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Propositional Typicality Logic (PTL) is a recently proposed logic, obtained by enriching 
classical propositional logic with a typicality operator capturing the most typical (alias 
normal or conventional) situations in which a given sentence holds. The semantics of PTL 
is in terms of ranked models as studied in the well-known KLM approach to preferential 
reasoning and therefore KLM-style rational consequence relations can be embedded in 
PTL. In spite of the non-monotonic features introduced by the semantics adopted for 
the typicality operator, the obvious Tarskian definition of entailment for PTL remains 
monotonic and is therefore not appropriate in many contexts. Our first important result 
is an impossibility theorem showing that a set of proposed postulates that at first all 
seem appropriate for a notion of entailment with regard to typicality cannot be satisfied 
simultaneously. Closer inspection reveals that this result is best interpreted as an argument 
for advocating the development of more than one type of PTL entailment. In the spirit of 
this interpretation, we investigate three different (semantic) versions of entailment for PTL, 
each one based on the definition of rational closure as introduced by Lehmann and Magidor 
for KLM-style conditionals, and constructed using different notions of minimality.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Propositional Typicality Logic (PTL) [3,4] is a recently proposed logic allowing for the representation of and reasoning 
with an explicit notion of typicality. It is obtained by enriching classical propositional logic with a typicality operator •, 
the intuition of which is to refer to those most typical (or normal or conventional) situations in which a given sentence 
holds. PTL is characterised using a preferential semantics similar to that originally proposed by Shoham [42] and extensively 
developed by Kraus et al. [33] and Lehmann and Magidor [35] in the propositional case, with close connections to the 
formalisms developed by Pearl and Goldszmidt [39,40], and by others [6,14,15,31,41,19–21] in more expressive languages.

In spite of the non-monotonic features introduced by the adoption of a preferential semantics for •, the obvious definition 
of entailment for PTL, i.e., the one based on a Tarskian notion of logical consequence, remains monotonic. Of course, such a 
notion of entailment is inappropriate in non-monotonic contexts, in particular when reasoning about typicality, as is already 
clear from an enriched version of the classical Tweety example: If birds typically fly, and penguins are birds (and that is 
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all we know), we would expect to be able to conclude that typical penguins are typical birds, and therefore that typical 
penguins fly. Learning that penguins typically do not fly should lead us to conclude that penguins are not typical birds, and 
to retract the conclusions about typical penguins being typical birds, and about typical penguins flying.

In this paper, we investigate three semantic versions of entailment for PTL, constructed using three different forms of 
minimality. All these are based on the notion of rational closure as defined by Lehmann and Magidor [35] for KLM-style 
conditionals in a propositional setting. We show that they can be viewed as distinct extensions of rational closure, equivalent 
with respect to the conditional language originally proposed by Kraus et al., but different in the PTL framework.

We shall study the aforementioned forms of entailment in an abstract formal setting, obtained by proposing a set of 
postulates that, at first glance, seem appropriate for any notion of entailment with regard to typicality. Our first important 
result is a negative one, though. It is an impossibility result proving that the set of postulates cannot all be satisfied 
simultaneously. A more detailed analysis of the result shows that, instead of being viewed as negative, this result should 
rather be interpreted as an indication that PTL allows for different types of entailment, corresponding to different subsets of 
the full set of postulates we provide. In line with this argument, we define three types of entailment for PTL corresponding 
to distinct subsets of the postulates, referred to as LM-entailment, PT-entailment, and PT’-entailment, a modification of the 
latter. Our argument for more than one type of entailment for the same logic is in line with the proposal put forward 
by Lehmann in the context of entailment for conditional knowledge bases, where he proposes both prototypical reasoning
and presumptive reasoning as acceptable forms of entailment [34]. We elaborate on this point in Section 8, but the gist of 
the argument is the acknowledgement of the existence of more than one form of entailment for the same representational 
formalism.

The remainder of the present paper is structured as follows. Section 2 provides the background and notation for the 
rest of the work. In Section 3 we discuss the complexities surrounding a notion of entailment for PTL. In Section 4 we put 
forward our postulates and show the impossibility result. In Section 5 we define LM-entailment while Section 6 is devoted 
to the definition of PT-entailment, and Section 7 to the definition of PT’-entailment. Section 8 addresses the implications 
of the impossibility result, making the case for three forms of PTL entailment. Section 9 discusses related work, while 
Section 10 concludes and discusses future work.

2. Logical preliminaries

Let P be a finite set of propositional atoms with at least two elements.1 We use p, q, . . . as meta-variables for atoms. 
Propositional sentences (and, in later sections, sentences of the richer language we shall introduce in Section 2.3 below) are 
denoted by α, β, . . ., and are recursively defined in the usual way: α ::= p | ¬α | α ∧ α | � | ⊥. All the other Boolean con-
nectives (∨, →, ↔, . . . ) are defined in terms of ¬ and ∧ in the standard way. With L we denote the set of all propositional 
sentences.

We denote by U the set of all propositional valuations v : P −→ {0, 1}, i.e., U := {0, 1}P . Whenever it eases the pre-
sentation, we shall represent valuations as sets of literals (i.e., atoms or negated atoms), with each literal indicating the 
truth-value of the respective atom. Thus, for the logic generated from P = {p, q}, the valuation in which p is true and q is 
false will be represented as {p, ¬q}. Satisfaction of a sentence α ∈ L by v ∈ U is defined in the usual truth-functional way 
and is denoted by v � α.

2.1. KLM-style rational conditionals

In the conditional logic investigated by Kraus et al. [33], often referred to as the KLM approach, one is interested in 
(defeasible) conditionals of the form α | ∼β , read as “typically, if α, then β” (or, depending on the example at hand, as “αs 
are typically βs” and variants thereof). For instance, if P = {b, f, p}, where b, f and p stand for, respectively, “being a bird”, 
“being able to fly”, and “being a penguin”, the following are examples of defeasible conditionals: b | ∼ f (birds typically fly), 
p ∧ b | ∼¬f (penguins that are birds typically do not fly).

Kraus et al. put forward the following list of properties that the conditional | ∼ ought to satisfy in order to be considered 
as appropriate in a non-monotonic setting (these properties have been discussed at length in the non-monotonic reasoning 
community and we shall not do so here):

(Ref) α |∼α (LLE)
|= α ↔ β, α |∼γ

β |∼γ
(And)

α |∼β, α |∼γ

α |∼β ∧ γ

(Or)
α |∼γ , β |∼γ

α ∨ β |∼γ
(RW)

α |∼β, |= β → γ

α |∼γ
(CM)

α |∼β, α |∼γ

α ∧ β |∼γ

A conditional satisfying such properties is called a preferential conditional. We can require | ∼ to satisfy other properties 
as well, one of which is rational monotonicity:

1 This (reasonable) assumption is needed for technical reasons.



R. Booth et al. / Artificial Intelligence 277 (2019) 103178 3
2 {b, f,p}
1 {b,¬f,¬p}, {b,¬f,p}
0 {¬b,¬f,¬p}, {¬b, f,¬p}, {b, f,¬p}

Fig. 1. A ranked interpretation for P = {b, f,p}.

(RM)
α |∼γ , α � |∼¬β

α ∧ β |∼γ

A preferential conditional also satisfying (RM) is called a rational conditional.
The semantics of KLM-style rational conditionals is given by structures called ranked interpretations [35]:

Definition 2.1 (Ranked interpretation). A ranked interpretation R is a function from U to N ∪ {∞} satisfying the following 
convexity property: for every i ∈N , if R(v) = i, then, for every j such that 0 ≤ j < i, there is a v ′ ∈ U for which R(v ′) = j.

Observe that R generates a modular order ≺R on U as follows: u ≺R v if and only if R(u) < R(v) (where i < ∞ for 
every i ∈N). If there is no ambiguity, we will omit the subscript and refer to the modular order as ≺.2

In a ranked interpretation R the intuition is that valuations lower down in the ordering are deemed more normal 
(or typical) than those higher up, with those with an infinite rank (a rank of ∞) being regarded as so atypical as to be 
impossible.

The possible valuations in R are defined as follows: UR := {u ∈ U | R(u) < ∞}. Given α ∈L, we let �α�R := {v ∈ UR |
v � α}. Note that it may be possible that R(u) = ∞ for every u ∈ U , and therefore that UR = ∅.

Given α, β ∈L, we say R satisfies (is a ranked model of) the conditional α | ∼β (denoted R � α | ∼β) if all the ≺-minimal 
α-valuations also satisfy β , i.e., if min≺�α�R ⊆ �β�R . We say R is a ranked model of a set of conditionals C if R � α | ∼β

for every α | ∼β ∈ C , and that a set of conditionals C is satisfiable only if it has a ranked model R for which UR �= ∅. 
Observe that if C is unsatisfiable, it has as its only ranked model the ranked interpretation R for which UR = ∅.

Sometimes it is convenient to represent a ranked interpretation R as a partition (L0, . . . , Ln−1, L∞) of U where, for 
i ∈N ∪ {∞}, Li = {u ∈ U | R(u) = i} and where n is some i ∈ N for which Li = ∅. That is, for each i ∈ {0, . . . , n − 1, ∞}, Li

is the set of all valuations of rank i. We refer to such a ranked interpretation as an n-rank interpretation.
Observe that the partition above has a finite number of cells, but includes the possibility for some of the Li s to be empty. 

This is necessary for three reasons. First, the cell L∞ (the set of all impossible valuations) may be empty. Second, it may be 
the case that L∞ = U . That is, it may be that all valuations are impossible. Third, as we shall see below, this representation 
will often be used to compare ranked interpretations. In cases where such ranked interpretations do not have the same 
number of non-empty cells, this representation allows us to represent them as having the same (finite) number of cells, say 
(L0, . . . , Ln−1, L∞) and (M0, . . . , Mn−1, M∞), where n is the smallest integer such that Li = Mi = ∅.

Fig. 1 depicts an example of a ranked interpretation for P = {b, f, p} satisfying both b | ∼ f and p ∧b | ∼¬f. (In our graphical 
representations of the ranked interpretations we frequently omit the rank ∞.)

For a better understanding of the reasons behind the aforementioned properties and the semantic constructions, the 
reader is referred to the work of Kraus et al. [33,35].

2.2. Rational closure

Given a set of conditionals C , reasoning in the KLM framework amounts to the derivation of new conditionals from C . 
Towards this end, Lehmann and Magidor [35] proposed what they refer to as rational closure. Here we focus on the semantic 
version of rational closure they present.

Their idea was to define a preference relation �LM over the set of possible ranked interpretations and then to base 
entailment on choosing only the most preferred, i.e., minimal w.r.t. �LM, ranked models of C .

The relation �LM can be described as follows.

Definition 2.2 (LM-preference). Let R1 = (L0, . . . , Ln−1, L∞) and R2 = (M0, . . . , Mn−1, M∞) be any pair of ranked interpreta-
tions. Then,

R1 �LM R2 if either Li = Mi for all i ∈ {0, . . . ,n − 1,∞},
or L j ⊇ M j for the smallest j ≥ 0 s.t. L j �= M j .

R1 �LM R2 if and only if R1 �LM R2 and not R2�LMR1.

