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Abstract
The occupancies and spatial distribution of electrons for 4d-orbitals in puremolybdenumhave been
experimentally determined by a charge density study from synchrotron radiation x-ray powder
diffraction. There are valence charge densitymaxima in interatomic positions indicating bond
formation. The electron deficiencies ofΓ12 orbitals were visualized in the observed static deformation
density. An electron deficiency of∼0.5was observed from the orbital population analysis through
multipole refinement. The occupancies and spatial distribution have also been calculated by a density
functional theoretical calculation usingWIEN2k packages for comparison. The observed features
agreewell with the theoretical study. In addition, the observed charge density hasmore covalent
bonding character than the theoretical one. The present study confirms that a state-of-the-art x-ray
charge density study can reveal the spatial structure of d-electrons in 4d-system.

1. Introduction

Electrons in the d-orbitals of transitionmetals and their complexes govern their properties and functions. The
magnetismof a simple transitionmetal is caused by the interaction between its d-electrons. Exotic properties
such as superconductivity, multiferroicity, and colossalmagnetoresistancewere found in transitionmetal
oxides. The properties are closely related to their electronic structure of the d-electron. The d-electrons have
both an itinerant and localized character in the system.Characterization of the d-electron in the system is one of
themain topics for condensedmatter physics and considerable amounts of studies have been carried out to
investigate the d-electron during the past one hundred years [1]. In particular, considerable research has been
carried out for 3d-transitionmetal oxides during the last three decades after the discovery of the high-Tc
superconductivity of copper oxide [2]. The heavier 4d- and 5d-elements and their complexes had been ignored
until the discovery of the exotic superconductivity of Sr2RuO4 [3].

The spatial and energetic structures of d-electrons have been largely investigated both experimentally and
theoretically. The distribution of d-electrons in 3d-transitionmetals [4–9] and their complexes [10, 11] have
been observed by experimental charge density studies. Spectroscopic studies of 3d-transitionmetals [12–14] and
their complexes [1, 15, 16] have also been carried out using optical [12, 14, 15, 17], photoemission, [1, 13, 16, 18]
and x-ray absorption spectroscopies [19], among others. The spatial and energetic structures of the 3d-electrons
have been revealed by themeasurements. The energetic structure of the 4d- and 5d-systemhas also been
investigated by the spectroscopies [20]. However, the spatial structure of the 4d- and 5d-systemhas never been
revealed experimentally except for one example [8], as the contribution of the 4d- and 5d-electrons to x-ray
diffraction ismuch lower than that of the 3d-system.

Wehave conducted accurate structure factormeasurements for the charge density study fromhigh energy
x-ray diffraction (HXRD) of one of the largest third generation synchrotron radiation (SR) facility SPring-8. The
highest precision of structure factor using the technique exceeds 0.1%,which is comparable to the extremely
accurate Pendellosung fringemethod [21] and quantitative convergent beam electron diffraction [22]. The
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spatial distribution of small amounts of electrons such as the interlayer bonding electron of TiS2 [23] and the
conductiveπ-like electron of LaB6 [24] have been revealed experimentally by SR-HXRD. It is essential to verify a
performance of SR-HXRD for the visualization of 4d- and 5d-electrons. Typicalmaterials with 4d- and/or 5d-
electrons are required for this purpose.

Molybdenum is one of the simplest 4d-system. The electron configuration ofmolybdenum is 4d55s1. The
electronic structure ofmolybdenumwas investigated by both theoretical and experimental studies [25–28]. The
Fermi surface was investigated using deHaas-vanAlphenmeasurements by several research groups [27, 28]. The
band structure was determined by theoretical calculations [25, 26]. The experimental Fermi surfacewas
consistent with that calculated from theory. Zunger et al [25] demonstrated that the d-electrons in the
molybdenum comprise bonding orbital dxy+yz+xz and antibonding orbitals dz2 and dx2y2. The electronic
structure ofmolybdenumwas investigated by the liner combination ofGaussian orbitalsmethod (LCGO) [26].
The density of states, Fermi surface, charge form factors, Compton profiles, and optical conductivity were
theoretically estimated by thismethod. The electron density distribution in real space from the experimental
results will provide a further understanding ofmolybdenum. In this study, we completed a charge density study
ofmolybdenumusing the SR-HXRD technique [29].

