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INTRODUCTION

Practical training for electrical engineering and electronics
is one of important components of the process of forming future
specialist of a high qualification on the respective directions.
Practical skills allow to master the knowledge of the theory, to
formulate the conclusions using the results of experiment.

As a rule, mastering by the alphabet of the knowledge from
the electrical engineering and the electronics does not do the
student by well — qualified specialist. For this purpose it is
necessary to learn the more specialized literature and have the
experience of solving concrete problems. Improvement of the
knowledge may be continued without assistance in the industrial
or scientific activity.

Achievements in the computer engineering sphere leaded to
appearance of many scientific and technical directions, among of
which the direction of mathematical and computer modeling is
emphasized. Modern technical devices of automation and
informational measuring equipment are created on the base of this
direction. The special software is designed to provide the solution
of the different problems in this sphere. The future specialists
must be able use the worked out application programs and expand
these programs by own ones to reach the respective purposes. As
a rule, the application packages have the module structure. For
example, some numerical method of calculus mathematic may
represent the module by the respective program (Newton’s
method for the numerical solution of the system of nonlinear
algebraic equations, Runge — Kutt’s method of the numerical
solution of the system of the differential equations, the least —
squares method, ets.).

The given training book is the component of the training
literature on the disciplines:

e Electrical engineering theory;
o Electric circuit theory;
o Electric and magnetic circuit theory;
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o Electrical engineering and foundations of

electronics;

e Electrical engineering and electronics;

Foundations of electric circuits;

e Electrical engineering in building.

The complex of literature contains the following training
books:

. ZELENKOV AA. Theory of Electrical
Engineering: Manual / A.A.Zelenkov, A.A.Bunchuk, A.P.Golik. -
K.: NAU, 2006. — p.136. (in Ukrainian).

e ZELENKOV A.A. Linear Circuits of DC and AC:
Manual / A.A.Zelenkov, A.V.Kudinenko. — K.: KIECA, 1992. —
p.148. (in Russian).

o ZELENKOV A.A. Three - Phase Systems.
Nonlinear Electric and Magnetic Circuits Under Steady — State:
Manual / A.A.Zelenkov, A.V.Kudinenko. — K.: KIUCA, 1994. -
p.148. (in Russian).

e ZELENKOV A.A. Transients in Linear and
Nonlinear Electric Circuits: Manual / A.A.Zelenkov,
A.V.Kudinenko. — K.: KIUCA, 1995. — p.244. (in Russian).

o ZELENKOV A.A. Matrix and Topological Methods
of Analysis and Modeling Electric Circuits: Manual /
A.A.Zelenkov, A.V.Kudinenko. — K.: KIUCA, 1996. — p.196. (in
Russian).

e ZELENKOV A.A. Theory of Electrical Engineering.
Electric Circuits with the Distributed Parameters. Theory of
Electromagnetic Field: Manual / A.A.Zelenkov, A.A.Bunchuk. —
K.: NAU, 2012. — p.336. (in Ukrainian).

o ZELENKOV A.A. Linear Circuits of DC and AC:
Manual / A.A.Zelenkov, V.P.Shahov, A.A.Bunchuk. — K.: NAU,
2003. — p.156. (in Ukrainian).

e ZELENKOV A.A. Linear and Nonlinear Electric
Circuits: Manual / A.A.Zelenkov, V.P.Shahov, A.A.Bunchuk. —
K.: NAU, 2003. — p.168. (in Ukrainian).

o ZELENKOV A.A. Transients in Linear Electric
Circuits: Manual / A.A.Zelenkov, V.P.Shahov, A.A.Bunchuk. —
K.: NAU, 2003. — p.132. (in Ukrainian).
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o ZELENKOV A.A. Examples and Problems of the
Electrical Engineering Using the PC: Manual / A.A.Zelenkov,
0.Y.Kravchuk. — K.: NAU, 2001. — p.160.(in English).

e ZELENKOV A.A. Principle and Applications of
Electrical Engineering: Manual / A.A.Zelenkov, O.Y.Kravchuk. —
K.: NAU, 2005. — p.256. (in English).

e ZELENKOV A.A. Analysis and Synthesis of the
Discrete — Time Systems : Manual / A.A.Zelenkov, V.M.
Sineglazov, P.S.Sochenko - K.: NAU, 2004. - p.168. (in
English).

e ZELENKOV  AA. Electronics:  Manual /
A.A.Zelenkov, P.S.Sochenko, O.Y.Kravchuk — K.: NAU, 2007. —
p.84. (in English).

The training book will be useful for the students of the

following teaching directions:
e 6.050701 Electrical engineering and electrical

technologies
6.051103 Avionics
6.050201 System engineering
6.050101 Computer engineering
6.050202 Automation and computer — integrated
technologies
6.050902 Radio — electronic devices
6.050901 Radio engineering
6.050802 Electronic facilities and systems
6.050801 Micro — and nanoelectronics.

The training book helps to master the designated above
disciplines, using the respective software MathCAD, Electronic
Workbench, Multisim.



1. TRANSMISSION OF ELECTRIC ENERGY BY DC LINE

The transmission line of electric energy may be shown by

Rline

the equivalent scheme (Fig. 1.1), where - resistance of the

direct and inverse conductors of the transmission line, V] - the
voltage of the energy source, connected to the line input, V, - the
voltage on the output of the line, that is 7, is the voltage across

the load resistance Ry, .
D ]

R line/2
1 E [} A E [] Rlnad
Vl VZ Vl VZ

R
load
o Rline/2
1
L] — L]
a b
Fig. 1.1

Let’s assume, that the transmission line transmits the energy
with the power (under the condition that the internal resistance of
the generator equals zero), equaled

2
Pload =1 Rload'

Then
/= 4 _ "
Rléne o Rine , p g iine + Rioaa
and
&, = Foat _ Poas Rine + Rigad)”

12 V12

Next we solve this equation with respect to R;,,;:
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Rivaa Pload + 2R1pad Riine Fioad — RivaaV'™ + Bload Riine = 0

or
2 2 2
Risaa Proad + Rioad [2Riine Boad = V1" 1+ Floaa Riine =0,
From this expression we may obtain the general solution

5 > 2 2 p2
™ = 2Rjne Proua 1 £ \/[Vl = 2R1ine Fioaa 1" = 4Riine Pioaa

R = =
load 9 Plgad

4P} 4Plg

oad

2 2 2 2 2
_ 4 _Rl' +\/[Vl _2RlinePload] _ 4Rlinepload _
ine —

2
2 2
4 4 2
- p - Rline * - Rline - Rline .
load load
We don’t take into account a sign “-“ before square root,

because it corresponds the curve Py, ; (/) with a small value of
the efficiency m. It follows from the dependencies:

2
Pload = VII_I Rline;

2
n= Plaad — 1 Rload — Rlaad
Pl 1 ? (Rline + RIOad ) Rline + Rload
2
— VII_] Rline —1- ]Rline '
ni "

Graphs of the dependencies P, ; (/) and n([/) are shown
in Fig. 1.2.
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VI/ZRline Vl/Rline

Fig. 1.2

Thus, the efficiency of the transmission line is equal to

n= Rload _ Rline + Rload — Rline =1- Rline
Rline + Rload Rline + Rload Rline + Rload
—1— Riine
2
2 2
" 4 2
* - Rline - Rline .

2Pload - 2Pload

If the value of the transmitted power P, ,; is the same,

then the value of the efficiency increases if the value V] increases
as well.
To get the great values of the efficiency n in the power

electric systems, the transmission lines are designed as lines with
high voltage. In this case the energy is transmitted over great
distances with small losses.

In case when the power F),,,;, must have a maximum value
at the load the condition

Rload = Rline
must be satisfied.



. . . . dPlOad
To verify this statement we take the derivative ———

Rload .
Since
R
2 2 load
Pload =1 Rload =E 0‘1 27
(Rline + Rload)
then

dPl d 2[ 2 ]
dR - =E (Rline + Rload) - 2(Rline + Rload )Rload =

load

= E2 (Rl%ne - Rlzoad )

It is evident that the condition of a maximum value of the
power is

Rload = Rline >
because the second derivative
2
d Pload 2
P =-2E Rload
deoad

1313

has a sign and the function P, ,; = f (R, )reaches the

maximum value.
In this case the efficiency is

Rload — O 5
Rline + Rload

Such low value of efficiency is not admitted if the energy is
transmitted with a great power. However, if the power has a small
value (for instance, in sensors of the automatic devices), then a
small value of efficiency makes no difference. In this case it is
important to transmit maximum power to the load and to get a
maximum value of the ratio

T]:

Pload
P

noise



The condition Ry,,; = R}, is called accordance of the
load. Then

R E?
I)l d — E2 load — .
e (Rline + Rload )2 4R1011d

Practical training and modeling

1. Construct the equivalent scheme of modeling the electric
energy transmission line, taking into account the internal

resistance R of the DC voltage source E and the line

source
resistance Ry, .

The transmission line and the voltage source parameters are
given in the table 1.1.
2. Find the energy characteristics of the transmission line

1
for the given value of the load equaled ERloadmax’ where

Rjpudmax 18 @ maximum value of the load resistance from the
given range:

e current / in the line,

e input voltage V,

e voltage across the load V,,; ,

e load power P, ,

e source power P, ...

e input power P},
o efficiency n,

o line voltage losses AV .
Table 1.1

Range of the

: Rline , Q Rsource , Q E,kV load
v [0, Rload max ]

Q

1 3 0,2 2 0-50




2 2 0,1 5 0-40
3 4 0,25 4 0-100
4 2 0,15 1 0-30
5 1 0,1 2 0-20
6 1,5 0,3 5 0-25
7 2,5 0,25 1 0-50
8 3 0,1 2 0-90
9 4 0,15 3 0-100
10 25 0,2 6 0-60
11 3,5 0,25 5 0-80
12 1,5 0,2 10 0-45

3. Find the value of efficiency nunder the condition that
input voltage V] is 5 times greater for the same value P, .

4. Carry out the modeling of functioning transmission line
of the energy for various values of the load resistances according
to the given range, Fig. 1.3. Fill in the table 1.2 according to the
obtained results.

Table 1.2
Rload 1 Vl V2 Pload y
0
O’IRload max
0’2Rload max
Rload max

5. Construct the dependencies of energy characteristics
from the load resistance.
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Fig. 1.3

6. Calculate the energy characteristics according to p.p. 4
and 5, using the software MathCAD.

Review questions

1. Draw the equivalent scheme of the electric energy
transmission line.

2. What is the efficiency of the transmission line?

3. Verify the following formulas:

E E?
Vinad =——+ Prouree = ————
o 1+ Rline souree Rline +Rload
Rload
E? 1
Pload - ’
|:1+ Rline j| load
Rload
1 E
n= , AV =
1+ Rline 1+ Rload
Rload Rline

4. How can the efficiency of the transmission line be
increased?

5. What functioning modes of the transmission line may be
used?

11



6. Verify the statement P,,; = F,,smax under the
condition R;,,; = R}, -

7. When can the mode of the transmission of the electric
energy with a maximum power be used?

8. What is the efficiency mif the power equals a maximum
value?

9. Explain the graph P,,,; = f(R)puq) -

10. How can the resistance Rj;,, be found?

11. How can the resistance R be taken into account?

source

2. TRANSFORMATION OF LINEAR PASSIVE ELECTRIC
CIRCUITS

Research and calculation of the complex electric circuit
may be simplified by means of the transformation of the branches.
As a rule, the transformation is used if the number of nodes and
branches may be decreased. In this case the number of equations
of the system decreases as well.

However it is necessary to remember: transformation of the
electric circuit into the equivalent scheme must not change the
values of the currents and the voltages in the part of the scheme,
which is not transformed. For example, equivalent transformation
of the passive part of the scheme (Fig. 2.1, a) into the equivalent

resistance Req (Fig. 2.1, b) doesn’t change the value / of the

current, which is defined by the expression
E

R+R,

As a rule, in the circuit calculations the transformation
of star-connected resistances into  delta-connected
resistances (or, on the contrary, delta-connected into a star-
connected resistances) is widely used, Fig. 2.2.

The basic formulas of the transformation:

12



RR RyR
R12:R1+R2+ ;32’ R23:R2+R3+ 23,

R31:R3+R1+ N

or

Fig. 2.1

Expediency of such transformations may be explained, for
example, by the schemes in Fig. 2.3, a and b. The transformation
A —Y is shown in Fig. 2.3, b. After transformation calculation
of the currents is simplified (the number of nodes decreases to 2
and we may use the method of two nodes). The transformation
Y — A is shown in Fig. 2.3, b, after that the equivalent scheme
has the parallel and series connections of the resistances and the
calculation of the given circuit is simplified as well.

It is necessary to note, that after these transformations the

values of the currents /;,/, and /5 don’t change.
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If the given circuit contains the star-connected resistances
(or delta-connected) with the voltage source in one of them, then
the rule of transfer of the voltage source may be used to simplify
the calculation of the circuit by the transformation method.

Let’s consider the node formed by the three branches and
let’s assume that the first branch contains the voltage source with
electromotive force E. In this case the distribution of the currents
doesn’t change if the voltage sources of the same value £ and the
same direction with respect to the considered node will be
connected into each branch.

For example, the star-connected resistances R;,R,,R;

(branch with R; contains the voltage source E), shown in Fig.

2.4, a, may be transformed into passive “star”, using the rule of
transfer of the voltage sources, Fig. 2.4, b. After such

transformation the passive “star” R;, R,, Ry may be transformed

into the passive “delta” Ry Ry3, Ry3.

Fig. 2.4

Practical training and modeling
1. Construct the equivalent scheme for modeling the given

electric circuit, the scheme of which is shown in Fig. 2.5, a.
Circuit parameters are given in the Table 2.1.
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Table 2.1

Ne R, | Ry, | Ry, Ry, Rs, | Rg, E,
variant Q Q o) Q 0 o) Vv
1 10 10 10 30 30 30 | 300
2 5 5 5 15 15 15 150
3 15 15 15 45 45 45 180
4 10 30 20 20 30 10 90
5 30 15 10 30 10 20 120
6 5 10 15 10 30 20 150
7 12 6 6 18 12 24 | 360
8 6 9 6 15 15 18 320
9 8 8 4 12 12 16 120
10 5 8 6 12 16 12 90
11 9 6 6 18 18 18 180
12 4 6 8 12 18 12 210

2. Find the currents flowing in the branches with resistances
R, Ry, R;, using the rule of transformation ¥ — A , Ohm’s law
and KCL.

S |

1 500.0m &,

500.0m A&,
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b
Fig. 2.5

3. Carry out modeling of the given electric circuit before
and after transformation ¥ — A (Fig. 2.5, b). Write down the
results of modeling into the table 2.2.

Table 2.2

Type of Calculation Modeling
transformation

Y_)A ]1 ]2 ]3 ]4 ]5 ]6

A—>Y

Y —>A

with the voltage
source

4. Fulfill the p.p. 2 and 3, using the rule of transformation
A — Y ,Fig.2.6,aandb.

5. Fulfill the p.p. 2 and 3, using the rule of transformation
Y — A and the rule of transfer of the voltage source, Fig. 2.7, a
and b.

17
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Fig. 2.7
Review questions

1. Give the example of expediency of the transformation
Y—>A.

2. Give the example of expediency of the transformation
A—>Y.

3. Write down the general formulas of transformation
Y—>A.

4. Write down the general formulas of transformation
A—>Y.

5. Write down the general formulas of transformation
Y > A and A > Y ifthe resistances of Y and A are the same.

6. Explain the rule of transfer of the voltage source in the
electric circuit.

7. Give the example of expediency of transfer of the voltage
source.

8. Calculate the value of the current /; in the scheme of

Flg 25, a, if Rl :R2 :R3 :309, R4 :RS :R6 ZIOQ,
E=90V.
9. Calculate the value of the current /; in the scheme of

Flg 26, a, if Rl :R2 :R3 :309, R4 =R5 :R6 =10Q,
E=90V.
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3. INPUT RESISTANCE OF THE PASSIVE TWO - TERMINAL
NETWORK

The electric circuit having one pair of external terminals is
called the two-terminal network. It means that a two-terminals
network is the generalized scheme which is connected to the
chosen branch or the energy source by means of the two input
terminals. If the network doesn’t contain the energy source, then
the two- terminal network is the passive one.

Any passive two-terminal is the consumer of the electric
energy and is characterized by the single value-input resistance

R;, That’'s why a passive two- terminal network may by

represented by one element R;, in the equivalent scheme, Fig.
3.1.

[[n‘ P
E — 1P
J |
<> Wn :|> Re :Rin
Rin Rin .
Fig. 3.1.

The input resistance may be calculated with two ways.
The first way is an experimental one. It allows to find

R;,, according to the expression

where V', is arbitrary value of the voltage at the input terminals

of the two-terminal network, /;, is the input current (the current

of the energy source which creates the input voltage).

The second way is the analytical one. In this case the input
resistance is defined by the transformation of the passive circuit
with respect to the given terminals, using the needed formulas
(series, parallel connection and star- or delta connected elements)

20



so that, the electric circuit is represented by the equivalent
resistance R,,, which equals R;, , Fig. 3.1.

eq> in»
For example, the input resistance of the two — terminal
network, the scheme of which is shown in Fig. 3.2, is defined by
the transformation of the series — parallel connected resistances

into the equivalent resistance R,

RiR

14%2
=———+R;+R, =15Q2,
eql R1+ 5 3 4
R, R
= L Re+R, =18 Q.
Reql +R5
Thus
Rs R
—Q | F—1
5
o R 301 |Rs 10 R,
10| |®
5 5
R7 R4

Fig. 3.2
The scheme of modeling the electric circuit shown in Fig.
3.2, is shown in Fig. 3.3.

Fig. 3.3

21



To find the input resistance the value of the input current is
measured for arbitrary given the input voltage (for example, 90
V). It is evident that

V. 90
R, =" :?:18 Q.

mn

Practical training and modeling

1. Construct the equivalent scheme of modeling the electric
circuit, the scheme of which is chosen according to the variant
(Fig. 3.4). The parameters of the scheme are given in the table
3.1.

Table 3.1

Ne Ry, | Ry, | Ry, | Ry, | Rs, | Rg, | R,
variant
Q Q Q Q Q Q Q

1 10 10 20 20 10 20 10
2 5 8 10 6 12 8 4
3 8 10 10 4 6 9 8
4 15 30 30 15 10 10 30
5 12 9 18 10 12 6 12
6 10 5 15 30 15 10 30
7 20 20 20 10 10 10 10
8 30 30 30 15 15 15 10
9 25 20 20 5 8 5 5
10 10 15 15 10 20 25 15
11 10 10 10 30 30 30 15
12 6 8 12 9 6 6 9

2. Carry out the analytical calculation of the input resistance
of the given electric circuit.

3. Carry out the modeling and the measurement of the input
resistance of the electric circuit.

22



4. Disconnect the branch with resistor Rs and carry out p.p.
2 and 3 with respect to terminals of the open — circuit branch.

Rs

Fig. 3.4

23



continuation of Fig. 3.4

© ©

Fig. 3.4
Review questions

1. Give the definition of the two — terminal network and
show an example.

2. What is the basic characteristic of the two — terminal
network? Give the examples of its application.

3. What methods of the calculation of the two — terminal
network input resistance do you know? Give the examples.

4. What type of the two — terminal networks do you know?
Give the examples.
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4. DISTRIBUTION OF VOLTAGES AND CURRENTS IN
THE ELECTRIC CIRCUITS

If the electric circuit consists of the resistors and is supplied
from the direct voltage source, then the responses (the voltages
across and the current in the branches) are directly proportional to
the input signals.

For example, the output voltage across the resistance R,
may be defined as (see Fig. 4.1):

the current in the circuit

__h
R +R,’
the voltage across R,
R,
Vout = IRy =V, ——,
out 2 in Rl +R2
that is
Vour = kVin»
where
R
k=—"2
R +R,

so that the output voltage ¥, is the directly proportional to the
input voltage V, .

[‘ 1 Vout Vin
Rl |
V Vuut
in R2

| R

0 2

a b
Fig. 4.1

It is evident that the input voltage is distributed between the
resistances R; and R,, the part of this voltage V,, is

25



proportional to R, . It is necessary to remember that V, , <V,

for the passive electric circuit.

In general case the electric circuit having two pairs of
terminals is called the four — terminal network. The transfer
constant is its important characteristic, because we may find the
output voltage for the given input voltage, using this constant.

The four — terminal network has the input and the output
terminals, Fig. 4.2.

V.
Vou —in Vour

— —e

Fig. 4.2

The transfer constant doesn’t depend on the input voltage. It
is defined by the circuit element parameters (from which the four
— terminal network is constructed), by the ways of their
connections. The voltage transfer constant is defined as

Ky, = Vour .
Vi
To calculate the transfer constant it is necessary:

e give arbitrary value of the input voltage,

e calculate the output voltage be any method,

e find the value K, .

As an example let’s consider the four — terminal network,
the scheme of which is shown in Fig. 4.3, a. The given scheme
may be shown by the following way (Fig. 4.3, b).

It is evident, that the input voltage is applied both to the
first branch and to the second one (across the parallel branches the
voltage is the same). Since the four — terminal network is
unloaded (the output terminals are opened), and then the Ohm’s
law defines the current of the second branch:
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V.

1

Ry +Ry’
the output voltage is found as
R
Vour = IR3 =Viy ﬁ
2 T3
L
1
| |
}QO
2
R] 60 15 R3 Vour
Vin
a
Iin
I

Fig. 4.3

Thus, the voltage transfer constant of the unloaded four —
terminal network is

Vout — R3 — 1_5 — 0,6
Vi Ry +Ry 25
For example, if V;, =120 V, then

Vour =KypViy =0,6-120=72V.

out
Let’s find the four — terminal network transfer constant K,

V:

which is loaded on the resistance R,,,; =30 Q, Fig. 4.3, c.

In this case the resistances R; and R,,,,; are connected in
parallel and

27



R3 + Rload
Then
V. R
- = out — IReq = Vin =
Ry + Req Ry, + Req
R
y=—a =05
Ry +R,

If the input voltage is V;, =120 V, then the voltage across

14
the load is equal to

7

out = KyViy =0,5-120=60V.

By analogy the current transfer constant K; may be
calculated, but we have to consider only the loaded four —
terminal network:

IOUI
1 in

For example, for the four — terminal network shown in Fig.

4.3, c we may write:

K[:

V. v R
= : » Vou = IReq s dou = S
RZ + Req Rload Rload

If the input voltage is V;, =120 V, then the input current

mn

I;, is defined as
V; .
I, =—0 = @ =8A,
R, 15
where
- Rl (RZ + Req)

It is evident that the current transfer constant K; is

28



2
K, = ot _ = -0,25.
in 8

Thus, the basic formulas of the voltage distribution (voltage
divider, Fig. 4.4, a) are:

Ry 4
Vout =Vin ’ Req = ZRk >
Req k=1
current distribution (current divider, Fig. 4.4, b)
Ly =1y g _ LG iG Gy =
out — tin s Ileq = ) eq = ks k=
Rk Geq k=1 Rk
Iin
R, - —
Ylout

A o] o] o]

Fig. 4.4

The case n =2 is often used:
R, R,
V.=V, —=—, l . .=1 —.
out n Rl +R2 out n Rl +R2

29



Practical training and modeling

1. Construct the equivalent scheme of modeling the four —
terminal network, the scheme of which is chosen according to the
variant (Fig. 4.5). The parameters of the scheme are given in the
table 4.1.

2. Calculate the voltage transfer constant of the unloaded
four — terminal network.

Table 4.1.
Ne variant R, O Ripaq, Q Vi, V
1 10 10 100
2 12 8 20
3 6 9 120
4 15 10 150
5 o 4 80
7 12 12 180
9 5 10 75
10 8 6 72
11 4 4 80

3. Calculate the voltage and current transfer constants of the
loaded four — terminal network. Write down the results in the
table 4.2.

Table 4.2
Calculation Measurement
Mode
K 14 K 1 Vin Vout 1 in 1 out K V K 1
unloaded _ _ _ _
loaded
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Vin

iVoul

V our

iVnut

lVout

Fig. 4.5
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4. Carry out the measurement of the needed currents and
voltages in both modes (Fig. 4.6). Write down the results in the
table 4.2.

