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experiments further validate all theoretical results. The developed analytical approaches
and numerical implementations can be similarly extended to a realistic FSI problem in

the future.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The interaction of a flexible structure with a flowing fluid in which it is submersed or by which it is surrounded gives
rise to a rich variety of physical phenomena with applications in many fields of engineering and biology, e.g., the vibration
of turbine blades impacted by the fluid flow, the floating parachute wafted by the air current, the flow of blood through
arteries, and etc. These interactions basically comprise many applications of an important problem - fluid-structure
interaction (FSI) problem - in hydrodynamics, aerodynamics and hemodynamics [ 1-4]. However, the study of FSI problems
are often too complex to solve analytically and are therefore done using numerical methods. Towards numerical analyses
for a realistic and complex FSI problem in the future, in this paper we consider to solve a simplified FSI model instead,
which is represented by a type of linearized FSI problem — an unsteady Stokes/parabolic moving interface problem, where
the fluid is modeled by Stokes equations in terms of fluid velocity and pressure, while the structure is modeled by a
vector-valued parabolic equation in terms of the structure velocity.

Due to its high accuracy and practicality, the body-fitted mesh method has become the most reliable numerical
approach for solving unsteady moving interface/boundary problems including FSI. The challenge is of course efficiently
generating a moving mesh that adapts to the moving interface/boundary at all times, and to tackle that challenging
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Fig. 1. Schematic domain £2 with the interface I'* between two subdomains £2; and £22.

problem, the arbitrary Lagrangian-Eulerian (ALE) method has been standing out for decades because of its high feasibility
in practice and accurate interface tracking all the time, where, the generated moving ALE mesh on the interface
continuously accommodates to the shared interface of materials on both sides, and therefore interface conditions of
moving interface problems can be satisfied at all times, exactly. In summary, ALE methods take the domain motion into
consideration then redescribe the moving interface/boundary problem.

In this paper we develop a type of ALE-finite element method for a linearized FSI problem between the unsteady Stokes
equations and a vector-valued parabolic equation coupled over a moving interface with jump coefficients, moreover, we
will analyze the optimal convergence property for both semi- and fully discrete scheme of this ALE method with respect
to a realistically low regularity of real solution to the presented Stokes/parabolic interface problem, where, we will utilize
a novel H!-projection technique [5] that is associated with a moving interface problem. In the literature, a classical H'-
projection is adopted to carry out ALE-finite element analyses for single Stokes equations on a moving domain [6], and a
limited sub-optimal convergence order is provided due to the effect of extra approximation error from the discrete ALE
mapping. A novel H'-projection that is introduced in [5] can derive an optimal convergence rate for one type of ALE-finite
element method since it takes the full influence of the discrete ALE mapping into consideration. In this paper, we will
apply this special H!-projection to another type of ALE-finite element method for an unsteady Stokes/parabolic moving
interface problem, and analyze its optimal convergence property for both semi- and full discretizations. In addition,
the developed finite element analysis technique in this paper that utilizes the novel H'-projection for a type of ALE
method can be similarly extended to numerical analyses of a realistic FSI problem, which will be our next work in the
future.

This paper is divided into six sections. In Section 2, we present the model description of an unsteady Stokes/parabolic
interface problem, establish the ALE mapping and some standard definitions, followed by the ALE formulation of the
model problem, then finish this section with a type of ALE weak form. Section 3 defines the semi-discrete ALE-finite
element scheme, and the novel H'-projection that is first introduced in [5]. Stability and error analyses are carried out for
the semi-discrete scheme in this section as well. Section 4 begins with the derivation of the fully-discrete scheme, then
analyzes its optimal error estimates by means of the H!-projection. Numerical experiments are carried out in Section 5
to validate the theoretical results. We end the paper with a few concluding remarks in Section 6.

2. The model problem and its weak form in ALE description
2.1. Model description

Let 2 C R? (d =2,3), and T > 0. Two subdomains, 2 := £2,(t) C 2 (i=1,2) (0 <t < T), satisfying 2! U 2! = 2
and £2{ N 25 = ¢, are separated by an interface: I'* := I'(t) = 32} N 32} that may move/deform along with ¢ € (0, T],
causing £2/ (i = 1, 2), which are termed as the current (Eulerian) domains with respect to x, to change with t € (0, T], in
contrast to their initial (reference/Lagrangian) domains, .Qio (i = 1, 2) with respect to . Here a flow map is defined from
20to 2f (i=1,2)as: & > x;(&;, t) such that x;(%;, t) = X +si(&;, t), Vt € (0, T], where s; is the displacement field in the
Lagrangian frame. An example of this type of domain configuration with an immersed subdomain is illustrated in Fig. 1.

In what follows, we set ¥ = (&, t) which equals ¥(x(&, t), t), and V = Vi (i=1,2).
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In the aforementioned domain £2, we define the following unsteady Stokes/parabolic interface problem with respect
tou; € (H' NL®)0, T; H3(£24) UH?(£25)%) (i = 1,2) and py € [*(0, T; H'(2!)):

WV (V) +Vpr = fy. in 2! x (0, T]
V.u, = 0, in 2! x (0, T]
uy, = 0, ond2\I'" x(0,T]
u(x,0) = uf, in 27
M V. (Vi) = f,, in 2 x (0, T] (1)
u, = 0, ond2\I" x(0,T]
u(x,0) = u, in 29
U = u, on I x [0, T]
(=pil + p1Vung + wVupn, = 1, on I'" x [0,T]

where ©; > 0 and uy > 0 are two jump coefficients, i.e., ;11 # (2, in this paper we take both p; and u, are constant.
And, f; € [2(2]) (i=1,2), T e HYX(I').

2.2. ALE mapping
With the model problem in place, we now define the affine mapping that allows us to use the ALE description of the
model problem. Assume 3X} € H'(0, T; W2>°(22%)9) (i = 1, 2) such that V¢ € (0, T], the mapping:
X : 20 - 2
x> X&)
is invertible such that (le)‘1 € W1~°°(.Qf)d, where X; € .Ql.o is known as the reference coordinate variable. The domain
velocity is then defined as

AXi(, t)

(X (0.7 R, wxr)= =70 (x0)™", fori=1,2.
With this domain velocity, we can define the ALE-time derivative which takes the domain velocity into account, as
% ) L% (0,T] - RY
(50 > T 0 = T 0+ (o, 0 VI, 0. @

X

Equipped with the domain velocity and ALE-time derivative, we can proceed to rewrite our problem using the ALE
description as follows.

