
University of North Florida University of North Florida

UNF Digital Commons UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2019

Exploring applicability of blockchain to enhance Single Sign-On Exploring applicability of blockchain to enhance Single Sign-On

(SSO) systems (SSO) systems

Samuel Matloob
bmatloob@gmail.com

Follow this and additional works at: https://digitalcommons.unf.edu/etd

 Part of the Information Security Commons

Suggested Citation Suggested Citation
Matloob, Samuel, "Exploring applicability of blockchain to enhance Single Sign-On (SSO) systems" (2019).
UNF Graduate Theses and Dissertations. 931.
https://digitalcommons.unf.edu/etd/931

This Master's Thesis is brought to you for free and open
access by the Student Scholarship at UNF Digital
Commons. It has been accepted for inclusion in UNF
Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more
information, please contact Digital Projects.
© 2019 All Rights Reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNF Digital Commons

https://core.ac.uk/display/286610137?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
https://digitalcommons.unf.edu/etd?utm_source=digitalcommons.unf.edu%2Fetd%2F931&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.unf.edu%2Fetd%2F931&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unf.edu/etd/931?utm_source=digitalcommons.unf.edu%2Fetd%2F931&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/

EXPLORING APPLICABILITY OF BLOCKCHAIN TO ENHANCE SINGLE
SIGN-ON (SSO) SYSTEMS

by

Samuel Matloob

A thesis submitted to the
School of Computing

in partial fulfillment of the requirements for the degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA
SCHOOL OF COMPUTING

December, 2019

Copyright (c©) 2019 by Samuel Matloob

All rights reserved. Reproduction in whole or in part in any form requires the prior
written permission of Samuel Matloob or designated representative.

ii

ACKNOWLEGEMENTS

There are many people around me without whom I would not have been able to

reach this milestone in my life. First and foremost, I would like to give special

thanks to my wife and my sons who were very supportive and patient with me. I

also would like to give special thanks to my thesis advisor Dr. Swapnoneel Roy and

to my advising committee: Dr. Asai Asaithambi and Dr. Peyman Faizian, who

supported me in my academic journey. Their advice, encouragement, patience,

and great feedback helped my advancement at the personal level as well as the

professional level, which in turn helped improve the research work significantly.

Also, I would like to thank Cyber Florida as this research work was supported in

part by their grant (#220384). Lastly, I would like to thank all professors at the

University of North Florida who taught me during my master’s program, as I have

learned so much from each of them.

iii

CONTENTS

List of Figures . vi

List of Tables . vii

Abstract . viii

Chapter 1 INTRODUCTION . 1

1.1 Background . 3

1.2 Objectives of the SSO . 5

1.3 The Proposed Solution to Single-Point Failure in SSO 6

Chapter 2 Blockchain Technology . 7

2.1 Introduction to Blockchain . 7

2.2 Blockchain Applications . 8

2.3 Hyperledger Fabric Componenets . 10

2.4 Initial Setup for this Project . 11

2.4.1 Blockchain Setup Details . 12

2.5 Implementation of Final Model . 14

Chapter 3 Implementation Details . 17

3.1 Requirements for the Model . 17

3.2 Concept Implementation. 18

3.3 Test Model . 19

3.4 Hardware Used . 21

3.5 Operating System and Software Used 22

3.6 Putting All Pieces Together . 23

iv

Chapter 4 Results and Analysis . 26

4.1 Results. 26

4.2 Analysis . 26

Chapter 5 Conclusion and future work . 31

5.1 Conclusion. 31

5.2 Future Work . 33

REFERENCES . 34

Vita. 40

v

FIGURES

Figure 1.1 Single Sign On Concept 5

Figure 2.1 Implemented Blockchain Model 13

Figure 3.1 Single Sign On Login Page 20

Figure 3.2 Implementation of the Test Page 21

Figure 3.3 How the hardware are connected 24

vi

TABLES

Table 4.1 Using Blockchain with 100 iterations and

Round Robin decision making policy 27

Table 4.2 Using Database with 100 iterations and Round Robin

decision making policy - traditional connection 27

Table 4.3 Using Database with 100 iterations and Round Robin

decision making policy - Non-traditional connection 27

Table 4.4 Using Blockchain with 100 iterations and Random

decision making policy . 28

Table 4.5 Using Database with 100 iterations and Random deci-

sion making policy - traditional connection 28

Table 4.6 Using Database with 100 iterations and Random deci-

sion making policy - Non-traditional connection 28

vii

ABSTRACT

Single-Sign-On (SSO) systems usage has been on the rise exponentially. One of

the major benefits of having an SSO system is to have a central authentication

service, which other applications can use. However, SSO services are also prone

to failure. If an SSO service becomes unavailable due to failure, every application

that uses the SSO service become simultaneously inaccessible to users. The goal

of this research is to explore a technique to mitigate the availability issue of the

SSO by customizing its functionality, and distributing its data using blockchain

technology over the network. The Blockchain data structure possesses inherent

properties that can be useful to improve an SSO service’s availability and hence,

its overall functionality and reliability.

viii

CHAPTER 1

INTRODUCTION

Applications are programs that help users to store, retrieve, and analyze data. As

organizations grow bigger and expand their scope of work, they need more appli-

cations to drive their daily operations [35]. These applications give users access

to information (private and public), such as financial data, customers’ data, etc.

Therefore, access to different applications has to be limited respectively to only

those authorized to access them [33]. Securing applications require an authentica-

tion mechanism that verifies the user’s identity before letting the user access these

applications. Authentication can take different forms, such as basic authentica-

tion, biometric authentication, etc. The most common method of authentication

is the basic one, where developers usually add a login page that challenges users to

provide a valid username and password [4, 10, 37]. This login page can be attached

to a developed resource to protect it. But, as the number of applications increases,

securing these applications will become a daunting task, not to mention maintain-

ing the authentication code in each of them. To alleviate this problem, developers

started to think of building a centralized solution that all applications could use [5],

which led to the development of the widely used SSO system [9, 13, 26, 42].

SSO brings many benefits to users. One of the major benefits is that the user

will only need to login once. After a successful sign-on in the SSO’s login page,

the user will have access to all applications connected to that SSO service and

without the need to log in again. In the same manner, when the user logs out from

any resource, he/she will also generally have the option to log out from all other

– 1 –

applications via the SSO system.

Many organizations already have adopted the SSO system in their network.

SSO makes it easy for developers to secure many applications, and allows users to

memorize and use a single pair of username and password to access multiple ap-

plications instead of overwhelming them with several complex username/password

pairs. Besides, maintaining a single authentication application is more manage-

able than multiple ones. The benefits SSO systems encourage organizations not

yet using them to move towards using SSO systems. A major drawback in SSO

systems is they have a one point of failure [11]. This vulnerability can have ma-

jor adverse effects on organizations if the SSO stops working. If the SSO stops

working, users will not be able to access any of the secured applications that the

SSO manages. To the best of the author’s knowledge, little or no research in the

literature has reported or proposed a solution to this issue, which was one of the

primary motivations of this research.

