported spectra for the other related peptides. The 2H quadrupolar splitting magnitudes (|Δνq|) 

from methyl side chain (CD3) groups of six core alanines provide required data for estimating the 

preferred tilted and averaged orientations of the core transmembrane helical segments with 

respect to a bilayer normal in an applied magnetic field 28, 32.  The data for the core Ala residues 

also allow estimates and comparisons of the global helix dynamics using semi-static 28, 32 and 

modified Gaussian methods 22, 30. 

Glycine and alanine comparisons.   

In the design of GWALP23 16-17, W5 was presented as an “anchoring” interfacial Trp 

residue to help stabilize a well-defined tilted transmembrane orientation for the core helix. 

Nevertheless, it was found that the A4,5 derivative of GWALP23, without W5, exhibits also a 

well-defined transmembrane orientation for its core helix, with only a small extent of dynamic 

averaging 24. Now, having removed the #4 and #5 side chains altogether, we observe and report 

similar properties for G4,5GWALP23 as for A4,5GWALP23 (Figure 2).  Indeed, the 2H NMR 

spectra for the core alanines 7, 9, 11, 13, 15 and 17 are quite similar for G4,5GWALP23 and 

A4,5GWALP23 (Figure 2; Figure S4 of the Supporting Information).  The maximal quadrupolar 

splitting magnitudes, those that eventually define the amplitudes of the quadrupolar wave plots 

(see below), are only slightly smaller with G4 and G5, compared to A4 and A5 (Table 2), 

indicating a similarly low extent of dynamic averaging for G4,5GWALP23 and A4,5GWALP23.  

For example, A4,5 produced wide ranges of |Δνq| magnitudes, from 6.5 to 23.2 kHz in DLPC, 6-

21 kHz in DMPC and 0.5-18.6 in DOPC (Table 2), resulting in a relatively similar orientation 
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and dynamics to GWALP23 24.  For G4,5 the |Δνq| values extend from 1.4-19 kHz in DLPC, 7.0-

20 kHz in DMPC and 1-17 kHz in DOPC (Table 2). The scope, defined by the tilted helix, 

appears equivalent when the helices are in DMPC or DOPC bilayers, while in DLPC the 

quadrupolar splittings of G4,5 are slightly lower compared to A4,5 (Table 2). While similar, the 

detailed results could be indicative of slight changes in helix tilt, dynamics or unwinding (see 

below) for G4,5GWALP23 compared to A4,5GWALP23 in DLPC, with quite similar helix 

properties in DMPC and DOPC.  

For evaluation of the tilt angles, the observed quadrupolar splittings were subjected 

initially to a semi-static GALA analysis 28, 32, a technique that uses an α-helical geometry and a 

principal order parameter Szz as an estimate for a relative extent of overall helix motion. Based 

on the 2H NMR quadrupolar splittings, this method finds the lowest RMSD values using three 

variables, Szz, the mean helix tilt (τ0) and azimuthal rotation (ρ0). Additionally, helix dynamics 

were further analyzed using a modified Gaussian analysis 22, 30 that employs also a three-

parameter fit, with variables being 0, 0 and , the rotational “slippage” about the helix axis.  

To maintain an equivalent “playing” field (with three parameters), the modified Gaussian 

method maintains fixed estimated values of Szz and , the helix “wobble” 22.  The results and 

corresponding r.m.s.d. values obtained from the GALA and Gaussian analysis methods are listed 

in Table 3.  The theoretical quadrupolar wave plots of |q| versus the alanine C radial location, 

corresponding to the best fits for 0, 0 and Szz or , are presented in Figure 3, overlaid with the 

experimental data.  In general, Figure 3 indicates that the overall results for the G4,5GWALP23 

helix are quite similar to those for the parent GWALP23 peptide helix that has L4,W5 instead 

G4,G5. Remarkably, the helices with G4,G5, A4,A5, or L4,W5, show analogous characteristics in 

each of the lipid bilayer membranes.  
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Notably, the small tilt angles observed for G4,5GWALP23 in DMPC and DOPC (about 8° 

and 6° respectively) are nearly identical to those found previously 17 for the GWALP23 helix 

(Table 3).  Results from the semi-static GALA method reveal nevertheless a distinctly smaller 

apparent tilt in DLPC bilayers for the G4,5 peptide helix, albeit with a similar azimuthal rotation 

angle 0, when compared to the parent GWALP23 helix (Figure 3). Indeed, G4,5GWALP23 

exhibits a helix tilt angle that appears about 10o lower than that observed for GWALP23, 

A4,5GWALP23 or F4,5GWALP23 in DLPC (Table 3).  The modified Gaussian analysis 

furthermore shows general agreement with the results from semi-static method for the helix 

orientation and dynamics (Table 3).  Notably, the value of , which is a key indicator for high 

levels of dynamic averaging 18, 20, 30, remains modest (near 40°) in each of the DLPC, DMPC and 

DOPC bilayers membranes (Table 3).  Importantly, the  values for G4,5GWALP23 are 

essentially indistinguishable from those for GWALP23 in each of the lipid membranes.  After 

considering the aromatic residues, we will further compare the helix orientations (see below).  As 

is typical for transmembrane helices that exhibit only moderate dynamic averaging 18, the fitted 

values for the helix tilt and azimuthal rotation from the GALA and Gaussian analytical methods 

tend to agree (Table 3).   

Aromatic residue comparisons. 

In similar fashion, we compare the influence of different aromatic residues at positions 4 

and 5 in derivatives of GWALP23, relating now H4,5 and W4,5 with previous results for 

F4,5GWALP23 22 and Y4,5GWALP23 20-21.  Compared to the parent GWALP23, W4,5GWALP23 

contains an extra tryptophan, W4 in place of L4.  As the third polar aromatic residue in the 

sequence, W4 might have been expected to confer excessive dynamic averaging and a dramatic 
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narrowing of the range of quadrupolar splittings for the deuterated core alanines, as observed 

previously for Y4,5GWALP23 20-21.  Notably, nevertheless, W4,5GWALP23, with adjacent 

tryptophans at positions 4 and 5, displays wide ranges of quadrupolar splittings for the core 

alanine side chains when the helix is dispersed in lipid bilayers (3-22 kHz for DLPC, 2-18 kHz 

for DMPC and 1-15 kHz for DOPC).  The 2H NMR spectral results (Figure 4, Figure S6 of the 

Supporting Information) contrast not only with those for Y4,5GWALP23 but also with results for 

other WALP family analogues carrying four tryptophans, namely W2,3,17,18ALP19, 

W2,3,21,22ALP23 and W2,5W19,22,ALP23 which show splitting ranges that span less than 15 kHz in 

all cases 17, 28, 32-34.  Indeed, the results for W4,5GWALP23 are more similar to those for 

F4,5GWALP23 22, 24 than for Y4,5GWALP23 20-21; see Figure 4 and Table 2.   