Gty = V- (V) = (@2 - Vi +Vp1 = f, in 2f x (0,7]
V.ou, = 0, in ¢ x (0, T]
wy, = 0, ondf2\I'" x(0,T]
ui(x,0) = ul, in 29
9u2’ — V. (uaVip) — (w3 -V, = f, in £25 x (0, T] (3)
w, = 0, ond2\I'" x(0,T]
u(x,0) = ud, in 29
w1 = Wy, onI'" x [0, T]
uw = u, on I'" x [0, T]
(=p1l + 1 Vu)ny + poViupn, = 1, on I'" x [0, T]

2.3. The ALE weak form

To define the weak form of (3), we need to introduce the following functional spaces for ¢ € [0, T]:

U = {¥; e H() ¥ = ;0 (X)) V¥ e HY(R20), ¥, =00n dQ\I'} (i=1,2),
U 'ﬁp'ﬁz)eut XU§|W1 ¥, on I},
Qf = LZ(Q) Qo= {01 € Q| [gr 1% = 0}.
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With these spaces we can now define the ALE weak form of (3) as follows: find (uq,uw,) € (H! N L*®)0,T; U") and
p1 € I*(0, T; Qf o) such that

d
Z [a(ui, Vidot + iV, Vi)t — (@i - Vi, ¥t — (V- @i)ui, 'ﬁi):zif] (4)

i=1

— (1, V Y1)or + (V- i) = Zcf,, Vidar + (T, V) e, Y, ¥2) € U, g1 € Q.
i=1
where we employ the fact: d"" = % ({0, o (Xf)‘1> =0, V{P,» : .QP — RY, thus by the Reynold’s transport theorem [7,8],
we have

d 811,'
a(“i, 'ﬁi)gif = (E .

Jﬁf) + (V- i, ¥y)gr, fori=1,2. (5)
of '

3. Semi-discrete finite element approximation

Denote the mesh size with h (0 < h < 1), we construct the quasi-uniform triangulation 7}?,. in Qio (i=1,2). We assume
also no triangle of 7;2; has two edges on 320 and that no triangle crosses the interface I"°, moreover, 7;) = 7;°, U 7,2, is
conforming through the interface I"°.

3.1. Discrete ALE mapping and semi-discrete scheme

We now consider the discrete ALE mapping of X f by means of piecewise linear Lagrangian finite elements denoted by
X}, ; and defined as

Xpi: 20 - 2
x - x(x,t)

where X fu- is smooth and invertible. Likewise, the discrete mesh velocity is defined as follows:

dX! (X, t) .
oni 1 2 X (0.T] > BL @ni(x. )= —2=—0 (X;)) " i=1.2,
which leads to the discrete ALE-time derivative:
h
ou;
| 2! x(0,T] > R
at |,
aui ou;
X t)—> —| = X )+ (wpi(x, t) - Vui(x, t).
(%, 1) ot |, 8t( )+ (@ni(x, t) - Vui(x, t)

We denote the image of 7‘0 under this discrete mapping as Thl for t € (0, T] that is non-degenerate with time. Then,
Xf,, (i = 1, 2) represents a moving mesh that adapts to the moving interface/boundary. X ni (i = 1,2) can be arbitrarily
defined, for instance, by the following harmonic mapping:

—AX,; = 0, in 21,
Xhi = 0, on 3QN\T, ©
X,; = xp(x(&1),t), on I,

where x; denotes a prescribed interface motion.

Referring to low regularity results of the solution to elliptic interface problem [9-12] and to Stokes interface problem
[13-15] due to jump coefficients across the interface, the low regularity properties of the solution to the presented
Stokes/parabolic interface problem (1) are assumed as follows

i € [ (0, T; HY(2{)), S|, € 2(0; T; HX(R2))) (i=1.2), o
p1 € L= (0,T; H'(2)), 2|, € [2(0; T; H'(82})).

To account for the above low regularity assumption of the real solution (u, u,, p;), we introduce the following discrete
ALE finite element spaces using MINI-mixed finite element [16]
Uy = (1 ¥n2) € US[¥a ] € PY(K) VK € Ty W € PUK), VK € T,

(8)
Q {gn1 € Qlglan1], € PUK), VK € T} ;}
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where P1(K) is the set of piecewise linear polynomials on the element K, while P;(K ) denotes P!(K) enriched with bubble
functions in each element K. Standard mixed finite element theory assures that the Stokes-MINI mixed finite element is
stable and converges linearly for both velocity and pressure [17].

Then, the corresponding semi-discrete ALE finite element discretization is defined as follows: find (up 1, us2) € Ufl,
pn1 € Q;f such that

2 [d
Z |:dt(uh b Unidet + (1iVni, Vi ot — (@ni - Vi, ¥y 1ot — (V- @i, ¢h,i)gif]
—(pn1, V- 'ﬁhl)gf'i‘(v "hh%lgt Z(fnwhzgf‘i‘ (T, Y1) e V('ﬁhp'/’hz)eulp thEQh 9)

i=1

The error analysis of the above semi-discrete scheme relies on a couple of assumptions about the discrete ALE mapping,
Xfm- (i =1, 2). We assume that the following error estimates hold [6,18]

IX; — X} illo.co + RIVXE — X}, Dllo.00 < CR*INAIIX] 12,00
lwi — @h.illo.co + RV (@i — @h.i)llo.co < CH*[Inh|[|@i12,00, (10)

where we assume @; € W2>(£2{)".

3.2. Semi-discrete stability analysis

Theorem 3.1. The following stability result holds for the semi-discrete scheme (9) for any t € (0, T]:
2
Yl illpseqo izt + lnillizo. o)

i=1

2
= C(Z(||fi||L2(o,t;L2(Q{)d) + ”uiO”LZ(Q?)d) + ||T||L2(0,T;L2(rt)d))- (11)

i=1

Proof. Let Vi = Wi, Gn1 = Pn1 in (9), and use (5), yield:

at |y

uh,i) + (iVn i, Vi i)or — ((@ni - Vi Unidgt | = > (. Uni)g + (T, Una) e
i=1 Qif

i=1

By using the following identities

3uh,,- h 1 d 2
( o &,“h,i N =3 a”“h,i”o’glg_(uh.iv'wh,i»uh,i) ;

(iVup i, Vuh,i)_(zif

2
will Vunillg o
|

and Poincaré inequality, we then have,

2
Z[Zdt 15 g + ||uhz||mf}

i=1
2

1
< Z [(f,-, Unilor + S UiV - @i Uni)or + (@ni - Vittni, "h,i)_qif:| + (T, up 1)t

Using the boundedness of ||@p i||1,o due to (10), Young’s inequality with ¢, the Cauchy-Schwarz inequality and the trace
theorem, we have the following:

2 2
((@ni - Vuni, tni)gr < ll@nilleo ot I8l ot [Unillo o < €llunill] o + Clinillg g

L | |
(UpiV - @p i, Up, 1)_@‘ < Cllup, 1”0 ot

2 2
(Fiv nideg < Wil ot lnilo. e = CALFIR oo + .l o)

2 2
(v, 1) < ello,reNntllo.re < Clizlorellunaly gf < CllTlE o + €lunal} -
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We choose € = 4, leading to

2 2
d
) [anuh,ingﬂf + ||uh,l-||{9{} <c <§ (12 gy + Nl ) + ||r||?m> .

i=1 i=1

Integrating over time from O to t, then

2 2
N[t 1112 ¢ + [ty 111 cdt (12)
0,2 1.2
i=1 b o :

2 t t
<cC (Z (/ (Uil e + lunll} o)t + ||u?||§g_o> +/ ||r||§,rfdt> :
. 0 T 1 ] 0

i=1

Using Gronwall’s inequality, we have the desired stability result. O
3.3. Semi-discrete error analysis
We begin by introducing the following H!-projection associated with a moving interface problem [5].

