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ABSTRACT 

The Florida’s Road Rangers monitor the freeways for incidents to minimize their adverse impacts 

on traffic. The objectives of this study were to evaluate the extent to which Road Rangers reduce 

incident clearance duration (ICD), incident-induced traffic delays (IITDs) and secondary crashes 

(SCs).  

Since ICD distributions are often right-skewed, the study applied quantile regression to relate ICD 

to influencing factors. Data skewed to the right is usually a result of lower bounds in a data set 

being extremely low relative to the rest of the data. Data from 28,000 incidents that occurred on 

freeways in Jacksonville, Florida were analyzed. Of the factors analyzed, crash events, incident 

severity, shoulder blockage, peak hours, weekends, nighttime, number of responding agencies, and 

towing were found to associate with significantly longer ICDs. Road Rangers were found to reduce 

incident clearance duration by 25.3%. In other words, shorter incident clearance durations were 

observed when Road Rangers responded to incidents compared to other agencies.   

On the second objective, IITDs were estimated by establishing incident-free recurrent travel time 

profiles as bases from which the incident-induced delays could be measured. To determine the 

extent to which Florida’s Road Rangers can reduce IITDs, the analysis was based on the data from 

4,045 incidents that occurred on freeways in Jacksonville, Florida. The parametric accelerated 

failure time (AFT) survival model, with Weibull distribution of IITD was used to model IITDs. 

The results show that significant variables affecting IITDs include incident characteristics 

(severity, type, towing requirements, lane and shoulder blockage, etc.), Road Rangers 

involvement, and prevailing traffic conditions. The findings also revealed no significant effects of 

median width, average detector occupancy and the day-of-the-week on IITDs. A significant and 
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unique contribution of this paper is that the Road Rangers program was found to shorten IITDs 

relative to other responding agencies by 12.6%.  

To identify the potential impact of Road Rangers in lowering the likelihood of SCs, this study 

sought to evaluate the safety performance of the Road Rangers program. Since SCs are often rare, 

the study applied a complimentary log-log model. The analysis was based on incident data related 

to 6,088 incidents on freeways in Jacksonville, Florida. Of the factors analyzed, traffic volume, 

incident impact duration, moderate/severe crashes, weekdays, peak periods, percentage of lane 

closure, and shoulder blockage were found to significantly increase the likelihood of SCs. While 

vehicle speed and lighting condition showed little contribution (not significant at 95%) to SC 

likelihood, Road Rangers were associated with relatively lower probabilities of SC occurrence. 

Based on the reduction in the average incident duration, the results suggest that the Road Rangers 

reduce SC risk by 20.9%. Based on increased safety at incident scenes, Road Rangers reduce SC 

probability by 17.9%.  

The results of this study can, in general, provide researchers and practitioners with an effective 

way for evaluating mobility and safety benefits of the Road Rangers program. The developed 

approaches provide practical guidance on how to quantify the mobility and safety impact of the 

Road Rangers program. The results can, in general, help practitioners to improve incident 

management plans.  

Keywords: Freeway service patrols, Road Rangers, incident clearance duration, incident-induced 

delays, quantile regression, hazard-based models, mobility enhancement factor, secondary crashes. 
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CHAPTER 1  

INTRODUCTION 

The Need for Freeway Service Patrols 

As congestion spreads and intensifies and the level of incidents, delays, and disruptions increase, 

the level of service and reliability of the roadway systems in many areas continues to deteriorate  

(FHWA, 2017). One of the main goals of today's transportation systems is to provide a safe and 

reliable travel experience to road users. Unfortunately, non-recurring congestion is unpredictable 

(Olmstead, 2004; Habtemichael et al., 2015). Non-recurring congestion resulting from traffic 

incidents frequently affect traffic operations, accounting for more than a half of all urban traffic 

delays and almost all rural traffic delays (Baykal-Gürsoy et al., 2009). For instance, the toll of 

traffic congestion in the United States (U.S.) in 2014 was estimated to be 6.9 billion hours and 3.1 

billion gallons of fuel, equivalent to approximately $160 billion. On average, a commuting 

motorist spent 42 additional hours during peak traffic periods in 2014 (Schrank et al., 2015). 

Moreover, traffic incidents expose other vehicles to the risk of a secondary crash (SC) (Karlaftis 

et al., 1999). 

In search for an approach to reduce the effect resulting from traffic incidents on freeway 

operations, many states have included freeway service patrols (FSPs) in their incident management 

plans. As one component of incident management systems, FSPs facilitate quick removal of 

incidents through faster response and reduced clearance time (Karlaftis et al., 1999). FSP typically 

operate as follows. The freeways are divided into disjoint beats, along with a certain number of 

probe vehicles. These vehicles travel back and forth along the beat, stopping to clear incidents in 



14 
 

a first-reach-first serve manner. The probe vehicles would remove the vehicles stalled in the 

freeways and provide services such as changing flat tires and offering a needed gallon of gasoline. 

If they cannot get the vehicles operational in a few minutes, they will tow them off the freeway to 

a designated area. Note that the way FSP systems operate is different from that of incident-response 

dispatch systems. FSP probe vehicles spontaneously detect, respond to and clear the incidents. In 

contrast, in the incident-response systems trucks are placed at certain depots, waiting for the 

dispatch commands (Yin, 2006).  

The Florida’s Road Rangers 

The Road Ranger Service Patrol (simply Road Rangers) in Florida is an FSP that provides free 

highway assistance services to motorists. The Florida Department of Transportation (FDOT) 

initially used Road Rangers for the management of vehicle incidents in construction zones. This 

program has since expanded to respond to all type of incidents and has become one of the most 

effective elements of the FDOT's incident management program. The Road Rangers provide a 

direct service to motorists by quickly clearing travel lanes and assisting motorists. Services can 

include providing a limited amount of fuel, assisting with tire changing and other types of minor 

emergency repairs, and providing support at crash sites. Since its inception in 1999, as of 2016, 

the Road Rangers had offered over 5 million service assists with more occurring daily. Road 

Rangers are typically assigned to work along major interstate corridors and within construction 

areas on these interstates (FDOT, 2016).  
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Figure 1-1: Road Rangers at work 
 

Study Objectives 

Although Road Rangers have become an increasingly vital element of incident management 

strategies in Florida, the extent of their benefits is currently not well understood. This thesis 

evaluates both mobility and safety benefits of the program. Specifically, the objectives are; 

1. To evalaute the mobility (operational) benefits of the Road Rangers using incident 

clearance duration as a performance metric. 

2. The second objective, which is closely related to the previous objective addresses important 

answers to the following questions; 

a. How much delays are a result of incidents? 

b. To what extent do Road Rangers reduce incident-induced traffic delays (IITD)? 

3. To evaluate safety benefits of Road Rangers using secondary crashes as a performance 

measure. 
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Thesis Organization 

This thesis is thematically structured, compiling three potential stand-alone journal papers. It starts 

by providing a general overview of FSPs, and research objectives in chapter 1. Chapter 2 is a stand-

alone journal paper that evaluates the mobility benefits of Florida’s Road Rangers. Chapter 3 

presents a paper on estimating incident-induced traffic delays: a quest of delay savings of Florida’s 

Road Rangers. Chapter 4 presents a paper that evaluates the safety benefits of Road Rangers. In 

each individual paper, the thesis discusses the results and conclusively highlights some important 

findings.  
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CHAPTER 2  

PAPER 1 

Operational Evaluation of Freeway Service Patrols: A Case Study of Florida’s Road 

Rangers 
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INTRODUCTION 

In 2014, motorists spent an additional 6.9 billion hours and 3.1 billion gallons of fuel, equivalent 

to approximately $160 billion, as a result of traffic congestion in the United States (U.S.). On 

average, a commuting motorist spent 42 additional hours during peak traffic periods in 2014 

(Schrank et al., 2015). According to the Federal Highway Administration (FHWA), non-recurring 

congestion events account for almost half of all congestion (Amer et al., 2015). Traffic incidents, 

ranging from a flat tire to an overturned hazardous material truck, contribute to almost half of all 

non-recurring congestion events (Amer et al., 2015).  

In response to the adverse impacts of non-recurring congestion, many states have included freeway 

service patrols (FSPs) in their incident management plans to minimize incident clearance time. 

FSP program names vary by state agency. For example, Florida’s FSP program is referred to as 

the Road Rangers Service Patrol (or Road Rangers), Ohio’s FSP program is called the Freeway 

Incident Response Service Team (FIRST), Maryland’s FSP is the Coordinated Highway Action 

Response Team (CHART), Georgia’s FSP is the Highway Emergency Response Operators 

(HERO) program, and both New York and Tennessee call their FSP programs the Highway 

Emergency Local Patrol (HELP) (Baird, 2008). The goal of such programs is to restore the freeway 

to full capacity as quickly as possible after an incident occurs, as well as alert motorists until the 

incident is cleared. FSP programs are widely used to help mitigate the effects of non-recurring 

congestion and have become an increasingly vital element of the incident management programs. 

A national survey of 19 agencies showed that the benefit-cost (B/C) ratios for FSP programs 

ranged from 4.6:1 to 42:1, with an average B/C ratio of 12.4:1, and a median of 9.45:1 (Baird, 

2008). 
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The Road Rangers FSP, provided by the FDOT, offers free highway assistance services during 

incidents on Florida freeways. Road Rangers provide direct benefits to the public in terms of 

reduced delay, fuel consumption, and air pollution, as well as improved safety and security. To 

facilitate these objectives, Road Rangers probe vehicles monitor the freeways for road debris, 

traffic crashes, stranded vehicles, and other traffic incidents ( Lin et al., 2012; Carrick et al., 2018; 

Sun et al., 2018). Since its inception in 1999, Road Rangers have assisted over 5 million motorists, 

as of 2016, with more service assists occurring each day (FDOT, 2016). A case study performed 

by Lin et al. (2012) revealed that although the contract costs for the program were about $19.9 

million, the benefits in reduced delay and fuel savings, in total, were about $135.3 million. Overall, 

the Road Rangers program achieved a combined B/C ratio of 6.78:1 statewide in 2010. 

Although Road Rangers have increasingly become one of the crucial incident management 

strategies in Florida, extent of the program’s benefits has not yet been quantified. Very few studies, 

if any, have assessed the operational effectiveness and the monetary value of the program. This 

study evaluates the operational performance of the Road Rangers program by developing Mobility 

Enhancement Factors (MEFs) using incident clearance duration as a performance measure. The 

benefits of the program were assessed in terms of reduced incident clearance duration, with a 

specific emphasis on the impact of the Road Rangers program. To effectively evaluate both 

incident management and traffic operational improvements, the MEFs were developed based on 

statistical modeling of incident clearance duration. Multiple variables were included in the model 

to gain a broader understanding of their effects on incident clearance durations and traffic 

operations, and to evaluate the effectiveness of the Road Rangers program.  
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LITERATURE REVIEW 

Despite an increasing investment in FSPs by state transportation agencies, comprehensive studies 

that evaluate the operational effectiveness of such programs are sparse. Several previous studies 

focused on evaluating the performance and overall benefits of FSPs using incident clearance 

duration (Lee & Fazio, 2005; Li, et al., 2017). However, the majority of previous studies focused 

on benefit-cost analyses to determine the programs’ benefits by aggregating the delay savings in 

terms of reduced incident clearance duration with other performance measures, such as fuel 

savings (i.e., reduced fuel consumption) and reduced air pollutant emissions (Guin et al., 2007; 

Dougald & Demetsky, 2008; Lin et al., 2012). Nevertheless, in each study, FSPs were recognized 

as one of the most cost-effective incident management strategies available to transportation 

agencies.  

Freeway incidents, such as crashes and disabled vehicles, can result in considerable non-recurring 

congestion. The primary goal of most FSPs is to minimize the length of time that an incident affects 

the freeway section, thus minimizing the resulting traffic congestion. Therefore, incident clearance 

duration is a primary measure of the effectiveness of an FSP, where reduced incident clearance 

duration implies greater effectiveness. Until recently, various methodologies have been used to 

estimate delays caused by incidents, and the savings in delay resulting from FSP response. 

However, estimating such benefits can be challenging when considering the various aspects of 

incidents, such as incident detection and response times, with and without FSPs; reduction in 

roadway capacities; travel time value; and delay estimation methods. Incident modeling and 

formulation used to estimate delay savings vary among previous studies. While several studies 

evaluated delay using empirical formulations based on simulations (Chou et al., 2009; Ma et al., 
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2009; Sun et al., 2017), the majority used queuing-theory-based models (Hagen et al., 2005; Guin 

et al., 2007; Dougald & Demetsky, 2008; Lin et al., 2012).  

Dougald and Demetsky (2008) evaluated the benefits of FSPs based on incident delay savings and 

reduction in fuel consumption. To estimate incident-induced delay and associated delay savings 

attributable to FSP operations, the study employed deterministic queuing models to estimate 

motorist delay associated with queues that form during incident conditions. The models used 

capacity reduction factors in conjunction with the geometric and traffic characteristics of an FSP 

route, as well as the frequency and type of assisted incidents on the route. An earlier study by Guin 

et al. (2007) used a similar method to evaluate the benefits of FSPs based on incident delay savings, 

secondary crash reduction, reduction in fuel consumption, and commuter perception of motorist 

assistance. The study estimated incident-induced delay savings using deterministic queuing 

models with a specific assumption that accommodates dual-phase incidents. According to Guin et 

al. (2007), based on the nature of incident response operations, the number of lanes blocked by an 

incident varies with time. As the incident is cleared over time, progressively fewer lanes are 

blocked. Typically, clearance of a lane-blocking incident on a freeway has two phases (Guin et al., 

2017). The first phase involves the blockage of one or more lanes by the incident or by the 

responders for the period of time of when the incident occurs to when the vehicles involved are 

moved to the shoulder. The second phase involves the blockage of the shoulder. Both Dougald & 

Demetsky (2008) and Guin et al. (2017) employed subjective assumptions of roadway capacities 

based on experience.  

