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Abstract. In this paper we propose an algorithm that generalises ex-
isting procedures for the implementation of defeasible reasoning in the
framework of Description Logics (DLs). One of the well-known approaches
to defeasible reasoning, the so-called KLM approach, is based on con-
structing specific rankings of defeasible information, and using these
rankings to determine priorities in case of conflicting information. Here
we propose a procedure that allows us to input any possible ranking of
the defeasible concept inclusions contained in the knowledge base. We
analyse and investigate the forms of defeasible reasoning obtained when
conclusions drawn are obtained using these rankings.

1 Introduction

Members of the Description Logic (DL) community have devoted considerable
time and effort to the introduction of defeasible forms of reasoning into DLs, es-
pecially in the last decade. Among the different proposals [4,5,43,1,2,3,24,30,31,32],
[36,39,44], particular attention has been paid to the lifting of the so-called KLM
approach (named after its originators, Kraus, Lehmann and Magidor [33,34])
to the level of DLs [10,11,12,18,20,23,25,26,27,40,41,45,37,38]. In some cases,
propositional versions of well-known defeasible semantics, such as Rational Clo-
sure [18,27,16,14] and Lexicographic Closure [19], have been adapted for the DL
case. In others, new forms of entailment have been proposed [22,20,21]. Most of
the methods based on the KLM approach operate by imposing a ranking on the
provided defeasible statements. This ranking is used to determine which pieces
of information should override the others in case of any conflict. In this paper
we define and investigate the properties of a decision procedure that generalises
this approach by allowing for an arbitrary ranking to be used as input. It is
worth noting that the Rational Closure and Lexicographic Closure methods are
special cases of our proposal.

The main contributions of this paper are showing that, by repurposing an ex-
isting defeasible entailment algorithm, it is possible to reason with an arbitrary
ranking of defeasible subsumption statements while satisfying the KLM postu-
lates; we provide equivalence and redundancy results of arbitrary rankings, and
an optimization procedure that puts these to use to reduce redundant compu-
tation; and show that for any arbitrary ranking, there is a defeasible knowledge
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base the Rational Closure of which is equivalent to that arbitrary ranking. The
results are significant, as they allow for the alteration or repair of automatically
generated rankings (for example, those generated by lexicographic or rational
closure) in the case that undesired statements are entailed, without sacrificing
any of the KLM postulates when doing so. This should provide ontology engi-
neers with greater control over their knowledge bases.

2 Background

We assume that the reader is familiar with the basic notions of DLs. We base our
work on the DL ALC. Given a finite set of atomic concept names C := {A,B, . . .}
and a finite set of role names R := {r, s, . . .}, the set of complex concepts is
defined as follows: C := > | ⊥ | C | ¬C | C u C | C t C | ∀r.C | ∃r.C. For
C,D ∈ C, a General Concept Inclusion (GCI) has the form C v D, with a
TBox T being a finite set of GCIs. The expression C ≡ D is an abbreviation of
C v D and D v C. T |= C v D denotes that C v D is classically entailed by
T . Following previous proposals [10,18] a Defeasible Concept Inclusion (DCI)
has the form C @∼ D and is read as “Usually, an element of C is also an element
of D”. A DTBox (Defeasible TBox) is a finite set of DCIs.

Example 1. Suppose we know that Mammals generally are terrestrial, but whales
are mammals and marine creatures. Using classical GCIs we would have a TBox
as T = {Mammal v LandDweller, Whale v Mammal, Whale v WaterDwellers,
WaterDwellers v ¬LandDwellers}, that would classically entail that whales do
not exist (T |= Whale v ⊥). Using DCIs we can convey the information above
more accurately, eliminating Mammal v LandDweller from the TBox and adding
a DTBox D = {Mammal @∼ LandDweller}, indicating that Mammals generally
are terrestrial, but leaving open the possibility for the existence of exceptions
(like whales).

Consider knowledge bases of the form K = (T ,D). We focus here on defeasible
entailment (denoted by |≈). That is, we are interested in what it means for GCIs
and DCIs to be entailed by a knowledge base K. It is well-accepted that defeasible
entailment (unlike classical entailment) is not unique. In studying different forms
of defeasible entailment, the position we adopt here is to consider the rationality
properties presented in Fig. 2 that any form of defeasible entailment ought to
satisfy. These are referred to as the KLM properties, and are translations of
the propositional properties initially proposed by Kraus et al. [33,34] into a DL
setting.