Definition 3.2. Let (il;, i1;) € U}, and p; € Q be the H'-projection of the solution to (1) such that

21‘2:1 [(Miv(ui —u), V¥ idor — (@ni - V(Ui — u;), Ynider 4 «((ui — ), ¥y )t
—((p1 — P1)s V"/’hl)gf+(Qh1av'(ui_ﬁi))gf:O ('//h1,¢hz)€U,[1, qn1 € Q) (13)
provided that wy; is given and |lwp, illioqoy < M (i=1,2), k= max( -+ B+ My, zﬂz + 52 4 My).

Then, we have the following error estimates for this particular H 1—prOJectlorl using MINI-mixed finite elements.

Lemma 3.3 ([5]). With the regularity assumption (7) holding for ((uq,u3),p1) to (1), there exists a unique solution
(i1, ), p1) € Uy, x Qf to (13), Vt € [0, T], such that:

2 2 2
Dl — dillg gr +h (Z ;= il gt + | p1 — B ||o,95) < h? (Z luill, 0 + Py ||1,g1t) : (14)

i=1 i=1 i=1

Lemma 3.4 ([5]). With the same condition of Lemma 3.3, we have the following error estimate:

o' o ' H op | am
i—1 g xll1,0f xllo.ef
2
ou; op1
< Chlln h| (ZI:”u'HZQt—FH ot 2Qt:|‘f‘||p1||1gf‘|'H ot |, ”2[)7 (15)
i=1 ] it

Bul aul

X

2
Zl: 0,2f

2 ou;
<Ch (Z[Hu:”z 2t + H at

i=1

D1
ot

] + ||p1||1_(zf + H
2,2f

X

) . (16)
xll1,0f

Applying the H'-projection (13) to the ALE weak form (4), we then get the following ALE weak form with the
projection:
2

d -
Z [ o+ (Vi Vg — (@n - V)i ¥ o — (V- 00, '/fh,,')g;]

2

—(P1, V- 'Pm)gr +(qn1, V -1y ZI:(flaV’hl o + e ((u; — 1), V’h,i).@{] + (T, ¥p1) e

i=1
V(¥h1, ¥n2) € U, qn1 € Q. (17)

We can now proceed to the main theorem of this section as follows.
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Theorem 3.5. Suppose (u1, p1, uy) is the solution to (1) satisfying the regularity properties (7), and (W 1, pn.1, Un2) is the
solution to (9), then we have the following error estimate:

2 h h
all,' auh,i
Z lltti — v ill oo, m;m1¢0f ) + Sl T T L + 1P = Prallize 120ty
i=1 X 211120, (L2(2]))4)
- ou;
<Ch |: Z (||ui||L<>C(o.T;(H2(9if))d ’ 8tl 2(0,T3(H2(2! ))d))
i=1
ap
+ P10ty + H : } . (18)
ot 2(0,T:H(2]))
Proof. Subtracting (9) from (17), we get the error equation:
2[d
Z[dt(ui — Uni Yot + (Vi — uni), Vi i)or — (@ni - V(Ui — i), ¥y i)t
i=1
—((V - oni)(wi —uni). ¥y i)ot — (01 = Pr1s V- i)t + (@na, V- (i —"h,l))gg}
2
= Y [t =@ ¥ | VO V) € U anar € Q1 (19)
i=1
Picking new variables &; = w; — u;, 0; = i; — Uy, ¢ = P1 — pn,1, and using (5), we can rewrite (19) as
= [ (86 + o)
Z |:<8t1 Y 1) + wi(Voi, V'/fh1i)gifi| — (¢, V- '/’rm)sz{ +(qn1, V- 04 )gﬁ
i=1 2f
2
= 2" [(@ni- Vo ¥ ot + (61 ¥t ] (20)
i=1
Choosing ¥, ; = 03, qn,1 = ¢, (20) becomes
2 h h
96; d0;
Z (3; ) +37tl A,O'i> +M1(VUI,V0'1 ZI: (z)h,‘V)U,,U,)Qr +K(51,0'1)_in| (21)
i=1 x X _QI. i=1

Using Young’s inequality with ¢, the Cauchy-Schwarz inequality, applying Lemma 3.3 and the boundedness of ||@pi||1.00
due to (10), we get the following estimates on the right hand side:

(@ni - V)oi, 1) < €| Voilly o + Clloilly g (22)
2
(81, 01)or < C (h“ (Nl gt + Nzl g + P11t )+ ||of||?,_9if> . (23)
For the left hand side terms, we note that
38" aa|" 1d 1 ds; |"
— —| ,0i = - =((V- , , 24
(at &"F o |, Oi o 2d ||(71||09: 2(( Wh,i)0; Ul)gf + dt o (24)
i(Voi, Voi)gr = il Voillg - (25)
Applying Lemma 3.4 as well as Young’s inequality we get the following estimates:
1
5((V * @1.i)0i, Oi)gt < C||0i||é,9ir, (26)
ds;|" 2 du; ap ’
i 2 i 1
—|,0i <Clh |:||u:||2 ot + H ] + lp1lly, ot t “ +lloill o | - (27)
(dt 4 )Q_[ (; It Iz It Jgll o 0.9
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Apply the estimates obtained above, choose a sufficiently small ¢, then integrate in time from O to t and apply Grénwall’s
inequality, yields

2 t
> [no,-ngﬁf + fo ||Vcr,-||§,gitds]

=1

) (28)
2 (2 oy i
02 2
L
In order to conduct the pressure’s error estimate, we shall first estimate % 0.0t Let ¥y 4 = @ yand gn1 = ¢ in
)} 1

(20), yields

22: (80,

h
80,

+ v Vaa,-
. i,
o Mi i Bt

3(71
at

) + @,V o1
)

h V. 30’1
— o) g Ve .
h
) . (29)
of

22: 35 h + ((ons- 9)o do; |" P Y
V), 20 e s 2
. o i AFTEN » FY:

Applying the same formulations in [6, Lemma 3.2], we have

80',' h 1 d
wiVoi, V— = = | — (wiVoi, Vo) or — (,uiV ~wp iVoi, Vﬂi)gp
at % o 2 dt 1 i
+ (i (Veoni + Veor;) Voi, Voy) ¢ } ,
80, r
o, V- ml — (¢, V- @n1V- crl) + (¢, Veop1 : wl)gi
_Qt

1

Then (29) can be rewritten as

h

2 h 2 h
80’,' 80’{ 1d 88, 80,’
—| = =— (uiVoi, Vo = ,
Z <8t ot ) T3 WiVor Ve Z ot |, ot |,
i=1 X X @t i=1 * af
do; |" 1 do; |"
+ | (@ni- V) oi, — + | iV -oniVoi, Voi | +x | 8, —
ot 2 ot art |,
.(2{ i X a2t

[\)\.—A o~

(i (Veoni + Veoy ;) Voi, Vai) } (6. V@1V - o,) —(¢. v(ohl.vcx{)gi

7
=) T, (30)
k=1

where, by the Cauchy-Schwarz inequality and Young’s inequality with €, we have

2 ([ a8 " a0 "

T, <C — — , 31

'= Z at at (1)
i=1 0.2} 0,2}
2 do; | ’