The current study evaluates the extent to which Road Rangers reduce incident clearance. Based on 

archived incident data, a statistical model is developed to relate incident clearance duration to 

influencing factors. The model is used to evaluate the mobility benefits of Road Rangers. It is 
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anticipated that the MEFs developed in this study may provide researchers and practitioners with 

an effective way for conducting the economic appraisal of the program. 

DATA 

Incident data were obtained from the SunGuide® database, an FDOT repository of incident 

information, for the years 2014 – 2017 for freeway sections along Butler Boulevard/State Road 

202 (SR-202), Interstates 10 (I-10), 95 (I-95) and 295 (I-295) in Jacksonville, Florida. Data 

collected included incident detection times, incident response times, incident clearance times, and 

geographic locations to extract both the temporal and spatial information of incidents. Other 

information obtained included the incident type, detection method, severity, and the agencies that 

responded.  A total of 28,000 valid observations (N) were included in the analysis. Observations 

with missing information were removed from the dataset. Prior to developing the model, a 

preliminary analysis of the compiled incident data was conducted to identify the statistical 

characteristics of the variables analyzed. 

In this study, the response variable is the incident clearance duration, as defined in Figure 2-1. 

Incident clearance duration is defined as the time elapsed (in minutes) from the time an incident is 

reported (i.e., first notified) until all evidence of the incident has been removed from the incident 

scene, i.e., when the last responder leaves the scene, as shown in Figure 2-1. Incident clearance 

duration consists of three stages: incident verification time, incident response time, and incident 

clearance time.  
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Figure 2-1: Traffic incident duration timeline  (Amer et al., 2015) 

 
Table 2-1 lists the eleven explanatory variables included in the analysis as well as general 

descriptive statistics. As shown in Table 2-1, the number of responding agencies variable was 

considered continuous, while the remaining ten variables, generally associated with freeway 

incidents, were considered categorical. Event type (or, incident type) was categorized into crashes, 

vehicle problems (disabled or abandoned vehicles, emergency vehicles, vehicle fire, and police 

activity), and traffic hazards (debris, flooding, and spillage). Two temporal variables, time of day 

and lighting condition, were included in the analysis. Peak hours included morning peak (0600 to 

1000 hours) and evening peak (1530 to 1830 hours), and lighting condition was categorized as day 

or night based on sunrise and sunset times on the day of the incident. Detection method was divided 

into three categories: Road Rangers, Intelligent Transportation System (ITS) services, and on-road 

services (police, Florida Highway Patrol (FHP), and motorists). ITS services included the use of 

closed-circuit televisions (CCTV), the Florida 511 travel information system (FL511), FL511 

probe vehicles, Waze, and Transportation Management Centers (TMCs).  
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The variable lane closure refers to whether an incident resulted in lane(s) closure. The percent of 

lanes closed is usually considered an indicator of the severity of an incident, as severe incidents 

tend to result in an increased number of lanes closed. In the current study, a 25% lane closure 

implies one lane out of four lanes of a roadway section is closed. A closure of one of three lanes 

will eventually mean 33.3% lane closure and 100% means all lanes are closed. Lane closure was 

categorized into two groups as illustrated in Table 2-1.  Shoulder blockage was divided into two 

categories: No (no any shoulder is blocked) and Yes (at least one shoulder is blocked). In the same 

token, towing was divided into either no towing was involved, or towing was involved. 
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Table 2-1: Descriptive statistics of incident data 

Categorical 

Variables 
Factor Code Frequency 

Share 

(%) 

 

Incident Type 

Crash 0 8,974 32.05 

Vehicle problems 1 17,231 61.54 

Traffic hazards 2 1,795 6.41 

Detection  

Method 

Road Rangers 0 14,790 52.82 

ITS services 1 2,649 9.46 

On-road services 2 10,561 37.72 

Incident Severity 

Minor 0 26,235 93.70 

Moderate 1 1,328 4.74 

Severe 2 437 1.56 

Shoulder blocked 
No 0 17,106 61.09 

Yes 1 10,894 38.91 

Lane Closure (%) 
0 – 25 0 24,216 86.49 

> 25 1 3,784 13.51 

Time of day 
Peak hours 0 15,475 55.27 

Off-peak hours 1 12,525 44.73 

Day of the week 
Weekdays 0 26,066 93.09 

Weekends 1 1,934 6.91 

Lighting Condition 
Day 0 24,610 87.89 

Night 1 3,390 12.11 

Towing involved 
No 0 24,580 87.79 

Yes 1 3,420 12.21 

Responding agencies 
Road Rangers  0 23,680 84.57 

Other Agencies 1 4,320 15.43 

Continuous variables Min Mean Median Max 

Number of Responding agencies 1 1.7 1 10 

Incident Clearance Duration a (min) 1 36.71 20 325 

Valid N = 28,000, a response variable 



26 
 

METHODOLOGY 

Quantile Regression 

Previous studies have demonstrated the application of various modeling techniques to predict 

incident clearance durations, oftentimes resulting in skewed distributions. Such models include 

hazard-based models (Li et al., 2014; Haule, et al. 2018), and nested models (Ghosh, et al. 2012). 

Since incident clearance durations are often skewed (Figure 2-2(a)), the current study used quantile 

regression to fit the incident clearance distribution. Incidents that have a much shorter or longer 

than average durations may not be accurately predicted with other models. Theoretically, quantile 

regression provides better prediction accuracy since it can account for dispersed and skewed 

distributions of incident clearance durations. Quantile regression is a statistical technique that can 

relate quantiles of the incident clearance duration distribution to explanatory variables (Khattak et 

al., 2016).  

A more complete picture of incident clearance duration distribution can be obtained through 

quantile regression analyses. Rather than modeling only the average incident clearance duration 

as in Ordinary Least Square (OLS) regression, quantile regression can model the relationship of 

any quantile with a set of explanatory variables (Khattak et al., 2016). In quantile regression, a 

sum that gives asymmetric penalties for over-prediction, (1 − 𝑞)|𝜀௜|, and under-prediction, 𝑞|𝜀௜|, 

is minimized (Koenker, 2005). The prediction errors in quantile regression are given by: 

𝜀௜
௤

= 𝑦௜ − 𝛽መ଴
௤

− ෍ 𝛽መ௝
௤

𝑥௜௝

௡

௝ୀଵ

 (2-1) 

where; q is the quantile point of the outcomes, 0 < 𝑞 < 1 



27 
 

yi = observed duration for ith incident in dataset (min), 

𝛽መ଴
௤ is the estimated intercept at quantile point q, 

𝛽መ௝
௤ is the estimated coefficient of independent variable j at quantile point q, and  

𝑥௜௝ = value of independent variable j in ith incident.  

The coefficients 𝛽መ଴
௤ and 𝛽መ௝

௤ are estimated by minimizing the following objective function 

(Koenker, 2005): 

෍ 𝑞 ቮ𝑦௜ − 𝛽መ଴
௤

− ෍ 𝛽መ௝
௤

𝑥௜௝

௡

௝ୀଵ

ቮ +

௡

௜:௬೔ஹఉ෡బ
೜

ା ∑ ఉ෡
ೕ
೜

௫೔ೕ
೙
ೕసభ

෍ (1 − 𝑞) ቮ𝑦௜ − 𝛽መ଴
௤

− ෍ 𝛽መ௝
௤

𝑥௜௝

௡

௝ୀଵ

ቮ

௡

௜:௬೔ஹఉ෡బ
೜

ା ∑ ఉ෡
ೕ
೜

௫೔ೕ
೙
ೕసభ

 

 

(2-2) 

In this study, quantile regression was applied to predict incident clearance duration at the 5th, 15th, 

25th, …, 95th percentiles. Table 2-2 provides the regression model results for the 25th, 50th 

(median), 75th, and 95th percentiles. 

Incident Clearance Duration Prediction 

From the perspective of modeling outcomes, OLS models provide intuitive results, giving a single 

value that is the predicted mean. Quantile regression provides estimates for any quantile q, where 

q can be any number between 0 and 1. Thus, the estimates incorporate the entire (conditional) 

distribution of incident clearance durations, given certain conditions, and does not provide a just 

single value of how long an incident may last.  
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Location-based Prediction 

This study applied a location-based prediction method to predict the incident clearance durations 

with quantile regressions at the 5th, 15th, 25th, …, 95th percentiles in the intervals of 10, with the 

assumption that traffic safety outcomes do not change dramatically in a short period (Khattak et 

al., 2016). Therefore, the predicted duration could be obtained at the 5th percentile regression if 

the observed value was less than the 10th percentile, or at the 15th percentile regression if the 

observed value was between the 10th and the 20th percentile, and so forth. Using the location-

based prediction method, the incident clearance duration was predicted using Equation 2-3. 

𝑦ො =  

⎩
⎪
⎨

⎪
⎧

𝑦ො௠ተ
ተ

𝑚 = 5, 𝑖𝑓  𝑞଴ < 𝑦ത ≤ 𝑞ଵ଴

𝑚 = 15, 𝑖𝑓 𝑞ଵ଴ < 𝑦ത ≤ 𝑞ଶ଴

:
:

𝑚 = 95, 𝑖𝑓 𝑞ଽ଴ < 𝑦ത ≤ 𝑞ଵ଴଴⎭
⎪
⎬

⎪
⎫

 

 

(2-3) 

 

where; 𝑦ො = predicted incident clearance duration using location-based prediction method, 

𝑦ො௠ = predicted incident clearance duration at center of interval m (i.e., percentile location), 

𝑦ത = average of historical incident clearance duration at particular location (e.g., bottleneck), and 

qp = pth percentile value of durations of incidents in the region. 

Using the coefficients from quantile regression, the probability that an incident with a given 

duration will occur, resulting in a change in values of the independent variables, can be quantified 

using Equation 2-4a and 2-4b. Equations 2-4a and 2-4b estimate incident clearance durations when 

an incident is not related and related to a particular independent variable (category in case of 
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discrete variable) respectively. This allows the prediction of the incident clearance duration given 

a certain value of the independent variable while holding other variables at their means. 

 

𝑦௜ = ෍ 𝛽መ௝
௤

𝑥௜௝

௡

௝ୀଵ

−  𝛽መ௝
௤

𝑥௜௝  
(2-4a) 

 

𝑦௜ = ෍ 𝛽መ௝
௤

𝑥௜௝

௡

௝ୀଵ

−  𝛽መ௝
௤

𝑥௜௝ + 𝛽መ௝
௤ 

(2-4b) 

 

where, 𝑦௜ is the estimated duration of ith incident in data set. All other notations are defined earlier. 

 

Model Accuracy 

To investigate the accuracy of the model predictions, the resulting Root Mean Square Error 

(RMSE) from the incident clearance duration predictions was calculated using the following 

equation. A smaller RMSE indicates a better prediction.  

RMSE = ඨ
∑ (𝑦௜ − 𝑦ො௜)

ଶ௡
௜

𝑛
 

(2-5) 

where; 

n = number of observations, 

𝑦௜ = observed duration for ith incident in data set, and 

𝑦ො௜ = predicted duration for ith incident in data set. 
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Mobility Enhancement Factors Definition 

A Mobility Enhancement Factor (MEF) is a multiplicative factor used to estimate the expected 

mobility level after implementing a given strategy (in this study, Road Rangers) at a specific site. 

The MEF is multiplied by the expected facility mobility level without the strategy. An MEF of 1.0 

serves as a reference below or above where an expected increase or decrease in mobility is 

indicated after implementation of a given strategy, depending on the performance metric. For 

example, in this study, an MEF of 0.8 for the incident clearance duration, the response variable 

(i.e., performance measure), indicates an expected mobility benefit; more specifically, a 20 percent 

expected reduction in incident clearance duration after treatment, and therefore, an increase in 

mobility. MEFs were calculated as follows: 

MEF௜ =  
𝑦ො௥,௜

𝑦ො௜
 

(2-6) 

where 𝑦ො௥,௜ is the predicted incident clearance duration for ith incident in data set assuming Road 

Rangers were involved, and 𝑦ො௜ is the predicted incident clearance duration for ith incident in data 

set assuming Road Rangers were not involved.  The overall MEF for Road Rangers was calculated 

using Equation 7. 

𝑀𝐸𝐹ூ௡௖௜ௗ௘௡௧ ௖௟௘௔௥௔௡௖௘ ௗ௨௥௔௧௜௢௡
ோ௢௔ௗ ோ௔௡௚௘௥௦

=  
∑ 𝑀𝐸𝐹௡

௜ୀଵ

𝑛
 (2-7) 
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RESULTS AND DISCUSSION  

Descriptive Statistics 

The analysis was based on a total of 28,000 incidents that occurred from 2015-2017 along SR-202, 

I-10, I-95, and I-295 in Jacksonville, Florida. Table 2-1 provides the descriptive statistics of all the 

variables included in the analysis. Incidents associated with vehicle problems accounted for 

61.54% of incidents, while 32.05% and 6.41% were crashes and traffic hazards, respectively. 

Nearly half (49.05%) of the incidents analyzed were responded by only Road Rangers. Road 

Rangers, combined with other responding agencies, responded to 35.52% of the incidents, while 

other rescue services without Road Rangers responded to only 15.43% of the incidents. 

Collectively, Road Rangers were involved in responding to nearly 85% of all incidents.  

