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1 Introduction

We present a dynamic model of collective choice under majority rule in which a status quo policy
evolves, challenged by a new policy in every period. A challenging policy is drawn randomly from
a finite set of policies. If the challenging policy wins the majority, then it becomes the status quo
policy in the next period. Otherwise, the current status quo policy remains in effect. In contrast
to the traditional literature on legislative bargaining models, beginning with Baron and Ferejohn
(1989), our analysis is based on stochastic evolutionary game theory. Voters are boundedly rational
in the sense that they are myopic, and they may make a mistake, probabilistically. A model of
boundedly rational behavior is suitable when voters do not have perfect foresight about a voting
outcome, owing to uncertainty and random shocks in the political environment and incomplete
policy descriptions. The goal of this study is to characterize a long-run equilibrium in a dynamic
policy-making process in which voters are boundedly rational.

According to Baron (1996), many of the collective choices we face in the real world are con-
tinuous, rather than once-off. Decisions made about programs today may become the status quo
in future and, thus, affect future decisions (e.g., constitutional amendments, referendums, and na-
tional elections). Therefore, in such case, we focus on long-run, rather than short-run outcomes of
collective choices. For example, the 2016 UK referendum on whether to leave the EU resulted in
significant political chaos. Short-term concerns include how to withdraw from the EU; long-term
concerns are related to the nature of the relationship that will eventually emerge between the UK
and the EU. Choices made by myopic legislators whose main concern is to be elected in a coming
election provide further examples. Here, researchers focus on the evolution of the public policies
implemented by such legislators.

This study relates the static solution concepts of social choice theory to a long-run equilibrium
in a dynamic voting process. The Condorcet (1785) winner is a policy that defeats all other policies
under a simple majority rule. When the policy space is one-dimensional and voters’ preferences
are single peaked, the theorem of Black (1948) shows that the Condorcet winner is the median
of the players’ ideal policies. However, when the policy space has two or more dimensions, the
set of undefeated policies under the simple majority (called the majority core) is empty without
strong assumptions of symmetric preferences; see Plott 1967, Tullock 1967, and Davis et al. 1972
for early studies on this topic. Furthermore, McKelvey (1976, 1979) shows that when the majority
core is empty, the “top cycle” (i.e., the set of policies that can be reached from any other policy
through a finite chain of majority preferences) is the whole policy space. That is, any policy can
be reached from any other through a process of pairwise majority comparisons. This result is often
interpreted as fragility or instability in majority voting (some call it chaos). Riker (1980) writes:
“the sum of our new sophistication is, therefore, that political outcomes truly are unpredictable in
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the long run.”
Simpson (1969) proposed the min-max policy, which is weaker than the Condorcet winner.

For a policy a, let n(a) be the maximum number of voters who vote against a by voting for a
different policy. A min-max policy minimizes n(a) for all policies, and has “the property that the
maximum number of voters wishing to move in any direction is a minimum.” (Simpson, 1969).
The set of min-max policies is called the min-max set, and the min-max number of voters the min-
max quota.1 A min-max policy always exists, and the Condorcet winner (if it exists) is a unique
min-max policy (when preferences are strict).

We employ stochastic evolutionary game theory to characterize a long-run equilibrium.2

Roughly speaking, the theory examines the robustness of each policy when voters’ behavior in-
cludes the possibility of rare mistakes. Here, we assume a stochastic choice rule for voters in
which, with a small positive probability, they may make a mistake by choosing a suboptimal
policy. Specifically, we assume voters’ error probabilities are identical and independent across
policies and individuals. The dynamic process with the aforementioned choice rule is called the
best-response dynamics with mutations (BRM). Given a stochastic appearance of challenging poli-
cies and a stochastic choice rule, the dynamic process of collective choice generates a (irreducible
and aperiodic) Markov process with finite states. A policy is stochastically stable if a (unique)
stationary distribution of the Markov process places a positive probability on it in the limit, such
that the error probability vanishes. Intuitively, a stochastically stable policy is the most likely long-
run equilibrium when random perturbations to voters’ behavior are small. The set of stochastically
stable policies is independent of an initial status quo policy. Furthermore, it is known that a stochas-
tically stable state exists under a general choice rule satisfying a regularity condition (Sandholm,
2010).

Our results are as follows. First, we prove that the Condorcet winner (if any) is uniquely
stochastically stable for every majority rule in which the majority quota q varies from a simple
majority to unanimity. When the Condorcet winner does not exist, every stochastically stable
policy under every majority rule (including unanimity) belongs to the top cycle under a simple
majority.

Second, when the policy space is multidimensional, we prove that the long-run equilibria under
each majority voting rule must belong to the min-max set when the majority quota q is larger
than the min-max quota and the policy space is discretized sufficiently finely. This result implies

1The min-max quota is the minimal majority size under which an undefeated policy exists. Caplin and Nalebuff
(1988) show that when the policy space is multidimensional and the density of voters’ ideal points is concave over its
support, the min-max quota is less than 64% of voters.

2For applications of stochastic evolutionary game theory in cooperative settings, see Agastya (1999), Jackson
and Watts (2002), Arnold and Schwalbe (2002), Klaus et al. (2010), Newton (2012), Sawa (2014), Newton and Sawa
(2015), Nax and Pradelski (2015), Boncinelli and Pin (2018), and Bilancini et al. (2019). See also Section 2 of Newton
(2018).
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that stochastic evolutionary theory mitigates the indeterminacy problem of majority voting for
multidimensional policy spaces. If the voting quota is less than the min-max quota, majority voting
may cause the intransitivity of social choice (the paradox of voting). If the quota is greater than
the min-max quota, we confront the indeterminacy problem — the core includes many policies. In
particular, under unanimity, the core coincides with the set of Pareto efficient policies. Stochastic
evolutionary theory tells us that only policies in the min-max set can be long-run equilibria.

Third, to examine whether the voting behavior model affects the long-run equilibrium, we
consider a second probabilistic voting model: a logit choice rule in which voters’ error probabilities
are governed by the logit function. We prove that the Borda (1781) winner is a unique stochastically
stable policy under the unanimity rule. This result has a positive implication for the normative
(and old) debate concerning the Condorcet winner versus the Borda winner: either solution can
emerge as a long-run equilibrium of a dynamic unanimity voting process, depending on the voters’
behavioral model.

The results of our evolutionary approach complement those in the recent literature on legislative
bargaining with an endogenous status quo policy, as proposed by Baron (1996); see Kalandrakis
(2004), Battaglini and Coate (2007), Penn (2009), Anesi (2010), Duggan and Kalandrakis (2012),
Anesi and Seidmann (2015), and Diermeier et al. (2017), among others. Most prior studies em-
ploy the rational choice paradigm, which assumes voters maximize their long-term utility, have
perfect foresight, and have perfect knowledge of others’ preferences. Baron (1996) presents a
(now standard) model of legislative bargaining with an endogenous status quo, where a legislator
is selected randomly to propose a policy. In the unidimensional case, he characterizes a station-
ary Markov perfect equilibrium in which the outcome converges to the median’s ideal point (the
Condorcet winner). In a three-person divide-the-dollar game under majority voting, Kalandrakis
(2004) shows that the proposer eventually exploits the whole dollar in all periods, irrespective of
the common discount factor. Duggan and Kalandrakis (2012) establish the existence of a station-
ary Markov perfect equilibrium in a multidimensional case with general preferences, and prove the
convergence to the Condorcet winner under a weighted majority rule. Anesi and Seidmann (2015)
extend the result of Kalandrakis (2004) to an n-person divide-the-dollar game. They focus on a
special class of no-delay stationary Markov perfect equilibria in which the first proposal is accepted
and remains effective in all future rounds. In the case of a finite policy space, Anesi (2010) and
Diermeier et al. (2017) characterize a von-Neumann and Morgenstern stable set as the limit set of a
stationary Markov perfect equilibrium. Battaglini and Coate (2007) examine the efficiency of leg-
islative bargaining as it relates to public spending and taxation. Penn (2009) considers a model of
legislative bargaining with logit choice rules, where a proposal is chosen randomly according to a
fixed probability distribution, similarly to ours. She proves the existence and uniqueness of a value
function that expresses voters’ long-term preferences over policies, but she does not characterize
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the long-run equilibrium.
Finally, we compare the rational choice approach and our evolutionary approach, according to

three aspects. The first is the assumption of rationality. In the rational choice approach, voters are
assumed to be rational, make no mistakes, and have perfect knowledge of others’ preferences. In
contrast, the evolutionary approach assumes that voters may make a mistake, with small probabil-
ity, and does not rely on the assumption of common knowledge about others’ preferences. In our
view, both approaches are complementary, providing a better understanding of complex real-world
voting processes.