A number of forms of defeasible entailment have been defined that satisfy
all the KLM properties [18,27,19,20,21,8], with Rational Closure being perhaps
the best known of these. Originally proposed by Lehmann and Magidor for the
propositional case [34], it has been redefined for the DL case [18,27,8]. Rational
Closure implements a desirable principle of reasoning about expectations, the
presumption of typicality. One school of thought has it that all interesting forms
of defeasible entailment should extend Rational Closure [17]. The principle of
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K |≈ C @∼ C (Ref)
C ≡ D, K |≈ C @∼ E

K |≈ D @∼ E
(LLE)

K |≈ C @∼ D, K |≈ C @∼ E

K |≈ C @∼ D u E
(And)

K |≈ C @∼ E, K |≈ D @∼ E

K |≈ C tD @∼ E
(Or)

K |≈ C @∼ D, D v E

K |≈ C @∼ E
(RW)

K |≈ C @∼ D, K |≈ C @∼ E

K |≈ C u E @∼ D
(CM)

K |≈ C @∼ D, K 6|≈ C @∼ ¬E
K |≈ C u E @∼ D

(RM)

Fig. 1. The KLM postulates

presumption of typicality states that we reason assuming that we are in the most
typical situation consistent with the information at our disposal. For example, if
we only know that manatees are mammals (Manatee v Mammal) and that usually
mammals are land dwellers (Mammal @∼ LandDweller), we assume that manatees
are normal mammals, and we would like to conclude that presumably they are
land dwellers (Manatee @∼ LandDweller). The presumption of typicality is clearly
a defeasible form of reasoning. If we are later informed that manatees live in the
water (Manatee @∼ WaterDweller), then we want to drop the previously tentative
conclusion that manatees are land dwellers (Manatee @∼ LandDweller).

Rational Closure can be defined semantically in the DL framework [27,23,8].
For our purposes in this paper, though, it is sufficient to focus on the description
of Rational Closure in terms of a decision procedure. This procedure relies on
a series of classical ALC entailment checks, and preserves the computational
complexity of classical ALC entailment checking [18,8]. Given K = (T ,D), the
basic step in the procedure is to determine whether an element of D is exceptional
w.r.t. K. Informally, a DCI C @∼ D is exceptional w.r.t. a KB K if C represents a
class satisfying atypical properties. Consider Example 1, and add to D the DCI
Whale @∼ ¬Aggressive. The latter is an exceptional DCI w.r.t. K, since whales
are marine creatures and are exceptional w.r.t. the class of mammals, that are
usually land dwellers.

Given a KB K = (T ,D), Algorithm 1 returns the elements of D that are
exceptional. To do that, the materialization of a set of DCIs is used.

Definition 1 (Materialization). The materialization of a set of DCIs D, de-
noted by D, is defined as D := {¬C tD | C @∼ D ∈ D}.

That is, the materialisation of a DCI C @∼ D is the concept ¬C tD, repre-
senting the corresponding material implication.

Using Algorithm 1, we obtain an algorithm (Algorithm 2) which, given K =
(T ,D), ranks all the DCIs in D according to their level of exceptionality. In
general, in case of conflictual information (e.g., students do not pay taxes, but
working students do), the subconcepts that present atypical properties, and the
DCIs that have as antecedents such subconcepts, have a higher rank: students,



4 G. Casini et al.

Algorithm 1 Exceptional

1: procedure Exceptional
2: Input: K = (T ,D)
3: Output: D′ ⊆ D such that D′ is exceptional w.r.t. D
4: for A @∼ B ∈ D do
5: if T |= ⊔D v ¬A then
6: D′ := D′ ∪ {A @∼ B}
7: return D′

that typically do not pay taxes, will have rank 0; working students, since they
pay taxes, will have rank 1; let there be a rule stating that working students
with a family do not have to pay taxes, and so they will have rank 2, and so on.