7000 A,

goOo N

Fig. 4.6
Review questions

1. Give the definition of the four — terminal network and its
examples.

2. How do you determine the voltage transfer constant?
Give the examples?

3. How do you determine the current transfer constant?
Give the examples?

4. How do you determine the transfer constants K, and

K , using the measurements?

5. Give the example of the calculation of the voltage
transfer constant K, of the loaded four — terminal network.

6. Give the example of the calculation of the current
transfer constant K; of the loaded four — terminal network.

7. Write down the general expression to find the output
voltage V,,; of the voltage divider. Explain by the example.

8. Write down the general expression to find the output
current [, of the current divider. Explain by the example.
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5. ANALYSIS OF THE COMPLEX DC ELECTRIC
CIRCUITS

To calculate the complex electric circuits it is necessary to
take into account some peculiar properties their configuration.
Let’s consider some properties.

The value of the current flowing through the resistances Rj
and Rs in the electric circuit, shown in the Fig. 5.1, a, is the

same. It means that these resistances are connected in series.
Indeed, we may write KCL for the first node:

I, -1,-1;=0,
so that
;=1 —-1,.
For the fourth node KCL states:
-1 +1,+15=0,
wherefrom it follows
Is=1—-1,.

It is evident that /53 = /5. It means that the resistances Rj
and Rs are connected in series and may be shown by the single
clement of the equivalent resistance R,, = R3 + Rs. It simplifies

the electric scheme because the number of nodes decreases by 1,
Fig. 5.1, b.

® @ © @
R R; Rs Ry R, R
E, Ry Ry E, Ry R4
R E; E;
@ ® @
a b

Fig. 5.1

To transform the real current source and to apply the loop
current method to calculate the complex electric circuit it is
necessary to remember that the ideal current source has infinite
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internal resistance. It means that the resistor connected to the
current source in series doesn’t change the distribution of the
currents in the electric circuit and may be excepted from the
calculation. However if we find the voltage across the current
source, then we have to take into account this element and apply
KVL. For example, we may write the equation for the scheme
shown in Fig. 5.2, a:
IHhRy + 3Ry +JRs +V; =0,

wherefrom it follows

Fig. 5.2

Presence of the ideal current source in the branch with the
resistor R allows to decrease the number of equations written by

the loop current methods if we will choose the loops with loop
currents as shown in Fig. 5.2, a. In this case the loop current /55

is known and is equal to the current J of the source, that is
I35 =J =2 A. To calculate the scheme it is necessary to write
two equations with respect to loop currents /;; and /,,, but we
have to take into account the known current /33 flowing through
mutual resistances R, and Rj.

Presence of the ideal voltage source with known EMF in
some branch of the electric circuit (the internal resistance of the
ideal voltage source is equal to zero) allows to decrease the
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number of equations written by the node potential method. For
example, assuming the node 4 as the grounded one (V, =0) we

defined the potential of the first node as V; =E =60 V. To
determine the potentials V, and Fj it is necessary to write only

two equations.

The considered above properties are illustrated by means of
the examples of calculation of the electric circuit shown in Fig.
5.2, a.

Loop current method

It is evident, that /33 =J =2 A, so that we have two
equations with respect to currents /;; and /,,:
L1y (Ry + Ry) = I5p Ry + I33R3 = E,
IRy + 1y (R +Ry + Ry)+133R, = 0.

The solution of the system gives the values of the loop
currents:

[11 :O,2A, [22 :—O,6A,
and the branch currents are:
132111+133=2,2A; [42122:_0,6A; [E2111=O72A'

Node potential method

It is evident, that the potential of the first node
Vi = E=60B, so that we have two equations with respect to

potentials V), and V5:

R R R R R,
p Loy V{;L}J
s Ry Ry, Ry



The solution of the system of the equations gives the values
of the potentials:
V,=44V; V3 =72V,
the branch currents are defined by the Ohm’s law:

V-V Vs -V, V.
L =—1—2=08A; I,=""2=14A; [;=-2=22A;

R, R, Ry
h-n
Ry
The current of the voltage source is found by the KCL:

]E :[1 +I4 :0,2A.

I, = =—0,6A.

Practical training and modeling

1. Construct the equivalent scheme of modeling the electric
circuit, shown in Fig. 5.2, b. The parameters of the scheme are
given in the table 5.1.

Table 5.1

N Ry, |Ry, |R;, |Ry4, (Rs, Ey, E,, | J,
variant Q Q Q Q Q AV \Y4 A

10 | 10 | 10 | 5 10 50 50 1,0

20 | 10 | 20 | 10 | 20 40 50 1,2

12 | 8 9 12 | 10 60 60 2,0

6 9 |15 ] 9 |12 75 60 1,8

50 | 10 | 16 | 8 | 10 80 80 3,6

5 5 10 | 10 | 5 50 50 3,0

10 | 10 | 10 | 10 | 10 90 80 1,2

30 | 30 [ 30 | 15 | 20 75 50 2,4

20 | 10 | 10 | 20 | 12 80 60 2,0

15 [ 15 [ 15 | 15 | 10 90 75 3,0

30 | 30 | 30 | 15 | 15 90 90 3,6

it | et [ et
DS v vw|o|—

15 | 15 [ 15 | 30 | 30 90 60 1,6

2. Carry out the calculation of the given electric circuit by
the loop current and node potential methods. Write down the
results in the table 5.2.
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The solution of the system of the equations gives the values
of the potentials:
V,=44V; V3 =72V,
the branch currents are defined by the Ohm’s law:

I :VI_V2 =08A; I, :M:]AA; Iy :ﬁ:2,2A;

R Ry R;
vV, =V
I, =13 =_06A.
Ry
The current of the voltage source is found by the KCL:
[E :11 +[4 :O,2A.

Practical training and modeling
1. Construct the equivalent scheme of modeling the electric

circuit, shown in Fig. 5.2, b. The parameters of the scheme are
given in the table 5.1.

Tabmums 5.1
vag\ilant R, | Ry, | Ry, | Ry, | Rs, |E|, | E;, {“,
Q Q Q Q Q \Y \Y
1 10 10 10 5 10 50 100 1,0
2 20 10 20 10 20 100 50 1,2
3 12 8 9 12 10 60 120 2,0
4 6 9 15 9 12 120 60 1,8
5 50 10 16 8 10 80 80 3,6
6 5 5 10 10 5 50 50 3,0
7 10 10 10 10 10 100 100 1,2
8 30 30 30 15 20 120 120 2.4
9 20 10 10 20 12 80 60 2,0
10 15 15 15 15 10 90 120 3,0
11 30 30 30 15 15 180 90 3,6
12 15 15 15 30 30 90 60 1,6

2. Carry out the calculation of the given electric circuit by
the loop current and node potential methods. Write down the
results in the table 5.2.
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Table 5.2

Modes I I, I4 Iy Vs

Calculation
LCM

Calculation
NPM

Modeling

3. Carry out the measurement of the currents and the
voltages with respect to the grounded node (node potentials), Fig.
5.3. Write down the results in the table 5.2 .

I
— 1500 A,
[[C_750_AJ[ sum A sess v |[[e500 ][ 1s00 A&
Fig. 5.3

Review questions

1. What methods can we use in the complex circuit
calculation?

2. How are the KCL and KVL equations written?

3. How can you check the results of the electric circuit
calculation?

4. In which cases is the node potential method used?

5. In which cases is the loop current method used?

6. Explain the principle of the branch current calculation by
the superposition method.

7. In which cases is the method of two nodes used? Give the
example.
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8. Give the general characteristic of advantages and
shortcomings of the calculation of the DC electric circuits.

6. ANALYSIS OF PROCESSES IN THE BRANCH WITH
SERIES CONNECTION OF R, L, C

In general case any branch of the AC electric circuit has
three series connected elements: resistor of resistance R, inductive
element (inductor) of inductance L and capacitor of capacitance
C, Fig. 6.1, a.

V()
1

| S|
R

e(t) v(t)

A~ | ——

v

@ q b

Fig. 6.1

Analysis processes in this branch allows to master the
methods of the complex AC circuit calculation.

As a rule, in the power engineering the external energy
sources provide the voltage or current changing at the sinusoidal
law:

e(t) = E,, sin(ot + ),
v(t)=V,, sin(ot+v,),
i(t) =1, sin(ot+vy;).
The functions e(?), w(¢) and i(¢) are cold the instantaneous
values (for example, i(¢) is the instantaneous current), having the

information about its parameters at any instant of time. The basic
characteristics of the oscillation (for example, for the

instantaneous voltage v(¢)): the amplitude V,, or the root mean
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V
square (RMS) value V {V = —m] the angular frequency ® or

NG

the cyclic frequency f [ f= 22} , the initial phase vy ,.
T

The basic relationships between the instantaneous values
v(¢) and i(¢) for the basic elements of the AC electric circuit are:
vp(t)=Ri(t) =R,

di(ty . di
n=1% _ 4
v dt dt
1 4 dvo (1) dv
N=— (i, i-(t)=C—L=Cc=C.
ve (1) C_[Z() ic (1) 7 v

The basic laws may be written in the instantaneous form:

2i®=0, Dvi()=2e ) V.
k k k

that is these relationships are satisfied at any instant of time.

Thus, the complex AC electric circuit in general case is
characterized by the system of differential equations. For instance,
the electric circuit, the scheme of which is shown in Fig. 6.1, b is
completely described by the Kirchhoff’s laws:

il —iz —i3 = 0,
ilRl +VC =e,
. diy .
l3R2 +L—3+11R1 =e,
dt
or
il —iz —i3 = 0,

t
ilRl +é le(t)dt =e,

di
i3R2 +L£+I1Rl =e.
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The solution of the system of equations gives the values of
the instantaneous currents, which have the sinusoidal form,
because the linear elements of the circuit R, L and C can not
change the shape of oscillations, which is given by the voltage
source e(?).

As a rule, the system of differential equations is written
with respect to the first derivatives of the wvariables, which
characterizes the energy state of the electric circuit  (the currents
flowing through the inductors and the voltages across the
capacitors). For the electric circuit in Fig. 6.1, b such variables are

the current i; = i3 and the voltage v (state variables).
.. . dVC . . .
Taking into account that i, = CT , [} =1y +1i3, we may
t

write the system of differential equations with respect to i; and

VC:
dVC
RC—=+iR +v, =e,
1 dt 344 C
diy
IRy + L——v,- =0,
342 dt C
or
d 1 R 1
VC = e — Z: i3— Vc,
dt  RC RC® RC
diy, Ry, 1
——=——=i3+—V,.
d L L€

The obtained system of equations may be solved by means
of the respective software (for example, MathCAD) under the
initial conditions:
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Solve

o— 0 D o—
= (t,y) =

1, R 1
RCS RCT RC
2
—_ = +_
Lyo LJ/1
7 =

Z = rkfixed(y,a,b,k,D)

To determine the matrix Z the function rkfixed uses such
parameters: a is the initial time of integration; b is completion
time of integration; k& is the number of the calculated points over

the interval of integration, yq =13(¢), y; =vc ().

The solution Z is the matrix (fig. 6.2), which has k& rows,
zero column corresponds to the current time, the first column

corresponds the first state variable y,, the second column

corresponds the second state variable ).

0 1 2
0 0 0 0
1 2-10-2 0128 15.5949
2 4-10-2 01 40.033
3 f-10-2 0077 55823
4 a-10-2 0.077 71473
5 0.01 0.058 84508
] 0.012 0.04 93624
Z=|7 0.014 0022 99271 |
8 0.016(1.591-10-2 100.921
9 0.01a -0.018 93.518
10 0.0z -0.038 92212
11 0022 -0.055 82221
12 0.024 -0.071 63.953
13 0.026 -0.084 52937
14 0.028 -0.093 3481
15 0.03 -0.099 15.295
Fig. 6.2
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Practical training and modeling

1. Construct the scheme of modeling the circuit, shown in
Fig. 6.1, a. The circuit parameters are given in the Table 6.1.

Table 6.1

N v, o, R, L, C,
variant A% rad/s Q H [
1 100 100 10 0,2 1000
2 100 200 20 0,25 500
3 120 200 15 0,15 750
4 150 300 25 0,1 400
5 180 100 20 0,25 500
6 200 150 30 0,2 800
7 100 250 20 0,1 500
8 120 300 10 0,05 300
9 180 200 15 0,15 400
10 150 100 15 0,3 1200
11 200 300 25 0,08 400
12 250 300 20 0,06 500

2. Solve the system of differential equations, which describe
the series electric circuit with respect to state variables i(f) and

v (2). Use the respective software.

3. Construct the graphs {w(¢), i(¢)}. It is necessary to show
the graph i(¢) in the respective scale to determine the phase shift
¢ between the applied voltage v(¢) and the current i(%).

The graphs may be constructed using the relationships :

[;=Z;, i;=1;20 V,=VJ2

J gl
vi=V,sin(o-7;)

4. Construct the graphs { vy (?), i(f)}, taking into account
p.3. Determine the phase shift between v (¢) and i(?).
5. Construct the graphs {v; (¢), i(r)}, taking into account

p.3. Calculate the function v; (¢) using the expression
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Vi =V —in—ij, Ve = Zj,z.
Determine the phase shift between v; (¢) and i(?).
6. Construct the graphs {v-(?), i(f)} and determine the
phase shift between them.
7. Construct the graphs {v; (¢), vc(¢)} and determine the

phase shift between them.
8. Determine the RMS values of the voltages across the
elements and the RMS current flowing in the circuit:

2
7= R%(mL—Lj, 1=K, Ve =IR
oC Z

V, =oLl, V¢ :%I, Vz\/V,%+(VL —Ve ) .
()]

9. Carry out the modeling the series electric circuit (Fig.
6.3). Measure the values of the current in the circuit and the
voltages across elements. Compare the results of measurement
and results of calculation in p.8.

Measure the phase shifts between i(f) and the voltages

Ve (t), vy (t) and v (2),using the virtual oscillograph.

10. Construct the phasor diagram of the voltages for the
series electric circuit using the results of modeling.

AP .

@ (S| =

= s

Fig. 6.3
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Review questions

1. Obtain the second — order differential equations with
respect to the current i(f), the voltage across the capacitor v (¢)

and the voltage across the inductor v; (f) for the series electric

circuit.
2. Obtain the system of the first — order differential

equations with respect to state variables i(f) andv () of the

series electric circuit.

3. How can you calculate the impedance Z of the branch,
containing the series connected elements R, L and C?

4. Write down the differential relationships between the
current and the voltage for each element.

5. How can you define the RMS voltages across the
elements of the series electric circuit?

6. How is the RMS voltage across the branch of the electric
circuit calculated?

7. How can you construct the phasor diagram of the
voltages?

8. What is the impedance triangle?

9. What is the voltage triangle?

7. ANALYSIS OF PROCESSES IN THE ELECTRIC
BRANCH WITH PARALLEL CONNECTIONOFR, L, C

For the parallel — connected elements the input current
i;,(¢)1is distributed between the parallel branches of the electric

circuit by analogy with distribution of the currents in DC circuit,
Fig. 7.1.

e
iR iL ic




If each branch contains only one element and the voltage
v(t) is the same across all branches, then we may use the

differential relationships, assuming v(t) =V, sin ot :

VR(t)le‘)zV

ip(t)= " sin wt,
r(®) R 2 "R

d
io(t) = C% = C% = 0CV,, cosot = oCV,, sin(of +90°).

di
Since v; = Lﬁ , then the current i; (¢) may be found by

the integration:

1 Vi ¢
i (1) = ZJVL (t)dt = %jv(t)dr = T’”jsmmtdr =

v Vi . o
=——"coswt = —"sin(wt —90°).
oL oL

It is evident, that the RMS values of the currents in the
branches are defined as:

1 1
Ip=—=V, Io=0CV, I,=—7V.
R=p C L= 0L

The input current i;, (¢) is calculated by the KCL:
lin () =g () +ip (D) +ic (D).

Practical training and modeling

1. Construct the scheme of modeling the given electric
circuit, shown in Fig. 7.1. The circuit parameters are given in the
Table 6.1.

2. Construct the graphs {v(¢), i;,(¢)}. It is necessary to

show the graph i;, () in the respective scale to determine the
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phase shift ¢ between the applied voltage v(f) and the current
iin (t ) :

3. Construct the graphs {v(t), iz (?) }, taking into account
p.2. Determine the phase shift between v(¢) and iy ().

4. Construct the graphs {v(¢), i; (¢) }. Determine the phase
shift between them.

5. Construct the graphs {v(¢), i-(¢)} and determine the
phase shift between them.

6. Construct the graphs {i; (), i-(¢)} and determine the
phase shift between them.

7. Determine the RMS values of the currents /,/; and
I~ the RMS value of the input current:

2 2
Iy = \/IR +(U, =1c)”.
8. Carry out the modeling the parallel electric circuit (Fig.
7.2). Measure the values of the currents in the circuit and compare

the results of measurement and results of calculation in p.7.
Measure the phase shifts between v(f) and the currents

ip(t), iy (¢) and i, (¢),using the virtual oscillograph.

10. Construct the phasor diagram of the currents for the
parallel electric circuit using the results of modeling.

a0

1200 AJ[ 7541 AJ[ 1148 A

‘ i

Fig. 7.2
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Review questions

1. Write down the relationships for the instantaneous values
of the currents in each branch of the parallel electric circuit.

2. What formulas may you use to find the RMS values of
the currents in each branch?

3. What formula may you use to find the RMS value of the
input current?

4. Write down the differential relationships between the
current and the voltage for each element.

5. How is the phasor diagram of the currents constructed?

6. What is the current triangle?

7. How can you find the admittances of each element?

8. ANALYSIS OF PROCESSES IN THE SERIES OSCILLTORY
CIRCUIT

The oscillatory circuits (both the series and the parallel
circuits) are used to construct the so-called frequency — sensitive
electronic circuits, which are widely used in radio engineering and
electronics.

The basic parameters of the series oscillatory circuit (Fig.

[ #32)
8.1) are: the resonant frequency | or f, = 2— ,
T

characteristic impedance p and quality — factor O (Q — factor),

which are defined by means of the parameters R, L, C of the
oscillatory circuit.
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At the resonance frequency the phase shift between the
current and the applied voltage equals zero (the initial phases
coincide) and the current reaches a maximum value.

For the series oscillatory circuit the resonant frequency is

1
NiTeh
Characteristic impedance is defined by the reactance of
each reactive element at the resonant frequency:
Pp=X79=0oL =Xx9 = ! L
=Xi0= = == _|—.
0 0 co @, C C

The Q — factor is the occurrence of the sharp increase of the
oscillatory amplitude in the circuit, when the natural frequency of
the series oscillatory circuit ®gyand the frequency wof the

Wy =

external applied voltage coincide, thatis ® = ®,).

The Q — factor is defined by the ratio of the characteristic
impedance and the loss resistance R:

_p_ ool 1
O=R="r - woRC’
The resonance condition is the equality of the reactive
component of the complex input impedance to zero, that is
X =x; —xc =0.
At the resonant frequency the input impedance Z;, = R

and the current reaches a maximum value equaled

I _ I/ll’l
0 - .

R
The voltages across the reactive elements at the resonant

frequency are:

®yL

Vio =oolly =V —— =0V,
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1 1
Veg=——1Iy=V, ——— =0V, ,
co (,OOC 0 in (DORC Q in
that is Vg =V-o =0V, and their values are Q times

greater than the applied voltage.
The important characteristics of the series oscillatory circuit

are the resonant characteristics /(®), V; (®), V(o) and Z(o).
The resonant characteristic of the current /(®) may be
determined by means of Ohm’s law:

z 1Y oL 1Y
R®+| oL ——— Rl+| ————
oC R  oCR
I { 2 2
R 14| L0 @ Po 1402 @ %0
R ®y oyCR o 0, O
1y

J1+E2 ’

where the value & equaled

® ®q
®( ()
is called the generalized mistuning of the oscillatory circuit.

By analogy we may find the expressions for other
characteristics:

n@=—n = zorfiee
@0 142 O 142
(O] ®(
For the neighbour frequencies (small mistuning) we
may write:
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—03% _(0-0p) 20 0 2A®

2 J—
0=202"20_9
()]

£=0°
Y 0 ®g

The frequencies ®; and ®,, for which the RMS value
of the current (or the output voltage) decreases by 3 decibels

(ON) WO

(\/5 times) with respect to the resonant current /,, are
called the boundary frequencies. In this case £ =1, because
L1
Iy J1+¢2 2
The range of frequencies ®, —®; = Aw, is called the
absolute bandwidth of the oscillatory circuit:

B = 2Awy :%..

On the boundary of the bandwidth the generalized
mistuning is § ==£1.
Practical training and modeling

1. Construct the scheme of modeling the series oscillatory
circuit, shown in Fig. 8.1, a. The circuit parameters are given in
the table 8.1.

Table 8.1
N O, Vin > R, L, C >
variant rad/s v Q H wFE
1 100 200 8 0,2 500
2 200 200 4 0,1 250
3 200 300 2.5 0,05 500
4 100 500 4 0,1 1000
5 500 500 5 0,04 100
6 500 400 2 0,02 200
7 400 200 4 0,05 125
8 500 100 2 0,01 400
9 400 100 2 0,025 250
10 200 200 16 0,4 62,5
11 100 100 10 0,4 250
12 100 500 16 0,8 125
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2. Calculate the value of the O — factor, the characteristic
impedance pand RMS values of the current and the voltages

across the reactive elements.
3. Construct the graphs of the resonant characteristic of the

current /() for the Q — factor values O; =1, O, =10.

4. Construct the graphs of the resonant characteristic of the
voltages V; (o), V- (®) and the impedance Z (o).

5. Calculate the value of the bandwidth of the circuit.

6. Carry out the modeling the series oscillatory circuit (Fig.
6.3). Measure the values of the current and the voltages across the

elements for various values of the Q — factor: 0 =1, O, =10.

Measure the phase shift between the current i(¢) and the applied
voltage v(f) by means of the virtual oscillograph. Measure the
amplitudes of the voltages.

Review questions

1. What is the general resonance condition of the series
oscillatory circuit?
2. Verify the relationships for the resonant characteristics

Vi(), Ve(o).
3. How is the resonant characteristic of the current /()

changed for varies values of the Q — factor?

4. How is the bandwidth calculated?

5. How are the boundary frequencies of the oscillatory
circuit calculated?

6. Chose the values R, L and C to provide f, =5 kHz,
0=150.

9. ANALYSIS OF PROCESSES IN THE PARALLEL
OSCILLTORY CIRCUIT

The resonant frequency ®, the characteristic impedance
p, O — factor of the parallel oscillatory circuit (Fig. 9.1) may be
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defined by the same formulas as for the series circuit if the O —
factor is greater than (3 +5).

Fig. 9.1

If the oscillatory circuit consists of the elements of high
1

quality factor, that is R; <<®L, R <<—C, then the
0

complex input impedance may be defined as:

1
JoL—— L ,
7 joC  _ C __Pp
= . 1 1) R+jx
R+ joL+—— R+ joL———
joC oC
2 2
p . P .
= R_] x=R. - JXi,
R* +x? R* +x? " "
1
where x =0wL —-——, R=R; +R..
oC
The resonance condition is equality x;, = 0, that is:
2
2p ;¥ =0,
R +x

then x = 0 and the input impedance at the resonance frequency is
the real value and equal to:
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2
p
Z in0 R QP
It is evident, that the input impedance reaches a maximum
value and Q times greater than the value of the characteristic
impedance p.
The input current has a minimum value:

Vin  _ Vin

Zin 0 Qp
and the currents flowing in the branches of the parallel oscillatory
circuit have the maximum values at the resonant frequency:

0=

v :
Lo ®— :QQZQIOa
o)l p 0
Vin O

Iog = 0o CVyy =—==0I,
p O

so that I;5 =1cg =0I, that is the current in each reactive
element is Q times greater than the input current at the resonant
frequency.

