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Abstract—The paper examines a problem of observer-based flight control system design. The design pro-
cedure allows deriving both the observer and the controller simultaneously. The peculiarity of the pro-
posed approach is that there is no need not need to choose the observer poles. The proposed design pro-
cedure is based on linear matrix inequalities technique. To demonstrate the efficiency of the proposed 
approach a longitudinal motion of unmanned aerial vehicle is used as a case study.  
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I. INTRODUCTION 
The wide application of small Unmanned Aerial 

Vehicles (UAVs) are encouraged to create flight 
control systems (FCS) that satisfy manifold re-
quirement imposed on the aircraft during flight en-
velope. Moreover, the small UAVs should easily 
move in a wide range of velocity and altitude 
changes. Furthermore, one should care about various 
problems connected with law cost design and power 
consumption in order to be implemented onboard 
computer with restricted abilities. Therefore, the 
manipulation of such UAVs requires a necessary 
stability, performance and robustness [1], [2], [4]. 
A great number of control approaches have been 
proposed to solve the problem autopilot design [1]–
[9], [15]. Among them, it is possible to enumerate 
some works related to the combination of observer 
and linear quadratic regulator [5], where the problem 
of limited number of state vector measurements is 
considered. To preserve the required level of per-
formance without losing the robustness of the flight 
control system, the mixed 2 H H – robust optimiza-
tion procedure is used. The main idea behind this 
technique is to seek a trade-off between the per-
formance and the robustness of the overall closed 
loop system [5].  

It is necessary admit, that the observer design was 
originally proposed in works [10], [11], [12]. Lately, 
the numbers of observer-based control system design 
approaches were proposed [5], [6] [13]. 

The autopilot design is also may be performed 
basing on the available information about the output 
variables. This circumstance leads to the problem of 
static output feedback (SOF) controller design. The 
main advantage of SOF design is that it requires 
only available signals from the plant to be con-
trolled. The SOF problem concerns finding a static 
or feedback gain to achieve certain desired closed-
loop characteristics. It is necessary to admit that the 
output feedback problem is much more difficult to 

solve in comparison to state feedback control prob-
lem [14].  

This paper deals with observer and controller de-
velopment in terms of linear matrix inequalities 
(LMIs) [16] for aircraft control during flight enve-
lope. It is known that the design procedure of ob-
server deals with selecting desired region poles loca-
tion. Moreover, the observer eigenvalues should be 
faster up to ten times in comparison to plant eigen-
values. This condition results in the observer sensi-
tivity to noisy measurement, which is not desirable. 
To overcome this difficulty procedure of observer 
design is proposed basing on Lyapunov approach.  

The main feature of this paper is that the FCS is 
designed by applying LMI technique where the ob-
server gains and controller structure are defined by 
solving the set of LMIs simultaneously.  

To prove the efficiency of the proposed ap-
proach, the longitudinal motion of the aircraft is 
considered as a case study.  

II.  PROBLEM STATEMENT 
Let us consider a problem of flight control sys-

tem (FCS) design with incomplete state vector 
measurement. The aircraft dynamics is represented 
by the following set of equations 

x Ax Bu
y Cx
  

 
,   00 x x , (1) 

where  nx R  is the state space vector;  mu R is the 
control vector;  py R  is the observation vector;  
Besides that, the state space matrices of the con-
trolled plant have the following dimen-
sions , ,  n×n m×n p×nA R B R C R . It could be seen 
that number of measuring variables p  is less than 
number of all phase coordinates n . Thus, to design 
the FCS the full state space vector is necessary to be 
restored. 

In this paper we develop the design procedure of 
full-order state observer design with further state 
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feedback construction such that the performance of 
closed-loop system satisfies selected performance 
criterion. Thus, the FCS construction is performed 
under the well known separation principle. 

III. OBSERVER-BASED FLIGHT CONTROL 
SYSTEM DESIGN 

It is known that the observer estimates the state 
variables based on measurement of the output y  and 
control u  variables [10] – [12]. Let us consider the 
procedure of observer-based flight control system 
design under LMI approach. 

Consider linear time-invariant system given by 
(1). Assume that the states x  are approximated by 
the states x . The observer model takes into account 
feedback information about observation error and 
can be represented as 

          
        

t t t t t

t t t t

   

  

x A x Bu + L y y

A x Bu L C x x

  

 
,    (2) 

where       t t t x x e  is a difference between the 
real and estimated states (observation error); L is the 
observer gain matrix that has to be chosen such that 
the observation error approaches zero as time in-
creases. From (1) and (2) the observation error equa-
tion dynamics takes the following form 

      t t t e x x   , 

       
         

   
     

                                                 

t t t t

t t t t

t

  

   

 

 

 

x x A x Bu

A x B u LC x x

A LC e

    (3) 

The error decays to zero if it is possible to find ob-
server gain matrix L  such that  A L C  is asymp-
totically stable. Moreover, the eigenvalues of 
 A L C  are the same as those of  T A LC  

T T T A C L . 
The final goal is to control the motion of the 

plant basing on the estimated states. Thus, for the 
state feedback control based on observed states x , 
namely 

u K x ,         (4) 

where K is a constant state feedback gain matrix 
that assures that the system is asymptotically stable, 
the state equation becomes 

            
                                           .

t t t t t t

t t

    

  

 x A x B K x A x BK x e

A BK x BKe
 (5) 

Combining together (3) and (5), we obtain 

 
 

 
 0

t t
t t

     
        



x xA BK BK
e eA LC

. (6) 

Equation (6) describes the dynamics of the ob-
served state feedback control system. The character-
istic equation for the system is 

0s s    I A BK I A LC . 