On the other hand, H4,5GWALP23 is found to behave differently than W4,5GWALP23, 

with an apparent membrane thickness dependence of the observed range of core alanine 

quadrupolar splittings (Table 2; Figure 4; Figure S5 of the Supporting Information).  The range is 

quite wide (1-18 kHz) in DLPC, moderate (2.5-14.5 kHz) in DMPC and narrow (5.5-11 kHz) in 

DOPC bilayers.  Interestingly, the |Δνq| values and ranges of H4,5GWALP23 in DMPC and 

DOPC bilayer are very similar to those observed for the highly dynamic Y4,5GWALP23. These 

results signify the possibility of H4,5GWALP23 exhibiting comparably high levels of dynamic 

averaging to those of Y4,5GWALP23 in lipid-bilayer membranes.  

Indeed, when a pair of histidine residues is introduced in positions 4 and 5, keeping the 

single Trp residue (W19) near the C-terminus, H4,5GWALP23 is found to behave quite differently 

from GWALP23 or G4,5GWALP23.  The semi-static GALA and Gaussian fits show some 

similarities with the orientational and motional properties of Y4,5GWALP23, yet also some 

differences.  H4,5GWALP23 indeed is seen to be highly dynamic, showing  values that range 
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from about 57° in DLPC to 114° in DOPC (Table 3).  In DOPC bilayer membranes, 

H4,5GWALP23 and Y4,5GWALP23 show similar properties, where each helix displays a small 

tilt angle (0 ~ 6°) and similar mean azimuthal rotation (0 from -8° to 8°), with a very large 

rotational slippage ( > 70°; Table 3).  The properties of H4,5GWALP23 and Y4,5GWALP23 

diverge in the thinner DMPC and DLPC lipid membranes.  Reflecting again the high extent of 

dynamic averaging, the best fits for 0 now differ between the two helices and differ also from 

the 0 observed for each in DOPC (Table 3).  Interestingly, H4,5GWALP23 displays the same 

mean azimuthal rotation in DMPC as DLPC, but Y4,5GWALP23 does not.  With the exception of 

Y4,5GWALP23 in DMPC, the values of  are uniformly large for these two helices (Table 3).  

Curiously, Y4,5GWALP23 exhibits extensive dynamic averaging in DLPC although it can be 

fitted with very little dynamic averaging in DMPC (see Discussion).  We note also that residue 

A21 of Y4,5GWALP23 fits with the core helix in DMPC (see below).  

As a new feature, the 2H |Δνq| magnitude for deuterated A7, near the beginning of the 

core helix of H4,5GWALP23, fails to fit the core helix backbone geometry in bilayers of DOPC 

or DMPC. In these lipid membranes, therefore, the core helix of H4,5GWALP23 extends only 

from about residue 9 to 19, resulting in a longer unwound N-terminal up to about residue 8 

(Figure 5A).  We will address residue 7 further below when we consider the more generalized 

unwinding of the N- and C-terminals.  At present, this type of core helix unwinding at A7 is 

unique for H4,5 as we do not observe such results for other X4,5 analogues, including the highly 

dynamic Y4,5GWALP23.   

As noted above, a similar analogue, containing tryptophans at positions 4 and 5, shows 

very different results. W4,5GWALP23, unlike the Y4,5 and H4,5 peptides, does not exhibit the high 
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dynamic averaging and gives quadrupolar wave fits for tilt and azimuthal rotation similar to 

those for GWALP23 (Figure 5B).  The modified Gaussian analysis reveals low to moderate σρ 

values that increase only slightly with lipid bilayer thickness (Table 3). The overall trends are 

very similar for the helix properties of W4,5GWALP23 and GWALP23, for the DLPC, DMPC 

and DOPC bilayer membranes. It seems that W4 is tolerated equally as well as L4.  (Actually, 

the σρ values for W4,5GWALP23 are even slightly lower than for the already well oriented 

GWALP23 helix.)  The azimuthal rotation ρ0 for W4,5GWALP23 changes by about 12° from 

DLPC to DMPC and 20° from DMPC to DOPC (Table 3), which is a slightly larger lipid 

dependence for helix rotation than observed for GWALP23 (about 5o and 10o respectively). 

Taken together, these results indicate that the helix properties do not vary significantly when L4 

is changed to W5 in the GWALP23 framework.  

Helix terminal fraying.   

Additional important considerations are the length and integrity of the core 

transmembrane helix.  The data for the CD3 groups of juxta-terminal alanines A3 and A21 serve 

to define the helical integrity near the peptide ends 24.  Occasionally, we find that residue A7 or 

A17 may deviate from the core helix geometry.  

To test the unwinding of helix terminals, we labeled alanines 3 and 21 of the G4,5, Y4,5, 

W4,5 and H4,5 derivatives of GWALP23 with deuterium.  The 2H NMR spectra for alanines 3 and 

21 of these peptides are shown in Figure 6.  The spectra display distinct and sharp peaks for the 

CD3 side chains of alanines 3 and 21.  Typically, the |Δνq| magnitudes (Figure 3, Table 2) are 

different for residues 3 and 21, indicating unwinding of one or both helix ends 24.  Occasionally, 

as observed for G4,5- and H4,5GWALP23 in DLPC, residues A3 and A21 display the same |Δνq| 
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value.  A coincidence of |Δνq| values for A3 and A21 could indicate that the helix is intact from 

residue 3 through residue 21 or, alternatively, both residues 3 and 21 could deviate from the core 

helix (see below).   

When the |Δνq| values for A3 and A21 are visualized next to the quadrupolar wave plots 

for the core transmembrane helix (Figure 3), it is evident that residues 3 and 21 deviate from the 

core G4,5GWALP23 helix in each of the DLPC, DMPC and DOPC lipid membranes.  The results 

for G4,5GWALP23 are similar to those observed previously for A4,5GWALP23 and 

F4,5GWALP23 24.  The closest approach of residue 3 or 21 to the G4,5GWALP23 core helix 

involves residue A3 in DLPC, where the |Δνq| deviation is only 1.5 kHz (Figure 3).  Residue A3 

fits the GWALP23 helix in DOPC but not in DMPC or DLPC (Figure 4), while reside A21 is 

consistently off of both core helices in each of the lipid membranes.   

Considering H4,5GWALP23 and W4,5GWALP23 (Figure 4), we find that residue A7 

deviates from the core helix of H4,5GWALP23 in all three lipid membranes, effectively 

shortening the core helix of H4,5GWALP23.  Residue A21 also deviates, so the core helix of 

H4,5GWALP23 extends, at most, from residue 8-20 (yet is verified only between residues 9-17).  