2 Recall that, given a set X , ≺ ⊆ X × X is modular if and only if there is total order ≤ on a set � and a ranking function rk : X �→ � s.t. for every 
x, y ∈ X , x ≺ y if and only if rk(x) < rk(y).
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�LM forms a partial order over ranked interpretations, and, for every satisfiable set of conditionals C , there exists a 
unique �LM-minimum element Rrc(C) among all the ranked models of C (see Proposition A.2 in Appendix A). We will 
refer to this element as the LM-minimum.

This is not exactly the semantic representation defined by Lehmann and Magidor, but this representation can easily be 
derived from other work on rational closure, such as that of Booth and Paris [2] (see Appendix A).

Proposition 2.1. Given a set of conditionals C and a conditional α | ∼β . α | ∼β is in the rational closure of C iff:

1. C is unsatisfiable; or
2. Rrc(C) � α | ∼β .

The idea is that those ranked interpretations should be preferred in which as many valuations as possible are judged to 
be as plausible as the background knowledge C allows. Observe also that one of the consequences of this ordering is that, 
all other things being equal, a ranked interpretation in which a valuation is deemed to be possible will be preferred over 
one in which the same valuation is seen as impossible.

Then the rational closure of C is the set | ∼ rc
C := {(α, β) | Rrc(C) � α | ∼β}. Rational closure is commonly viewed as the 

basic (although certainly not the only acceptable) form of entailment over propositional conditional knowledge bases, on 
which other, more venturous, forms of entailment can be constructed. It is therefore an appropriate choice on which to base 
our investigations into versions of entailment for PTL.

2.3. Propositional Typicality Logic

PTL [3] is a logical formalism explicitly allowing for the representation of and reasoning about a notion of typicality. 
Syntactically, it extends classical propositional logic with a typicality operator •, the intuition of which is to capture the most 
typical (alias normal or conventional) situations or worlds. Here we shall briefly present the main results about PTL relevant 
for our purposes.

The language of PTL, denoted by L• , is recursively defined by:

α ::= p | ¬α | α ∧ α | � | ⊥ | •α
As before, p denotes an atom and all the other Boolean connectives are defined in terms of ¬ and ∧.

Let P = {b, f, o, p}, where b, f and p are as before and o represents “being an ostrich”. The following are examples of 
L•-sentences: •b (being a typical bird), o →¬ •b (ostriches are not typical birds), (p ∨ o) ↔ (b ∧•¬f) (being a penguin or an 
ostrich is equivalent to being a bird and being a typical non-flying creature).

Intuitively, a sentence of the form •α is understood to refer to the typical situations in which α holds. Note that α can 
itself be a •-sentence. The semantics of PTL is also in terms of ranked interpretations (see Definition 2.1). Satisfaction is 
defined inductively in the classical way, adding the following condition: v � •α if v � α and there is no v ′ such that v ′ ≺ v
and v ′ � α. That is, given R , �•α�R := min≺�α�R . In the ranked interpretation R of Fig. 1, we have �•b�R = {{b, f, ¬p}}, 
�•p�R = {{b, ¬f, p}} and �•(b ∧ ¬f)�R = {{b, ¬f, ¬p}, {b, ¬f, p}}.

We say that α ∈ L• is satisfiable in a ranked interpretation R if �α�R �= ∅, otherwise α is unsatisfiable in R . We say 
that R is a ranked model of α (denoted R � α) if �α�R = UR . Observe that when UR = ∅, then R is a model of every 
α ∈L• .

For X ⊆ L• we define Mod(X) := {R | R � α for every α ∈ X}. X is satisfiable iff X has at least one model R for which 
UR �= ∅. Observe that if X is unsatisfiable, it has as its only ranked model the ranked interpretation R for which UR = ∅. 
A PTL knowledge base is a set of sentences KB ⊆L• .

A useful property of the typicality operator • is that it allows us to express KLM-style conditionals. That is, for every 
ranked interpretation R and every α, β ∈ L, R � α | ∼β if and only if R � •α → β . The converse does not hold since it 
can be shown that there are L•-sentences that cannot be expressed as a set of KLM-style | ∼ -statements on L. To give 
an example (taken from Booth et al. [4]), assuming P = {p, q} then •p is one such sentence, since •p has exactly four 
ranked models, corresponding to the cases in which UR is respectively taken to be (1) {{p, q}, {p, ¬q}}, (2) {{p, q}}, (3) 
{{p, ¬q}} and (4) ∅ (and where, in each case the ordering ≺R is taken to be empty). Yet there exists no set X of KLM-style 
| ∼ -statements with exactly these models.

The representation result below, extending Theorem 3.12 of Lehmann and Magidor [35] to L• , shows that the formalisa-
tion of the KLM rational conditional | ∼ inside PTL is appropriate.

Observation 1 (Booth et al. [4], Corollary 22). Let R be a ranked interpretation and let | ∼R := {(α, β) | α, β ∈ L• and 
R � •α → β}. Then | ∼R is a rational conditional. Conversely, for every rational conditional | ∼ , there exists a ranked 
interpretation R such that, for every α, β ∈L• , α | ∼β if and only if R � •α → β .

For more details on PTL and the aforementioned properties, the reader is referred to the work by Booth et al. [4].
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2 {b, f,p}
1 {b,¬f,¬p}, {b,¬f,p}
0 {¬b,¬f,¬p}, {¬b, f,¬p}, {b, f,¬p}

Fig. 2. A ranked model of KB1 = {p → b,•b → f} satisfying neither •p → •b nor •p → f.

3. The entailment problem for PTL

The purpose of this section is to provide a more formal motivation for the remainder of the paper. From the perspective 
of knowledge representation and reasoning (KR&R), a central issue is that of what it means for a PTL sentence to follow
from a PTL knowledge base KB. An obvious approach to the matter is to embrace the notion of entailment advocated by 
Tarski [43] and largely adopted in the logic-based KR&R community.

Definition 3.1 (Ranked entailment and consequence). Let KB be a PTL knowledge base and α ∈ L• . We say KB ranked-
entails α (noted KB | ≈0 α) if Mod(KB) ⊆ Mod(α). Its associated ranked consequence operator is defined by setting 
Cn0(KB) := {α ∈L• |KB | ≈0 α}.

As we shall see below, this version of entailment is not appropriate in the context of PTL for a number of reasons. For 
one, consider the following definition of a conditional induced from a set of PTL sentences.

Definition 3.2 (Induced conditional relation). Let KB ⊆L• . We define | ∼KB := {(α, β) | α, β ∈L and •α → β ∈KB}.

It is worth investigating whether | ∼ Cn0(KB) is rational for a PTL knowledge base KB, i.e., whether it satisfies all the KLM 
properties for rationality from Section 2.1. The following proposition, which mimics a similar result by Lehmann and Magi-
dor in the propositional case, shows that this is not the case:

Observation 2 (Booth et al. [4], Proposition 25). For a PTL knowledge base KB, | ∼ Cn0(KB) is a preferential conditional, but is 
not necessarily a rational conditional.

Hence, ranked consequence as defined above delivers an induced defeasible conditional that is preferential but that need 
not be rational. This forms an argument against ranked entailment being an appropriate notion of entailment for PTL.

One of the principles to give serious consideration when investigating PTL entailment is the presumption of typicality [34, 
p. 63]. Informally, this means that one should assume that every situation is as typical as possible. Sections 4 and 6 contain 
a formalisation of this principle. For now, we illustrate it with an example.

Example 3.1. Let KB1 = {p → b, •b → f} (penguins are birds, and typical birds fly). Given just this information about birds 
and penguins, it is reasonable to expect •p → •b (typical penguins are typical birds), and therefore •p → f (typical penguins 
fly), to follow from KB1. With ranked entailment, these requirements are not met, as there is a ranked model of KB1, 
depicted in Fig. 2, invalidating the expected conclusions. This is so because ranked entailment, being a Tarskian relation, is 
not ampliative, i.e., it does not allow for venturing beyond what necessarily follows from the knowledge base. �

Besides requiring PTL entailment to be ampliative, we also want it to be defeasible, that is, the conclusions derived under 
the presumption of typicality in an ampliative way can be retracted in case of new conflicting information. This is illustrated 
by the following example.

Example 3.2. Assume •p → •b and •p → f (somehow) could follow from KB1 in Example 3.1, but then we are in-
formed that typical penguins do not fly. That is, let KB2 = KB1 ∪ {•p → ¬f}. While we want p → ¬•b (penguins are 
not typical birds) to follow from KB2, we do not want •p → f to follow from KB2, which is not possible with ranked
entailment. �
4. Towards a notion of entailment for PTL

We have seen that ranked entailment has some serious drawbacks in a non-monotonic context. Therefore, the question 
as to what logical consequence in PTL should mean remains mostly unanswered so far. In this section, we first specify 
and discuss a list of postulates formalising the requirements motivated in the last section and that, at first glance, seem 
reasonable for an appropriate notion of entailment in PTL. In the subsequent section, we consider specific alternatives to 
ranked entailment and check them against our postulates.

We start by introducing some notation. With | ≈? ⊆ P(L•) × L• , we denote any entailment relation on the language 
of PTL. Given an entailment relation | ≈?, its associated consequence operator is defined in the usual way by setting, for each 
KB ⊆L• , Cn?(KB) := {α ∈L• |KB | ≈? α}.
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Following the tradition in the non-monotonic reasoning literature, the obvious starting point is to consider some of the 
basic properties of classical consequence operators.

P1 For every KB ⊆L• , KB ⊆ Cn?(KB) (Inclusion)
P2 For every KB, KB′ ⊆L• ,

if KB ⊆KB′ ⊆ Cn?(KB), then Cn?(KB′) = Cn?(KB) (Cumulativity)

Note that Cumulativity and Inclusion imply Idempotence. Idempotence, formalised as

For every KB ⊆L• , Cn?(KB) = Cn?(Cn?(KB)) (Idempotence)

can be derived from Cumulativity by setting KB′ = Cn?(KB), and letting Inclusion impose the satisfaction of the antecedent. 
Idempotence indicates that a consequence operator behaves as a ‘once-off’ operation, that is, as a closure operator. There is 
agreement in the literature that both Inclusion and Cumulativity are desirable properties to have [36, p. 43].

Ranked entailment, as defined in Section 3, satisfies Properties P1 and P2. Nevertheless, Cn0(·), the associated conse-
quence relation of ranked entailment, also satisfies the classical property of Monotonicity: If KB ⊆ KB′ , then Cn0(KB) ⊆
Cn0(KB′). As seen in Example 3.2, this is a property that we do not want Cn?(·) to satisfy (certainly not in general).