Blockchain is a data structure designed and implemented in 2008 by an anony-

mous person or a group under the name Satoshi Nakamoto [40]. The purpose of

blockchain is to decentralize data and replicate them across different servers on the

network. As will be discussed later in detail, there are many implementations of

blockchain with the same goal. This research used a blockchain application called

Hyperledger - Fabric [2, 7]. Hyperledger - Fabric stores the data in a special data

stores called ledgers that are spread out on the network [39]. Blockchain stores

data in blocks, and each block contains various pieces of information (data) de-

pending on the specific application. Also, each block stores a cryptographic hash

of that block and a cryptographic hash of the previous block, forming a chain

of blocks, hence the name blockchain. Because of this strong link between the

blockchain blocks, blockchain’s datastores are resistant to modification, a feature

that made blockchain very popular and attractive. The techniques blockchain uses

– 2 –

to decentralize data and store data, might help address the SSO one-point failure

vulnerability identified previously. The contributions of the research in this thesis

are: (1) To explore blockchain based techniques to improve availability of SSO sys-

tems, (2) Implement the proposed solution over two protocols, namely round-robin

and random, to balance the load of the authentication requests between multiple

servers.

The thesis is organized as follows. This first chapter (Chapter 1) provides an

introduction to the Singe-Sign-On system and Blockchain technology, the benefits

of using them and the proposed solution. Chapter 2 provides additional details

about blockchain components, applications, and configuration that the experiment

model used. Chapter 3 describes the implementation of the proposed solution and

also the test functions. Chapter 4 presents the results that have been collected

from the experiment and provides an analysis of the results. Finally, Chapter 5

states the conclusion from this work and presents observations that could expand

the scope of this work for future research.

1.1 Background

Securing data and applications that access these data have become a challenging

task. Attackers are becoming smarter every day, not to mention the advanced

tools they use that allow them to scan and attack systems. Unfortunately, appli-

cations that are meant to help administrators to test the security of their servers

and networks can also also be used by attackers to exploit systems. These appli-

cations are usually available on the Internet and any anyone can download and

use them. SSO can help improve the security of the system in two aspects. First,

it will provide a single authentication point that makes the maintainability of the

data and the code easier on administrators and developers. Second, it prevents

storing passwords in more than one place, or places external to the organization’s

– 3 –

network [41].

Previous studies discussed the concept and the design of the SSO service. For

example, [5] and [21] talked in detail about the SSO protocol and the types of

applications it can support, such as Web SSO, Legacy SSO, and Federated SSO. It

also discussed the encryption techniques that could be implemented over an SSO

to protect data in communication against eavesdroppers who might be listening

to the communication. Besides, the paper [5] also talks about protocols that the

SSO could use, such as LDAP (Lightweight Directory Access Protocol), Kerberos,

RADIUS protocol, etc. for user authentication. With the growing popularity and

convenience of using cloud computing as a service in organizations, the paper [27]

suggests making the SSO a cloud service, and implementing the resulting central-

ized user authentication virtually. Only a few papers (e.g. [5, 21]) talk about some

of the issues with the SSO. As mentioned before, being a centralized service, SSO

has a single point of failure vulnerability. Therefore, if the server goes down, no

user can log in and use any of the resources on the network.

This research investigates the availability issue of the SSO and explores a solution

that can minimize the adverse impacts of this issue. Throughout this research work,

a new model will be built that implements the SSO and the suggested solution,

which then it will be tested and compared with the current used model. Some

of the questions that this research tries to answer are: (1) What are the possible

solutions to single-point failures in SSO? (2) Can blockchains be used as part of

the solution? (3) If yes, then how? (4) Would using blockchains add complexity

and/or latency to the model compared to other solutions? (5) If yes, then by how

much?

– 4 –

1.2 Objectives of the SSO

The invention of the Single-Sign-On (SSO) service brought a lot of benefits that

helped developers resolve different issues that they experienced before. The SSO

got rid of code replication, since it provided a central authentication service that

all applications could use. Figure 1.1 shows the concept of the SSO in a network.

Figure 1.1: Single Sign On Concept

The benefits of using SSO as described in [41] are:

1. No need to store credentials and manage them externally when using a 3rd

party application.

2. SSO will liberate users from memorizing a complex password for each appli-

cation they access.

3. Users will have access to other applications once they authenticate success-

fully.

4. SSO will minimize the time spent on maintaining the authentication code

and data.

– 5 –

1.3 The Proposed Solution to Single-Point Failure in SSO

SSO is a useful authentication system, yet and as explained in the previous section,

it has the vulnerability of a one-point failure. Therefore, if the SSO system stopped

working because of any reason, users will not be able to log in and/or access any

of the secured applications accessible via the SSO system. An intuitive way to

address this issue is to run multiple SSO systems any of which can authenticate

users, and let them access the secured applications on the network. Although this

might work, it might not be the optimal solution to address the problem. That is

because, with this solution, all SSO systems share the same database containing

user information. Therefore, the failure of the database engine also collapses the

whole system. Additionally, this solution might introduce latency if the database

and the SSO are located physically in different geographical locations. A better

solution will be to distribute and replicate the database across the network too. In

this research the usage of blockchain to replicate the database has been explored.

Blockchain aims to distribute data across multiple servers in the same or different

locations. The proposed solution to the one-point failure in SSO links SSO with

blockchain. Although usage of blockchain to replicate databases in SSOs might

add complexity to the overall system, it is still worthwhile finding out the amount

of complexity in terms of different parameters like latency, memory usage, energy

consumption, etc. This research implements the SSO system using blockchain

for data distribution and replication and compares it with the current state-of-

art SSO systems that use traditional Relation Based databases (RDBMS) to store

data and Structured Query Language (SQL) to retrieve data in terms of scalability,

maintainability, and vulnerability.

– 6 –

CHAPTER 2

Blockchain Technology

2.1 Introduction to Blockchain

A blockchain is a linked list of records constructed in blocks in which blocks are

linked together cryptographically via a hash function [39]. Blockchain stores data

using key-value pairs. In blockchains, the record’s value does not change. Instead,

a new record (block) is appended to the blockchain whenever existing data has to

be modified. This behavior can be useful for checking the history of updates on a

piece of data contained in the blockchain. Each block in the blockchain contains

a cryptographic hash value of the data in that block that depends on the cryp-

tographic hash of the previous block, making data in blocks almost impossible to

be altered. One has to modify the hash of all the blocks following a particular

block in a blockchain if data of this block has to be modified. These blocks are

stored in multiple locations (called ledgers in blockchain terminology) to form a

distributed ledgers network. Before adding any block to the ledger, the request

goes through different processes, depending on the application. The processes help

to make sure that the request is valid, and the blockchain nodes are in consensus

with that request before processing it. Blockchain nodes check the identity of the

requester by checking the requester’s digital signature attached to the request.