The resonant characteristic of the input current /() is

defined as:
2
V. V. V.
I(®) = - = i = TR 1+Q2[ﬂ—ﬂJ -
Z, pz/ R? + x? p ®©o ©

i e cpgive?
Op

The input impedance and its components, the currents
flowing in the branches of the parallel oscillatory circuit depend
on the frequency as:

2 2
Z:
Z, (o) = —P P op  _ Zino

\/m:R\/H&Z :\/1+§2 _\/1+§2 ’
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p p? Op  Zyo

R: (0)): r = = - s
" R*+x*  RU+&%) 1+&2 1+&?
2
p ZinO X é
n(®) R? +x? 1+&2 R an1+§2
[L(m)zﬂﬂ:l&: [0&’

oL oy o)l o

~ ~ @ w
11\7(())) = Vm(,ON = I/inwON_ = QIO —.

@9 ®9
If the RMS value of the input current /;, doesn’t change
depending on the frequency of the applied voltage, then the RMS
value of the output voltage V,,,, will be change depending on the
frequency to get the frequency — sensitive properties of the

parallel oscillatory circuit.

To obtain such mode the resistor of resistance R; is

connected in series with the voltage source under the condition
. E .
that R; >>Z,, . In this case /;, * — and the equivalent O —
i
factor of the oscillatory circuit is defined as

__ 0
0, =—=—,

1+ in0

Ri
and the output voltage at the resonant frequency is:
EZ,
VoutO :]021'}10: . :
Ri+Zi0

It is said in this case that the oscillatory circuit is connected
to the generator of the infinity power with the infinity internal
impedance (such generator is called the current source). Under the

condition /., =1, = const, the output voltage V,,, depends

on the frequency by analogy with the input impedance.
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Indeed, the ratio of the RMS value of the output voltage at
the terminals of the detuned circuit to RMS value of the voltage at
the resonant frequency is:

Vout ((’3) _ Ige'lZf” (0)) _ Zin ((D)

VoutO 1 Z'nO ZinO

gen”i

so that the resonant characteristic of the output voltage of the
oscillatory circuit is defined as:

Voo E
Vou (®) = Zout Zip(w) = mzm (w).

in0 i
Practical training and modeling

1. Construct the scheme of modeling the parallel oscillatory
circuit, shown in Fig. 9.1, a. The circuit parameters are given in
the table 8.1.

2. Calculate the value of the Q — factor, the characteristic
impedance pand RMS values of the input current and the

currents flowing in the branches at the resonant frequency.
3. Construct the graphs of the resonant characteristics

Zin ((D) > Rin (03) and Xin (('0) .

4. Construct the graphs of the resonant characteristic of the
input current /() and the branch currents /; (), /- (®) .

5. Construct the graphs of the resonant characteristic of the
output voltage V,,,(®) .

6. Carry out the modeling the parallel oscillatory circuit
(Fig. 9.2). Measure the values of the currents in all branches at the
resonant frequency. Carry out the needed measurement to

construct the resonant characteristics Z;,(®) and V(o).
Measure the phase shift between the current i(¢) and the applied
voltage v;(#) by means of the virtual oscillograph. Compare the
results of the measurement and calculation.
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Fig. 9.2
Review questions

1. What is the general resonance condition of the parallel
oscillatory circuit?

2. Verify the relationships for the resonant characteristics of
the input impedance Z;, (®)and its components R;, (®),x;,(®).

3. Verify the relationships for the resonant characteristics of
the currents /(®), I; (), I-(®).

4. Verify the relationship for the resonant characteristics of
the output voltage V,,,(®) .

5. Construct the phasor diagram of the currents of the
parallel oscillatory circuit.

6. How can you calculate the Q — factor of the loaded
parallel oscillatory circuit?

7. How can you find the input impedance of the parallel
oscillatory circuit?

8. How are the characteristics of the parallel oscillatory
circuit changed, if the capacitance C increases 2 times?

9. What will be the resistance R to increase 2 times the
bandwidth of the resonant curve?
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10. ANALYSIS OF THE COMPLEX MONOPHASE AC
ELECTRIC CIRCUITS

To analyze the processes in AC electric circuits we have to
take into account such elements as the inductors and the
capacitors. As a rule, any AC electric circuit contains these
elements. That’s why the study of AC electric circuits is more
complex problem, then the analysis of DC electric circuits.

To substantively simplify the analysis of AC circuits in the
steady — state mode we will use the complex representation of the
currents and the voltages. Such representation is based on the
Euler’s formula:

e/ =cosa + jsina.

To calculate the electric circuits in the steady — state mode

we will use the following concepts (as an example we will

consider the sinusoidal current i(¢) = /,, sin(wf + ;) ):
e the instantaneous complex current
i(t)=1,.¢e"",
so that the instantaneous current i(¢) is defined as the

imaginary part of the instantaneous complex current (Fig.
10.1):

i(6) = IM{L,, e/ | = IM{T, e 10" | = M1, e /(00 | =
= IM{Im cos(of + ;) + jl,, sin(ot +y; )} =
=1, sin(ot+y;).
o the complex amplitude (or the RMS current)

_ JVi _ 7,JVi _
I, =1V, I=IVi I =I2.

The function i(¢)is the complex representation of the
instantaneous value of the sinusoidal oscillation. The complex

number [ = Ie’Vi is the constant value and does not depend on
time. This value is shown by the fixed phasor of the length 7,
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which is disposed on the complex plane at angle of \; to the real
axis. The magnitude of the complex value is equal to the RMS
value, thatis | |=1 .

Re

v(f)

Fig. 10.1

Thus, the sinusoidal oscillation is completely defined by the
RMS value / and by the initial phase ; at the given frequency
. That’s why, to describe the sinusoidal process (for the given
frequency) it is sufficient to know the RMS complex current

1= Ie’Vi without calculation of the instantaneous values i(t)and

i1).

It is evident that the complex representation excepts the
time (“kills the time”), that is the angular frequency ® is
excepted from the AC electric circuit calculation, because this
value is known and is given by the voltage (or the current) source.
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It is necessary to remember that the algebraic operations
(addition, multiplication and division) use the complex
representation, which may be written either in the polar form or in
the algebraic form:

¢ in the polar form:
I= Je/Vi ,
e in the algebraic form
I =1Icosy;+ jlsiny,;.

It is evident, that the impedance of any branch (in general,
the branch contains the series connected resistor, the inductor and
the capacitor) is given by the complex number:

¢ in the polar form:

i V
Z=2e", Z=", ¢=v,-v;,
where V' is the voltage applied to the branch, / is the current
flowing through the branch;
e in the algebraic form:

1
Z:R+j[(;)L——]:R+j(xL —xc):R+jx.
oC

Basic laws in the complex form:

e Ohm’s laws:

Vo=RI V,=joll, Ve=——1.

joC~
1
Veo=-f——I,
Ve J oC -
e Kirchhoff’s current law (KCL):
n
21 =0,
k=1

e Kirchhoff’s voltage law (KVL):
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n m
D1 Zy =D E;.
=l P

To calculate the AC electric circuit it is necessary to
construct the equivalent scheme with respect to the RMS complex

currents, in which the complex impedance Z represents each

branch.

For example, the AC circuit shown in Fig. 10.2, a may be
represented its equivalent scheme (Fig. 10.2, b), for which the
system of algebraic equations may be written by means of the
Kirchhoff’s laws:

I, -1,-1; =0,
1,Z,+1;Z5=L,
1,Z,-1525=0.

R R,

i(?)

C
i3(1) T

Fig. 10.2

It is evident, that the system of equations may be obtained
by means of the loop current method or the node potential
method. To calculate the current in any branch of the electric
circuit the transformation method may be used.

Practical training and modeling

1. Construct the scheme of modeling the electric circuit,
shown in Fig. 10.3. The circuit parameters are given in the table
10.1.

2. Calculate the branch currents of the given circuit. Write
down the results of calculation in the table 10.2.
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Fig. 10.3

3. Measure the values of the currents and the voltages with
respect to the grounded node, Fig. 10.4. Write down the results of
measurement in the table 10.2.

Table 10.1
= & =
£ | B | Bao| B30 B | R, | Xuis| Xp2| ¥Cl x¢y| £
ZIVIiV]iVv]iéd|lalQ]Q Q o S
1 [100 100 9 [300[ 10| 8 [ 6 [10 [ 5 [LC
2 [120]150 [ 100 [300 [ 15| 10 [ 8 [ 6 | 4 | NP
3 [ 150120 [ 90 [400 [ 20 | 15 [10 [ 10 [ 10 | LC
4 100 [ 200 [ 100|400 [20 | 8 [ 5 [ 12 [ 8 | NP
5 [200] 100100500 | 8 [ 12 [10[ 6 | 8 | LC
6 | 150100 [ 180 [500 [ 12| 9 [ 6 [ 10 | 6 | NP
7 [100 150 [ 90 [300 [ 10 | 6 [ 12 8 [ 10 | LC
8 [120] 90 [ 60 [400| 5 | 10 [ 6 | 6 | 4 | NP
9 [150 150 [ 75 [400 [ 15| 8 [ 6 | 5 [ 5 |LC
10 [ 200 [200 [ 180 [ 300 [ 12 | 6 [ 10| 8 [ 12 | NP
11 [200 (300100500 [ 10| 8 [ 5[5 [ 8 [LC
12 [300 [ 120 90 [500 [ 12| 10 [ 8 [ 6 | 4 | NP
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Table 10.2

Mode Iy | Iy | I3 | 1g | Is | @1 | O
Calculation
Modeling

— 2

C)
~
|| 1667 A [ 5399 A||

[Cear )| [ A

\—0 ‘ GP i

Fig. 10.4

Review questions

1. What methods are used in the complex AC circuit
calculation?

2. How can you check the correctness of the results of the
circuit calculation?

3. How can you calculate the complex impedances of the
electric branches?

4. How can you determine the RMS voltage across the
branch, if the RMS voltages across each element are known?

5. Write down the KCL and KVL in the complex form and
explain their application by means of examples.

6. Write down the Ohm’s laws in the complex form for the
resistor, the inductor and the capacitor. Determine the respective
phase relationships.

7. What are the triangles of the wvoltages and the
impedances?

8. What is the instantaneous current?

9. What is the RMS complex current?
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11. TRANSMISSION OF ENERGY BY THE AC LINE

The transmission line uses two basic modes to transmit the
energy like the DC line: transmission of the energy with a
maximum powers to the load (under the condition that the internal
resistance of the generator equals zero) and transmission the
energy with the maximum efficiency. Let’s consider the both
modes.

Assuming that the complex impedances of the line and the
load equaled

Zline = Rline + jxline’ Zload = Rload + jxload ’
we may find the current as

E

\/(Rload + Rline )2 + (xload + Xline )2

Since, the true power is defined as P, ,; =1 leoad , then

I =

for x;,,4 = —Xjnethe power increases and for Ry, = R;,,the

power reaches a maximum value. Thus, the condition of the
transmission of the energy with a maximum true power is:

%
Zload = Zline >
where Z Zn o 1s a conjugate value of the line complex impedance.

The value of the efficiency is

n= Pload _ Pload _ 1 _ 1
PSOW’C@ Ploga + Ileine 1+ Ileine 1+ %

Pload Rload

It is evident that the value of the efficiency is equal to
N = 0,5 in the considered mode. In the devices of automation and
telecommunication the power of the received signals is negligible.
That’s why it is necessary to receive the signals with a maximum
power, that is the receiver has to use the respective mode. A small
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value of the efficiency makes no difference, because a negligible
energy is transmitted to the load.

In the electric power systems this mode is unprofitable,
because the energy of great power is transmitted over substantial
distances with great losses.

It is evident that we have to decrease the losses in the

transmission line assuming that the given power P ,; doesn’t

change.

In this case the transformers are used: step-up transformer is
connected to the input of the line (close to the energy source) and
the step-down transformer, which I connected to the output of the
line (close to the consumer). The step-up transformer increases
the voltage up to a few hundred thousands volts. The step-down
transformer decreases the voltage to the needed value to get the
given power, Fig. 11.1.

I, I,
L . [—
Voltage # Step - up # Transmission Step - down Consumer
generator |V, ¥ | transformer | ¥/, fine transformer
Fig. 11.1

Taking into account the relationships for voltages and
currents of the step-up transformer (w, >> wy), we may write:
Nnom L owm
~ > ~ s
Vo wy I ow
so that S} =V,I; =S, =V,1,, that is the current on the output
Wy .
of the step-up transformer decreases —2 times for the same value
m
of the apparent power. It means, that the power of losses in the
2
.. . w .
transmission line decreases (—ZJ times, because the losses are
m

defined as Ith-ne )
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The expression for the efficiency may be written in the
form:

1 1
n= P = |P;oad = Vloadl COSPjpad| = IR
1 n I Rline 1 + line
aoad Vload COSOPjpqd

from which it follows that the value of the efficiency depends on
the value cos@,,,,;. The value n reaches a maximum for the

case COSQ;,,; =1 (thatis for ¢;,,; =0).

In the most cases the consumers have the inductive
properties. That’s why the parallel connection of the capacitor

increases the value cos @, , Fig. 11.2.

Rioa
Transmission -—C Transmission
line T :[> line I I bc

Lidad

Consumer

Consumer

Fig. 11.2

The capacitance C is calculated from the condition of the
equality b; = b :
XL
2
Z load

=wC,

from which it follows

C= xngad — 2xLload2 ‘

oZ load (D(Rload + XLload )
In this case the total susceptance equals zero (b=b; —b- =0)
and the consumer is characterized by the conductance

66



_ Rload _ ; ;
8load = and cos@,,,; =1. The value of the efficiency is

load
defined by the expression:

1
2 .
17 load

2
4 8load

1’]:
1+

Practical training and modeling

1. Determine the power characteristics of the transmission
line for the given parameters according to the variant (Table
11.1):

e current in the line 7,

e true power of the load P, ,
e cefficiency 1,

e voltage across the load V), ,

e power factor cOSQ;,,, -

Table 11.1
].v ¢ E ? kv Zline > Zload ’ (;}/) ?
varian Q Q rad/sec

10 5+;0.8 | 50+,32 400
10 4+;70.1 | 40+, 36 400
20 5+j12 | 50+730 400
20 S5+j1 | 45425 500
30 3+;0.6 | 40+,20 500
30 3+50.5 | 50+/50 300
40 4+j1 |40+;25 300
40 4+;71.2 30+;730 200
50 5+51.2 | 30+/60 500
50 5+4j1 [50+,40 300
60 6+;0.8 | 30+,40 400
60 6+512 | 40+/10 500

Y == =l BN N IS BN OV ] )




2. Calculate the dependencies of the current / (Rload) and

the true power of the load P, (Rload) from the active

component of the load complex impedance for several values of
the reactive component 0,5X;,,7, Xjpad> 2Xipaq - Construct the

respective dependencies:

Xioad = 20 Rload = 0,150

E
I(R =
( load ) \/ 2 3
(Rline + Rloaa’) + (xline + xloaa’)

2
P(Rload) = ](Rload) : Rload

3. Calculate the capacitance of the capacitor, which is
connected to the load in parallel to increase the efficiency 1. Find

its value.
4. Construct the scheme of modeling the transmission line,

measuring the current in the line for several values Ry, ;.

Calculate the energy characteristics of the transmission line using
the readings of the virtual devices, Fig. 11.3.

Fig. 11.3

5. Carry out the modeling of the transmission line
functioning in the mode of maximum value of the efficiency.
6. Compare the results of calculation and modeling.

68




Review questions

1. What properties do the transmission line have?

2. How can you write the condition of the transmission of
energy with a maximum power?

3. How is it possible to increase the efficiency of the
transmission line?

4. How does the efficiency depend on the power factor
cosQ?

5. How can you find the value of capacitance to increase the
efficiency?

6. What is the formula defining the current in the line?

7. How are the step-up transformers used in the
transmission line?

12. CHARACTERISTIC PARAMETERS OF THE PASSIVE
FOUR -TERMINAL NETWORK

In many cases the problems of the electrical engineering
(designing the AC transmission lines) and radio engineering
(analysis various digital filters, concordance of the devices) use
the so-called characteristic parameters, namely: characteristic
impedances, transformation ratio and transfer function.

If the four — terminal network is connected (is loaded) to the

complex impedance Z,. by the output terminals, so that its input
impedance will be Z;. and to the contrary, if the four — terminal
network is connected to the complex impedance Z,, by the input
terminals, so that its output impedance will be Z,., then such

impedances are called the characteristic impedances (the input
and the output characteristic impedances respectively, Fig. 12.1.
If the coefficients of the four — terminal network are known,

then the parameters £, and Z,. are defined as:
7. = 411412 7. = 412422
TN Ay 4y T T\ 4,4y,
£2214222 £114£821
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Zic | ‘ \ ‘ \ Z
—IC. Zc Zic <ic

Fig. 12.1

If the internal scheme of the four — terminal network is
unknown, then the characteristic parameters may be found by
means of the experiment:

Zlc = '\/ZISCZIOC > Z2c = \/Z2scz2oc >

where Zi.., Ziyes Loge» Loy are the input and the output

impedances of the four — terminal network in the modes of the
short circuit and the open circuit.

It is evident, that for the symmetrical four — terminal
network we have the equality Z,. =Z,. =Z,..

The symmetrical four — terminal network is called the
symmetrical four — terminal network matched on the output, if the
load impedance Z,,,, is equal to Z, .. It is evident, that for the
symmetrical four — terminal network matched on the output
(Z jpaa = Z ;) its input complex impedance is equal to Z ..

For example, for the four — terminal network, shown in Fig.
12.2 we may calculate:

R, R
5 30
— R3 20 Rivad
Fig. 12.2
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R R . .
lec :Rl +L:17 H’ Zloc :Rl +R3 =25 H,

N Ry + Ry
Zlﬁ = \/lecgloc = \/415 =20,61 iia
RiR; o .
Ly =Ry TR 34 I,  Zyoe =Ry +Ry =50 1Ti,
1T Rs

Zoi =Z 2 Zpe =+/1700 = 41,23 i.

Thus, if the four — terminal network is loaded on the

impedance 41,23 = Z, ., on the output, then its input impedance

will be 20,61 Q. Indeed:

7, =54 00r4L2920_,, o)
91,23

The concept of the transformation ratio

/Z
m, = Zlc
Z2c

1s used in the calculation of the four — terminal network with the
matched load.

Since, the equality Z,, = Z,; is satisfied for the matched
four — terminal network, then we may write
Zin = mc‘z)ZZﬁ = mggload >
that is the matched four — terminal network is the transformer of
the impedance, transforming the load impedance mf times. It is
evident, that the symmetrical four — terminal network (m, =1)

doesn’t transform the impedance in the matched mode
(Zin :Zﬁ :Zload )
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Practical training and modeling

1. Construct the scheme of modeling the four — terminal
network, the scheme of which is shown in Fig. 12.3. The

parameters of the scheme and the value of the input voltage V,

are given in the table 12.1.

Table 12.1

XL | x| x| X | Xer | X 122 e | Vi | 4
QA Q] a0 QO B | Q

I [ - [ 55 [20] -] -1 - [ 500 |100] 20
2 |5 [ - | - T -T2 [10] - | 500 |[120] 20
3 | - [10] 5 [ 20| - [ - | - 1400 [150] 30
4 | 8 [ - | - T - [10[15] - | 400 [180] 30
5 |5 [ - | -2 | - [ - 1107 50 [120] 20
6 |10 [ - | - [ 20| - [ - |20 300 |[100] 20
7 1 8 [ - | - [ 10| - [ - 10 400 [150] 10
8 | 10| - [ - [ 5 [ 1020 ] - | 500 [120] 20
9 | 125 [10] 8 | - [ - | - | 400 [180] 30
10 [ 10 [ 10| 5 [ 20 - | - | - | 500 |[150] 30
11 | 8 | - | - [ 121020 - | 400 | 120] 20
12 | 10 | 10 | 20 | 20 | 15 | 10 | - | 500 | 100 | 20

2. Calculate the characteristic parameters of the four —
terminal network Z;., Z,., m,.

3. Calculate the input impedance of the four — terminal
network loaded on the characteristic impedance Z,,..

4. Calculate the input impedance of the four — terminal
network loaded on the impedance Z,,,, -

5. Carry out the p.p. 2 and 3 for the symmetrical four —
terminal network (the needed modifications must be done in the
given circuit).

6. Carry out the modeling the given four — terminal network
and calculate the impedances (the magnitudes of the complex

impedances) Zi.., Zipes Zrser Zooer» Zie» £y and the

magnitude of the transformation ratio by means of the virtual
devices reading, Fig. 12.4.

C
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Fig. 12.4

7. Carry out the modeling the given four — terminal network
loaded on the characteristic impedance Z,. and calculate the

input impedance Zy;, by means of the virtual devices reading.
8. Carry out the modeling the given four — terminal network
loaded on the characteristic impedance Z;. and calculate the

input impedance Z,;, by means of the virtual devices reading.
9. Compare the results of the calculation and modeling.

Review questions

1. What is the active four — terminal network? Give the
examples of the passive four — terminal networks.

2. Write down the equations of the four — terminal network
in “4” form.

3. Give the physical matter of the four — terminal network
coefficients.

4. How can you find the -characteristic impedances
experimentally?

5. How can you find the coefficients of the four — terminal
network in “4” form experimentally?

6. What is the symmetrical four — terminal network?

7. How can you find the transformation ratio of the four —
terminal network?

8. What is the matched mode of the four — terminal network
(the mode of the matched load)?
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13. THREE - PHASE SYSTEMS.
FOUR - WIRE THREE - PHASE SYSTEM OF ENERGY
SUPPLY

The three — phase systems are widely used in the power
industry. It is explained by the most economy and a high degree
of perfection. The three — phase systems contains the three —
phase generator, the three — phase load (consumer) and the three —
phase line.

Application of the three — phase systems of energy supply
allows substantively to decrease a mass of wires in the electric
network system unlike the single — phase systems. But it is
necessary to note, that the switchgear, the protection equipment,
the voltage regulation in the three — phase system are more
complex devices unlike the single — phase systems.

The three — phase electric circuit is represented as the
aggregate of three single — phase circuits containing the
electromotive forces (EMF) of the same angular frequency, but
their initial phases are shifted between each other by an angle

120°. These three components of the three — phase electric
circuit are called phases, designated by letters 4, B and C.

To get the linked structure of three—phase electric circuit the
single — phase generators don’t use. In this case the three — phase
generator is used, so that the number of connecting wires from the
generator to the consumer (load) decreases from 6 up to 3 or 4. It
depends on the scheme of connection (Y or A).

The three — phase system may be constructed as the
aggregate of three unlinked single — phase systems (Fig. 13.1),
that is each single — phase generator is connected to its load by
two isolated wires. Application of such system makes no sense
according to economical point of view. That’s why the phase
binding is made by a star (Y) or a (A), Fig. 13.2.

The three — phase system is called the symmetrical one if
the complex impedances of all phases of the consumer are the

same (Z,=Z,=2Z, for a star connected load and

Zp =2y =Z,, foradelta connected load).
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Fig. 13.2

If the neutral wire has small impedance (Z, = 0), then the

potentials of the common points # and N are practically the same
and these points make one node. In this case the three — phase

system has three separate loops with the currents / 4,/ and /.
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To calculate the symmetrical mode it is sufficient to

calculate only one phase (for example, the phase A). The needed
formulas are given below:

e phase currents

_ =4 _ —j120 _ j120
ZA__Z ’ ZB—lAe ,lc—lAe >

Iy=1,+Ip+1-=0, ]AZIBZIC:[ph

e phase voltages
Ka :EAa Kb :EB’ Ve =EC5 Ve =Vy =V, :Vph

e line voltages

—j120° 1120°
Kab :Ka _Kb’ Zbc :Kabe / ’ an :Kabe] >
Kab _ Ka \/gej30o ’
Vab = Vbc = Vca = Vline > Vline = Vph \/g :

For the unsymmetrical mode (under the condition that the

impedance of the neutral wire equals zero) we have the following
expressions:

e phase currents
I,= 1,=%8 g, -L
A — Z s LB Zb s LC Z s

a — C

e current of the neutral wire
Iy=1,+1p+1,
e phase voltages
Veo=E Vy=Ep, V. =Ec, V, =V, =V, :Vph
e line voltages
Vay =Va =V Vi =Vape "0, Vg =V e

Vab = Vbc = Vca = Vline > Vline = Vph \/g :
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The unsymmetrical mode in the three — phase system may
be occurred to various causes, for example, unequal impedances
of the load phases (unsymmetrical load), unsymmetrical short
circuit (for example, the short circuit between two phases or
between the phase and the neutral wire), open circuit (break of
phase).