The second aspect is related to the model. The standard model of legislative bargaining ran-
domly selects a legislator to make a proposal in each round. In contrast, the proposal process in
our evolutionary model (and in the model of Penn (2009)) is probabilistic and exogenous. In re-
ality, a proposal process is determined by many institutional factors, including formal recognition
protocols, negotiations over proposal rights, and social norms (e.g., seniority). As is well known
in game theory, an equilibrium critically depends on details of the game tree, including the pro-
posal process. Thus, because we do not have sufficient data on real-world proposal processes,
we take an institution-free approach: rather than formulating an institutional process explicitly,
we assume a proposal occurs through an unknown random process. Note that a long-run equilib-
rium of a stochastic evolutionary process is invariant with respect to a probability distribution over
proposals.

The third aspect of the comparison is the sensitivity to model parameters. Legislative bar-
gaining results are often sensitive to at least some of the model parameters. For example, an
equilibrium of a bargaining model may depend on voting rules, cardinal utilities, discount factors,
and a probability distribution when choosing a proposer. In contrast, the long-run equilibrium of
our evolutionary model depends on a smaller set of parameters, such as ordinal preferences and
voting rules, given a stochastic choice rule for voters.

The remainder of the paper is organized as follows. Section 2 presents the collective choice
model. Section 3 formulates the dynamic policy-making process. Section 4 characterizes the long-
run equilibrium under the BRM. Section 5 extends the analysis to the case of multidimensional
policy spaces, and Section 6 considers the logit choice rule under unanimity. Section 7 concludes
the paper. All proofs are given in the Appendix.

2 The Collective Choice Model

Let N = {1, . . . ,n} be the set of players, and let A be a finite set of policies. Each player i has
a strict preference over A (indifference is not allowed). The utility function of player i is a real-
valued function ui : A → R. In what follows, N, A , and {ui}i∈N are fixed. Players collectively
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choose a policy under majority voting. We consider a class of majority voting rules with different
quotas. Here, a quota is denoted as q∈ {1, . . . ,n}, which is the minimum number of votes required
for a challenging policy to win against a status quo policy. The quota for a simple majority is given
by q = n+1

2 for odd n, and by q = n
2 + 1 for even n. For our analysis, we introduce the following

notation:

q =

n+1
2 for odd n,

n
2 for even n.

Briefly, q is the largest integer not greater than (n+1)/2. The quota for a simple majority is equal
to q for odd n, and to q+1 for even n. When q = n, the majority voting is unanimity. We focus on
the case in which the quota q is greater than or equal to q. In what follows, a majority voting rule
with a q-quota is referred to simply as a q-majority.

For any pair of policies a,a′ ∈A , let N(a,a′) denote the set of players who prefer a′ to a, and
n(a,a′) be the number of such players. We say that a′ defeats a under a q-majority if n(a,a′)≥ q,
and that a is undefeated under a q-majority if it is not defeated by any other policy under the
q-majority.

Given a quota q, the q-majority core is the set of undefeated policies under a q-majority. We
denote the q-majority core by C(q), which may be empty. For two policies a,a′ ∈ A and two
quotas q and q′, with q < q′, a′ defeats a under a q-majority if a′ defeats a under the q′-majority;
thus, C(q)⊂C(q′). The q-majority core expands as q increases. The n-majority core C(n) is equal
to the set of Pareto efficient policies. Define

n(a) = max
a′∈A \{a}

n(a,a′),

which is the maximum number of voters who prefer some policy a′ to a. A policy a is defeated
by some other policy under a q-majority if and only if n(a)≥ q. Thus, the q-majority core C(q) is
equal to the set {a ∈A : n(a)< q}.

A Condorcet winner, denoted as aCW , is a policy that defeats any other policy under a simple
majority. By definition, aCW ∈ A is a Condorcet winner if n(a,aCW ) > n/2, for all a 6= aCW .
A Condorcet winner aCW (if any) is unique and belongs to the simple majority core. Under the
assumption of strict preferences, it holds that n(a,a′)+ n(a′,a) = n, for a 6= a′. Thus, a policy
a ∈ A is a Condorcet winner if and only if n(a) < n/2. For any a 6= aCW , n(a,aCW ) > n/2, and
thus n(a)> n/2. Therefore, the Condorcet winner aCW minimizes n(a) for all policies a ∈A .

The literature on social choice theory has proposed two generalized notions of the Condorcet
winner: the top cycle (Miller, 1977), and the min-max set (Simpson, 1969).

A policy a ∈ A is said to indirectly defeat b ∈ A under a q-majority, denoted as a �∗q b, if
there exists a sequence (a1, . . . ,am) of policies with a1 = b and am = a, such that ai+1 defeats ai
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for every i = 1, · · · ,m− 1. The top cycle under a q-majority is a set of policies, each member
of which indirectly defeats every other policy in A . Let A tc

q denote the top cycle under a q-
majority. Formally, A tc

q is defined as the set {a ∈ A : ∀a′ ∈ A , a′ 6= a, a �∗q a′}. There are
several noteworthy properties of the top cycle. The Condorcet winner (if any) is the top cycle
under a simple majority. The top cycle A tc

q exists for every q ≤ q, but may be empty for q > q.
If the q-majority core C(q) is nonempty, then the top cycle A tc

q must be a subset of the core.3

Furthermore, A tc
q is empty if C(q) contains more than one policy.4 In addition, C(q) is empty if

the top cycle A tc
q contains more than one policy.5 The top cycle plays a vital role only when the

q-majority core is empty.6 Miller (1977, Theorem 7) shows the following characterization of the
top cycle under a q-majority. The top cycle A tc

q is the minimal undefeated set: (i) no policy in A tc
q

is defeated by any policy not in A tc
q under the q-majority; and (ii) no proper subset of A tc

q satisfies
(i).

A min-max policy is a policy that minimizes n(a) over A . The minimum number of n(a) for
a ∈A is called the min-max quota, and is the maximum number of voters who prefer some policy
to a min-max policy. The set of min-max policies is called the min-max set, and is denoted as
A mm. The min-max set A mm is always nonempty. If the Condorcet winner aCW exists, then aCW

is a unique min-max policy. The relationship of the min-max set A mm to the q-majority core C(q)

is as follows. By definition, a min-max policy is undefeated under a q-majority rule if q > n. Thus,
A mm ⊆ C(q) if q > n. When q = n+ 1, every policy a in C(n+ 1) satisfies n(a) < n+ 1. From
the definition of n, it must hold that n(a) = n for every policy a in C(n+1). Thus, A mm =C(q) if
q = n+1. When q≤ n, A mm∩C(q) = /0.

3 A Dynamic Policy-Making Process

We consider a dynamic political process in which players vote recurrently using pairwise compar-
isons under a q-majority. The status quo policy in period t is denoted as at ∈A . A policy a ∈A

is drawn against the status quo policy at according to a (predetermined) probability distribution
pat . Every policy has a positive chance of being selected as a challenging policy.7 All players vote
simultaneously between a and at , according to their choice rules, which are defined below. If the
challenging policy a wins at least q votes, it will become the status quo policy in the next period.

3Any policy not in C(q) does not indirectly defeat policies in C(q) and, thus, is not in A tc
q .

4Consider a,a′ ∈C(q). Policies a and a′ are not in the top cycle either, because a�∗q a′ and a′ �∗q a.
5If a,a′ ∈A tc

q , then a�∗q a′ and a′ �∗q a, which implies that a and a′ can be defeated. Because all policies outside
A tc

q are defeated, every policy is defeated. That is, the q-majority core is empty.
6If both concepts are nonempty, then they reduce to a common single element.
7The probability distribution over policies can be arbitrary. Our results are not affected in any critical way by the

choice of distribution, as long as each policy has a positive probability of being selected.
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Period t

Status quo
aᵗ

A proposal a’
drawn from paᵗ

Vote between
a’ and aᵗ

a’ wins

aᵗ wins

Status quo
aᵗ⁺¹ = a’

Status quo
aᵗ⁺¹ = aᵗ

A proposal a’’
drawn from paᵗ⁺¹

A proposal a’’
drawn from paᵗ⁺¹

Period t+1

Figure 1: Path of play

Otherwise, at remains as the status quo policy. For q ≤ n/2, both policies a and at can obtain at
least q votes. In such a case, the challenging policy a wins the vote. Figure 1 illustrates the process.

