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Abstract—The paper examines a problem of observer-based flight control system design. The design pro-
cedure allows deriving both the observer and the controller simultaneously. The peculiarity of the pro-
posed approach is that there is no need not need to choose the observer poles. The proposed design pro-
cedure is based on linear matrix inequalities technique. To demonstrate the efficiency of the proposed
approach a longitudinal motion of unmanned aerial vehicle is used as a case study.
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I. INTRODUCTION

The wide application of small Unmanned Aerial
Vehicles (UAVs) are encouraged to create flight
control systems (FCS) that satisfy manifold re-
quirement imposed on the aircraft during flight en-
velope. Moreover, the small UAVs should easily
move in a wide range of velocity and altitude
changes. Furthermore, one should care about various
problems connected with law cost design and power
consumption in order to be implemented onboard
computer with restricted abilities. Therefore, the
manipulation of such UAVs requires a necessary
stability, performance and robustness [1], [2], [4].
A great number of control approaches have been
proposed to solve the problem autopilot design [1]-
[9], [15]. Among them, it is possible to enumerate
some works related to the combination of observer
and linear quadratic regulator [5], where the problem
of limited number of state vector measurements is
considered. To preserve the required level of per-
formance without losing the robustness of the flight
control system, the mixed H, /H_ — robust optimiza-

tion procedure is used. The main idea behind this
technique is to seek a trade-off between the per-
formance and the robustness of the overall closed
loop system [5].

It is necessary admit, that the observer design was
originally proposed in works [10], [11], [12]. Lately,
the numbers of observer-based control system design
approaches were proposed [5], [6] [13].

The autopilot design is also may be performed
basing on the available information about the output
variables. This circumstance leads to the problem of
static output feedback (SOF) controller design. The
main advantage of SOF design is that it requires
only available signals from the plant to be con-
trolled. The SOF problem concerns finding a static
or feedback gain to achieve certain desired closed-
loop characteristics. It is necessary to admit that the
output feedback problem is much more difficult to

solve in comparison to state feedback control prob-
lem [14].

This paper deals with observer and controller de-
velopment in terms of linear matrix inequalities
(LMIs) [16] for aircraft control during flight enve-
lope. It is known that the design procedure of ob-
server deals with selecting desired region poles loca-
tion. Moreover, the observer eigenvalues should be
faster up to ten times in comparison to plant eigen-
values. This condition results in the observer sensi-
tivity to noisy measurement, which is not desirable.
To overcome this difficulty procedure of observer
design is proposed basing on Lyapunov approach.

The main feature of this paper is that the FCS is
designed by applying LMI technique where the ob-
server gains and controller structure are defined by
solving the set of LMIs simultaneously.

To prove the efficiency of the proposed ap-
proach, the longitudinal motion of the aircraft is
considered as a case study.

II. PROBLEM STATEMENT

Let us consider a problem of flight control sys-
tem (FCS) design with incomplete state vector
measurement. The aircraft dynamics is represented
by the following set of equations

x= Ax+ Bu
{y=Cx s X(O):XO, (1)
where xe R" is the state space vector; ue R™ is the
control vector; yeRP is the observation vector;

Besides that, the state space matrices of the con-
trolled plant have the following dimen-
sions Ae R, BeR™™", CeR”™". It could be seen
that number of measuring variables p is less than
number of all phase coordinates n. Thus, to design
the FCS the full state space vector is necessary to be
restored.

In this paper we develop the design procedure of
full-order state observer design with further state
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feedback construction such that the performance of
closed-loop system satisfies selected performance
criterion. Thus, the FCS construction is performed
under the well known separation principle.

III. OBSERVER-BASED FLIGHT CONTROL
SYSTEM DESIGN

It is known that the observer estimates the state
variables based on measurement of the output y and

control u variables [10] — [12]. Let us consider the
procedure of observer-based flight control system
design under LMI approach.

Consider linear time-invariant system given by
(1). Assume that the states x are approximated by
the states % . The observer model takes into account
feedback information about observation error and

can be represented as

X(t)=Ax(t)+Bu(r)+L(§(1)-y(1) =

- . @
A%(t)+Bu(t)+LC(%(1)-x(r))

where (x(¢)-%())=e(¢) is a difference between the

real and estimated states (observation error); L is the
observer gain matrix that has to be chosen such that
the observation error approaches zero as time in-
creases. From (1) and (2) the observation error equa-
tion dynamics takes the following form

é(r)= (x(r)—fc(t)),
x(1)-x(t)=Ax(t)+Bu(z)
—(Ai(r)+Bu(t)+LC(i(t)—x(t))) 3)
=(A+LC)e(r)

The error decays to zero if it is possible to find ob-

server gain matrix L such that (A+LC) is asymp-
totically stable. the eigenvalues of

(A+LC) are the same as those of (A+LC)T:

Moreover,

=AT+CTL".