L=C) ol +e| 5, : (32)
i=1 0,2}
2

T3+ Ts < C ) lloilf e (33)

i=1
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2

2 h
d0;j
To < CY | I8il5 g +e | 50 : (34)
i=1 0,92}
Ts+T7 < Cllov I} o +e¢||¢||§,9§. (35)
Pick a sufficiently small ¢, results
2 90: 11> 2 i)
251 +E||Vm||wf <cy A Al g+ 8D g |+ eslll o (36)
i=1 llo, et i=1 *llo.2!
By the inf-sup condition [19, Lemma 2], we have
16l - (¢.V-¥n, 1)9r
vl o = sup ﬁ
‘ ('/'h 1:¥h, z)ev0 (1 ¥n2)ln (37
80, 35; |" 2
Z o +C Y (lloilgr + I6illo.gr )
Jt % . . i i
i=1 O"Qi i=1
where we apply (19) and the Cauchy-Schwarz inequality. Substitute (37) into (36), leads to
2 do; | do; |
M= ||V<n||mf CZ ol g + 182 gy | + =2 Z — (38)
i=1 0, Qf %o, tel 0.2f
Take €, = % integrate (38) in time from O to ¢, then apply Gronwall’s inequality, and take uj ;(0) = i1;(0), yield
2 h
do;|" a6
Z goi + ”O-I'HLOO(O,t;(Hl(Qit))d) < C Z( - R + ”(SiHLZ(O,t;(LZ(Q{))‘i))' (39)
i=1 *lli20.1:02(20 ) i=1 20,022 %)
In addition, integrating (37) in time from O to ¢, taking ps 1(0) = p1(0) and combining with (39), we obtain
= (|2
@ 1li200,6,12028) = € Z + 18ill 20,220y | - (40)
*lz0.n022i))

Adding (40) to (39), applying Lemma 3.3 as well as the triangular inequality, we obtain the desired convergence
result. O

Remark 3.6. Theorem 3.5 shows an optimal (first-order) error estimate for ||u; — wn,ill;2(0 7,141t yey With respect to the
e 1

low regularity assumption of the solution u; € L* (0, T; HZ(Q})d) , i = 1,2, which can be considered as a remarkable
improvement over the classical H'-projection technique that is used in [6] for Stokes equations in a moving domain,
where the convergence order in energy norm is only suboptimal, i.e., O(h|In h|) [6, Theorem 2.1].

4. Fully discrete finite element approximation

Let At > 0 be the time step and t" = nAt forn =0, ..., N such that tN < T and tN*! > T, and ¢" = @(x(&, t"), t").
We introduce the following notation to account for the backward Euler scheme that is used to discretize the temporal
. . d .
derivative & (¢n.i, wh,i)gg'

9 ( yr+3 (opt s WH)Q?“ — (ph Yt o X?'““)m"
i i 2 =
t(@n.is Yni AL

where X" = Xj! o (X} )7" for i = 1,2, We further let J} and J}, ; denote the determinant of Jacobian matrix of the
continuous and discrete ALE mapping, respectively, defined as

t t (3%
Jt = det(F!) = det(ax( )), Jh; = det(F} ;) = det (axh*i(x)>, i=1,2.

X 0x
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Define U, ™1 and Qh”+1 as Uy and Q"' respectively. The fully discrete ALE-finite element approximation can now
be defined as follows: find (uﬁl, ity eupt pptl e ! forn=0,...,N — 1 such that:

2
1
> [ O is ¥ )2 + (VT VI e — (V- @ T W) g

i=1

— (@t )uhfl,w““)gpﬂ} ~(OE VU g+ (VUL @) g (41)

2
Z|:(fn+] b 1] Q’H]] < mHl 'Pn+1>,~n+1 ) V(wh,la Wh,Z) € UZ_H’ qh,l € n+1.

In the following, we first introduce a few lemmas which will allow us to perform the required error analysis for the
fully discrete scheme (41).

Lemma 4.1 ([6,20]). Let ¢ ' € Up*", then

¢+l
loptt o XPMH2 o = ||w”“||09n+1 - / ( f lopt! o XM V~wh,,-dx> de, (42)
1 tn
lont" o Xi "G gn < (”Att sup IV onidyilloo ot 107 ,Ql_m)ngo"“n e (43)
€ltn, 1 0.9

Lemma 4.2 ([20]). Vg; € H*(0, T; H'($2!)) where $2{ is mapped from 220 by the discrete ALE mapping X|, ;. Then

h

n\ n+1

_ Al [ e
. 2 a2 |
X

X

et )—aixn ") [ dg;
At - at

n+1
) — o (Von )" (Vi )”“] +0((At)*), (44)

where, wy; = 2 denotes the moving mesh velocity on account of the discrete ALE mapping.
at

Lemma 4.3 ([6]). There exists C; and C, depending on the discrete ALE mapping X,t“- (i = 1,2) and hg > 0 such that for
i=1,2,

Whillieo) < Cro TR gty < G2 VE €10, T], Yh € (0, hy).
And,

Wi —Jhillieqeo) < CAL, Ve [t", (1],

4.1. Fully discrete stability analysis

Theorem 4.4. Suppose (uﬁf, pﬁ], uﬁ*;) is the solution to (41) forn =0, 1, ..., N — 1. Then we have the following stability
result

2 N 1/2 2 2 N 1/2
Do | uillg on + (ArZ ||u;:,i||%_gin> < Y lwll o, + C[Z (ArZ uf?ué,gin)
i=1

i=1 n=1 i=1

N 1/2
+ (Atz ||r”||§ﬂ> ] (45)
n=1
n+1

Proof. Let ¥, ; =uy; (i=1,2), q};' =p}’' in (41), yields

2
> [at(uh,i,uh,) (VU V) g — (- of ) e
= (46)

+1 +1 +1 +1 1 +1
- ((wZ: V)uﬁl ’ uh )Q”Jr] :| Z(j‘” uZI Q"+1 + <Tn+ ulnll )1—~1l+1 .
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Then, by the identity

ab = M and (42), we have

s [ ““nzgim [ h,nmn lu "“nzgim — Il o XS g
(Wi )72 = 2At 2At
luf; — w0 X""“umn
+ 2At
NG g = WRilG g TG s — 0 0 XEVG o
= 2At + 2At
I 2 e = IS e e
> QIZAt + o / uj ' o Xf’"+]|2V~wh$,’dx dt
l
I 02 e — 15 g .
> A = Cllu g e (47)

Other terms in (46) are estimated as follows.
1 1 1 1 1 1
(wiVupt!, vupt )Q.n+1 — (V- @t )Qm — ((@pt" - V) uptt upt )Q_m
1 1

+1
”wzl ||L°°(S2in+l

1 1 1 1 1
> ll VTG s = 105 ey GG i = Svup [ T e
1
+l +1
n || 0,2 C”"n || 0,1
+1 1 +1 1
(ff' Uy )Qim < C(ILf” I cner + 4 ||mn+1),
+1 ,,n+1 +12 n+1
( " uhl >1~n+1 = C”Tn ||0‘['l1+1 + Z”uh’] ”1 _Qn+1
Combine all the above estimations, yields
1
2 [T goer = 081415 1 2 1 1
n+ n+ n+
<
> o F IV g | = CZ[' I gner + I} ||mm]
i=1 i=1
12
+CIT2 i (48)

Sum over the time step n from 0 to N — 1, leads to

2 [l g — 12

0.2 2 2 2
- +Z||Vu,,,||mn ch Z[||uz,i||0,9in+|Lf?||0,9in]+||r"||0an

Multiply both sides by At and apply the discrete Gronwall’s inequality, results in (45). O

i=1

4.2. Fully discrete error analysis
We describe the convergence theorem of the fully discrete ALE-finite element method as follows.