We consider a probabilistic voting behavior that has been well studied in the literature (e.g.,
see Coughlin (1992), Banks and Duggan (2005), Schofield (2005), McKelvey and Patty (2006),
and Penn (2009)). Specifically, we assume every player might, with a small probability, vote for
a suboptimal policy. Such stochastic behavior can occur for several reasons. First, players are
not perfectly rational, and thus may choose a suboptimal policy by mistake. Second, players are
uncertain about the outcomes of policies, owing to random shocks to the political environment.
Third, incomplete descriptions of policies may result in stochastic voting. In what follows, we
interpret stochastic voting as occurring owing to voters’ mistakes.

For all a,a′ ∈A , let Ψi(a,a′) denote the probability that player i votes for a′ against a. When
player i makes no error, Ψi(a,a′) is given by8

Ψ
0
i (a,a

′) =


1 if ui(a′)> ui(a),

0 if ui(a′)< ui(a),
1
2 if ui(a′) = ui(a).

(1)

Each player votes for the best policy with probability one. Under the possibility of making mis-
takes, each player i’s choice is given by the following: for all a,a′ ∈A ,

Ψ
ε
i (a,a

′) =


1− ε if ui(a′)> ui(a),

ε if ui(a′)< ui(a),
1
2 if ui(a′) = ui(a),

(2)

where ε > 0 is the probability of making a mistake. Each player votes for the optimal policy with

8From the assumption of strict preferences, ui(a′) = ui(a) implies a = a′. Our result is not affected in any critical
way by the choice rule in this case.
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probability 1− ε , and votes for a suboptimal policy with probability ε . This stochastic choice rule
is called the BRM. The formal transition probabilities of the process can be found in Appendix A.

The aim of our analysis is to characterize the long-run equilibrium of a dynamic process of
majority voting when ε is sufficiently small. The perturbed process with ε > 0 is a Markov chain
with a unique stationary distribution, denoted as π

q
ε . Let π

q
ε (a) denote the probability that π

q
ε places

on policy a ∈A . Let π
q
ε (A1) = ∑a∈A1 π

q
ε (a) for a subset A1 ⊆A . Then, the players’ behavior is

summarized asymptotically by the stationary distribution — π
q
ε (a) represents the fraction of time

in which policy a is enacted over a long time horizon. In what follows, we refer to a policy in A a
state of the process, if no confusion arises.

Definition. A state z ∈A is stochastically stable under a q-majority if
limε→0 π

q
ε (z)> 0.

In general, a stochastically stable state is the policy most likely to be enacted in the long term
when voters’ behavior is probabilistic, but the mistake rate is small.

We provide the computation method, established in the literature on stochastic evolutionary
game theory, for a stochastically stable state in Appendix A. Here, we present the essence of the
method. For a policy z∈A , the notion of a z-tree plays a critical role in the computation. From the
standard definition in graph theory, a (directed) tree on A is a set of |A |−1 transitions (directed
edges) with three properties: (i) exactly one policy, called the root of the tree, has no exiting
transition; (ii) all policies but the root have exactly one exiting transition; and (iii) for any policy
there is a unique path to the root.9 If a tree has a root z ∈A , we call it a z-tree. For each transition
of the z-tree, we determine the minimum number of mistakes needed for the transition to occur.
This number is called the transition cost, and is a measure of how unlikely the transition is to occur.
The cost of a z-tree is defined as the sum of all transition costs within the tree. Thus, a policy z∈A

is stochastically stable if and only if it has a z-tree with the smallest cost over A .

4 The Long-Run Equilibrium: Condorcet Winner and Top-
Cycle

In this section, we characterize stochastically stable policies under a q-majority. The analysis is
restricted to an interesting case of q ∈ {q, . . . ,n}.10 It is useful to introduce the notion of a q-

majority tree.11 A q-majority tree is a tree on the policy space A , where each transition has zero

9For example, Figure 2(a) shows a tree with four policies.
10When q < q, a majority voting rule actually describes a minority rule in which a challenging policy is selected if

a minority group of players prefer it. Our analysis can be applied to a minority rule.
11Our notion of a majority tree is similar to that of a complete path in Miller (1977).
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cost under the q-majority. That is, every transition of a q-majority tree is preferred by at least q

voters. The root of a q-majority tree can be reached from any other policy, with no mistakes, by
repeating the q-majority voting. A formal definition of a q-majority tree is given in the Appendix.

The following lemma provides a necessary condition for a policy to be stochastically stable.

Lemma 1. Let q≥ q. Every stochastically stable policy z∗ ∈A under the q-majority must be the

root of some q-majority tree.

Lemma 1 implies that, for every q-majority rule, a policy z∗ is stochastically stable only if z∗

can be reached from any policy z under the q-majority rule through a sequence of pairwise voting.
Let q ∈ {q, . . . ,n}. Intuitively, suppose z∗ is not the root of any q-majority tree. Then, there is
some policy, say z, from which z∗ cannot be reached, with no mistakes, under the q-majority using
any sequence of pairwise voting. It can be shown that z is more likely to be enacted than z∗. To
see this, choose a z∗-tree that minimizes the cost among all possible z∗-trees. The chosen z∗-tree
must have a transition, say (z,z′), that is not supported by the majority, with no mistakes; that is,
n = n(z,z′) < q. Its transition cost is q− n(z,z′) > q− q. Note that the transition cost of (z,z∗)
is greater than or equal to that of (z,z′); that is, q− n(z,z∗) ≥ q− n(z,z′). Otherwise, we can
form a z∗-tree with a strictly smaller cost by replacing (z,z′) with (z,z∗). We construct a z-tree by
replacing (z,z′) with (z∗,z). The transition cost of (z∗,z) is at most q− q. Then, the cost of the
z-tree is strictly smaller than that of the z∗-tree, which contradicts that z∗ is stochastically stable
under the q-majority.

We can now state our main result. The proof is given in Appendix B.

Theorem 1. The Condorcet winner is uniquely stochastically stable under the BRM for all q ≥
q.1213

The theorem is straightforward for the simple majority voting, where the Condorcet winner can
be reached, without error, from any other policy under the simple majority. In contrast, every other
policy can be reached from the Condorcet winner only when at least one voter makes a mistake.
Thus, the Condorcet winner is the unique long-run equilibrium under a simple majority.

An important finding of Theorem 1 is that the Condorcet winner is uniquely stochastically
stable for all majority rules, including unanimity. When q is a super-majority rule, the Condorcet
winner may not always win the super majority. For example, the core C(q) may include policies
other than the Condorcet winner; that is, many policies may be undefeated under the q-majority.
If enacted, such a policy remains as the status quo, as long as voters make no errors. However, the

12When the Condorcet winner does not exist, we can prove a weak version of Theorem 1: When n is even, a weak
Condorcet winner a∗ satisfying n(a′,a∗)≥ n/2, for all a′ 6= a∗, is stochastically stable under every q-majority.

13When q < q, we can prove that the Condorcet winner is a stochastically stable policy (possibly not unique) under
the q-majority.
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a₁

a₂ a₄
0

13

a₃ 0

(a) a2-tree

12
a₁

a₂ a₄
0

13

a₃ 0

(b) a1-tree

Figure 2: A non-majority a2-tree and a majority a1-tree

Condorcet winner aCW is the only policy to be a long-run equilibrium, even under a super majority
rule. Intuitively, any a-tree for a 6= aCW has a transition exiting from aCW . The transition is not
preferred by a majority and, thus, it is impossible for any a 6= aCW to be the root of a q-majority
tree. Therefore, by Lemma 1, any policy other than the Condorcet winner cannot be a long-run
equilibrium under any q-majority rule.

Theorem 1 implies the following. In the literature on social choice theory, the core has fre-
quently been studied as a set of stable majority voting outcomes. The core expands as the voting
quota increases. In particular, the core under the unanimity rule (the largest quota) coincides with
the set of Pareto efficient policies. When the core includes multiple policies, the outcome of ma-
jority voting is indeterminate. This is sometimes called the indeterminacy problem (Caplin and
Nalebuff 1988). Theorem 1 shows that the stochastic evolutionary theory resolves the indeter-
minacy problem in that the Condorcet winner is uniquely selected as a long-run equilibrium in a
dynamic voting process.