Once blockchain’s initial validation completes, the consensus process starts. The

consensus protocol may again differ, depending on the blockchain application [45].

Bitcoin, for example, uses Proof of Work (PoW) protocol [18], while Ethereum uses

– 7 –

Proof of Stake (PoS) [14] consensus protocol. More sophisticated consensus algo-

rithms such as Practical Byzantine Fault Tolerance (PBFT) [1] are also available

in certain blockchain applications. Some blockchain applications offer more than

one consensus protocol. Each network environment may need different blockchain

applications depending on the intended use and the consensus protocol desired.

Therefore, the decision-maker will have to examine the network and study the

advantages and disadvantages of each consensus protocol to decide on blockchain

application that will fit the environment the best.

Blockchain can be categorized into two categories: permissionless and permis-

sioned applications [8, 22, 43, 44]. Permissionless blockchain networks are open

for anyone to participate in using the blockchain’s functionalities by making the

participant’s server(s) be a part of the blockchain network. Common examples of

permisionless blockchains are Bitcoin and Ethereum [38]. On the other hand, only

agreed upon participants can be a part of the blockchain network in permissioned

blockchain applications. This agreement has to be decided on before setting up

the blockchain network. An example of permissioned blockchain application is

Hyperledger Fabric [2], which is what this research uses.

2.2 Blockchain Applications

As mentioned in the previous section, in the permissionless blockchain, anyone can

participate in the blockchain network. The participation happens at the consensus

stage and will differ by the consensus algorithm adopted by the blockchain appli-

cation. For example, in PoW (Proof of Work) protocol, the blockchain network

asks the participants to solve a cryptographic puzzle. Participant servers will race

each other to solve this puzzle. The incentive for these participants on the race

is that the first participant who solves the problem will win a reward from the

blockchain system. This process is called mining in blockchain, and the miners are

– 8 –

nodes/servers that solve the puzzle [23]. PoS (Proof of Stake), on the other hand,

realizes the power consumption issue in solving a complex mathematical problem

when using PoW. Instead, PoS motivates participants to buy cryptocurrency to

become a more competitive stakeholder and validator.

In permissioned blockchain system, participants are already known by the

blockchain network and agreed upon at the early stages of building the network.

Communications in permissioned blockchain networks are strict. Therefore, par-

ticipants that send a message will have to stamp it with their digital signature.

Also, any participant that receives a message will verify the digital stamp of the

sender before processing the message. The receiving participant will ignore the

message if it fails to verify the signature. In other words, the message will fail the

receiving participant’s verification if it is coming from a non-participant server, or

if its cryptographic signature does not match the sender’s signature. All partici-

pant servers in this scenario know each other and share the same goal. Because the

identities of all participants are known, the risk of having a malicious participant

that tries to disrupt the blockchain system is less. Also it is easier to identify the

a malicious or compromised node/server in this type of blockchain networks.

The properties of the Hyperledger Fabric, such as its robustness, fit most of the

requirements of an SSO system. Also, Hyperledger being a permissioned blockchain

application makes it more desirable for storing private information such as users’

account information that an SSO system uses. Additionally, Hyperledger Fabric is

an open source, permissioned distributed ledger blockchain that addresses certain

limitations of other permissioned blockchain systems, e.g. usage of a fixed con-

sensus protocol, and not having flexibility in the programming language used for

implementation [3]. It was created under the Linux Foundation, and is intended

to be used in enterprise systems. Also, Hyperledger Fabric was designed to be

modular and configurable, a feature that fits in nicely for SSO systems.

– 9 –

2.3 Hyperledger Fabric Componenets

The main components of Hyperledger Fabric (or Fabric) include ledger(s), peer(s),

smart contracts, and orderer(s). Fabric modularizes the network by using contain-

ers, and therefore, Fabric has Orderer(s) and Peer(s) in separate docker containers.

Ledgers are Fabric’s immutable storage units that do not only store the current

record’s value but also store the transaction history for each record. Each record

is stored in the form of blocks, and the data in the blocks are in key-value pairs.

Because each block references the previous block’s cryptographical hash, it is al-

most impossible to alter any record. Ledgers live in peers, and each peer can have

one or more ledgers. Peers are vital and fundamental components in the Fabric

network because they host ledgers and smart contracts, in addition to their role in

endorsing and validating new requests.

Smart contracts (also known as chaincodes) are applications that define the

policies among the participating entities on the blockchain network [34]. Fab-

ric supports different languages that can be used to develop the chaincode, such

as Golang, Java, and Nodejs. Chaincode applications set the behaviors of the

blockchain network, such as creating a new record, updating records, deleting

records, etc. in addition to maintaining the requirements to initialize any request.

Orderers, on the other hand, plays a critical role in collecting and ordering new

blocks before distributing them to the peer nodes. Indeed, in Fabric, no single

commit to the ledger can be done without orderer’s involvement in the process.

Generally, if the network receives a request to add a record to the ledger, this re-

quest will go through a process. This process comprises of three phases: proposal

phase, ordering and packaging transactions into blocks phase, and validation and

commits stage. In the proposal phase, the application (which is not part of the

blockchain network, but it interfaces with it) will issue a transaction request to

– 10 –

each of the required peers for endorsements. The endorsing peers will check the

received request and digitally sign it, yet they do not update their ledgers at this

phase. Once the peer approves the request, it returns to the application, and that

will mark the completion of the first phase. In the second phase, the system will

package and send the signed transactions it received from the endorsed peers to the

orderer, which is the pivotal component in the update process. The third phase of

the process involves the orderer to distribute the signed request to all peers that

will validate the claim and ensure the appropriate organization has endorsed the

request before committing the update to the ledger. Because Fabric is a permis-

sioned blockchain, each participating peer must have a cryptographic key that it

can use to sign requests. Other peers will check the signature of these requests to

verify who worked on these requests. If the verification of any message points to

a foreign sender, the peer will ignore these requests. The Fabric also implements

different permissions within one network by introducing channels to the system.

For peers to communicate with each other, they need to be on the same channel.

Otherwise, they are not authorized to talk. Peers can join organizations. Depend-

ing on the endorsement policy, peers from different organizations might have to

endorse a transaction to make sure all organizations are in agreement with any

transaction that occurs in the blockchain network.

2.4 Initial Setup for this Project

The initial research was to build a working Fabric network following the tutorials

that [3] provided in Building Your First Network and in the Fabcar tutorial. In

the examples illustrated, two organizations have been configured with two peers in

each of them. A channel that connects all peers and one orderer has been set up in

a single machine. A sample chaincode has also been provided to demonstrate the

functionality of the blockchain. Another Fabric componenet (cli) has been installed

– 11 –

to be used to communicate with peers and the orderer. Each blockchain component

(Peers, orderer, and the cli) resided in a docker container. These components could

communicate with each other, although each resided in separate docker containers.