Residue 3 of H4,5GWALP23 does not change its orientation much when the lipid membrane is 

changed (Figure 5), as the A3 |Δνq| values are nearly identical in DLPC, DMPC and DOPC 

membranes (Table 2).  The orientation of residue 3 of H4,5GWALP23 indeed is probably dictated 

by peptide bond/lipid interactions without relation to any helix (since the core helix is already 

unraveled at residue 7).  One notes that the similar |Δνq| values for A3 of H4,5GWALP23 are 

fortuitously close to the core helix in DMPC, probably a coincidence.  The core helix of 

W4,5GWALP23 is intact between residues 7-17, with residues 3 and 21 unwound (Figure 5), very 

similar to the situation observed with F4,5GWALP23 and A4,5GWALP23 24.   
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Within the context of the helix dynamics and helix end fraying, we compare again the 

helix orientations based on contour plots for best-fit values of helix tilt  and azimuthal rotation  

(Figure 7).  These contour plots confirm the conclusions from the GALA wave plots in Figures 3 

and 5.  One notes that the transmembrane helices with residues F4F5, W4W5 or A4A5 display a 

helix tilt that increases systematically when the host bilayer becomes thinner (Figure 7).  These 

helices whose tilt angle scales with the bilayer thickness also display limited dynamic averaging 

(with  generally < 50°; Table 3).  By contrast, the helices with residues Y4Y5 or H4H5 

display extensive dynamic averaging (with  generally > 70°; Table 3) and an “apparent” helix 

tilt angle that is obscured by the dynamic averaging and therefore appears to depend little on the 

bilayer thickness (Figure 7).  A revised analysis (Table 3), with  set to 5, indicates a high value 

of  also for Y4,5GWALP23 in DMPC.  Somewhat curiously, the helix G4,5GWALP23 shows 

only modest dynamic averaging (Table 3) yet also a tilt angle that varies little with the bilayer 

thickness (Figure 7).  With one particular helix, additionaly 2H labels enabled us to examine 

more closely the N-terminal unraveling of the core helix.   

Sequence position for the onset of fraying.  

Because we have seen a number of transmembrane helical peptides undergo unwinding, 

regardless of the lipid thickness, we decided to investigate the onset of the unwinding for a 

particular case from the N-terminal end.  With the exception of H4,5GWALP23, residue A7 is 

part of the core helix for each of the transmembrane peptides listed in Table 1.  For the case of 

H4,5GWALP23, with A7 not part of a helix (Figure 5), the core helix must begin after residue 7, 

as the sequence of the first six residues would be too short to form a helix.  With data points 

available for residues A7 and A3, to expand the analysis, we have deuterated and investigated 
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alanines 4 and 5 of A4,5GWALP23.  Our previous study on A4,5GWALP23 24 suggested that this 

peptide, despite its lack of an aromatic or charged flanking residue, N-terminal to the core helix, 

aligns well in the lipid bilayers with typical rapid reorientation about the bilayer normal 15 yet 

little additional dynamic averaging.  

Alanines A4 and A5 provide a particular opportunity for the use of deuterium labels to 

investigate the onset of helix fraying.  Figure 8 shows the 2H NMR signals from A4 (50% d4) 

and A5 (100% d4) of A4,5GWALP23.  The respective |Δνq| values are listed in Table 2.  Notably, 

the results for the onset of helix unraveling are lipid dependent for both boundaries of the core 

helix. When viewing the 2H |Δνq| magnitudes of the A4 and A5 side chains alongside the 

quadrupolar wave plot for the core helix from the six central alanines of A4,5GWALP23, one 

observes that A4 and A5 deviate from helix geometry in DLPC bilayers, but are included with or 

very close to the core helix in DMPC and DOPC (Figure 8).  The core helix is nevertheless 

longer in DOPC bilayers because, remarkably, residue A17 deviates from the core helix in 

DMPC!  These results imply that both terminal segments of the tilted transmembrane helix of 

A4,5GWALP23 respond to the lipid membrane thickness.  The transmembrane helix is frayed 

from residues 1-5 in DLPC but only from residues 1-3 in DOPC or DMPC; yet the C-terminal 

segment is further frayed back to residue 17 in DMPC.  In the other bilayers of DLPC and 

DOPC, the C-terminal is unraveled from at least residues 21-23, perhaps farther, with further 

information not available at this time.  

Refining the analysis of helix dynamics  

The differential fraying of the terminals of A4,5GWALP23 in different bilayer membranes 

raised questions about the dynamics of the core helix.  At the same time, the access to data points 
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for deuterated A4 and A5 enabled a full Gaussian analysis of the dynamic averaging for the core 

helix (residues 4-17 or 4-16) in DOPC and DMPC, using the quadrupolar splitting magnitudes 

for seven or eight alanines.  The best-fit preferred ranges of RMSD as functions of  and  

(Figure 10) reveal now a much larger preferred value (72°) for  and a much larger allowed 

range for (, ) for the more “perfect” core helix in DOPC bilayer membranes (lowest panel 

of Figure 10).  These results suggest a correlation for the helix of A4,5GWALP23 being less 

frayed and showing more dynamic averaging in DOPC.  The longer core helix would have 

shorter exposed “stakes” on the ends which in turn could lead to more dynamic averaging.   

 Discussion 

Key results shown above indicate that the helix integrity or extent and location of 

terminal unraveling of a transmembrane helix can relate to the primary protein structure at the 

membrane interface, the membrane thickness and the dynamic properties of the helix.  Cause and 

effect can sometimes propagate in either direction, as for example, changes to particular 

interfacial residues or the bilayer thickness may influence the helix fraying, which in turn could 

influence the dynamics of the core helix.  Interactions between side chains and lipid head groups 

also could influence the molecular dynamics and the extent of helix unwinding.  We will focus 

first on helix to non-helix transitions as a general feature at lipid membrane interfaces for model 

peptides and membrane proteins.  We will then address the interplay among particular interfacial 

residues, lipid bilayer thickness, and the core helix length, boundaries, wobble and rotational 

dynamics.   

  



154 

 

Interfacial helix unwinding as a general feature. 

With now a large set of peptides from the GWALP23 family, one observes a core 

transmembrane helix that is tilted in lipid-bilayer membranes.  Yet the helix geometry of the 

central core does not extend to the terminals of the 23-residue sequence.  Instead, residues 3 and 

21 consistently are observed to deviate from the core helix configuration.  The terminal 

unraveling was first suggested for GWALP23 in DMPC bilayers 17 and then was observed for 

the single-Trp helices of F4,5GWALP23 and A4,5GWALP23 in bilayers of DLPC, DMPC and 

DOPC 24.  By comparison, an amphipathic 14-residue helical peptide, (KIAGKIA)2-amide, is 

found to unravel at its N-terminus when bound to the surface of DOPC or DMPC bilayers; yet 

the helix spans residues 4-14 all the way to the C-terminus 35.   

In this work, we extend the observations for a larger number of related 23-residue 

membrane-spanning helices and observe, as a general feature, that both the N-terminal and C-

terminal tend to unwind from the core helix at the membrane interfaces.  Occasionally, the 

unraveling is less extensive near the C-terminal than near the N-terminal, a result which may 

couple to increased rotational dynamics for the core helix.  The detailed dependence upon the 

identities of residues 4 and 5 will be discussed below.  Next, we address examples of the 

relevance of helix conformational transitions for membrane protein function.  

Helix fraying and structural plasticity indeed may have functional relevance in a variety 

of membrane proteins. Consider, for example, NsaS, an intramembrane histidine kinase that 

helps S. aureus adapt to a variety of environmental stimuli.7  A marginally stable interfacial -

helical coiled-coil linker adopts a variety of conformations during antibiotic induced signaling.  

