
UDC 004.623:004.922 (043.2) 

Glazok O.M., c.t.s.; Khodchenko F.S. (National Aviation University, Ukraine, Kyiv) 

AN ALGORITHM FOR INFORMATION PROCESSING  
IN IMPLEMENTATION OF LANDSCAPE DATA DYNAMIC LOADING 

The use of Continious Level of Detail (CLoD) approach for visualization of flight over 
the huge landscape is considered. Foe the tasks of visualization of aircraft flight, it is 
necessary to provide acceptable performance at high speed of movement. In order to 
achieve this goal, the algorithm of phased processing of chunks of the landscape is 
offered. 

Multiresolution modeling, or multiresolution visualization, is a process that  
allows for adjusting the level of detail (LoD) of the presented scene, while 
maintaining a constant (or at least appropriate) frame rate and assuring interactivity 
to the user [1]. Multiresolution visualization has become a matter of interest for the 
last dozen of years, with development of various real-time applications, such as 
computer and video games, virtual reality and scientific simulation. As these 
applications require rendering of complex models for realism, graphics rendering 
engines include multiresolution modeling techniques, which have become widely 
used. 

The multiresolution modeling techniques presented in the literature are 
classified by the criterion of the two main approaches to managing level of detail 
(LoD): Discrete LoD (DLoD) and Continuous LoD (CLoD). The DLoD approach 
manages a small number of independent levels of detail (LoDs), where each 
approximation or LoD represents the original object using a different number of 
faces. CLoD is introduced as an alternative which provides a wide range (virtually a 
continuous range [2]) of different approximations, such that the LoD can be adapted 
to the application requirements with a high degree of accuracy. CLoD has been 
extended to provide view-dependent LoDs, which is sometimes considered as a third 
approach. 

There are some substantial differences between the two approaches (CloD 
and DLoD) on the stages of model construction, data loading, and run-time 
rendering. Let us consider them in the application to a practical problem � to 
perform a visualization of the global landscape with the view from the unmanned 
aerial vehicle (UAV). Based on the scales and detalization, this problem may be 
classified as the problem of loading and rendering of the �huge terrain�. The �huge 
terrain� is the terrain that is many times greater that its part that can be viewed from 
any point of view, available for the system, and has the amount of information many 
times greater that the available space in the operative memory of the computer 
system.  

It is quite obvious that for loading and rendering of a huge terrain its data 
should be divided into parts (chunks). Complete loading of the terrain is not possible 
due to the memory space and time limitations. At the same time, if one tries to 
process the whole data set, the speed of processing will be too low for real-time 
interactivity. The fact that such terrains are always seen partially also leads to the 

1.12.24

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/286633968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


idea of partial processing. Such an idea got the name Chunked Level of Detail [3], 
also abbreviated as CLoD, and is a subclass of LOD [2]. 

Basically, the landscape is divided into the rectangular (or square) parts. 
This promotes coordination and visibility determination operations.  

After the division, the algorithm of visible parts determination should be 
applied. The simplest visibility criterion is distance. In this case, one should define 
maximal distance from which an object can be visible. In case of flight visualization, 
it is possible also to chop off the parts which do not get in the angle of visibility. 
Because any flying object can turn only with limited angular velocity, there is no 
sense to load memory objects located behind that angle (except for the necessity of 
reflection of back view). As a softer variant, it is possible to decrease distance of 
visibility for the objects that lay outside of the angle of visibility.  

At flight visualization, the higher the flying vehicle is, the more distant the 
horizon line. In other words, the radius of visibility increases with the height 
increase. At large values of heights, there may be necessity to render quite a large 
piece of terrain. At the same time, distant parts will have little angular sizes and, 
therefore, their exact rendering has no sense. As a consequence, one should 
introduce and apply a special factor for the level of detalization of parts. This factor 
should also be taken into account as a correction factor at visibility determination. 

There may be two variants of algorithm of detalization change. The first one 
requires that every element of a landscape had several models (resources) of 
different detalization levels. The models should be loaded as needed. The second 
way is creation of a certain quantity of separate elements in every part of a landscape 
separate some number of separate detalizing elements. Every element will be 
represented only at the certain range of detalization levels (while a level of 
detalization is given as a numerical factor). It is possible also to unite these elements 
hierarchically. The first method requires more memory, while the second method is 
more difficult in realization. There is also a possibility to combine these two 
methods. 

The data loading algorithm is important factor of system productivity. Every 
resource before its rendering passes the two stages: downloading from hard disk into 
the main memory, loading and construction from the main memory into the 
videomemory. Also, in the process of load, can be present information cashing 
(placing it into a temporal storage), which will accelerate downloading from a hard 
disk. For example, cache may help to avoid the stage of recoding of an image, or to 
hold a necessary file in the pre-loaded state). Cache operations may be considered as 
the third stage. 