Major non-trivial modification on the above setup has been carried out to fit it

in the current research model of this thesis. In the above setup, the entire process,

including initiating the ledger, adding, updating, or querying it, was carried out

manually. This requires executing numerous commands in the cli bash terminal,

for example to pull data from the ledger or write to the ledger. A further issue with

the setup model is that it uses a single machine to set up all blockchain components,

which does not reflect a real-world scenario. Thus, an important modification of

the existing setup carried out in the research was the separation of each Fabric

component into its own server achieved without disrupting the communication

between them in the network.

2.4.1 Blockchain Setup Details

The blockchain network in the new model that was created for experiments con-

tained an orderer on a machine and two peers, each residing on a Linux server.

The chaincode provided in [6] has been modified and extended in functionality to

add update and delete methods. Also, the method’s signatures of the chaincode

have been modified to better fit the experiments’ requirement. The experiments

required an application to act as middleware between the blockchain network and

applications external to the blockchain network. The implemented application ex-

poses APIs, enabling other applications to interact with the blockchain through

these APIs. Fabric’s SDK library has been used to build this application. The

Fabric SDK supports two programming languages: Java and NodeJS, and future

versions are likely to support more programming languages. The NodeJS SDK

has been used to develop the APIs for this research. Figure 2.1 summarizes the

– 12 –

blockchain network used in the experiment.

Figure 2.1: Implemented Blockchain Model

In this setup, an organization called org1 has been created having two peers:

Peer0 and Peer1. Also, a single channel called mychannel was created and joined

to Peer0 and Peer1. One orderer that used the Solo consensus protocol has been

installed for simplicity. To set up the blockchain system, we used a Fabric config-

uration file called configtx.yaml. We also used configtxgen tool, which came with

Hyperledger Fabric, to generate the cryptographic keys for each Fabric’s compo-

nent. This tool receives the necessary configuration information from a file called

crypt-config.yaml to create necessary cryptographic keys.

The new blockchain network model described above allowed isolating each

blockchain component from the rest by hosting it in a separate server. This iso-

lation helped place blockchain nodes in different geolocation maintaining func-

tionality at the same time. Moving nodes to different locations will improve the

distrubitiveness and hence availability of the service. A query can potentially be

– 13 –

directed to any peer in the network based on efficiency, improving overall network

performance. Furthermore, having blockchain APIs on the network, enables other

applications to interface with the blockchain network in an automated fashion,

without the need for any manual labor to query or update the ledgers.

2.5 Implementation of Final Model

To be able to isolate each blockchain component and install it in a separate server,

network connectivity should be maintained among the hosting servers. All servers

were put on the same networking subnet in order to achieve that. The servers had

following IP addresses:

• The server that hosts the Orderer: 192.168.1.185

• The server that hosts Peer0: 192.168.1.106

• The server that hosts Peer1: 192.168.1.126

As mentioned before, Fabric was built using docker containers. Each container

has a Fabric component installed in it, and each docker container uses a network

of its own but communicates with the hosting network. For the experiment, Fabric

components the following domains with the respective IP addresses have been as-

signed. The docker configuration file docker-compose.yml is where the container’s

network can be set. The following settings for domains were set the file (/etc/hosts)

of the hosting server:

• Orderer: 192.168.16.2 orderer.example.com

• Peer0: 192.168.17.3 peer0.org1.example.com

• Peer1: 192.168.18.4 peer1.org1.example.com

– 14 –

To enable the communication between Fabric components, we also added routes

on each server, such that, the hosting operating system will know where to route

the network packets to. These new routes were as follow:

On Orderer hosting server:

ip route add 192.168.17.0/24 via 192.168.1.106 dev enp0s3

ip route add 192.168.18.0/24 via 192.168.1.126 dev enp0s3

On Peer0 hosting server:

ip route add 192.168.18.0/24 via 192.168.1.126 dev enp0s3

ip route add 192.168.16.0/24 via 192.168.1.185 dev enp0s3

on Peer1 hosting server:

ip route add 192.168.17.0/24 via 192.168.1.106 dev enp0s3

ip route add 192.168.16.0/24 via 192.168.1.185 dev enp0s3

We used the Orderer hosting server to create the initial blockchain setup. That

is, defining blockchain’s component(s), organization(s), domain(s) and the chan-

nel(s) using "configtx.yaml" file that Fabric tool "configtxgen" will consume when

we run that tool. Running "configtxgen" tool will create two files: channel.tx and

genesis.block. These two files play an important role as we will use them when

creating the channel and when joining the peers to the channel in the network.

We also used the Orderer hosting server to generate the necessary cryptographic

keys using "crypt-config.yaml" config file and "configtxgen" tool. For this experi-

ment, the blockchain is set up not to encrypt any data transferred through the line

between blockchain components. We also did not use any encryption on the appli-

cation that uses the Fabric SDK to expose the blockchain APIs. We programmed

the APIs to either read from blockchain, write to it, update it, or delete from it.

Of course, updating or deleting any record in blockchain means to add another

record that reflects the new value to the key in the ledger. The URLs for these

– 15 –

APIs are:

peer ip address:8080/write?req=update&name=VALUE1&value=VALUE2 - for

writing/update to blockchain

peer ip address:8080/write/?req=create&name=VALUE1&value=VALUE2 - for

writing/create to blockchain

peer ip address:8080/write/?req=delete&name=VALUE1 - for writing/delete from

blockchain

peer ip address:8080//get?req=VALUE1 - for reading from blockchain,

where VALUE1/VALUE2 is the key/value pair for each record.

Now that we have installed and configured the blockchain application and set

up its network, we are ready to move on to the next step and start working on the

SSO application. Hence, in the next chapter, we will be talking about the imple-

mentation of the SSO concept and how it communicates and use the blockchain

network. Furthermore, we will discuss the mechanism that we implemented and

investigate the performance of the different protocol options that we have devel-

oped.

– 16 –

CHAPTER 3

Implementation Details

3.1 Requirements for the Model

Two options were considered to build the SSO model. The first one was to use

an opensource application and customize it to make it fit the research needs. The

second option was to develop the concept from scratch. While both options were

feasible, since building the SSO model from scratch makes customizing it easier,

this option was selected. Also, implementing the SSO made it easier to plug it

into the blockchain network in addition to the traditional database storage. When

developing the SSO, several testing functions have been added to measure different

properties of the system. Appending these functions to a previously developed SSO

application, would have been a challenge.

The developed SSO model and system provides following features that any

traditional SSO application offers:

1. Single login web application.

2. A user can access any resource that uses the SSO service upon login.

3. A user is logged out from all resources upon logout of the SSO service.

Additionally, since this model supports multiple SSO servers, the following re-

quirements were added:

1. Almost identical login web page.

– 17 –

2. A user logged in from either servers will have access to any resource that uses

the SSO service.