Figure 2-2 shows the incident clearance duration distribution of the dataset. Nearly one-fourth 

(23.79%) of the incidents were cleared within 5 minutes (min), cumulatively 35.58% of incidents 

lasted 10 min or less, and 51.24% lasted 20 min or less. Overall, the vast majority of incidents 

(95%) lasted 125 min or less, and the maximum incident clearance duration was 325 min. The 

mean and median incident clearance duration were 36.71 min and 20 min, respectively. Standard 

deviation was 43.33 min. This dispersed distribution of incident clearance duration implies that 

the mean duration does not appropriately represent all the incidents. 
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(a) Incident clearance duration 

distribution 

 

(b) Relative frequency distribution 

Figure 2-2: Incident clearance duration distribution  (N = 28,000) 

 

As shown in Figure 2-3, for all the three incident types, the average incident clearance was 

considerably quicker when the responding agencies included Road Rangers. The average incident 

clearance duration for crashes was 66.3 min with Road Rangers involvement, 22.4% quicker than 

the average duration with other responding agencies. Similar results were also observed for vehicle 

problem and traffic hazard incident types. On average, Road Rangers resulted in shorter average 

incident clearance durations compared to other responding agencies by 58.0% and 69.0% for 

incidents involving vehicle problems and traffic hazards, respectively. Overall, the average 

incident clearance duration with Road Ranger assistance was 28.9 min compared to 79.3 min 

without Road Ranger involvement, a 63.6% reduction. These reductions in incident clearance 

duration translate into substantial travel time and fuel consumption savings for motorists. 
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Figure 2-3: Average incident clearance duration with and without Road Rangers involvement 
 

Model Results 

Results from the quantile regression models estimated at the 25th, 50th, 75th, and 95th percentiles 

are presented in Table 2-2, and most variables are statistically significant at the 95% confidence 

level. Coefficients for each quantile regression model indicate the amount of increase or decrease 

in the average incident clearance duration for each unit increase in the independent variable, when 

other variables are held constant. For a given quantile (percentile), the interpretation of the 

coefficients is similar to the other regression models, i.e., the coefficients represent the change in 

the dependent variable (i.e., incident clearance duration) for a given quantile category, for each 

unit increase in the continuous independent variable and a categorical change of a discrete variable. 

Figure 2-4 graphically illustrates the coefficients from Table 2-2 for key factors analyzed, with all 

quantiles combined. Note that the quantile regression coefficients vary among the different 

quantiles. 
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Table 2-2: Quantile regression models 

 
Variable 

 
Factor 

25th percentile Median (50th percentile) 75th percentile 95th percentile 

Estimate 
𝜷 

Std. 
Error 

P-Value 
Pr(>|𝐭|) 

Estimate 
𝜷 

Std. 
Error 

P-Value 
Pr(>|𝐭|) 

Estimate 
𝜷 

Std. 
Error 

P-Value 
Pr(>|𝐭|) 

Estimate 
𝜷 

Std. 
Error 

P-Value 
Pr(>|𝐭|) 

Intercept  23.000 1.309 0.000 51.000 1.539 0.000 89.000 2.055 0.000 158.000 5.166 0.000 
 
Incident 
Type 

Crash             
Vehicle problems -11.000 0.554 0.000 -25.000 0.711 0.000 -39.000 1.008 0.000 -65.000 2.365 0.000 
Traffic hazards -15.000 0.607 0.000 -29.000 0.984 0.000 -49.000 1.016 0.000 -87.000 2.408 0.000 

Detection  
Method 

Road Rangers -9.000 0.3611 0.000 -12.000 0.704 0.000 -15.000 0.756 0.000 -24.000 3.019 0.000 
ITS services             
On-road services 1.000 0.518 0.054 2.000 0.813 0.014 4.500 0.970 0.000 1.500 3.399 0.659 

Incident  
Severity 

Minor             
Moderate 20.000 1.051 0.000 11.000 1.186 0.000 7.000 1.422 0.000 12.000 4.380 0.006 
Severe 35.000 2.580 0.000 43.000 4.312 0.000 57.000 4.210 0.000 85.000 10.795 0.000 

Shoulder  No             
blocked Yes 2.000 0.190 0.000 4.000 0.179 0.000 5.000 0.356 0.000 8.000 0.866 0.000 
Lane 
Closure (%) 

0 - 25 2.000 0.557 0.000 1.000 0.707 0.157 1.000 0.786 0.203 4.000 2.591 0.123 
> 25             

Time of day Peak hours 0.000 0.185 1.000 0.000 0.173 1.000 0.000 0.335 1.000 1.000 0.808 0.216 
 Off-peak hours             
Day of the  Weekdays             
week Weekends 3.000 1.422 0.035 2.000 1.351 0.139 0.000 2.078 1.000 -6.000 2.959 0.043 
Lighting  Day             
Condition Night 2.000 0.461 0.000 5.000 0.685 0.000 6.000 0.859 0.000 12.000 2.314 0.000 
Number of 
Responding 
Agencies 

Continuous 4.000 0.282 0.000 4.000 0.357 0.000 3.500 0.431 0.000 6.500 1.481 0.000 

Towing  No             
involved Yes 10.000 0.801 0.000 19.000 0.945 0.000 31.500 1.200 0.000 37.500 2.426 0.000 
Responding 
agencies 

Road Rangers -7.000 1.176 0.000 -14.000 1.265 0.000 -25.500 1.806 0.000 -46.000 3.742 0.000 
Other Agencies              

Pseudo R2   0.471   0.503   0.504   0.499  
Insignificant estimates at 95% level of confidence are in italics, RMSE = 41.14 min. The goodness-of-fit measure is calculated as pseudo-R2 
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Figure 2-4: Quantile regression coefficients. The red line shows estimates from OLS regression; red broken lines show the OLS 95% 
confidence intervals; the black line shows estimates from quantile regression; 95% confidence intervals are shown by shaded region 
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Table 2-3: Estimation of incident clearance duration at means of independent variables 

   25th percentile 50th percentile 75th percentile 95th percentile 
Variable Categories Mean 

X 
Estimate 

𝜷 
 

𝜷 ∗ 𝑿 
Estimate 

𝜷 
 

𝜷 ∗ 𝑿 
Estimate 

𝜷 
 

𝜷 ∗ 𝑿 
Estimate 

𝜷 
 

𝜷 ∗ 𝑿 
Intercept   23.000 23.00 51.000 51.00 89.000 89.00 158.000 158.00 
 
Incident Type 

Crash 0.321        0.00 
Vehicle problems 0.615 -11.000 -6.77 -25.000 -15.38 -39.000 -23.99 -65.000 -39.98 
Traffic hazards 0.064 -15.000 -0.96 -29.000 -1.86 -49.000 -3.14 -87.000 -5.57 

Detection  
Method 

Road Rangers 0.528 -9.000 -4.75 -12.000 -6.34 -15.000 -7.92 -24.000 -12.67 
ITS services 0.095        0.00 
On-road services 0.377 1.000 0.38 2.000 0.75 4.500 1.70 1.500 0.57 

Incident  
Severity 

Minor 0.937        0.00 
Moderate 0.047 20.000 0.94 11.000 0.52 7.000 0.33 12.000 0.56 
Severe 0.016 35.000 0.56 43.000 0.69 57.000 0.91 85.000 1.36 

Shoulder  
blocked 

No 0.611        0.00 
Yes 0.389 2.000 0.78 4.000 1.56 5.000 1.95 8.000 3.11 

Lane Closure (%) 
0 – 25 0.865 2.000 1.73 1.000 0.87 1.000 0.87 4.000 3.46 
> 25 0.135        0.00 

Time of day 
Peak hours 0.553 0.000 0.00 0.000 0.00 0.000 0.00 1.000 0.55 
Off-peak hours 0.447        0.00 

Day of the week 
Weekdays 0.931        0.00 
Weekends 0.069 3.000 0.21 2.000 0.14 0.000 0.00 -6.000 -0.41 

Lighting  
Condition 

Day 0.879        0.00 
Night 0.121 2.000 0.24 5.000 0.61 6.000 0.73 12.000 1.45 

Number of Responding agencies 1.700 4.000 6.80 4.000 6.80 3.500 5.95 6.500 11.05 

Towing  
involved 

No 0.878        0.00 
Yes 0.122 10.000 1.22 19.000 2.32 31.500 3.84 37.500 4.58 

Responding 
agencies 

Road Rangers 0.846 -7.000 -5.92 -14.000 -11.84 -25.500 -21.57 -46.000 -38.92 
Other Agencies 0.154        0.00 

Estimation at 
means (min) 

 
∑ (𝜷 ∗ 𝑿) 

  17.46  29.83  48.65  87.15 
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Table 2-3 provides the estimation of incident clearance duration by holding all variables at their 

mean values. The mean incident clearance duration is estimated as 17.46 min at the 25th percentile, 

29.83 min at the 50th percentile, 48.65 min at the 75th percentile, and 87.15 min at the 95th 

percentile. All these numbers are close to the distributions of the 28,000 incidents. From Table 2-

3, the incident clearance duration can be predicted, given a specific independent variable value 

while keeping other variables at their means. Changes in the probability that an incident with a 

given duration will occur, based on the change in values of independent variables, can be 

quantified. 

For example, if all other factors are set to their mean values, and only the incident type can vary, 

the incident clearance duration at the 75th percentile can be estimated to be 48.65 + 3.14 = 51.29 

min for an incident that is not related to a traffic hazard. Hence, for incidents other than traffic 

hazards, there is a 25% chance that the incident will last at least 51.29 min. If the incident is related 

to a traffic hazard, the incident clearance duration at the 75th percentile can be calculated to be 

48.65 + 3.14 – 49.00 = 2.79 min, indicating a 25% chance that a traffic hazard incident will last 

2.79 min or longer. Incident clearance durations with other associated factors can be interpreted in 

the same manner. The exact increase or decrease in probability can also be obtained by comparing 

estimations among the different percentiles using Equation 2-4. 

Model Goodness of Fit 

In order to assess the model goodness of fit, the pseudo R2 were examined. The higher pseudo R2, 

the better the model. However, this is not always achievable since many transportation-related 

problems and challenges involve stochastic processes that are influenced by observed and 

unobserved factors in unknown ways. As a result, transportation-related data are overly stochastic  

(Washington et al., 2011). Due to this stochasticity, some researchers (Washington et al., 2011) 
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suggest that if the value of pseudo R2 is more than 0.2, it indicates that the proposed model has 

sufficient explanatory and predictive power. As shown in Table 2-2, the model fitted the data fairly 

well, with pseudo R2 values ranging 0.471 – 0.504. However, since the proportion of the total 

variability not explained in the model is almost half, this may be sought as a limitation of the 

proposed model despite performing better over the others. 

Discussion  

The quantile regression results reveal that all variables except time of day are statistically 

significant at a 95% confidence level, and the coefficients vary across different percentiles. The 

following sections discuss the results in more detail. 

Incident Attributes 

Analysis results reveal that crashes generally have longer incident clearance durations than the 

incidents involving vehicle problems and traffic hazards. As shown in Table 2-3 (50th percentile), 

incident clearance durations resulting from vehicle problems and traffic hazards averaged 25 min 

and 29 min shorter than crashes, respectively. This trend is consistent for each quantile (percentile). 

This finding is consistent with previous studies by Khattak et al. (2009), Zhang & Khattak (2010), 

Khattak et al. (2012),  Hojati et al. (2013), and Haule et al. (2018). 

The model coefficients for the variable Detection Method indicate that incidents first detected by 

methods other than Road Rangers resulted in longer incident clearance durations. For example, the 

incident clearance duration at the 50th percentile for incidents first reported by Road Rangers were 

12 min and 14 min shorter, than for incidents first reported by ITS services and on-road services, 

respectively. Note also that incidents reported by on-road services, such as the FHP, law 

enforcement officials, and motorists, resulted in little bit longer durations (2 min) compared to 
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incidents reported by ITS-services. In a nutshell, Road Rangers reveal the additional benefit of 

mobile-based incident identification methods. 

Incident severity was positively correlated with incident clearance duration. Relative to minor 

incidents (in the 25th percentile, relative to their duration), the incident clearance durations for 

moderately severe and severe incidents were found to be 20 min and 35 min longer, respectively. 

However, the correlation between severe incidents and incident clearance durations varied 

significantly. The quantile regression analyses revealed a higher positive correlation at higher 

quantiles, compared to lower quantiles. This result was expected since severe incidents often result 

in longer incident clearance durations. 

Incidents resulting in blocked shoulder tended to last slightly longer compared to incidents that 

did not involve shoulder blockage. On average, incident clearance duration resulting from an 

incident that blocked a shoulder was 4 min longer (50th percentile) than one with no shoulder 

blockage. Quantile regression results also reflect an increasing trend in incident clearance duration 

with quantiles for incidents associated with shoulder blockages, as shown in Table 2-3. 

The variable ‘lane closure’ refers to whether an incident resulted in a lane closure. Nearly 14% of 

incidents analyzed had at least 25% of all lanes closed. Nearly 2% of analyzed incidents involved 

full lane closures (100 % lane closure / all lanes closed). Substantial lane closures generally 

increase incident clearance duration due to their resulting influence on traffic. Consequently, more 

time is required for responders and rescue vehicles to reach the incident scene (Khattak et al., 2009; 

Junhua et al., 2013;  Jeihani et al., 2015). Surprisingly, quantile regression analyses produced 

unexpected coefficients for lane closure, indicating that lane closure less than 25% resulted to 

longer incident clearance durations than lane closure greater than 25%. Although counterintuitive, 
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these findings are, however, consistent with previous studies (Chimba et al., 2014; Ding et al., 

2015; Haule et al., 2018). 

There are several potential scenarios that may account for shorter incident clearance durations 

when more than 25% of lanes were closed. One scenario is that partial or complete lane closures 

can quickly result in considerable non-recurring congestion, prompting urgent and prioritized 

response. Another scenario involves road debris from trucks or vehicles that can be easily removed 

by responders, thus clearing the lane for traffic. Road debris can also be secondary to a crash, 

where the vehicles involved reside in the median or along the shoulder, and the debris can be 

quickly removed by responders to clear the blockage. Nevertheless, more research is needed to 

examine the effects of lane closure on incident clearance duration. 

Temporal Attributes 

Analysis results revealed that the time of day was insignificant at a 95% confidence level, 

indicating that there is relatively no difference in the clearance duration of incidents which 

occurred during peak and off-peak hours. However, on average, incidents that occurred during 

peak hours exhibited a slightly longer clearance duration of one additional minute at the 95th 

percentile, compared to incidents that occurred during off-peak hours. Although these findings are 

consistent with several previous studies (Lee & Fazio, 2005; Junhua et al., 2013), findings from a 

few studies contradict these results (Ghosh et al., 2012; Haule et al., 2018). 