The structural plasticity of the linker region, similar to ones found in a number of signal 
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transduction proteins, may provide soft coupling between the transmembrane and signaling 

domains.7 

Another example involves alpha-synuclein (S), a small highly conserved protein linked 

to Parkinson’s disease that localizes to presynaptic vesicles 36. An N-terminal lipid-binding 

domain of S can interconvert between helix and disordered conformations, depending on the 

membrane environment. Conversion from extended to broken helix has been proposed to enable 

S to bridge between two closely apposed membranes. Similar behavior is observed in 

apolipoproteins with common sequence and structural features. Reorganization between 

membrane-bound extended and broken helices is thought to be important for normal protein 

function and may play a role aggregation and toxicity37  N-terminal acetylation, present in native 

S, was found to decrease helix fraying and increase affinity for vesicles with physiological 

anionic lipid content.38 

Partial fraying of a membrane proximal region of gp41 may play a role in the fusion of 

HIV to target cell membranes.39 Unwinding of a transmembrane coiled-coil of a heterodimeric 

integrin receptor was found to release a constraint on the ectodomains, enabling ligand-induced 

conformational changes 40. The unwinding of a C-terminal -helix could be important for 

regulating the function of Switch-associated protein-70 at a membrane surface.41 Helix 

unwinding may help cytoskeletal spectrin proteins to regulate cell deformation. 42. The influenza 

A matrix protein 2 may adjust its length by partially unwinding a helix and forming loop 

structures.43  These and other examples illustrate the need for better understanding of biophysical 

features that govern the continuity and unraveling of protein helices in lipid membranes.  
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Influence of Positions 4 and 5 on Tilt and Dynamics.  

Residues 4 and 5 influence the helix properties differently in different membrane 

environments.  The parent helix of GWALP23 with residues L4 and W5 is moderately dynamic 

with modest values of  while adopting a tilt 0 that adjusts to the lipid thickness without a need 

to modify its azimuthal rotation.17  Replacing L4 with W4 interestingly does not increase the 

predicted .  The presence of W4,5 maintains similar orientations and lipid dependent trends to 

those of GWALP23 with L4W5.  Competing hydrogen bonding interactions at the membrane 

interface sometimes result in increased dynamic averaging about 0, much like the behavior 

observed for Y4,5GWALP23 22 and the original WALP peptides with four interfacial Trp 

residues.18  Notably, the dynamic averaging about 0 is much less extensive for W4,5GWALP23 

than for Y4,5GWALP23.  As previously discussed,20, 22 Y4 and Y5 individually are well tolerated 

in the transmembrane environment.  The combination of the Y4 and Y5 side chains, 

nevertheless, gives rise to much more “slippage” about the helix axis (dynamic averaging; higher 

) than is observed with W4,5 in all three lipid membranes.  (We note also in the case of Y4,5 a 

trade-off between  and .  The modified Gaussian predicts a much higher  of 124° instead 

of 18° in DMPC if  is 5° instead of 10° (Table 3).44)  Similar highly dynamic behavior is also 

seen with H4,5GWALP23.   

The case with H4 and H5 is intermediate.  Although the peptide helix with H4 and H5 

prefers the same average rotation in the two shorter lipids, the rotational slippage indicated by  

is much higher in DMPC.  The helix further adjusts its rotation by increasing  in the thicker 

DOPC bilayers (Table 3).  Competition for positioning with the polar head groups is likely for 

the two imidazole side chains.  The situation is more straightforward with the nonpolar F4 and 



157 

 

F5 side chains.  While maintaining aromaticity, the side chain hydrogen bonding capability is 

removed at these positions in F4,5. This change lowers the dynamics and is well tolerated in all 

three bilayer membranes as F4,5GWALP23 can adapt to hydrophobic mismatch by modulating its 

tilt alone.  So why are two neighboring tryptophan residues W4 and W5 also so well tolerated in 

all three membranes, as opposed to the complications with H4,5 and Y4,5?  The additional 

motion observed in the helices with Y4,5 and H4,5 may instead arise due to the need for 

individual side chains to compete with one another for favorable interactions with the polar head 

groups.  F4 and F5 seem both to be content with “generalized” interfacial locations.  The Trp 

side chains alternatively sample many complex interactions at the interface to adapt the indole 

ring structure to both the hydrophobic lipid tail and the polar head group environments.45-46  We 

surmise that W4 and W5 may simultaneously be able to find appropriate orientations at the 

interface and form stable interactions with the lipid head groups, e.g. through indole hydrogen 

bond formation.  Such interactions would additionally explain the observed drop in  compared 

to GWALP23 (Table 3), as the combined interactions of these Trp residues could limit azimuthal 

rotation of the helix.   

Removing side chains L4 and W5 completely, as with G4 and G5, decreases the helix tilt 

in the thinnest bilayer, DLPC, by about 10° compared to the tilt of helices having L4W5 or A4,5 

(Table 3).  In fact, the tilt of the G4,5GWALP23 helix remains essentially the same in all three 

lipid membranes, and the core helix instead seems instead to satisfy the demands of the bilayer 

by changes of 10°-30° in its azimuthal rotation.  Furthermore, the helix dynamics with G4 and 

G5 are roughly the same as when W5 is present (in the GWALP23 helix).  The lower than 

expected dynamic averaging and the low tilt angle in DLPC could also be explained by helix 
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unwinding, as the Gly residues are likely not part of the core helix.  Exposed backbone carbonyl 

groups then would be able to reach out and form stable interactions at the lipid interface.   

Replacing the side chains of L4W5 with methyl groups in the case of A4,5 (once again 

lacking an aromatic Trp residue) also retains helix properties similar to those of GWALP23.  The 

major difference lies in the increased dynamic averaging when the peptide helix is incorporated 

into the thicker DOPC bilayer.  In this environment, both A4 and A5 are part of a longer core 

helix that extends at least to residue 17 and as discussed above, the containment of the backbone 

carbonyl groups within the helix structure could make the helix more “slippery”.  In DLPC, the 

extent of dynamic motion is low when A4 and A5 are absent from the core helix.  In DMPC, 

residue A17 is absent from the core helix, and the helix rotational slippage is in between the 

values observed in DOPC and DLPC.  When the core helix of A4,5Gwalp23 is shorter, in similar 

fashion to G4,5, some of the free backbone carbonyl groups would be able to help stabilize the 

helix dynamics.  The methyl side chains may play a further role, as the best-fit  is lower when 

A4 and A5 are unwound than when G4 and G5 are present.   

Sequence and lipid dependence of the magnitude of deviation of residues 3 and 21 from 

the core helix.  

Alanines 3 and 21 are separated by 18 residues and therefore would give identical 2H 

NMR signals in cases where both reside within a continuous “perfect” -helix.23-24  However, 

residues A3 and A21 do not give identical 2H quadrupolar splittings for any of the 

transmembrane helices (Table 1) considered here.  Instead, the 2H |Δνq| magnitude of either A3 

or A21 (or both) deviates from the value predicted by the quadrupolar wave plot for the core 
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helix in all cases (e.g., see figures 3, 5, 9).  All of these transmembrane helices are partially 

unwound.  What is the extent of the unraveling for the N-terminal and C-terminal of each helix? 