Algorithm 2 ComputeRanking

1: procedure ComputeRanking
2: Input: K = (T ,D)
3: Output: K′ = (T ′,D′) and a ranking E of D.
4: T ′ := T , D′ := D, E := ∅, D′∞ := D
5: while D′∞ 6= ∅ do
6: i := 0
7: E0 := D′
8: E1 := Exceptional(T ′, E0)
9: while Ei+1 6= Ei do

10: i := i + 1
11: Ei+1 := Exceptional(T ′, Ei)
12: E := (E0, . . . , Ei−1)
13: D′∞ := Ei
14: T ′ := T ′ ∪ {C v D | C @∼ D ∈ D′∞}
15: D′ := D′\D′∞
16: K′ := (T ′,D′)
17: return (K′, E)

In addition to the ranking E that Algorithm 2 produces, it also outputs a KB
K′ that, despite not necessarily being the same as the original K, is equivalent
to K [8, Lemma 13]. We refer the reader to the work of Britz et al. [8] for an
explanation of the reasons behind the introduction of K′, as well as for a more
detailed discussion of the ComputeRanking algorithm.

The next algorithm we consider, Algorithm 3, takes as input a KB K and
a ranking E , as well as a query C @∼ D, and decides whether C @∼ D is defea-
sibly entailed by K (given E). Algorithm 3 guarantees that, in case of poten-
tial conflicts, the information that is higher in the ranking overrides the other
pieces of information. For example, if students do not pay takes (Student @∼
¬PayTax) has rank 0, while the rule that working students should pay taxes
(Student u Worker @∼ PayTax) has rank 1, we will conclude that, for example,
part-time students that have a job as public servants presumably should pay
taxes (PartTimeStudent u PubServ @∼ PayTax), since, in case of conflict, we
rely on the DCI with the higher rank.
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Finally, combining Algorithm 3 with Algorithm 2 enables us to define an
algorithm for computing Rational Closure [8, Theorem 4]: given a KB K and a
query C @∼ D, Algorithm 4 takes the ranking created by Algorithm 2 from K and,
calling Algorithm 3, decides whether C @∼ D is or not in the Rational Closure
of K. DIP? ? ? (Defeasible Inference Platform) is a Protégé plugin implementing
Rational Closure for DLs [14,16].

Algorithm 3 IsEntailed

1: procedure IsEntailed
2: Input: K = (T ,D), ranking E = (E0, ..., En), query C @∼ D
3: Output: true iff C @∼ D is defeasibly entailed by K
4: i := 0
5: while T |= ⊔Ei u C v ⊥ and i ≤ n do
6: i := i + 1

7: if i ≤ n then
8: return T |= ⊔Ei u C v D
9: else

10: return T |= C v D

Algorithm 4 RationalClosure

1: procedure RationalClosure
2: Input: K = (T ,D), query C @∼ D
3: Output: true iff C @∼ D is in the Rational Closure of K.
4: (K′, E) := ComputeRanking(K)
5: return IsEntailed(K′, E , C @∼ D)

3 Rankings and Ranking Equivalence

As previously noted, Algorithm 2 returns a fixed ranking E = (E0, . . . , En) when
presented with a KB K = (T ,D) as input. That is, it orders the elements of D
w.r.t. exceptionality. In what follows we will refer to a more general notion of
ranking of a KB.

Definition 2 (Ranking). A ranking is a tuple E = (E0, E1, ..., En) defined rel-
ative to a KB K = (T ,D) satisfying the following properties:

– for every integer i ∈ [0, n], Ei ⊆ D;
– for every integer i ∈ [0, n), Ei+1 ⊆ Ei
– E0 = D

A rank refers to any of the sets which compose a given ranking E . For all
integers i ∈ [0, n], Ei is a rank of E . The size of E , denoted |E|, is n where
E = (E0, E1, ..., En).

A property of the materialization of ranks of E is shown in the following
lemma.

? ? ? https://tinyurl.com/y3cjdznp
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Lemma 1. Let E = (E0, ..., En) be a ranking relative to the KB K = (T ,D). For
every integer i ∈ [0, n), |= ⊔Ei v ⊔Ei+1.