The final goal is to control the motion of the
plant basing on the estimated states. Thus, for the
state feedback control based on observed states %,
namely

u=Kx, @)

where K is a constant state feedback gain matrix
that assures that the system is asymptotically stable,

the state equation becomes
x(t)=Ax(t)+BKX(1) = Ax(r)+BK(x(t)—e()) )
=(A+BK)x()-BKe().

Combining together (3) and (5), we obtain

x(1)] [A+BK -BK x()
G : (6)
e(r) 0 A+LCJe(r)

Equation (6) describes the dynamics of the ob-

served state feedback control system. The character-
istic equation for the system is

|sT- A-BK|[sI-A-LC|=0.

It is possible to rewrite the system dynamics in
terms of plant and observer states, respectively.

x())| [ A BK x(¢)
x(f)| |-LC A+BK+LC|x(7)|
It is supposed also that the obtained solution
given by (4) minimizes performance index as

J=J(%()" Q% (r)+u(r) Ru(r))di -
o G
[%()" (Q+K"RK)x(r) dr
0
where Q and R are diagonal matrices, weighting
each state and control variables, respectively.
This cost depends on the trajectory, of x(r), tak-

en, such that the worst trajectory will correspond to
the worst cost [3].

It is known that the observed-state feedback con-
trol system design consists of two stages: (1) design
of state feedback control law assuming that all states
are available; (2) design a state estimator to estimate
states of the system. Replace the states in state feed-
back control law from stage (1) by the state esti-
mates. Further, they can be combined to form the
observed-state feedback control system. This prin-
ciple of independent state feedback and observer
design is referred to as separation principle. Moreo-
ver, the observer design deals with choice of poles
location. They are usually chosen such that the ob-
server response is much faster that the system re-
sponse, but very fast observers possess with noise.
The proposed approach solves the problem of ob-
served-state feedback design under LMI technique.
The main advantage of the proposed design proce-
dure is that there is no need to define the observer
poles location. The solution of this problem via
LMIs gives the constant state feedback gain matrix
K and observer gain L by solving the set of LMIs
simultaneously. The proposed design procedure is
very simple and utilizes Lyapunov approach.

The simultaneous observer and controller design
can be formulated with following theorem.

Theorem. The observer-based system (6) is said
to be statically stable by means of state feedback (4)
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if there exist matrices X, =X/ >0, M

X, =X, >0, Zand satisfy the following conditions:

X, A" +AX, +M'B" +BM XQ"” M'R"

Q"X -1 0 |<o0,
R"*M 0 -1

X =X >0, 8)
A'X,+X,A+C'Z'+ZC<0,

X, =X} >0. )

Proof. Let V,(x,t)=x(¢)Px" (1) with P, =P >0

be a candidate Lyapunov function. The closed loop
system (6) preserves stability and minimizes per-
formance index (7) if:

(10)

The condition (10) leads to the following inequal-
ity:
x"(t){A"P +P A+ K"B"P, +PBK +Q+ K'RK}

V] (x,t)+xT (I)Q)((t)+uT (I)Ru(t)<0.

xx(t)<0.

Pre-multiplying and post-multiplying right and
left sides above written inequality by P~':

P'AT+AP ! +P'K'BT + BKP ! + P'QP!

(11)
+P'K'RKP,! <0.

Let us define the following change of variables
X, =P', M=KP ', K=MP, and rewrite inequality
(11) as

XA"+AX+M"BT + BM + XQX + XK'RKX <0 (12)

By applying Shur’s Lemma to inequality (12) it
is possible to rewrite as matrix inequality:
X, A" +AX, +M'B" +BM XQ"” M'R"
Q"X | 0 |<0.
R”’M 0 -1

This part of the proof considers the design stage
(1) according to the separation principle. The second
part of the proof considers stage (2) of the design
procedure connected with observer construction.