2. Experiment and analysis

Molybdenumpowderwith 99.9%purity and 3–5μmaverage particle size was used as a sample. The powderwas
sealed in a 0.2mmf Lindemann glass capillary with argon gas. Synchrotron powder x-ray diffraction datawere
measured at SPring-8 BL02B2. Imaging Plate (IP)was used as a detector. Thewavelength of the incident x-ray
was 37.7 keV calibrated by the lattice constant of theNational Institute of Standards andTechnology (NIST)
CeO2 standard sample. The temperature of the sample was controlled at 30 Kusing aHe gasflow low-
temperature device. Two two-dimensional powder images weremeasured.One of whichwasmeasured by
moving detector position to a high scattering angle region in 2θ to improve the counting statistics and to extend
the reciprocal resolution.

The size of the perfect crystal region formolybdenum is estimated less than 1μmfrompeakwidth of powder
profiles. In the case of 1μm, the largest extinction factor is 0.2% at hkl=110, where the extinction factor is
approximated by y≈exp [−(l/2lL)], l is the size of the perfect crystal region, and lL is the extinction length [30].
It is estimated by lL=(πvccosθB)/(2|P| reλ|F|), where vc is the volume of unit cell, θB is Bragg angle, |P| is
polarization factor, re is classical electron radius, and |F| is absolute value of structure factor. In synchrotron
x-ray source, |P| can be approximated by 1.

Molybdenum emits huge amounts offluorescence and characteristic x-rayswhen it receives high energy
beam. The x-rays increase the background scattering in the powder diffraction data as shown infigure 1(A).
Figure 1(A) shows the powder profile of the 620 Bragg reflection. The ratio of the standard uncertainty to the
Bragg intensity exceeds 1.6%. In this study, the combination of copper and nickel foils attached to the front of
the IPwas used to reduce the x-ray fluorescence from themolybdenum. Figure 1(B) shows the powder profile of
the 620Bragg reflection usingmetal foils. The ratio of the standard uncertainty to the Bragg intensity improved
to 0.92%. Themultiple overlaidmeasurements with themetal foils was effective for improving the precision of

Figure 1.Plots of 620 reflection (A) for normalmeasurement and (B) using copper and nickel foils. The foils reducefluorescence and
characteristic x-ray intensities frommolybdenum.
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themeasured structure factors. The ratios of the uncertainties and structure factors of the lowest 16 reflections
were better than 0.004.

The Rietveld refinements usingmultiple datasets were carried out using the program Synchrotron Powder
(SP) [29]. The reciprocal resolution in the analysis corresponds to sin q l/ =2.32 Å−1. The observed structure
factors were initially extracted from the results of the Rietveld refinements based on the independent atom
model (IAM). The reliability factors based on theweighted profileRwp and the Bragg intensityRI of thefinal
patternfittingwere 0.0253 and 0.0133, respectively. The determined lattice constants, a, and the isotropic
atomic displacement parameter, uiso, were 3.142 600(1)Å and 0.000 837(3)Å2, respectively. The estimated
isotropic atomic displacement parameter using u h T mk3 4D

B Diso
2 2p q= ( ) ( )/ [31] is 0.001 04, where h is the

Planck constant,T is temperature,m is atomicmass, kB is the Boltzmann constant, and Dq is theDebye
temperature Dq =380 K. u uiso iso

D =0.805 is consistent with the case of aluminumwhich value is 0.804 using

0.002 893(8) and 0.003 597 of uiso and u ,iso
Theo respectively.

The intensity ratio of completely overlapped Bragg reflections was determined by themultipole refinement.
Table 1 shows the reliability factor andmultipole parameters byXD2016 [32] for the experimental structure
factors. The electron configuration ofmolybdenumwas 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d5 5s1.We set 4d5

valence electron shell. The local axes for themolybdenum atomwere parallel to the [100], [010], and [001]
directions. The scale factor s, isotropic thermal displacement, uiso, radial expansion/contraction parameters for
the spherical valence,κ, aspherical valence,κ′, and the hexadecapole parameter, H0, were refined in the analysis.
There is a relationship betweenH0 andH4+, whereH4+=0.74048H0.

We also prepared theoretical structure factors with the same reciprocal resolution of the observed data using
theWIEN2k program [33]. Thefirst principle calculation based on the density functional theory was performed
using the full potential-linearized augmented planewave (FP-LAPW)with the generalized gradient
approximation (GGA) in the package. Experimental lattice constants were used for the calculations.We used
1000 k points with a plane-wave cutoff parameter ofRMTKmax=7.0. The theoretical structure factors were
calculated by the lapw3 program. The charge density from the theoretical structure factors was also determined
by amultipolemodelling. The reliability factor andmultipole parameters are also listed in table 1.