It follows that if 0 ≤ j < i ≤ n, then |= ⊔Ej v ⊔Ei.
What happens if, together with a KB K, with give as input to Algorithm 3 an

arbitrary ranking E of K instead of the ranking produced by ComputeRanking?
It turns out that IsEntailed still defines an entailment relation that satisfies all
the KLM properties. To make this more precise, we define defeasible entailment
w.r.t a ranking E as follows.

Definition 3. Given a KB K = (T ,D) and an arbitrary ranking E of K, we
say that C @∼ D is defeasibly entailed by K w.r.t. E, denoted by K|≈EC @∼ D, if
IsEntailed(K, E , C @∼ D) = true

Observe that defeasible entailment for K w.r.t the ranking produced by
ComputeRanking is exactly Rational Closure.

Theorem 1. For a KB K = (T ,D) and a ranking E = (E0, ..., En) of K, defea-
sible entailment for K w.r.t E ( |≈E) satisfies all the KLM properties.

To motivate reasoning with an arbitrary ranking, note that algorithms like
Algorithm 2 determine a ranking of statements based on their logical specificity,
wherein more specific statements are ranked higher; in some cases, we may wish
to base our rankings on another principle altogether. Consider the example of
country C. C is federal, with every region having a regional code, which is
superceded by the federal code of C. Alcohol is considered a narcotic substance,
but in region R of C, alcohol consumption is permitted. New laws are introduced
to the federal code of C: one states that the consumption of narcotics is a
crime unless otherwise indicated in the federal code, while the other states that
consumption of narcotics is permitted if medically prescribed. Citizen B is caught
drinking grappa in region R, without a medical prescription. To model that Bob
is guilty of having broken the law of C, all that is required in the arbitrary
ranking framework is to give the laws of the federal code a lower ranking than
those of the regional code.

We now investigate the circumstances under which two rankings entail the
same set of statements, that is, when two rankings are equivalent. Results about
the equivalence of rankings are of interest, because as per Lutz [35], entailment
checking in ALC is ExpTime-complete, and since the algorithms for defeasible
entailment used in this paper (in particular, IsEntailed) reduce to linearly
many ALC entailment checks, reducing the number of entailment checks required
can have a significant impact on the running time of these algorithms. Thus
finding an equivalent knowledge base of a smaller size may allow faster run
times without sacrificing reasoning power.

Definition 4 (Equivalence). Two rankings E, F , relative to the KBs K and
K′ respectively, are equivalent (E .

= F) if, for every DCI C @∼ D, K|≈EC @∼ D if
and only if K′ |≈F C @∼ D.
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Clearly
.
= is an equivalence relation.

Lemmas 2 and 3 below allow us to ‘shrink’ a ranking in order to produce a
ranking which is smaller but equivalent. For notational convenience, we define
subrankings, borrowing syntax from the Python programming language.

Definition 5 (Subranking). Let E = (E0, E1, ..., En) be a ranking relative to
K = (T ,D). For 0 ≤ i ≤ j ≤ n, the tuple (Ei, Ei+1, ..., Ej) is an i-to-j subranking
of E, denoted E [i : j].

Lemma 2. Let K = (T ,D) be a KB with the statements in D ranked into
E = (E0, ..., En). If there is some i ∈ [0..n] for which T |= ⊔Ei v ⊥ then
E .

= E [i + 1 : n], where E [i + 1 : n] is the subranking of E relative to KB
K′ = (T ,D′) where D′ = Ei+1.

Lemma 3. Let E = (E0, ..., En) be a ranking relative to KB K = (T ,D). Let
i ∈ [0, n] be the smallest integer such that T |= ⊔Ei ≡ >. Then E ′ .

= E, where
E ′ = E [0 : i− 1].

These lemmas allow for ranks to be dropped from the top or bottom of a
ranking without changing the set of entailed statements, but what about drop-
ping statements from the middle of the ranking? This is discussed further in
Section 4, but the following definition allows us to provide some initial results:

Definition 6 (Dense ranking). Let E = (E0, ..., En) be a ranking. E is dense
if for all 0 ≤ i < n, T 6|= ⊔Ei ≡ ⊔Ei+1.