So, we require Cn?(·) to be a non-monotonic consequence operator. This amounts to requiring Cn?(·) to satisfy the fol-
lowing two postulates:

P3 For every KB ⊆L• , Cn0(KB) ⊆ Cn?(KB) (Ampliativeness)
P4 For some KB, KB′ ⊆L• , KB ⊆KB′ but Cn?(KB) � Cn?(KB′) (Defeasibility)

Ampliativeness, a property generalising supra-classicality [37] (where the basic underlying entailment relation is classi-
cal), says that Cn?(·) should be at least as venturous as its underlying ranked entailment. Defeasibility specifies that Cn?(·)
should be flexible enough to disallow previously derived conclusions in the light of new (possibly conflicting) information. 
In Example 3.1, assuming •p → f ∈ Cn?(KB1) is the case, then •p → f should no longer be concluded if •p → ¬f is added 
to KB1. Note that adding Defeasibility to Ampliativeness actually implies a strict version of Ampliativeness which says Cn?(·)
should in some cases be more venturous than its underlying ranked entailment. (Since, if Cn?(KB) = Cn0(KB) for all KB, 
then Cn?(·) is just ranked entailment, which is monotonic.)

P1, P2 and P3 together imply that the closure operation Cn?(·) gives as output a theory that is closed under Cn0(·).

Lemma 4.1. If Cn?(·) satisfies P1, P2 and P3, then, for every KB ⊆L• ,

Cn?(KB) = Cn0(Cn?(KB))

Proof. Cn0(·) is a Tarskian consequence relation (see Definition 3.1), and, as such, it satisfies Inclusion. That is, for every 
set of formulas S , S ⊆ Cn0(S). To see it, it is sufficient to check that, according to Definition 3.1, for every α ∈ S , S | ≈0 α. 
Hence, since Cn0(·) satisfies Inclusion, Cn?(KB) ⊆ Cn0(Cn?(KB)).

By P3 we have Cn0(Cn?(KB)) ⊆ Cn?(Cn?(KB)), that, by Idempotence (consequence of P1 and P2), implies Cn0(Cn?(KB)) ⊆
Cn?(KB). �

Similarly to KLM in the propositional case, we would ideally like the defeasible conditional induced by Cn?(KB) (see 
Definition 3.2) to satisfy all the rationality properties:

P5 For every KB ⊆L• , | ∼ Cn?(KB) is a rational conditional relation on L (Conditional Rationality)

As observed above, P5 requires the defeasible conditional induced by Cn?(KB) to be rational—that is, to satisfy all the 
rationality properties. But from Theorem 3.12 of Lehmann and Magidor [35] it follows that every rational defeasible condi-
tional can be obtained from a single ranked interpretation. So, from this it follows that requiring the defeasible conditional 
induced by Cn?(KB) to be rational amounts to requiring that the defeasible conditional be generated by a single ranked 
interpretation. That is, by courtesy of this result, P5 can also be rephrased as follows:

P5’ For every KB ⊆L• , there is a ranked interpretation R s.t., for every α, β ∈L, α | ∼ Cn?(KB)β if and only if R � •α → β . 
( | ∼ Single Model)

The next postulate we consider, which is easily shown to be a strengthening of P5, simply applies this same requirement, 
not just to defeasible statements, but to all statements expressible in PTL:

P6 For every KB ⊆L• , there is a ranked interpretation R s.t., for all α ∈L• , α ∈ Cn?(KB) if and only if R � α (Single 
Model)
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An important special case of a PTL knowledge base is when the individual elements of KB correspond to KLM-style 
conditionals.

Definition 4.1 ((Propositional) conditional knowledge base). A PTL knowledge base KB will be called a (propositional) condi-
tional knowledge base if each element of KB is of the form •α → β , for α, β ∈L.

The next postulate says that if KB is a propositional conditional knowledge base, then the result should coincide with 
Lehmann and Magidor’s definition of rational closure:

P7 For every conditional knowledge base KB, | ∼ Cn?(KB) = | ∼ rc
KB (Respects Rational Closure)

P7 implies P4, since rational closure is a non-monotonic closure operation.
The following property was shown by Lehmann and Magidor to be satisfied by the rational closure for conditional knowl-

edge bases.

P8 For every KB ⊆L• and α ∈L, α ∈ Cn?(KB) if and only if α ∈ Cn0(KB) (Strict Entailment)

P8 states that Cn?(·) should coincide with ranked entailment for those sentences not involving typicality. The motivation for 
Strict Entailment is twofold. First, it is a proposal for ranked entailment to be the lower bound for entailment w.r.t. classical 
sentences (those not involving typicality), a proposal that is not controversial. But secondly, it also requires entailment of 
classical sentences to correspond to exactly those sanctioned by ranked entailment. This can be viewed as adhering to 
the principle of minimal change. Being Tarskian, ranked entailment is monotonic, and the argument is therefore that, while 
non-monotonicity may be applicable for sentences involving typicality, it should not be applicable to classical statements.

We are also interested in a couple of progressively weaker versions of Strict Entailment (the reasons for that will become 
clear later on). The first restricts it to hold only when KB is a conditional knowledge base.

P9 For every conditional knowledge base KB and α ∈L, α ∈ Cn?(KB) if and only if α ∈ Cn0(KB) (Conditional Strict 
Entailment)

Note that P7 also implies P9. To see this, first it is easy to check that every propositional formula α is equivalent to the PTL 
formula •¬α → ⊥.

Proposition 4.1. For every formula α ∈L and every ranked interpretation R , R � α iff R � •¬α → ⊥.

Proof. R � α implies �α�R = UR , that is equivalent to R � ¬α → ⊥, that, in turn, implies R � •¬α → ⊥. In the opposite 
direction, R � •¬α → ⊥ means that for every u ∈ UR , u �� •¬α. u �� •¬α for every u ∈ UR implies that for every u ∈ UR , 
u �� ¬α: if we had a valuation v satisfying ¬α in some cell Li , with i < ∞, we would either have that v � •¬α, or there 
would be a valuation v ′ in some L j , j < i, such that v ′ � •¬α. Consequently, u � α for every u ∈ UR , that is, R � α. �

P7 implies that, for every α ∈ L and every conditional knowledge base KB, (α, ⊥) ∈ | ∼ Cn?(KB) iff (α, ⊥) ∈ | ∼ rc
KB . A 

well-known result by Lehmann and Magidor [35, Lemma 5.16] states that for every α ∈L and every conditional knowledge 
base KB, α | ∼⊥ is in the rational closure of KB iff α | ∼⊥ is a ranked consequence of KB, that is, (α, ⊥) ∈ | ∼ rc

KB iff 
(α, ⊥) ∈ | ∼ Cn0(KB) . Hence we have that for every α ∈ L and every conditional knowledge base KB, (α, ⊥) ∈ | ∼ Cn?(KB) iff 
(α, ⊥) ∈ | ∼ Cn0(KB) , that, together with Proposition 4.1, implies P9.

In turn, P9 implies that entailment for PTL coincides with classical propositional entailment in the case of propositional 
knowledge bases, as formalised by the next property.

P9’ For every KB ⊆L and α ∈L, α ∈ Cn?(KB) if and only if KB entails α in classical propositional logic. (Classical 
Entailment)

Since for every KB ∪ {α} ⊆L, KB entails α in classical propositional logic if and only if α ∈ Cn0(KB), and any α ∈ L is 
equivalent to •¬α → ⊥, P9’ is indeed a weakening of P9 (provided that P8 also holds).

Finally, we consider another property shown by Lehmann and Magidor to be satisfied by the rational closure for condi-
tional knowledge bases.

P10 For every KB ⊆L• and α ∈L, •� → α ∈ Cn?(KB) if and only if •� → α ∈ Cn0(KB) (Typical Entailment)

The motivation for P10 is similar to that for P8 above in that we want to constrain what should hold in the most typical 
situations. That is, given a knowledge base, the property speaks to which formulas of the form •� → α should follow. 
Ranked entailment clearly provides a lower bound for such a kind of statement, but P10 also proposes to consider ranked 
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entailment as the upper bound, thereby requiring that the set of statements •� → α entailed by a knowledge base should 
correspond exactly to those sanctioned by ranked entailment. The argument for this is that ranked entailment is monotonic 
and, applying the principle of minimal change, it is only when dealing with atypical situations that ranked entailment is 
not always sufficient.

Although these postulates all seem reasonable on their own, it turns out that they cannot all be satisfied simultaneously. 
In fact, this impossibility result already holds for a strict subset of the postulates.

Theorem 4.1. There is no PTL consequence operator Cn?(·) satisfying all of P1, P2, P3, P5, P8 and P10.

Proof. Regarding P5, requiring | ∼ Cn?(·) to satisfy (RM) is equivalent to requiring that, for every knowledge base KB and 
whatever formulas α, β, γ , if •α → γ ∈ Cn?(·) and •α → β /∈ Cn?(·), then we have •(α ∧ ¬β) → γ ∈ Cn?(·).

Assume Cn?(·) satisfies the given properties, and let KB = {•� → p, •¬p → •q}. By Strict Entailment (P8), p /∈ Cn?(KB)

(because of e.g. the 2-rank model ({{p, ¬q}}, {{¬p, q}}) of KB). By Typical Entailment (P10), •� → ¬q /∈ Cn?(KB) (because 
of e.g. the 1-rank model ({{p, q}, {p, ¬q}}) of KB). By Inclusion (P1) •� → p ∈ Cn?(KB), and then by (RM) we must 
conclude that •(� ∧ q) → p ∈ Cn?(KB), that is, (� ∧ q, p) ∈ | ∼ Cn?(KB); since | ∼ Cn?(·) must satisfy LLE, the latter implies 
(q, p) ∈ | ∼ Cn?(KB) , that is, •q → p ∈ Cn?(KB).

Since by Inclusion (P1) •¬p → •q ∈ Cn?(KB), we have {•q → p, •¬p → •q} ⊂ Cn?(KB). Since •¬p → p ∈
Cn0({•q → p,•¬p → •q}) and Cn0(·) is monotonic, we have •¬p → p ∈ Cn0(Cn?(KB)). Then, by Lemma 4.1, that assumes
P1, P2 and P3, we have that •¬p → p ∈ Cn?(KB).

We have that p ∈ Cn0({•¬p → p}) holds: let R � •¬p → p, and let v be a world in R s.t. v � ¬p. v cannot satisfy •¬p, 
since we would have that v � ¬p ∧ p; but v � ¬p and v �� •¬p implies that in R there is a world w , such that w ≺ v and 
w � •¬p, that, again, implies w � ¬p ∧ p.

From p ∈ Cn0({•¬p → p}), •¬p → p ∈ Cn?(KB), and the monotonicity of ranked entailment, we must conclude also 
p ∈ Cn0(Cn?(KB)), that is, by Lemma 4.1, p ∈ Cn?(KB), against P8. �

While, at first glance, this seems to be a negative result, our contention is that it should be interpreted as an indication 
that a logic as expressive as PTL admits more than one form of entailment. We elaborate directly on this point in Section 8, 
and indirectly in Sections 5 and 6, where we define and discuss two instances of entailment for PTL.

5. LM-entailment

We now come to our first construction of an entailment relation in PTL. We first observe that there is nothing to stop us 
from using the preference relation �LM (see Section 2.2) to compare ranked interpretations of any PTL knowledge base KB. 
The question then is, does there always exist a unique LM-minimum element of the ranked models of KB, as there does in 
the restricted conditional case? And if so, how can we construct it? We now answer these questions.

We assume as input a PTL knowledge base KB, where each sentence α ∈KB is in normal form:

Definition 5.1 (Normal form). α ∈L• is in normal form if it is of the form 
∧

i≤t •θi → (φ ∨ ∨
i≤s •ψi), where t, s ≥ 0 and the 

θi , φ and ψi are all purely propositional sentences.