3. Before redirecting the user to an SSO server, the model checks the availability

of the server first. If none of the servers are available, it shows an error

message, asking the user to try again later.

Additionally, a few APIs were published for use on the new model. For ex-

ample an API used for logging in and out a test user. The experiment used the

automated authentication process to examine the new model’s performance when

using blockchain and when using the traditional (SQL) database.

3.2 Concept Implementation

The new SSO model comprises of two main servers: 1) Identity Provider (Idp)

server and 2) the Decision-Making (DM) server. Usually, with traditional SSO

applications, there are two main servers: Idp server and the Service Provider (SP)

server [12]. Idp server is similar in functionality on both models: the current model

and the traditional one. Idp’s main goal is to provide the user with a login page,

authenticate the user then redirect them back to the resource that the user was

trying to access. On the other hand, the DM server is similar in functionality to

the SP server. However, more functions have been added to the DM server on

top of an SP server, to fit it with the experiment needs. The DM server will be

responsible for receiving the initial request from the resource, and checks Idp’s

availability and redirect the user accordingly. The DM’s role is vital to the whole

system as it plays as the mediator between the resource and the Idp. Therefore,

all messages that originate from the applications will run through the DM to the

designated Idp. The applications which are using the SSO will send their url to the

DM server, which in turn send the url to the Idp. The Idp will use the received url

– 18 –

to redirect the user back to the application that the user was trying to access. The

application will attach its url to other servers using a query string parameter via

GET method. However, checking the availability of the Idps is handled by querying

the Idp status using the POST method. Checking the availability of the Idp will

also check the availability of the blockchain network too.

The Idp, on the other hand, exposes other APIs that serve other purposes.

These APIs are built to implement the test environment. To make the experiment

simple, no security concept has been applied when developing these APIs. There-

fore, servers traverse messages in plain text, with no message integrity validation

nor encryption. Depending on what the user chooses, the Idp will either interact

with the blockchain network or the database. The DM server will check which Idp

is available first, and then it will check the availability of the storage method that

the user has selected (blockchain or database). Depending on the outcome of the

check, the application will redirect the user to an Idp and at the same time ask the

Idp to use the available storage method. A checkbox has been added to the login

page to make the user be able to enforce the Idp to use either storage method. The

communication to the database or blockchain is seamless to the log in process and

the user. If the login page has a ticked checkbox, then the Idp uses the database.

Otherwise, The Idp will use blockchain instead. Fig. 3.1) provides a screenshot of

the login interface.

3.3 Test Model

After implementing the main concept of the SSO and connecting it to the blockchain

and the database, the need was to develop another function that tests the perfor-

mance when using either storage method (blockchain vs. traditional database).

The requirement for this function is that it must be able to calculate (as accu-

rately as possible) the time taken to log a user in. Also, it must be able to receive

– 19 –

Figure 3.1: Single Sign On Login Page

and information about the Idp’s CPU usage and memory usage in each login cycle.

Round Robin and Random distribution protocols have been used to distribute the

load between the two Idps in the test model. In Round Robin, the requests alter-

nate between the first Idp and the second one, while Random forwards requests to

an Idp randomly. As shown in Fig. 3.2, storage method selection and number of

iterations that the application will log the test user in and out, have been added.

Each time the application logs a user in, it collects information about the time

taken by the application to visit the necessary pages back and forth. It also checks

which server was used, the CPU and the memory usage respectively for that server.

The test application then stores gathered information in a database for later pro-

cessing. Once the application completes all requested iterations, it shows results at

the bottom. The results displayed for time taken, CPU and memory usage are the

average of all collected data from all iterations. While the numbers below Server

A and Server B fields indicate how many times each server has served the request

for each test cycle. Fig. 3.2 summarizes this mechanism.

– 20 –

The applications that pertain to the SSO implementation and testing, were

developed using ASP .NET, using .NET framework libraries version 4.6.1. On

the other hand, all web sites were developed using Microsoft Internet Information

Services (IIS) version 10. The database engine used was Microsoft SQL Server

2017. The experiment used two machines to implement the blockchain and the

SSO concept. Each of these machines has IIS, and MS SQL servers installed. The

next section will talk about the details of the hardware of each machine and what

each machine hosts.

Figure 3.2: Implementation of the Test Page

3.4 Hardware Used

Two machines were used to implement and run the experiment. The first machine

has the following specification:

• Type: Desktop

• Model: Dell Optiplex 760

• CPU: Intel (R) Core (TM)2 Duo CPU E8400 @ 3.00 GHz

– 21 –

• Memory: 4GB

• Network card: Intel(R) 82567LM-3 Gigabit Network Connection

The other machine’s specification is as follow:

• Type: Laptop

• Model: Dell G3 15

• CPU: Intel(R) Core(TM) i5-8300H CPU @ 2.30 GHz

• Memory: 8 GB

• Network card: Realtek PCIe GbE Family Controller

Three virtual machines were used, which were installed in the desktop machine

(Dell Optiplex 760). All virtual machines have the same the specification, and

they are as follow:

• Type: Virtual Machine

• Model: n/a

• Virtual CPU: 1 CPU with an execution cap of 50% of the host’s CPU

• Virtual Memory: 500 MB

• Virtual Network card: Intel (R) 82567LM-3 Gigabit Network Connection

3.5 Operating System and Software Used

The laptop machine has Microsoft Windows 10 version 1803. The Desktop ma-

chine has Microsoft Windows 10 operating system. The desktop computer has

a virtual machine application (virtualbox) installed on it, that runs three Linux

– 22 –

server - Debian distribution, that host the blockchain components. The first vir-

tual machine is the Orderer, the second is the first peer (Peer0), and the third is

the second peer (Peer1).

Each Linux server has the following software:

• Nodejs version 8.9.4

• Docker and Docker CE version 18.09.3

• Blockchain application version 1.4

• npm version 5.6.0

• Go version 1.11.5

Each Windows operating system has the following software:

• Internet Information System

• Microsoft SQL Server 2017

• Web Browser

• .Net Framework library

3.6 Putting All Pieces Together

Multiple applications were needed to run the experiment. The first two applications

are the resources that the user will try to access. The following domain names were

assigned to them in the IIS server:

• a.resource.local

• b.resource.local

– 23 –

The other two applications were the login applications. The following domain

names were assigned:

• a.idp.local

• b.idp.local

Another two applications have been developed to control the redirection of the

authentication requests. The domain names for theses are:

• a.dm.local

• b.dm.local

Figure 3.3: How the hardware are connected

Lastly, and to be able to test the whole login cycle and check the system per-

formance, another application has been developed and the following domain was

given to it:

• testpage.local

– 24 –

The IIS that hosts the resource applications, as well as the test page is installed

on the laptop computer and has the IP address of 192.168.1.109. The rest of

the applications are hosted on the Desktop machine’s IIS with an IP address of

192.168.1.119. Fig. 3.3 shows how servers are interconnected with each other.

This connection setup serves simplicity and enhances availability. In production

networks, each vital component of this network could be installed in different

hardware that could be placed in different locations for better availability.