Example 1. Consider a collective choice problem with 25 voters and four policies. The voters’
preferences are summarized in Table 1. Each cell in the right matrix gives the total number of
voters who prefer a row policy to a column policy. For example, 25 voters prefer a2 to a3. The

Table 1: Preference and voting matrices of 25 voters and four policies

Preferences # of players
a1 � a2 � a3 � a4 13
a2 � a4 � a3 � a1 12

a1 a2 a3 a4
a1 − 13 13 13
a2 12 − 25 25
a3 12 0 − 13
a4 12 0 12 −

Condorcet winner is a1, because it wins 13 votes against any other policy. The q-majority core is
{a1} for q = 13, and is {a1,a2} for all q ≥ 14. The Condorcet winner a1 is the unique long-run
equilibrium under every q-majority rule with q≥ 13.

The intuitive reasoning behind the result for unanimity (q = 25) is as follows. Note that q = 13.
Figure 2 (a) shows an a2-tree, and Figure 2 (b) shows an a1-tree. An arrow from a j to ah denotes
a transition from a j to ah. A number associated with an arrow indicates the number of voters
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q=15

q=13

q=14

Probability of the Condorcet winner

Figure 3: Probability of the Condorcet winner a1

who oppose the transition; this is the transition cost under unanimity (i.e., the number of mistakes
required for the transition to occur under unanimity). The likelihood of a transition occurring
decreases as the number of opposing voters increases. A policy is a long-run equilibrium if it is
the root of a tree that minimizes, among all trees, the sum of the opposing voters associated with
its transitions.

Figure 2(a) shows an a2-tree that minimizes the number of the opponents among all a2-trees.
However, it is not a q-majority tree, because the edge (a1,a2) has n(a1,a2) = 12 < q. As in Figure
2(b), replacing (a1,a2) with (a2,a1) yields an a1-tree with fewer opponents than those of the a2-
tree. The a1-tree in the figure is a q-majority tree that minimizes the number of opponents among
all trees.

Figure 3 shows the dynamics of the probability of the Condorcet winner a1, for q∈{13,14,15}.
The error rate ε is 1%. All four policies are equiprobable in the initial distribution. The probability
of a1 increases over time with q. The speed at which probability weights accumulate on a1 is
fastest for q = 13, because the process can move to a1 from any policy with no errors. As we
increase the quota, the accumulation speed becomes slower. Society will take longer to implement
the Condorcet winner if the quota is greater than q. Note that the probability of the Condorcet
winner a1 for each q will never reach one, owing to the error probability ε > 0. The probability
converges to one for every q≥ q in the limit, such that ε vanishes, as implied by Theorem 1.

Theorem 1 assumes the Condorcet winner exists. We now consider a general case where the
Condorcet winner may not exist. The set of long-run equilibria depends on a voting quota q. Let
A tc

q be the top cycle under the q-majority, and let Mq(A tc
q ) be the set of stochastically stable

policies when the policy space is restricted to A tc
q and the voting rule is the q-majority.

Proposition 1. For all q≥ q, a policy z∗ is stochastically stable under the q-majority if and only if

z∗ ∈Mq(A tc
q ).
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According to this proposition, we can restrict the policy space to A tc
q to characterize the long-

run equilibrium for every q-majority with q≥ q. When q = q, every policy in the top cycle A tc
q can

be reached without error from any other policy. Thus, all policies in A tc
q are long-run equilibria,

whereas those outside A tc
q are not. When q > q, policies in A tc

q may not be reached without error
from policies outside A tc

q . For example, some policies outside A tc
q may be in the core C(q) when

q > q. Replacing such polices will incur positive transition costs. Nevertheless, we can ignore
such policies to compute a stochastically stable policy, as shown in the following example.

Example 2. Consider a collective choice problem with 25 voters and four policies. The voters’
preferences are summarized in Table 2. Observe that q = 13 and A tc

q = {a1,a2,a3}. Suppose the

Table 2: Preference and voting matrices of 25 voters and four policies

Preferences # of players
a1 � a4 � a2 � a3 8
a2 � a3 � a4 � a1 6
a3 � a1 � a2 � a4 11

a1 a2 a3 a4
a1 − 19 8 19
a2 6 − 14 17
a3 17 11 − 17
a4 6 8 8 −

unanimity rule, or q = 25. The cost of a transition is given by the number of voters opposing the
transition. The stochastically stable policy with the state space A tc

q is a3. Proposition 1 implies
that a3 is the stochastically stable policy with the original state space A = {a1, . . . ,a4}.

To see this, observe that {(a2,a1),(a3,a2),(a4,a1)} is the a1-tree with the minimum cost
among all a1-trees. Similarly, {(a1,a3),(a3,a2),(a4,a1)} is the a2-tree with the minimum cost
among all a2-trees, and {(a1,a3),(a2,a1),(a4,a1)} is the a3-tree with the minimum cost among
all a3-trees. Because all trees include the same transition (a4,a1), the difference in costs between
these minimum-cost trees does not change, even if we remove policy a4 from the state space. For
example, the costs of the a1-tree and the a3-tree are 23 and 20, respectively. If we exclude a4, the
costs change to 17 and 14, respectively, but the difference remains the same.

Proposition 1 has two implications. First, it shows the robustness of the long-run equilibria.
The top cycle A tc

q does not change, even if we add policies to A that are defeated by every a ∈
A tc

q . Second, it simplifies the computation of a long-run equilibrium. In general, it is bothersome
to consider transition costs for all policies outside A tc

q . However, using this proposition, it is
sufficient for us to restrict our attention to transitions between policies in A tc

q .

5 Multidimensional Policy Space

We consider a collective choice problem where policies are in the h-dimensional Euclidean space
Rh. For a policy a ∈ Rh and i = 1, · · · ,h, the i-th coordinate of a represents its position on the
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i-th issue. Every voter has a Euclidean preference over policies; each player i ∈ N has an ideal
point, denoted as si ∈ Rh, and he/she prefers policies closer to the ideal point. Formally, player i’s
utility function ui satisfies ui(a)> ui(a′) if and only if d(a,si)< d(a′,si), where d(a,b) denotes the
(Euclidean) distance between a and b. The Euclidean preference generalizes the “single-peaked”
preference of Black (1948). Here, n and C∗ denote the min-max quota and the min-max set,
respectively, in Rh. That is, n = minr∈Rh maxr′∈Rh n(r,r′) and C∗ = {r ∈Rh : maxr′∈Rh n(r,r′) = n}.

To apply our stochastic evolutionary theory, we approximate Rh by a finite subset of itself. Let
A 0 ⊂ Rh be a bounded convex set. Let A δ ⊂ A 0 be a finite approximation of A 0, with maxi-
mum distance δ > 0; that is, for every r ∈ A 0, there exists some a ∈ A δ such that d(a,r) < δ .
We consider a long-run equilibrium when the finite space A δ approximates Rh well. Specifi-
cally, we characterize stochastically stable policies over A δ when A 0 is sufficiently large and the
approximation δ converges to zero.

In our analysis, we assume that (i) si ∈ A 0, for all i ∈ N; and (ii) A δ ∩ C∗ 6= /0. The
first assumption ensures that the min-max set C∗ defined over Rh is included in A 0. The sec-
ond assumption means that the approximation is sufficiently fine that some point of the min-
max set C∗ is included in A δ . For A δ , we define the min-max quota and the min-max set as
nδ = mina∈A δ maxa′∈A δ n(a,a′) and A mm,δ = {a ∈A δ : maxa′∈A δ n(a,a′) = nδ}, respectively.

Lemma B.4 in the Appendix shows that any pair of policies can be connected via a sequence of
pairwise voting under a q-majority if A 0 is sufficiently large and δ is sufficiently small. This sug-
gests that the top cycle A tc

q can be arbitrarily large, and that Proposition 1 barely helps characterize
stochastically stable policies. Nevertheless, the next theorem characterizes the set of stochastically
stable policies for all q-majority rules, where q ∈ {1, · · · ,n}.

Theorem 2. Fix any ρ > 0, and let Bδ (ρ) = {a ∈A δ : ‖a‖< ρ}.
(i) For q ≤ n, every a ∈ Bδ (ρ) is stochastically stable for every sufficiently small δ and every

sufficiently large A 0.

(ii) For q > n, limδ→0 limε→0 π
q
ε (A

mm,δ ) = 1 for every sufficiently large A 0.