3. Results

3.1. Structure factors
The present experimental and theoretical structure factors are listed in table 2. The structure factors of the IAM,
fIAM and LCGO, fLGCO, by Jani et al [26] are also listed in the table. The values are listed as form factors divided by
the phase factor. The sixteen lower resolution values are also shown in the table.We call the present observed
structure factors fOBS, and the theoretical structure factors byWIEN2k fWIEN. Thefirst two fOBS, fWIEN, and fLCGO
were smaller than or equal to the corresponding fIAM.

Figure 2 shows plots of the relative ratio of the structure factors to fIAM for fOBS, fWIEN, and fLCGO. The
deviations from fIAM in the lowest two fOBS, fWIEN and fLCGO are alsowell recognized in thefigure. The structure
factors with resolutions better than 0.4 Å−1 were almost the same as those of fIAMwithin experimental
uncertainties. The key features that deviated from the IAMweremainly included in thefirst two reflections. The
maximumdeviation of the structure factors from the fIAMwas less than 2% in the fOBS, fWIEN and fLCGO. The
deviations include information on the aspherical distribution of the d-electrons.

3.2. Valence charge densitymap
Figure 3 shows valence charge densitymaps for 110 plane from themultipole refinements of the (A) present
observed and (B) theoretical (WIEN2k) structure factors. Contour lines were drawn from0.0 to 2.0with a step

Table 1.Multipole parameters for the
experimental and theoretical structure
factors.

30 K WIEN2k

RF (%) 0.56 0.20

GOF 0.7879 1.8773

Scale 1.0050(4) 1.5033(4)
κ 0.871(9) 1

κ′ 0.9013(9) 0.9741(8)
H0 −0.0035(7) −0.0021(4)
H4+ −0.0026(6) −0.0016(3)
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width of 0.1 e Å−3. The centers and corners of the figures present the atomic sites. Themap of the same section
was reported by [27]. There are four peaks around the atomic sites infigure 3(A) and (B). These peakswere also
found in the previous study [27]. The distances between the peaks and the atomic site for observation and
WIEN2kwere 0.574 and 0.557 Å, respectively. The charge densities at themaxima for observation andWIEN2k
were 1.1 and 1.3 e Å−3, respectively. The features of the present observation are well-consistent with the theory.
The numerical differences were 0.017 Å in distance and 0.2 e Å−3 in charge density.

3.3. Static deformation densitymap andd-orbital population
Figure 4 shows static deformation densitymaps for 110 plane of (A) observation and (B)WIEN2k. Contour lines
were drawn from−0.3 to 0.3with a stepwidth of 0.05 e Å−3. The static deformation density is the difference
between themultipolemodel density and the IAMwithout effects of thermal smearing. The d3z2-r2 shaped
negative regions along the up-down directionwere found in bothfigures. In addition, an excess of the charge
density was found in the diagonal directions.We have numerically estimated the electron occupancies of the 4d-
orbitals ofmolybdenum. The quantization axes were parallel to the crystal axes as shown infigure 4.

Table 3 lists the d-orbital occupancies ofmolybdenumof observation andWIEN2k. The d-electrons of
molybdenum can occupy two types of orbitals. One is triply generateΓ′

25, dγ and the other is doubly generate
Γ12, dε.Γ

′
25 is dxy, dyz, and dzx andΓ12 is dx2y2 and d3z2r2. Occupancies of the two orbitals are also listed in the

table. It was found that almost 0.5 electron decreased from theΓ12 orbital in the result of the observation. The

Table 2.The lowest 16 structure factors of the present
study and LCGO. fOBS and fWIEN denote the present
experimental and theoretical structure factors. fIAM
was calculated byXD2016. fLCGO is the theoretical
results [26].