The model coefficients for the weekday incidents are significant for lower incident clearance 

durations (25th or lower percentile), yet insignificant for longer incident clearance durations (50th, 

75th, and 95th percentiles). However, compared to the incidents on weekdays, incidents on 

weekends resulted in longer clearance durations. Haule et al. (2018) suggested that longer incident 
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clearance durations on weekends may be attributed to fewer responders on duty. These findings 

suggest that the day of the week on which a freeway incident occurs has little influence on incident 

clearance duration. Similar findings were reported by Lee & Fazio (2005), Chimba et al. (2014), 

and Khattak et al. (2016). 

Results show incident clearance times during nighttime were, on average, nearly five minutes 

longer than the clearance times during daytime (50th percentile). This finding is consistent with 

studies by Khattak et al. (2016) and Haule et al. (2018). One possible explanation for the longer 

incident clearance durations at night may be the result of fewer services or responders available 

during nighttime hours.       

Operational Attributes  

Regression results show that the number of responding agencies is positively related to incident 

clearance duration and significant (Table 2-2). This may be attributed to clearance procedures, 

which are complex when many responding agencies are on the scene, hence, resulting in longer 

incident clearance durations. The minor difference in incident clearance duration for higher 

quantiles may be attributed to the random arrival of responding agencies at an incident scene and 

depends largely on the responding agencies’ locations when dispatched. Some responding 

agencies may reach the site immediately, while others may take longer. This situation favors the 

reduction of incident clearance duration for incidents expected to last longer. 

Quantile regression results for Road Rangers indicate considerable decrease in incident clearance 

duration for all four quantiles. As shown in Table 2-3 (50th percentile), incidents responded to by 

Road Rangers are estimated to last an average of 14 min shorter than incidents responded to by 

agencies other than Road Rangers. Incident clearance duration is shorter by 46.0 min at the 95th 
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percentile, indicating a more pronounced benefit of mobile-based programs (FSPs), as further 

shown in Table 2-4.  

Table 2-4: Road Rangers’ incident clearance duration reduction rate relative to other agencies 

Quantile 
(Percentile), 

qth 

Observed qth incident 
clearance duration when 

responded by agencies other 
than Road Rangers (min) 

Estimated qth 
incident clearance 
duration saving by 

Road Rangers 

Percent 
reduction (%) 

0.25 37 7 18.9 
0.50 70 14 20.0 
0.75 110 25.5 23.2 
0.95 185 46 24.9 

 

From Table 2-3, when all other factors are at their means and only the “responding agencies” 

variable can vary, the incident clearance duration at the 25th percentile is estimated to be 17.46 + 

5.92 = 23.38 min for an incident not responded by Road Rangers. This implies a 75% chance that 

an incident will last at least 23.38 min, and a 25% chance that it will last at most 23.38 min, if 

Road Rangers are not involved. If the incident is responded by Road Rangers, the incident 

clearance duration at the 25th percentile can be calculated to be 17.46 + 5.92 – 7.00 = 16.38 min, 

indicating a 75% chance that an incident will last 16.38 min or longer. There is a 7 min (at 25th 

percentile) potential reduction of incident clearance duration when Road Rangers are involved. 

Previous studies presented similar findings (Zhang & Khattak, 2010; Lin et al., 2012; Chimba et 

al., 2014; Haule et al., 2018).  

Regression results show that towing operations lead to significantly longer incident clearance 

durations. For instance, at the median (50th percentile, Table 2-2), if an incident involves towing, 

the incident clearance duration will be up to 19 min longer, compared to if towing operations are 
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not involved. Similar results were observed by Khattak et al., (1995); Chimba et al., (2014); and 

Li et al., (2017). 

Mobility Benefits of Road Rangers Program 

From the quantile regression analyses, mobility enhancement factors (MEFs) were developed to 

evaluate the operational performance of the Road Rangers program using incident clearance 

duration as a performance measure. MEFs are multiplicative factors used to compute the expected 

mobility level after implementing a given strategy at a specific site. A factor of one (MEF = 1.0) 

is used as a reference, below or above which an expected increase or decrease in mobility is 

deduced. Table 2-5 presents the MEFs developed to quantify the operational effectiveness of Road 

Rangers in responding to incidents. Overall, the Road Ranger program offers a 25.3% reduction 

in incident clearance duration.  

As shown in Table 2-5, Road Rangers involvement is expected to reduce the incident clearance 

duration of crashes, vehicle problems, and traffic hazards by 23.2%, 32.1% and 43.9%, 

respectively. Comparably, incident clearance duration reduction for crashes is less than that of 

other incidents. This result may be attributed to additional incident clearance procedures for 

crashes, which in many cases may involve multiple responding agencies.  

For incidents categorized as minor, moderate, and severe, Road Rangers response is expected to 

reduce incident clearance durations by 26.1%, 22.4%, and 15.8%, respectively. Since most 

freeway incidents are generally minor in severity (nearly 94% in this study), reducing the incident 

clearance duration of such incidents can greatly enhance the efforts to mitigate non-recurring 

congestion. Although severe incidents are more demanding, incident clearance durations are also 

shorter with Road Rangers involvement as well.   
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Table 2-5: Mobility Enhancement Factors (MEFs) for Road Rangers 

   95% CI  % Incident 
Clearance 
Duration 

Reduction 

Incident Attribute Category 
MEF 

Lower 
Limit 

Upper 
Limit 

Std. 
Error 

Incident Type Crash 0.768 0.766 0.770 0.001 23.2 
 Vehicle 

problems 
0.679 0.665 0.693 0.007 32.1 

 Traffic Hazards 0.561 0.547 0.575 0.007 43.9 
Incident Severity Minor 0.739 0.737 0.741 0.001 26.1 
 Moderate 0.776 0.770 0.782 0.003 22.4 
 Severe 0.842 0.838 0.846 0.002 15.8 

Time of day Off peak 0.752 0.750 0.754 0.001 24.8 
 Peak 0.738 0.734 0.742 0.002 26.2 

Day of the week Weekday 0.752 0.750 0.754 0.001 24.8 
 Weekend 0.740 0.736 0.744 0.002 26.0 

Lighting Condition Daylight 0.734 0.730 0.738 0.002 26.6 
 Night 0.765 0.763 0.767 0.001 23.5 

Towing Involved No 0.734 0.732 0.736 0.001 26.6 
 Yes 0.812 0.808 0.816 0.002 18.8 
Overall  0.747 0.745 0.749 0.001 25.3 

Performance metric: incident clearance duration 
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CONCLUSIONS 

This study evaluated the operational performance of the Road Rangers Service Patrol, a mobile-

based program provided by FDOT to assist motorists and minimize the impacts of freeway 

incidents on non-recurring traffic congestion. Mobility Enhancement Factors (MEFs) were 

developed using incident clearance duration as a performance measure. The study examined the 

benefits of the Road Rangers in terms of reduced incident clearance duration, with a specific 

emphasis on the impact of the program.  

Quantile regression was applied to predict incident clearance duration at the 5th, 15th, 25th, . . . , 

95th percentiles to provide a broader range of information for incident clearance duration 

predictions. Regression model results were presented for the 25th, 50th, 75th, and 95th percentiles. 

Factors analyzed that affect incident clearance duration included incident attributes (incident type, 

detection method, incident severity, shoulder blockage, and % lane closure), temporal attributes 

(time of day, day of the week, and lighting condition), and operational attributes (number and type 

of responding agencies, and towing). The following seven factors were found to be significantly 

associated with longer incident clearance duration: crashes, severe incidents, shoulder blockage, 

peak hours, weekends, nighttime, number of responding agencies, and towing involvement.   

Analysis results reveal that crashes generally have longer incident clearance durations than the 

incidents involving vehicle problems and traffic hazards. Incident clearance durations resulting 

from vehicle problems and traffic hazards averaged 25 min and 29 min shorter than crashes, 

respectively (in the 50th percentile). Incidents first detected by responding agencies other than 

Road Rangers were associated with longer incident clearance durations. Incident clearance 
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duration for moderately severe and severe incidents was found to be 11 min and 43 min longer, 

respectively, than minor incidents (in the 50th percentile). 

Time of day was insignificant at a 95% confidence level, indicating that there is relatively no 

difference in the duration of incidents between the peak hours and the off-peak hours. However, 

weekend incidents were associated with longer durations, compared to weekday incidents. 

Results for responding agencies consisting of Road Rangers, indicate considerable decrease in 

incident clearance duration. Incidents responded to by Road Rangers are estimated to last an 

average of 14 min shorter than incidents responded to by agencies other than Road Rangers.  

From the quantile regression analyses, the developed MEFs indicate the Road Ranger program 

offers a 25.3% reduction in incident clearance duration, overall. Road Rangers involvement is 

expected to reduce the incident clearance duration of crashes, vehicle problems, and traffic hazards 

by 23.2%, 32.1% and 43.9%, respectively. Road Rangers response is also expected to reduce 

incident clearance durations 26.1%, 22.4%, and 15.8% for minor, moderate, and severe incidents, 

respectively. It is anticipated that the MEFs developed in this study may provide researchers and 

practitioners with an effective method for analyzing the economic benefits of the Road Rangers 

program. 

 

 

  



 

47 
 

CHAPTER 3  

PAPER 2 

Incident-induced Traffic Delays: Investigating Delay Savings of Florida’s Road Rangers 
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BACKGROUND 

The toll of traffic congestion in the United States (U.S.) in 2014 was estimated to be 6.9 billion 

hours and 3.1 billion gallons of fuel, equivalent to approximately $160 billion. On average, a 

commuting motorist spent 42 additional hours during peak traffic periods in 2014 (Schrank et al., 

2015). According to the Federal Highway Administration (FHWA), non-recurring congestion 

events account for almost half of all congestion (Amer et al., 2015). Traffic incidents, ranging from 

a flat tire to an overturned hazardous material truck, contribute to almost half of all non-recurring 

congestion events (Amer et al., 2015). For every minute a freeway lane is blocked due to an 

incident during a peak travel period, there is a 4-minute delay to the traffic using the freeway 

(Owens et al., 2010). 

Since traffic incidents are often unpredictable, transportation agencies rely heavily on timely and 

appropriate responses of traffic incidents. To increase their efficiencies, many states have included 

freeway service patrols (FSPs) in their incident management plans (Dougald & Demetsky, 2008; 

Chou et al., 2010; Daneshgar & Haghani, 2016; Z. Sun et al., 2017). The Florida’s Road Ranger 

Service Patrol (or Road Rangers) for example, responds to incidents on Florida’s roadways. To 

facilitate these objectives, Road Rangers probe vehicles monitor the freeways for road debris, 

traffic crashes, stranded vehicles, and other traffic incidents (Hagen et al., 2005; Singh, 2006; Lin 

et al., 2012; Carrick et al., 2018; Sun et al., 2018). An efficient FSP program substantially reduces 

incident duration time, which, in turn, alleviates the delay attributed to non-recurring congestion, 

and therefore, incident-related congestion (Latoski et al., 1999).  

However, one question remains: to what extent do Road Rangers affect incident-induced traffic 

delays? To answer this question, the first step is to accurately estimate traffic delays. Although 
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traffic delay is simply the additional travel time required to travel between two points relative to 

normal travel time, its estimation is however not as simple as its definition. Researchers have used 

different methods to estimate traffic delays. While some have used deterministic queuing models 

and shock-wave theory (Khattak et al., 2012; Zhang et al., 2015), others have developed 

microscopic simulation models (Zhang et al., 2015). Table 3-1 summarizes the existing literature 

on estimating incident-induced traffic delays. As can be observed from Table 3-1, all the 

approaches discussed in literature have limitations. For example, queuing models assume linear 

traffic demand which is only achieved in uncongested traffic conditions. Shock-wave theory needs 

several parameters (e.g., jam-density, capacity, critical density, and free-flow speed) and detailed 

incident information (e.g., number of lanes blocked and vehicle arrival rate) (Habtemichael et al., 

2015) which may not always be available. Microscopic simulation, on the other hand, require 

calibration and validation which may be challenging, data dependent, scenario dependent, 

cumbersome, and time-consuming (Habtemichael et al., 2015).  
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Table 3-1: Methods for Estimating Incident-induced Delays 

Method Study Limitation(s) 

Deterministic 

queuing 

(Cohen & Southworth, 1999; 

Dougald & Demetsky, 2008; 

Khattak et al., 2012) 

Considers static demands, which 

are unrealistic under peak hours or flow 

fluctuation situations 

Shock-wave 
(Chung, 2011; Zhang et al., 

2015) 

Requires too many parameters that must 

be determined beforehand 

FREEVAL model (Khattak et al., 2004) 
Does not consider dynamic route 

diversion 

Microscopic 

simulation 
(Zhang et al., 2015) Requires well calibration and validation 

Data driven 

approaches 

(Snelder et al., 2013; 

Habtemichael et al., 2015; 

Haule et al., 2018) 

Requires real-time data which may not be 

available in some corridors 

 

The main objective of this paper is to determine the extent to which Road Rangers program can 

reduce IITDs. To achieve this objective, firstly, the paper presents a data-driven approach for 

estimating IITDs. The method involves generating a recurrent (i.e., normal) incident-free travel 

time profile that is free of recorded incidents and their influences. Once this incident-free reference 

profile is established, incident-induced delay can be estimated as the difference between incident-

influenced and incident-free travel time profiles. In general, this paper has two specific objectives: 

(a) estimate IITDs using real-time traffic data, and (b) determine the extent to which Florida’s 

Road Rangers can reduce IITDs. The study results can, in general, improve incident management 

strategies and incident-induced delays estimations. The approach, results, and recommendations 

could also be transferable and applicable to other agencies.  

 



 

51 
 

RESEARCH APPROACH  

The main goal of this study is to quantify the delay saving benefits of Road Rangers program. The 

delay savings are estimated based on the reduction in IITDs when Road Rangers were involved. 