Theorem 5.1. The normal form is complete for L•, i.e., for every sentence α ∈ L• there is a (finite) set of sentences X ⊆ L• , each one 
in normal form, such that Mod(α) = Mod(

∧
X).

Proof. From the results by Booth et al. [3, Section 4], it follows that we need only consider sentences with non-nested 
instances of the typicality operator. So we let α be such a sentence. We let the set of typicality atoms be the propositional 
atoms occurring in L• together with every sentence of the form •β where β is a propositional sentence (we refer to the 
latter as pure typicality atoms). And we define the set of typicality literals in the obvious way: the set of typicality atoms and 
their negations. The set of pure typicality literals consists of the pure typicality atoms and their negations.

Now we define typicality conjunctive normal form as a conjunctive normal form defined on typicality atoms. It follows 
immediately that α can be rewritten as a sentence, say α′ , in typicality conjunctive normal form. Let X ′ be the set of 
conjuncts occurring in α′ . We show below how to rewrite each conjunct in X ′ into a sentence in normal form. The resulting 
set X of sentences in normal form is the set referred to above.

By construction, each sentence γ ∈ X ′ is a disjunction of typicality literals. We separate them into three disjoint sets, the 
set of propositional literals, the set of positive pure typicality literals (with cardinality of, say t , where t ≥ 0) and the set of 
negative pure typicality literals (with cardinality of, say s, where s ≥ 0). Let φ be the disjunction of propositional literals, 
denote the s positive pure typicality literals by ψ1, . . . , ψs , and the t negative pure typicality literals by θ1, . . . θt . It follows 
immediately that γ can be rewritten as the sentence 

∧
i≤t θi → (φ ∨ ∨

i≤s ψi). �
For any ranked interpretation R , and S ⊆ UR , let R∞

S be the ranked interpretation such that R∞
S (v) = R(v) for every 

v ∈ S , and R∞(v) = ∞ for every v ∈ U \ S . That is, R∞ is the ranked interpretation obtained from R by turning all 
S S
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R0 0 {¬f,¬p,¬r}, {¬f,¬p, r}, {¬f,p,¬r}, {¬f,p, r}, {f,¬p,¬r}, {f,¬p, r}, {f,p,¬r}, {f,p, r}

R1
1 {¬f,¬p, r}, {¬f,p, r}, {f,¬p,¬r}, {f,¬p, r}, {f,p,¬r}, {f,p, r}
0 {¬f,¬p,¬r}, {f,¬p,¬r}

R∗
KB

∞ {¬f,¬p, r}, {¬f,p, r}, {f,¬p,¬r}, {f,¬p, r}, {f,p,¬r}, {f,p, r}
0 {¬f,¬p,¬r}, {f,¬p,¬r}

R∗
KB with the valuations of rank ∞ omitted: 0 {¬f,¬p,¬r}, {f,¬p,¬r}

Fig. 3. The ranked interpretations generated in Example 5.1.

valuations not in S into impossible valuations. Similarly, let R1
S be the ranked interpretation such that R1

S (v) = R(v) for 
every v ∈ S , and R1

S (v) = R(v) + 1 for every v ∈ U \ S . That is, R1
S is the ranked interpretation obtained from R by 

increasing the rank of all valuations not in S by 1.
Given a PTL knowledge base KB we now define a ranked interpretation R∗

KB , obtained from KB, as follows:

Step 1 Set R0(v) := 0 for all v ∈ U , S0 := ∅, and i := 1;
Step 2 S1 := �KB�R0 (separate the valuations which satisfy KB w.r.t. the current ranked interpretation R0 from those that do 

not);
Step 3 If Si = Si−1, then R∗

KB := (Ri)
∞
Si

, and stop (if there is no change in the new Si then set the rank of those valuations that 
do not satisfy KB w.r.t. Ri to ∞, let R∗

KB be the interpretation that remains, and stop);
Step 4 Otherwise Ri := (Ri−1)

1
Si

(otherwise create a new ranked interpretation Ri by increasing the rank of every valuation not 
in Si by 1);

Step 5 Si+1 := �KB�Ri and i := i + 1 (separate the valuations which satisfy KB w.r.t. the current ranked interpretation Ri
from those that do not, and increment i);

Step 6 Go to Step 3.

Algorithm 1 below gives a compact description of the steps above. Note that if the input to the algorithm, KB, is 
unsatisfiable, the ranked interpretation R∗

KB that it returns is such that UR∗
KB = ∅.

Algorithm 1: LM-minimal.
Input: KB
Output: R∗

KB
1 PKB := {p | p is a propositional letter occurring in KB};
2 Let U be the universe of valuations for the vocabulary PKB;
3 R0(v) := 0 for every v ∈ U ;
4 S0 := ∅;
5 S1 := �KB�R0 ;
6 i := 1;
7 while Si �= Si−1 do
8 Ri := (Ri−1)

1
Si

;

9 Si+1 := �KB�Ri ;
10 i := i + 1;

11 R∗
KB := (Ri−1)∞Si

;

12 return R∗
KB

Example 5.1. Let us assume, for the sake of the example, that we are only talking about birds. Let KB := {•� →
(¬p ∧ ¬r), •p → •¬f, •r → •f, p → ¬r} (the most typical things are neither penguins nor robins, typical penguins are typical 
non-flying birds, and typical robins are typical flying birds, penguins are not robins). The procedure initialises with all val-
uations being assigned the rank of 0. The only valuations that satisfy all three sentences w.r.t. R0 are those satisfying both 
¬p and ¬r. Thus S1 := �KB�R0 = {{¬f, ¬p, ¬r}, {f, ¬p, ¬r}} and so we obtain R1 by changing the rank of all valuations 
not in S1 to 1. Note that �•¬f�R1 = {{¬f, ¬p, ¬r}} and �•f�R1 = {{f, ¬p, ¬r}}, so we can see that none of the valuations in 
U \ S1 is able to satisfy either •p → •¬f or •r → •f w.r.t. R1. As a consequence, S2 := �KB�R1 = S1 and so the procedure 
terminates here with R∗

KB as the ranked interpretation in which all valuations in S1 ({¬f, ¬p, ¬r} and {f, ¬p, ¬r}) have rank 
0 and all other valuations have rank ∞. See Fig. 3 for the ranked interpretations generated by this example. �

We now proceed to show that: (i) the algorithm always terminates if KB is finite; (ii) the ranked model R∗
KB it returns 

is a ranked model of KB, and (iii) for any other ranked model R of KB, we have R∗
KB �LM R . We know the following 

about (i) and (ii):
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Lemma 5.1. The following hold for each i ≥ 0:

1. Si ⊆ Si+1 , i.e., [S0 ⊆ S1 and, for all i ≥ 0, �KB�Ri ⊆ �KB�Ri+1 ];
2. For all v1, v2 ∈ U , if Ri(v1) < Ri(v2), then v1 ∈ �KB�Ri ;
3. Ri is a ranked interpretation.

Proof. See Appendix B.1. �
From Item 1 in Lemma 5.1 above, we know the algorithm terminates if KB is finite, since it generates a sequence of 

ranked interpretations (by Item 3) in which the set of valuations satisfying KB increases monotonically from one ranked 
interpretation to the next. Since each of these is finite, and since there is a finite number of valuations, the stopping criterion 
in Line 7 of the algorithm is guaranteed to occur eventually.

To show that the algorithm returns a ranked model of KB it suffices to show the following.

Lemma 5.2. For every i > 0, (Ri)
∞
Si

is a ranked model of KB.

Proof. See Appendix B.2. �
So, at each stage of the algorithm, the current ranked interpretation, when those valuations not satisfying KB are ex-

cluded, forms a ranked model of KB. Since the output R∗
KB takes precisely this form we have the following result.

Proposition 5.1. R∗
KB �

∧
KB.

Proof. Follows from Lemma 5.2 and the construction of R∗
KB . �

Next we want to show that for any other ranked model R of KB, we have R∗
KB �LM R .

Lemma 5.3. Let R∗
KB := (L0, . . . , Ln−1, L∞) and let R := (M0, . . . , Mn−1, M∞) be any other ranked model of KB. Let i ∈

{0, . . . , n − 1}. If L j = M j for all j < i, then Mi ⊆ Li .

Proof. See Appendix B.3. �
From this lemma we can state:

Proposition 5.2. Consider any KB and let R be a ranked model of KB. Then R∗
KB �LM R .

That Algorithm 1 runs in time that is (singly) exponential in the size of the input knowledge base KB whenever KB is 
finite is not hard to see. Let |KB| = k and |PKB| = j. The procedure starts by computing the universe U of all valuations 
for the vocabulary PKB , and therefore we have |U | = 2 j . Next, in the first round of the loop, each sentence in KB has to 
be checked against all of the exponentially many valuations in U , which amounts to k × 2 j verifications. In the worst-case 
scenario, only one valuation is kept at level 0, with all the others moved up to level 1. In the next round, each sentence 
in KB has to be checked against the 2 j − 1 valuations at level 1, but also against the only valuation at level 0, because 
the truth of •-sentences in a model also depends on those valuations that are lower down in the model. This amounts 
to k × 2 j verifications, which in the worst case will again result in a single valuation kept at level 1 with all the 2 j − 2
ones moved up to level 2, and a number of k × 2 j checks to be performed in the next round. By repeating this argument 
one can see that, in the worst case, the algorithm will have built a ranked interpretation consisting of 2 j layers, each one 
containing a single valuation, i.e., a linear ordering on the 2 j valuations. This process will have involved 2 j runs, each run 
requiring k × 2 j valuation checks to create a new layer. It remains to know the cost of checking whether a sentence is 
satisfied by a valuation in a ranked model. In the first run of the loop, namely when there is a single layer, since the 
preference relation at this stage is empty, each of such verifications amounts to a propositional verification, which is a 
polynomial-time task. From the second run of the loop onward, i.e., when truth depends on the lower layers, we have that 
all valuations at the lower layers have to be inspected, which in the worst case amounts to m × 2 j checks to be performed, 
with m the number of sub-formulas of the one being checked. Putting the results together, we have that in the worst case 
there are a maximum of 2 j runs of the main loop, each with k × 2 j checks, and each of such valuation checks taking at 
most m′ × 2 j operations, with m′ the number of sub-formulas in KB, i.e., m′ = 2	 , for some 	. Hence the algorithm runs 
in 2 j × (k × 2 j) × (2	 × 2 j) = k × 23 j+	 , and is therefore in exptime.

We are now in a position to define our first form of entailment for PTL.
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Definition 5.2 (LM-entailment). Let KB ⊆ L• and α ∈ L• . We say KB LM-entails α, denoted KB | ≈LM α, if R∗
KB � α. Its 

corresponding consequence operator is defined as CnLM(KB) := {α ∈L• | R∗
KB � α}.

The next result outlines which properties from the previous section are satisfied by CnLM(·).

Theorem 5.2. CnLM(·) satisfies P1–P7, P9, and P10, but not P8.