To examine and compare the extent of unwinding and view any trends that may depend 

on the lipid environment or particular amino-acid side chains, we consider the deviation (in kHz) 

of experimental quadrupolar splitting values of A3 and A21 from the theoretical magnitudes that 

would fit the corresponding quadrupolar wave plot for the core helix of each particular 

transmembrane peptide.  Thus, while we are unable to deduce a straightforward helix unwinding 

angle, one can nevertheless use the 2H |Δνq| deviations to calculate the corresponding side-chain 

theta angle (θ) deviations from helix geometry for the A3 and A21 methyl groups in each 

individual peptide helix in each lipid membrane. Figure 11 shows these histograms for X4,5 

peptides carrying N-flanking side chains (N-terminal to the core helix) with no hydrogen 

bonding ability, namely G4,5, A4,5, F4,5 and L4W5. Additional histograms for comparisons of 

different N-flanking aromatic side chains are shown in Figure S7 of the Supporting Information. 

In this section we will consider the trends with respect to lipid bilayer thickness and the sizes and 

identities of the residue 4 and 5 side chains. An interesting initial point is that the quadrupolar 

splitting magnitude for A3 is higher and that of A21 lower than the predicted value (based on the 

core helix geometry) in nearly all cases (with occasional exceptions that will be noted below).  

These features generate positive deviation of |Δνq| for A3 and negative A21, which are displayed 

in the histograms in Figure 11 and Figure S7. The exact reason for these consequences is 

unknown. Nevertheless, these trends might indicate, generally, an opposite direction of fraying 

for each end.  

Examining first the deviation of A3 in the parent GWALP23 helix (with L4W5 in Figure 

11), we observe that the deviation of A3 from the core helix follows the actual tilted orientation 
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of the helix. The tilt of GWALP23 varies with the bilayer thickness, from about 23° in DLPC 

down to about 6° in DOPC 17 (Table 3). Residue A3 likewise shows smaller deviation when the 

helix is moved from thinner to thicker lipid, with the A3 side chain 2H |Δνq| deviating about 7.4 

kHz, 6.5 kHz and 0.5 kHz in DLPC, DMPC and DOPC, respectively, from theoretical values 

predicted by the core helix.  The helix of F4,5GWALP23 exhibits a similar difference between 

DLPC and DOPC, with a notably much higher deviation of A3 from the core helix in DMPC.  

But the G4,5GWALP23 and A4,5GWALP23 cousins, lacking aromatic residues 4 and 5, do not 

follow the same scenarios.  Notably, in DLPC the experimental |Δνq| magnitude of A3 in the 

presence of G4,5 lies below the quadrupolar wave plot, giving rise to a negative deviation. The 

reason for this outcome is unknown, but the lower tilt of G4,5GWALP23 in DLPC (Table 3), 

compared to other analogs, could be a factor to influence the direction of the helix unraveling. 

The A4,5 helix shows about the same extend of unwinding of residue A3 in all three lipids 

(Figure 11); the findings are notable since A4 and A5 deviate from helix geometry only in DLPC 

bilayers, but are included on the core helix in DOPC and are very close in DMPC (Figure 8).   

Residue A21, in contrast to A3, shows negative deviation in all cases (Figure 11).  With 

the exception of F4,5GWALP23 in DLPC, the extent of deviation of A21 from the prediction of 

the core helix is essentially the same in each lipid membrane.  The magnitude of the deviation of 

A21 in G4,5Gwalp23 is in all cases slightly less than for the other helices (Figure 11).   

For the N-flanking aromatic side chains 4 and 5, the W4,5 helix displays low motional 

averaging (σρ values) in all lipid environments (Table 3) and significant deviations of A3 and 

A21 from the predictions of the core helix (Figure S7 of the Supporting Information).  The F4,5 

helix also exhibits low motional averaging and, notably, the largest deviations of residue A21 

from the core helix, especially in DLPC (Figure S7).  By contrast, the Y4,5 helix undergoes very 
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extensive motional averaging (Table 3) and has A21 very close to the core helix, suggesting a 

longer core helix toward the C-terminal in each of the lipid membranes (Figure S7).  Moving to 

other peptides, H4,5 shows somewhat similar consequences, though the status of A3 is 

complicated by the fact the A7 already is away from the core helix (Figure 5).  The highly 

dynamic peptides with Y4,5 or H4,5 display quite low extent of deviation at one or both ends, 

suggesting a longer core helix and again pointing toward a possible inverse link between helix 

dynamics and terminal residue deviation.  A “competition” between polar aromatic residues 4 

and 5 for hydrogens bonds with lipid head groups also could contribute to high levels of dynamic 

averaging.   

Seeing that the deviations of terminal residues from a core transmembrane helix may be 

directed by side chain identities as well as lipid thickness, we have compared the influence of 

large and small nonpolar side chains (Figure 11). Comparing the terminal unraveling of helices 

bearing G4,5, A4,5 and F4,5, the deviations of A21 and A3 from core helix geometry generally 

increase with the side chain size, although the trend is opposite for A3 in DOPC membranes 

(Figure 11).  The largest deviations are seen for F4,5GWALP23, with A3 deviating most from the 

core helix in DMPC, and A21 in DLPC (Figure 11).   

A view of energetics at the interface.  

The results with deuterium labels on A4 and A5 of A4,5GWALP23 (Figures 8-9) reveal 

possible links involving helix fraying, interfacial interactions between unfettered peptide bonds 

and lipids, and a lessening of the dynamic averaging of the core helix around its principle 

orientation.  The transmembrane helix of A4,5GWALP23 has no charged residues with only W19 

as an interfacial aromatic residue and, notably, only small side chains near the N-terminal.  In 
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DOPC membranes, the core helix extends farther toward the terminals than in thinner 

membranes, with the 2H quadrupolar splittings from A4 through A17 falling on the wave plot for 

the core helix in DOPC (Figure 9).  At the same time, and possibly as a correlation, the rotational 

slippage,  around the axis of the core helix, is much larger in DOPC than in DMPC or DLPC, 

when a full Gaussian analysis is considered (Table 3; Figure 10).  We speculate that a full 

Gaussian analysis, if more data points were available, might reveal more dynamic averaging also 

for G4,5GWALP23 in DOPC.  The situation is more complicated for Y4,5GWALP23, which is 

highly dynamic in each of the lipid systems.  The results suggest that helix fraying may be less 

important for the dynamics when polar side chains (Y4 and Y5) are able themselves to interact 

directly with lipid head groups.  Considerations of helix unraveling at membrane interfaces, 

nevertheless, could be significant for molecular dynamics simulations and representations of 

membrane proteins.   