Let V,(e(t),t)=¢(t)Pye’ (t)with P, =P] >0 bea
candidate Lyapunov function. The observer gains
can be found if the following inequality is hold:

¢ (){(A+1C)" P, + Py (A+1C)}e(r) <0

or
AP, +P,A+C'L'P, + P,LC<0.

and

The use of the following change of vari-
ables X, =P,, P, L=Zreduces to the next LMI:

ATX, +X,A+C'Z" +ZC <0,
X, =X; >0.
Thus, the observer gains can be evaluated as
L=X,'Z.
IV. CASE STUDY

To demonstrate the efficiency of the proposed
approach a longitudinal channel of the UAV is used
as a case study. The state space vector of the longi-
tudinal channel involves the following compo-

nents:x=[V,, a, 0, g, h]T, where V; is the true
airspeed of UAV, a is the angle of attack, 0 is the
pitch angle, ¢ is the pitch rate and h is the altitude.
The control input vector u=[5,]" is represented on-

ly by elevator deflection.

It is considered operating mode with true air-
speed at V; = 14.0 m/s. The linear model in the state
space is represented by the matrices[A, B]:

—0.1816 439153  —9.81 0 0
04292 -12.7475 -0.6711 0.6898 0
A=l 0 0 0 1.0 0/
0.2988 —130.2477 4.7433 —21.9445 0
0 -14.0 14.0 0 0

[ —0.0408 |

-0.0553

B= 0 ;

-14.8151

L O .

The output vector of measured variables is given
as followsy,,, =[6, ¢, ]'.

Disturbance, v affecting the longitudinal motion
of the aircraft involves the following components:
the true airspeed, V;, angle of attack, o and pitch rate,

T
g, so that u:[Vtg, Ay, qu . In order to simulate
the atmospheric turbulence the Dryden filter is used
[3]. It is considered that aircraft flies at moderate
turbulence. Parameters appearing in the state space
of Dryden filter are given as follows [3]:

Ky =opQ2Ly[nV),  hy =Ly [V,  ro=Ly/V,
Ko =72011, &, =0.1981, K, =1/V , A, =4b/nV .
The variable b represents the aircraft wingspan,

b=2.31 m. The variables Ly, L, represent the turbu-
lence scale lengths. The variables 6,, 6, represent the
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turbulence intensities. The computation of these val-
ues depends on the altitude at which the aircraft is
flying, wing span and type of turbulence according
to standard MIL-F-8785C.

The weighting matrices Q, R in (7) have the fol-
lowing form:

Q=diag([0.0057 0.0023 8.9443 0.0001 0.7071]);
R =[0.8367].

By applying proposed approach of observer
based controller design via LMI approach, the state
feedback gain matrix K and observer gains L are
found. Their numerical values are given below:

— state feedback gains:

K =[-0.1265 1.6762 -7.7596 —0.2311 —-0.5043]

— observer gain matrix:

[—2.7634 —5.6055 —4.8286 |
-0.1584 -0.3941 -0.4772
L=| 09676 09592 1.8864
1.3993  8.4330  2.4343
| 2.8823  3.5656  6.1283 |

Table 1 reflects standard deviations of the UAV
outputs.

TABLE 1

STANDARD DEVIATIONS OF THE UAV OUTPUTS IN A STOCHASTIC CASE

Performance indices of closed loop system with
observed state feedback in a loop are given in Table 2.

The simulation results of the closed loop system
taking into account the influence of the random
wind, simulated according to the standard Dryden
model of turbulence confirm the efficiency of pro-
posed approach. Results of the simulation are shown
in Figure.
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PERFORMANCE INDICES OF CLOSED-LOOP SYSTEM
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Simulation results of longitudinal motion control in the presence of external disturbances:
a is the angle of attack, deg; b is the pitch angle, deg; c is the pitch rate, deg/s; d is the altitude, m
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CONCLUSION

As far as the incomplete state space vector is
available for measuring, the flight control system for
aircraft can be easily designed by applying observer.
Thus, the unavailable states can be suitable approx-
imated by restored states. In turn, the obtained con-
trol law is called observed state feedback. The pro-
posed solution is very simple and uses Lyapunov
approach. The proposed design procedure can be
solved efficiently by applying LMI optimization
technique. The main advantage of the proposed ap-
proach is that there is no need to define the region of
observer poles placement. The proposed approach
permits to define the observer gains and state feed-
back gain matrix directly from set of LMIs, simulta-
neously.
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M. M. Komuanbka. CHHTe3 cuCTeMH KePyBaHHS NOJIBOTOM 3i ciocTepirayeM Ha OCHOBI JiHIHUX MaTpPUYHHMX
HepiBHOCTEH