It is possible to rewrite the system dynamics in 
terms of plant and observer states, respectively. 

 
 

 
 

t t
t t

    
          


 
x xA BK
x xLC A BK LC

. 

It is supposed also that the obtained solution 
given by (4) minimizes performance index as 

        
     

T T

0

T T

0

J t t t t dt

t t dt





  







x Q x u R u

x Q K R K x

 

 
, (7) 

where Q  and R are diagonal matrices, weighting 
each state and control variables, respectively.  

This cost depends on the trajectory, of  tx , tak-
en, such that the worst trajectory will correspond to 
the worst cost [3].  

It is known that the observed-state feedback con-
trol system design consists of two stages: (1) design 
of state feedback control law assuming that all states 
are available; (2) design a state estimator to estimate 
states of the system. Replace the states in state feed-
back control law from stage (1) by the state esti-
mates. Further, they can be combined to form the 
observed-state feedback control system. This prin-
ciple of independent state feedback and observer 
design is referred to as separation principle. Moreo-
ver, the observer design deals with choice of poles 
location. They are usually chosen such that the ob-
server response is much faster that the system re-
sponse, but very fast observers possess with noise. 
The proposed approach solves the problem of ob-
served-state feedback design under LMI technique. 
The main advantage of the proposed design proce-
dure is that there is no need to define the observer 
poles location. The solution of this problem via 
LMIs gives the constant state feedback gain matrix 
K  and observer gain L  by solving the set of LMIs 
simultaneously. The proposed design procedure is 
very simple and utilizes Lyapunov approach. 

The simultaneous observer and controller design 
can be formulated with following theorem. 

Theorem. The observer-based system (6) is said 
to be statically stable by means of state feedback (4) 
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if there exist matrices T
1 1 0 X X , M  and 

T
2 2 0 X X , Z and satisfy the following conditions: 

T T T 1 2 T 1 2
1 1 1

1 2
1

1 2

0 0
0

   
   
  

X A AX M B BM X Q M R
Q X I
R M I

, 

T
1 1 0 X X ,   (8) 

T T T
2 2 0   A X X A C Z ZC , 

T
2 2 0 X X .   (9) 

Proof. Let      T
1 1, t t tV x x P x with 1

T
1 0 P P  

be a candidate Lyapunov function. The closed loop 
system (6) preserves stability and minimizes per-
formance index (7) if: 

         T T
1 , 0t t t t R t  V x x Qx u u .   (10) 

The condition (10) leads to the following inequal-
ity: 

  
 

T T T T T
1 1 1 1

                                                                       0.

t

t

    

 

x A P P A K B P P BK Q K RK

x
 

Pre-multiplying and post-multiplying right and 
left sides above written inequality by 1P : 

1 T 1 1 T T 1 1 1
1 1 1 1 1 1

1 T 1
1 1                                                0.

     

 

   

 

P A AP P K B BKP P QP

P K RKP
 (11) 

Let us define the following change of variables 
1 1

1 1 1 1, ,   X P M K P K M P and rewrite inequality 
(11) as 

T T T T 0     XA AX M B BM XQX XK RKX  (12) 

By applying Shur’s Lemma to inequality (12) it 
is possible to rewrite as matrix inequality: 

T T T 1 2 T 1 2
1 1 1

1 2
1

1 2

0 0
0

   
   
  

X A AX M B BM X Q M R
Q X I
R M I

. 

This part of the proof considers the design stage 
(1) according to the separation principle. The second 
part of the proof considers stage (2) of the design 
procedure connected with observer construction. 

Let       T
2 2,t t t tV e e P e with T

2 2 0 P P  be a 
candidate Lyapunov function. The observer gains 
can be found if the following inequality is hold: 

        TT
2 2 0t t   e A LC P P A LC e , 

or 
T T T

2 2 2 2 0   A P P A C L P P LC . 

The use of the following change of vari-
ables 2 2X = P , 2P L = Z reduces to the next LMI: 

T T T
2 2 0   A X X A C Z ZC , 

T
2 2 0 X X . 