The framework adopted to achieve the research goal involves estimating IITDs and evaluating 

whether there is an added advantage of Road Rangers relative to conventional incident responding 

strategies (other responding agencies). Five tasks were undertaken to develop the evaluation 

method; data collection, IITD estimation, variables selection, survival analysis, and inferences as 

detailed in Figure 3-1. 

 

Figure 3-1: Methodological framework 
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Data Collection 

The study area included a 35-mile section on I-95, a 21-mile section on I-10, and a 61-mile section 

on I-295 located in Jacksonville, Florida (see Figure 3-2). The total study area covers 117 miles. 

Data used in this study included travel time data from BlueToad® devices, incident data from 

SunGuide® database, and archived real-time traffic data from the Regional Integrated 

Transportation Information System (RITIS) database for the years 2015-2017.  

 

 

Figure 3-2: Study corridors  (Street Map) 
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SunGuide® is an advanced traffic management system (ATMS) software that is used at all regional 

traffic management centers (RTMCs) in Florida. SunGuide® software offers tools like automated 

incident detection and assist with event management and archiving of incident data. The database 

stores incident attributes like; incident ID, incident timeline, incident severity, incident type, 

incident detection, incident location and incident responders. Along the study corridors, the 

SunGuide® database included a total of 66,756 incidents from 2015-2017. After excluding 

incidents on ramps (15,730), incidents with missing coordinates (183), incidents with no matching 

BlueToad® pairs (10,990), incidents along the section without BlueToad® pairs (32,988), 

incidents without RITIS devices (2,280), the remaining data consisted of a total of 4,045 incidents. 

BlueToad® devices are Bluetooth signal receivers, which read the Media Access Control (MAC) 

addresses of active Bluetooth devices of vehicles passing through their area of influence. These 

devices record the time when a vehicle passes nearby. A pair of devices is used to estimate the 

vehicle travel time between the two devices by taking the difference of the recorded times. The 

speed is calculated from the travel time and the known path distance (not Euclidean distance) 

between the devices. The study location had 72 BlueToad® devices pairs, spaced approximately 

every 1.8 miles along the freeway corridor. The posted speed limits on the entire section range 

from 55 mph and 70 mph. This study used raw data collected at each BlueToad® device pair.   

RITIS is an automated data sharing, dissemination, and archiving system that includes real-time 

data feeds and archived data analysis tools such as probe, detector, and transit data analytics. RITIS 

detectors provide traffic flow data in addition to speed data (volume and detector occupancy). 

There are 375 RITIS detector stations along the selected freeway corridor. The average spacing 

between detectors is approximately 0.5 miles. 
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Estimation of Incident-induced Traffic Delays (IITDs) 

Incident-induced traffic delay (IITD) is the difference between incident-influenced and incident-

free travel time profiles of a given roadway segment. To estimate the traffic delays due to incidents, 

this study used travel times with and without incidents and traffic volumes during incidents for the 

affected freeway segments. The following sections provide details on how the IITDs were 

estimated. 

Generating Recurrent and Incident-Affected Travel Time Profiles 

A recurrent travel time profile provides the travel times along any portion of the roadway at any 

given time. As the name suggests, it shows a typical commuting traffic travel time patterns along 

any portion of the roadway at any given time. This profile is used to compare with the travel time 

data for a given incident to determine the difference in travel time when there is an incident and 

typically travel time when there is no incident. 

In this study, the recurrent travel time profile of each BlueToad® pair along the corridor was 

constructed by taking the average of travel times in 15-minute intervals. The 15-minute travel time 

data were used to obtain stable traffic flow rates as suggested by Smith and Ulmer (Smith & Ulmer, 

2003). To consider the variations in the recurrent travel time profiles, the 95% confidence interval 

was used to define the upper and lower bounds. Using the known distances between the 

BlueToad® pairs, the corresponding recurrent travel speed profiles were established. Figure 3-3 

illustrates the travel time profiles of one of the BlueToad® pairs (ID: 15484). A solid (blue) line 

represents an incident-free recurrent travel time profile and the dashed (red) line represents an 

incident-affected travel time profile. The shaded region represents the IITD. The algorithm was 

automated in R programming language. 
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Figure 3-3: Estimation of IITD using travel time profiles 
 

Defining Impact Zones of Incidents 

To define the impact zones, incidents were first mapped onto the corresponding BlueToad® pairs 

using geographical coordinates. The dates and time of occurrence of the incidents were then 

matched with the dates and time in the travel time data from the BlueToad® pairs, and this 

information was used to extract the travel times during incidents. The travel times during incidents 

were compared to the recurrent travel time profiles from the time of incident occurrence. Travel 

time higher than the upper boundaries of the recurrent travel time profiles were tracked from the 

incidents’ occurrence time to the time the travel times were lower than the upper boundaries of the 

recurrent travel time profiles. The duration during which the travel time were higher than the upper 

bound was defined as the temporal extent of an incident (i.e., incident impact duration), as shown 

in Figure 3-3. 
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The algorithm also checked for the BlueToad® pairs upstream of the incident BlueToad® pair that 

had higher travel times than normal. The BlueToad® pairs upstream of the incident pair that met 

the requirement had their travel times tracked in the same way as the BlueToad® pair along which 

an incident occurred. The number of the affected BlueToad® pairs upstream of the incident 

defined the spatial extent of the incident. Figure 3-4 illustrates the example of incident’s impact 

zone along I-95 NB. An incident occurred at 0730 hours and affected four BlueToad® pairs on the 

upstream direction (4.75 miles). The travel time along the BlueToad® pair #15485 came back to 

normal much earlier than the rest of the pairs, the last pair, came back to normal at 0900 hours. 

The IITD as a result of this incident is estimated as the sum of IITDs of the four pairs. 

 

Figure 3-4: Spatial and temporal extents of an incident (not to scale) 
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Estimating Incident-induced Traffic Delay (IITD) 

Figure 3-5 provides the framework adopted to estimate IITDs on freeway mainline. The method 

applies to a contiguous section of freeway with 𝑛 affected BlueToad® devices’ pairs herein indexed 

as i = 1, . . . , n, whose flow (volume) and travel time measurements are averaged over 15-min 

windows. Thus, the delay in a specific pair 𝑖 is 

𝐷௜ = ∆𝑡௜ ∗ 𝑉௔௜               𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ℎ𝑜𝑢𝑟𝑠 (𝑣𝑒ℎ − ℎ𝑜𝑢𝑟𝑠) (3-1) 

where ∆𝑡௜ is the travel time difference between the recurrent and the incident-induced travel time 

profiles for the BlueToad® pair 𝑖. 𝑉௔௜ is the average traffic volume between the BlueToad® devices 

building the pair 𝑖. 

The total delay due to an incident is therefore estimated as; 

𝐷௧௢௧௔௟ = ෍ 𝐷௜   

௡

௜ୀଵ

              𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ℎ𝑜𝑢𝑟𝑠 (𝑣𝑒ℎ − ℎ𝑜𝑢𝑟𝑠) (3-2) 

 

It is important to note that RITIS devices in the proximity of the affected BlueToad® pairs were 

used to obtain traffic volume data at 15-minute intervals. However, the absence of these devices 

along entry and exit ramps of some corridors posed some limitations. Due to this limitation, only 

the mainline IITDs were estimated. Figure 3-5 presents the IITDs estimation framework. 
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Figure 3-5: IITD estimation framework 
 

Variable Selection 

To evaluate and quantify the delay savings of Road Rangers, IITDs were first estimated and 

summarized against other explanatory variables in Table 3-2. As shown in Table 3-2, the hourly 

traffic volume, average vehicle speed, average detector occupancy and median width variables 

were considered continuous, while the remaining variables, generally associated with freeway 

incidents, were considered categorical. Event type (or, incident type) was categorized into crashes, 

vehicle problems (disabled or abandoned vehicles, emergency vehicles, vehicle fire, and police 
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activity), and traffic hazards (debris, flooding, and spillage). Two temporal variables, incident 

occurrence time and day-of-the-week, were included in the analysis. Morning (a.m.) peak included 

(0600 to 1000 hours), evening (p.m.) peak (1530 to 1830 hours) and the off-peak included (all other 

hours not in peak). Day-of-the-week was categorized as weekdays and weekends (Saturday and 

Sunday). Detection method was divided into two categories: on-site included on-road services such 

as Florida Highway Patrol (FHP), Road Rangers, motorists, etc., off-site included the use of closed-

circuit televisions (CCTV), the Florida 511 travel information system (FL511), FL511 probe 

vehicles, Waze, and Transportation Management Centers (TMCs).  

The variable lane closure refers to whether an incident resulted in lane(s) closure. The percent of 

lanes closed is usually considered as an indicator of the severity of an incident, as severe incidents 

tend to result in an increased number of lanes closed. In this study, a 25% lane closure implies one 

lane out of four lanes of a roadway section is closed. A closure of one of three lanes is denoted by 

33.3% lane closure and 100% means all lanes are closed. This variable was considered categorical 

coded as 25% or less and greater than 20% lane closure.  Shoulder blockage was divided into two 

categories: No (no shoulder is blocked) and Yes (at least one shoulder is blocked). In the same 

token, towing was divided into either no towing was involved, or towing was involved. During the 

survival analysis process, the log transformation of the equivalent hourly traffic volume (i.e., data 

normalization) was applied for better results.  
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Table 3-2: Descriptive statistics of variables: IITDs against categorical variables 

Categorical Variable Factor Count 
Average 

(veh-hrs) 

SD 

(veh-hrs) 

Min 

(veh-hrs) 

Max  

(veh-hrs) 

Incident type 

Crash 1545 187.16 431.88 0.005 4772.49 

Vehicle problems 2118 84.95 268.87 0.007 3644.10 

Traffic hazards a 382 42.15 230.70 0.010 3903.85 

Incident severity 

Minor 3832 104.43 300.52 0.005 4772.49 

Moderate 175 333.88 611.44 0.067 4474.42 

Severe 38 699.54 1045.60 0.120 4291.58 

Day of the week 
Weekday 3787 124.03 349.15 0.005 4772.49 

Weekend 258 60.09 203.77 0.011 2060.39 

Incident occurrence 

time b 

Off-peak 1702 66.76 289.44 0.005 4474.42 

a.m. peak 1355 161.83 380.09 0.013 4473.00 

p.m. peak 988 154.13 358.33 0.023 4772.49 

Lane closure (%) 
0-25 3574 98.53 292.60 0.005 4772.49 

> 25 471 282.45 570.95 0.067 4474.42 

Shoulder blocked 
Yes 2459 135.43 358.15 0.005 4772.49 

No 1586 95.94 314.13 0.005 3903.85 

Towing involved 
Yes 3577 105.60 316.78 0.005 4772.49 

No 468 229.59 480.83 0.052 4473.00 

Road Rangers involved 
Yes 3153 126.24 355.61 0.007 4772.49 

No 892 97.70 288.24 0.005 3140.31 

Detection method 
Off-site 428 197.60 427.85 0.030 4474.42 

On-site 3617 110.76 329.31 0.005 4772.49 

Continuous variable Median Mean SD Min Max 

Hourly traffic volume (veh/hr) 515 593 328 31 1,667 

Average vehicle speed (mph) 62.1 60.8 9.0 18.6 78.6 

Average detector occupancy (%) 6.1 7.6 5.0 0.3 37.3 

Median width (ft) 40 42.5 14.4 10.0 100.0 

Incident-induced traffic delay (veh-hrs)c 9.26 119.95 342.07 0.005 4,772.49 

NOTE: a Hazards: debris on roadway, flooding, and wildlife; b a.m. peak (6:00-10:00), p.m. peak (15:30-18:30), off-
peak (others); c Response variable, Valid N = 4,045 
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Hazard-Based IITD Modeling 

Hazard-based models are statistical procedures for data analysis for which the outcome variable 

of interest is time until an the event occurs (or ends) (Hojati et al., 2013). In the case of an incident 

occurrence, one of the key variables is IITD. Practically, IITDs are cleared with the passage of 

time, and they are therefore naturally like the pattern of machine’s failure or end of life. For this 

reason, hazard-based models (also known as survival analysis) were used in this study. Hazard 

models are based on the survival theory, meaning, in this study, the existence of an incident on a 

roadway at a point in time is considered as the survival of the incident to that time. 

Counterintuitively, the clearance of an incident and its impact is taken as the incident’s survival 

failure, as illustrated in Figure 3-6.  

 

 

Figure 3-6: Conceptualization of hazard-based model for IITDs 
 

The IITD, in this study, is considered as a continuous random variable T with a cumulative 

distribution function F(t) and the probability density function f(t). F(t) is also known as the failure 
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function and gives the probability of having an IITD before some specified time t. Conversely, the 

survival function, S(t), is the probability of the IITD being greater than some specific time (Hojati 

et al., 2013). 

Two types of hazard-based models were estimated, the Proportional Hazard (PH) model and 

Accelerated Failure Time (AFT) model. Both models are based on the cumulative density 

functions shown in Equation 3-3. In this equation, P denotes the probability of the delay T to end 

before time t. Equation 3-5 shows the survival function which provides the probability that a 

studied delay is equal to or greater than the specified time t. Therefore, the hazard function in 

Equation 3-6 gives the conditional probability that the delay will end between time t+∆t given that 

there has been a delay up to time t (Hojati et al., 2013).  