Theorem 4.5. Suppose (u1, p1, Uy) is the solution to (4) satisfying the regularity properties (7), and (uﬁl, pﬁl, u,’fg]) is the
solution to (41) forn =0, 1, ..., N — 1. Then we have the following error estimate:

2 N 2 3 N 2
Do | e =il o+ {ACD | 0 (] — u) ALY P} = Pl o
i=1 n=1 n=1

2
au, 82“1
< C(h+ At) Z ll0till oo 0,7, 2 eyt ‘ at | |20, 2) 92 |
X

i=1 12(0,T;12(82]))
1
¢ ¢ﬂ OX;n 1

At

op1

oL (49)

+||P1 ||L°°(0 T; Hl(.Q ) + ” L2(0,T;H1(Q{)):| 5 Where, 8t¢? e
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Proof. Let (17) take values at t"*! and add 9,(u;, WJ)H% to both sides of the equation, then subtract (41) from this
equation, yields the following error equation:

2

Z[(af("“'/’hz)+2 — (i, Y )3 ) + g (VAT =), V) : ]

i=1
1 1 1 +1 1
— (B =P V) g+ (@ VG ))a;‘“

_ n+1 ~n+1 n+1 n+1 ~n+1 n+1 n+1
= Z [K ((“i —), Yy )Qn+ ((“’ VNI — w0, Yy )9n+1
i i

i=1

d 1
+ ((V @p, 1)("n+1 uZT]) '//n+1)9y1+1 - (a("?ﬂ, ;jl)gml — 0¢(u;, '/’h,i)n+2>i| )
1 1
V( z’-qu n+1) c un+l7 q’ri-iil n+1.

For the simplicity, we rename terms of (50) on both sides from left to right, as:

2 2

P D +L3+L4=Z ZR’

i=1 Jj=1 i=1 j=1

. . ~n+1 1 - .
Pick new variables 8" = ul*! —a"!, o/ = T —upt?, p"1 =PIt — pit!, and choose ¥, ; = 03, gn1 = ¢ in (50),

then apply Poincaré inequality, Cauchy-Schwarz 1nequallty and Youngs inequality with e, leads to the following error
estimates for each term.

; 1
L = 0oi,01)"" 2 + 0¢(5;. Uz)"+2 =G+ Gy,
i 1
le = Mi"vojn+ ||0’Q'_“+1 = C||Gi ||1’Qin+1’
I3+Ly = 0,
i +12 +1)2
B (1872 g+ 10712 s ).
i +1,2 +1
Rlz =< €||V5n ” n+1+c||f7n ||0_Qn+1,
l
i n+1;2 n+1
R, < c(nsi ||0.91,1+1 +llo ||09n+1)-

There are three terms, G;, G, and Ril remaining for further error analysis. We start first with G; by applying (42):

1 1 1
Gi = d(oi, o)z = At[(ainﬂvainﬂ)gl’“ — (o}, Gin+1 OX?’H )9{1],
1

1 1 )
+1 2 +1 t,n+1
> 2At[u [ ||m,1+1 - ”afn”f’ﬂfﬁftn /Q; lof™ o X;" TV -y idx dt], (51)
1

where the last term, which will be moved to the right hand side of (50), satisfies the following inequality due to (43) and
Lemma 4.3:

1 tn+1 5
YT: ( / lo T o XM v-wh,idx> dt
tn @f

n+1
1 .
< — su V- @ 0 n+1 . ]/ n+l dt
=2t tEH)H.IhI( nidlloo, @0 AT )™ g g ; llo; ||OQ,1+1
< Cllof™ I gpen- (52)

We move G, to the right hand side of (50) and reformulate —G, as follows.

1 1
—Gy = —3(8;, 09)""2 = At|:(3f", o' OX?’HH)Q{I - (&, Uin+1)9;1+1i|
Ihi
8{1+1 _gn oxp+1.n h,i
1 on o XL Jhi ntl) — (8™, oYy —_ _ l I ' T n+1
At i ZTl , O; Qinﬂ i 0 Q{HI = At , Oj

n+1
Qi
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n
n n+1,n n n Jhi
Sl _ gn o xntln 6;’ oX; - 5,’ OA i
_ i i i n+1 h.i n+1
I Y Y B 7
Qn+1

A At
ontl
1

=H; +H,. (53)

We apply Lemma 4.2 to H; term as follows:

R\ N1
([ _ | [ 2y
at | 2 at2 |
X X
(=)

n+1
0%, h? — o (Vor )" (V8™ o net < C based on Lemmas 3.3 and 3.4.

H,

h n+1
) — @ 1(th,f>““(vs1-)"+l} +0((Ar)), o'

n+1
Qi

IA

ogrt +APE 107G e

) +o((At)h),

where 8 = ||<dt2 .

Term H, is handled based upon Lemmas 4.1 and 4. 3 as

Jn+1 -’h ;

<( ln+1
Hy, = —

C((1 + ADNSTIG gy + 1071 s

R\ n+1
&>

To estimate Rﬂl, let &i; = u;(f) and first consider the Taylor expansion of 4 i, 0" o Xﬁ’"“)g_r at t"*1 3s follows.
1

)(81 ° Xf!+1.n

1

)
n+1 n n+1,n n+1
At » 0 >9n+1 = C”61 o X,‘ ”0,91_"‘*'1 ”0 ”0’91_"‘”

IA

Therefore,

96;
2 i

o.cnet + (A + 107G i |- (54)

d 1
a(ui, oo X"t Jat

1
1 1 1 n,n+1
= — @™, o) gnr — (U, o o X gn

" At i i 2; i i i
[ﬂ

1 2

. e .
+/t (r—t”)dfz(u,-,ai“oxf"“) dt:| (55)

n

Apply (5) to the second order temporal derivative in the last term of (55), yields

d? : 02 : ot :
72 <U17 on'n'H) = (szl R Oi"H on’"H) + ( atl (V- wp;), G oX?~n+1> .
! X of X ot
o (V- : . :
+ (V- oni) —I—u,(iAhl) ’Uin+1 on'"H T+ (v - wh!i)zy ain+1 OX;‘.nJr] )
ot X ot X ot ot
82ﬂj ﬁj ~ 8(V . (x)h,,')
= ek O’Qif+2||v.wh$l’||oogt A O,Ql_f+||"i||0’9if rat c0.2!
N t.n+1
+v- wh,i||§wf||ui||0,gg ] [CANER G s (56)
We introduce the following notation:
A 32fli 21V ﬁ,' N B(V~wh,,-) v 2 ~
RO = | T | | AT onilant| 7 | o Mo gf| =gr | g + 1V - 0nal gilil g
|
< [ |2 o + i (57)
a t? |z 0,0f ot | 0,2! voat |’
where, we apply again the boundedness of the discrete mesh velocity, i.e., |@p, 1||H1 0.T:whoo(eii) = C, 1, 2.
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Then, we obtain the following inequality from (55)-(57), the Cauchy-Schwarz inequality and Lemma 4.3:

d | 1 e ;
R, = — [ @, o' — d(uy, 09"z ) < — f— " —(i;, o™ o XU df
4 (dt( i i )_Ql_nﬂ t( i z) = At o ( )dtz( i» O O A, )Qit
_l tn+1 .
< — (& — Rl o Xp™|, edi
At 2844
1 tn+1
2 T +1 P
<0 (t—t”)R(t)luh,illz U Ik g llo7 o gprad