It is possible to pass all of the stages at once, as soon as there arises a 
necessity to display an object. However, such an approach will substantially 
complicate loading and movement on a map; in many cases it will lead to place jerks 
(usually called �popups�). It is possible to enter the factor of safety, connected with 
the object sizes, and load less critical information in a separate stream (with lower 
priority), then the elements of a map will be loaded beforehand, as possible. But 
efficiency of this approach will be small, if there is a lot of parts and information 
which must be loaded, which is just the case for the flight visualization problem.  

 

1.12.25



The second approach is to pass the stages beforehand and gradually. This 
approach is referred to as phase processing [4, 5]. In this approach it is needed to 
enter the two factors: the main memory radius and the cache radius. These radiuses 
are numerical characteristics that determine the necessity of specific pieces of data 
loading. At this approach, each chunk of data is classified as the chunk belonging to 
one of the three areas (Fig.1). All the data that are outside the radius of cashing 
should be kept on a hard disk as basic data. All the data that gets inside the radius of 
cashing should be processed: the data that come from outside the system should be 
buffered in memory; the data that come from within should be written down in a 
hard disk cache. Such approach allows to promote the productivity and smoothness 
of loading, but at the same time it increases the expense of memory. 

 

 
Fig. 1. The three areas of data chunks location. 1 � cache area; 2 � memory 

area; 3 � visible area. 
 
Let us consider an example design of the system on the basis of all 

considered before. For the sake of simplicity, we will suppose that the information to 
load is the bitmap images of a map. Let us use the sequential (stage-by-stage) 
algorithm of loading, and limit detalization to the multilevel model detalization. 

The program keeps metadata about every part of a map. The metadata 
include the size, position and reference (path, name) to the file with the loaded 
information. Consequently, we should have a "Map element" object, which will 
keep metadata. Because the subsystem of the map resources of card will be engaged 
in loading, metadata will contain references to the "Resource unit" object, in which 
the information necessary for loading will be kept.  

The elements of landscape may be kept in a simple list. There is no sense to 
create a hierarchy. Using a list allows to perform quick check for visibility of the 
stored elements.  

The resources subsystem consists of the list of resource elements. The 
"Resource unit" object keeps the unit state (current stage of processing) and pointers 
to the "Resource" objects for every stage, such as "File resource", "Cache resource", 
"Memory resource" and "Visible resource". The "File resource" object exists 
permanently and stores the path to the necessary file. The other objects can be 
created and deleted during work. Each object includes a function of creation of an 

1.12.26



object of the next stage. At transition to the next level, unnecessary objects are 
deleted, and corresponding pointers get the null values. 

At each iteration of the cycle all parts of the landscape are checked for 
belonging to the cache, memory and visibility areas. Depending on the area found, 
the proper processing stage and the level of detalization are determined for each 
piece of terrain data.  

The procedure of determination of belonging to an area is done as following: 
at first each vertex is checked for presence in the view angle (using the scalar 
product of the vector of direction of a camera and the vertex vector). According to 
the results, the verification radiuses of visible and invisible areas are corrected. Here, 
the radiuses for visible areas may be enlarged and the radiuses for invisible areas 
may be made smaller if necessary. Then the distance from a camera to the element 
(rectangle) is calculated. Next, the obtained distance is compared with the 
verification values of the areas. At this stage the level of detalization may be 
determined.  

Conclusions 

The base algorithm of data processing for flight visualization over a huge 
landscape has been proposed. It is further possible to perfect and optimize them for 
minimization of expenses of memory and increase of the productivity. It is possible 
also to obtain a greater smoothness utilizing multithreading and MPI (Message 
Passing Interface). Provided the due optimization is done, the proposed approach is 
capable to provide the high performance of load at high-speed flights. The basic lack 
of this approach is a high consumption of main memory.  

A method can be applied in navigational complexes, visualization software 
of simulators and research projects. It perfectly fits for parallelizing and work over a 
network. 

References 

1. Ribelles J.  An Improved Discrete Level of Detail Model Through an 
Incremental Representation./J. Ribelles, A. Lopez,  O. Belmonte. � Proceedings 
of TPCG. � 2010. � Pp. 59-66. 

2. Luebke D. Level of Detail for 3D Graphics /David P. Luebke. � Morgan 
Kaufmann Publishers, 2003. � 390 p. 

3. Thatcher U. Rendering Massive Terrain Using Chunked Level of Detail 
Control /Ulrich Thatcher. �  : http://tulrich.com/geekstuff/sig-
notes.pdf 

4. Lindstrom P. Visualization of large terrains made easy /P. Lindstrom 
and V. Pascucci. � IEEE Visualization 2001 Proceedings. � Oct 2001. � Pp. 363-
370.  

5. Hansen C. The Visualization Handbook /Charles D. Hansen, Chris R. 
Johnson. � Academic Press, 2004. � 984 p. 

1.12.27