– 25 –

CHAPTER 4

Results and Analysis

4.1 Results

Two systems have been compared in the experiments. An SSO whose database

has been built over a blockchain, and an SSO with a traditional relational (SQL)

database. Additionally the latter case has been further subdivided into having a

single SSO controlling (traditional) the SQL database versus two SSO’s controlling

the SQL database (non-traditional). The test model has been made to record two

seconds of response time to reflect failure when the SSO service is unreachable.

To summarize the results before detailed analysis in the next section, Tables 4.1,

4.2, and 4.3 can be compared. Higher response time of the blockchain based system

(Table 4.1) over the SQL database based system with two SSO’s (non-traditional,

Table 4.3) is noted. However, when using only one SSO, the SQL database based

system records considerable higher response times (traditional, Table 4.2) than

the blockchain based system. A similar analysis can be done with Tables 4.4, 4.5

and 4.6. This signifies, blockchain add latency (overhead), but make the SSO much

resistant against failures and thus mitigates the one-point failure problem.

4.2 Analysis

From the three result sets, one can right away say that the best-gotten result set was

the non-traditional database network. The average performance, CPU usage, and

memory usage were: 157.575ms, 2.37%, and 83.54%, respectively, when using the

– 26 –

Server A Server B Avg Response Time (ms) CPU Usage % Memory Usage %
50 50 306.57 2.030681506 83.5248911
50 50 291.69 1.830287921 83.5652267
50 50 292.15 2.014770745 83.6936236
50 50 282.92 2.243154846 83.8098388
50 50 332.2 2.025063038 84.0343197
50 50 340.51 1.917625142 83.6562479

Average 307.6733333 2.010263866 83.71402463

Table 4.1: Using Blockchain with 100 iterations and
Round Robin decision making policy

Server A Server B Avg Response Time (ms) CPU Usage % Memory Usage %
50 50 1087.21 61.9286201 92.6003759
50 50 1091.54 62.3675979 92.7597692
50 50 1085.31 63.3199594 92.7486049
50 50 1086.87 60.69951788 92.4283692
50 50 1083.07 52.48020791 91.283737
50 50 1088.87 51.29524499 91.3197853

Average 1087.145 58.68185803 92.19010692

Table 4.2: Using Database with 100 iterations and Round Robin
decision making policy - traditional connection

Server A Server B Avg Response Time (ms) CPU Usage % Memory Usage %
50 50 163.35 2.567436978 83.5435908
50 50 154.31 2.41905589 83.5693876
50 50 163.33 1.758625627 83.5748293
50 50 158.78 2.566913101 83.5276352
50 50 155.9 2.212149397 83.4983903
50 50 149.78 2.711715433 83.5528293

Average 157.575 2.372649404 83.54444375

Table 4.3: Using Database with 100 iterations and Round Robin
decision making policy - Non-traditional connection

– 27 –

Server A Server B Avg Response Time (ms) CPU Usage % Memory Usage %
56 44 350.43 5.459260341 83.5454013
57 43 315.8 1.972614039 82.9586011
57 43 312.31 1.954636692 82.9663439
37 63 352.33 1.912760897 83.0211267
50 50 310.1 1.870752326 83.0373443
37 63 314.36 2.222285752 83.0883875

Average 325.8883333 2.565385008 83.10286747

Table 4.4: Using Blockchain with 100 iterations and Random
decision making policy

Server A Server B Avg Response Time (ms) CPU Usage % Memory Usage %
48 52 1126.12 52.96215045 91.6951103
51 49 1073.69 51.23559325 91.2148014
60 40 894.28 41.36450123 89.6292268
52 48 1047.08 49.50005645 91.0233381
47 53 1136.39 54.45525725 91.9794858
53 47 1022.82 48.37765522 90.9149873

Average 1050.063333 49.64920231 91.07615828

Table 4.5: Using Database with 100 iterations and Random decision making
policy - traditional connection

Server A Server B Avg Response Time (ms) CPU Usage % Memory Usage %
51 49 154.93 2.777926719 83.10634
46 54 159.52 2.844795191 83.0365255
48 52 152.44 2.936936071 82.9861402
50 50 150.3 2.856918992 83.0430471
57 43 155.68 2.73933416 83.0164671
46 54 154.36 2.620824055 82.9637084

Average 154.5383333 2.796122531 83.02537138

Table 4.6: Using Database with 100 iterations and Random decision making
policy - Non-traditional connection

– 28 –

round-robin protocol. The average performance, CPU usage, and memory usage

were: 154.53ms, 2.79%, 83.02%, respectively, when using the random protocol.

This model is quite unrealistic, and the reason for that is because this model does

not provide a failover solution to the database. Also, in this scenario, if the two

SSO servers are far away from each other, the system will introduce latency and

delay, based on the location of the database to each server.

The blockchain was the second-best model in performance. This model result’s

average for performance, CPU usage, and memory was: 307.67ms, 2.01%, and

83.71%, respectively, when using the round-robin protocol, while it was 325.88ms,

2.56%, and 83.10% respectively when using the random protocol.

It was no surprise that the performance for the model that used the database

in a traditional connection was the worst. In this layout, the database was in-

terfacing with only one server, and hence, users were not able to use the second

server. To show this failure in our experiment, the SSO network was made to

return (2) seconds delay, 100% CPU usage, and 100% memory usage each time the

application tried to use the second server. Therefore, the average results for this

model’s performance, CPU usage, and memory usage were: 1087.14ms, 58.68%,

and 92.19%, respectively, when using the round-robin protocol. Using random

protocol, the performance, CPU usage, and memory usage for the model were:

1050.06ms, 49.64%, and 91.07%, respectively.

As can be noticed from the results, using blockchain network added overhead

to the process, which is what the time response and the memory usage indicated.

The model with blockchain was slower in response and higher in memory usage

compared to the non-traditional database model. Surprisingly, the CPU usage

was less in the blockchain model than the non-traditional one. Blockchain model

needed about 2.01% of the available CPU power while the database model needed

2.37% when using Round Robin protocol. One can see the same observation when

– 29 –

looking at the results of the two models that use the random protocol. It’s worth

mentioning that the memory and CPU usage stats were for the desktop machine

that hosts the blockchain network as well as the SQL server.

– 30 –

CHAPTER 5

Conclusion and future work

5.1 Conclusion

Throughout the experiment, it has been noticed that using a non-traditional

database network was the fastest and the least resource-demanding compared to

other models. However, if the database server malfunctioned or disconnected from

the rest of the system, the solution will fall apart. Therefore, this model has one

critical point of failure, which makes it unrealistic in practical implementations.