If the impedance of the neutral wire is not equal to zero,
then at first we have to calculate the so-called neutral — point
displacement voltage:

E Y, +EgY, +ECY,

Za +Zb +Zc +ZN

KnN = > Z:

After calculation V', ,; we find the currents and the voltages
of the consumer:

e phase currents
:EA_KHN Ji :EB_KHN Ja :EC_KnN

I —_r v
L4 s LB s LC s
Z, Zy Z.
e current of the neutral wire
_ —nN
LN - Z s
=N

e phase voltages
Ka :lAZa, Kb ZZBZb» Kc :ch
e line voltages

Vab:Ka_Kb’ Kbc:Kb_Kc’ Kca:K -V

C —a’

c?

If the three — phase system contains the single — phase
consumers (electrical welding machines, single — phase motors,
electrical lamps, various household electrical devices), then the
voltage at the phases of the consumers must not change and not
depend on the number of consumers. Such condition is satisfied
for a star connected load with the neutral wire and for a delta
connected load.
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If the fuse burn in one of wires of the transmission line (for
example, in the line wire 4), then the voltages are absent at the
consumers connected to this line wire. The needed voltages are
present at other consumers.

The three — phase system with the neutral wire has
advantage because gives power supply the consumers having
different working voltages (consumers may be connected to the

phase voltage Vph =220V or to the line voltage V;,, =380 V for

low — voltage systems.
Practical training and modeling

1. Draw the scheme of the four — wire three — phase system
with the parameters according to the table 13.1.

Table 13.1
N Eph9V Za Zaozba an ZO:
variant , rad/s Q Q Q

1 220 10+ /5 2+j3,3+j4, 10
1000 2-72

2 380 5-/5 2-/5,3 -2, 10
500 4-j1

3 220 8+j6 4-13,4 +;3, 15
600 4

4 220 12 -8 5+j4,4+J5, 20
600 3-j4

5 380 20 + 515 10 - /10, 10 —;20, 10
1000 20 + /10

6 380 | 15-/15 846, 6+ 8, 25
2000 8-j6

7 220 8+;8 12 -j10, 10 +j6, 15
1000 8 + 6

8 220 4+6 8- j4,8-/8, 30
2000 4 +j6

9 380 12 +518 10+;12, 12 - j6, 25
1500 6+8




10 380 14 -/18 8-6,6+,8, 20
1200 10 + /12

11 220 6+/8 8+ 6,6+ 8, 10
1500 10 + /12

12 220 8+ /4 5-/5,5- /10, 20
1000 6+ /8

2. Calculate the symmetrical mode of the 4 — wire three —
phase system. Find the phase currents and the voltages, the line
voltages of the load.

3. Calculate the unsymmetrical mode of the 4 — wire three —
phase system. Find the phase currents and the voltages, the line
voltages of the load.

4. Carry out the modeling three — phase system in the
symmetrical and unsymmetrical modes, Fig. 13.3.

:
-

4329 %/

4@
9
4®

;
_

Fig. 13.3

5. Carry out the modeling unsymmetrical mode: break of
the phase load, break of the line wire. Assume that the load is the

symmetrical one with the impedance Z,.

6. Construct the phasor diagram of the given modes of
the three — phase system functioning.
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Review questions

1. How can you get the three — phase current?

2. How can you calculate the symmetrical mode of the 4 —
wire three — phase system?

3. Explain the destination of the neutral wire.

4. How can you construct the phasor diagrams for the
symmetrical mode?

5. How is the distribution of the voltages changed at the
load of the consumer for the broken line wire?

6. How is the distribution of the voltages changed at the
load of the consumer for the broken phase load?

14. THREE - PHASE SYSTEMS.
THREE - WIRE THREE - PHASE SYSTEM
(STAR CONNECTED LOAD)

As was noted above the unlinked three — phase system has
six wires with the currents [, =1y, . It is evident that the

three — phase system with a star connected load without the
neutral wire has only three wires with the same currents

I, =1}, and with the line voltages, which are 3 times

greater than the line voltages in the unlinked three — phase
system for which V; =V, .

Calculation of the symmetrical mode of the three — wire
system is carried out like the four — wire three — phase system.
The phasor diagram of the voltages doesn’t change.

As regards the unsymmetrical mode, then the neutral —
point displacement voltage must be calculated according to the
expression:

E Y, +EpY, +ECY,

|
- Y, +Y, +Y,

because Y 5 =0.
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Practical training and modeling

1. Draw the scheme of the three — wire three — phase system
with the parameters according to the table 13.1.

2. Calculate the unsymmetrical mode of the 3 — wire three —
phase system. Find the phase currents and the voltages, the line
voltages of the load.

3. Carry out the modeling three — phase system in the
unsymmetrical modes, Fig. 14.1.

2585

— {0 —o A

—C)—m

1044

(|

Fig. 14.1

4. Carry out the modeling unsymmetrical mode: break of
the phase load, break of the line wire and short circuit of the phase
load. Assume that the load is the symmetrical one with the

impedance Z,.

5. Construct the phasor diagram of the given modes of the
three — phase system functioning.

Review questions
1. How can you get the three — phase current?

2. How can you calculate the unsymmetrical mode of the 3
— wire three — phase system?
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3. How can you construct the phasor diagrams for the
unsymmetrical mode?

4. How is the distribution of the voltages changed at the
load of the consumer for the broken line wire?

5. How is the distribution of the voltages changed at the
load of the consumer for the broken phase load?

6. How is the distribution of the voltages changed at the
load of the consumer for the short circuit of the phase load?

7. How can you calculate the neutral — point displacement
voltage?

8. How are the complex impedances of the line wires taken
into account in the calculation of the three — phase system?

9. What will be the line currents of the symmetrical three —
phase system, if the complex impedances of the load connected in
a star will be transformed in a delta?

15. THREE - PHASE SYSTEMS.
THREE - WIRE THREE - PHASE SYSTEM
(DELTA CONNECTED LOAD)

In this case it is sufficient to calculate only one phase load
(for example, the phase ab), Fig. 15.1

£,

Lo
G S—

E, Zav dea
N F by §le Zea
_/ " 1

. Z.

¢ le yine
Fig. 15.1

The needed formulas are written in the form:
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e phase voltages:
_ _ _ —j120° _ j120°
Kab _KAB _EA _EB’ Kbc _Kabe > Kca _Kabe >
Vab = Vbc = Vca = Vph = Vline;

e phase currents:

|4 V 190° 1n0°
_ Zab _ Zbc _ —-j120 _ j120
ab — 7 ’ lbc - 7 _labe ’ lca _labe ’

Iab :]bc :Ica :Iph;

|~

e line currents:
—730° —7120° i120°
Ly=L N3¢, Ip=10,e7 I.=1,"",

ly=1p =Ic :[line'

Calculation of the unsymmetrical mode (for case

Z ire = 0) is carried out by the following way:

e phase currents:
V V V
I, :—_ab, I, = —bc , 1, ==,
Zab Zbc an
e line currents:
lA :lab _ica’ lB :lbc _lalﬁ lC :lca _lbc'

To take into account the impedances of the line wires (Fig.
15.22, a), delta connected load may be transformed into the
equivalent star connection, Fig. 15.2, b. Next the calculation of
the symmetrical or the unsymmetrical three — phase system is
carried out. At first, the line currents (the neutral — point
displacement voltage is calculated for the unsymmetrical case)
and the phase voltages of the load, connected by a star are found.
At second, the phase currents of the load, connected by a delta.

If the line wire is broken (for example, the wire 4), then for
a delta connected load the consumers connected between wires B
and C, get the needed voltage. Other consumers will be connected
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in series between the wires B and C. It means that the voltage
across each of them will be decreased and distributed directly
proportional their impedances. Thus, if the consumers have the
single — phase devices, then the use of the three — phase system
with the load connected in a delta is no purpose. It particularly
concerns the lighting equipment of the consumers.

E —Zline
S —Zline

Fig. 15.2
Practical training and modeling

1. Draw the scheme of the three — wire three — phase system
with the parameters according to the table 15.1.

2. Calculate the unsymmetrical mode of the 3 — wire three —
phase system. Find the phase and line currents, and the phase
voltages of the load.

3. Carry out the modeling three — phase system in the
unsymmetrical mode, Fig. 15.3.

— (09— ot A] o

L oy ju—
(0 —(Ceee Al =]
3573 W [ 8833 Al
1487 A,

——C=== 1
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Table 15.1

N Eph’ \4 Zab ’wazca’ Zline’ ZO’
variant ®, rad/s Q Q Q
1 380 6 +j4,4+/1, 1+j1 20
1000 2-j1
2 380 6 -j6, 8 +j6, 1+/1 10
1200 10 +515
3 380 8+j4,4-52, 1+;0.8 15
1500 6 -8
4 380 4+;2,6+]8, 1,2 +/1 20
2000 8-j4
5 380 6 +j6, 8 + 8, 0,8 +/1 25
2500 4-j4
6 220 2+2,4+j4, 0,847 1 20
1000 4-j4
7 220 4+j6,6+j4, 1,2 +0.8 10
1200 4 -j6
8 220 8+8,12 +/16, 1+/1,2 15
1500 6 -8
9 220 15 +;15, 12-510, 1,4+/1,6 10
2000 6+/8
10 220 10 +;10, 204512, 1+,0,6 12
2500 10 - j5
11 220 10 +;10, 10 + /5, 1,2 +0.6 12
3000 6 -8
12 380 6+;2,2+ 6, 1,4+;1 10
3000 4-j3

4. Carry out the modeling unsymmetrical mode: break of
the phase load, break of the line wire Assume that the load is the

symmetrical one with the impedance Z,.

5. Construct the phasor diagram of the given modes of the
three — phase system functioning.
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Review questions

1. How can you calculate the unsymmetrical mode of the 3
— wire three — phase system with the load, connected by a delta?

2. How can you construct the phasor diagram of the
currents for the unsymmetrical mode?

3. How is the distribution of the currents changed at the
load of the consumer for the broken line wire?

4. How is the distribution of the currents changed at the
load of the consumer for the broken phase load?

6. How is the distribution of the currents changed at the
load of the consumer for the short circuit of the phase load?

8. How are the complex impedances of the line wires taken
into account in the calculation of the three — phase system?

9. What method of calculation is more optimal for the short
circuit of the ab phase load?

16. THREE - PHASE SYSTEMS.
THREE - WIRE THREE - PHASE SYSTEM WITH SEVERAL
CONSUMERS

In practice, as a rule, the three — phase system contains
several consumers, Fig. 16.1.

Y Zline 1 Zline 2
Z
£Lab

s Z/iné‘ 1 Zline 2 7

A ( E) I: = ca

Zbc

EC Zline 1
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Calculation of the symmetrical mode is simplified because
we may consider only one phase, for example, the phase 4. At
first we transform a delta — connected load into a star connected
one, Fig. 16.2.

Zg>

@ I { } { |—
v —ES—r O
\
\
Ze¢y \
—(>———1 — =)
!
\\ //
\\\ Z Zg, -~
\\§~ —-""’”
e L <L
Fig. 16.2

The impedances of the symmetrical star are 3 times less
than the impedances of the symmetrical delta. Ann neutral points
in the symmetrical mode have the same potential. That’s why we
may unite by the wire without impedance (it is shown by dot).
Next we may consider only one phase 4, Fig. 16.3.

1y Z Z

Z line 1 Z line2

Fig. 16.3

Further transformation of the scheme allows to find the
needed currents and voltages:
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e current of the generator / 4

I £y
24 = 5
Zooi (Ziiner +Za2)Z ar
T Ziner ¥ Z o+ Z gy

e current of the first consumer connected by a star
ZlineZ + ZdZ
b
Ziinez TZa1 +ZLan
e line current of the second consumer connected by a
delta

Ial :lA

Zu
b
Ziner tZin +Z s

e phase voltage of the first consumer

1a2 =1,

Va=LaZas
e phase voltage of the second consumer connected by
a star
KaZ = £a2 ZaZ :

It is evident, that the respective currents and voltages in the
phases B and C have the same values as in the phase 4, but their

initial phases are shifted by an angle + 120°.
The magnitudes of the line voltages of the first consumer

are /3 times greater than the magnitudes of the phase voltages
|K1| (besides, the initial phases of the line voltages lead the initial
phases of the respective phase voltages by an angle 30°, as was

shown oh the phasor diagram of a star connected load).
The magnitudes of the line currents of the second consumer

are ﬁ times greater than the magnitudes of the phase currents
(he initial phases of the line currents lag behind the initial phases

of the respective phase currents by an angle 30° , as was shown
oh the phasor diagram of a delta connected load).
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The magnitudes of the line voltages of the second consumer
are /3 times greater than the magnitudes of the phase voltages
|K2 | of the transformed star.

Thus, we may write the general formulas to determine other
currents and voltages of the three — phase system:

e currents of the generator
-j120° i120°
Ig=1,e, Ic=14e"",

e currents of the first consumer

_ —j120° _ 7120°
Iy =14e > Iy =1,e >
e line currents of the second consumer
_ —j120° _ 7120°
£b2 - laZe > 162 - laZe >

e phase currents of the second consumer
1 JURP 1 . An° 0
_ 730 _ 7(30°-120)
lab - \/glcﬂe > lbc - /—3 £a2e >

e 1 / 2ej(30°+120°)
La ’

—ca_\/g

e phase voltages of the first consumer
Vi =Vae ™ V=V e,
e line voltages of the first consumer
Kabl :Kalﬁej3o°’ Kbd :Kalﬁej(3o°_120°),
Vi =V \/gej(30°+120°)’

¢ line voltages of the second consumer
_ 730° _ 7(30°-120°)
Vibr =Va2 Ve, Vier =V V3e ’

KcaZ — Kaz \/gej(300+120°).

It is necessary to note, that the transformation of the load of
the second consumer connected by a delta (in unsymmetrical
case) into equivalent star doesn’t allows to continue simplification
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of the system. It is explained by the fact that the potentials of the
common points #n; and 7, are different and we may not to unite

these points.

The three —phase system with several loads may be
calculated (in symmetrical or unsymmetrical modes) by any
method of complex circuit calculation, for example by the loop
current method.

The system of equations for the three —phase system shown
in Fig. 16.1 is:

1, (2Z ey + 22 e + Z ) — 1 (Z
+1nZ oy 41322 —Lss 2y =E, —Eg,
— 1 (Zyer + Zier) ¥ L0y QL o +2Z ey + 2, ) +
+1nZy —LyuZye +1s522,,, =Ey—E,
~L11(Ziiner T Ziine2) L2 2Zjne1 +2Z jiner + Lpe) +
1332 pe ~LagZiiner + Lss2Z 1 =Ep —Ec,
InZypy +10nZpe 132, +Zpe +Z00) =0,
IlIZZlmel l ZZlmel +I 4(2Z 1 +Zal +Zbl)_
~L55(Zye +Zy)=E, —Ep,
Illzlmel +1222Zlmel 44LZline1 +Zbl)+
+15Q2ZL g +Zy+Z)=Ez—E..

After calculation of the loop currents we may find all
needed currents of the three —phase system:

= line linel + le’ne2 ) +

linel

line

e currents of the generator:
Ly=1Iy+1yy, Lp=—Iy +1y —1Ly4y+1ss,
Lo =~y —Iss,
e currents of the first consumer:
Ly =1Lyy, Ly =—Lyy+1ss, 1 =—Iss,
e line currents of the second consumer:

£a2 =1, £b2 =1y -1, lcz =—1,,
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¢ phase currents of the second consumer:
Lop =Ly +1s3,  Lpe=Ipp+15, L =1z

For example, for the three —phase system shown in Fig.

rad
16.1 (circuit parameters are: E =380 V, ©®=200 —,
sec

Zlinelzl +_]1 Q,Zlmez=0,5 +j0,4 Q,Zl =10 Q,22 =20 Q)

we have the solution of the obtained system:

I,,=40,558-;9,891A, [I,,=11,713—- ;40,069 A,
I33=—-17,424+ j16,653 A, 1, =29,462— j5460A,
Is5=9,997— 28247 A,

so that in the symmetrical mode we may calculate the needed
currents:

e currents of the generator
I,=1,+1, =7002-15357A,

[, =15 =1 =+70,022 +15357% = 71,68 A,

o currents of the first consumer

L, =144 =29462—j5466A, [, =1, =1,4=2996A,
e line currents of the second consumer

I, =1,;=40558-79891A, I, =1,,=1,=4175A,
e phases currents of the second consumer
I.,=133=-17,424-j16,653A, 1, =1,. =1, =24]1A.

Practical training and modeling

1. Draw the scheme of the three — phase system with the

parameters according to the table 16.1.
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2. Calculate the currents of the generator and the consumers
by the circuit transformation method.
3. Carry out the modeling three — phase system in the
symmetrical mode, Fig. 16.4.
4. Compare the results of calculation and modeling.

Table 16.1
N EpnsV | Ziiner» Ziine2> Zy, | Z,,
variant , rad/s Q Q Q Q
1 380 141 1+1 10 | 20
200
2 380 1+/08 | 05+0,5 | 10 | 30
400
3 220 |05+/05 | 1+ 20 | 20
400
3 220 | 0,8+/0,4 | 08+,06 | 15 | 30
200
4 380 | 0,6+/0,6 | 04+,04 | 30 | 45
500
5 380 |1,2+,0,6]| 06+,04 | 20 | 30
600
6 220 |04+/06 | 05+/02 | 15 | 15
300
7 220 1+/1,6 | 0.8+/12 | 10 | 10
800
8 380 | 0,8+/0,6 | 05+,04 | 10 | 30
300
9 380 | 1,6+724 ] 12+/1,6 | 25 | 75
800
10 220 1,6 42,8 1,5+,2 30 30
1000
11 380 |1,5+j24| 12+2 | 20 | 60
1000
12 220 |1,5+725]| L1,5+2 | 20 | 30
2000
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Fig. 16.4
Review questions

1. What are the types of the three — phase system with
respect to ways of connection of the generator and the load
phases?

2. What is the condition of the unsymmetrical mode in the
three — phase system?

3. What methods can you use to calculate the three — phase
system with several consumers?

4. Write down the system of equations by the loop current
method for the three — phase system shown in Fig. 16.1 without
the first consumer.

5. What formulas do you use to calculate the currents
flowing through two parallel branches?

6. What is the relationship between the line and the phase
RMS complex currents in the load, connected by a delta, in the
symmetrical mode?
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17. NONSINUSOIDAL CURRENTS AND VOLTAGES IN
LINEAR ELECTRIC CIRCUITS

As a rule, the curves of electromotive forces, the voltages
and the currents differ from the sinusoidal curves in the power
electric circuits. For example, the curve of distribution of the
magnetic induction in the air gap of the generators differs from
the sinusoidal curve. That’s why the electromotive forces, induced
in the windings don’t have the sinusoidal form. Besides, the
nonsinusoidal currents flow in the electric circuits containing the
nonlinear elements.

In the linear electric circuits the nonsinusoidal currents flow
through the branches when the energy sources generate the
nonsinusoidal excitations.

According to the Fourier series any function f(m¢)with

the period 2 T may be expanded in the trigonometric series:

o0
flwt)= Ay + X [Byy sin kot + Cy,, coskat],
k=1
where the coefficients A, By,,,C;,, are determined by the
following formulaS'

Ao L I f(wt)dot, By, =— I f(wt)sin kotdot,
2TE o
Cim=— jf((ot) coskotdot, ®= -

Physical meaning of the coefficient A, is the direct

component of the function f(wt);By,,,Cy,, are the amplitudes

of sinusoidal and cosinusoidal components respectively (such
components are called the harmonics).

2
Since ® = 775 , then the coefficients may be determined by

the expressions:
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17 2T
Ay =—[f(0dt, By, == f(t)sinkordt,
r 0 r 0

2T
Cim = —If(t) cos kotdt.
Ty

In practical calculations the infinite series is replaced by the
sum of finite number of items (as a rule, needed precision of
approximation of the given nonsinusoidal signal may be obtained
if we take into account 3 + 5 harmonics).

As an example let’s expand into Fourier series the
alternating oscillation of the triangular shape, Fig. 17.1.

v(1)

Fig. 17.1

It is evident, that for such function the direct component is
equal to zero (¥, =0). Since the function v(¢) is the odd

function, then Fourier series has only sinusoidal components, that
is we may write:

v(t) = Y By, sinkot,
k=1
and the coefficients B, may be defined from the formula:
N

By == [ (t)sin kootdt.
r 0
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Since the function v(¢)is symmetrical one with respect to
T .
the line Z, then the coefficients By, are equal to zero for all

even values £, and for odd values k =2g—1 we obtain the
general expression:

/S 8, Sin{(zq; 1)71
By =— [ 4V, —sin(2q — Dotdt = =2 5
T 0 r T (2g -1)

Thus, the Fourier series for the given nonsinusoidal voltage
v(t) may be written as:

8V,
v(t) =—2| sinof — lsin 3ot + isin 5wt — Lsin Tot +
n? 9 25

+Lsin9cot —Lsinl lof +... |.
81 121

To calculate the electric circuit with the nonsinusoidal
currents and voltages the superposition method is used. In this
case the source of the nonsinusoidal EMF is considered as the

series connection of the direct voltage source (V|;) and the

sinusoidal voltage sources with the different amplitudes
(B}, » Ct,py ) and multiple angular frequencies ( k), Fig. 17.2.

v
o

CD e/(t) v(?) Linear Electric

Circuit
>

e,(t

N’

Fig. 17.2
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It is evident that the total voltage (resulting) at the input of
the two — terminal network is defined as following:

n
v(t)=Vo + > v (0).
k=l

As we see the function v(¢)is the function of the complex
shape.

Since the considered electric circuit is the linear one, then
we may consider the action of each EMF separately and calculate
the respective components of the currents caused by these EMF
(principle of superposition). The current flowing in any branch is
calculated by the summation of the respective components:

To calculate the electric circuits with nonsinusoidal currents
we have to take into account the following: for different angular
frequencies the impedances of the inductive and the capacitive
elements are calculated by means of the expressions:

Xq 1
Xo, ===~
k  koC
It means that the inductive reactance at the & harmonic is
k times greater than the reactance at the first (k = 1) harmonic. It
is evident that the capacitive reactance is k times less than the
reactance at the first harmonic.
For example, the complex impedance of the branch,

. ) rad
containing the series connected R, L and C (®=1000 —,

ka :]OCLI :kQ)L,

Ky
R=10 Q,L=0,01 H, C=100 uF), is equal to:
e for the first harmonic
Z(l) =R +j((1)L —L]=10+]’(1000'0,01—ﬁj2
oC 10° -100-10~

=10+ j(10-10)=10Q,

e for the second harmonic
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Totality of the sinusoidal components (harmonics) is called
the spectrum. The spectrum of the periodical function of the
complex shape consists of the direct component and the
harmonics, the frequencies of which build up discrete series of
values ko (k =1, 2, 3...), which are multiple to the fundamental
frequency ®. The amplitudes of the harmonics are equal to 4,,,
Fig. 17.3.

AZ
AO

As Ag
ITTTTTT 0
Sw 8w

Fig. 17.3

0 w2w

Physical reality of the spectrum harmonics doesn’t raise
doubts if the oscillation of the complex shape is obtained by
summation of the sinusoidal oscillations, which are produced by
the real sources. In other cases, when separate sources of the
different harmonics are absent, only initial physical oscillations
exist. Totality of the sinusoidal harmonics, compiling the
spectrum of the given signal must be considered as convenient
mathematical representation of physical process.

Practical training and modeling
1. Draw the scheme of the linear electric circuit (Fig. 17.4)

with the parameters according to the table 17.1.
2. Draw the graph of the nonsinusoidal voltage v(¢) (Fig.

17.1), using 11 harmonics.
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3. Calculate the RMS values / and the voltage across the
reactive element V_, using the principle of superposition. Write

down the results of the calculation in the Table 17.2.