The theorem shows the following properties of the long-run equilibrium when the policy space
is multidimensional. The set of stochastically stable policies differs, depending on whether q≤ n.
When q≤ n, every policy in an arbitrarily large open ball Bδ (ρ) is stochastically stable, provided
that an approximation of the policy space is sufficiently large and fine. Intuitively, every policy
inside such an open ball is in the top cycle under a q-majority, and thus can be connected via
zero-cost transitions. When q > n, the set of stochastically stable policies is approximately equal
to the min-max set A mm,δ . The result generalizes Theorem 1 to the context of multidimensional
policy spaces. If the Condorcet winner aCW exists, then n < n/2. Thus, A mm,δ = {aCW}, for every
q≥ n/2 and every δ .
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Together with Theorem 1, Theorem 2 has the following implications for the two issues of
intransitivity and indeterminacy related to majority voting. In general, there is a trade-off between
intransitivity and indeterminacy. When q≤ n, the social preference order under the q-majority rule
violates transitivity (McKelvey, 1976). As a result, intransitivity occurs, and all policies are in the
top cycle under q-majority. When q > n, the intransitivity of majority voting is mitigated, because
the q-majority core includes at least the min-max policies. However, as the quota becomes larger,
we face indeterminacy, because the core may include many policies. In fact, the q-majority core
is, in general, larger than the min-max set for all q > n+1. To overcome both issues, we need to
skillfully choose q = n+1, such that the core exists and its size is a minimum; in this case, the core
coincides with the min-max set A mm,δ . Caplin and Nalebuff (1988) show that it is safe to choose
q = .64n to avoid intransitivity. The problem is that n/n≈ .64 is the worst case, and the min-max
quota n may be much lower than 64% of n. As a result, many consider that, in such cases, choosing
q = .64n will aggravate indeterminacy. Theorem 2 (ii) implies that stochastic evolutionary theory
resolves the indeterminacy of majority voting in that only policies in the min-max set can be long-
run equilibria for all q≥ n+1.

The next corollary follows immediately when Theorem 2 is applied to the unidimensional case.
The result corresponds to the mean voter’s theorem of Black (1948).

Corollary 1. Let s∗ be the mean voter’s ideal point in a unidimensional problem (h = 1), and let n

be an odd number. Then, limδ→0 limε→0 π
q
ε (s∗) = 1, for every q≥ n+1

2 and every sufficiently large

A 0.

Finally, we give an example that shows the min-max set for a multidimensional policy space.

Example 3 (min-max sets). Figure 4(a) shows the min-max set (the gray area) for a collective
choice problem with three players and a policy space onR2. The players’ ideals points are depicted
by s1, s2, and s3. Note that the min-max quota is n = 2. The min-max set coincides with the convex
hull of the ideal points. For any policy outside the min-max set, there is a policy that n+1 players
strictly prefer. For example, three players strictly prefer a2 to a1 in Figure 4(a). However, at least
n−n players vote against any move from a policy within the min-max set. For example, the player
with s1 votes against the move from a3 to a4.

Figures 4(b) and 4(c) show the min-max sets for settings with four and five players, respec-
tively. Note that n = 2 for the four-player setting, and n = 3 for the five-player setting. These
min-max sets are the intersection of the convex hulls of all n+1 players’ ideal points. In the four-
player setting, the min-max set is the intersection of the diagonals. This point is not a Condorcet
winner, but is undefeated under the simple majority q= 3. Our result shows that a dynamic process
of majority voting with q≥ 3 will choose this unique undefeated policy in the long run.
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6 Logit Choice and Borda Winner

Thus far, we have characterized stochastically stable policies of the BRM. However, because the
behavior of boundedly rational players is diverse, and cannot be described by a unique choice
model, it is important that we examine how the choice rule affects the set of stochastically stable
policies. Here, we examine the well-documented logit choice as an alternative choice rule for
boundedly rational individuals.

Following Blume (1993), suppose that players employ the logit choice rule with noise level
η > 0. Given the status quo a and a proposal a′, the choice probability of voting for a′ is given by

Ψ
η

j (a,a
′) =

exp(η−1u j(a′))
exp(η−1u j(a′))+ exp(η−1u j(a))

. (3)

The logit choice rule can be derived from a random utility model in which the utility for each
policy is perturbed by i.i.d. random variables with the Gumbel distribution. The distribution is
bell-shaped, and is similar to a normal distribution. This choice rule is amenable to computation,
and approximates a random utility model with normally distributed noise.

For two policies a and a′, the transition probability from a to a′ under the logit choice rule
is given by replacing the BRM choice rule Ψε

j with the logit function Ψ
η

j . Let Pη ,q
a,a′ denote the

transition probability with Ψ
η

j (a,a
′), and let π

q
η be the stationary distribution under Pη ,q

·,· . We
define the stochastic stability for the logit choice rule in the same manner as that for the BRM. A
policy a is stochastically stable under a q-majority with the logit choice if limη→0 π

q
η(a)> 0.

For the logit choice, it is known that the unlikeliness of a player i’s choice is given by14

ci(a,a′) =− lim
η→0

η logΨ
η

i (a,a
′) = max{ui(a)−ui(a′),0}.

14See Alós-Ferrer and Netzer (2010), for example.
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The transition cost from a to a′ under a q-majority is given as

cq
aa′ = min

J∈Nq
∑
i∈J

max{ui(a)−ui(a′),0}, (4)

where Nq denotes the set of subsets of N with size q. The cost cq
aa′ represents the unlikeliness of

the transition (a,a′). That is, the unlikeliness is the smallest sum of the payoff deficits for q players
whose acceptance is needed for proposal a′ to win.

Stochastic stability under the logit choice favors the utilitarian social welfare function. The next
theorem shows that every stochastically stable policy of the logit choice rule under the unanimity
rule maximizes the social welfare function P(a) (i.e., the sum of all players’ utilities).15

Theorem 3. Let P(a) ≡ ∑i∈N ui(a), for all a ∈ A . A policy is stochastically stable under the

unanimity rule with the logit choice if and only if it maximizes P(·) among all policies.

We introduce the Borda winner, which is based on a voting scoring method. Each player
ranks the policies in order of his/her preferences. The rankings are converted into points; a policy
receives one point for being ranked last, two for being next-to-last, and so on, up to |A | points for
being ranked first. The Borda winner is the policy with the highest total score.

A maximizer of the social welfare function may correspond to the winner in some voting
scoring methods, depending on the players’ preferences. Specifically, when the players’ utility
scores for policies are linearly increasing with their rankings, a policy is a long-run equilibrium if
and only if it is a Borda winner.

Corollary 2. Suppose that every player has linear preferences over all policies, in increments of

one, according to his preference order; that is, ui(a) ∈ {1,2, . . . , |A |}, for all i ∈ N and a ∈ A .

The set of stochastically stable policies of the logit choice under the unanimity rule coincides with

the set of Borda winners.

This contrasts with the result of Theorem 1, which shows the stochastic stability of the Con-
dorcet winner under the BRM for all majority rules. The Borda winner can emerge as a long-run
equilibrium if the logit choice better captures the behavior of boundedly rational voters. This re-
sult provides a dynamic foundation for the Borda winner. Suppose a society in which policies are
formed under the unanimity rule; that is, everyone has an equal right of veto. Here, the Borda
winner would be selected in the long run in this hypothetical society, provided that those with
linear preferences follow the logit choice. The Borda method can be viewed as a mechanism for
implementing such a long-run equilibrium.

15The result resembles that of Kandori et al. (2008), who study exchange economies. They show that an allocation
that maximizes the sum of utility functions is stochastically stable under the logit choice.

17



7 Conclusion

We have considered a dynamic policy-making process, where a status quo policy is repeatedly
challenged by an opposing policy. Our analysis is based on stochastic evolutionary game theory.
We have shown that the Condorcet winner is a unique long-run equilibrium for all majority rules.
When the policy space is multidimensional, a long-run equilibrium under (super-)majority voting
must belong to the min-max set if the voting quota q is larger than the min-max quota. The stochas-
tic evolutionary game theory provides new insight into the theory of social choice. Specifically,
the theory mitigates the indeterminacy problem of majority voting.

To conclude the paper, we comment on the limitations of our research, and offer possible
directions for future work. A voting rule is given exogenously in our model. Thus, it would be in-
teresting to study an endogenous choice of voting rules from an evolutionary perspective.16 Voters
are myopic and their choices do not include strategic considerations. Although these assumptions
are common in the literature on evolutionary game theory, they are restrictive. A more elaborate
model of boundedly rational voting should be developed in collaboration with behavioral and ex-
perimental economics. It may be worthwhile combining our model with empirical behavioral error
models, such as those of Lim and Neary (2016), Mäs and Nax (2016), and Hwang et al. (2018).
Finally, a further comparative study of normative and evolutionary approaches to the theory of
social choice is worth studying.