Dense rankings are significant because every rank of a dense ranking is in-
volved in deciding entailment. By contrast, a ranking which is not dense (a sparse
ranking) has the property that for some Ei, Ei+1, T |= ⊔Ei ≡ ⊔Ei+1. For any
concept A, T |= ⊔EiuA ≡ ⊔Ei+1uA; so A is non-empty at i if and only if it is
non-empty at i + 1. If ⊔Ei uA is non-empty then ⊔Ei+1 uA is non-empty, but
algorithm 3 will stop at i, so Ei+1 will not be used; and if ⊔EiuA is empty, then⊔Ei+1uA is also empty, so it will be passed over for the next highest rank. Ei+1

therefore never contributes to entailment checking. This can be thought of as a
‘gap’ in the ranking that does not alter entailment in a significant way, increasing
the running time of entailment checking without contributing knowledge.

To this end, algorithm 5, CollapseRanking, takes a KB K and ranking E
and returns a ranking E ′ of the same statements such that E ′ is dense and
E ′ .= E . Note that the algorithm performs linearly many ALC entailment checks
in the size of the ranking. Schmidt-Schauß and Smolka prove in [42] that ALC
entailment checking is PSPACE-complete, and provide an algorithm for entail-
ment checking in linear space and exponential time. CollapseRanking therefore
should have no worse than exponential running time in the size of the ranking.
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Algorithm 5 CollapseRanking

1: procedure CollapseRanking(K, E)
2: Input: K = (T ,D), finite ranking E = (E0, ..., En)
3: Output: E ′ where E ′ is dense and equivalent to E .
4: E ′0 = E0
5: i := 1
6: j := 1
7: prev := ⊔E0
8: while i ≤ n do
9: if T 6|= ⊔Ei ≡ prev then

10: E ′j := Ei
11: prev := ⊔Ei
12: j := j + 1

13: i := i + 1

14: return E ′

Theorem 2. The ranking E ′ = CollapseRanking(K, E) is dense and equivalent
to E.

Corollary 1. E .
= F if and only if CollapseRanking(E)

.
= CollapseRanking(F).

Corollary 2. Every finite ranking E has an equivalent dense ranking.

Another motivation for working with dense rankings is the result of Theo-
rem 3 below, which states that if two dense rankings are equivalent, then the
conjunction of the materialization of each of their ranks must be equivalent.

One requirement of the proof of Theorem 3 is that the top rank of the rank-
ings under consideration not have the conjunction of its materialization equiva-
lent to >. But by Lemma 3, it is always possible to transform a ranking into an
equivalent ranking for which this is true.

Lemma 4 is split from Theorem 3 because it allows us to prove a slighter
stronger result that does not require dense rankings.

Lemma 4. Let E = (E0, ..., Em) and F = (F0, ...,Fn) be rankings relative to the
same KB K = (T ,D) with m = n such that for all integers i with 0 ≤ i ≤ n,
T |= ⊔Ei ≡ ⊔Fi; then E .

= F .

Theorem 3. Let E = (E0, ..., Em) and F = (F0, ...,Fn) be dense rankings rela-
tive to the KBs K = (T ,D) and K′ = (T ,D′) respectively, such that T 6|= ⊔E0 ≡
⊥, T 6|= ⊔F0 ≡ ⊥, T 6|= ⊔Em ≡ >, and T 6|= ⊔Fn ≡ >; then E .

= F if and
only if m = n and for all integers i such that 0 ≤ i ≤ n, T |= ⊔Ei ≡ ⊔Fi.

The following observation summarizes the section on equivalence.

Let E and F be two rankings of statements relative to KBs K = (T ,D) and
K′ = (T ,D′) respectively. Let E ′ = CollapseRanking(K, E), F ′ = CollapseRanking(K′,F).
Let n = |E ′| and m = |F ′|. Assign:
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el =

0, T |= ⊔E ′0 6≡ ⊥
1, T |= ⊔E ′0 ≡ ⊥ eh =

n, T |= ⊔E ′n 6≡ >
n− 1, T |= ⊔E ′n ≡ >

fl =

0, T |= ⊔F ′0 6≡ ⊥
1, T |= ⊔F ′0 ≡ ⊥ fh =

n, T |= ⊔F ′m 6≡ >
n− 1, T |= ⊔F ′m ≡ >

Let E ′′ = E ′[el : eh] and F ′′ = F ′[fl : fh]. Finally, let n′ = |E ′′| and m′ = |F ′′|.
Corollary 3. E .