𝐹(𝑡) = 𝑃(𝑇 < 𝑡) (3-3) 

𝑓(𝑡) =
𝑑𝐹(𝑡)

𝑑𝑡
 (3-4) 

𝑆(𝑡) = 𝑃(𝑇 ≥ 𝑡) = (1 − 𝑃(𝑇 < 𝑡)) = 1 − 𝐹(𝑡) (3-5) 

ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
=

𝑓(𝑡)

1 − 𝑃(𝑇 < 𝑡)
= lim

∆௧→଴

𝑃(𝑡 ≤ 𝑇 ≤ 𝑡 + ∆𝑡|𝑇 ≥ 𝑡)

∆𝑡
 (3-6) 

 

In evaluating the effects of covariates on the hazard, the AFT model assumes that covariates rescale 

time directly in the survival function while the PH model assumes that the covariates act 

multiplicatively on the underlying hazard function (Hojati et al., 2013). Equation 3-7 is the AFT 

hazard model function where X is a vector of covariates and β is a vector of estimable parameters.  
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The AFT model is a fully parametric model that has various distribution alternatives, e.g., Weibull 

and lognormal distributions. Selection of the best fit parametric distribution is achieved through a 

comparison of the likelihood ratio statistics of the candidate distributions. The likelihood ratio 

statistic is chi-squared distributed with degrees of freedom equal to the number of parameters 

analyzed in the model. Equation 3-8 shows the formula of the likelihood ratio statistics where LL 

(0) is the initial log likelihood when all parameters are equal to zero and LL (β) is log likelihood 

at convergence.  

Unlike the AFT model, the PH model is a semi-parametric model. PH models are considered 

parametric due to lack of an assumed distribution on the duration but maintain a parametric 

assumption on the influence of covariates on the hazard function (Washington et al. 2003). 

Equation 3-9 shows the hazard function for the PH model where all the notations are as explained 

in the previous sections. Similar to AFT models, the likelihood ratio statistics are used to compare 

results of the PH and the AFT models. 

ℎ(𝑡|𝑋) = ℎ௢[𝑡𝐸𝑥𝑝(𝛽𝑋)]𝐸𝑥𝑝(𝛽𝑋) (3-7) 

𝑋ଶ = −2(𝐿𝐿௢ − 𝐿𝐿ఉ஼) (3-8) 

ℎ(𝑡|𝑋) = ℎ௢(𝑡)𝐸𝑥𝑝(𝛽𝑋) (3-9) 

 

In other words, h(t) gives the rate at which event delays are ending at time t (such as the duration 

in an incident-free state that would end with the occurrence of an accident), given that the event 

delay has not ended up to time t. 
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RESULTS AND DISCUSSION  

Descriptive Statistics 

Descriptive statistics of variables selected for analysis and modeling are shown in Table 3-2 for 

the 4,045 valid observations (N) included in the analysis. The response variable was the incident-

induced traffic delay.  By definition, one vehicle-hour (veh-hour) of delay reflects one vehicle 

stuck in traffic for one hour. The average IITDs were 119.95 veh-hours and the maximum were 

4772.49 veh-hours.  

Incidents associated with vehicle problems accounted for approximately half (52.36%) of the 

incidents, while 38.20% and 9.44% were crashes and traffic hazards, respectively. Overall 

statistics showed that the mean IITDs spent on crashes, vehicle problems, and traffic hazards were 

187.16, 84.95, and 42.15 veh-hours, respectively. Crashes, as expected, resulted in longer IITDs 

compared to vehicle problems and traffic hazards. Similarly, severe incidents resulted in longer 

IITDs compared to moderate and minor incidents. The average travel time on weekends and during 

p.m. peak hours, when affected by incidents, resulted in relatively longer delays compared to the 

travel times on weekdays and off-peak hours. If a lane or a shoulder or both are blocked by an 

incident, travel time is on the other hand longer. 

Road Rangers responded to nearly three-quarters (77.94%) of all incidents. On average, 126.24 

vehicle-hours were wasted due to incidents that were responded to by Road Rangers relative to 

97.70 vehicle-hours of incidents responded to by other responding agencies. One possible 

explanation for the longer IITDs with Road Rangers may be the result of additional incident 

clearance procedures for crashes, which in many cases may involve multiple responding agencies 

plus strict police report documentation. The shorter average IITDs for incidents involved vehicle 
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problems responded to by Road Rangers provides intuitive justification the suggested reason. 

Vehicle problems related incidents are usually responded by Road Rangers without additional 

clearance requirements. 

 

(a) Average 

 

(b) Median 

Figure 3-7: Average and median IITDs with and without Road Rangers involvement 
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Model Results and Discussion 

Table 3-3 presents the results of the AFT model with Weibull distribution, the model that gave a 

relatively best fit. All the variables except the italicized ones are statistically significant at the 95% 

confidence level (𝛼 = 0.05). Note that the coefficients in Table 3-3 indicate the amount of increase 

or decrease in the average IITD for each unit increase in the independent variable, with other 

variables held constant. A positive coefficient implies longer IITDs. A negative estimated 

coefficient indicates that IITDs are shorter. The p-value indicates whether a change in the predictor 

significantly changes the IITDs at the rejection level (𝛼 = 0.05). In the current study, the emphasis 

is placed on Road Rangers. The cloglog results in Table 3-3 indicate the following key points; 

A unit increase in traffic volume increases IITDs by 0.7%. On the other hand, a unit increase in 

occupancy increases IITDs by 1.1%. One study (Kitali et al., 2018) suggested that congested traffic 

is characterized with lesser gaps between vehicles providing drivers with lesser room for 

maneuvering and increase in average occupancy represents an increase in traffic density, traffic 

volatility, and queue formation. Thus, at higher traffic volumes and occupancy, the disturbances 

induced by the incidents easily propagate in queuing traffic conditions, leading to excessive delay. 

Moreover, it takes longer for the heavy traffic upstream to dissipate after an incident is cleared. 
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Table 3-3: The Accelerated Failure Time model (Weibull distribution) 

Categorical Variable Factor Estimates 
Std. 
Error 

p-
value 

Lower Upper 
% 
Change 

Intercept  9.838 0.389 0.000 9.826 9.850 1873121 

Incident type 

Crash       
Vehicle 
problems 

-0.694 0.070 0.000 -0.716 -0.673 -50.0 

Traffic hazards -1.000 0.106 0.000 -1.032 -0.967 -63.2 

Incident severity 
Minor       
Moderate 0.438 0.168 0.009 0.386 0.490 55.0 
Severe 1.095 0.292 0.000 1.005 1.185 198.9 

Day of the week 
Weekday       
Weekend 0.095 0.128 0.459 0.055 0.134 10.0 

Incident occurrence 
time 

Off-peak -0.495 0.066 0.000 -0.515 -0.475 -39.0 
a.m. peak       
p.m. peak 0.142 0.073 0.052 0.120 0.165 15.3 

At least 1 lane closed 
No       
Yes 0.518 0.112 0.000 0.484 0.553 67.9 

Shoulder blocked 
No       
Yes 0.134 0.060 0.026 0.132 0.136 14.3 

Towing involved 
No       
Yes 0.249 0.096 0.010 0.219 0.278 28.3 

Road Rangers 
involved 

No       
Yes -0.135 0.086 0.016 -0.161 -0.108 -12.6 

Detection method 
Off-site       
On-site -0.016 0.092 0.865 -0.044 0.013 -1.6 

Continuous variable       
Ln [hourly traffic volume] (veh/hr) 0.526 0.081 0.000 0.501 0.551 69.2 
Average vehicle speed (mph) -0.154 0.006 0.000 -0.156 -0.152 -14.3 
Average detector occupancy (%) 0.011 0.014 0.421 0.007 0.016 1.1 
Median width (ft) -0.002 0.002 0.409 -0.003 -0.001 -0.2 

Note: Loglink (model) = -17651.7, Loglink (intercept) = -19043.4, Chisq = 2783.44, Log (scale) 0.5372, scale =1.71, 
italicized variables are not significant at 95% level. 

 

Incident type and severity also significantly contribute to IITDs. Crashes result to higher IITDs 

compared to the incidents associated with vehicle problems and traffic hazards. Moderate and 

severe incidents increase the IITDs by factors of 1.55 and 3 relative to minor incidents. One 

possible reason is that the percent of lane closure is an indicator of the severity of an incident. 
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Severe incidents tend to result in an increased number of lanes closed. Thus, lane closure will 

increase freeway congestion, and as traffic queue length increases, thus greater IITDs as illustrated 

by the positive coefficients. Furthermore, additional procedures involved in crashes clearance 

increase the incident duration which in turn increases the IITDs. 

Regarding incident detection and clearance, incidents that involve towing are in many cases severe 

and involve lane blockage (Haule et al., 2018).  The results reveal that, it takes longer for the traffic 

upstream to dissipate when the incident involves towing. In addition, detection of incidents on-site 

is associated with shorter IITDs compared to off-site detection. Since the on-site detection involves 

some of the response agencies, e.g., Road Rangers, the management of an incident scene starts 

immediately after detection. Quick response to an incident and prompt management of the incident 

can potentially avoid traffic bottlenecks. Quantitatively, from the model results, the negative 

coefficient reveals that, Road Rangers reduce the expected IITDs. From the analysis results, it 

could be inferred that Road Rangers reduce IITDs by 12.6% compared to other responding 

agencies.  
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CONCLUSIONS AND RECOMMENDATIONS 

This paper evaluated the benefits of the Road Rangers in terms of reduced IITDs. The study 

developed a model to predict IITDs with data from I-10, I-95, and I-295 in Jacksonville, Florida. 

Data used include; speed data from BlueToad® devices, incident data from SunGuide® database, 

and real-time traffic data from RITIS for the years 2015-2017. Incident induced traffic delays 

(IITDs) were estimated by establishing reference incident-free recurrent travel time profiles from 

which the IITDs were calculated. The hazard-based models were used to model the association 

between IITDs and the predictor variables. The findings can be summarized as follows: 

 Of the hazard-based models considered, the parametric accelerated failure time (AFT) survival 

models, with Weibull distribution of IITDs came up with a best fit. The results show that 

significant variables affecting IITDs include characteristics of the incidents (severity, type, towing 

involvements, lane and shoulder blockage etc.), Road Rangers involvement, and traffic 

characteristics of the incident. Moreover, the findings reveal no significant effects of median 

width, average detector occupancy and the day of the week on which an incident occurred. A 

significant and unique contribution of this paper is that the Road Rangers shorten IITDs relative 

to other responding agencies by 12.6%. The results can, in general, help incident managers on 

improving incident management strategies and IITDs estimations. 

It is worth mentioning that this study used traffic volume data from RITIS devices to estimate 

IITDs. RITIS devices in the proximity of the affected BlueToad® pairs were used to obtain the 

15-minute intervals traffic volume data. However, the absence of these devices along entry and 

exit ramps of some corridors posed some limitations. Due to this limitation, only the mainline 

IITDs were estimated. In addition, on evaluating the Road Rangers mobility benefits, the 
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evaluation did not account for disaggregate-level operational details of the program (e.g., day-to-

day or seasonal variations in Road Rangers activities, fleet sizes, beat lengths and probe vehicle 

types, pickup versus tow trucks). Future studies may seek to expand this study to microscopic level 

of Road Rangers (or any other FSP program) operations.  
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CHAPTER 4  

PAPER 3 

Do Road Rangers Help in Preventing Secondary Crashes? 
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INTRODUCTION 

Traffic incidents affect traffic operations, accounting for more than a half of all urban traffic delays 

and almost all rural traffic delays (Baykal-Gürsoy et al., 2009). Furthermore, traffic incidents 

increase the likelihood of secondary crashes (SCs) (Karlaftis et al., 1999). For every minute a 

freeway lane is blocked due to an incident during a peak travel period, there is a 4-minute delay to 

the traffic using the freeway and a 2.8% chance of a SC occurrence (Owens et al., 2010). A crash 

is considered secondary if it occurs either: (a) at the scene of the primary incident (PI), or (b) within 

the queue upstream of the PI, or (c) within the queue in the opposite direction of the PI caused by 

driver distraction known as rubbernecking effect (Khattak et al., 2009; Zhan et al., 2009). 

SCs have increasingly been recognized as a major problem leading to reduced capacity, additional 

traffic delays, and increased fuel consumption and emissions, especially on freeways. SCs are non-

recurring in nature; not only do affect the traffic operations, but also impose safety risk to road 

users and traffic incident responders. The USDOT estimated that SCs alone account for 

approximately 18% of all freeway traffic fatalities and 20% of all traffic crashes (Owens et al., 

2010). Compared to PIs, SCs have a significant impact on traffic management resource allocation 

(Karlaftis et al., 1999). In fact, traffic incident managers use the reduction of SCs as one of the 

performance measures for state incident management systems (Owens et al., 2010).  

Since the likelihood of SCs increases with the increase in the duration of the PI (Khattak et al., 

2009), transportation agencies are exploring several strategies to clear incidents as quickly as 

possible. Freeway service patrols (FSPs) are one such strategies that have been known to reduce 

incident response and clearance time (Karlaftis et al., 1999). This reduction can help alleviate the 

delay due to nonrecurring-incident related congestion, as well as lowering the chance of SCs. 
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However, one question remains: to what extent do FSPs reduce the likelihood of SC occurrence? 

While much work has been done in identifying the benefits stemming from the delay savings, fuel 

savings, and emission reduction (Guin et al., 2007; Dougald & Demetsky, 2008; Lin et al., 2012), 

little information is available in literature on the potential impact of FSPs in lowering the likelihood 

of SCs. 

This research investigates the extent to which the Florida’s FSP (Road Rangers) reduce(s) the SC 

likelihood. The study provides an approach to account for SC reduction benefit of FSP (Road 

Rangers) in addition to other benefits. More specifically, the study first uses a data-driven approach 

to identify SCs; it uses a dynamic approach to account for varying spatiotemporal thresholds based 

on prevailing traffic conditions. Once SCs are identified, then, the impact of Road Rangers in 

reducing the likelihood of SC occurrence is evaluated using a complementary log-log model. 

Structurally, the paper starts by discussing how SCs are related to FSPs and continues by 

documenting previous efforts in estimating the safety benefits of FSPs. The data sources are briefly 

explained, followed by a discussion on the study approach. Finally, the paper presents and 

discusses the results and conclusively highlights some important findings. 