Appendix A

Transition Probabilities in the Dynamic Process

Recall that Eq. (1) is the players’ choice rule when they make no error, and Eq. (2) is their rule
when their choices are stochastic. Let P0,q

a,a′ denote the transition probability from a to a′ under a
q-majority when the choice rule is Eq. (1). Let pa,a′ be the probability that a proposal a′ ∈ A is
made against the status quo policy a. Then, P0,q

a,a′ can be expressed as follows:

P0,q
a,a′ =

pa,a′ if n(a,a′)≥ q,

0 otherwise.
∀a,a′ ∈A with a 6= a′. (A.1)

The probability of remaining with the status quo a is P0,q
a,a = 1−∑a′ 6=a P0,q

a,a′ . We call the Markov

chain P0,q = (P0,q
a,a′) an unperturbed process under a q-majority.

16A few studies have examined endogenous voting rules (see Barbera and Jackson (2004) and Aghion et al. (2004)).
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Let θ ⊆A . Here, θ is a recurrent class of the unperturbed process P0,q under a q-majority if
it satisfies the following conditions:

1. For all a1,ak ∈ θ , there exists a sequence of policies {a1, . . . ,ak} ⊆ θ , such that P0,q
ai,ai+1 > 0,

for all i ∈ {1, . . . ,k−1}.

2. For all a ∈ θ and a′ ∈A \θ , P0,q
a,a′ = 0.

We have the following result for top cycles (the proof is omitted).

Lemma A.1 (Top cycle and recurrent class).

(i) A top cycle under a q-majority is a unique recurrent class of the unperturbed process P0,q.

(ii) For every q≤ q, the unperturbed process P0,q has a unique recurrent class.

Let Pε,q
a,a′ denote the transition probability from a to a′ under a q-majority when the choice rule

is Eq. (2). We call the Markov chain Pε,q = (Pε,q
a,a′) a perturbed process under a q-majority. Let m

be the number of voters who prefer a policy a′ to the status quo a. Then, the transition probabilities
are expressed as follows:

Pε,q
a,a′ = pa,a′

n

∑
k=q

m

∑
j=0

C(m, j)C(n−m,k− j)(1− ε) j
ε

m− j
ε

k− j(1− ε)n−m−(k− j), (A.2)

where C(K,k) denotes the number of k-combinations from K elements. We use the convention that
C(K,k) = 0 if k < 0. Because every player votes for a proposal with positive probability, we need
to sum the probabilities of all events in which at least q players vote for the proposal. Rather than
considering the exact probabilities, we focus on the highest power of ε for each probability.

The Computation Method

The key computation method for long-run equilibria was developed as part of stochastic evolu-
tionary game theory (Foster and Young, 1990; Kandori et al., 1993; Young, 1993). We first define
the notion of a transition cost from one policy to another, which measures the unlikeliness of the
transition occurring. The transition cost from a to a′ under a q-majority is defined as

cq
aa′ = max{q−n(a,a′),0}. (A.3)

Recall that n(a,a′) is the number of players who prefer a′ to a. The transition cost cq
aa′ from

policy a to a′ under a q-majority is the minimum number of mistakes (“mutations,” in evolutionary
terminology) required for at least q players to vote for a′. Some of these players may not prefer
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a′ to the status quo a, but they may accept proposal a′ “by mistake.” If this is the case, then the
transition cost cq

aa′ will be positive, and equal to the minimum necessary number of mistakes. If q

players who prefer a′ to a exist, then cq
aa′ is zero.

For two policies a and a′, we denote the transition from a to a′ as notation (a,a′). We call a set
of transitions {(a1,a2),(a2,a3), . . . ,(aL−1,aL)} a path from a1 to aL on A if ai 6= a j, for all i 6= j.
Note that any transition (ai,ai+1) may occur with a positive probability under a perturbed process.
For a ∈A , we call a set of transitions, denoted as τa, an a-tree if there exists a unique path from
a′ to a for all a′ ∈ A , with a′ 6= a. Let ϒa denote the set of all a-trees. Given an a-tree τa and a
majority quota q, we define the cost of the a-tree τa as

cq(τa) = ∑
(v,w)∈τa

cq
vw. (A.4)

We define c∗q(a) as the lowest cost from among all a-trees, and define m∗q as the minimum of c∗q(a)

from among all policies a in A . That is,

c∗q(a) = min
τa∈ϒa

cq(τa), m∗q = min
a∈A

c∗q(a). (A.5)

Define

Mq =
{

a ∈A : c∗q(a) = m∗q
}
. (A.6)

The following theorem is proved by Kandori et al. (1993) and Young (1993) in our context.

Theorem A.1. A policy a ∈A is stochastically stable if and only if a ∈Mq.

The theorem states that a policy is stochastically stable if and only if a tree with itself as the
root has the minimum cost among all trees. One of the implications of this is that a stochastically
stable policy a∈A under a q-majority must belong to a recurrent class of the unperturbed process.
If a is not in any recurrent class, then there exists a path from a to some recurrent class with zero
cost. The cost of any a-tree must be greater than that of a b-tree, for every policy b in the recurrent
class.

Appendix B

Proofs of Analytic Results

An a-tree for a ∈A , say τa, is called a q-majority tree if n(a′,a′′)≥ q, for all (a′,a′′) ∈ τa.
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Proof of Lemma 1. Fix q ≥ q. Assume that a ∈A is stochastically stable under a q-majority. By
way of contradiction, suppose that a has no q-majority a-tree. Then, for every a-tree τa, there
exists some transition (a′,a′′) ∈ τa, such that n(a′,a′′) < q. If n(a′,a) ≥ q, for all such transitions
(a′,a′′) in τa. Then, one can construct a q-majority a-tree by replacing all such (a′,a′′) with (a′,a).
This contradicts the supposition. If there exists some transition (a′,a′′) ∈ τa such that n(a′,a′′)< q

and n(a′,a) < q, then remove (a′,a′′) from τa, and add (a,a′). The resulting set of edges must be
an a′-tree, denoted as τa′ . From (7), its cost is given by

cq(τa′) = cq(τa)− (q−n(a′,a′′))+max{q−n(a,a′),0}.

Note that q−n(a′,a′′)> 0, because q≥ q > n(a′,a′′). Observe that

q−n(a′,a′′)> q−q≥ q−n(a,a′).

The final inequality holds because n(a′,a)< q implies n(a,a′)≥ q. Then, we have cq(τa′)< cq(τa).
This contradicts that a is stochastically stable under the q-majority.

Proof of Theorem 1. Suppose that a Condorcet winner aCW exists. It is easy to see that any a 6= aCW

has no q-majority a-tree. Any a-tree must include a transition from aCW , say (aCW ,a′). Because
n(aCW ,a′)< q, any a 6= aCW has no q-majority a-tree. Then, Lemma 1 implies the claim.

We prove Proposition 1. Lemma A.1 shows that if a quota q is not greater than q, then the
unperturbed process has a unique recurrent class that coincides with the top cycle. This proves the
claim of Proposition 1 for q = q. Thus, we focus on the claim of Proposition 1 for q > q. Recall
that A tc

q is the top cycle under a q-majority. Let ϒa(A tc
q ) denote the set of a-trees over A tc

q , and
define

c∗q,A tc
q
(a) = min

τa∈ϒa(A tc
q )

cq(τa), c∗q,A tc
q
= min

a∈A tc
q

c∗q,A tc
q
(a),

Mq(A
tc

q ) = {a ∈A tc
q : c∗q,A tc

q
(a) = c∗q,A tc

q
}.

We first prove Lemmas B.1 and B.2. The former shows that if a policy a is stochastically stable
for quota q > q, a must be in the top cycle under the q-majority; that is, a ∈A tc

q . The latter shows
that any minimum cost tree of stochastically stable policies has no edge emanating from some
policy in A tc

q to one not in A tc
q .

Lemma B.1. limε→0 π
q
ε (a)> 0 for q > q only if a ∈A tc

q .

Proof. By way of contradiction, suppose that π
q
ε (a) > 0 for a /∈ A tc

q . Note that n(a,a′) = n−
n(a′,a)> n−q, for all a′ ∈A tc

q , because a /∈A tc
q implies that n(a′,a)< q, for a′ ∈A tc

q .
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Let τa be an a-tree minimizing its cost; that is, cq(τa) = m∗q. Choose (a′,a′′) ∈ τa such that
a′ ∈ A tc

q and a′′ /∈ A tc
q . Such an edge must exist because the root of τa is not in A tc

q . Remove
(a′,a′′) from τa. This will reduce the cost of τa by at least q− (q− 1), because n(a′,a′′) < q for
a′ ∈A tc

q and a′′ /∈A tc
q . Then, add an edge (a,a′) to τa. This will increase the cost by q−n(a,a′),

which is at most q− q. The resulting tree is an a′-tree with a cost strictly less than cq(τa). This
contradicts that cq(τa) = m∗q.