= F if and only if n′ = m′ and for all integers i such that
0 ≤ i ≤ n′, T |= ⊔E ′′i ≡ ⊔F ′′i .

Algorithm 6 Equivalent

1: procedure Equivalent(K, E ,K′,F)
2: Input: K = (T ,D) with finite ranking E = (E0, ..., En), K′ = (T ,D′) with finite

ranking F = (F0, ...,Fn)
3: Output: true if and only if E .

= F
4: E ′ := CollapseRanking(K, E)
5: F ′ := CollapseRanking(K,F)
6: n := |E ′|, m := |F ′|, el := 0, eh := n, fl = 0, fh = m
7: if T |= ⊔E ′0 ≡ ⊥ then
8: el := el + 1

9: if T |= ⊔F ′0 ≡ ⊥ then
10: fl := fl + 1

11: if T |= ⊔E ′n ≡ > then
12: eh := eh − 1

13: if T |= ⊔F ′m ≡ > then
14: fh := fh − 1

15: E ′′ := E ′[el : eh], F ′′ := F ′[fl : fh]
16: n′ := |E ′′|, m′ = |F ′′|
17: if n′ 6= m′ then
18: return false

19: for i from 0 to n′ do
20: if T 6|= ⊔E ′′ ≡ ⊔F ′′ then
21: return false

22: return true

Algorithm 6, Equivalent, uses Corollary 3 to determine if two rankings are
equivalent. The algorithm consists of linearly many entailment checks, and since
ALC entailment checking is ExpTime-complete [35], the algorithm is in the
ExpTime complexity class.

4 Statement redundancy

Broadly, redundant statements are statements which do not effect the set of en-
tailed statements. In other words, on adding or removing redundant statements,
the new and old rankings should be equivalent. In this section,we define and
discuss two forms of redundancy, local and total redundancy.
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Definition 7 (Locally redundant). Let E be a ranking of a DTBox D in K =
(T ,D), and let C @∼ D ∈ D. C @∼ D is locally redundant at i if T |= ⊔Ei ≡ ⊔E ′i
where E ′i = (Ei \ {C @∼ D}).

It follows trivially from the definition that if C @∼ D is locally redundant at
i and E ′i = (Ei \ {C @∼ D}), then T |= ⊔Ei uA ≡ ⊔E ′i uA holds for all concepts

A; so for any concept B, T |= ⊔Ei uA v B iff T |= ⊔E ′i uA v B.
To see the relevance of local redundancy at i, consider E = (E0, E1, ..., En),

a ranking relative to KB K = (T ,D), and a defeasible subsumption statement
C @∼ D ∈ Ei that is locally redundant at i, i > 0. Let R = {A @∼ B|A @∼ B ∈
Ei−1 and A @∼ B 6∈ Ei}. Note that C @∼ D ∈ Ei and Ei ⊆ Ei−1, so C @∼ D 6∈ R.
Ei∪R = Ei−1, so T |= ⊔Eiu ⊔R ≡ ⊔Ei−1. By assumption, T |= ⊔Ei ≡ ⊔E ′i ,

so T |= ⊔E ′i u ⊔R ≡ ⊔Ei u ⊔R and in turn T |= ⊔Ei u ⊔R ≡ ⊔Ei−1. But⊔E ′i u ⊔R is the conjunction of the materialization of every A @∼ B ∈ Ei−1
except C @∼ D, so it is equivalent to ⊔Ei−1\{C @∼ D}. Then T |= ⊔Ei−1 ≡⊔Ei−1\{C @∼ D}, so C @∼ D is locally redundant at i − 1. A simple inductive
argument yields:

Theorem 4. If C @∼ D is locally redundant at i then C @∼ D is locally redundant
at j for all 0 ≤ j ≤ i.

We also have the apparently stronger total redundancy:

Definition 8 (Totally redundant). For a ranking E = (E0, ..., En) and condi-
tional KB K = (T ,D), a statement C @∼ D is totally redundant if E .