Po3rmsinyTO 33124y CHHTE3y CUCTEMH KepYBaHHS ITOJILOTOM 31 crioctepiradeM. [Iporieypa CHHTE3y 103BOJISIE BU3HAYH-
TH CIIOCTEpirady Ta peryisTop oxHodacHo. OCoONUBICTIO 3alPOIIOHOBAHOTO MiAXOAY MOJISTae y TOMY, IO y IMpoIeci
CHHTE3Y CIIocTepiraya He BUHHUKAE MOTpeOr BUOMpATH TOJII0Ca CIIOCTepirada. 3arnporoHOBaHUi MiIXi/l 10 CHHTE3Y CHC-
TEMH KEPYBaHHs IOJILOTOM 3i CIIocTepiraueM 0a3yeThCs Ha 3aCTOCYBaHHI amapary JiHIHHUX MaTPpHYHUX HEPIBHOCTEH.
EdexTuBHiCTh 3aIPONOHOBAHOrO MiJXOAY AEMOHCTPYETHCS HA MPHKJIAi KEpYBaHH ITO3T0BXKHIM PyXOM O€3MiJIOTHOTO
JIITAJILHOTO arapary.

Karou4ogi ciioBa: cucrema kepyBaHHs MOJIBOTOM; CIIOCTEpirad MOBHOTO MOPSAKY; JIiHIIHI MaTpU4HI HEPIBHOCTI; 3BOPO-
THUH 3B’5130K 32 CTAHOM; TEOPEMa PO3IUICHHS.



M.M. Komnatska Observer-based flight control system design under linear matrix inequalities approach 51

KomHuanbka Mapta Mukonaisaa. KaHaunaT TexHIYHUX HayK. JIOICHT.

Kadenpa cucrem ynpasiiHHs JiTaIbHUX anapariB, HarionanpHuii aBiamiiiauil yHiBepcuteT, KuiB, Ykpaina.
Ocgita: HanioHanpHul aBiamiiHuil yHiBepcureT, Kuis, Ykpaina (2007).

HamnpsiMmok HayKoBOi IisSUTBHOCTI: CHCTEMH YIIPABIIiHHS Ta 00poOKa iHpopMariii.

Kinpkicts myoOmikarii: 35.

E-mail: martakomnatska@gmail.com

M. H. Komuankas. CuHTe3 cucTeMbl yIPaBJeHHs M0JeTOM ¢ Ha0aroaaTejieM Ha OCHOBe JIMHEHHBIX MaTPUYHbBIX
HEePaBeHCTB

PaccMoTpeHo 3aiauy CHHTe3a CHCTEMBI yIpaBJIeHHs HoneToM ¢ HabmonaTeneM. [Iponenypa cunTes3a mo3BossieT omnpe-
JIETTUTh HAOJIONATENb U PETYIATOP OMHOBpeMeHHO. OCOOEHHOCTh MPEIOKEHHOTO MTOX0/Ia SIBJISIETCS OTCYTCTBUE He-
00XOIMMOCTH BBIOOpa MOTIOCOB HaOtoaaTe s, [IpeaokeHHbIH TOAX 0 CHHTE3a CUCTEMBI YIIPABIICHUSI TOJIETOM OCHO-
BBIBAa€TCS HAa UCIIOJIb30BAHUU alapaTa JMHEHHBIX MaTPHYHbBIX HepaBeHCTB. D(PPEeKTHBHOCTH MPENI0KEHHOT0 IMOIX0/1a
JIEMOHCTPHUPYETCS Ha MPUMEPE YIPABJICHHs TPOAOJILHBIM JBIDKEHHEM OECIMIIOTHOIO JIETATEIBHOTO amnapara.
KaroueBble ciioBa: cucrema ynpasiieHHs [TOJIETOM; HAOJIIOAaTelNb MOJIHOIO MOPSIIKA; JTUHEWHbIE MAaTPHYHbIE HEpaBeH-
CTBa; 0OpaTHAasl CBS3b 110 COCTOSHMUIO; TEOpEMa pa3/ieleHHs.

Komnankas Mapra HukonaeBna. Kanaunat TeXHHYeCKUX HayK, JTOIEHT.

Kadenpa cucreM ynpapiieHUs JICTaTENbHBIX anapaToB, HalmoHabHBIN aBUAIIMOHHBIN YHUBEpcUTeT, KueB, Ykpauna.
O0pasoBanue: HarmoHansHbI aBUalMOHHBIH yHUBEpCHUTET, Kues, Ykpanna (2007).

HamnpagieHue HaydHON AATSIBHOCTH: CUCTEMBbI YIIPaBJICHUS ¥ 00paboTKa HH(OpMAITHH.

Konngectro myOnukanuii: 35.

E-mail: martakomnatska@gmail.com