hkl fOBS fWIEN fIAM fLCGO

110 31.31(4) 31.62 31.84 31.59

200 27.11(5) 27.56 27.56 27.49

211 24.71(4) 25.10 24.91 24.98

220 22.73(5) 23.23 23.07 23.11

310 21.19(4) 21.72 21.68 21.62

222 20.24(6) 20.69 20.58 20.58

321 19.20(4) 19.70 19.66 19.60

400 18.35(8) 18.80 18.86 18.70

330 17.55(6) 18.16 18.15 18.05

411 17.56(5) 18.12 18.15 18.01

420 16.92(5) 17.49 17.50 17.37

332 16.35(5) 16.92 16.90 16.81

422 15.84(5) 16.35 16.35 16.23

431 15.24(4) 15.82 15.83 15.70

510 15.24(5) 15.79 15.83 15.67

521 14.12(4) 14.85 14.87 14.73

Figure 2.Plots of relative ratio of structure factors to IAM.Horizontal axis represents reciprocal resolution sin .q l/ Vertical axis
represents the relative ratio. Closed circles, open circles, and open triangles are relative ratio for fOBS, fWIEN, and fLCGO, respectively.
For fOBS, effect of temperature factorwas excluded. Dotted line represents relative ratio of 1.

4

J. Phys. Commun. 3 (2019) 095009 T Sasaki et al



Figure 3.Valence charge densitymaps of (A) observation and (B)WIEN2k for (110) plane. The contour lines were drawn from0.0 to
2.0with 0.1 e Å−3 stepwidth. Color bar is also shown at the bottom.

Figure 4. Static deformation densitymaps of (A) observation and (B)WIEN2k for (110)plane. The contour lineswere drawn from
−0.30 to 0.30with 0.05 e Å−3 stepwidth. Solid and dashed lines represent positive and negative density, respectively.
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numbers of deficient and excess electrons of observationwas approximately 0.2 electrons different from those of
WIEN2k indicating themore aspherical feature of the valence electron of observation.

The topological properties of the charge density for observation andWIEN2kwere calculated. The charge
densities and Laplacians at the bond critical point (BCP) are listed in table 4. The charge density and Laplacian of
observationwere 0.04 e Å−3 higher and 0.06 e Å−5 lower than those ofWIEN2k, respectively. These facts suggest
themore covalent bonding character of observation than that ofWIEN2k.

4. Conclusion

Wecompleted an experimental charge density study of a 4d-transitionmetal, molybdenum, using state of the art
SR-HXRD at SPring-8. Sufficient deviations from the IAM in the structure factors were observed in thefirst two
reflections and the origin of the deviationswas revealed by the charge density study bymultipolemodelling.
Solid crystallinemolybdenumwas formed by the covalent bonding of theΓ′25 d-orbitals. The bonding
contributes to the hardness of themolybdenum solid. The present charge density study supports this picture of
solidmolybdenum as a hardmaterial. The present study also reveals thatmolybdenumhasmore covalent
bonding character than the theoretical calculation byWIEN2kwith theGGAbasis set.We have recently
observed a small amount of tight-binding like electron in pure aluminumby SR-HXRD [34]. The chemical
bondingwas similar to the presently observed covalent bonding character. These studies imply that valence
electrons in a puremetal systemhave amore atomic orbital like character than that expected by theDFT theory.

The less than 0.5 electron deficiency of the orbitals was clearly recognized by the d-orbital population
analysis and the spatial distribution of the 4d-electronswaswell recognized in the valence and static deformation
densitymaps in the present study. These facts suggest that the spatial structure of a 4d- system can be
experimentally revealed by the present SR-HXRD.Novel physical properties are found in 4d- and 5d-system
such as the superconductivity of Sr2RuO4 [35] and themetal-insulator transition inCd2Os2O7 [36]. The present
experimental and analytical techniques easily apply to these systems by changing the sample and temperature.

The quality of high-energy quantumbeamx-ray and electron beamhas been drastically improved
throughout the past decade such aswith x-ray laser, etc. A state of the art high-energy quantumbeam enables us
to open a newdoor in subatomic scale studies. The 4d- and 5d-systemwith novel physical properties will be a
promising target of high-energy quantumbeam science.
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Table 3.The d-orbital populations for observation andWIEN2k.

Orbital OBSdpop
OBSdocc

WIENdpop
WIENdocc

z2 0.767 19 15.3% 0.861 08 17.2%

xz 1.158 41 23.1% 1.095 82 21.9%

yz 1.158 41 23.1% 1.095 82 21.9%

x2-y2 0.766 34 15.3% 0.857 55 17.1%

xy 1.159 09 23.1% 1.099 25 21.9%

Table 4.Charge density ρ and Laplacian 2r at
BCP for observation andWIEN2k.

ρOBS ∇2ρOBS ρWIEN ∇2ρWIEN

0.373 3.123 0.326 3.174
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