Also, attacks to the database servers are becoming popular, and attacking web

applications using SQL injections increased significantly in the last decade, which

is another drawback of using databases.

SQL injection attack is one of the most dangerous web application attacks

and the most common and notorious attack on the databases [24]. This attack

aims to steal private information or delete data from the database by exploiting

the vulnerabilities in a web application. These vulnerabilities are associated with

improper validation and sanitization to the data received from untrusted input.

Web application attacks, including SQL injection attacks, were at the top of the

list by many organizations such as WASP, MITRE, etc. The attacker will try

to insert SQL statements as input to the page’s input fields, hoping that the

application will include them in its SQL queries. A successful attack can give the

attacker access to the application’s database and allow the attacker to alter the

stored data [19]. Using databases comes with the risk of getting such attacks in

– 31 –

addition to other attacks as illustrated in [15, 16, 17, 20, 25, 28, 30, 31, 29, 32, 36].

On the other hand, the blockchain network offered benefits that the database

did not provide. Security is a big concern when using databases. A simple program-

ming issue could lead to a catastrophic problem, giving the attacker the leverage

to alter data. As we discussed above, SQL Injection is the most common and no-

torious attack against web applications. Even after many years of discovering this

exploit, there are still many web applications that are vulnerable to this attack.

Using blockchain will eliminate the SQL Injection exploitation because blockchain

uses a different approach to query the datastores. Also, as it was discussed in

previous sections, any request to the blockchain will go through many verifications

and validations before the blockchain network processes that request. Blockchain

can distribute the data in multiple servers that can be in different geolocation,

which is a nice feature to have, especially in the availability problem. If database

networks are to be modified to implement the same features that blockchain offers,

overhead and complexity will be added to the system. Besides, it will be putting

lots of effort into implementing features that come by default with blockchain.

Blockchain, however, comes with a caveat, with the same feature that lever-

ages blockchain over the database. This issue is the inability of deleting records.

Therefore, attackers could flood the blockchain network with many requests to

create new accounts, update accounts, or even reset the account’s password. This

behavior will make the blockchain storage overgrow, and when blockchain uses all

available space, the blockchain functionality will break. The backup process is also

not a straight forward process when it comes to blockchain, contrary to its peer,

the backup process for the database is quite easy.

In any problem, there will be more than one solution. Each solution will fit

a specific situation. However, any solution that will be decided on, there will be

things that will be compromised. This research shed some light on a problem and

– 32 –

explored a solution that uses blockchain and compared it with a solution that uses

the traditional and non-traditional database networks. The research also provided

advantages and disadvantages of using each solution over the other in the hope

that developers consider the weaknesses of each solution and try to address them

to build a better model.

5.2 Future Work

Using a blockchain network has helped to solve the research problem, but it also in-

troduced security vulnerabilities to the system, as mentioned in the above sections.

To improve upon the proposed solution, one can investigate ways to mitigate the

security vulnerabilities that were introduced by using blockchain. Also, backing

up the blockchain data and archiving its old data are another avenue to explore.

Enhancing the model’s security and solving the backup and archive problems will

help make the use of blockchain more practical in SSO applications and to similar

applications to SSO as well. Also, finding an algorithm that speed up the read-

/write time with blockchain networks will always be a good subject to study on to

bring the blockchain applications to the next level.

– 33 –

REFERENCES

[1] Abraham, I., Gueta, G., Malkhi, D., Alvisi, L., Kotla, R., and

Martin, J.-P. Revisiting fast practical byzantine fault tolerance. arXiv

preprint arXiv:1712.01367 (2017).

[2] Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Chris-

tidis, K., De Caro, A., Enyeart, D., Ferris, C., Laventman, G.,

Manevich, Y., et al. Hyperledger fabric: a distributed operating sys-

tem for permissioned blockchains. In Proceedings of the Thirteenth EuroSys

Conference (2018), ACM, p. 30.

[3] Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Chris-

tidis, K., De Caro, A., Enyeart, D., Ferris, C., Laventman, G.,

Manevich, Y., et al. Hyperledger fabric: a distributed operating sys-

tem for permissioned blockchains. In Proceedings of the Thirteenth EuroSys

Conference (2018), ACM, p. 30.

[4] Bartlow, N. Username and password verification through keystroke

dynamics. PhD thesis, West Virginia University, 2005.

[5] Bazaz, T., and Khalique, A. A review on single sign on enabling tech-

nologies and protocols. International Journal of Computer Applications 151,

11 (2016).

[6] Biswas, S., and Biswas, S. Password security system with 2-way authenti-

cation. In 2017 Third International Conference on Research in Computational

– 34 –

Intelligence and Communication Networks (ICRCICN) (Nov 2017), pp. 349–

353.

[7] Cachin, C. Architecture of the hyperledger blockchain fabric. In Workshop

on distributed cryptocurrencies and consensus ledgers (2016), vol. 310, p. 4.

[8] Cash, M., and Bassiouni, M. Two-tier permission-ed and permission-less

blockchain for secure data sharing. In 2018 IEEE International Conference on

Smart Cloud (SmartCloud) (2018), IEEE, pp. 138–144.

[9] Cohen, R. J., Forsberg, R. A., Kallfelz Jr, P. A., Meckstroth,

J. R., Pascoe, C. J., and Snow-Weaver, A. L. Coordinating user tar-

get logons in a single sign-on (sso) environment, Jan. 23 2001. US Patent

6,178,511.

[10] Craine, D. A. Keyboard with programmable username and password keys

and system, Apr. 17 2012. US Patent 8,161,545.

[11] Cusack, B., and Ghazizadeh, E. Evaluating single sign-on security failure

in cloud services. Business Horizons 59, 6 (2016), 605–614.

[12] Daniel, K., Tran, T., and Wietfeld, C. Interoperable role-based sin-

gle sign-on-access to distributed public authority information systems. In

2008 IEEE Conference on Technologies for Homeland Security (2008), IEEE,

pp. 327–332.

[13] De Clercq, J. Single sign-on architectures. In International Conference on

Infrastructure Security (2002), Springer, pp. 40–58.

[14] Gao, Y., and Nobuhara, H. A proof of stake sharding protocol for scalable

blockchains. Proceedings of the Asia-Pacific Advanced Network 44 (2017), 13–

16.

– 35 –

[15] Garrett, K., Talluri, S. R., and Roy, S. On vulnerability analysis

of several password authentication protocols. Innovations in Systems and

Software Engineering 11, 3 (2015), 167–176.

[16] Gouge, J., Seetharam, A., and Roy, S. On the scalability and effec-

tiveness of a cache pollution based dos attack in information centric net-

works. In 2016 International Conference on Computing, Networking and

Communications (ICNC) (2016), IEEE, pp. 1–5.