In summary, our systematic experiments with closely related transmembrane model 

peptide helices have enabled us to address specific questions concerning lipid-protein 

interactions, helix integrity and dynamics.  The central findings are: (i) All of the transmembrane 

helices considered here are tilted in the bilayer membrane and are somewhat unraveled, by at 

least three residues, at each membrane interface.  (ii) The extent of the N-terminal unraveling 

depends upon the lipid bilayer thickness and the identities of juxta-terminal side chains at 

positions 4 and 5.  The size and polarity of the #4 and #5 side chains help to determine the length 

of the core helix and the onset of helix unwinding.  (iii) The extent of the C-terminal unraveling 

has yet to be examined.  (iv)  In some cases (with more examples needed), the dynamic 

averaging of the transmembrane helix orientation may couple to the extent of helix fraying and 
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to the bilayer thickness.  Some of these properties will be important for the plasticity and 

functioning of membrane proteins.  
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 Tables 

Table 1.  Sequences of X4,5GWALP23 peptidesa 

 
Name Sequence Reference 

GWALP23 Acetyl-GGALWLALALALALALALWLAGA-amide 22 

G4,5GWALP23 Acetyl-GGAG4G5LALALALALALALWLAGA-amide This work 

A4,5GWALP23 Acetyl-GGAA4A5LALALALALALALWLAGA-amide 24 

F4,5GWALP23 Acetyl-GGAF4F5LALALALALALALWLAGA-amide 22 

Y4,5GWALP23 Acetyl-GGAY4Y5LALALALALALALWLAGA-amide 20 

W4,5GWALP23 Acetyl-GGAW4W5LALALALALALALWLAGA-amide This work 

H4,5GWALP23 Acetyl-GGAH4H5LALALALALALALWLAGA-amide This work 

aAbbreviations:  “a” denotes “acetyl” and “e” denotes “ethanolamide.”   
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Table 2. Observed quadrupolar splitting magnitudes, |Δνq| in kHz, for d4-labeled alanines of 

X4,5GWALP23 peptides in DLPC, DMPC and DOPC bilayer membranes   

  
 Deuterated (d4) alanine location in sequence  

(helical wheel position, degrees)a 

X4,5GWALP23 Lipid 7 

(240) 

9 

(80) 

11 

(280) 

13 

(120) 

15 

(320) 

17 

(160) 

3 

(200) 

21 

(200) 

4 

(300) 

5 

(40) 

L4W5 DLPC 26.4 25.5 26.9 14.6 20.7 3.4 27.5 12.8 -- -- 

DMPC 21.9 8.9 20.9 3.8 17.6 2.9 10.8 3.2 -- -- 

DOPC 16.6 1.7 16.7 1.5 15.4 2.6 10.4 2.7 -- -- 

F4,5 DLPC 23.7 23.5 25.7 19.6 23.4 1.8 20.6 2.6 -- -- 

DMPC 20.3 -- 20.6 -- 20.6 3.8 20.4 2.0 -- -- 

DOPC 16.2 0.8 18.6 0.8 18.6 1.9 11.8 2.2 -- -- 

A4,5 DLPC 23.2 19.0 23.6 11.7 18.7 6.6 22.3 10.2 18.6 16 

DMPC 20.4 10.8 20.6 9.0 18.8 7.1 19.6 6.3 18.1 5.2 

DOPC 15.4 4.0 18.6 5.2 16.4 0.5 14.4 1.8 18.6 2.0 

G4,5 DLPC 18.8 6.9 16.7 1.4 12.6 7.2 10.9 10.9 -- -- 

DMPC 19 6.0 17.5 1.6 14.1 5.0 16.8 7.8 -- -- 

DOPC 15.5 1.5 15.6 1.2 15.3 2.4 16.8 4.6 -- -- 

H4,5 DLPC 17.9 1.1 13.3 3.5 9.4 9.8 11.3 11.6 -- -- 

DMPC 14.5 2.4 11.2 4.8 8.3 8.5 11.9 8.4 -- -- 

DOPC 11.1 6.5 9.1 6.1 10.1 5.6 11.4 5.4 -- -- 

W4,5 DLPC 21.5 15.0 20.7 9.4 17.4 3.3 22.7 8.4 -- -- 

DMPC 17.3 5.8 17.5 4.5 16.2 1.6 20.8 4.9 -- -- 

DOPC 12.8 0.9 14.4 1.4 14.9 1.3 20.8 2.3 -- -- 

Y4,5 DLPC 11.6 0.5 6.9 4.6 6.9 11.6 19.2 11.6 -- -- 

DMPC 11.7 3.2 10.7 2.8 10.7 4.4 18.2 7.7 -- -- 

DOPC 10.2 3.8 10.0 3.8 12.6 3.8 16.2 3.2 -- -- 
a Values are listed in kHz for the β = 0o sample orientation.  Values not listed (--) were not 

recorded 
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Table 3.  Semi-static GALA and modified Gaussian analysis of GWALP23 and related X4,5 

peptide helix orientations and dynamics in bilayer membranesa  

 
Lipid Peptide GALA fit results Modified Gaussian resultsb Ref. 

τo ρo Szz RMS

D 

τo ρo σρ στb RMSD 

DLPC L4W5 20.7° 305° 0.66 0.71 23° 304° 33 15o 0.7 22 

F4,5 21.3° 317° 0.67 0.5 18° 314° 0° 15o 0.7 22 

A4,5 17.7° 301° 0.68 0.6 17° 302° 26° 15o 0.5 24 

G4,5 9.0° 293° 0.77 0.72 10° 296° 38° 10o 0.71 This 

work 

 

 

H4,5 6.0° 280° 0.83 0.74 11° 279° 57° 10° 0.75 

W4,5 15.0° 307° 0.67 0.53 12° 309° 8° 10o 1.25 

Y4,5 5.3° 261° 0.65 1.6 14° 259° >90° 20o 1.7 20 22 

Y4,5     23° 259° 128° 5o 1.7 This 

work 

DMPC L4W5 9.0° 311° 0.89 1.06 13° 308° 42° 10° 1.19 This 

work F4,5 11.3° 331° 0.8 1.3      

A4,5 11.1° 317° 0.76 0.6 11° 316° 14° 10o 0.5 24 

*A4,5 12.3° 312° 0.72 1.05 15° 311° 39° 16o 1.0 This 

work 

 

 

 

 

G4,5 8.0° 304° 0.80 0.64 11° 303° 47° 10o 0.6 
cH4,5 3.7° 281° 0.79 0.61 11° 280° 93° 10o  

W4,5 8.7° 319° 0.75 0.57 8° 322° 14° 10o 0.59 

Y4,5 3.0° 324° 0.77 0.64 3° 333° 18° 10° 0.54 

Y4,5     15° 321° 124° 5° 0.63 

DOPC L4W5 6.0° 323° 0.87 0.57 9° 321° 48° 9o 0.7 22 

F4,5 6.0° 332° 0.92 0.9 10° 329° 54° 9o 1.6 22 

A4,5 8.0° 329° 0.78 0.2 8° 330° 20° 10o 0.4 24 

*A4,5 8.0° 328° 0.79 0.3 17° 329° 72° 10o 0.3 This 

work 

G4,5 6.0° 325° 0.82 0.64 8° 324° 44° 10o 0.61  

This 

work 

cH4,5 1.3° 7° 0.83 0.25 6° 8° 114° 10o  

W4,5 5.3° 340° 0.81 0.42 6° 341° 29° 10o 0.25 

Y4,5 3.0° 359° 0.82 1.1 6° 344° 72° 13o 0.9 20 22 

Y4,5     13° 344° 122° 5o 0.86 This 

work 
a The analysis methods were described previously 22.  The units for RMSD are kHz.  Unless 

otherwise noted, each analysis is based on the deuterium (2H) quadrupolar splittings for the CD3 

side chains of six central alanine residues 7, 9, 11, 13, 15 and 17 in the core helix of the 

transmembrane peptide.   
b For the modified Gaussian analysis 22, 30,  was assigned the fixed value noted in the table; Szz 

was assigned the fixed value of 0.88.  Where noted (*A4,5), a GALA fit and a full Gaussian 

analysis (varying also ) were performed based on eight data points (DOPC) or seven data 

points (DMPC, without A17).  
c Residue A7 of H4,5GWALP23 does not fit the quadrupolar wave plot in DMPC or DOPC and 

was omitted from the analysis.  Curiously, residue A3 of H4,5GWALP23 does fit the quadrupolar 

wave plot in DMPC (but not in DOPC).   
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 Figure Legends 