Proof. For P1, Proposition 5.1 guarantees that R∗
KB is a model of KB. About P2, by Proposition 5.2, R∗

KB is the LM-
minimum model of KB. If KB ⊆ KB′ ⊆ CnLM(KB), then Mod(KB′) ⊆ Mod(KB) and R∗

KB ∈ Mod(KB′); consequently R∗
KB

must also be the LM-minimum model of KB′ . For P3, note that R∗
KB is a ranked model of KB (Lemma 5.1, Item 3, plus 

Proposition 5.1), and so if α ∈ Cn0(KB), then α ∈ R∗
KB . P4 is an immediate consequence of the satisfaction of P7.3 P5 is an 

immediate consequence of the satisfaction of P6. The latter holds by definition of CnLM(KB). For P7, see Section 2.2. P9 is 
an immediate consequence of the satisfaction of P7.

Now consider P10. From right to left, it is an immediate consequence of P3. From left to right, assume there is a formula 
•� → α that is in CnLM(KB), but not in Cn0(KB). It means that there is a ranked model R of KB that has in its lower 
layer a propositional valuation v s.t. v � ¬α; but, given that the model R∗

KB defining CnLM(KB) is the LM-minimum model 
of KB, then also the lower layer of R∗

KB must contain the valuation v , against the hypothesis.
Failure of P8 can be seen in Example 5.1. There we have ¬p ∈ CnLM(KB) (there is no penguin) because ¬p holds in both 

valuations occurring in R∗
KB . Thus LM-entailment forces us to infer ¬p from KB. But ¬p /∈ Cn0(KB), because there does 

exist a ranked model R of KB for which �p�R �= ∅, for instance the model R2 appearing in Example 6.1 below. �
In summary then, LM-entailment satisfies all our postulates, except for Strict Entailment (P8). Lest this be seen as a 

negative result, bear in mind that LM-entailment satisfies Conditional Strict Entailment (P9), the weakened version of Strict 
Entailment, and therefore also Classical Entailment.

In the next section we turn to a form of entailment satisfying Strict Entailment, but at the price of having to forego 
Conditional Rationality, and therefore the Single Model postulate as well.

6. PT-entailment

In this section we consider another option for entailment based on a version of minimality, and derived from the charac-
terisation of rational closure by Giordano et al. [30,32]. The general idea is to respect the principle of presumption of typicality
(see Section 3), We shall refer to this form of entailment as Presumption of Typicality entailment, shortened to PT-entailment. 
Such a principle indicates the way in which the property (RM) should be satisfied. If we have α | ∼γ in our knowledge base 
KB, then, in order to satisfy (RM), we have to add either α | ∼¬β or α ∧ β | ∼γ . The presumption of typicality requires that, 
whenever possible, we prefer the latter (that corresponds to a constrained application of monotonicity) over the former. Se-
mantically, given the ranked models of a knowledge base KB, this corresponds to considering only those models in which 
every valuation is taken as typical as possible, that is, it is ‘pushed downward’ in the model as much as possible, modulo 
the satisfaction of KB.

In order to identify the interpretations that are necessary for the definition of a notion of entailment, we introduce a 
preference relation �PT on the set of ranked interpretations that follows directly from the presumption of typicality.

Definition 6.1 (Relation �PT). For two ranked interpretations R1 and R2, R1 �PT R2 if and only if for every w ∈ U , R1(w) ≤
R2(w). R1 �PT R2 if and only if R1 �PT R2 and not R2�PTR1.

It is easy to check that �PT is a pre-order. Consistent with the principle of presumption of typicality, as a guideline 
in the choice of the relevant interpretations, the relation �PT can be used to identify the relevant interpretations for the 
definition of a notion of entailment: we choose the models of KB in which the valuations are presumed to be as typical as 
possible, that is, the relevant models are those that are in min�PT Mod(KB). Then, KB entails α if and only if α holds in all 
the (preferred) models in min�PT Mod(KB). We will sometimes refer to the models in min�PT Mod(KB) as the PT-minimal
models of KB. Note that if KB is unsatisfiable, it has exactly one PT-minimal model, namely the ranked interpretation R
for which UR = ∅.

If we consider knowledge bases composed only of classical non-monotonic conditionals α | ∼ β , Giordano et al. have 
proved that for every satisfiable knowledge base there is a unique PT-minimal model [32, Theorem 1], and that such a 
PT-minimal model characterises the rational closure of the knowledge base [32, Theorem 2]. Given such results, it is quite 
immediate to prove that, given a satisfiable conditional knowledge base, its PT-minimal model corresponds to the LM-
minimal model.

3 For this conclusion we need the requirement (specified in Section 2) that P contains at least two elements.
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Proposition 6.1. Let KB be a satisfiable conditional knowledge base. A ranked interpretation R is KB’s PT-minimal model iff it is 
KB’s LM-minimal model.

Proof. If KB is a satisfiable conditional knowledge base, then it has a unique LM-minimal model R (see Proposition A.2) 
and a unique PT-minimal model R ′ [32, Theorem 1]. R and R ′ are equivalent, in the sense that they satisfy exactly the 
same conditionals, since they both characterise the rational closure of KB (see Proposition 2.1 here for LM-minimality and 
the theorem by Giordano and others for PT-minimality [32, Theorem 2]).

In order to show that they are exactly the same model, we just need to prove that whenever two ranked interpretations 
R and R ′ satisfy exactly the same set of conditionals, then they are the same interpretation. Let R = (L0, . . . , Ln−1, L∞)

and R ′ = (M0, . . . , Mn−1, M∞).
First of all, we prove UR = UR′

: let v ∈ UR and v /∈ UR′
, and let v be the characteristic formula of the valuation v; 

we would have R ′ � v | ∼⊥ and R �� v | ∼⊥, against the hypothesis that R and R ′ satisfy the same set of conditionals. 
UR = UR′

immediately implies that L∞ = M∞ .
We conclude the proof by induction on the rank of the cells below ∞. Given a cell Li = {v1, . . . , vn}, let Li := (v1 ∨ . . .∨

vn).
Assume L0 �= M0, that is, w.l.o.g., there is a v s.t. v ∈ L0 and v /∈ M0. That implies R ′ � � | ∼¬v , while R �� � | ∼¬v , 

against the hypothesis.
Given a number j ≤ (i − 1), let Lk = Mk for every k s.t. 0 ≤ k < j, but L j �= M j , that is, w.l.o.g., there is a v s.t. v ∈ L j

and v /∈ M j . That implies R ′ � ¬(
∨

0≤k< j{Lk}) | ∼¬v , while R �� ¬(
∨

0≤k< j{Lk}) | ∼¬v , against the hypothesis. Since all their 
cells must contain the same valuations, R and R ′ are the same model. �

Despite Proposition 6.1, given the extra expressive power of PTL, we obtain the surprising result that the two semantic 
constructions are not equivalent anymore. Moreover, in the present context, this notion of minimality can give back a 
number of minimal models, as the following example shows.

Example 6.1. Consider the knowledge base KB from Example 5.1. Then, one can see that min�PT Mod(KB) = {R1, R2, R3}, 
where:

R1: 0 {¬f,¬p,¬r}, {f,¬p,¬r},

R2:
2 {f,p,¬r}
1 {¬f,¬p,¬r}, {¬f,p,¬r}
0 {f,¬p,¬r}

R3:
2 {¬f,¬p, r}
1 {f,¬p, r}, {f,¬p,¬r}
0 {¬f,¬p,¬r}

In Example 6.1, note that R1 is the LM-minimum of KB. In fact, it is easy to check from the characterisation of rational 
closure in Section 2.2 and Definition 6.1 that the LM-minimum of KB is always in min�PT Mod(KB).

Proposition 6.2. For every knowledge base KB, the LM-minimum of KB is in min�PT Mod(KB).

Proof. Consider the definition of the preference relation for LM-minimality.

R1 �LM R2 if and only if either Li = Mi for all i ∈ {0, . . . ,n − 1,∞},
or L j ⊇ M j for the smallest j ≥ 0 s.t. L j �= M j,

where R1 = (L0, . . . , Ln−1, L∞) and R2 = (M0, . . . , Mn−1, M∞). The result follows from the fact that if R1 �PT R2 then 
R1 �LM R2. To see that this holds, assume R1 �PT R2. Then R1(w) ≤ R2(w) for all w ∈ U , with R1(w ′) < R2(w ′) for at 
least one w ′ ∈ U . From the latter, we know we cannot have Li = Mi for all i, so let j ≥ 0 be minimal such that L j �= M j . 
To show the conclusion R1 �LM R2 we must show L j ⊇ M j , so let u ∈ M j . Then R2(u) = j. Since R1 �PT R2 we know 
R1(u) ≤ j. But if R1(u) = k < j then u ∈ Lk = Mk (by minimality of j), contradicting u ∈ M j . Hence R1(u) = j, i.e., u ∈ L j

as required.
Knowing that R1 �PT R2 implies R1 �LM R2, it is easy to conclude our proof. Let R be the LM-minimum of KB, but not 

an element of min�PT Mod(KB). That is, there is an R∗ ∈ Mod(KB) s.t. R∗ �PT R , that implies R∗ �LM R , thus contradicting 
the LM-minimality of R . �

We are now ready for the definition of our second type of entailment.
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Definition 6.2 (PT-entailment). Let KB ⊆ L• and α ∈ L• . We say KB PT-entails α, denoted KB | ≈PT α, if and only if 
min�PT (Mod(KB)) ⊆ Mod(α).

Its corresponding consequence operator CnPT(·) is inferentially weaker than CnLM(·), since it is defined on a possibly 
larger set of models.

Proposition 6.3. CnPT(·) satisfies P1–P4 and P7–P10.

Proof. P1. CnPT(KB) is defined using only models of KB.
P2. Since KB ⊆ KB′ ⊆ CnPT(KB), we have min�PT Mod(KB)) ⊆ Mod(CnPT(KB)) ⊆ Mod(KB′) ⊆ Mod(KB). It is sufficient 

to prove that min�PT Mod(KB′)) = min�PT Mod(KB)).
Let R be a model of KB and KB′ s.t. R ∈ min�PT Mod(KB′) and R /∈ min�PT Mod(KB)). That is, there must be a model 

R ′ of KB s.t. R ′ �P T R and R ′ ∈ min�PT Mod(KB). However, since min�PT Mod(KB)) ⊆ Mod(KB′), R ′ is also a model of 
KB′ that is PT-preferred to R , that is, it cannot be the case that R ∈ min�PT Mod(KB′). Inversely, let R be a model of KB
and KB′ s.t. R ∈ min�PT Mod(KB) and R /∈ min�PT Mod(KB′)). That is, there must be a model R ′ of KB′ s.t. R ′ �P T R and 
R ′ ∈ min�PT Mod(KB′). However, since KB ⊆KB′ , R ′ is also a model of KB that is PT-preferred to R , that is, it cannot be 
the case that R ∈ min�PT Mod(KB).

Hence, for every KB, KB′ s.t. KB ⊆KB′ ⊆ CnPT(KB), it must be min�PT Mod(KB) = min�PT Mod(KB), that implies P2.
P3. Every model in min�PT Mod(KB) is by definition a ranked model of KB. Hence if α ∈ Cn0(KB), i.e., α is true in all 

ranked models of KB, then it is true in all ranked models in min�PT Mod(KB), i.e., α ∈ CnPT(KB).
P4. It is an immediate consequence of the satisfaction of P7.4

P7. See the analogous result by Giordano et al. [32, Section 2.3.2]; in particular Theorem 2, that implies that in case of a 
conditional KB the use of PT-minimality leads to a single minimal model, characterising Rational Closure.