= E ′, where
E ′ = (E0\{C @∼ D}, ..., En\{C @∼ D}) relative to K = (T ,D\{C @∼ D})

In fact, total and local redundancy are strongly related. Theorem 5 shows
that for dense rankings, the two are interdefinable.

Theorem 5. Let E = (E0, ..., En) be a dense ranking relative to KB K = (T ,D).
Let i ∈ [0, n] be the largest integer such that C @∼ D ∈ Ei. Then C @∼ D is totally
redundant if and only if it is locally redundant at i.

5 Relating Rational Closure to Rankings

Clearly rational closure is in the class of entailment relations definable using
rankings and Algorithm 3, since it corresponds to using the output of ComputeRanking
as input ranking for Algorithm 3. But is the class of entailment relations defin-
able using rational closure a proper subset of the class of relations definable from
rankings and Algorithm 3? Actually, this is not the case: for an arbitrary ranking
E relative to KB K = (T ,D), it is always possible to create a KB K′ = (T ,D′)
such that E .

= E ′ where E ′ = ComputeRanking(K′). Since RationalClosure

uses the ranking output by ComputeRanking, we have for all statements C @∼ D,
RationalClosure(K′, C @∼ D) = IsEntailed(K, E , C @∼ D).

Theorem 6. Let E = (E0, ..., En) be a ranking relative to conditional KB K =
(T ,D). Let D′ = {> @∼ ⊔E0} ∪ {¬ ⊔Ei @∼ ⊔Ei+1 | i ∈ Z, 0 ≤ i < n}. Let
K′ = (T ,D′) and E ′ = ComputeRanking(K′). Then E .

= E ′.



Preferential reasoning with an arbitrary ranking 11

The proof of this uses the following lemmas:

Lemma 5. T |= ⊔E ′0 ≡ ⊔D′ and T |= ⊔D′ ≡ ⊔E0.

Lemma 6. For all i ∈ [1, n],

T |= ⊔{¬ ⊔Ej @∼ ⊔Ej+1 | j ∈ Z, i ≤ j < n} ≡ ⊔Ei+1

Lemma 7. For all integers i ∈ [0, n],

Exceptional(T , E ′i) = {¬ ⊔Ej @∼ ⊔Ej+1 | j ∈ Z, i ≤ j < n}

6 Related Work and Conclusions

A recent proposal for dealing with defeasible reasoning in the framework of
DLs that is relatively related to the present approach is the one by Bonatti,
Sauro and others [3,6]. They use a different kind of semantics, and their decision
procedures have good computational results and satisfy different properties w.r.t.
the KLM-based approach. Similarly, the proposal by Bozzato and others [7]
models defeasible reasoning in DLs using an approach based on the notion of
context, hence they use a different semantics and the entailment relation satisfies
different properties. Strongly related to the work presented here is instead the
work by Giordano and others [27,29,28], that is also built on top of the KLM
approach. Pensel and Turhan [37,38] have refined the notion of Rational Closure
in order to better exploit the expressivity of some DLs like EL⊥. The work
of Britz and Varzinczak moves instead in the direction of extending the kind
of defeasible information that can be expressed in the DL framework, adding
defeasible quantifiers and role inclusions [9,13,45].

The results in this paper can be expanded upon in a number of ways. From
the point of view of implementation, there is a software tool, PRO (Preferential
Reasoner for Ontologies), that models Algorithm 3 and is available online,†. It
can be the base for the development of more advanced tools. From the theoretical
point of view, the most urgent step would be to add an ABox and enable draw-
ing presumptive conclusions about individuals, as it has already been modelled
for the Rational Closure and other forms of closure [18,20,15,27,38]. In Section 5
we have related rankings to rational closure for dense rankings - is there a more
natural construction for doing so? Can we do the same for other forms of closure,
for example, lexicographic closure? More in general, the results presented here
can be further developed and analyzed in the light of ongoing work for propo-
sitional logic [17], focused on the behaviour of possible refinements of Rational
Closure. Also, the results on statement redundancy can be extended to multiple
redundant statements.

Acknowledgments. G. Casini and T. Meyer have received funding from the
EU Horizon 2020 programme under the Marie Sk lodowska-Curie grant agr. No.
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