Lemma B.2. Suppose that a ∈A is stochastically stable with q > q. Let τa be such that cq(τa) =

m∗q. If a′ ∈A tc
q and (a′,a′′) ∈ τa, then a′′ ∈A tc

q .

Proof. Observe that Lemma B.1 implies that a ∈ A tc
q . By way of contradiction, suppose there

exists (a′,a′′) ∈ τa, such that a′ ∈ A tc
q and a′′ /∈ A tc

q . Because a′′ /∈ A tc
q , n(a′,a′′) < q. Remove

edge (a′,a′′) from τa. This will reduce the cost of τa by at least q− q+ 1. Let τ1
a denote the

resulting set of edges.
If n(a′,a)≥ q, add edge (a′,a) to τ1

a . This will increase the cost by at most q−q. The resulting
set is an a-tree, say τ2

a . Observe that cq(τ
2
a )≤ cq(τa)− (q−q+1)+q−q = cq(τa)−1.

If n(a′,a) < q, it must be that n(a,a′) ≥ q. Add edge (a,a′) to τ1
a . This will increase the cost

by at most q−q. The resulting set is an a′-tree, say τa′ . Observe that cq(τa′) ≤ cq(τa)− (q−q+

1)+q−q = cq(τa)−1. These observations contradict that cq(τa) = m∗q.

Now, we are ready to prove Proposition 1.

Proof of Proposition 1. Let τa be an a-tree over A . We say that τa has an a-subtree over a subset
A ′ ⊂ A if, for all a1 ∈ A ′, there exists a path {a1, . . . ,ak} ⊆ τa, such that ak = a and ai ∈ A ′,
for all i ∈ {1, . . . ,k}. Lemma B.1 implies that a /∈A tc

q cannot be stochastically stable. Lemma B.2
implies that if a is stochastically stable, for q > q, then τa minimizing cq(·) must have an a-subtree
over A tc

q . The proof for each part is conducted by way of contradiction.
“only if” part: Suppose that a ∈ A tc

q \Mq(A tc
q ) is stochastically stable. Let τa be the minimum

cost tree for a. Lemma B.2 implies that τa has an a-subtree over A tc
q , say τ

]
a.

Let b ∈Mq(A tc
q ), with τ

]
b a b-subtree over A tc

q , such that cq(τ
]
b) = c∗q,A tc

q
. Replace τ

]
a with τ

]
b

in τa. The resulting set of edges, say τ∗b , must be a b-tree. Observe that

cq(τ
∗
b ) = cq(τa)− cq(τ

]
a)+ cq(τ

]
b)< cq(τa).

The inequality comes from the fact that a /∈Mq(A tc
q ). This contradicts that cq(τa) = m∗q.

“if” part: Suppose that a ∈Mq(A tc
q ) is not stochastically stable. Let τ

]
a be an a-subtree over A tc

q ,

such that cq(τ
]
a) = c∗q,A tc

q
. Let a′ be some stochastically stable policy with a minimum cost tree τa′ .
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Lemmas B.1 and B.2 imply that τa′ has an a′-subtree over A tc
q , say τ

]
a′ . Replace τ

]
a′ with τ

]
a in τa′ .

The resulting set of edges is an a-tree, say τ∗a . Observe that

cq(τ
∗
a ) = cq(τa′)− cq(τ

]
a′)+ cq(τ

]
a)≤ cq(τa′) = m∗q.

Then, Theorem A.1 suggests that a is stochastically stable, which is a contradiction.

For the multidimensional choice problems in Section 5, let d(a,A′) = infa′∈A′ d(a,a′), for a ∈
A 0 and A′⊂A 0, that is, the distance between a point and a set. Let C∗,σ denote a σ -neighborhood
of C∗; that is, C∗,σ = {r ∈ Rh : infr′∈C∗ d(r,r′)< σ}.

The following lemma describes the limiting properties of the min-max quota and the min-max
set as the approximation δ goes to zero. The min-max set in the approximation space is included
in the neighborhood of the min-max core for sufficiently small δ .

Lemma B.3. (i) limδ→0 nδ = n. (ii) Fix σ > 0. A mm,δ ⊂ C∗,σ for all sufficiently small δ .

Proof of Lemma B.3. (i): By definition of n, it holds that n(a,a′) ≤ n, for a ∈ A δ ∩C∗ and all
a′ ∈ A δ \ {a}. This implies that nδ ≤ n. Suppose that limδ→0 nδ < n. Choose a ∈ A δ , such
that limδ→0 n(a) = limδ→0 nδ < n. By the definition of n, there exists a′ ∈A 0, such that |i ∈ N :
d(si,a′)< d(si,a)| ≥ n. Choose a′′ ∈A δ , with d(a′,a′′)< δ . By the continuity of d, we must have
that |i ∈ N : ui(a′′)> ui(a)| ≥ n, for all sufficiently small δ . This contradicts that limδ→0 n(a)< n.

(ii): Because nδ takes only finite integers, (i) implies that n(a) = nδ = n, for all a ∈A mm,δ and
all sufficiently small δ . Suppose that δ is small enough that nδ = n.

It suffices to show that A mm,δ ∩(A 0\C∗,σ ) = /0. Choose r ∈A 0\C∗,σ . Note that d(r,C∗)≥σ .
Because r /∈ C∗, there exists some r∗ ∈ A 0, such that |i ∈ N : ui(r∗) > ui(r)| ≥ n+ 1. By the
continuity of d, there exists aδ ∈ A δ , with d(r∗,aδ ) < δ , such that |i ∈ N : ui(aδ ) > ui(r)| ≥
n+ 1, for all sufficiently small δ . Because the choice of r is arbitrary, this implies that, for all
r ∈A 0 \C∗,σ , r /∈A mm,δ , for all sufficiently small δ .

In what follows, we assume that δ is sufficiently small such that nδ = n. Lemma B.4 below
shows that any pair of policies can be connected via a sequence of pairwise voting under a q-
majority if q ≤ n and A 0 is sufficiently large. McKelvey (1976) shows a similar result for an
infinite state space and the simple majority rule. We prove the result for a finite state space, where
opposing policies are selected only from A δ , and extend it to a q-majority for all q≤ n.

Lemma B.4. For any ρ > 0, let B(ρ) = {r ∈ Rh : ‖r‖ < ρ} and Bδ (ρ) = {a ∈ A δ : ‖a‖ < ρ}.
Fix ρ > 0 such that it is sufficiently large that si ∈ B(ρ), for all i ∈ N. If A 0 is sufficiently large

that B(5ρ) ⊂A 0, then for all a1,aL ∈ Bδ (ρ) and all sufficiently small δ , there exists a sequence
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{a1,a2, . . . ,aL} ⊂A δ , such that

n(a j,a j+1)≥ n ∀ j ∈ {1, . . . ,L−1}.

Proof of Lemma B.4. The algorithm of McKelvey (1976, Theorem 2) can be extended to all quotas
q ≤ n. The algorithm implies that for every ak ∈ A δ , there exist ck > 0, rk+1 ∈ A 0, yk ∈ Rh,
‖yk‖= 1, such that (i) ‖rk+1‖2−‖ak‖2 ≥ c2

k , (ii) u j(rk+1)> u j(ak) if s′j · yk ≥ ck/2, and (iii) |{ j ∈
N : s′j · yk ≥ ck}| ≥ q. Property (i) implies that rk+1 is further from the origin than ak is. Properties
(ii) and (iii) together imply that at least q players prefer rk+1 to ak. Then, for all sufficiently small δ ,
we can find ĉk ∈ (0,ck) and ak+1 ∈A δ , where ‖rk+1‖−‖ak+1‖ ≤ δ , such that ‖ak+1‖2−‖ak‖2 ≥
ĉ2

k and u j(ak+1) > u j(ak) if s′j · yk ≥ ĉk/2. This implies that ak+1 is preferred to ak by at least q

players. A successive application of the algorithm yields ak as far from the origin as required.
We show the upper bound of ‖rk+1‖ for given ak. Recall that rk+1 is preferred to ak by at least

q players. This implies that rk+1 ∈ B(3ρ) if ak ∈ B(ρ), and that rk+1 ∈ B(5ρ) if ak ∈ B(3ρ). For
the first case, observe that rk+1 will be at least 2ρ from si, for all i ∈ N, if rk+1 /∈ B(3ρ). However,
ak ∈ B(ρ) implies that ‖si− ak‖ < 2ρ , for all i ∈ N. Then, for at least q players to prefer rk+1, it
must be that rk+1 ∈ B(3ρ). Similarly, rk+1 will be at least 4ρ from all ideal points if rk+1 /∈ B(5ρ),
whereas ak ∈ B(3ρ) implies that ‖si−ak‖< 4ρ , for all i ∈ N.