Thus, the observer gains can be evaluated as 
1

2
L X Z . 

IV. CASE STUDY 

To demonstrate the efficiency of the proposed 
approach a longitudinal channel of the UAV is used 
as a case study. The state space vector of the longi-
tudinal channel involves the following compo-
nents:  T, ,tV q h  x , where Vt  is the true 
airspeed of UAV, α is the angle of attack, θ is the 
pitch angle, q is the pitch rate and h is the altitude. 
The control input vector  Teu   is represented on-
ly by elevator deflection. 

It is considered operating mode with true air-
speed at Vt = 14.0 m/s. The linear model in the state 
space is represented by the matrices  ,A B : 

0.1816 43.9153 9.81 0 0
0.4292 12.7475 0.6711 0.6898 0

0 0 0 1.0 0
0.2988 130.2477 4.7433 21.9445 0

0 14.0 14.0 0 0

  
    
 
 

  
  

A ; 

0.0408
0.0553

0
14.8151

0

 
  
 
 
 
  

B ; 

The output vector of measured variables is given 
as follows  T, ,est q h y . 

Disturbance, υ affecting the longitudinal motion 
of the aircraft involves the following components: 
the true airspeed, Vt, angle of attack, α and pitch rate, 

q, so that 
T

, ,
gt g gV q   υ  . In order to simulate 

the atmospheric turbulence the Dryden filter is used 
[3]. It is considered that aircraft flies at moderate 
turbulence. Parameters appearing in the state space 
of Dryden filter are given as follows [3]: 

 2V V VK L V   , V VL V  , L V   , 
7.2011K  , 0.1981  , VKq 1 , Vbq  4 .  

The variable b represents the aircraft wingspan, 
2.31b   m. The variables LV, Lα represent the turbu-

lence scale lengths. The variables σv, σα represent the 
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turbulence intensities. The computation of these val-
ues depends on the altitude at which the aircraft is 
flying, wing span and type of turbulence according 
to standard MIL–F–8785C.  

The weighting matrices Q , R  in (7) have the fol-
lowing form:  

  diag 0.0057 0.0023 8.9443 0.0001 0.7071Q ; 
 0.8367R . 

By applying proposed approach of observer 
based controller design via LMI approach, the state 
feedback gain matrix K and observer gains L are 
found. Their numerical values are given below: 

– state feedback gains: 

 0.1265 1.6762 7.7596 0.2311 0.5043    K  

– observer gain matrix: 

2.7634 5.6055 4.8286
0.1584 0.3941 0.4772

0.9676 0.9592 1.8864
1.3993 8.4330 2.4343
2.8823 3.5656 6.1283

   
    
 
 
 
  

L . 

Table 1 reflects standard deviations of the UAV 
outputs.

TABLE 1 

STANDARD DEVIATIONS OF THE UAV OUTPUTS IN A STOCHASTIC CASE 

 
Plant 

Standard deviation  

v , m/sec  , 0  , 0 q , 0/sec h , m elev , 0 

V = 14.0 m/s 0.1199 0.6157 0.9882 0.2146 0.1943 1.5160 

Performance indices of closed loop system with 
observed state feedback in a loop are given in Table 2. 

The simulation results of the closed loop system 
taking into account the influence of the random 
wind, simulated according to the standard Dryden 
model of turbulence confirm the efficiency of pro-
posed approach. Results of the simulation are shown 
in Figure. 

TABLE 2 

PERFORMANCE INDICES OF CLOSED-LOOP SYSTEM 

Performance Index 
Plant 

V = 14.0 m/s 
Н2-norm 0.2545 
Н∞-norm 0.1981 
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Simulation results of longitudinal motion control in the presence of external disturbances: 
a is the angle of attack, deg; b is the pitch angle, deg; c is the pitch rate, deg/s; d is the altitude, m
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CONCLUSION 

As far as the incomplete state space vector is 
available for measuring, the flight control system for 
aircraft can be easily designed by applying observer. 
Thus, the unavailable states can be suitable approx-
imated by restored states. In turn, the obtained con-
trol law is called observed state feedback. The pro-
posed solution is very simple and uses Lyapunov 
approach. The proposed design procedure can be 
solved efficiently by applying LMI optimization 
technique. The main advantage of the proposed ap-
proach is that there is no need to define the region of 
observer poles placement. The proposed approach 
permits to define the observer gains and state feed-
back gain matrix directly from set of LMIs, simulta-
neously. 
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М. М. Комнацька. Синтез системи керування польотом зі спостерігачем на основі лінійних матричних 
нерівностей 
Розглянуто задачу синтезу системи керування польотом зі спостерігачем. Процедура синтезу дозволяє визначи-
ти спостерігач та регулятор одночасно. Особливістю запропонованого підходу полягає у тому, що у процесі 
синтезу спостерігача не виникає потреби вибирати полюса спостерігача. Запропонований підхід до синтезу сис-
теми керування польотом зі спостерігачем базується на застосуванні апарату лінійних матричних нерівностей. 
Ефективність запропонованого підходу демонструється на прикладі керування поздовжнім рухом безпілотного 
літального апарату. 
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тний зв’язок за станом; теорема розділення. 
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