R i) R i(t)
o——-o }—» —o  }»—
v(t) L | (1) C
\ \/ \/
o v, (t) o vc(t)
Fig. 17.4
Table 17.1

N R, L, C, Vs o,

variant Q H uF vV rad/s
1 40 0,1 100 100 100
2 35 0,12 120 120 150
3 32 0,15 100 100 180
4 30 0,1 150 150 200
5 45 0,1 150 100 250
6 40 0,2 200 50 200
7 30 0,1 100 80 300
8 25 0,1 150 150 300
9 30 0,2 100 100 250
10 40 0,05 50 80 400
11 25 0,2 100 100 200
12 30 0,15 50 50 300

4. Determine the instantaneous values of the current i(¢)
and the voltage v,(f) and construct the respective graphical

dependencies.

5. Carry out the modeling given electric circuit for each
harmonic (Fig. 17.5). Write down the measured values of the
current and the voltage in the Table 17.2.

6. Carry out the modeling of the electric circuit for the
given nonsinusoidal voltage (Fig. 17.6).
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Table 17.2

The number RMS value of the RMS value of the
of harmonic nonsinusoidal voltage
harmonic Calculation | Modeling | Calculation | Modeling
I, | Vs, | L, Vs, | I, | Vs, | I,|V5,
Alv [ Alv Al v [Aly
1
3
5
7
9
11

AT A A

-+
@ -1 256.2m Y

Fig. 17.5

Fig. 17.6
7. Compare the results of the calculation, the results of

modeling by the superposition principle and the results of
modeling with the generator of the given nonsinusoidal voltage.

101



Review questions

1. In which cases can the nonsinusoidal currents and
voltages appear in the electric circuits?

2. How can you calculate the electric circuit in which the
nonsinusoidal EMF is connected?

3. Write down the Fourier series for the periodical
nonsinusoidal signal and give the needed comments to the
components of the series.

4. How can you determine the coefficients of the Fourier
series?

5. How can you calculate the RMS value of the
nonsinusoidal currents and voltages?

6. How can you calculate the true power in the electric
circuit with the nonsinusoidal voltage source?

7. How can you calculate the inductive and capacitive
reactances in the electric circuit with the nonsinusoidal voltage
source?
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18. NONLINEAR DIRECT CURRENT
ELECTRIC CIRCUITS

Unlike the linear circuit elements the parameters of the
nonlinear elements depend on the currents and the voltages. The
properties of these elements can’t be determined by means of
single constant parameter (for example, the linear resistor is
completely described by single parameter called the resistance R).
In this case it is necessary to assign the dependencies between the
current and the voltage, which are called the characteristics of the
nonlinear elements. As a rule, the characteristics of such elements
are determined by the experimental way and shown by the graphs.
Besides, the graphs may be represented by the approximate
analytical expressions.

DC electric circuits, containing the nonlinear resistors, are
described by the systems of the nonlinear algebraic equations. The
type of equations is defined by the functions approximating the
respective volt — ampere characteristics of the nonlinear elements.

If the complex electric circuit contains only one nonlinear
element, then the linear part of the circuit may be transformed to

the equivalent parameters R, and E,, so that only one loop is
formed in which the current of the given nonlinear element flows
(Fig. 18.1, a). In this case the obtained electric circuit is described

by only one nonlinear algebraic equation. It is evident the
quadratic or cubic equation gives exact result.

R(f
1
| S .
E, — Lo
A e ivo

Fig. 18.1

The simplest method of calculation of the current in the
nonlinear element is the graphical one. This method is based on
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intersection of two volt — ampere characteristics. On the other
hand the volt — ampere characteristic is given by the curve
v = f(i), on the other hand the volt — ampere characteristic is
given by the equation, obtained by means of KVL:
v=FE,—iR,.
The point of intersection of these characteristics (Fig. 18.1, b)
gives the values of the current i, and the voltage v, across the

nonlinear element. It is evident that the voltages vy and vg

satisfy to KVL.

In other cases to calculate the nonlinear electric circuit the
numerical methods are used: method of simple iteration or
Newton’s method. To use both methods it is necessary to know
the preliminary (initial) estimate of the root. As a rule, such
estimate is obtained from the solution of the nonlinear equation,
in which nonlinear items are not taken into account. It means that
the rough estimate is obtained by the solution of the linear
equation. Such estimate is called the initial approximation.

The initial approximation (for example, the current 7)) is

substituted into respective iteration algorithm (for example, into
Newton’s algorithm), so that the following value iy is obtained.

The value i}y is assumed as the new more exact solution, which

is substituted into algorithm again. As a result we obtain the
following value i) and so on. The procedure of calculation

I(k+1) = F(i(y) 1s carried out up to that moment when the

solution ;1) —i(x) Will be less than some value & (this value is

preset). Such procedure is called the iterative procedure.

One can use another way, which gives the same result,
however it doesn’t require of composition of the system of
nonlinear equations. In this case Newton’s algorithm is applied
immediately to the equation of the nonlinear element
(linearization of the characteristic of the nonlinear element is
carried out). In the previous case Newton’s method was applied to
the equation of the nonlinear circuit.
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Let’s assume that the volt — ampere characteristic of the
nonlinear element is given by the analytical expression v = f(i).

The Newton’s algorithm gives the expression for the voltage

V(ks1) on (k + l)th step of equation:
Y . dav| . .
Vi) =V +J (l(k> Hket) T He) )= Vi F E‘ (l(k+1> ~lw )=
()

= Vi) g Ry =y Rixy»

v
where R(;) =— is the equivalent resistance on (k+1)th
di k
(k)
step.
Assuming that

Egy = Vi) oy Ry
we get the equation:
Vi) = Egey + e Ry »
where E(;y is the EMF of the DC voltage source. The value E

is calculated on the previous step by means of the known values
of the current and the voltage.

The obtained expression corresponds to the series scheme
of substitution of the nonlinear element (the series discrete model
of the nonlinear resistor), Fig. 18.2:

. E
! Rk { ik+1
— O = — o
_— Vv

-
" Vin

Fig. 18.2
For example, for the nonlinear electric circuit, shown in Fig.

18.3, a, we have the discrete scheme of substitution, shown in Fig.
18.3, b.
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Fig. 18.3

Using the KVL we may write:
i (Re + Ry )= E, = By,

so that the current on the (k + l)th step of the iterative procedure

is equal to:
; . Ee - E(k)
k) = 5 -
For the nonlinear resistor with the wvolt — ampere

characteristic, given by the expression v = v i’ we may write:
dv 3 % . 3 3 y
d, 5’<k>v Ewy =vao ~loRao =it~ 576 =

YRR S

=i T 5’(k> (k)

Ry =

so that the iterative algorithm is:

3
' E,+0 Sl(k)
Wks) ==/

y .
R, +1 Sl(k)

Let’s write the iterative algorithm for the following
parameters of the linear part of the scheme: £, =90B,R, =15

Owm, and for the initial approximation (initial value) iy =1 A :

3
90+0,5 90 +0,5- (5,485)5

l(l) = = 5,485 A, 1(2) = = 5,208 A,
I15+1,5 15+1,54/5,485
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%
- 90+0,5-(5,208)"2
3y =
O 154155208
It is evident that we obtain the stable result, using only three
steps of the iterative procedure. This result may be assume as the

exact value. The voltage across the nonlinear resistor is given by
the volt — ampere characteristic and is equal to:

=% =5,208% = 11,88 B.

If the volt — ampere characteristic is given by the expression
i= f(v), then the Newton’s algorithm gives the respective

=5,208 A.

equation for the current #(;y on the (k + D)™ step as:

. ) / ) di
iy =1y + S Vo )(V(k+1) _V(k))zl(k) +E(

(V(k+1) ~ V) )=
k)
= iy HVan Gy =V Oy
where Gy = “ is the equivalent conductance on the
Vi)
(k+ l)th step.
If we designate
Ty = ey = Gy Ve
then we may write the equation
ity =y = Gy Vi)
where J(;y is the direct current source. This value is calculated

by means of the known values of the current and the voltage on
the previous step of the iterative procedure.

The obtained expression corresponds to the parallel scheme
of substitution (the parallel discrete model) of the nonlinear
element, Fig. 18.4:
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i — lj+1
p— o— —»—o

Vit k

\4

Fig. 18.4

For example, for the nonlinear electric circuit, shown in Fig.
18.3, a, we have the discrete scheme of substitution, shown in Fig.
18.5.

R, i

:| k+1
Ee

<D Vi1
D)

Gy

\J

s

Fig. 18.5

Using the node potential method we may write the iterative
algorithm (@t 11) = V(x41)) :

E, _ T
1 R,
v(k+l) _+G(k) = -
Re L_}.G
z TOw

e
For example, for the nonlinear resistor with the volt —

ampere characteristic, given by the expression v = \/i3 or
i= 3\/ v2 we may write:
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2 h - [2 2 h
Gy o :gv(k) s S =i Vo G =3V V) gv(k) =
(k)

%20 1%

— Yo T3V T3V

so that the iterative algorithm is written as:

E 1 2%

Rj‘gv(k)
Vi) =7 5 /¢
R 3 k)

e

Let’s write the iterative algorithm for the following
parameters of the linear part of the scheme: £, =90B,R, =15

Owm, and for the initial approximation (initial value) vy =5V :

61352

Y = : =11,04B; v, =1188B; V) = 1188 V.
0,066+ 0,666 =

5

The result V3 =1188V may be assumed as the exact

value. The current of the nonlinear element is defined by the volt
- ampere characteristic and is equal to

i=3v? =311,88% = 5,208 A.
The obtained results coincide with the results for the series
discrete model.

Practical training and modeling
1. Draw the scheme of the nonlinear electric circuit (Fig.
18.6) with the parameters according to the table 18.1

2. Carry out the transformation of the linear part of the
given electric circuit with respect to the nonlinear element.
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Calculate the current and the voltage of the nonlinear element by
the graphical method.

3. Calculate the parameters of the series discrete scheme of
substitution of the nonlinear element and write down the iterative
algorithm. Calculate the current and the voltage of the nonlinear
element.

Fig. 18.6
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Continuation of Fig. 18.6

111



Table 18.1

N E.V R, Q Volt — ampere
variant characteristic

! 20 12 i =0,5-102v}

2 90 18 i = %/q

3 60 15 i = 0,2‘)12

4 80 12 i = 0’5%

5 75 15 i = 2%

6 90 18 i = 0,1‘}12

7 60 12 i = 1072 v13

8 80 15 iy = 430,51,

? 20 18 i, =33/0,6v,

10 60 12 i :1’5.1072‘}13

11 75 6 i1:2-10_2v13

12 90 9 i = O,Svlz

4. Calculate the parameters of the parallel discrete scheme
of substitution of the nonlinear element and write down the
iterative algorithm. Calculate the current and the voltage of the
nonlinear element. Compare the results of the calculation obtained
in p.p. 4 and 3.

5. Carry out the modeling the linear discrete model (series
and parallel) of the given nonlinear circuit for several values of
the iterative steps k(k =3+4). The relative error must not
exceed the value 1%. Write down the results of modeling in the
table 18.2.

The scheme of modeling the parallel scheme of substitution
is shown in Fig. 18.7.

6. Compare the results of modeling and calculation.
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_ 2412 (D
Fig. 18.7
Table 18.2
Step of Parameters of the Parameters of the
approximation series discrete model parallel discrete model
L iy Ruys | Ewys | Voo | Gaoys [Ty
A Q AY/ Vv 0! A
0
1
2
3
4

Review questions

1. What is a nonlinear element?
2. Give the characteristic of the graphical method of the
nonlinear circuit calculation.
3. How is the series discrete model of the nonlinear element

constructed?

4. How is the parallel discrete model of the nonlinear
element constructed?
5. What are the properties of application of the loop current
method to calculate the nonlinear electric circuit?
6. What are the properties of application of the node
potential method to calculate the nonlinear electric circuit?
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19. ALTERNATING CURRENT NONLINEAR CIRCUITS

Occurrence, appearing in the most electrical devices with
nonlinear elements can’t appear in the linear electric circuits.
Besides, the principle of action of various devices is based on the
nonlinear effect. For instance, rectification and stabilization of the
alternating voltage, transformation of signals, multiplication and
division of the frequency, amplification of the power are based on
the nonlinear effects.

The electric circuits with the nonlinear resistors are applied
for rectification of the voltage and the current. The electric
circuits with the nonlinear reactive elements, which, as a rule,
have the symmetrical characteristic, are applied to get stabilized
voltage, multiplication of frequency (trebling), relay effect.

Further we consider one of basic nonlinear elements of the
AC electric circuits, called nonlinear inductance, which is
represented by the coil with the magnetic core.

The weber — ampere characteristic of the nonlinear
inductance can’t be expressed by the analytical relationship
exactly. As a rule, the equation of this characteristic is
approximated to some accuracy by degree polynomial. If we
neglect by the hysteresis, then the characteristic may be described
by the short — cut polynomial:

Y :bli—b3i3, b3 > 0,
where  is the flux linkage of the coil with the current i(¢).

If the current has the sinusoidal form, then the magnetic
flux linkage is defined as:

. . 3 .
y(t) = b1, sinot —b3l,3n sin® wr = (bl —Zb3131 j]m sin of +
1 . . .
+ Zbﬂ; sin3wt =¥, sinot +¥,,; sin3w¢,

where ¥, | is the amplitude of the magnetic flux linkage of the

first (fundamental) harmonic.
The voltage across the coil may be determined from the
general expression:
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v (£) = ‘2—‘;’ = 0¥, sin(or +90°) + 30, ; sin3(of +90°) .

Quasi—linear method allows to calculate the mean
inductance (for the steady — state mode) as:

Y 3. 5 5
Lmean([ml) :I_’nl:bl _Zb31m1 :Ld(l_klmll

ml
where L; = b; is the inductance in the mode of small oscillations
dy

(L,;; > 0), called the differential inductance L, = e
i

3by . . . . .
k=== isthe coefficient, which defines degree of nonlinearity
1
of the characteristic.
Let’s consider the series oscillation circuit, including the
nonlinear inductance, Fig. 19.1.

i(t)

| R
)
e(t) lv v,
C

Assuming, that the harmonic oscillation has the frequency
® and the amplitude V,,;, we may find the voltage across the

nonlinear inductor:
d 2 VC
dr?

dve
dt

_dy _dy di i = _1iedve
dt di dt

~di |,
v =L(l)E=

where L(i) = CZ—W =L,.
i

According to KVL we may write:
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Ve@)+v () +vc(2) =V, sinwt,
from which it follows
dzvc

dt*
Approximate solving this nonlinear differential equation
(L(i) is nonlinear parameter) is difficult task.

If the oscillation circuit has high quality, then the current of
the first harmonic has maximum value among all harmonic
components. Therefore the RMS value of the current / in the
circuit is approximately equal to RMS value of the current of the

first harmonic 7y, since I=ﬂ[12 +122 +...,thatis [ = /.

The amplitude of the current of the first harmonic equals:

I = Vi

ml 5 .
) 1
R™ + O)Lmean (Iml)_
oC

It is evident, that the resonant frequency depends on the
current /,,; and is defined as:

d
LG)C + RC% +ve =V, sinot.

1

R Lmean (]ml )C

The volt — ampere characteristic of the resonant circuit is
defined by the KVL for RMS values:

Vin(Ly1) = \/VrrzzR(Iml)+ [VmL(Iml)_Vmc(Iml)]z ,
where:

Wy =

3.2
VmR (Iml) = lelstL (Iml) = Q)Lmeanlml = (D|:b1 _Zb31m1 jllml’

1
Vmc(1m1)=le1

are the volt — ampere characteristics of the respective elements,
Fig. 19.2, a.
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Vo | VoI 1)
le e — - 4 __-——> > _ /b

|
| |
Vol N u
VmC (Iml) _d __ «—_ ¢ !
I, & o 7O :

0 e DI Ly
«—— DI,
a b
Fig. 19.2

The volt — ampere characteristic of the resonant circuit is
shown in Fig. 19.2, b.

From the obtained volt — ampere characteristic it follows
that smooth variation of the voltage gives the current step of the
first harmonic. Such occurrence is called the ferroresonance.
Ferroresonance is not possible in the linear circuits.

If the capacitance C is chosen in that way, that the line

Voo (1) will be intersect the curve V,; ({,,1), then the point
of intersection corresponds to ferroresonance of voltages
(VmL = VmC )-

Smooth variation of the voltage from zero to V,; (Fig.

19.2, b) gives the current step in the point a (from / ,(il) in the
point a to [ r(nzl) in the point b), so that the value of the step equals
AJD = 7@ _ D

ol =L ml - Further increment of the voltage gives

smooth increment of the current (see the direction of the arrows
from left to right in Fig. 19.2, b). And vice versa, smooth

decrement of the voltage to V,,, gives the current step (from
1 ’5131) in the point ¢ to [ ’5141) in the point d), so that the value of the

step equals A/ r(nzl) =1 r(,?]) -1 r(n41) (see the direction of the arrows
from right to left).
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Let’s assume, that the losses in the circuit are negligible
(R = 0) and the frequency ® of the input voltage coincides with

1
JL.C

mode of small oscillations (/,; —0). Assuming that

* .
the resonant frequency ®, = , which corresponds to the

* 1 . T . .
0oL =——=pg (po is the characteristic impedance in this

®

mode), we may determine the voltage across the inductor V,; :

* 2 2
Vint :(DOL(I_k]ml ml :pOlml(l_k]mll’
and the voltage across the capacitor:

1
Ve =——1Lm = Polm-
(Doc

The amplitude of the applied voltage is equal to:
3
Vm = |VmC - VmL| = pO]ml’

from which it follows:
%
V Pok

Now let’s find the voltage across the inductor, using the
known value of the applied voltage V,, :

V V
V. =pol, \l—kI% |= 3/’"— k— =
mL = Po ml( ml) Po bok Po Dok
/ 2
Po
:373Vm_Vm‘

Let’s assume that the voltage is defined across the inductor
in the resonant circuit (Fig. 19.3, a). This case corresponds to
stabilization of the voltage, because the variation of the input
voltage within some range doesn’t change the output voltage

Vle .
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Fig. 19.3

The stabilization mode of the output voltage is explained by
the fact, that the increment of the input voltage (it means that the
current increases in the circuit) decreases the inductance

Liean({,,1) .- In this case the voltage across the inductor
decreases and the output voltage U ,,; doesn’t change.
For example, the resonant circuit has the following
-3 -3 _
mean =30-107—=0,04-10 Iml, C =200 pF.
Then we may calculate the following values:
) L 30-107
Po = 0oLy ==& = [ ——=+150~1225 Q,
N 200-10~
_3by_3004-107
4b 4 30-107
and the dependency between the input and the output voltages is:
Vo =53,23V,, =V,

The graph of this dependency is shown in Fig. 19.3, b.
The considered principle of stabilization is used to construct
the ferroresonance stabilizer of the alternating voltage.

parameters: L

=0,001,

Practical training and modeling

1. Draw the scheme of the series ferroresonance circuit with
the parameters according to the table 19.1. The AC voltage source

d
has the angular frequency ®w= 500 L
S€C

119



2. Construct the volt — ampere characteristic of the

nonlinear inductor L,,,,(1,,1) =0y —b31 ,%,1 according to the

expression ®OL,,.,, (1,1) = fU,1) -

Table 19.1

N R, b, -1073, by 1073,
variant (@) H H/A2

1 0,5 20 0,05

2 0,6 22 0,06

3 0,7 24 0,08

4 0,8 26 0,05

5 1,0 28 0,1

6 0,5 30 0,11

7 0,7 25 0,06

8 0,6 21 0,08

9 1,0 23 0,12

10 1,2 26 0,1

11 1,5 25 0,11

12 0,8 28 0,06

3. Calculate the value C of the capacitor to reach
ferroresonance in the considered circuit.
4. Construct the graphs of the volt — ampere characteristics

of the resistor V,,»(/,,;), capacitor V,,~(I,,) and the nonlinear
inductorV,,,; (£,,,1) -

5. Construct the graph of the volt — ampere characteristic of
the ferroresonance circuit according to the expression:

D
2
Vm(]ml) = \/VmR(1m1)+ VmL(]ml)_ Vmc(]ml) .
6. Calculate the current of the ferroresonance circuit for various

values of the amplitude of the input voltage V), , using the
software MathCAD:
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given

2
I, -\/R2 {m-(zo-lo—3 ~0.06-107° -I,%,)—L} =V,
oC

1l

find(Z,,)—(...)

Write down the results of calculation into the table 19.2.

Table 19.2
Vs V l,,A
0 0 0 0
3 0,264 - -
5 0,715 - -

Comment:  Solution of the nonlinear algebraic equation
gives three values of the current /,,;, which correspond to the

points of intersection of the line V,, and the volt — ampere
characteristic of the resonant circuit, Fig. 19.4.
If the line V,, intersects the volt — ampere characteristic

only in one point, then the two values of the current are the
complex numbers, which must be excepted.

T/
\/
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Fig. 19.4
Construct the volt — ampere characteristic of the circuit

V(1) » using the results of calculation.

7. Calculate the current steps Al r(nll) and Al r(nZ) , using the
obtained graphs (for example, as shown in Fig. 19.5).

U(Im) =

40 T T T 30.583
30.64
30 - - 30.688
30.725
U(Im) 20 [ — 30.751
— 30.767
10 - 30.772

30.766
0 ! ! ! 30.75
30.722
Im 30.683
30.633
30.571
30.498
30.414
30.318

Fig. 19.5

8. Construct the dependency of the output voltage V,,; of

the ferroresonance circuit for various values of the input voltage
V,, » using the expression:

Pi
VmL =3 73 Vin =V

9. Calculate the stabilization range of the output voltage

V. according to inequality:
‘VmL(maX) - VmL(min) 100% < 5%
VmL(maX)
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Review questions

1. How can you calculate the value of the capacitance C, for
which the resonance in the circuit is possible?

2. In what way is the graph of the volt — ampere
characteristic of the ferroresonance circuit constructed?

3. In what way is the expression for the mean value of the

(Z,,;) obtained?

4. What is the difference between the volt — ampere
characteristics of the ideal (R~ 0) and real ferroresonance
circuits?

5. For what practical purposes is the ferroresonance circuit
used?

inductance L,,,,,

20. TRANSIENTS IN LINEAR ELECTRIC CIRCUITS WITH
SINGLE POWER - CONSUMING ELEMENT

The electric circuit changes its state if the circuit is
connected to the voltage source. However, this state is not
changed immediately because the inductive and capacitive
elements are electrically inertial elements. Only after a time the
electric circuit passes into steady — state mode (stationary mode),
in which the currents and the voltages will be have constant
values, Fig. 20.1.

Processes, which take place in the electric circuits starting
with the switching moment up to the moment of stability of the
currents and the voltages, are called the transients.

It is evident, that if the electric circuit contains only
resistors (resistors are not power — consumer elements), then
instantaneous change of the circuit configuration (or the energy
source is connected to the passive circuit) leads to instantaneous
changes of the currents and voltages in the branches (the transient
is absent).

Let’s assume that in the linear circuit transient calculations
the duration of commutation (closing or opening of the switch) is
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very small value with respect to the duration of transients. It
means that commutation is carried out immediately.

i)
i(0) transient
current
0 t
t=0
steady - state switching Stea(ily - :ttate
modg bgfore moment mode after
switching switching
Fig. 20.1

Analysis of transients in the electric circuits means that we
have to calculate the time dependencies of the currents and the
voltages, which describe the change of the electric circuit energy
state.

More complex tasks of passing various signals through the
electric circuits are based on the laws, used in the transient
analysis.