[17] Harish, P. D., and Roy, S. Energy oriented vulnerability analysis on

authentication protocols for cps. In 2014 IEEE International Conference on

Distributed Computing in Sensor Systems (2014), IEEE, pp. 367–371.

[18] Jakobsson, M., and Juels, A. Proofs of work and bread pudding protocols.

In Secure Information Networks. Springer, 1999, pp. 258–272.

[19] Joshi, P. N., Ravishankar, N., Raju, M., and Ravi, N. C. Encountering

sql injection in web applications. In 2018 Second International Conference

on Computing Methodologies and Communication (ICCMC) (2018), IEEE,

pp. 257–261.

[20] Khatwani, C., and Roy, S. Security analysis of ecc based authentication

protocols. In 2015 International conference on computational intelligence and

communication networks (CICN) (2015), IEEE, pp. 1167–1172.

[21] Li, B., Ge, S., Wo, T.-y., and Ma, D.-f. Research and implementation

of single sign-on mechanism for asp pattern. In International Conference on

Grid and Cooperative Computing (2004), Springer, pp. 161–166.

[22] Magyar, G. Blockchain: Solving the privacy and research availability trade-

off for ehr data: A new disruptive technology in health data management.

– 36 –

In 2017 IEEE 30th Neumann Colloquium (NC) (2017), IEEE, pp. 000135–

000140.

[23] Mattila, J. The blockchain phenomenon. Berkeley Roundtable of the

International Economy (2016).

[24] Mitropoulos, D., Louridas, P., Polychronakis, M., and

Keromytis, A. D. Defending against web application attacks: Approaches,

challenges and implications. IEEE Transactions on Dependable and Secure

Computing 16, 2 (March 2019), 188–203.

[25] Morais, F. J. A., Roy, S., and Ahuja, S. P. A cache based dos attack on

real information centric networking system. In 2018 IEEE 37th International

Performance Computing and Communications Conference (IPCCC) (2018),

IEEE, pp. 1–7.

[26] Pashalidis, A., and Mitchell, C. J. A taxonomy of single sign-on sys-

tems. In Australasian Conference on Information Security and Privacy (2003),

Springer, pp. 249–264.

[27] Revar, A. G., and Bhavsar, M. D. Securing user authentication using

single sign-on in cloud computing. In 2011 Nirma University International

Conference on Engineering (Dec 2011), pp. 1–4.

[28] Routh, C., DeCrescenzo, B., and Roy, S. Attacks and vulnerability

analysis of e-mail as a password reset point. In 2018 Fourth International

Conference on Mobile and Secure Services (MobiSecServ) (2018), IEEE, pp. 1–

5.

[29] Roy, S. Denial of service attack on protocols for smart grid communications.

In Security solutions and applied cryptography in smart grid communications.

IGI Global, 2017, pp. 50–67.

– 37 –

[30] Roy, S., Das, A. K., and Li, Y. Cryptanalysis and security enhance-

ment of an advanced authentication scheme using smart cards, and a key

agreement scheme for two-party communication. In 30th IEEE International

Performance Computing and Communications Conference (2011), IEEE,

pp. 1–7.

[31] Roy, S., and Khatwani, C. Cryptanalysis and improvement of ecc based

authentication and key exchanging protocols. Cryptography 1, 1 (2017), 9.

[32] Roy, S., Morais, F. J. A., Salimitari, M., and Chatterjee, M. Cache

attacks on blockchain based information centric networks: an experimental

evaluation. In Proceedings of the 20th International Conference on Distributed

Computing and Networking (2019), ACM, pp. 134–142.

[33] Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman, C. E.

Role-based access control models. Computer 29, 2 (1996), 38–47.

[34] Scherer, M. Performance and scalability of blockchain networks and smart

contracts, 2017.

[35] SSO Benefits. Sso login: Key benefits and implementation. https://

auth0.com/blog/sso-login-key-benefits-and-implementation/, 2016.

[36] Talluri, S. R., and Roy, S. Cryptanalysis and security enhancement of

two advanced authentication protocols. In Advanced Computing, Networking

and Informatics-Volume 2. Springer, 2014, pp. 307–316.

[37] Thongjul, S., and Tritilanunt, S. Analyzing and searching process of

internet username and password stored in random access memory (ram). In

2015 12th International Joint Conference on Computer Science and Software

Engineering (JCSSE) (2015), IEEE, pp. 257–262.

– 38 –

[38] Vujičić, D., Jagodić, D., and Ranđić, S. Blockchain technology, bit-

coin, and ethereum: A brief overview. In 2018 17th International Symposium

INFOTEH-JAHORINA (INFOTEH) (2018), IEEE, pp. 1–6.

[39] Wiki: blockchain. Blockchain. https://en.wikipedia.org/wiki/

Blockchain, 2018.

[40] Wiki: Satosho_Nakamoto. Satosho_nakamoto. https://en.

wikipedia.org/wiki/Satoshi_Nakamoto, 2018.

[41] Wiki: Single sign-on. Single sign-on. https://en.wikipedia.org/wiki/

Single_sign-on, 2018.

[42] Wood, D. L., Norton, D., Weschler, P., Ferris, C., and Wilson,

Y. Single sign-on framework with trust-level mapping to authentication re-

quirements, May 10 2005. US Patent 6,892,307.

[43] Xu, X., Pautasso, C., Zhu, L., Gramoli, V., Ponomarev, A., Tran,

A. B., and Chen, S. The blockchain as a software connector. In 2016 13th

Working IEEE/IFIP Conference on Software Architecture (WICSA) (2016),

IEEE, pp. 182–191.

[44] Xu, X., Weber, I., Staples, M., Zhu, L., Bosch, J., Bass, L., Pau-

tasso, C., and Rimba, P. A taxonomy of blockchain-based systems for

architecture design. In 2017 IEEE International Conference on Software

Architecture (ICSA) (2017), IEEE, pp. 243–252.

[45] Zheng, Z., Xie, S., Dai, H., Chen, X., and Wang, H. An overview of

blockchain technology: Architecture, consensus, and future trends. In 2017

IEEE International Congress on Big Data (BigData Congress) (2017), IEEE,

pp. 557–564.

– 39 –

VITA

Samuel Matloob is currently working as software developer and system administra-

tor. He has more than seven years of experience in the field of computer science.

Developing applications has always been interesting and exciting to Sam, from

designing the application, implementing it, securing it and delivering it. He uses

a handful programming languages to write applications such as C++, Java, PHP,

and C#. He also has an abundance of experience in Linux, Windows and Mac

operating systems. He works well in teams and individually. Sam is always en-

thusiastic about expanding his knowledge, learning new technologies, conducting

research independently, and finding solutions to challenging problems.

– 40 –

	Exploring applicability of blockchain to enhance Single Sign-On (SSO) systems
	Suggested Citation

	tmp.1576884058.pdf.m1qze