P8. Let α be a propositional formula s.t. α /∈ Cn0(KB): then there is a ranked model R of KB s.t. R(v) < ∞ for some v
s.t. v � ¬α. Either R is a PT-minimal model of KB itself, or there is a PT-minimal model R ′ of KB s.t. R ′ �PT R; that is, 
it must be the case that R ′(v) < ∞ for some model R ′ ∈ min�PT Mod(KB), that in turn implies that α /∈ CnPT(KB).

P9. It is an immediate consequence of the satisfaction of P7, as explained in Section 4, immediately after introducing P9.
P10. It is a direct consequence of Proposition 6.2 and the satisfaction of P10 for LM-entailment. �
Unfortunately, Conditional Rationality (P5) is not valid and therefore, neither is the Single Model postulate (P6).

Theorem 6.1. There is some KB such that the conditional induced by CnPT(KB) is not a rational conditional.

To see this, consider Example 6.1: we have •¬p → ¬r ∈ CnPT(KB) (typical non-penguins are not robins). This is because 
we have min≺Ri

�¬p�Ri ⊆ �¬r�Ri for each i = 1, 2, 3. However both •¬p → ¬f /∈ CnPT(KB) and •(¬p ∧ f) → ¬r /∈ CnPT(KB). 
The former holds because, e.g., min≺R1

�¬p�R1 � �¬f�R1 , the latter because min≺R3
�¬p ∧ f�R3 � �¬r�R3 . This means the 

rational monotonicity property (RM) is not satisfied.
On the other hand, observe that ¬p /∈ CnPT(KB). Recall from the proof of Theorem 5.2 that we used the fact that 

¬p ∈ CnLM(KB) to show that LM-entailment does not satisfy Strict Entailment (P8).

7. PT’-entailment

As we have shown above, relying on LM-minimality results in the loss of property P8 (Strict Entailment), while us-
ing PT-minimality results in the loss of the uniqueness of the minimal model (P6) and the rationality of our conditional 
reasoning (P5). To summarise, on the one hand LM-minimality, failing to satisfy P8, can potentially enforce classical propo-
sitional information that is not a necessary consequence of the knowledge base. On the other hand, PT-minimality can be 
inferentially too weak. In this section we consider a third possibility, aimed at strenghtening the inferential power while 
still preserving the satisfaction of P8. This third proposal is based on using the same approach as in PT-minimality, but 
among the PT-minimal models we consider only the “biggest” ones, that is, the ones with the maximal sets of possible 
valuations (w.r.t. ⊆). This should allow us to augment the inferential power (we define the entailment relation using fewer 
models), while still preserving P8 (we consider all the biggest models, that is, the models that assume as little propositional 
knowledge as possible). We now analyse this option.

We let min⊇
�PT

Mod(KB) := {R ∈ min�PT Mod(KB) | there is no R ′ ∈ min�PT Mod(KB) s.t. UR′ ⊃ UR}.

The corresponding entailment relation | ≈PT′ can be defined as follows.

Definition 7.1 (PT’-entailment). Let KB ⊆ L• and α ∈ L• . We say KB PT’-entails α, denoted KB | ≈PT′ α, if and only if 
min⊇

�PT
Mod(KB) ⊆ Mod(α).

4 As in Theorem 5.2, for this conclusion we need the requirement (specified in Section 2) that P contains at least two elements.
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For example, in Example 6.1 we would consider only R2 and R3.
Note that if KB is unsatisfiable then min⊇

�PT
Mod(KB) is a singleton set containing the ranked interpretation R for which 

UR = ∅. Also, recall from Section 6 that for every satisfiable conditional knowledge base KB there is a single PT-minimal 
model [32, Theorem 1], that characterises the rational closure of KB [32, Theorem 2]. Such a single PT-minimal model is by 
definition also the only PT’-minimal model of KB, and consequently, in case of conditional knowledge bases, PT’-entailment 
also characterises the rational closure.

Our first result regarding PT’-entailment is that it is inferentially stronger than PT-entailment.

Proposition 7.1. (i) For every KB ⊆L• and every α ∈L• , if KB | ≈PT α then KB | ≈PT′ α. (ii) There exists some KB′ ⊆L• and β ∈L•
such that KB′ | ≈PT′ β and KB′ �|≈PT β .

Proof. (i). Note that, since min⊇
�PT

Mod(KB) ⊆ min�PT Mod(KB) for every KB, | ≈PT ⊆ | ≈PT′ . (ii). Observe from Example 7.1, 
here below, that KB′ | ≈PT′ • � → ¬f but KB′ �|≈PT • � → ¬f. �
Example 7.1. Consider the knowledge base KB′ := {•� → (¬p ∧¬r), •p → ¬f, •r → •f, p → ¬r}, which is a modified version 
of the knowledge KB from Example 5.1. The only difference is that now we state that typical penguins are non-flying birds, 
not that they are typical non-flying birds.

Then, one can check that min�PT Mod(KB′) = {R1, R2}, where:

R1:
2 {f,p,¬r}
1 {¬f,p,¬r}
0 {¬f,¬p,¬r}, {f,¬p,¬r},

R2:
2 {¬f,¬p, r}, {f,p,¬r}
1 {f,¬p, r}, {f,¬p,¬r}, {¬f,p,¬r}
0 {¬f,¬p,¬r}

while min⊇
�PT

Mod(KB′) = {R2}, since UR2 ⊃ UR1 .

Unfortunately, while PT’-entailment is an improvement over PT-entailment in terms of inferential strength, it is weaker 
than PT-entailment when it comes to the satisfaction of the list of desirable properties. That is, it satisfies, and fails to satisfy, 
the same properties as PT-entailment, except for Typical Entailment (P10), which PT-entailment satisfies, but PT’-entailment 
does not.

Proposition 7.2. CnPT′(·) satisfies P1–P4 and P7–P9, but does not satisfy P5, P6, and P10.

Proof. Regarding P1, P2, P3, P4, and P9 the proof for CnP T ′ (·) is the same as for CnP T (·) (Proposition 6.3 above).
Regarding the failure of P5, consider Example 6.1. In this example, while min�PT Mod(KB) = {R1, R2, R3}, we have that 

min⊇
�PT

Mod(KB) = {R2, R3}. We can use the same case used in the proof of Theorem 6.1: we have KB | ≈PT′ • (¬p) → ¬r, 
but neither KB | ≈PT′ • (¬p) → ¬f, nor KB | ≈PT′ • (¬p ∧ f) → ¬r hold.

The failure of P5 immediately implies the failure of P6.
P7. As pointed out in Proposition 6.3, in case we are dealing with a conditional KB, deciding PT-minimality over a 

satisfiable conditional KB gives back a single minimal model, characterising Rational Closure. It follows immediately that 
such a model is also the only PT’-minimal one.

P8. Again, it follows from the satisfaction of P8 for PT-entailment (see Proposition 6.3). Let KB be a knowledge base and 
α be a propositional formula. If there is a PT-minimal model R s.t. R(v) ≤ ∞ for some v �� α, then, by definition, there 
must be also in min⊇

�PT
Mod(KB) a model R ′ of KB s.t. R ′(v) ≤ ∞.

For the failure of P10, we consider Example 7.1 and the case used in the proof of Proposition 7.1: KB′ | ≈PT′ • � → ¬f
but, since KB′ �|≈PT • � → ¬f and | ≈PT satisfies Ampliativeness (P3), •� → ¬f is not in Cn0(KB′). �
8. Making sense of the impossibility result

Theorem 4.1 in Section 4 shows that there is no PTL consequence operator satisfying all of our postulates—more specif-
ically, none satisfying P1, P2, P3, P5, P8, and P10. This raises the important question of which of these postulates ought 
to be foregone in the search for an appropriate form of PTL entailment. In trying to find an answer to this question, it 
is useful to consider the three forms of entailment we proposed in the previous sections. The answer seems to be that it 
makes sense to consider (at least) two forms of entailment for PTL, represented here by LM-entailment and PT-entailment. 
PT’-entailment is not viewed as a viable option, given that it satisfies fewer properties than PT-entailment. In essence then, 
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it comes down to a choice between having a form of entailment that satisfies Strict Entailment (PT-entailment), and one 
that satisfies the Single Model postulate and Conditional Rationality, i.e., is based on a rational conditional (LM-entailment).

The advantage of LM-entailment is that it satisfies all postulates except for Strict Entailment, which includes not only 
Single Model and Conditional Rationality, but also Conditional Strict Entailment and Classical Entailment, the weakened 
versions of Strict Entailment. On the other hand, the argument for PT-entailment is that the Single Model property is too 
restrictive in the context of full PTL, and ought to be dropped. That is, in a logic as expressive as PTL in which there are not 
any restrictions on the typicality operator, any form of entailment based on minimality, and adhering to the presumption of 
typicality, as outlined in Section 6, is likely to violate the Single Model property.

The point of view that different forms of entailment can be appropriate in enriched versions of propositional logic, 
particularly enriched versions dealing with aspects of typicality, is not surprising, nor new. Lehmann [34] makes the case 
for two forms of entailment for the conditional logic discussed in Section 2.1 on which PTL is based. He draws a distinction 
between prototypical reasoning, corresponding to rational closure as discussed in Section 2.2, and presumptive reasoning.

The intuition underlying prototypical reasoning is that conclusions to be drawn are constrained by the typicality of the 
objects under consideration. To make matters more concrete, suppose we know that birds typically fly, that birds typically 
have wings, that robins are birds, that penguins are birds, and that penguins typically don’t fly. Robins can be regarded as 
typical birds and therefore inherit the properties of typical birds, such as having wings. Penguins, on the other hand, should 
be regarded as atypical birds since they typically cannot fly, and therefore do not inherit the properties of a typical bird, 
such as having wings. This is to be contrasted with presumptive reasoning, a more permissive form of reasoning for which 
the intuition is to draw conclusions unless we have specific information to the contrary. In our example above presump-
tive reasoning would allow us to conclude that penguins typically have wings (since we do not have explicit information 
contradicting that conclusion), thereby distinguishing it from prototypical reasoning.

Our argument here is not that the relationship between PT-entailment and LM-entailment is analogous to the relationship 
between prototypical reasoning and presumptive reasoning, although it is true that LM-entailment can be viewed as a 
refinement of PT-entailment (yielding more conclusions), just as presumptive reasoning is a refinement of prototypical 
reasoning. Rather, the important point is that differences in context will determine which form of entailment is appropriate. 
It is our contention that the same principle applies to the differences between LM-entailment and PT-entailment. Below 
we discuss the technical differences between the two forms of entailment and then provide an example to illustrate the 
principle.