PREVIOUS STUDIES 

Freeway service patrols (FSPs), in general, serve as a key component within any comprehensive 

incident management framework (Latoski et al., 1999). An efficient FSP substantially reduces 

incident duration time, which, in turn, alleviates the delay attributed to nonrecurring, incident-

related congestion and lowers the risk of SCs (Karlaftis et al., 1999). FSPs, by the nature of their 

role are often in a position to arrive at an incident scene quickly to enable advance safety protection 

and traffic control, which helps to prevent occurrence of another related incident. An FSP, by 
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virtue of its roving presence on the freeways, can substantially reduce the time it takes to detect 

and to respond to an incident. The flashing lights on the patrol vehicles on the other hand, warn 

motorists to exercise caution in the vicinity of assisted incidents. Furthermore, these programs 

create a sense of security for motorists in addition to improving public relations (Karlaftis et al., 

1999; Guin et al., 2007).  

In the U.S., a national survey of 19 agencies showed that the benefit-cost ratios for FSP programs 

ranged from 4.6:1 to 42:1 (Baird, 2008). While the costs included contractual and operating costs, 

the benefits stemmed from the delay savings, fuel savings, emission reductions, and motorist 

assistance (Ma et al., 2009; Dougald & Demetsky, 2008; Lin et al., 2012; Z. Sun et al., 2017). SC 

reduction may represent another significant benefit of FSP, but little has been done to identify the 

potential savings from lowering the likelihood of SC. In fact, these programs reduce primary 

incident duration, which is a significant contributor to SCs occurrence (Karlaftis et al., 1999; 

Olmstead, 2004; Guin et al., 2007; Kitali et al., 2018). 

The existing studies which considered SCs as one of FSP benefits (performance measures) differ 

in the way they identified SCs. While some used predefined spatial-temporal thresholds (Karlaftis 

et al., 1999), others assumed a fixed proportion (say 15%) out of all incidents as SCs (Chang et 

al., 2003; Guin et al., 2007; Chou et al., 2010). The later studies acknowledge that it is difficult to 

estimate savings in SCs, because such savings can only be determined by estimating the amount 

of crashes that did not occur, which may not be accurately computed.  Thus, to estimate such 

savings, authors assumed that incident duration and total delay resulting from the PIs would be 

proxies for SCs. Although these studies developed a modestly detailed framework for considering 

SCs, one limiting consideration in all these studies is the approach used to identify SCs. These 

approaches are subject to underrepresentation or over representation of SCs. The choice of the 
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predefined spatial-temporal thresholds and proportions are subjective in the sense that they are 

arbitrary. 

This study investigates the extent to which the Florida’s Road Rangers reduce SCs. The study 

gives details to account for SC reduction benefit of Road Rangers in addition to other benefits. 

Moreover, instead of using predefined spatial-temporal thresholds or fixed proportions the study 

uses a data-driven approach to identify SCs. This dynamic approach accounts for the varying 

spatiotemporal thresholds based on prevailing traffic conditions. The study can, in general, help 

incident managers assess the effectiveness of the program in improving safety. 

DATA SOURCES 

The study area included a 35-mile section on I-95, a 21-mile section on I-10, and a 61-mile section 

on I-295 located in Jacksonville, Florida. The total study area covers 117 miles. Figure 4-1 shows 

the study area. Data used in this study included speed data from BlueToad® devices, incident data 

from SunGuide® database, and real-time traffic data from the Regional Integrated Transportation 

Information System (RITIS) for the years 2015-2017. The following sections provide further 

details of the aforementioned data sources. 

SunGuide® 

SunGuide® is an advanced traffic management system (ATMS) software that is used at all regional 

traffic management centers (RTMCs) within Florida. SunGuide® software offers tools like 

automated incident detection and assisting with event management and archiving of incident data. 

The database stores incident attributes like; incident ID, incident timeline, incident severity, 

incident type, incident detection, incident location and incident responders. Along the study 
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corridors, the SunGuide® database included a total of 66,756 incidents from 2015-2017. After 

excluding incidents on ramps (15,730), incidents with missing coordinates (183), incidents with 

no matched BlueToad® pairs (10,990), incidents along the section without BlueToad® pairs 

(32,988), the remaining data consisted of a total of 6,865 incidents. 

 

 

 Figure 4-1: Study corridor 
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BlueToad® Devices 

BlueToad® devices are Bluetooth signal receivers, which read the Media Access Control (MAC) 

addresses of active Bluetooth devices of vehicles passing through their area of influence. These 

devices record the time when a vehicle passes nearby. A pair of devices is used to estimate the 

vehicle travel time between the two devices by taking the difference of the recorded times. The 

speed is calculated from the travel time and the known path distance (not Euclidean distance) 

between the devices. The study location had 72 BlueToad® devices pairs, spaced approximately 

every 1.8 miles along the freeway corridor. The posted speed limits on the entire section range 

between 55 mph and 70 mph. This study used raw data collected at each BlueToad® device pair. 

RITIS  

RITIS is an online data sharing, dissemination, and archiving system that includes real-time data 

feeds and archive data analysis tools such as probe, detector, and transit data analytics. RITIS 

provides traffic flow data in addition to speed data (volume and detector occupancy). These high-

resolution raw traffic data from RITIS were included in the likelihood model as possible factors 

that may influence the risk of SCs. There are 375 detectors along the selected freeway corridors. 

The average spacing between these detectors is approximately 0.5 miles. It is worth noting that 

traffic data just before the incident occurrence may account for potential inaccuracies in the 

reported incident time. Therefore, in this study, 15-min aggregated traffic characteristics were 

collected 5-min before the incident’s first notified time and within 1-mile upstream and 

downstream of each incident to minimize the inaccuracies.  
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METHODOLOGY 

The primary objective of this study is to evaluate the safety benefits of Road Rangers based on 

real-time traffic flow conditions. The objective was achieved through the following steps: (i) 

identification of SCs; (ii) identification of SC contributing factors; and finally, (iii) prediction of 

the probability of SCs and estimation of the safety benefits of Road Rangers. Figure 4-2 provides 

the framework for Road Rangers safety benefits evaluation adopted in this study.   

 

 

Figure 4-2: Framework for Road Rangers safety benefits evaluation 
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Identification of Secondary Crashes 

SCs result from a change in traffic characteristics caused by a PI. Researchers have traditionally 

been using static and dynamic approaches to identify SCs. Previous studies (Zheng et al., 2014; 

Goodall, 2017; Kitali et al., 2018; Yang et al., 2018) provide more details about these methods. In 

this study, SCs were identified by the method developed by Kitali et al. (Kitali et al., 2018) where 

the spatiotemporal impact ranges of the PIs were identified dynamically using archived 

BlueToad® speed data. This method captures the effects of traffic flow characteristics, such as 

speed, that change over space and time and affect the queue formation as a result of a PI. It 

overcomes the challenges of predefining the impact range thresholds or considering the 

deterministic queues of PIs that occur within observed queues from empirical measurements. The 

developed SC identification algorithm was automated in the R programming language. The 

analysis identified 537 SCs resulting from 377 primary incidents, as presented in Table 4-1. 

By definition, a primary incident (PI) is an incident which is directly associated with a SC. A 

normal incident (NI) on the other hand, is an incident not associated to a SC. 

 

Table 4-1: Secondary crash distribution by freeway corridors (2015-2017) 

Freeway 
Normal 

Incidents 
Primary 

Incidents 
Secondary 

Crashes 
Total 

Incidents 

Secondary 
Crashes Share 

(%) 

I-10 E 133 16 20 169 11.83 
I-10 W 105 9 15 129 11.63 
I-95 N 1581 110 174 1865 9.33 
I-95 S 1387 95 133 1615 8.24 
I-295 E 555 13 15 583 2.57 
I-295 W 2190 134 180 2504 7.19 

Total 5951 377 537 6865 7.82 
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Complementary Log-Log Analysis 

The response variable (SC likelihood) is binary, taking a value of 0 for NIs (incidents not linked 

to SCs) and 1 for PIs (incidents associated with SCs). From the descriptive statistics provided in 

Table 4-2, PIs constitute 5.9% of all incidents. This means that the proportion of PIs is much less 

than the proportion of NIs, i.e., the PIs and the NIs are asymmetrically distributed. Thus, a 

complementary log-log model (cloglog) is applied to associate the relationship between the 

probability of SC and predictors. The model analyzes the relationships between the PI 

characteristics and the possibility of SC occurrence. Practically, a complementary log-log model, 

being asymmetrical around the inflection point, provides a more reliable prediction of SCs 

likelihood (Kitali et al., 2018). The cloglog model is asymmetrical with a fat tail as it departs from 

zero (0) and sharply approaches one (1) (Kitali et al., 2018). The cloglog model is presented using 

Equations. (4-1) and (4-2) 

𝑦௜ =  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛௜ , 𝜋௜) (4-1) 

𝑐𝑙𝑜𝑔𝑙𝑜𝑔(𝜋௜) = log(− log(1 − 𝜋௜)) = 𝛽𝑋 + 𝛼 (4-2) 

where; 

𝜋௜ denotes the probability of a SC induced by a primary incident; 

𝑋 denotes the vector of explanatory variables 

𝛽 is the coefficients vector for explanatory variables X 

𝛼 is the specific constant term 

 

The likelihood function for the cloglog regression can be expressed using Eq. (4-3). 
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𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 =  ෑ[𝜋(𝑥௜)
௬೔(1 −

௡

௜ୀଵ

𝜋(𝑥௜)
(ଵି௬೔)] 

 

(4-3) 

where 𝜋(𝑥௜)
௬೔ is the probability of the event for the ith incident, which has covariate vector X 

 

Potential Explanatory Variables 

To predict the likelihood of SCs, this study examined a set of incident, traffic and operational 

characteristics having the potential for inclusion as independent variables in the cloglog regression 

model. The idea here is to determine what factors increase the likelihood of SCs occurrence. The 

following variables were considered:  

Incident Characteristics 

 Incident impact duration: refers to time taken for the traffic flow speed to return to normal. 

This was estimated using the approach developed by Haule et al., 2018. It is generally 

assumed that the SC likelihood increases as incident impact duration increases (Karlaftis 

et al., 1999; Haule et al., 2018).  

 Incident type: it is logical to anticipate that the probability of SC occurrence differs with 

incident type. This variable was considered categorical and included; crashes, vehicle 

problems (disabled or abandoned vehicles, emergency vehicles, vehicle fire and police 

activity), and traffic hazards (debris, flooding, spillage and pedestrian crossing).  

 Incident severity: incident severity may influence the clearance time of an incident 

resulting in a higher chance of SC occurrence. The variable was considered bivariate coded 

as minor, and moderate/severe. 
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 Lane closure: refers to whether an incident blocked lane(s). The percent of lanes closed is 

usually considered an indicator of the severity of an incident, as severe incidents tend to 

result in an increased number of lanes closed. In the current study, a 25% lane closure 

implies one out of four lanes of a roadway section is closed. A closure of one of three lanes 

would result to 33.3% lane closure and 100% means all lanes are closed. It is logical to 

anticipate that the probability of SC occurrence increases with increase in percent of lanes 

closed. This variable was considered categorical coded as 25% or less and greater than 

20% lane closure. 

 Shoulder blockage: refers to whether an incident blocked a shoulder. Similarly, it is logical 

to anticipate that the probability of SC occurrence increases when a shoulder is blocked. 

The variable was divided into two categories: No (no shoulder is blocked) and Yes (at least 

one shoulder is blocked). 

 Incident occurrence time: time factors are good indicators of traffic conditions, driver 

alertness, and familiarity with the route (Zhan et al., 2009). The variable was categorized 

as peak (a.m. 0600 to 1000 hours and p.m. 1530 to 1830 hours) and off-peak (other times 

of day). 

 Day of the week: a proxy for activity variability. The variable was coded as weekdays and 

weekends. Weekends were Saturday and Sundays.  

 Lighting condition: a proxy for lighting variability. The variable was coded as day light 

and night with respect to sunrises and sunsets.   
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Traffic Characteristics 

 Hourly traffic volume: It is logical to anticipate that the probability of SC occurrence 

increases with increase in traffic volume. 15-min aggregated traffic volumes were collected 

5-min before the incident’s first notified time and within 1-mile upstream and downstream 

of an incident. The variable was considered continuous. 

 Vehicle speed: 15-min aggregated vehicle speeds were collected 5-min before the 

incident’s first notified time and within 1-mile upstream and downstream of an incident. 

 Occupancy: refers to the percent time that the sensor (detector) is occupied by a vehicle, 

usually at 30-sec intervals. 15-min aggregated detector occupancy were collected 5-min 

before the incident’s first notified time and within 1-mile upstream and downstream of an 

incident. 

 

Operational Characteristics 

 Responding agencies: bivariate coded as Road Rangers involved and other agencies 

involved. Other agencies included but not limited to Florida Highway Patrol (FHP), 

Jacksonville Sherriff’s Office (JSO), Emergency Medical, Fire Department, and Safety 

Tow. Of the variables, this is a central variable.  

 Towing: refers to whether an incident involved towing or not. Towing is usually considered 

an indicator of the severity of an incident, as severe incidents tend to involve towing. This 

variable was divided into either no towing was involved, or towing was involved.  
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RESULTS AND DISCUSSION  

Descriptive Statistics 

Table 4-2 provides the descriptive statistics of all the variables selected for analysis and modeling.  

The statistics are provided for 6,088 valid observations (N) that were included in the analysis. Of 

the 6,685 observations presented in Table 4-1, a total of 537 were SCs, 18 PIs and 222 NIs had 

some missing information and therefore were excluded from the analysis. Of the valid 

observations, PIs and NIs accounted for nearly 6.0% and 94.0%, respectively. Incidents associated 

with vehicle problems accounted for 53.07% of all incidents, while 36.84% and 10.09% were 

crashes and traffic hazards, respectively.  

Overall, statistics showed that nearly three-quarters (76.94%) of incidents analyzed were 

responded to by the Road Rangers. Despite responding to such a significant proportion, 270 (5.2%) 

of incidents were PIs, which resulted to 321 (6.2%) SCs relative to 107 (6.4%) of incidents 

responded to by other agencies, which resulted to 216 (12.9%), as illustrated in Table 4-3. 