1
¢+l ¢+l

tn
1 1
1 2 2
Tl+1 2(8\AF 2 2 n+1,2 N
Sm([n Wl W03 ||oo.gp+m(t>dt) (f (E — "l ||O,Qin+1dt)

1

At % ¢+l 2
£ 1 2(8\A7 1
c sup Wil mll(l”* )7 o gnet / RUE)E ) o g gn
3 fe(en, en+1) i n B

¢+l
C <Atf RA(D)dt + ||o"+1||mm> (58)
tn

Combining all bounds, take sufficiently small €, and multiplying all terms by At, we have

IA

IA

2
1 1
> [no“ I5.orer = 10715, g + AL Vo™ ||09m]

i=1
+1
35,‘ n\ "

2
<caty” [ H(
i=1
eh+1

+ “UinH ”(2)9_n+1 + (At)/ Rz(f)df] .
Ke .

Sum over n from 0 to N — 1 on both sides, and apply the telescoping technique, yield

2 N—1
Z[w I, = lloi ||090+At2||w“||09m}
=1 n=0

2 N 9

oy agunia

N—

2 gt TUSTTIZ i +ISTIG gn + (ALY (59)

I /\

n+1
5 |"
— tlz

T
+AtZ||a”“||mn+1+(At /Rz(f)df].
0

n=0

o gni (AL (60)

Apply the discrete Gronwall’s inequality and use (57), results

2 N—-1
+1
Z[ua I3, = llod ||090+AtZ||vG" ||OW}

i=1 n=0
n+1
(aa, )

<c z | z 1811
After applying Lemmas 3.3 and 3.4, Poincaré inequality as well as choosing "E,i = ﬁ?, we obtain

2 N—-1
> [na Ig.n + At llo™ I Q}

i=1 n=0

ﬁ,gm} + (A2

2

ch? + AtZ)AtZ[Z <|| 2 g+ H (a"'
i=1

n=0

n)2 n+1
ap1
) +||p1||mn+H< ) fw}.
2.0! A
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Next, we estimate the pressure’s error starting with [|¢"+! ||0 Q- The discrete inf-sup condition [19, Corollary 1] and
(50) lead to
(V . VIZ#, ¢n+1)9n+1

)’||¢n+] ”Q_Q?“ = sup n+1 n+1
(wn-H TII"H)EVEHH ” ( h,1 ) Hl

o

2
+1) +C Z <||O-in+1 ”LQ,"+1 + ”81n+1 ||0yg'n+1) ) (63)
0.2] i=1 ! i

n+1
i - U o XIH—] n
At

At

n+1
n+1 i
oy —uwoX, 1,
0 .01
A

0,01
()

22

i

We first estimate the second term on the right hand side of (63).

n+1 n
8 _8 oXn+ln

At

2
) e () )
At Oqgin-%—l_ o \\ dt At e

n+1 - 024 %
where, by the Taylor's expansion, &I = iI] ' — At ( ) + f[tn”“ (F—tn) azd'%’z(”
ou; Ut —ulo X! 2 1 b1 20\’
ot _ i T % Ot - / / (f—t) f( )dt Jhqdx;
At (At)z ) tn ot?

OyQiTHﬂ
th+1 » . thy1 azﬁ(f) 2 .
2 i A
Tth / (F—ta) dt/t ( v ) dij;, , dx;

L (POY e = A (P8O T g
EUANAC S ) Shoathai =5 | /Q, i ) o (64)
At . ; i1 || 92uy(F) |" .
<5 sup 0D g Wl g f proal ll I
tE(tn,[n+1) th X 0‘9%
uy(D)|"
< CAt 4(t) ,
o> g 2 20
L2 (tn, tn13L5(52))
resulting in
h n+1 n+1 i 2 ~y|h
u; u'oX i
H S) -EE e et | DD (65)
Fy At 09y+1 3t2 X P 2o
i L%(tn, tpy1:L (Qf))
Similarly,
+1
&H-H 5” Xl 2¢0.(F\ |
H (88! ) — = Clan aaaiit) :
0.0 ok 12(tn by 1 L2(20)
where, we introduce 8(F) = w(f) — il and @' = @i" o oXin+ 5 e ( i o Xz g — W Oxf,n). Thus we have
5 ~ 3
8281'({.') h B d (Uj(t) ul ) h B aZui(t) h
Atz g dt2 . ofr |
Then the third term on the right hand side of (63) is estimated as
~ n+1
DRI LS (I  ctan} 3u(f)|" as; |"
At = At = at ' (60)
0,21 =l 2t t g L2(20 bt
i nstng 1:L2(82)) O’Qin-ﬂ
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n+1

_oloxt n+1_ onoxi .
To find the estimation for aAt n+1.n . we take Yt = a‘zit”“*” in (50), then
0 Q_n+1
|
2 n+1 n+1
o/ —of oX! o/ —oaf oX!
i=1 ot o
n+1
o/ —oaf o X!
— | (@ni- V) o/, = 7 n4ln
t Q!‘H»l
1
n+1 n+1
— | s 0; _U OXrH—ln :| _ ¢n+1 V. 04 _Gl oXn+ln
i ) k) 67
At _Qn+1 At Q!]'T‘Fl ( )
2 R\ "1 n+1 n+1
--y duy oy o Xipn 0 =0l o X
, ot |, At ’ At
i=1 X ontl
1
n+1 i n+1
+ 51‘ _Bnoxn+ln g —O‘ oxn-&—ln ]
At ’ At ’
_QiTH~1
By a similar argument for deriving (48), we can attain
1
oM _otoxi,, 1967115 guin = 19071 g o
n+ i n+1,n n+
wivo! v > — IV 2 i (68)
P At 2At i logMt

n+1
‘Qi

an+ —o; noxi

As for the term <¢”“ V. o

ntln , we define
Qn+1

t =t (an+1

= O’l-n OX]”‘qn + AL

t
0;

o Xhint1 — 0; OXhln) vt € [tn, tat1],
then

o."+ Xl

n+1 L1 n+1,n
P, v T
Qn+1

_ 1 n+1 n+1 n+1
= E(‘b Vo )9”“ _E(¢ Vo] OXn+1 n).(z"+1

1 n+1
_ 1 (4n+1 n+1 _ 1 n+1 i Jn1 [ 3% . n
= ar (¢ Vo )m“ 2 (27 o Xnng I ox] : Vanog