Figure 1.  Model to illustrate unwinding of peptide terminals for the helix of G4,5GWALP23, 

showing the observed tilted orientation of the core helix in DLPC bilayers. The locations of 

Trp19 and residues 4 and 5 are illustrated on a ribbon helix, drawn using PyMOL 47. The 

deuterated alanine methyl groups are shown as space filling and are colored black for core 

alanines (that underlie the tilt analysis) or red for the juxta-terminal alanines 3 and 21. The 

depicted side-chain orientations are arbitrary 

Figure 2.  Deuterium NMR spectra for 2H-labeled core alanines A7 (50% deuterated) and A17 

(100%) in G4,5GWALP23 and A4,5GWALP23 in oriented bilayers of DLPC.  Spectra for β = 90° 

and β = 0° sample orientations are shown.  Peptide:lipid ratio, 1:60; temperature, 50 °C 

Figure 3.  Quadrupolar wave analysis of tilted peptide helices in DLPC, DMPC and DOPC 

bilayer membranes.  A.  Results for G4,5GWALP23.  B.  Results for the parent GWALP23 

peptide with L4 and W5 (core alanine data points from 17).  The |q| values for alanines 3 and 

21 (numbered, shown as circles) generally fail to fit the helix wave plots.  In some cases (i.e., 

GWALP in DOPC) the q value for A3 fits on the helical wave, while that for A21 stays off the 

curve 

Figure 4.  Deuterium NMR spectra for 2H-labeled core alanines A15 and A17 in H4,5GWALP23 

and W4,5GWALP23; and A11 and A15 in F4,5GWALP23 and Y4,5GWALP23 peptides in 

oriented bilayers of DLPC.  Spectra for β = 90° and β = 0° sample orientations are shown.  

Peptide:lipid ratio, 1:60; temperature, 50 °C. 

Figure 5.  Quadrupolar wave analysis of H4,5GWALP23 (A), W4,5GWALP23 (B) and 

Y4,5GWALP23 (C) helices in DLPC (black), DMPC (red) and DOPC (blue) bilayer membranes. 

The |q| values for alanines 3 and 21 (numbered, shown as circles) generally fail to fit the helix 

wave plots.  In H4,5GWALP23, A7 of the core helix (numbered) is off the curves for all three 

lipid membranes. suggesting extended helix unwinding at N-terminal end up to residue 7. 

Figure 6.  Deuterium NMR spectra for labeled A3 (50% deuterated) and A21 (100% deuterated) 

of X4,5GWALP23 peptides, where X= G, Y, H and W.  Spectra are shown for oriented samples in 

DLPC , DMPC and DOPC lipid bilayers.  Peptide:lipid ratio, 1:60; temperature, 50 °C; sample 

orientation, β = 90°.  

Figure 7.  Contour plots for solutions of helix tilt  and azimuthal rotation  for selected X4,5 

derivatives of GWALP23 in bilayers of DLPC (black), DMPC (red), and DOPC (blue). Contour 

levels are drawn from 0 to 3 kHz with increments of 0.6. 

Figure 8.  Deuterium NMR spectra for labeled alanines 4 and 5 (50% and 100% deuterated, 

respectively) of A4,5GWALP23 in oriented bilayers of DLPC, DMPC and DOPC.  Peptide:lipid 

ratio, 1:60; temperature, 50 °C; sample orientation, β = 90°. 

Figure 9.  GALA quadrupolar wave plots for A4,5GWALP23 in DLPC (black), DMPC (red), and 

DOPC (blue) bilayer membranes. The |q| values are shown as triangles for d4-labeled core 
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alanines, as squares for A4 and A5 and as circles for A3 and A21, with the color of the 

respective lipid bilayer. The q values of alanines 3 and 21 are off of the wave plot regardless 

of the lipid thickness.  The q values of alanines 4 and 5 are off of the wave plot in DLPC, but 

on the wave plot for the core helix in DMPC and DOPC.  Alanine 17 deviates from the wave plot 

in DMPC 

Figure 10.  Contour plots showing preferred ranges of  and  for the A4,5GWALP23 helix in 

bilayers of DLPC (upper), DMPC (middle) and DOPC (lower).  Contours for RMSD are drawn 

from 1.2 kHz (dark blue) to 6.0 kHz in increments of 1.2 kHz (other colors).  

Figure 11.  Deviation of experimental value from fitted value for juxta-terminal alanines 3 and 

21 for several transmembrane peptide helices.  A.  Quadrupolar splitting, q, deviation in kHz.  

B. Theta angle, θ, deviation in degrees.  Results are shown for GWALP23 peptides having G4,5, 

A4,5, F4,5 or the parent L4W5 sequence 

 

 

 

  



174 

 

 Figures 

 

 

Figure 1.  Model to illustrate unwinding of peptide terminals for the helix of G4,5GWALP23, 

showing the observed tilted orientation of the core helix in DLPC bilayers. The locations of 

Trp19 and residues 4 and 5 are illustrated on a ribbon helix, drawn using PyMOL 47. The 

deuterated alanine methyl groups are shown as space filling and are colored black for core 

alanines (that underlie the tilt analysis) or red for the juxta-terminal alanines 3 and 21. The 

depicted side-chain orientations are arbitrary 
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Figure 2.  Deuterium NMR spectra for 2H-labeled core alanines A7 (50% deuterated) and A17 

(100%) in G4,5GWALP23 and A4,5GWALP23 in oriented bilayers of DLPC.  Spectra for β = 90° 

and β = 0° sample orientations are shown.  Peptide:lipid ratio, 1:60; temperature, 50 °C 
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Figure 3.  Quadrupolar wave analysis of tilted peptide helices in DLPC, DMPC and DOPC 

bilayer membranes.  A.  Results for G4,5GWALP23.  B.  Results for the parent GWALP23 

peptide with L4 and W5 (core alanine data points from 17).  The |q| values for alanines 3 and 

21 (numbered, shown as circles) generally fail to fit the helix wave plots.  In some cases (i.e., 

GWALP in DOPC) the q value for A3 fits on the helical wave, while that for A21 stays off the 

curve. 
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Figure 4.  Deuterium NMR spectra for 2H-labeled core alanines A15 and A17 in H4,5GWALP23 

and W4,5GWALP23; and A11 and A15 in F4,5GWALP23 and Y4,5GWALP23 peptides in 

oriented bilayers of DLPC.  Spectra for β = 90° and β = 0° sample orientations are shown.  