As we have seen above, the difference between these two forms of entailment comes down to a choice between Strict En-
tailment on the one hand, Conditional Rationality (and Single Model) on the other hand. Employing LM-entailment ensures 
that we remain rational (i.e., satisfying all the KLM properties), but at the cost of going beyond Tarskian monotonicity for 
typicality-free sentences. Conversely, making use of PT-entailment allows us to remain Tarskian for typicality-free sentences, 
but forces us to forego rationality, and in particular, the rational monotonicity property RM. Intuitively then, LM-entailment 
is the more permissive form of entailment here. Not only do we remain rational, unlike PT-entailment, but we do so at the 
cost of allowing the entailment of more typicality-free sentences than permitted by PT-entailment. The example below is 
indicative of the factors to take into account when deciding, in a specific context, which of LM-entailment or PT-entailment 
is the more appropriate form of reasoning.

Example 8.1. Consider again the knowledge base KB := {•� → (¬p ∧ ¬r), •p → •¬f, •r → •f, p → ¬r} introduced in Ex-
ample 5.1. From Examples 5.1 and 6.1 it is not hard to verify that both LM-entailment and PT-entailment sanction the 
conclusion that typical non-robins are not penguins (KB | ≈LM • (¬r) → ¬p and KB | ≈PT • (¬r) → ¬p), and do not allow 
for the entailment that typical non-robins can fly (KB �|≈LM • (¬r) → f and KB �|≈PT • (¬r) → f). This leaves us with a 
choice. On the one hand it is reasonable to conclude from this that typical non-flying non-robins are not penguins (that is, 
•(¬r ∧ ¬f) → ¬p). In fact, rational monotonicity requires of us to be able to draw this conclusion. But in order to do so, 
we need to be able to conclude that there are no penguins, which violates Strict Entailment. This is the route followed by 
LM-entailment. The other option would be to insist that we do not have enough information to conclude that there are no 
penguins, but in the process of doing so, also forego the conclusion that typical non-flying non-robins are not penguins. That 
is, we insist on Strict Entailment at the expense of rational monotonicity. This is the path followed by PT-entailment. �
9. Related work

To the best of our knowledge, the first attempt to formalise an explicit notion of typicality in defeasible reasoning was 
that by Delgrande [24]. Given the strong links between our constructions and the KLM approach, most of the remarks in 
the comparison made by Lehmann and Magidor [35, Section 3.7] are applicable in comparing Delgrande’s approach to ours 
and therefore we shall not repeat them here.

Crocco and Lamarre [23] as well as Boutilier [6] have explored the links between conditionals and notions of normality 
similar to the one we investigate here. In particular, Boutilier defines a family of conditional logics of normality in which 
a statement of the form “if α, then normally β” is formalised via a binary modality ⇒ as a conditional α ⇒ β . Here we 
achieve the same with a unary operator.

Roughly speaking, Boutilier’s semantic intuition is the same as that of KLM (and therefore the same as ours). The main 
difference is that Boutilier defines a conditional connective ⇒ in the language, whereas Kraus et al. define | ∼ at a meta-
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level to the language. In this respect, Boutilier’s approach is more general in that it allows for nested conditionals. If these 
are omitted, i.e., if one works in the ‘flat’ conditional logic in which ⇒ is the main connective and no nesting is allowed, 
then one gets the same results for preferential entailment with both systems. So Boutilier achieves with modalities (he 
works in a bi-modal language) what Kraus and colleagues achieve with a (meta-level) preference order.

It turns out that in Boutilier’s approach one cannot always capture the notion of “most typical α’s”. In Boutilier’s modal 
logic, such a set (of most normal α-worlds) need not exist in general. This is because Boutilier drops the smoothness 
condition [6, p. 103] and therefore at any point in a ranked model one can have infinitely descending chains of increasingly 
more normal α-worlds. If one imposes smoothness in Boutilier’s approach, which can be done by e.g. requiring the ordering 
determined by Boutilier’s � also to be Noetherian, one could then define his conditional ⇒ more elegantly as follows:

α ⇒ β := •α → β (1)

where, in Boutilier’s notation, •α would be given by

•α := α ∧ �¬α (2)

(Of course negated conditionals of the form α � β can then be expressed as ¬(•α → β).) In adopting smoothness and 
defining conditionals in this way, one would expect both approaches to become equivalent modulo the underlying language 
— ours is propositional, whereas Boutilier’s is modal. However, our statement •α → β differs from Boutilier’s α ⇒ β in a 
significant way. In Boutilier’s approach, a statement of the form α ⇒ β is true at some world (in a ranked model) if and 
only if it is true at all worlds in that ranked model [6, p. 114]. On the other hand, it is not hard to find a ranked model in 
which •α → β holds at a world without being true in the whole model. This establishes Boutilier’s conditional as a ‘global’ 
statement, while ours has the (more general) ‘local flavour’. We can easily simulate Boutilier’s notion of acceptance [6, p. 
115] by stating � → (•α → β).

It is also worth mentioning that our interpretation of the conditional ⇒ in (1) above and Boutilier’s differ in another 
subtle way, which also relates to whether one adopts smoothness or not. In (1), α ⇒ β is defined as “the normal α’s 
are β ’s”, whereas, strictly speaking, Boutilier’s definition of α ⇒ β reads as “there is a point from which α → β is not 
violated”. Such a ‘frontier’ for normality, implicitly referred to in Boutilier’s definition of α ⇒ β , is not as crisp as ours in 
the sense that the point where one draws the normality line might be too ‘far away’ (in the ordering) from the more and 
more normal α-worlds. One can definitely make a case for dropping the smoothness condition, but requiring it is a small 
price to pay given the much simpler account of typicality one obtains.

When it comes to entailment from a defeasible knowledge base, all approaches discussed above adopt a Tarskian-style 
notion of consequence and therefore do not go beyond ranked entailment. The move towards a non-monotonic notion of 
entailment and an investigation of its different facets in the context of PTL was precisely our motivation in the present 
work.

Giordano et al. [29] proposed the system Pmin which is based on a language that is as expressive as the one we propose 
in this paper. However, they end up using a constrained form of such a language that goes only slightly beyond the ex-
pressivity of the language of KLM-style conditionals (their well-behaved knowledge bases). More importantly, their approach 
differs from ours since they build Pmin on a semantic approach that relies on preferential models and a notion of minimality 
that is more akin to circumscription [38].

In a description logic setting, Giordano et al. [25] also study notions of typicality. Semantically, they do so by placing 
an (absolute) ordering on objects in first-order domains in order to define versions of defeasible subsumption relations in 
the description logic ALC . The authors moreover extend the language of ALC with an explicit typicality operator T(·) of 
which the intended meaning is to single out instances of a concept that are deemed as ‘typical’. That is, given an ALC
concept C , T(C) denotes the most typical individuals having the property of being C in a particular DL interpretation. It 
is worth pointing out, though, that most of the analysis in the work of Giordano et al. is dedicated to a constrained use 
of the typicality operator T(·), that is allowed to occur only in the left-hand side of GCIs and not in the scope of other 
concept constructors. Not having such a syntactic constraint is a feature of our approach that we have put forward in 
the present work. Still in the framework of Description Logics, also Bonatti et al. [1] introduce a typicality operator N(·), 
with a meaning that mirrors the operator T(·); also the use of the N operator is generally constrained, and their semantic 
framework is differs from the present one, not being preferential.

Giordano et al.’s approach has been extended in a series of papers [26,27,31,32], in particular also to deal with the 
computation of non-monotonic entailment from defeasible knowledge bases. In the latter case, the authors define a hyper-
tableau calculus to compute the rational closure of a defeasible ontology via a minimal-model construction [30,32] that, 
as mentioned before, is closely related to our notion of PT-entailment. Nevertheless, that remains the only notion of non-
monotonic entailment investigated by the authors. We conjecture the more expressive DL setting has the potential to give 
rise to a much broader spectrum of consequence relations when enriched with typicality operators, in particular when these 
apply not only to concepts but also to roles [44]. Nevertheless, that remains the only notion of non-monotonic entailment 
investigated by the authors. We conjecture the more expressive DL setting has the potential to give rise to a much broader 
spectrum of consequence relations when enriched with typicality operators, in particular when these apply not only to 
concepts but also to roles [44].
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Finally, Britz and Varzinczak [11,12] investigate another, complementary aspect of defeasibility to the one here presented 
by introducing (non-standard) modal operators allowing us to talk about relative normality in accessible worlds. With their 
defeasible versions of modalities, namely �∼∼� and �∼∼� , formalising respectively the notions of defeasible necessity and distinct 
possibility, it becomes possible to make statements of the form “α holds in all of the normal (typical) accessible worlds”, 
thereby capturing defeasibility of what is ‘expected’ in target worlds. (Note that this is different from stating something 
like � • α, which says that all accessible worlds are typical α-worlds.) Such preferential versions of modalities allow for 
the definition of a family of modal logics in which defeasible modes of inference such as defeasible actions, knowledge and 
obligations can be expressed. These can be integrated either with existing | ∼ -based modal logics [14,16] or with a modal 
extension of our typicality operator in striving towards a comprehensive theory of defeasible reasoning in more expressive 
languages.

10. Conclusion

The focus of this paper is an investigation into the entailment problem for the logic PTL. We approached the problem 
from two angles: an abstract formal perspective, in which a set of appropriate postulates was presented and discussed, 
and a constructive perspective, in which three specific entailment relations were defined and studied. The primary conclu-
sion to be drawn from this investigation is that a logic as expressive as PTL supports more than one form of entailment. 
This conclusion is supported from the abstract perspective via an impossibility result, as well as through the constructive 
approach via the definition of two of the three distinct types of PTL entailment: LM-entailment and PT-entailment. While 
both forms of entailment are generalisations of rational closure, only one, LM-entailment, retains all the rationality proper-
ties associated with rational closure, formalised as the Conditional Rationality postulate (P5). However, it does not satisfy 
Strict Entailment (P8), a postulate which requires an entailment relation to remain Tarskian for conclusions not involving 
typicality, although it satisfies weakened versions of Strict Entailment (P9 and P9′). On the other hand, the other form of 
entailment we studied, PT-entailment, satisfies P8, but not Conditional Rationality (P5).

The framework of Booth et al. [3,4] is, to the best of our knowledge, the first attempt to introduce a full-fledged typicality 
operator into propositional logic. In terms of other related work, the closest we are aware of is the restricted form of 
typicality for description logics by Giordano et al. [28]. However, a consequence of their restricted use of typicality is that 
a propositional version of their logic would correspond to a KLM-style conditional logic in which rational closure behaves 
well, and which is much less expressive than PTL.

Britz et al. [13] and Giordano et al. [28] have investigated the connection between the KLM approach and Gödel-Löb 
modal logic, which is closely related to PTL. Exploiting this connection should deliver an axiomatisation of an inference 
relation corresponding to ranked entailment, but it does not seem useful for modelling entailment relations based on min-
imisation as LM- and PT-entailment.

For future work, an obvious open question is whether our conjecture, that the subsets of postulates satisfied by 
LM-entailment and PT-entailment respectively provide appropriate abstract formalisations of two distinct forms of PTL en-
tailment, can be formalised through representation theorems. From a computational perspective, it is worth investigating 
whether, as is the case for rational closure for conditional logics, the computation of (the different forms of) PTL entailment 
can be reduced to a series of classical entailment checks.