1 n+1 \V/ n+1 n-H V n
— ¢ (25 -0
At ( ’ x'l"H 04 QT nn+1’ 1) o1

n

n+1 n 1 n+1 Jl+1 8"?“ - n
<¢ Oxnn+1’v ’%)Q] vl K4 oxnn+1! Il o :Vx’l"ﬁ
n Q’}

Since ¢! = ZNl (t”“)ga o (Xp,1)"!, where A is the number of degree of freedom, a(t) is independent of the spatial

=

variables, and @; o (X 1)~! are shape functions defined in .Qt] Thanks to the divergence-free condition, we have

<¢n+l’ qu“ Gf+1) el <¢n+1 OXn n+1> qu ' O-ln) 1= 0. (70)
2 2,
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Then,

-7
1 1 Joir [ 8201
+1 +1 n+1 1 .
At (¢n XL ni1s V. 0{1)93 T At 9" X;] n+1s I ( ox! : Vx'{aln
1

1 o ELON
_ X! , : Vool dt
At Je, (d) S dt Iy ( X} i 2}
R $1 o X IV - oni (0xi(0)\ 7
At J., mt J! X" (71)
(O (dona 0\ (omo\ T o L)
I\ oxt x| X} A o

C th1

<
At

n

1 i 1
16" 0 X i1llo o1 Vg llo gt < Cl™ g gre [ Vil o

2
Y n+12 n2
<
< SHO"™G g + Vot I o1

where the boundedness of J tl Fi[ and wj,; are applied.
Summarize (67)-(71), multiply both sides of (67) by At, apply Young’s inequality with ¢, yield

G‘n+] _ G OX 2
At i n+1,n \v4 n+1)2 — Vo 2
2 n+1
o; cr o X!
<€) At -—— +CZ(At||Va”“|| et ALIGTHE s (72)
i=1 t ot i=1
ou ()" a5, "\ Aty?
u;(t i ty
HA | —= +a || == + 10" IZ -
|z ; ot |, 2 0.2
Lz(fnvfn+11L2(9{))

n+1
0,%;

Take a sufficiently small € in (72), sum over the time step n from 0 to N — 1, apply the discrete Gronwall’s inequality, and
take up, (0) = u!'(0), result

2 N-1 n+1 2
—U oX!

DD yvammmd B AL P
i=1 n=0 t 2o

2

3u(f) "

<cy ana 16,00 + (A0 | —5=| (73)

i=1 n=1 X

L2(0.tn+1:12(220))
N

85,' Al’)/z ni2

(at + = ;w 5 01

Square both sides of (63), multiply by ! and sum over the time step n from 0 to N — 1, then we obtain the error estimate
of the last term on the right hand side of (73). Substitute it into (73) and apply the discrete Gronwall’s inequality, yield

R\ %
&>

0,2}

2 —_
—O' o X! 1
> s I A ey
, At of
i=1 n= n+1 74)
2 o2u; "] N as M\ (
1 1
_CZ ths ||mn+(At) i, 4 +ary (E)t ) |
i=1 n=1 *ll2(0,1;12(21)) n=1 X 0,2}
Further, due to (63), we have
N 2 N as "\"[” ;|
n;2 n,2 i nn2 i
ACY 19" gy = C | ALY | 187N 0n + (at ) Aol g | AP | | |9
n=1 i=1 n=1 */ o2t N2, 1:12(2))
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Fig. 2. Example 1: Initial (left) and terminal (right) subdomains and meshes with @ = 0.1 and h = %.

Add (75) to (74) then apply the discrete Gronwall’s inequality, and the triangular inequality, the estimation (49) is then
finally proved. O

Remark 4.6. Similar with Remark 3.6, Theorem 4.5 shows an optimal (first-order) error estimate for the fully discrete
scheme in the discrete energy norm of velocity in L*(H') with respect to a low solution regularity, which is another
improvement over the classical H!-projection technique that is used in [6] for Stokes equations on a moving domain,
where the convergence order in energy norm is only suboptimal [6, Theorem 2.3].

5. Numerical experiments
5.1. Translation without deformation

We consider an numerical example with a less smooth real solution in two-dimensional case, i.e., the velocity u =
(ur, up)" € (H2NL®)0, T; (HA(2} U £22)7 N(H'(£2))?) and the pressure p € (H' NL®)0, T; H'(£2})), which are given as
the following smooth functions:

up = (y — ot) (x — ot)* + (y — @t)* — 0.0625) t /B,
u; = —(x — ot) (x — wt)* + (y — wt)* — 0.0625) t /B, (76)
p = (;r cos(2m(x — wt))cos(2w(y — wt)) + 0.080716) sin(t),

by properly choosing f;, f, and t to satisfy the 2D Stokes/parabolic interface problem (1), where 8 = Bi(x), Vx € szg (i=

1, 2) are chosen as piecewise constants, X = (x,y)T € 2 = [—1,1] x [—1, 1] that immerses the initial subdomains
2 = {(x,y) ¥* +y* < 0.0625), 2! = 2\L2?% and t € [0, 1] with T = 1. Then the interface I; = 9527 satisfies the
equation of a circle:

(x —wt? + (y — wt)> = 0.0625, Vt e [0,T],

where, @ is a prescribed moving velocity of I';. By defining the real solution u and the interface I'; this way, we know
Vu € (L*(£2))*, only, leading to u € (H'(£2))*. In addition, the interface motion, X, is defined as X, = ot + X, V&, €

= 902, vt € [0,1], according to which, we solve the discrete ALE mapping Xfm» on Q' for the moving meshes
77“ (1 1,2), Vvt € [0, 1]. In the following numerical experiments, we pick @ = 0.1. The initial and terminal domains
and meshes are shown in Fig. 2, respectively.

We employ the fully discrete ALE finite element approximation (41) using the finite element spaces defined in (8),
i.e., the MINI mixed element as a stable Stokes-pair, to solve the above Stokes/parabolic interface problem for ((u1, u;), p1)
with a grid doubling as well as an appropriate time step size At that is proportional to h?, then to investigate the
numerical convergence rate in terms of both h and At. With different ratios of the jump coefficients g8; and B,, we
obtain the following convergence performances illustrated in Tables 1-3, where, we denote ||u — uy|| H1(2]U0?) by ey 1,