To calculate the transient currents and voltages in the linear
electric circuit by the classical method the following steps are
used:

e It is necessary to calculate the electric circuit in the
steady — state mode before switching to find the
currents in the inductive elements and the voltages
across the capacitors. According to the first and the
second switching rules these values will be
independent initial values:

ip(0)=i(0_),  vc(0)=vc(0.),
where 7;(0_),v.(0_) are the values of the current

and the voltage at the time moment directly before
switching.
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For example, for DC voltage source:
iL(0)=i,(0.)=5A, vc(0)=ve(0)=50B,

and for AC voltage source:

i;(0_)=5sin@14:+30") > t=0 —i; (0)=5sin30° =2,5A,

ve(0.) =50sin@ 14 —30°) = = 0—>v(0) = Ssin(30°) =—25V.

e [t is necessary to calculate the electric circuit in the
steady — state mode after switching by analogy with
the previous point (the difference is the change of the
electric circuit configuration) to find the steady — state

components of the transient currents i, and the

voltages v, .

e It is necessary to write the system of differential
equations after switching, using the KCL and KVL
for instantaneous values of the transients. In this case
it is necessary to remember the following
relationships:

di; 15 1
() =L—=i; (t)=— |v, O)dt=i; (0)+—|v, (t)dt,
iL(O)=L—- i () LLLU 1(0) L{ L ()

dVC 1 ! 1 !
ic)=L—v-(t)=— |ic@)dt=v-(0)+— |i-(?)dt
c=L=—=ve(®) CLC() c(0) c£ c(®)

For example, for the scheme, shown in Fig. 20.2
we may write the system of differential equations after
switching:
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Ry=R =R, =Ry =30Q E=180V, L=0,1H, N=100yF,

I _i2 _i3 =0

d.

t
0

(1)

B B

Fig. 20.2

e [t is necessary to write characteristic equation and
find its roots. This equation is obtained after

substitution of differentiation z and integration
t

1
J dt symbols by the symbols p and — respectively.
p
To find the roots we have to expand the determinant
of the obtained system and equate its to zero, that is

A(p)=0. For our case we may write:
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1 -1 -1

A(p)=130 30+ pL 0 =2700+60pL+@+£=O,
! pC C

30 0 30+—

pC

wherefrom

60p2LC +(2700C + L) p + 60 = 0,
or
6-10% p2 +37-102 p+60=0.
Characteristics roots are:

p1 =308+ 70 sec”!,  p, =—308+ j70 sec .

e It is necessary to write the general solutions for free
components of the transient currents:
for one root:

ir(t)= Ae?",
for two real roots p; and p,
ip(1) =A™ + dpe™,
for two  complex  roots pr=0+jor,
Py =0+ jor
i (t) = Ae® sin(e ;1 +v).

e [t is necessary to calculate the initial values of the
transient currents (0), substituting the time moment
t =0 into the system of the differential equations. In
this case we obtain the system of the algebraic
equations, the solution of which gives the needed
values. For the scheme, shown in Fig. 20.2, the initial
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values 7,(0) and v,.(0) are known according to the
first and second switching rules:
. . . E 180
H(0)=i5(0.) =i (0)=————=-""=2A
R +Ry+Ry, 90
ve(0)=vc(0-) =0 (0_)Ry =i (0)R, =60 V.
To find the values 7;(0) and i3(0)we have to
solve the system of algebraic equations:
11(0) = 13(0) = i,(0),
i] (O)Rl + l3 (O)R3 =F- VC (0),
wherefrom i} (0) =3 A, i3(0)=1 A.
The value v; (0) is found by means of KVL:
v (0) =v-(0)+i3(0)R; —i,(0)R, =30 V.
It is necessary to calculate the initial values of the
transient currents derivatives (this point is carried out
only for electric circuits with two power consuming
elements). In this case we have to solve the system of
algebraic equations for initial values, substituting for
these values their derivatives.

For example, for considered above example we
may write:

i (0)—5(0) = i3 (0)
il ()R, +i5(0)Ry = —v(:(0),

e

where the values ié (0) and v/c (0) are calculated by
the following way:

n =" 0= 0=k0="2.
=0
d F(0) ia(0
ic(0)=C v;t(t) . =Cvp(0) = ve(0) = lC_é) _ 13((: ).
Since:
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i§(0)=£)=300i, v{v(0)=;=1041,
0,1 sec 100-10°° sec
then:

il (0) =—1000

N

A A
= i5(0)=-1300—.
SeC SeC
o [t is necessary to calculate the constant of integration

A (if we consider the case of one root):
A=10)—ig,
the constants of integration 4; and 4, (the case of

two real roots):
i(0) —lgg = Al + AZ >

i'0)=pd +prdy = (4,4,
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constants of integration 4 ta Vv (the case of two complex
numbers)
i(0)—i, = Asinv,
i/(O) =084sinv+ 4w, cosv.
For the considered above example we calculate the

constants of integration for transient current in the first branch:
il (0) - i]SS = Al SinVl ,
1'1/ (0) =84, sinv; + 4j® s cosvy.,
or
0=4;sinvy,

—1000= 4, -70cosv; = v; =0, 4 =—1(7)%= —-14,29.

o The transient currents are determined as the sum of
the free and the steady — state components (according
to the principle of superposition):

i(t) =iy + Ae?,
i(t) =iy + AP’ + A,e??,
i(t) = igg + Ae® sin(o ;£ + ).

For example, for the transient current in the first
branch we may write:

i () =iy + A€ sin(o £ +v)) =3-14,29¢ 7" sin 70 A.

The analysis of the transients by the Laplace
transformation is carried out by the following way:

o [t is necessary to calculate the steady — state mode
before switching to find the currents, flowing through
the inductive elements, ant the voltages across the
capacitors (see the classical method).

e [t is necessary to construct the equivalent scheme of
substitution after switching according to the rule for
each element, Fig. 20.3.
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0
p

Fig. 20.3

The resistance R is taken into account in the schemes before
and after switching, because it is not the power consumer element.
For the scheme, shown in Fig. 20.2 we have the equivalent
operator scheme of substitution, Fig. 20:




. It is necessary to construct and solve the system
of algebraic equations with respect to transient currents
I(p) (as a rule, the loop current method is used). For

example, for the scheme, shown in Fig. 20.4 we have
the system of equations:

E .
I (PR + Ry + pL) + I (p)R; = > + Li, (0)

1 E—-v~(0
L1 (p)Ry + 1 (p)(Ry + Ry +—) = c( ),
pC p

or

180+ 0,2
(60+0,1p)1;;(p)+3015 (p) = ———=L

104 120
304y, (p) +{60+—)122(p) =,
P P

from which it follows:

L(p)=111(p), L(p)=1n(p), L(p)=1(p)+In(p).

The current transforms must be written as a ratio
of the respective algebraic polynomials:

n n-1
a,p +a, p  +..+ap+a F(p)

b, p"™ +b, p" . . +bp+b, Fr(p)

From the obtained system of equations we may
find the current transform 1, (p):
1210 p? +092p+180  F(p)
I(p)=1L(p)= ) - = -

P6-10% p> +37-107 p+60)  Fa(p)

The obtained expressions of the current
transforms must be satisfied to boundary theorems (the
use of these theorems is check up of the obtained
transforms):

o The initial value of the current is defined by the
boundary relationship:
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i(0) = lim pI(p),
po®

o The steady — state value of the current is defined
by the boundary relationship:

i, = lim pl(p).
p—0

For obtained above the current transform we get the

following results:
(12. 1044 992 +1820] .,
P 12:10
37-1072 p60 6107 -2
610+ +—
p 4

H(0)= l}l_)tg ph(p)=

180
e = lim pl =——=3A.
I2ss p—>0p 2(p) 60

e It is necessary to calculate the real transient currents
according to the formula of expansion:
n

l(t): Z Fi(pk) €pkt,

2L F3 (py)
where
dF, (p)
F(py) = 2P ,
dp | _
P=Px

Py is the root of the denominator F, (p) =0.

Let’s carry out the research of the transients in the simple
circuits, the schemes of which contain one power consumer
element (these circuits are called the first — order circuits), for
example, the branches with the series connected resistor of
resistance R and inductor of inductance L (or the branches with
the series connected resistor of resistance R and capacitor of
capacitance C). In particular, it may be the equivalent scheme of a
coil, which has a resistance of wire, the schemes of windings of
generators, transformers and motors. However, in our case we
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will consider the linear elements, namely the coils, not containing
the cores made from the ferromagnetic material.

The core, made from the ferromagnetic material,
substantively increases the time constant of the coil, because the
relative permeability W is substantively increased (it means, that
the inductance L is increased). The electric circuits becomes by
the nonlinear one, and the dependency i(f) will be differ from the
dependency of the linear circuit. The time constants of great coils
with the ferromagnetic material have the values from the range
(1+5) sec.

Practical training and modeling

1. Write down the differential equations with respect to the
current and the voltage for the reactive elements and determine
the initial conditions for the electric circuits (Fig. 20.5, a and b)
for switching on mode and short circuit mode.

The parameters are: £ =120 V, R = 5%k Q, L =0,05 H,
C =10 pF, where £ is the number of variant.

R R i)

_E){ 1 A -
C) V(t)y I° v(t)lLJc

Fig. 20.5

To obtain the differential equations it is necessary to use the
switching rules, KVL and the relationships between the current
and the voltage for reactive elements.

For example, for switch up mode of the RL — circuit to the
direct voltage source with the EMF E (Fig. 20.5, a) we may write:

lR+VL :E,
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1 t
i(t) =i(0)+ - g v (t)dt,

where i(0) is the initial value of the current flowing through the

inductor. This value equals zero according to the first switching
rule. So we may write:

R
—[v, (0t +v, =E.
L 0
The differential equation of the voltage across the inductor
u; (t) may be obtained by means of differentiation:
dvi R
—L +— VL = 0
dt L
The initial condition for the voltage across the inductor is
defined by means KVL at the time moment ¢ =0
i(OR+v,(0)=E,
from which it follows that v; (0) = E .
Let’s consider again the equation iR +v; = £ and use the

differential relationship:
vi =L—.
P
Then we may write the differential equation with respect to
the current in the circuit:
di R 1
—+—i=—FL.
dt L L
By analogy we may consider other modes in the circuits,
shown in Fig. 20.5, a and b:
e Switching on mode of RL — circuit

dt L
di R 1
—+—i=—F, 1(0) =0, 0)=E].
PR [i(0) v (0) = E]

e Short circuit mode of RL — circuit
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2. Calculate the time constants 7; and 7., the practical

di R. . E
E—I—ZZ:O, |:Z(O)ZE5 VL(O)=_E:|

e Switching on mode of RC — circuit
dv 1 1
S E

v =
dt  RC ¢ RC

7+—4=Q hngwd®=@

e Short circuit mode of RC — circuit

di 1 E
—+—.:O, .O:__’ 0)=E|
PRy {l( ) 7 ve(0) }

duration of the transients #;, = 5.

3. Obtain the solution of the differential equations, using the
software MathCAD. For example, the solution of the differential

equation with respect to the voltage v; may be obtained by the

following way:

7 =

solve

y=F D(tl,y) = (— %y)

Z =rkfixed(y, 0, 5-1, 100, D)
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The variable y corresponds to variable v; (¢), the variable

t; corresponds the time in switching on mode. The solution Z is

the matrix, which has 100 rows, zero column corresponds to

current time, the first column is the variable v; (¢) :

0 1
0 0 100
1| 510 4| 95.123
2| 1-10-3| 90.484
31510 3| 86.071
4| 2-10-3| 81.873
512.510 -3 77.88
6| 3-10-3| 74.082
73.5-10 3| 70.469
8| 4-10-3| 67.032
9 14.5-10 3| 63.763
10| 5-10 3| 60.653

4. Construct the graphs of the currents and the voltages for
all modes in the schemes, shown in p.1.
The graphs may be constructed by the following way (for

example, for v; (¢) ):

1:=0..99 tl.:=Z7. ULL. :=Z.
. ] J,0 J Jr1
100 T T
ULlj 50 ]
0 |
0 0.01 0.02 0.03
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To construct the graphs it is necessary to combine switching
on and short circuit modes. In this case we have to use other

variable 7, , which corresponds to time variable for short circuit

mode. The solution of the differential equation (for v; (¢)) is:

solve

y:=-E D(t2,y) = (y_fr)

Z1 = rkfixedy, 51, 10-t,100,D)
71 =

Assuming the new variable 72 j» we may construct the

combined graph, Fig. 20.6.

v
) l/

L
- 107 -

137



UL2. :=Z1.
] 31

j:=0.99 tl.:=Z. ULl :=2Z. 2.:=271.
! ] 3,0 ] 3,1 ] 1,0
100
ULI;
— ok
UL2;
-100 | | | |
0 0.02 0.04 0.06 0.08 0.1
tlj,tzj
Fig. 20.6

5. Carry out modeling the given electric circuits according
to p.1, using the voltage source of the squared form with the

1
amplitude £ and the frequency f = E . This voltage represents

(models) periodicity of switching on and short circuit modes of
the electric circuit, Fig. 20.7.

e el E
S c A E
\l_l

Fig. 20.7

Make a copy of oscillograms of the transient currents and
the voltages across the reactive elements, Fig. 20.8. Compare the
results of calculation and modeling.
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"&Dscilloscope |

Expand Ground (%

Time base Trigger
0.01 s/div E | Edge EE x| &
¥position [0.00 [ | Level [ooo [
e | N B e | RN ~ BB |
— Channel A Channel B
[zo0 wiDiv B | [so viDiv B
¥ position [0.00___ & | ¥ position [oo0

ol | ol @

Fig. 20.8

Comment: Oscillogram of the voltage across the resistor

. . o 1
corresponds to the oscillogram of the current in the circuit on E

scale.
Review questions

1. Explain the first and the second switching rules.
2. Explain the algorithm of solution of the first — order

differential equation.

3. Explain why the current in an inductor and the voltage
across a capacitor don’t change by step.

4. Explain the algorithm of calculation of transients by the

classical method.

5. Explain the algorithm of calculation of transients by the
operational (Laplace transformation) method.

6. In what way does the time constant has action upon the
form of the transient currents?

21. TRANSIENTS IN THE SERIES OSCILLATORY CIRCUIT

The considered above electric circuits contain only one
power consumer element. Such circuits are completely described
by the first — order differential equations. Besides, these circuits
have inertial property. It means that rapid change of the voltage of
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the independent source leads to smooth variation of the current in
an inductor and the voltage across the capacitor.

Let’s consider the electric circuits including the inductor
and the capacitor simultaneously, Fig. 21.1.

R L

CD WC Vc ®
E |

Fig. 21.1

Such circuits are completely described by the second —
order differential equations (for example, with respect to the
voltage across the capacitor):

dVC dl
iR+v, +vpo=E, i=C——, v; =L—,
Lere da F T dt
wherefrom
d? d
LCE2C yReHC sy, = E.
dt? dt

As known, the second — order differential equation may be
represented by the two first — order differential equations with

respect to state variables (i; and v, see section 6):

ﬂ+£i+—vC—E
dt L L
dVC 1
-—i=0, i(0)=0, vc(0)=0].
4 C [(0) c(0)=0]

It is the equation of RLC, written on the base of state
variables. The determinant of the system gives the characteristic
equation (see section 20):

A(p) =0,
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L
PRT) T o R

=p"+—p+—=0,
| PP e

from which the characteristic roots are:

R, (RY_ L
Po="r 2 ) e
1

R .
Let’s assume that 2—25, ——— =(, where J is

JLC

damping coefficient, ®( is natural frequency of the oscillatory
circuit.
If &>, (real roots), then the so — called aperiodic mode

occurs, and for the case d<®, (complex roots) we have

oscillatory mode. In this mode the characteristic roots may be
written in the form:

pr=—0+jos, p =-0-jo,,
where the frequency of free oscillations is defined as
[ 2 2
0‘)f =40 — o° .

The general expressions for the transient current and the
transient voltage are (see the section 20):

i(t)=ig+ Ale& sin(o ;7 +vy),
Vve(t) = veg + Aye® sin(® o +vy),
where the constants of integration A;,v; and A,,v, are
calculated by means of the initial values i(0),i /(O) and
v (0),v¢(0).
The practical duration of the transients is defined by the

decay time of the exponential function 66[,5 < 0. As a rule, this
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time is equal to (3+5)—| and contains N periods of the free

1
)
component of the transient current, where:
Nolp _Be3pLos (3+50
Ty R 2n T

Thus, unlike the processes in RC - and RL- electric
circuits, the transients in RLC - circuit are defined by two

0.

parameters p; and p,. These parameters may be real numbers

(8 < ®() and have sense of the time constants like in RC - and

1

pP1 P2
the complex numbers (O < ® ), then their physical sense is: real

RL - electric circuits: 1) = , Ty = If py and p, are

part of the complex number O is the damping coefficient, the
imaginary part ® r is the frequency of the free oscillations. It
means, that RLC - circuit may be represented by the oscillating
system. In this case the capacitor and the inductor are changed by
the energy over the period. If the energy W, has a maximum

value, then the energy W is equal to zero and vice versa.

Practical training and modeling

1. Write down the differential equations with respect to the
current and the voltage across the capacitor. Calculate the initial
values in the switching on mode to the direct voltage source and
in the short circuit mode.

The parameters of the given electric circuit (Fig. 21.1) are:

E=120V,R=10k Q,L=50-10"k H, C:% WwF, where k

is the variant number.
2. Calculate the damping coefficient 0, the frequency of
the free oscillations ® 1o time constant T and practical duration
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ty of the transient current, quality factor Q and the number N of
periods of free components:
_R 030:; ® - =+l®2 — 82 T:l
2L’ Jico ’ 8
:CO—fL t,=5t, N=(15+2)0
R 7 ’ ’ '

3. Solve the differential equation with respect to the current
i(f) and the voltage v,.(f) in switching on and short circuit

modes. For example, in switching on mode we have:

solve

Z = rkfixedy, 0, 5-7,250,D)

YA

The variables y, and y; correspond to the current in the

circuit and the voltage across the capacitor respectively.
4. Construct the graph of the transient current and the
graphs of the voltages across the capacitor and the inductor:

i:=0..249 t.=7. i.=7. Uc.=27. .
. ] 0] > 1 J 3,2

Ul.:=E-1i..r- Uc.
J J J
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207.432, 400

Uc: 200~

o~ 89.205:5 L l I l
0 0.01 0.02 0.03 0.04 0.05

0, t] 0.05,

To construct the graphs it is necessary to combine switching
on and short circuit modes (see p.4, section 20).

5. Carry out modeling the given oscillatory circuit, using
the voltage source of the squared form with the amplitude £ and

1
the frequency f :W. Make a copy of oscillograms of the
T

transient currents and the voltages across the reactive elements,
Fig. 21.2. Compare the results of calculation and modeling.

My

e
- 0
4
]
||
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I Dscilloscope =l
Expand Ground (&
—Time baze Trigger
[Eoomsidiv B Eige EE x| &
X position Ea Lewel
G b | 8 | EEN 4] Bq |
—Channel A Channel B
[zo0 weDi 2 | [50 winiw B
¥ position | 0,00 ﬂ Y position | 0,00 ﬂ
sclo)EH & cloEE &
% Dscilloscope |
Expand Ground (%
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—Channel & Channel B
[zo0 wrDiu = | [1o woiw =
¥ position | 0.00 ﬂ W position | 0.00 ﬂ
a0l & | Ac/oEE &
Fig. 21.2

6. Calculate the value R to obtain the aperiodic process in
the circuit. Construct the graphs i(¢), v () and vy (7).

7. Carry out modeling the aperiodic process and make
copies of the respective oscillograms.

Review questions

1. In what case does the oscillatory mode occur, if the
circuit is connected to the direct voltage source?
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2. How many oscillations does the free component do over
the time of transient, if the characteristic roots are:
P =300+ ;3000 s~'?

3. Verify that the number of free oscillations N close to the
value of Q — factor of the oscillatory circuit.

4. In what case is the free component of the voltage across
the capacitor the aperiodic function?

5. Write down the second — order differential equations

describing the transient current i(f), the transient voltages v,.(f)
and vy (1) .

6. Write down the system of differential equations for the
state variables () and v, (¢).

7. In what way are the characteristic roots calculated?

8. What physical sense do the characteristic roots have?

9. Write down the general expression of the transient
current for the complex characteristic roots.

10. How can you calculate the initial values i(O),i/ (0) and
/
Ve (0),v¢(0)?
22. TRANSIENTS IN AC LINEAR ELECTRIC CIRCUITS

If the electromotive force of the external source is
e(t) = E,, sin(wt + ), then the steady — state current, flowing in

the circuit, has the sinusoidal form as well:
Iy =1, sSIN(@X +y — @),

where




2
Z:\/R2+((DL—%j , x:mL—% for RLC - circuit.
® ®

The general expressions for transient currents and voltages
may be written as following:

e for RL - circuit
_R,
it)=ip(t)+ix({t)=4de L +1,sin(of+y—0)=
R
=

=1, |sin(of +y — @) —sin(y —)e L |,

R
] ——t
vL(t):L%:Im oL cos(wt +y — @)+ Rsin(y —@)e L |=

:|coL =ZsinQ,R =Zcoso,E, :ImZ| =

R
——t

= E,,| sinpcos(of +y — @)+ cospsin(y —@)e L |,

e for RC - circuit
1

ve(®) =ver () +veg () = e RC +—sin(t +y+9-90°) =
ZoC

1

-t
=—"_Isin(wf+y+¢@—90°)—sin(y +p—-90")e RC |
ZoC

dVC E

it)=C—==—""wCcos(ot+y +0—-90°) +

(0) - ZoC (Of+y+0¢ )
1

-t
+ " lsin(\y+(p—90°)e RC =7 = R , Z = ?CC
ZoC R cos sin @
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1
E -t
= cos@cos(of +y +@—90°) +sin sin(y + ¢ —90")e RC

1

= ?’" cos @sin(w? + y + @) + sin g cos(y + (p)e_E

The graphical dependencies of transients are constructed by
the superposition of free and steady — state modes

(i) =i O) +i (), v(E) =V () +Vvg (), Fig. 22.1. Let’s
consider the graph i(¢) in RL - circuit.

Fig. 22.1

It is evident, that the transient current i(¢)in the initial

period differs from the steady — state component, besides its value
exceeds the amplitude of the steady — state current.

A maximum value of the current in the circuit will be under
the condition, that

If the steady — state current at the switching moment has a

maximum value (in this case ¥ —@ =190"), then the transient
current reaches a maximum value, equaled approximately 2/,

for the great value of the time constant 7 .
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Let’s consider the transients in the series oscillatory circuit,
when AC voltage source is connected to the circuit.

The general expression for the transient current is written in
the form:

E
i) =i () +ig ()= Aje™ + A,el? +7msin(oat +y—0).

The oscillatory transient processes are more interest. In this
case the characteristic roots are the complex numbers (see
sections 20 and 21): p; =8+ jo, , py =—0— j®, and the
transient current is defined as:

E, . E, oy . .

i(t) =2 sin(ot + y — ) - —2 —% gin(y — ¢)e™ sin(w o +Vv) +

E . :
i [sm Y — (D—Lcos(w - (p)}e& Sutaps

From the obtained expression it follows that the transient
current in RLC- circuit has three components: the first
component is undamped oscillation with the frequency ® of the
external source, other two components are damped oscillations
(8 < 0) with the frequency © ;.

The amplitude of oscillations depends on the relationship of
frequencies ® and ® f (for low losses of the circuit, that is for

R
5:Z<< ®,, we may assume that Oy =0 and V=§).

Under the condition ® = ®(, the amplitudes of oscillations reach

to maximum values (resonance condition), Fig. 22.2, a.
The amplitude of the voltage of steady — state oscillations

across the capacitor Q times greater the amplitude £, .

If the frequencies ® and ® differ between each other,

then the graph of the transient current is changed according to
more complex law, Fig. 22.2, b.
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~~

Fig. 22.2

Addition of the oscillations, which have close frequencies
and approximately equaled amplitudes, gives the oscillations with

-0

the frequency Q= (in this case we assume that the

oscillatory circuit has no the losses). It is said that beating occur
in the circuit. The transient current is defined by the expression:

E E
i(t) = ?’”sin(wt —-Q)+ ?’"sin((oot —Q)=

E, . o- +
= 2 7mgin @7 D0 4 ooq @ m0t+(p, ®> ).
R 2 2

From this expression it follows that the amplitude of the
current in the circuit is slowly changed according to the law

. W—0 . . .
{Sln > 0 t:| and the frequency of oscillations is equal to

CO+(DO

2
The imaginary curve (such curve is called the envelope)
shows the law of change of the instantaneous current amplitude
(the envelope is shown by dots in Fig. 22.2, b). In the considered

.
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case the envelope is defined by the function
E

—m sinm_mot )
R 2

If the losses in the circuit are not equal to zero, then the
graph of the transient current has the form, shown in Fig. 22.3.

i()

Fig. 22.3
Practical training and modeling

1. Write down the differential equations with respect to the
current and calculate the initial conditions for the schemes (see
Fig. 20.5, a) in the switching on mode to the AC voltage source.