Peptide:lipid ratio, 1:60; temperature, 50 °C. 
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Figure 5.  Quadrupolar wave analysis of H4,5GWALP23 (A), W4,5GWALP23 (B) and 

Y4,5GWALP23 (C) helices in DLPC (black), DMPC (red) and DOPC (blue) bilayer membranes. 

The |q| values for alanines 3 and 21 (numbered, shown as circles) generally fail to fit the helix 

wave plots.  In H4,5GWALP23, A7 of the core helix (numbered) is off the curves for all three 

lipid membranes. suggesting extended helix unwinding at N-terminal end up to residue 7. 
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Figure 6.  Deuterium NMR spectra for labeled A3 (50% deuterated) and A21 (100% deuterated) 

of X4,5GWALP23 peptides, where X= G, Y, H and W.  Spectra are shown for oriented samples in 

DLPC , DMPC and DOPC lipid bilayers.  Peptide:lipid ratio, 1:60; temperature, 50 °C; sample 

orientation, β = 90°.  
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Figure 7.  Contour plots for solutions of helix tilt  and azimuthal rotation  for selected X4,5 

derivatives of GWALP23 in bilayers of DLPC (black), DMPC (red), and DOPC (blue). Contour 

levels are drawn from 0 to 3 kHz with increments of 0.6. 
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Figure 8.  Deuterium NMR spectra for labeled alanines 4 and 5 (50% and 100% deuterated, 

respectively) of A4,5GWALP23 in oriented bilayers of DLPC, DMPC and DOPC.  Peptide:lipid 

ratio, 1:60; temperature, 50 °C; sample orientation, β = 90°. 
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Figure 9.  GALA quadrupolar wave plots for A4,5GWALP23 in DLPC (black), DMPC (red), and 

DOPC (blue) bilayer membranes. The |q| values are shown as triangles for d4-labeled core 

alanines, as squares for A4 and A5 and as circles for A3 and A21, with the color of the 

respective lipid bilayer. The q values of alanines 3 and 21 are off of the wave plot regardless 

of the lipid thickness.  The q values of alanines 4 and 5 are off of the wave plot in DLPC, but 

on the wave plot for the core helix in DMPC and DOPC.  Alanine 17 deviates from the wave plot 

in DMPC 
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Figure 10.  Contour plots showing preferred ranges of  and  for the A4,5GWALP23 helix in 

bilayers of DLPC (upper), DMPC (middle) and DOPC (lower).  Contours for RMSD are drawn 

from 1.2 kHz (dark blue) to 6.0 kHz in increments of 1.2 kHz (other colors).  
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Figure 11.  Deviation of experimental value from fitted value for juxta-terminal alanines 3 and 

21 for several transmembrane peptide helices.  A.  Quadrupolar splitting, q, deviation in kHz.  

B. Theta angle, θ, deviation in degrees.  Results are shown for GWALP23 peptides having G4,5, 

A4,5, F4,5 or the parent L4W5 sequence 
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 Supporting Figures 

 

 

Figure S1: Mass spectrum of the synthesized H4,5GWALP23 peptide. The expected 

monoisotopic mass is 2235.7 Da. Addition of a 13C and eight deuterons gives 2244.7 Da, which 

agrees with the observed mass of the most prominent isotopic peak in the population. Successive 

peaks differ by one Da in m/z based on the natural abundance of 13C. 
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Figure S2: Circular Dichorism spectra of A) H4,5GWALP23 and B) W4,5GWALP23 in DLPC 

(black), DMPC (red) and DOPC (blue) lipid vesicles. Peptide to lipid ratio was 1:60, recorded at 

ambient temperature of 22°C. The y-axis units for mean residue ellipticity (MRE) are deg cm2 

dmol−1. 
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Figure S3: 31P NMR spectra for aligned sample of DLPC with G4,5, H4,5 and W4,5 peptides 

incorporated at 1/60 peptide/lipid ratio 
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Figure S4: Deuterium NMR spectra for labeled core alanines of G4,5GWALP23 peptide. Spectra 

shown are at β= 900 sample orientation.  
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Figure S5: Deuterium NMR spectra for labeled core alanines of H4,5GWALP23 peptide. Spectra 

shown are at β= 900 sample orientation. 
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Figure S6: Deuterium NMR spectra for labeled core alanines of W4,5GWALP23 peptide. Spectra 

shown are at β= 900 sample orientation.  
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Figure S7: Representation of experimental value deviation of A) quadrupolar splittings, ∆ѵq and 

B) angle theta (θ) for alanine 3 and 21 of F4,5, Y4,5, W4,5 and H4,5. 
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6. Chapter 6: Conclusion 

This dissertation focuses on studying the orientations and some dynamic aspects of 

transmembrane peptides carrying single or multiple histidine residues when present in various 

depth of the lipid bilayer. Two locations of the histidine residue/s reported in this work are near 

membrane-water interfaces and one at the core of the bilayer. For the double histidine mutants, 

the distance between two histidine residues gradually decreases from -H2,22 to -H5,19 to -H8,16 

peptides. The effects of adjacent histidine residues at the N-terminal of the transmembrane helix 

is also addressed.  

Through the use of model peptide framework GWALP23, I have characterized a number 

of important protein-lipid interactions involving histidine residues. Incorporation of histidine 

residues at the membrane water interface (at positions 2 and/or 22) along with tryptophan 

residues, either one or both, does not increase the peptide motional averaging like tryptophan, 

rather the transmembrane orientation of peptide is retained with modest dynamic properties. 

Hence, some exemptions are observed when a single histidine is present at the C-terminal end of 

the helix (Chapter 2). When the pair of histidine residues are moved inside the membrane, but 

still close to the interface, by removing tryptophan residues (5 and 19), the tilt of the -H5,19 

peptide slightly increases in DOPC lipid membrane compared to the -H2,22 analog. Histidine 

residues successfully maintain a tilted orientation without any issue with motional averaging. 

However, residue A7 is found to deviate from the helical geometry occasionally (Chapter 3). For 

further analysis, the histidines were further pushed into the hydrophobic core of the peptide, 

replacing two leucine residues L8 and L16 (Chapter 4). Such modification causes the helix to 

adopt two different orientations depending on bilayer thickness. In thinner lipid, the helix 

remains transmembrane with significant amount of tilt, while in DMPC a portion of peptide fails 
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to retain this tilted orientation and exit the bilayer. When the bilayer thicknesses are further 

increased with the use of DPoPC and DOPC lipids, the surface orientation dominates for the -

H8,16 peptide. Removal of H16 from this helix leaves only on histidine residues H8 and this 

single histidine peptide is observed to have similar bilayer thickness dependent orientation 

transition with some adaptation. Unlike other single or double histidine mutants, GWALP23-H8 

significantly responded with pH change and two pKa values were calculated (Chapter 4). 

Finally, the effects of two adjacent histidine residues in the molecular orientation, conformation 

stability and dynamics are addressed (Chapter 5). As seen for H4,5GWALP23, these two 

histidines not only increases the dynamics averaging, but also induces the overall orientation. 

The helix with two adjacent histidine is highly dynamic and has a very low tilt angle. 
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