€k,2h

lu — uhIILz(Q ue2) by ey, and ||p — phlle(:2 ) by ep0, and, the convergence “rate” is calculated by log, ( for u or

p”. Figs. 3—- 5 111ustrate convergence hlstorles of each case via a log-log plot. From them we can see that the convergence
rates of both the velocity in H!'-norm and the pressure in L?>-norm are of the first order. Additionally, velocity errors in
[?-norm even have the second order of convergence rate, and, all numerical convergence rates are independent of the
jump ratios. It means all convergence rates are optimal regarding the adopted MINI element, Theorem 4.5 is thus validated
for a Stokes/parabolic interface problem with a globally low solution regularity.
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Table 1
Convergence performance of the case: 8 =1, 8, = 1 in Example 1.
h ey Rate €u.0 Rate €50 Rate
% 0.516986836 0.022440886 0.730733279
% 0.231354028 1.16 0.00575924 1.96 0.20185467 1.86
% 0.116959946 0.98 0.001469527 1.97 0.064543055 1.64
% 0.058159269 1.01 0.00036935 1.99 0.024825937 1.38
é 0.029157309 1.00 9.30883E—05 1.99 0.011351926 1.13
Table 2
Convergence performance of the case: §; = 1000, 8, = 1 in Example 1.
h €u.1 Rate €u.0 Rate €p.0 Rate
s P,
% 0.033954753 0.001951829 0.726987967
% 0.014174702 1.26 0.000705712 1.47 0.201460044 1.85
% 0.006115952 1.21 0.00017009 2.05 0.069488858 1.54
% 0.002919325 1.07 4.18E—05 2.02 0.024796179 1.49
& 0.00136905 1.09 1.02E—-05 2.03 0.011347748 1.13
. By=1,p,=1
10° = e e :
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10"E / e |
DL : i : . ]
10° v o " i
S : L
| ; et I
i :
10° , Al > lo-uy,
i / : — 2060
o lu-ul,
10" — 03502
v b=y
5 49148
1075 ‘ ——— 0
10 10 10
Mesh size A
Fig. 3. Convergence history of the case: gy = 1, 8 = 1 in Example 1.
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Fig. 4. Convergence history of the case: gy = 1000, 8, = 1 in Example 1.
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Table 3
Convergence performance of the case: gy = 1, 8 = 0.001 in Example 1.
h ey Rate €u.0 Rate €50 Rate
% 49.74042054 1.649159774 0.72878861
é 15.71558051 1.66 0.492912811 1.74 0.204922747 1.83
Tle 6.973264726 1.17 0.100711781 2.29 0.064533986 1.67
312 3.061419158 1.19 0.027343689 1.88 0.024829483 1.38
617 1.383859114 1.15 0.006258234 2.13 0.011351034 1.13
=1,p,=0.
. B,=1,8,=0.001
10 ¢ e ——— — : ——
10' L
10° 5
» E &
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u 10.1> o fu-wl)
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Fig. 5. Convergence history of the case: 8y = 1, 8 = 0.001 in Example 1.

5.2. Translation with deformation

In this example, we consider that the immersed subdomain .Qtz conducts a translational motion combining with a
deformation. Let the velocity u = (u;,up)" € (H? N L®)0, T; (HX(£2! U £22))> N (H'(£2))?) and the pressure p €
(H' NL>®)0, T; H'($2,)) be given as the following smooth functions:

up =y —ot) (x — @0)*(1+ £ + (y — wt)*(1+ £)72 — 0.0625) t/B,
Uy = —(X — ot) ((x — ot (14 £)° +(y -t (1+ £)* - 0.0625 (1 + g)“) t/B, (77)
—(x—ot?(1+ £+ —wt)? (1+ L) —0.0625,

by properly choosing f,, f, and 7 to satisfy the 2D Stokes/parabolic interface problem (1), where again, 8 = Bi(x) (i =
1, 2) are chosen as piecewise constants across the interface. We adopt the same setup for £2, initial subdomains £? and
.Ql, and the time interval [0, 1] as shown in Section 5.1, but a different interface motion, x;-, whose shape satisfies the
following equation of an ellipse with a fixed area:

2 -2
(x — wt)? (1+§) +(y —wt)? (1+§> =0.0625, Vte][0,T], (78)

and combines with a translational motion, i.e., Xp = @t + Xeliipse, Where Xeiipse is given in (78) for all t € [0, 1], and w
is a prescribed translational velocity. It is easy to see that u still belongs to (H!(£2))? N (H2(£2} U £22))%. In the following
numerical experiments, we solve the discrete ALE mapping Xf“- on £2' for the moving meshes Thfi (i=1,2), YVt € [0,1]
with a picked @ = 0.1. Fig. 6 shows the initial and terminal domains and the obtained meshes from the discrete
ALE mapping, respectively. On these translational and deforming meshes, we carry out the same ALE finite element
computations as done in Section 5.1 for the presented Stokes/parabolic interface problem, and obtain very similar
convergent results as shown in Tables 4-6 and Figs. 7-9, i.e,, first-order convergence performances are obtained for both
the velocity in H'-norm and the pressure in L>-norm without any dependence on the jump ratios, which is in accordance
with the optimal convergence property of the adopted MINI element. Theorem 4.5 is then validated again for the case of
translational and deformable interface motion.
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Table 4
Convergence performance of the case: f1 = 1, 8, = 1 in Example 2.
h ey Rate eu.0 Rate €0 Rate
% 0.996301753 0.069596115 0.642449907
% 0.472722052 1.08 0.019931697 1.80 0.236682718 1.44
% 0.24105556 0.97 0.005159317 1.95 0.108150064 1.13
% 0.119485413 1.01 0.001306648 1.98 0.052168477 1.05
é 0.06003909 0.99 0.000331003 1.98 0.0253667 1.04
Table 5
Convergence performance of the case: 8y = 1000, 8, = 1 in Example 2.
h ey Rate eu,0 Rate €0 Rate
% 0.08103879 0.003368715 0.591390759
% 0.021046922 1.95 0.001043729 1.69 0.218702698 1.44
% 0.009594669 1.13 0.000250221 2.06 0.106047448 1.04
3% 0.004978054 0.95 6.24E—05 2.00 0.051738145 1.04
& 0.002030196 1.29 1.51E—05 2.04 0.02531953 1.03
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Table 6
Convergence performance of the case: g = 1, 8 = 0.001 in Example 2.
h ey Rate eu.0 Rate €0 Rate
% 114.103521 2.887720121 0.604718796
é 27.75581716 2.04 0.697766225 2.05 0.229827914 1.40
116 11.64688374 1.25 0.144909544 2.27 0.106618476 1.11
%2 5.370819847 1.12 0.039041095 1.89 0.051933702 1.04
é 2.075388731 1.37 0.008718433 2.16 0.025332275 1.04

6. Conclusions

In this paper, the Stokes/parabolic interface problem and its ALE-finite element analyses provide a foundation for
more complex fluid-structure interaction problems’ ALE finite element analysis with an optimal convergence rate on
account of a lower solution regularity, realistically. In particular, we develop both semi- and fully discrete ALE-finite
element approximations to a unsteady Stokes/parabolic moving interface problem in MINI-mixed finite element spaces,
utilize a novel H'-projection technique that is associated with a moving interface problem to analyze their stability and
optimal error estimates, and obtain the convergence date of O(h) for the semi-discrete scheme according to a low solution
regularity. Moreover, we specifically discretize the moving temporal domain generated by ALE mapping using the implicit
backward Euler scheme, defining the fully discrete ALE finite element approximation. Through additional error analyses
with respect to the time step size At, and using the specific H'-projection, we also obtain an optimal convergence order
of O(h + At) in energy norm for the fully discrete scheme, which is consistent with the spatial convergence rate of the
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semi-discrete scheme, also consistent with the temporal convergence (first) order of backward Euler-type time difference
scheme. The error analysis techniques using a novel H'-projection developed in this paper can be similarly extended to
a realistic FSI problem in the future.
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