The parameters of the given electric circuit (Fig. 21.1) are:
E,=141V, R=0,5k Q, L =05H, C=10 pF, where k is

the number of variant. Assume the frequency of the external
voltage source equaled 400 Hz.

2. Solve the differential equations using the software
MathCAD. For example, the solution of the equation with respect
to the current in RL — circuit is:

solve

y:=0 D(t,y) :=(

N

Emsin(wt) R
L L

7

Z = rkfixedy,0,20-T,500,D)
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2
where T = —Tc.

®

3. Construct the graphs of the transient currents in RL — and
RC — circuits in switching on mode to the AC voltage source.

4. Write down the differential equations with respect to the
current and the voltage across the capacitor in switching on mode
of the series oscillatory circuit to AC voltage source. Circuit
parameters are: £,,=10V, R=10 Q, L =0,01 H, C=25 uF,
f =400 Hz.

Comment: differential equations with respect to the
current and the voltage across the capacitor are called the
equations of state variables of the oscillatory circuit (see the
sections 6 and 21):

di di 1 R. 1
iR+ L—+vy=FE_ _sinot, —=—F_ sinot——i——v,q,
da ¢ " it L " L L€

dVC__ dvc_l.

1 =—1.

dr dt C

5. Calculate the period T of oscillations of the AC voltage
source, the natural frequency of the oscillatory circuit g, O —

factor and the difference of frequencies Q:

1 1 L
T'=—, 0g=—F7—, Q=0-0, szL.

f NiTeh R

6. Solve the state variable equations of the oscillatory
circuit using the software MathCAD for the case, when the
frequency of oscillations ® of the voltage source is close to the

natural frequency ® of the oscillatory circuit.
7. Construct the graph of the transient current i(¢) and the

graph of the transient voltage across the capacitor v~ (f), Fig.
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22.4. Show the envelop on the graph using the expression

.| Q
Iopy (1) = l-sm{? t}

4.007, 3
ij
in 0
3822, g | | | |
0.01 0.02 0.03 0.04 0.05
0, t; 0.05,

Fig. 22.4

8. Carry out p.p. 6 and 7 for the case, when =,

(resonance condition). It may be obtained, for example, by
decrease of the inductance value, Fig. 22.5.

Em:=10 R:=02 L:=0.0064 C:=2510 6

2.L
w:=21400 T:=5—
R

solve

N

!
j— .yl

1E in(w-1) R
—-Emsin(w-t) — —-
LY L

{0) e’
Y= (t,y) = .

Yo

Z :=rkfixedy,0,T-0.2,800,D)
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j=0.499 t.:=Z. i.:=27Z.
J J

0 77 )l
40
20 -
i 0
-0
0y o.|01 o.loz o.los 0.04

£
Fig. 22.5

9. Carry out p.p. 6 and 7 for the case, when the losses in the
oscillatory circuit are absent (R = 0).

Review questions

1. What character do the transients have in the oscillatory
circuit, if it is connected to AC voltage source for the cases
®>mgand ® =7

2. Obtain the general expression for the transient voltage
across the capacitor in RC — circuit, if it is connected to AC
voltage source.

3. Obtain the general expression for the transient voltage
across the inductor in RL — circuit, if it is connected to AC voltage

source.
4. Draw the graph of the transient current in RL — circuit for

the case, when the time constant 7 has a great value.
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23. ELECTRIC CIRCUITS WITH THE DISTRIBUTED
PARAMETERS.
DISTRIBUTION OF THE VOLTAGE AND THE CURRENT IN
THE LONG LINE

The transmission lines of energy, geometrical length / of
which are much less than the wave length A, may be represented
by the substitution schemes with the lumped parameters (see the
section 11). On the contrary, the lines, geometrical length / of
which is commensurable with the length of wave A, may be
represented by the equivalent schemes with the distributed
parameters. Such lines are called the long lines. In practice it
corresponds to the expression / > (0,05+0,1)A..

In general each elementary section of the long line (in the
view of mathematics the section dx is considered) has the
inductance L, the capacitance Cy, the resistance of losses R

and the conductance of losses g, Fig. 23.1, a.

Rodx
oL o1 o
Lodx Lodx
Codx — godx —Cpdx
o -4 © o
e e ] e
a b

Fig. 23.1

The parameters Ly, Cy, Ry, g are called the primary (or
linear) parameters (because the dimension of these parameters is

taken per unit length, for example, the dimension of L is A ).

If the conditions wLqy>> Ry and wCy>> g are satisfied, then

such line is considered as the lossless line (it is satisfied on high
frequencies), Fig. 23.1, b.
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As a rule, the inductance and the capacitance are uniformly
distributed along the double or the cable lines (homogeneous long
line). Electromagnetic wave is propagated with terminal velocity

) :;. It means that the responses do not appear in the
VLoCo

different points of the long line immediately at the switching

moment of the generator to the electric circuit. These responses

appear later and the delay time t depends on the length of line

and the velocity of wave propagation:

T :é: lﬂL()CO.

The lossless line is an ideal delay line. In practice to obtain
the delay time about several microseconds it is necessary to have
very great geometrical length of line. For example, the delay time
of the cable line of 200 m length is 5+ 10 microseconds. That’s
why an artifical long line is used in the real devices. This line is
represented by great number of the series (cascade) connected
links (sections) with lumped parameters. For great number of
links in the artifical line the processes in this line and the
processes in the real line with the distributed parameters are
practically the same.

Let’s find the frequency f of the generator, connected to the
artifical line including » links to obtain the equivalent length of
this line equaled the length 4 of wave of the generator.

The delay time of the artifical line is equal to

T4 = 1l Lijni Clini » Where Ly, Cjiyp @re the inductance and

the capacitance of each link of the artifical line. Thus, the artifical
line consisting of # links is equivalent to the real double line with

the linear inductance Ly =Lj;, and the capacitance
Co = Cji » Which has a length corresponding to the same delay
time 1.

The frequency f and the period T of oscillations are

connected by the well — known expression f = % If the delay
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time 1, of the line is equal to the period T, then the signal passes

the distance, equaled the length A of wave, over the time 7. Thus,
we may write:
1

18] Lijnie Clink

In space the length of the wave is i:%, where

f=

c=3-108 m is the velocity of light. Then the equivalent
sec

length of the artifical line leq7 at the frequency f is equal to the

length of the wave A4, that is leq = A, from which it follows:

C
leq = 7 =Cny LlinkClink .

Thus, the artifical line, including #» links (Lh-nk,Cﬁnk) at

1
1| Lijie Clink

the length A . If the frequency is equal to %f, then the artifical

the frequency f = is equivalent to the real line of

o . . A _
line is equivalent to the real line of the length Z Fig. 23.2.

Each line is completely described by the wave impedance
Z,, and the propagation constant v . In general case the wave

impedance equals:
7 - RO +j(,0LO _ ZO
- £o +jO)C0 ZO ’
and the propagation constant is

v=yZoYy =a+jB.
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vy log= VAL

|
A

Fig. 23.2

The real part of the propagation constant o characterizes
the damping of oscillations in the line and the imaginary part 3

(phase constant) characterizes the change of the phase of
oscillations along the line.

In the lossless lines (Ry =0, g = 0) the wave impedance
is represented by the resistance and is equal to

Z, = ﬂ'
\ Co

and the phase constant 3 is proportional to the frequency o:

v=jB=joLyCy.
In all cases, when the line is loaded at the impedance
Z 1paq » Which differs from the wave impedance Z,, the

backward wave (reflected wave) appears in the line (the wave is
reflected from the load). In this case the reflection coefficient is
equal to:

= Zload _Zw

B Zload +Zw

Let’s consider the following operating modes depending on

the values of the load impedance Z,,,, of the loaded line (Fig.
22.3):
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e short —circuit mode (Z£,,,,=0),

e open — circuit mode (the line is opened at the end,

e matched mode (Z,,,s=Z )
e unmatched mode (Z,,,; # Z,,)-

Ly Liink Lime I

_o_»_m—m'_ ...JWV\lIN
I —ka - Clink _-— Clink %’lk

CDe T35 7 7 2 T l_Vz Zioad

SC

o

~oc
€ <—|
Fig. 22.3

Let’s transfer the origin of the distance from the beginning
of the line to its end and designate the variable of reading as & .

Next we express the phase constant 3 using the concept of the
2
length of the wave A (B :%j and write down the equation,

which allows to calculate the complex values of the voltage and
the current in any point of the line if the input voltage V", and the

input current /, are known:
V.=V, CospE+jlyZ,, sinBE,
V, .
[ =1, Cospt -+ j—=sinpe,

w
or

v =Vyc0s2te s 1,7, 52,
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27[ V2 . 27[
[ =1,C05—¢&+ j—==SIn—2E.
I1=1I, : E+J 2 Y £

For the respective operating modes of the line we have the
following equations:

e short —circuit mode (¥, =0)

K:jLZZWsinEQ, V:IZZWsinﬁa,,

A A

27 27
I=1,co0s—¢&, [=1,cos—¢, I =-1
I=1, X{Z 2 k‘: r
e open —circuit mode (£, =0)

27 21
V=V,cos—¢&, V=VF,cos—¢g,,
V.=V,cos— g 2[C0S— i‘

I:j—zsmﬁa, I:ﬁsinﬁg, r=1,
w }\’ w }\’
e matchedmode (1,2, =1,Z;,,0 =V >5)
2n
J=¢
V="V,e A V=",

.21
=8
I=I,e *, I=1, , L=0,
e unmatched mode (Z,,,0 # Z v+ Z 10ad = Rivad)

VA )
K:K{cosﬁéﬁj w smﬁi},
A Z Joad A
YA

Rload

w

:n,

|4 Z .
[==2%| 2w COSE§+jSIn2—Tc§ .,
Z Zload 8 8

w

21 2 . 227‘5
V =V, |cos? Z2& + n?sin® = ,
2\/ . € }Lﬁ
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1 :ﬁ\/n2 coszﬁgminzﬁg.
zZ, A A

The distributions of the RMS values of the voltage and the
current in short — circuit and open — circuit modes are shown in
Fig. 23.4, a and b respectively.

V. vV

~a i ¢I A
3 A A 0 A y) 0
2 22 5 3 2 =2 3 :
a b
Fig. 234

The distributions of the RMS values of the voltage and the
current in the matched mode and the voltage in the unmatched
mode are shown in Fig. 23.5, a and b respectively.

V* Zioad< Loy Zioad> L V,I
N 4

2 4 i3
2 g

SN
RN

Fig. 23.5

The standing waves appear in the line in short — circuit and
open — circuit modes. Such waves do not transfer the energy from
the generator to the load. The direct wave appears only in the
matched mode (backward wave is absent). It means that the RMS
values of the voltage and the current are the same along the line, if
the lossless line is considered.
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In the matched mode the voltage is equal to the voltage of
the generator at any distance from the end of line. Since, the input
voltage is (for§ =1):

Vi =V,C0SBl+ jI,Z,SiNBl=(1,Z,, =1,Z10,q =V | =
V,(cosBl+ jsinBl),
then we obtain
V=V = VyyJcos? Bl +sin2 Bl =
Vi=h="V, Bl+sin® Bl =V5.

In unmatched mode the mixed waves are set in the line (the
direct and the backward waves exist in the line simultaneously).
However, the amplitude of the backward wave will be less than
the amplitude of the direct wave. It is explained by the fact that
some part of the energy is consumed in the load.

The difference between the maximum and minimum values
of the voltage will be greater, if the difference between the values

Z10aq @d Z  will be greater as well. To describe the mixed
wave mode the traveling — wave ratio is used:

Vo Z
’ Vmax ’ Zload . "
VA
Ctr = % (Zload < Zw)'

w
Practical training and modeling

1. Draw the scheme of the lossless homogeneous long line
with the parameters according to the respective variant (Table
23.1). The number of links it is necessary to assume 16.

2. Calculate the length [ of the real line, corresponding the
equivalent artifical line. Calculate the frequency f, for which one
length A of the wave is lay in the line.

3. Calculate the wave impedance Z,, the phase constant

B, which characterizes the change of phase of oscillations along
the line:
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Zw Co' P A
Table 23.1
N Ly, Co. Voltage of the
variant uH oF geners}cor v,
1 200 1000 100
2 175 1250 100
3 150 1500 120
4 125 1800 120
5 100 2000 120
6 200 1500 75
7 175 1500 75
8 150 1750 90
9 125 2000 90
10 100 1500 80
11 150 1250 100
12 200 1000 120

4. Construct the graphs of the distribution of the RMS
values of the voltage and the current along the line:
e short — circuit mode

V(&) =1,7,, sinﬁa, I1=1, Cosﬁé ,
A A
e 0pen — circuit mode
27C V2 . 27‘[
V(€)=V,lcos—¢&|, I =—%|sin==¢g|,
@ =0r; xE’ Y
e matched mode
V.
V(&) =72, 1(§)=Z_2,

w
e unmatched mode

21 2 . 227‘5
V =V,.|c0s? ZZ& + n?sin? ==,
2\/ k@ X@
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V. 2 .02 zZ
I:—z\/n2 cos? e ysin? e, =L
Zw A A Rload
for cases R;,,; =Z,,, Rjpqq =0,5Z,,.

5. Construct the graphs of the distribution of the
instantaneous values of the voltage and the current along the line:

e short — circuit mode
v(t,&) = V5, sinBEsin(wt +90°),

V. :
i(t, ) = =2 cos BE sin o,
ZW
e 0pen — circuit mode
v(t, &) =V>,, CosPEsin of,

Vo . o
i(t, ) = 2" sin BE sin(w? + 90°).
ZW
The values of & and ¢ are chosen from the ranges:

§:=0,20.A t:=00.01.7.T
6. Calculate the traveling — wave ratio for the given values
of the load Ry, -

7. Carry out modeling the long line and determine the
reading of the voltmeters in various points of the line (Fig. 23.6)
for the modes according to p.4.

The results must be written in the table 23.2.

8. Construct the graphs of distribution of the values of the
voltage using the results of modeling for the modes according to
p.4. Compare the results of modeling and calculation.

9. Calculate the traveling — wave ratios for the given values

of the load R,,,,; using the results of modeling.
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Table 23.2

Short -
circuit
mode

> |y

Open -
circuit
mode

Mode
Zload =

Mode

Z load =
=052,

Mode

Z load =
=052,

1/16

2/16

4/16

6/16

8/16

10/16

12/16

14/16

16/16

EE]

llmmmll

I 1200 VI

Fig. 23.6

0 ]

Review questions

1. In which cases is the transmission line of the energy
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considered as the electric circuit with the distributed parameters?




2. How can you calculate the value of frequency f, for
which the artifical line is equivalent to the real long line of the
length equaled A ?

3. Write down the equation to determine the voltage and the
current in any point of the lossless line in the short — circuit and
the open — circuit modes.

4. Write down the equation to determine the voltage and the
current in any point of the lossless line in the matched and the
unmatched modes.

5. Draw the curves of distribution of the RMS values of the
voltage and the current in the short — circuit and the open - circuit
modes.

6. Draw the curves of distribution of the RMS values of the
voltage and the current in the unmatched mode.

7. How can you calculate the traveling — wave ratio?

8. What conditions are to produce the standing wave?

9. Draw the graphs of the distribution of the instantaneous
values of the voltage and the current along the line in short —
circuit and open — circuit modes.

24. INPUT CHARACTERISTICS AND TRANSFORMING
PROPERTIES OF THE ELECTRIC CIRCUITS WITH
DISTRIBUTED PARAMETERS

The input impedance of the lossless long line may be
calculated as the ratio of the RMS complex input voltage to the
RMS complex input current:

V, V,cosPpl+jl,Z, sinBl
2, =21 - E2 SOSPIE T La%, SNPT,
I

V, .
jg—zsmBH[z cosf/

w

. 4
Assuming that Z,,,, :7—2

22

, We may write the general

expression:
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Q _ 12 COSBZ[Zload + jZthﬁl] _ Zloata’ + ijthZ

1 7 W Bz
o lzcosﬁl{j_zloadtgﬁhl} JZ1oad'OBI+ 2,y

w

Zin (l) =

In the short — circuit mode (Z,,,;, = 0) we have:

Zinse ()= JZ, 9Bl = jXipser Xinse = Z,19B1,
It means that, the input impedance of the short — circuited
line has inductive character, if its length is less than a quarter of

wavelength [Z<%}. If the length is Z:%, then the short —

circuited line has infinite input impedance (if the line has losses,
then the input impedance has confined great value). The
properties of the short — circuited line of a quarter of wavelength
and the properties of the parallel oscillation circuit are the same.

It is evident that the short — circuited line has capacitive
character, if its length is greater than a quarter of wavelength and
is less than a half of A, Fig. 24.1.

—insc

T
x PN

- -

Fig. 24.1
In the open — circuit mode (Z,,,; = o) we have:
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Z,
Zload|:1+]z thlj|

Zload _ ZW —_i7 ctoBl
T . ==J chﬁ-
Z, } Jtopl

Zload

Zi Oc(l): lim Z,,
Ziopad™®

Zload{jthl +

The dependency between the input impedance and the
length of the line in the open — circuit mode is shown in Fig. 24.2.

Z

=in oc

NG

-

2 N
; ;
;

Thus, if we change the length of the section of the lossless
line, then we may imitate the inductive and the capacitive
impedances of any value. As a rule this property is used at high
frequency in the different devices.

In the matched mode (Z,,,, = Z,,) we have:

Zin = ZW = Zin'

It means, that the input impedance has active character and

equals the wave impedance for any its length.

. . . A
Let’s consider the section of the lossless line of length 2

with the wave impedance, which is loaded on the resistor
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Zipad = Ripaa » F19. 24.3, a. Let’s calculate the input impedance

of the quarter - wave section of the line. Since

21 A T
tgB/ = tg— — = tg— = o0, then we obtain:
ap 97L 4 92

R
toBl| —leed 4 7
/9P L‘thl W} Vi

[z "R
toB/| —~— + R od
J gB |:]th1 laadi|

Z

Zin

(7\'] -7 Rload +ijthl -7

Z " leoadthl+Zw o

Thus, the input impedance of the quarter — wave line is
inversely proportional to the load resistance R,,,;. This property

is used to match the line with the load or match the lines with
different wave impedances.

I ]
o= o © 0
Z; Z R
—>m Zy |:|R10ad v wi |:| load
e
‘4 Zin t A ‘
4
a b

Fig. 24.3

Such quarter — wave section is called the quarter — wave
transformer, because it transforms the wave impedance to the load
impedance.

In general, the wave impedance of the transformer Z, is

calculated in that way to obtain the input impedance equaled Z,,.

In this case the backward waves and the energy losses are absent
in the line with the wave impedance Z,,. So we may write:
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2
- ﬂ =7
Rload

Zwt = \/Zleoad :

The direct and the backward waves are present in the line
with the impedance Z,,, but the length of this line is sufficiently
small, therefore the losses of energy are relatively small.

For example, let’s assume that the wave impedance of the
line equals Z,, =100 € and the load resistance is equal to

Ry, =400 Q. To obtain the matched mode in the line

connected to the load it is necessary to connect the quarter — wave
transformer, Fig. 24.3, b. In this case its wave impedance must be
equaled to:

int wH

wherefrom it follows:

Z e =AZ Rjpaq =+/100-400 =200 Q.

wt
The input impedance of such transformer equals:
A Z2,
Zil == =100 Q
4 Rload

and , therefore, the backward waves and energy losses will be
absent in the line.
The choice of the needed value Z,, may be carried out by
means of change of the distance between the line wires, Fig. 24.4.
For example, the increment of distance between the wires
gives the decrement of the linear capacitance Cj. In this case the

wave impedance of the transformer Z, increases.

Practical training and modeling
1. Carry out modeling the homogeneous lossless long

line with the parameters according to the variant (Table
24.1). The number of links it is necessary to assume 16.
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in t

R

load w

Fig. 24.4

Zin 1= 2w

1

Rloaa> ZW

2. Construct the graphs of dependencies of the input
impedance from the length of the line for the short — circuit and
the open — circuit modes, using MathCAD software.

3. Construct the graphs of dependencies of the input
impedance from the length of the line for the short — circuit and
the open — circuit modes, using the results of modeling (Fig.

24.5).

The initial length of the line / = A4 (see the section 23) may
be changed by decrease of the frequency of the generator (see Fig.
23.2). Write down the results of modeling into the Table 24.1.

Table 24.1
/ Short — circuit Open - circuit Z
z mode mode
V 1 V 1 S—c O-c¢
mode | mode
1/16
2/16
16/16
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Fig. 24.5

4. Calculate the frequency £, for which the length of the line

A . .
equals Z Calculate the input impedance of the quarter — wave

transformer for the given values R, according to the
expression:

2
_ Zwt

int —

Z :
Rload

Construct the dependency of the input impedance of the
quarter — wave transformer from the load resistance R;,,;. Write
down the results of calculation and modeling into the Table 24.2.

Compare the results of calculation and modeling.

5. For resistance of the load R,,,; =400 Q calculate the

wave impedance Z,, of the quarter — wave transformer to

provide the matched mode of the line and the load. Carry out the
modeling the long line with the quarter — wave transformer.
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Calculate the input impedance of the line and input
impedance of the quarter — wave transformer connected to the

load resistance R;,,;, =400 Q, wusing the results of
measurement.

Review questions

1. How can you calculate the input impedance of the quarter
— wave transformer connected to the load resistance
Rload = 400 Q 7

2. What formulas do you use to calculate the input
impedance of the lossless line in the short — circuit and the open —
circuit modes for various values of its length?

3. How can you match two lossless lines with the different
wave impedances?

4. How can you calculate the quarter — wave transformer, if

the wave impedance of the line equals Z,, =200 Q and the
load resistance is equal to R;,,; =500 Q?

5. Calculate the input impedance of the lossless line Z,,
for the given parameters: / = 100 m, Z,, =500 Q, A =60 m,
R0 =380 Q.

6. Calculate the input impedance of the short — circuited
lossless line, if /=100m, Z,, =500 Q, A =60 m.

7. Calculate the least frequency f in the short — circuited
lossless line of the length I = 30 m, for which the line is
equivalent to the parallel resonance circuit tuned on the resonant
frequency.
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25. MATRIX - TOPOLOGICAL METHODS OF MODELING
ELECTRIC CIRCUITS

We have considered above the traditional form of construct
of the system of equations, describing the electric circuit. Next we
will consider the matrix — topological method to analyze and
model the electric circuits. It is necessary to note that construction
of the equations in the first case is carried out more simple way.
However, a positive property of the matrix — topological direction
in the electric circuit analysis and modeling is the application of
the basic formulas of the loop current and the node potential
methods for machine designing of the electric and electronic
schemes by means of the PC. It is provided by a high order of the
respective procedure.

It is necessary to note also, that forming of equations by the
node potential method in this case is the most economical to
minimize the computing time. The node equations are
characterized by the properties, which guarantee a steady solution
on each step of discretization to provide the given precision of the
calculation on the long intervals of time. It is important when the
transient processes are modeled. Besides, the node potential
method is universal one and allows to analyze the electric circuits
with nonmutual nonlinear and multipole elements. This method
also provides a high rate of convergence of widely used methods
of the numerical solution of the algebraic and the differential
equations.

The concept of a graph in the matrix — topological theory
of the electric circuits is the basic concept. In this case a graph is
the aggregate of nodes and branches, which connect these nodes.
This theory is based on the use of the topological concepts,
namely: a tree, a branch of connection, a main loop, a main
section and the topological matrixes, connected with these
concepts.

To describe the topology of the electric circuits each bipolar
element is replaced by the segment of the line, called a branch of
the graph. Each branch has the direction, which coincides with the
respective direction of the current, flowing through this element.

For example, the graph of the circuit, shown in Fig. 25.1, a
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is shown in Fig. 25.1, b. The graph has four nodes and six
branches.

The subgraph, containing all nodes and branches connecting
these nodes, is called a tree of the graph, if it does not form the
closed loops. It is evident, that the graph has n — 1 branches, if the
scheme has »n nodes. The branches of the graph, including in the
tree, are called the ribs. Other branches of the graph not
containing in the tree are called the chords or the main branches
(branches of connection). Several trees may represent single
graph.