Furthermore, the table presents the incident impact duration distributions against incident 

responding agencies. In all cases, Road Rangers were associated with shorter average durations 

than other responding agencies. Since there exists a relationship between incident duration and 

SCs (Khattak et al., 2009), these reductions in incident impact duration can translate into 

substantial travel time and fuel consumption savings for motorists and reduced SCs.  
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Table 4-2: Descriptive statistics of variables 

Categorical Variable Factor Frequency Share (%) 

Incident 
Normal incidents 5,729 94.10 

Primary incidents 359 5.90 

Incident type 

Crash 2,243 36.84 

Vehicle problems 3,231 53.07 

Traffic hazards 614 10.09 

Incident severity 
Minor 5,731 94.14 

Moderate/Severe 357 5.86 

Day of the week 
Weekday 5,702 93.66 

Weekend 386 6.34 

Incident occurrence time 
Peak 3,350 55.03 

Off-peak 2,738 44.97 

Lighting condition 
Daylight 5,419 89.01 

Night 669 10.99 

Lane closure (%) 
0 - 25 5,254 86.30 

> 25 834 13.70 

Shoulder blocked 
Yes 3,468 56.96 

No 2,620 43.04 

Towing involved 
Yes 826 13.57 

No 5,262 86.43 

Responding agencies 
 

Road Rangers 4,684 76.94 

Other agencies 1,404 23.06 

Continuous variable Min Mean Median Max SD 

Hourly traffic volume (veh/hr) 8 192 186 1564 93.47 

Average vehicle speed (mph) 6.08 63.23 65.74 85.14 9.00 

Average detector occupancy 0.24 7.69 6.88 48.29 4.37 

Incident impact duration (min) 15 86.93 75 285 60.00 

Valid N = 6,088 
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Table 4-3: Descriptive statistics of incident impact duration with respect to responding agencies 

Responding agencies / 

Incident level 

Mean 

(min) 

Median 

(min) 
N Min Max 

Std. Dev. 

(min) 

Other agencies  99.19 82.4 1672 15 285 64.45 

Normal incidents 92.13 75 1349 15 285 62.51 

Primary incidents 154.68 150 107 30 285 62.63 

Secondary crashes 118.06 105 216 30 285 61.44 

Road Rangers 83.04 66.4 5193 15 285 57.99 

Normal incidents 77.67 60 4602 15 285 54.59 

Primary incidents 143.87 135 270 30 285 62.29 

Secondary crashes 112.25 105 321 30 285 65.54 

All incidents 86.93 70.5 6865 15 285 60.00 

 

Figure 4-3 presents the relative frequencies of Road Rangers responses versus other 

agencies responses. The four plots show that Road Rangers respond to vehicle problems and minor 

incidents more frequently than other agencies. Their responses are much more evident on 

weekdays and during peak hours. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4-3: Road Rangers versus other agencies assists relative frequencies (a) incident type, (b) 

incident severity, (c) day of the week and (d) incident occurrence time 
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Secondary Crash Occurrence Likelihood Model 

The regression results are presented in Table 4-4, and most variables are statistically significant at 

the 95% confidence level (𝛼 = 0.05). All the factors elaborated in the previous section were 

included in the model. The results can be useful in explaining how various factors affect SC 

occurrence. Estimated coefficients measure the change in the SC likelihood due to a change in the 

predictor variable while keeping the other predictor variables constant. A positively estimated 

coefficient implies an increase in the SC likelihood. A negative estimated coefficient indicates that 

there is less SC likelihood. P-value indicates whether a change in the predictor significantly 

changes the SC likelihood (𝛼 = 0.05). Hazard ratio measures the instantaneous strength of 

association between predictors and the probability of SC occurrence. In the current study, the 

emphasis is placed on Road Rangers. The cloglog results in Table 4-4 indicate the following key 

points; 

A unit increase in traffic volume increases the SCs likelihood by 0.1%. On the other hand, 

a unit increase in occupancy increases the risk by 0.9%. One study (Kitali et al., 2018) suggested 

that congested traffic is characterized with lesser gaps between vehicles providing drivers with 

lesser room for maneuver and increase in average occupancy represents an increase in traffic 

density, traffic volatility, and queue formation. Thus, at higher traffic volumes and occupancy, the 

disturbances induced by the PIs easily propagate in queuing traffic conditions, leading to a higher 

risk of SCs. Similarly, when all other factors are fixed, the SCs likelihood is higher during the peak 

hours than during other time periods. The coefficient of the peak hours’ variable is positive 

suggesting that the possibility of SCs occurrence is higher during peak hours. 

Incident type and severity also significantly contribute to the SC likelihood. Crashes have 

a higher likelihood of resulting in SCs compared to the incidents associated with vehicle problems 
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and traffic hazards. Moderate/severe incidents increase the risk by 4.7% relative to minor 

incidents. One possible reason is that the percent of lane closure is an indicator of the severity of 

an incident. Severe incidents tend to result in an increased number of lanes closed. Thus, lane 

closure will increase freeway congestion, and as traffic queue length increases, the possibility of 

SCs increases as illustrated by its positive coefficient. Furthermore, additional procedures involved 

in clearance collisions increase the incident duration which in turn increases the possibility of SCs. 

For responding agencies, the negative coefficient of Road Rangers indicates a decrease in 

SCs occurrence likelihood. Probabilities of SCs occurrence are illustrated in Figure 4-4 for (a) a 

crash, (b) vehicle problem and (c) traffic hazard as PIs.  Illustratively, suppose a moderate/severe 

crash occurred during a weekday afternoon peak, blocked both a shoulder and a lane and impacted 

the traffic for 90 min. The traffic was moderate (750 veh/h) at a mean speed of 60 mi/h and 

occupancy of 7.68. The probability of SC occurrence can be estimated as 18.5% when Road 

Rangers were involved compared to 21.2% when Road Rangers were not involved. This means 

that there is a 2.7% reduced risk of SC occurrence due to Road Rangers involvement.  
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Table 4-4: Model results 

Note: AIC: 2364.9, Null deviance: 2729.4, Residual deviance: 1312.5, pseudo R2: 0.42, italicized variables are not significant at 95% level  

 

Variable Factor Coefficients 
Std. 

Error 
P-Value 

95 % Confidence Interval 
Hazard 
Ratio 

Change 
(%)  Lower 

Bound 
Upper 
Bound 

 Intercept  -3.4666 0.6249 < 0.0001 -3.4826 -3.4506 0.031 -96.9 

Traffic 
characteristics 

Hourly traffic volume (veh/h) 0.0015 0.0005 0.0024 0.0014 0.0015 1.001 0.1 

Average vehicle speed (mph) -0.0124 0.0081 0.1250 -0.0126 -0.0122 0.988 -1.2 

Average detector occupancy 0.0090 0.0174 0.6042 0.0086 0.0094 1.009 0.9 

Primary/normal 
incident 
characteristics 

Incident impact duration (min) 0.0119 0.0008 < 0.0001 0.0118 0.0119 1.012 1.2 

Incident type Crash        
 Vehicle problems -0.8820 0.1378 < 0.0001 -0.8855 -0.8785 0.414 -58.6 
 Traffic hazards -0.9734 0.3212 0.0024 -0.9816 -0.9651 0.378 -62.2 
Incident severity Minor        
 Moderate/Severe 0.0455 0.2052 0.0246 0.0402 0.0507 1.047 4.7 
Day of the week Weekday        
 Weekend -1.1217 0.3120 0.0003 -1.1297 -1.1137 0.326 -67.4 
Incident occurrence time Off peak hours        
 Peak hours 0.4470 0.1360 0.0010 0.4435 0.4505 1.564 56.4 
Lighting condition Daylight        
 Night -0.0990 0.1967 0.6147 -0.1040 -0.0940 0.906 -9.4 
Lane closure (%) 0 - 25        
 > 25 0.3550 0.1694 0.0361 0.3507 0.3594 1.426 42.6 
Shoulder blocked Yes        
 No -0.3085 0.1262 0.0145 -0.3118 -0.3053 0.735 -26.5 

Operational 
characteristics 

Towing involved No        
 Yes 0.2888 0.1470 0.0495 0.2850 0.2925 1.335 33.5 
Responding agencies Other agencies        
 Road Rangers -0.1974 0.1559 0.0256 -0.2014 -0.1934 0.821 -17.9 
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(a) Probability of SC occurrence when a PI 
is a crash 
 

 

 

(b) Probability of SC occurrence when a PI 
is vehicle problems related 

 

(c) Probability SC of occurrence when a PI a traffic hazard related 

Figure 4-4: Probability of SC occurrence against incident impact duration  
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Road Rangers Safety Benefits 

As discussed earlier, the assumption exists that FSPs can help with reducing SCs because one of 

their duties is to provide traffic control (guide) at incident scenes, and the better the traffic control, 

the more apt you are to reduce SCs. On the other hand, FSPs by the nature of their role are often 

able to arrive at an incident scene quickly to enable early safety protection and traffic control which 

helps to prevent another related incident. In this study, two safety scenarios of Road Rangers are 

discussed. The first being the benefit delivered from reduced incident duration and the second from 

the traffic control (increased safety at incident scene). 

Incident duration reduction 

The hazard ratios in Table 4-4 assist in quantifying the effect of predictors on the likelihood of SC 

occurrence. Hazard ratio measures the instantaneous strength of association between predictors 

and the probability of SC occurrence. For example, in Table 4-4 the hazard ratio of incident impact 

duration is 1.012. This suggests that each additional minute of incident impact duration increases 

the likelihood of a SC by 1.2%.  Figure 4-5 shows that the probability of a SC occurrence increases 

with incident impact duration implying that reducing incident impact duration would translate into 

reduced SCs.  
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Figure 4-5: Probability of a secondary crash occurrence 
 

Since Road Rangers reduce incident duration by offering faster incident detection and response, 

there is an expected reduction in SCs. For example, if Road Rangers reduce incident duration by 

an average of 10 min, based on Figure 4-5 (or Table 4-5), the likelihood of a SC decreases by 

12.6%. Based on Table 4-3, the average incident impact duration is 83.04 minutes with Road 

Rangers involvement, which is 16 minutes less than the median duration with other responding 

agencies (99.19 min). According to Table 4-5, a 16 minutes duration corresponds to a hazard ratio 

of 1.209, indicating that Road Rangers may help reduce SC likelihood by 20.9%.  Therefore, traffic 

management strategies, Road Rangers in particular, that clear roadway blockages as quickly as 

possible have a significant impact on reducing the probability of SCs.  
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Table 4-5: Estimation of reduction of probability of secondary crash occurrence 

Incident impact 

duration 

reduction (min) 

Hazard 

Ratio 

Safety 

Effectiveness 

Probability of secondary crash reduction (%) 

Estimate 
95% confidence interval 

Lower bound Upper bound 

0 1.000 1.000 0.0 0.0 0.0 

5 1.061 0.939 6.1 6.1 6.1 

10 1.126 0.874 12.6 12.6 12.6 

15 1.195 0.805 19.5 19.4 19.5 

20 1.267 0.733 26.7 26.7 26.8 

25 1.345 0.655 34.5 34.4 34.5 

30 1.427 0.573 42.7 42.6 42.8 

35 1.514 0.486 51.4 51.3 51.5 

40 1.606 0.394 60.6 60.5 60.8 

45 1.704 0.296 70.4 70.3 70.6 

 

Traffic control 

Based on the model results presented in Table 4-4, Road Rangers reduce the probability of SCs by 

17.9% (mean 17.9%, 95% CI: 17.6 - 18.2). This reduction could be associated with how quickly 

Road Rangers respond to incidents. Also, features like the flashing lights on the patrol vehicles 

warn motorists to exercise caution in the vicinity of assisted incidents.   



 

95 
 

CONCLUSIONS AND RECOMMENDATIONS 

This study evaluated the safety performance of the Road Rangers Service Patrol, a mobile-based 

program administered by FDOT to assist motorists and minimize the impacts of freeway incidents 

on non-recurring traffic congestion. Specifically, this study examined the benefits of the Road 

Rangers in reducing the risk SCs occurrence. The study developed a model to predict SCs 

probabilities with data from I-10, I-95, and I-295 in Jacksonville, Florida. Data used include; speed 

data from BlueToad® devices, incident data from SunGuide® database, and real-time traffic data 

from RITIS for the years 2015-2017. 

A Complimentary log log regression model was developed to associate the probability of 

SCs occurrence with the potential contributing factors. Of the factors analyzed, traffic volume, 

incident impact duration, moderate/severe crashes, weekdays, peak periods, percentage of lane 

closure, shoulder blockage, and towing involving incidents were found to significantly increase 

the likelihood of SCs. Road Rangers, weekends, off peak periods, minor incidents, vehicle 

problems and traffic hazard related incidents were associated with relatively lower probabilities of 

SCs occurrence.  

The models predicted that the probability of SC occurrence increased by approximately 

1.2% for every additional minute of the incident. Practical inferences to the model’s explanatory 

variables were drawn from the estimated model coefficients and hazard ratios. For instance, based 

on average incident duration reduction, the results suggest that the Road Rangers program may 

reduce SC likelihood by 20.9%. Based on controlling the traffic at the incident scene, Road 

Rangers reduce the probability of SCs by 17.9%. These findings provide researchers and 

practitioners with an effective means for conducting the economic appraisal of the Road Rangers 

program.  
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It is worth mentioning that on evaluating the safety benefits of Road Rangers, evaluation 

did not account for disaggregate-level operational details of Road Rangers (e.g., day-to-day or 

seasonal variations in Road Rangers activities, fleet sizes, beat lengths and probe vehicle types; 

pickup versus tow trucks). In addition, this study used speed data extracted from the BlueToad® 

devices to determine the spatiotemporal impact range of PIs, and hence, to identify SCs. The 

BlueToad® devices average spacing of 1.8 miles, which may not have precisely captured the speed 

changes over space. Therefore, future studies may seek to expand the analysis to a microscopic 

level of Road Rangers (or any other FSP program) operations. Moreover, future analysis can 

incorporate virtual detectors that use crowdsourced traffic information to obtain additional traffic 

speed data. 
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