Our results in the propositional setting pave the way for an investigation of appropriate forms of entailment in other, 
more expressive, preferential approaches, such as preferential description logics [15,31,17,8,9,22,18] and modal logics of 
defeasibility [14,7,10,12]. The move to logics with more structure is of a challenging nature, and a simple rephrasing of our 
approach to these logics may not deliver the expected results. We are currently investigating these issues.
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Appendix A. Proofs for Section 2

We give here a proof of Proposition 2.1. In order to do that, we need to introduce some extra notions and prove some 
extra propositions. First of all, analogously to the definitions for PTL introduced in Section 2.3, we say that a set of condi-
tionals C is satisfiable iff there is a ranked interpretation R for which UR �= ∅ satisfying all the conditionals in it, and let 
Mod(C) be the set of all the ranked models of C .

We are going to use a notion of merging ranked interpretations.
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Definition A.1 (Ranked Union). Given a set of ranked interpretations R = {R1, . . . , Rn}, its ranked union RR is defined as 
follows:

• for every v, v ′ ∈ U , v ≺RR v ′ iff min{Ri(v) | Ri ∈R} < min{R j(v ′) | R j ∈R}.

• RR := (LRR

0 , . . . , LRR

n−1 , LRR

∞ ) is defined as

– LRR

∞ := ⋂{LRi∞ | Ri ∈ R}.

– LRR

0 := min≺
RR

(U \ LRR

∞ ); LRR

1 := min≺
RR

(U \ LRR

0 ∪ LRR

∞ ); and so on until LRR

n = ∅.

Proposition A.1. Let C be a satisfiable set of conditionals, and let R := {R1, . . . , Rn} be a set of models of C . Then their ranked union 
RR is a model of C , and RR �LM Ri for every Ri ∈ (R \ RR).

Proof. We first prove that RR := (LRR

0 , . . . , LRR

n−1 , LRR

∞ ) is a model of C . For every v ∈ LRR

0 , it must be the case, by 
Definition A.1, that v ∈ LRi

0 for some Ri ∈R; since such Ri is a model of C and v ∈ LRi
0 , v � ¬α ∨ β for every α | ∼β ∈ C .

Now, let v ∈ LRR

i , with 0 < i < n, s.t. v � α ∧ ¬β for some α | ∼β ∈ C (if there is no such v , RR is necessarily a model 
of C). Being every R j ∈ R a model of C , it must be the case, again by Definition A.1, that hR j (v) ≥ i and hR j (v ′) < hR j (v)

for some v ′ satisfying α ∧ β . Hence, it must be that min{Ri(v ′) | Ri ∈ R} < min{R j(v) | R j ∈ R} for some v ′ satisfying 
α ∧ β , that is, v ′ ≺RR v , that implies v ′ ∈ LRR

j , with j < i.

To summarise, for every α | ∼β ∈ C , if there is a valuation v ∈ RR s.t. v � α ∧ ¬β , then there is a valuation v ′ ∈ RR s.t. 
v ′ � α ∧ β and v ′ ≺RR v; hence RR is a model of C .

Now we prove that RR �LM Ri for every Ri ∈R.
Let Ri := (L0, . . . , Ln−1, LRR

∞ ) s.t. Ri ∈ R and RR ��LM Ri . That is, there is an i s.t. LRR

i � Li , while LRR

j = L j for every 

j < i. That is, there is a v ∈ Li s.t. v /∈ LRR

i . By definition of RR , that implies that v ∈ LRR

j for some j < i, but that cannot 

be the case, since LRR

j = L j for every j < i. Hence RR �LM Ri for every Ri ∈ R.

We finish by proving that Ri ��LM RR for every Ri ∈ (R \ RR).
Let Ri be a model in C s.t. Ri �LM RR . Since RR �LM Ri , we must conclude that for every i, for every cell LRi

i

composing Ri and every cell LRR

i composing RR , LRi
i = LRR

i ; that is, Ri and RR are exactly the same model. Hence 
RR �LM Ri for every Ri ∈ (R \ RR). �
Proposition A.2. Let C be a satisfiable set of conditionals. Then the ranked union of the elements of Mod(C) is the only �LM-minimum 
element in Mod(C).

Proof. It is an immediate consequence of Definition A.1 and Proposition A.1. �
Proposition 2.1. Given a set of conditionals C and a conditional α | ∼β . α | ∼β is in the rational closure of C iff:

1. C is unsatisfiable; or
2. Rrc(C) � α | ∼β .

Proof. It has been proved by Booth and Paris [2, Theorem 2] that the rational closure of a KB is determined by a model 
that is equivalent to the ranked union of Mod(C). According to Proposition A.2, the ranked union of Mod(C) is the only 
�LM-minimum element in Mod(C), that is, the model Rrc(C). �
Appendix B. Proofs of Lemmas 5.1, 5.2 and 5.3

B.1. Proof of Lemma 5.1

Lemma 5.1. The following hold for each i ≥ 0:

1. Si ⊆ Si+1 , i.e., [S0 ⊆ S1 and, for all i ≥ 0, �KB�Ri ⊆ �KB�Ri+1 ];
2. For all v1, v2 ∈ U , if Ri(v1) < Ri(v2), then v1 ∈ �KB�Ri ;
3. Ri is a ranked interpretation.

Proof. We show all three simultaneously by complete induction on i. So, assume all of Items 1, 2 and 3 hold for all m < i. 
We will show this implies all three hold also for i. We assume each α ∈KB is in normal form.

1. �KB�Ri ⊆ �KB�Ri+1 .
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Let v ∈ �KB�Ri and let α ∈ KB with α = ∧
i≤t •θi → (φ ∨ ∨

i≤s •ψi) (for some s, t ≥ 0). We must show v ∈ �α�Ri+1 . 
Since v ∈ �KB�Ri we know v ∈ �α�Ri . Hence we know that one of the following must hold:

• v /∈ �•θk �Ri for some k: This means (since θk is propositional) v is not ≺Ri -minimal in �θk �Ri = �θk �Ri+1 . But then 
it is also not ≺Ri+1 -minimal since, by construction, if Ri(v) ≤ Ri(w) then Ri+1(v) ≤ Ri+1(w). Hence in this case 
v /∈ �•θk �Ri+1 .

• v ∈ �φ�Ri : In this case also v ∈ �φ�Ri+1 , since �φ�Ri = �φ�Ri+1 (because φ is purely propositional).
• v ∈ �•ψk �Ri for some k: This means v is ≺Ri -minimal in �ψk �Ri . But then it is also ≺Ri+1 -minimal, since we assumed 

v ∈ �KB�Ri = Si+1, and so by construction of Ri+1 we have that Ri+1(w) < Ri+1(v) if and only if Ri(w) < Ri(v) for 
all w ∈ U . Since �ψk �Ri = �ψk �Ri+1 (since ψk is purely propositional) we obtain that v is ≺Ri+1 -minimal in �ψk �Ri+1 , 
i.e., v ∈ �•ψk �Ri+1 .

Thus in all three possible cases we obtain v ∈ �α�Ri+1 as required.
2. Ri(v1) < Ri(v2) implies v1 ∈ �KB�Ri .

Suppose Ri(v1) < Ri(v2). Observe that, by construction, this can only be the case if i > 0. Then either Ri−1(v1) <
Ri−1(v2) or v2 /∈ Si . If Ri−1(v1) < Ri−1(v2) then, by the inductive hypothesis, v1 ∈ �KB�Ri−1 , while if v2 /∈ Si , then 
v1 ∈ Si = �KB�Ri−1 . So either way we get v1 ∈ �KB�Ri−1 and so we get the desired conclusion by applying �KB�Ri−1 ⊆

�KB�Ri which was just proved in Item 1 above.
3. Ri is a ranked interpretation.

By construction it immediately follows that Ri is a function from U to N ∪{∞}. We need to show the convexity property: 
if Ri(u) = j then, for every k such that 0 ≤ k < j, there is a v ∈ U for which Ri(v) = k. If i = 0, this follows immediately 
(since R0(u) = 0 for all u ∈ U ). Otherwise we have by the inductive hypothesis that Ri−1 is a ranked interpretation. We have 
two cases. (1) Si = Si−1: Then Ri = (Ri−1)

∞
Si

from which convexity follows immediately. (2) Si �= Si−1: Then Ri = (Ri−1)
1
Si

from which convexity also follows immediately. �
B.2. Proof of Lemma 5.2

Lemma 5.2. For every i > 0, (Ri)
∞
Si

is a ranked model of KB.

Proof. Let R denote (Ri)
∞
Si

. We need to show that for every valuation v ∈ UR , i.e., every v ∈ Si = �KB�Ri−1 , and for every 
α ∈ KB, we have v ∈ �α�R . Since v ∈ �α�Ri−1 we know one of the following must hold (recalling that α is expressed in 
normal form 

∧
i≤t •θi → (φ ∨ ∨

i≤s •ψi).):

• v /∈ �•θk �Ri−1 for some k: This means v is not ≺Ri−1 -minimal in �θk �Ri−1 . But then it is also not ≺R-minimal in 
�θk �R = �θk �Ri−1 ∩ Si , since if w ≺Ri−1 v and w ∈ �θk �Ri−1 , then from the former we know w ∈ Si by Item 2 of the 
previous lemma. Hence in this case v /∈ �•θk �R .

• v ∈ �φ�Ri−1 : In this case also v ∈ �φ�R , since �φ�R = �φ�Ri−1 ∩ Si (because φ is purely propositional).
• v ∈ �•ψk �Ri−1 for some k: This means v is ≺Ri−1 -minimal in �ψk �Ri−1 . But then it is also ≺R-minimal in �ψk �R =

�ψk �Ri−1 ∩ Si , since ≺Ri−1⊆≺R . Hence v ∈ �•ψk �R .

Thus in all three possible cases we obtain v ∈ �α�R as required. �
B.3. Proof of Lemma 5.3

Lemma 5.3. Let R∗
KB := (L0, . . . , Ln−1, L∞) and let R := (M0, . . . , Mn−1, M∞) be any other ranked model of KB. Let i ∈

{0, . . . , n − 1}. If L j = M j for all j < i, then Mi ⊆ Li .

Proof. Let v ∈ Mi . By construction, Si = �KB�Ri−1 where Ri−1 = (L0, . . . , Li−1, (U \ ⋃
j<i L j, ∅). Let α ∈ KB, with α =

∧
i≤t •θi → (φ ∨ ∨

i≤s •ψi) (for some s, t ≥ 0). We must show v satisfies α in Ri−1, so assume v satisfies ¬φ and is 
a minimal θk-state in Ri−1 for all k. We must show v is a minimal ψk-state in Ri−1 for at least one k. Since we assume 
M j = L j for all j < i, we have Ri−1 = (M0, . . . , Mi−1, (U \⋃

j<i M j), ∅). Since v ∈ Mi , we can show that, for any propositional 
sentence λ, we have that v is a minimal λ-state in (M0, . . . , Mi−1, (U \ ⋃

j<i M j), ∅) if and only if it is a minimal λ-state in 
(M0, . . . , Mi, ∅). Thus, from the fact that (M0, . . . , Mi, ∅) is a ranked model of KB, we obtain our conclusion. �
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