Fig. 25.1

Let’s consider the tree of the graph, shown in Fig. 25.1, b
by solid lines. A main section of the graph is the section, which
passes through only one rib (it is always possible, because the ribs
of the tree does not form the loops) and some aggregate of chords
of the graph. Thus, the main section corresponds only one rib of
the graph. The direction of the main section coincides with the
direction of the respective rib of the tree. The number of main
sections is equal to the number of ribs of the tree (n — 1). The
main sections are shown in Fig. 25.1, b by arches.

A main loop of the graph is the closed loop containing only
one chord. The main loops are shown in Fig. 25.1, b by the closed
lines.
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The topological structure of the graph may be completely
described by means of the clique — incidence matrix 4, the main
section matrix S and the main loop matrix K.

The clique — incidence matrix (node matrix) 4 has n — 1
rows and m columns, where (n — 1) is the number of ungrounded
nodes), m is the number of branches of the graph. The number of
the row corresponds the number of the node and the number of
the column corresponds the number of the branch. Matrix
elements are:

I, if j—th branch of the graphis incident to * —th node
and is directed from it,

a;; =4—1, if j—th branch of the graphis incident to ° —th node
and is directed to it,

0, if j—thbranch of the graphis not incident to * —th node.

For example, the graph, shown in Fig. 25.1, b (the node 4 is
grounded) may be represented by the matrix 4 in the form of:

1 2 3 4 5 6
1 -1 0 -1 0 -1 0
20 -1 -1 0 1 0 0
3 0 1 1 0 0 -1

The matrix 4 may be written for all nodes. In this case such
matrix is called the indefinite one. The sum of elements of any
column of such matrix is equal to zero. This matrix is used to
analyse electronic circuits.

One — to — one correspondence between the branches and
the main sections is given by the main section matrix S, in which
the number of the row corresponds the number of the section and
the number of the column corresponds the number of the branch.
Matrix elements are:
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1, if i—th section includes j —th branch and their
directions coinside,

s; =91, if i—th section includes j —th branch and their
directions are opposite,

0, if i—th branch does not include j —th branch.

For example, the graph, shown in Fig. 25.1, b (the node 4 is
grounded) may be represented by the matrix § in the form of:

1 2 3 4 5 6
1 -1 0 1 0 1 0
20 -1 -1 0 1 0 0
3 0 -1 -1 0 0 1

One — to — one correspondence between the branches and
the main loops is given by the main loop matrix K, in which the
number of the row corresponds the number of the loop and the
number of the column corresponds the number of the branch. The
number of the main loops equals the number of the chords
(branches of connection). The main loops are the independent
loops. Matrix elements are:

1, if i—th loop passes through j — th branch and then
directions coincide,
kij=1—1,if i—th loop passes throughj — th branch and their

directions are opposite,

0, if i—th loop does not pass through j — th branch.

For example, the graph, shown in Fig. 25.1, b may be
represented by the matrix K in the form of:

1 2 3 4 5 6
1 1 0 0 1 1 0
2 0 1 0 1 0 1
3 0 0 1 0 -1 1
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Each row of the matrix S shows on the aggregate of
branches, which are intersected by the given main section. If we
multiply the elements of this row by the respective elements of
the matrix of the branch currents and add their products, then we
obtain the algebraic sum of the currents in the branches of the
respective main section, equaled zero according to KCL. Thus, we
may write the generalized Kirchhoff’s current law:

S ] b = O,

—

where [, — the vector of the currents in the branches of the

electric circuit. This expression is called also the first topological
equation of the graph. Indeed, as for the graph, shown in Fig.
25.1, b we have:

I

I Iy +13+]5 0
10 1010 I

Ii—Iry+1s | =

—1—10100*1: 17524 0
0 -1 =1 00 1 4 —I) - I3+ 1I¢ 0

Is

I

If we multiply some row of the transposed matrix S, by the

vector 17, containing the independent node voltages, then we
obtain the algebraic sum of the node voltages, which is equal to
the voltage of the given branch:

I7b = S,I_;.
For example, for the graph, shown in Fig. 25.1, b we have:
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-Vi=-1 Vbl
-1 -1 0
V=73 Vb2
0 -1 -1 Vi - ,
1 0 — l * V2 = 1 3 = b3
Va Vg
0 1 0 Vs
1 0 0 8 Vs
0 0 1 V3 Vb6

Each row of the matrix K shows on the aggregate of the
branches, containing the respective loop. If we multiply the
elements of the row by the respective elements of the vector of the
branch voltages Vb , then we obtain the algebraic sum of the
voltages in the loop, which is equal to zero according to the KVL:

K Vb = O
This expression is called also the second topological

equation of the graph. Indeed, as for the graph, shown in Fig.
25.1, b we have:

8
V2 V1+V4+V5
1001 1 0 v,

0101 0 1 *V= VatVa+Ve | =
0010 —1 1 4 Vi—Vs+ Vs
Vs
Ve

It is evident, that the current flows through the chord,
belonging to only one loop. That’s why the currents in the main
branches are equal to the respective loop currents and we may
write the following expression:
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Ky =1y,
where 1 « 1s the vector of the loop currents. For example, for the
graph, shown in Fig. 25.1, b we have:

Iy I
100
I I I
01 o 11 2 2
00 1|+ |27 I3 = |54
11 0 Iy, I, +1, I,
10 -1
I -1 I
011 11~ 133 5
Iy + 133 Ig

Let’s consider the generalized branch of the electric circuit,
Fig. 25.2.

b

",
>—F—|j A

\J

Fig.25.2

According to the generalized Ohm’s law we may write:
1
Ty +Jp == + Ep) =Gp (V) + Ep)
b
or
Vb +Eb :Rb([b +Jb).
This expression corresponds to the general case, when any
branch contains the passive two — terminal network with the ideal
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voltage source of the electromotive force £, (this EMF is

connected in series with the branch) and the ideal current source
J, (this source is connected in parallel to the branch). In specific

cases the branches may contain only passive or active two —
terminal networks. It is evident, that the considered above
expressions are satisfied for each branch. Then the matrix form of
the equations has the form:

Vo By =Rl +7,)
or
Iy+Jy =Gyl +Ey )
where R, and G, are the diagonal matrixes of the resistances

1

and conductances of the branches respectively, G,; = —.
bi
For the reversible electric circuits the matrixes R, and G,
are always diagonal matrixes with the elements R;; and Gy, .

Let’s consider the matrix equation of the branches in the
form:

If we multiply on the left both parts of the equation by the
matrix K, then we have:
Since
KVb=O, Ktikzjbﬂ
then
KE), = KR,K I, + KR,J, ,
wherefrom it follows:
— _1 —_ —
Ij = [KRyK,] K[Eb —Rbel-
The obtained expression is the solution of the equations by
the loop current method in the generalized matrix -

topological form.
Since
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K I, =1,
then the currents in the branches of the electric circuit are found
from the expression:

- 1= -
I, =K, [KR,K,] K[Eb_Rbe]'
If the current sources are absent (for example, the current

sources may be transformed into the voltage sources), then the
obtained expressions are simplified:

I, =[KR,K, | KE,,
— _] —
I, =K, [KR,K,|'KE, .
As an example let’s calculate the currents flowing in the

branches of the electric circuit (Fig. 25.1, a), the graph of which is
shown in Fig. 25.1, b.

ORIGIN=1 Ry:=15 Ry:=30 R;3:=30
R4:=10 Rs:=10 Rg:=10

1500 0 0 0
0300 0 0
1001 1 0
K={0101 0 1] diagR) 0030000 RB:=diagR)
= ia = :=dia
00 0100 0
001011
000 0100
0000 010
180 100 5
120 010 1.25
0 00 1 - 0.75
EB:= KT:= IB:=KT(K-RBKT) -K-EB IB=
0 110 6.25
0 10 -1 425
0 01 1 2

Let’s consider the matrix equation of the branches in the
form:

Ty+Jy =G,V +E,).
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If we multiply on the left both parts of the equation by the
matrix S, then we have:

STy + 87, = SG, (7, + Ey ).

Since

then
SI, = SG,S,V + SG,E,,
wherefrom it follows:
- 1= -
V =[5G,S,1' 87, -G, E, |
The obtained expression is the solution of the equations by
the node voltage (potential) method in the generalized matrix

— topological form.
Since

S tﬁ = Vb N
then the voltages across the branches of the electric circuit are
found from the expression:

- 1A= -
7y =5, [5GyS, 1" 5|7, - Gy iy |
The branch currents may be calculated from the branch
equation:
Ib :Gb(Vb +Eb)—Jb.
As an example let’s calculate the currents flowing in the

branches of the electric circuit (Fig. 25.1, a), the graph of which is
shown in Fig. 25.1, b.
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1
G] =
15

1

ORIGIN:= 1

Gb := diag(QG) 10

-1 0 1 010
-1 -1 0 100

0 -1 -1 001

Eb:=

Gy i=— Gq :

ST =

U:=(S-Gb-ST)” '-S:(-Gb Eb)

Ub := ST{(S-Gb-ST)™ -S-(-Gb-Eb) |

Ib := Gb-(Ub + Eb)

Ub =

Ib =

42.5
62.5
20

-105
—82.5
22.5
62.5
42.5
20

1.25
0.75
6.25
4.25

The considered above methods may be applied to
the AC electric circuits. In this case the vectors of the complex
numbers represent the respective currents and voltages, namely:

L), ik, st Z, Eb, and Zb . By analogy the matrixes of the
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real numbers R, and G are replaced by the matrixes of the

complex numbers Z, and Y, .

As an example let’s calculate the currents flowing in the
branches of the electric circuit (Fig. 25.3, a), the graph of which is
shown in Fig. 25.3, b.

. b
Fig. 25.3
1 1 1
ORIGIN:=1 Y;:= Y, = Y; =

10 + 10i 6 — 8i 6+ 8i

Y 1 Y, = 1 _ 1

Yb := diag(Y) ST 5 10— 10i 7 10
100 -1 -1 0

Lo oo 200 0 -1 -1
S=[-1 -1 0 100 0 Lo o
0 -1 -1 00 1 Eb = 0 ST = o 1 0

0 1 0 0

0 0 0 1
48.379 — 18.233i
U:=(S'YbST) 'S:(=Yb-Eb) U =| 58.788 + 30.282i
|U)| =517 |Uy| =66.128 |Us| =74.152 73.997 + 4.8i
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~107.166 — 12.049i
—132.784 — 35.082i
_, —25.618 — 23.033i
Ub = ST-[(SYb- ST) -S-(—Yb—Eb)] Ub =
58.788 + 30.282i
|Ub,| = 107.841 |Ub,| =137.34 .
48.379 — 18.233i
|Ub3| =134.45 |Ub4| = 66.128 73.997 + 4.8i
b = 51. |Ube| = 74.152 —0.961 — 0.244i
6.84 + 3.272i
—3.38 + 0.667i
Ib := Yb-(Ub + Eb) Ib =
5.879 + 3.028i
2.419 — 0.912i
3.46 + 3.94i
|Iby| =0.991  |Ib,| =7.582 |Ibs| =3.445  |Iby| = 6.613
|1bs| =2.585 |1bg| =5.243

Next we will consider the individual case, when the electric
circuit contains the coils with the inductive coupling (let’s assume
that the current sources are absent). Then the matrix equation
written by means of the loop current method is:

— _1 —
L, =K |KZy K ]E,.

where the matrix Z,, is written in the form:

Zbl leM ZI3M .............. ZlnM
Z _ Zle sz Zz3M -------------- Zan
ZbM —

ZHIM anM Z”3M ------------- an

It is evident, that the matrix Z,;, is not diagonal one and

the electric circuit is considered as irreversible one. The matrix
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elements are the complex impedances of the branches and the
complex impedances of the mutual inductance Z,, = joM .

Since Z M = VA e then the matrix is symmetrical with respect

to the main diagonal.

As an example let’s consider the electric circuit with the
three coils having inductive coupling (Fig. 25.4, a). The graph of
this scheme is shown in Fig. 25.4, b.

Fig. 254

Z] =5+ 101 Zz:=5+10i Z3:=5+10i
Zy:=5 Z5:=-201 Zg:=5+ 10i
ZM12 =51 ZM13 =51 ZM23 =51

Z, -ZM;, ZM;3 0 0 0 100
—ZMy, Zy ~ZMy 0 0 0 0
M3 ~ZMy; Z3 0 0 0 | gp|
ZB = ’ 0
0 0 0 Z4 0 0
0
0 0 0 0 Zs 0
0
0 0 0 0 0 Z
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2.93 —2.0741
2.03 - 1.491i

0.9 — 0.583i
—0.293 — 3.378i
1.193 + 2.795i
1.737 — 4.869i

IB:=KT-(K-ZBKT)” "K-EB  IB=

|IB)| =359  |IBy| =2.519  |IB;| = 1.072
|IBy| =3391 |IBs| =3.04  |IBg| =5.17
arg(2.93 — 2.074i)-57.3 = —35.295

arg(2.03 — 1.491i)-57.3 = —36.299
arg(0.9 — 0.583i)-57.3 = —32.937

Complex power of the voltage source

S =293 + 207.4i

True power of the voltage source

3.59%.5 1+ 2.519%5 + 1.072%5 + 3.391%.5 + 5.17°-5 = 293.052
Reactive power of the load
Q=0Q1+0Q2+Q3

Q1:=3.59%10 + 2.519%10 + 1.072%10 — 3.04%-20 + 5.17°-10
Q2 :=2:3.59-1.072-5-c0s (~2.358-deg ) — 2:2.519-1.072-5-cos (~3.362-ds
Q3 :=—(2-3.59-2.519-5-cos (1.004-deg))
Q:=Ql+Q2+Q3 Q=20736
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Practical training and modeling

1. Draw the scheme of modeling of the DC electric circuit,
the scheme of which is shown in Fig. 25.5, a. The table 25.1 gives
the circuit parameters.

R
— 1 ]
|
Rl
El
R, R,
] ]

Taomms 25.1

N Rl’ Rz, R3, R4, Rs, R6’ El E2
variant O O 0 O 0 0 V \Y4
1 10 10 10 5 10 20 50 | 50
2 20 10 20 10 20 40 40 | 50
3 12 8 9 12 10 15 60 | 60
4 6 9 15 9 12 6 75 | 60
5 50 10 16 8 10 30 80 | 80
6 5 5 10 10 5 15 50 | 50
7 10 10 10 10 10 10 90 | 80
8 30 30 30 15 20 45 75 | 50
9 20 10 10 20 12 18 80 | 60
10 15 15 15 15 10 30 90 | 75
11 30 30 30 15 15 15 90 | 90
12 15 15 15 30 30 30 90 | 60
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2. Draw the graph of the given electric circuit and make up
the topological matrixes 4,K , S and the diagonal matrixes R,

and Gy,

3. Make up the vectors £ » and J b

4. Carry out the calculation of the electric circuit by the
loop current method in the generalized matrix — topological form,
using the software MathCAD. Check the results of calculation by
the software Workbench and the power balance equation.

5. Carry out the calculation of the electric circuit by the
node potential method in the generalized matrix — topological
form, using the software MathCAD. Check the results of
calculation by the software Workbench and the power balance
equation.

6. Draw the scheme of modeling of the AC electric circuit,
the scheme of which is shown in Fig. 25.5, b. The table 25.2 gives
the circuit parameters.

Tabmuist 25.2

N Zy, Zy, Z3, Zy, Zs, Zg, Zys f,
Q Q Q Q Q Q Q
1 |5-j6 |4+3 |5+)5 10 |2-/4 | 5-)5 j3 200
2 | 8—j6 |4+j3 | 4+2 | 2+2 |2+j4 | 5+)5 Jj2 100
3 |52 |4+52 [4+/3 |22 [2+2 |2+]6 Jjl 150
4 16-—j5 | 5+3 |5+)5 20 [ 2,2 5 j2 120
5 |6-48 [4+j6 |4+)3 15 2-j3 | 6+,2 Jj4 180
6 |3—j4 |3+j5 |5+)5 10 [2+3 62 Jj4 200
7 14-j3 |5+j5 |4+j6 | 3+,3 8 2—j6 j4 90
8 |5+j6 |4+j4 |4+j4 | 353 |21 8 J3 120
9 |6+/5|8+j6 |4+3 14,2 10 |4+/4 j4 100
10 |3+/4 | 6+8 |4+j6 | 2+/3 5 8 jS 60
11 |[6-/8 |4+8 |4+/8 | 44,3 6 10 Jj6 180
12 |2—j5 |6+j6 |4+/4 | 3+2 |2—j4 4 j3 120

7. Carry out the calculation of the electric circuit by the
loop current method in the generalized matrix — topological form,
using the software MathCAD. Check the results of calculation by
the software Workbench and the power balance equation.
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Review questions

1. Give the definitions of the following concepts: the graph
of the electric circuit, the tree, the chord and the rib.

2. What is the clique — incidence matrix? Give an example.

3. What is the main section matrix? Give an example.

4. What is the main loop matrix? Give an example.

5. Give the definition of the first topological equation. Give
an example of its application.

6. Give the definition of the second topological equation.
Give an example of its application.

7. Verify the formula of the definition of the loop currents
in the generalized matrix — topological form.

8. Verify the formula of the definition of the node voltages
in the generalized matrix — topological form.

9. What are the peculiar properties of the application of the
matrix — topological methods in calculations of the electric
circuits with coils, having inductive coupling.

BIBLIOGRAPHY

1. PERHACH V.S. Theoretical Electrical Engineering:
Linear Circuits: Manual. — K.: Vischa Shkola, 1992. — p.439. (in
Ukrainian).

2. BESSONOV L.A. Theory of Electrical Engineering:
Manual. — M.: Gardariki, 2003. — p.317. (in Russian).

3. NEIMAN L.R. Theory of Electrical Engineering
/L.R.Neiman, K.S.Demirchan, N.V.Korovkin. — S. — P: Piter,
2003. —T.1 and T.2 — p.376. (in Russian).

4. DANILOV L.V. Nonlinear Electric Circuit Theory
/L.V.Danilov, P.N.Mathanov, E.S.Filippov. - L.:
Energoatomizdat. Leningrad department, 1990. — p.256. (in
Russian).

5. CHBAN V.. Mathematical Modeling of the
Electromechanical Processes. — Lviv: Publishing house of
University “Lvivska Politeknika”, 1997. — p.342. (in Ukrainian).

191



6. CHBAN V.. Mathematical Modeling of the
Electromagnetic Processes: Manual. — K.: NMK VO, 1992. —
p.392. (in Ukrainian).

7. ZELENKOV A.A. Theory of Electrical Engineering:
Manual / A.A.Zelenkov, A.A.Bunchuk, A.P.Golik. — K.: NAU,
2006. — p.136. (in Ukrainian).

8. ZELENKOV A.A. Linear Circuits of DC and AC:
Manual / A.A.Zelenkov, A.V.Kudinenko. — K.: KIECA, 1992. —
p.148. (in Russian).

9. ZELENKOV A.A. Three — Phase Systems. Nonlinear
Electric and Magnetic Circuits Under Steady — State: Manual /
A.A.Zelenkov, A.V.Kudinenko. — K.: KIUCA, 1994. — p.148. (in
Russian).

10. ZELENKOV A.A. Transients in Linear and Nonlinear
Electric Circuits: Manual / A.A.Zelenkov, A.V.Kudinenko. — K.:
KIUCA, 1995. — p.244. (in Russian).

11. ZELENKOV A.A. Matrix and Topological Methods of
Analysis and Modeling Electric Circuits: Manual / A.A.Zelenkov,
A.V.Kudinenko. — K.: KIUCA, 1996. — p.196. (in Russian).

12. ZELENKOV A.A. Theory of FElectrical Engineering.
Electric Circuits with the Distributed Parameters. Theory of
Electromagnetic Field: Manual / A.A.Zelenkov, A.A.Bunchuk. —
K.: NAU, 2012. — p.336. (in Ukrainian).

13. ZELENKOV A.A. Linear Circuits of DC and AC:
Manual / A.A.Zelenkov, V.P.Shahov, A.A.Bunchuk. — K.: NAU,
2003. — p.156. (in Ukrainian).

14. ZELENKOV A.A. Linear and Nonlinear Flectric
Circuits: Manual / A.A.Zelenkov, V.P.Shahov, A.A.Bunchuk. —
K.: NAU, 2003. — p.168. (in Ukrainian).

15. ZELENKOV A.A. Transients in Linear Electric
Circuits: Manual / A.A.Zelenkov, V.P.Shahov, A.A.Bunchuk. —
K.: NAU, 2003. — p.132. (in Ukrainian).

16. ZELENKOV A.A. Examples and Problems of the
Electrical Engineering Using the PC: Manual / A.A.Zelenkov,
0.Y.Kravchuk. — K.: NAU, 2001. — p.160.

17.  ZELENKOV A.A. Principle and Applications of
Electrical Engineering: Manual / A.A.Zelenkov, O.Y .Kravchuk. —
K.: NAU, 2005. — p.256.

192



CONTENTS

10

11
12

13

14

15

16

17

18

19
20

INTRODUCTION

TRANSMISSION OF ELECTRIC ENERGY BY DC
LINE oo
TRANSFORMATION OF LINEAR PASSIVE ELECTRIC
CIRCUITS .o
INPUT RESISTANCE OF THE PASSIVE TWO -
TERMINAL NETWORK ......c.coooiiiiiiiiiii.
DISTRIBUTION OF VOLTAGES AND CURRENTS IN
ELECTRIC CIRCUITS ...
ANALYSIS OF THE COMPLEX DC ELECTRIC
CIRCUITS .o
ANALYSIS OF PROCESSES IN THE BRANCH WITH
SERIES CONNECTION OF R, L, C ........c.coiinininnn.
ANALYSIS OF PROCESSES IN THE ELECTRIC
BRANCH WITH PARALLEL CONNECTION OF
Ry L, C oo
ANALYSIS OF PROCESSES IN THE SERIES
OSCILLTORY CIRCUIT......ccoviiiiiiiiiniiiiiiieene
ANALYSIS OF PROCESSES IN THE PARALLEL
OSCILLTORY CIRCUIT.......oiiiiiiiiiiiiiiiieen
ANALYSIS OF THE COMPLEX MONOPHASE AC
ELECTRIC CIRCUITS.......ooiiiiiiii
TRANSMISSION OF ENERGY BY THE ACLINE.......
CHARACTERISTIC PARAMETERS OF THE PASSIVE
FOUR — TERMINAL NETWORK..................c.il
THREE — PHASE SYSTEMS. FOUR — WIRE THREE —
PHASE SYSTEM OF ENERGY SUPPLY...................
THREE — PHASE SYSTEMS. THREE — WIRE THREE —
PHASE SYSTEM (STAR CONNECTED LOAD)..........
THREE — PHASE SYSTEMS. THREE — WIRE THREE —
PHASE SYSTEM (DELTA CONNECTED LOAD) .......
THREE — PHASE SYSTEMS. THREE — WIRE THREE —
PHASE SYSTEM WITH SEVERAL CONSUMERS........
NONSINUSOIDAL CURRENTS AND VOLTAGES IN
LINEAR ELECTRIC CIRCUITS...........c.ooooviiiinnn.
NONLINEAR  DIRECT  CURRENT  ELECTRIC
CIRCUITS. ..
ALTERNATING CURRENT NONLINEAR CIRCUITS....
TRANSIENTS IN LINEAR ELECTRIC CIRCUITS WITH

16

23

29

37

42

49

51

56

61
66

71

77

83

85

90

97

105
118

193




21

22

23

24

25

SINGLE POWER — CONSUMING ELEMENT..............
TRANSIENTS IN THE SERIES OSCILLATORY
CIRCUIT ...
TRANSIENTS IN AC LINEAR ELECTRIC CIRCUITS....
ELECTRIC CIRCUITS WITH THE DISTRIBUTED
PARAMETERS. DISTRIBUTION OF THE VOLTAGE
AND THE CURRENT IN THE LONG LINE.................
INPUT CHARACTERISTICS AND TRANSFORMING
PROPERTIES OF THE ELECTRIC CIRCUITS WITH
DISTRIBUTED PARAMETERS.........cccooiiiiiiiiinn
MATRIX -  TOPOLOGICAL METHODS OF
MODELING ELECTRIC CIRCUITS................c.ooee.
BIBLIOGRAPHY ......ooiiiiiiiiiiiee

127

143

149

157

169

175
192

194