Finally, we show that the process can reach aL ∈A mm,δ . Let B∗ = B(5ρ)\B(3ρ); that is, the
distance from any point in B∗ to any point in B(ρ) is at least 2ρ . Because the algorithm yields ak

as far as we need, we can pick a sequence {a1, . . . ,aL−1}, such that aL−2 ∈ B(3ρ) and aL−1 ∈ B∗.
The proof is complete by observing that n(aL−1,aL)≥ q.

We next prove a result similar to Kramer (1977, Theorem 1’): Q(a) is the set of policies
that maximizes the number of votes against policy a, i.e., Q(a) denotes the set of the most likely
deviations from a. We first prove our version of Kramer (1977, Lemma 3).

Lemma B.5. Fix small δ > 0, such that nδ = n. Then, d(a,C∗) > d(a′,C∗), for a /∈ A mm,δ and

a′ ∈ Q(a).

Proof of Lemma B.5. Suppose that a /∈ A mm,δ and a′ ∈ Q(a). Let N(a,a′) = J. Let C(J) denote
the convex hull of the ideal points of the players in J. Because a is not in the min-max set,
|J| ≥ n + 1. Define an open half space Va′ = {x ∈ Rh : d(x,a) > d(x,a′)}. It must hold that
C(J) ⊂ Va′ . Otherwise, some player of J must prefer a to a′, which contradicts the definition of
N(a,a′). If there exists b ∈ C∗, such that b /∈ C(J), then some policy in C(J) must be preferred to b

by all players in J, which contradicts that b ∈ C∗. This implies that C∗ ⊆ C(J) ⊂ Va′ . This proves
the claim that d(a,C∗)> d(a′,C∗).

The next lemma is our version of Kramer (1977, Theorem 1’).
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Lemma B.6. For every a1 /∈ A mm,δ , there exists a sequence {a1,a2, . . . ,aL} ⊂ A δ with aL ∈
A mm,δ , such that ai+1 ∈ Q(ai), for all i = 1, . . . ,L−1.

Proof of Lemma B.6. Note that sequentially choosing ai+1 ∈ Q(ai) must result in a cycle, owing
to the finiteness of A δ . Let {a1,a2, . . . ,aL} denote such a cyclic sequence of policies; that is,
ai+1 ∈ Q(ai), for all i ∈ {1, . . . ,L}, with a convention that aL+1 = a1. We show that such a cycle
must include ai ∈A mm,δ for some i.

By way of contradiction, suppose there exists a sequence {a1,a2, . . . ,aL}, such that ai /∈A mm,δ ,
for all i. Then, Lemma B.5 implies that d(ai,C

∗) > d(ai+1,C
∗), for all i ∈ {1, . . . ,L}; that is, the

distance between ai and C∗ is strictly decreasing as the sequence {a1,a2, . . .} progresses. Because
d(a1,C

∗)> .. . > d(aL+1,C
∗) implies that a1 6= aL+1, which contradicts that the sequence is cyclic.

Note that the distance increases (d(ai,C
∗) ≤ d(ai+1,C

∗)) only if ai ∈A mm,δ . By sequentially
choosing ai+1 ∈ Q(ai), the process must reach some ai ∈A mm,δ .

Proof of Theorem 2. (i) : Suppose that q ≤ n. It suffices to show that the unperturbed dynamic
with state space A δ has a unique recurrent class that includes the open ball Bδ (ρ). Let C(N)

denote the convex hull of all players’ ideal points. Lemma B.4 implies that all policies in Bδ (ρ)

are connected via zero-cost transitions, for all sufficiently small δ and all sufficiently large A 0.
These policies must be in one recurrent class, say A ⊂ A δ . Assume that A 0 is sufficiently large
that C(N) ⊆ A. We show that there is no recurrent class other than A. Choose a′ ∈ A δ \A. Let
a∗ ∈ argminr∈C(N) d(a′,r). Observe that ui(a∗) > ui(a′), for all i ∈ N. By the continuity of d, for
sufficiently small δ , there exists â∗ ∈ A, with d(a∗, â∗)< δ , such that ui(â∗)> ui(a′), for all i ∈ N.
The cost of the transition from a′ to â∗ is zero. Because the cost must be positive for transitions
between two recurrent classes, a′ cannot be in any recurrent class. This proves that A is the unique
recurrent class.

(ii) : Suppose that q > n. Assume sufficiently small δ , such that nδ = n. By way of contradiction,
assume there exists a stochastically stable policy a1 /∈ A mm,δ . Let τ1 denote the minimum cost
spanning tree rooted at a1. We show that the minimum cost spanning tree rooted at some aL ∈
A mm,δ has a strictly smaller cost than that of a1.

Lemma B.6 implies that there exists a sequence {a1,a2, . . . ,aL} ⊆A δ , with aL ∈A mm,δ , such
that ai+1 ∈ Q(ai), for all i ∈ {1, . . . ,L− 1}. Construct a path of edges {(a1,a2), . . . ,(aL−1,aL)}.
Add these edges to τ1, replacing the existing edges exiting a2, . . . ,aL−1. Remove the edge exiting
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aL. The resulting set of edges must be an aL-tree, denoted as τL. Then, observe that

cq(τL)≤ cq(τ1)+
L−1

∑
i=1

max{q−n(ai,ai+1), 0}−
L

∑
i=2

max{q−n(ai), 0}

= cq(τ1)+max{q−n(a1,a2), 0}−max{q−n(aL), 0} (B.1)

< cq(τ1) = m∗q.

The last term of the first inequality represents the cost reduction by removing the existing edges
a2, . . . ,aL−1. The weak inequality holds because max{q−n(ai), 0} is the smallest possible cost of
an edge exiting ai. The second equality holds because n(ai,ai+1) = n(ai), from the definition of
the sequence {a1, . . . ,aL}. The last inequality holds because a1 /∈A mm,δ implies n(a1,a2) > n =

n(aL). Thus, τL has a strictly smaller cost than τ1, which contradicts that a1 is stochastically stable.
Therefore, no a1 /∈A mm,δ can be stochastically stable.

Proof of Theorem 3. Our setting for q= n is similar to the unanimity game studied in Sawa (2014).
The proof follows that of Proposition 4.6 in Sawa (2014). Using Eq. (4), define the cost of a tree
cq(·), cost of a policy c∗q(·), minimum cost m∗q, and set of policies with the minimum cost similarly
to Eq. (A.4)–(A.6), respectively. As with Theorem A.1 for the BRM, a policy is stochastically
stable under the logit choice if and only if it is in the set of policies with the minimum cost.

Observe that, for all a,a′ ∈A ,

P(a)−P(a′) = ∑
i∈N

(ui(a)−ui(a′)) = cn
aa′− cn

a′a. (B.2)

It suffices to show that for every a1 and ak in A , P(a1)≥P(ak) if and only if c∗n(a1)≤ c∗n(ak).
Let τ∗k be an ak-tree, such that cn(τ

∗
k ) = c∗n(ak). Let d = {(a1,a2), . . . ,(ak−1,ak)} be a path from

a1 to ak in the tree τ∗k . We construct an a1-tree, denoted as τ1, from τ∗k by reversing the directions
of all edges on the path d, and keeping all other edges in τ∗k . Formally, let τ1 be such that

τ1 3

(a′,a′′) if (a′,a′′) ∈ τ∗k \d,

(a′′,a′) if (a′,a′′) ∈ d.

Observe that

c∗n(a1)≤ cn(τ1) = cn(τ
∗
k )+ ∑

(ai,ai+1)∈d

(
cn

ai+1ai
− cn

aiai+1

)
= c∗n(ak)+P(ak)−P(a1).

We use Eq. (B.2) in the second equality. The above equation shows that P(a1)≥P(ak) implies
c∗n(a1)≤ c∗n(ak).
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