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Abstract: Presently, in the event of a failure in Automated Driving Systems, control architectures rely
on hardware redundancies over software solutions to assure reliability or wait for human interaction
in takeover requests to achieve a minimal risk condition. As user confidence and final acceptance
of this novel technology are strongly related to enabling safe states, automated fall-back strategies
must be assured as a response to failures while the system is performing a dynamic driving task.
In this work, a fail-operational control architecture approach and dead-reckoning strategy in case of
positioning failures are developed and presented. A fail-operational system is capable of detecting
failures in the last available positioning source, warning the decision stage to set up a fall-back
strategy and planning a new trajectory in real time. The surrounding objects and road borders
are considered during the vehicle motion control after failure, to avoid collisions and lane-keeping
purposes. A case study based on a realistic urban scenario is simulated for testing and system
verification. It shows that the proposed approach always bears in mind both the passenger’s safety
and comfort during the fall-back maneuvering execution.

Keywords: fail-operational systems; fall-back strategy; automated driving

1. Introduction

In the last decade, Automated Driving Systems (ADS) has shown significant advances, mainly from
the acquisition, perception, control and actuation point of view [1]. Several important developments have
been achieved and mentioned in the latest European Commission reports [2], where the challenges on
communication technologies and cyber-security, on-board sensors capacities, infrastructure requirements,
mobility concepts, and city contexts are playing an active role for sustainable urban transportation
developments.

ADS obtain information about the surroundings from different sensors, such as cameras,
differential global positioning systems (GPS), Light Detection and Ranging (LiDAR), and Radio
Detection and Ranging (RaDAR) systems [3]. Perception tasks are critical for increasing the level of
automation of ADS developments, as environment recognition in any scenario, including lighting and
weather conditions, should be assured. Moreover, their fail-operational operation during autonomous
mode is crucial to ensure passenger safety, as sensor and perception errors can be easily propagated to
decision and control stages in different maneuvers, causing fatal accidents [4].

Some authors have considered sensor data fusion for more robust performance on different
contexts: obstacles detection [5], perception of the environment [6], localization [7], and Traffic Sign
Detection and Recognition [8]. A detailed description of the most popular methods and techniques for
performing data fusion is presented in [9], where the author concludes that the appropriate technique
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to be implemented depends on the type of problem. In the automotive field, the Bayesian approach,
extended and unscented Kalman filters (UKF) are mostly used [10–12]. However, these techniques
depend mainly on the information directly from on-board sensors without any fall-back strategy.

Currently, the most widely used global localization approaches involve Global Navigation
Satellite Systems (GNSS) such as GPS and Galileo [13]. The implemented devices even can implement
differential GPS approaches, which have become affordable in recent years, or Inertial Measurement
Units (IMU) [7], which may be fused with GNSS data to provide more reliable data. Although this
approach works properly in open scenarios such as highways, in urban environments, their localization
accuracy is not guaranteed for ADS [13]. Hence, a fail-operational positioning system, which also uses
the dynamic model of the vehicle, is required to increase the accuracy. Moreover, the implemented
ADS need to have a Dynamic Driving Task (DDT) fall-back strategy approach to be executed when the
positioning system fails [14]. Among the different proposed strategies Table 1 summarizes the most
important DDT fall-back strategies proposed.

Table 1. DDT fall-back strategies due automated driving system failures.

System Functionality Fall-Back Strategy

Perception Object detection Create ghost vehicles to replace the hidden ones due high
curvatures in highways [15].
Create ghost objects due sensor failure and perform
lane-changing maneuver to emergency shoulder [16].

Decision Lane centering switch to differential braking control if electrical power
steering fails [17].

Trajectory planning Emergency maneuver bring vehicle to stop if collision free
trajectories fails [18].
Emergency trajectory to stop at the slowest lane [19].

Control Speed profile Use a future velocity if communication of control messages or
the propulsion controller fails [20].

Collision avoidance Brake if reception of data packets or inter-vehicle distance
from lead vehicle fails [21].

Actuation Drive-by-wire Various forms of monitoring and redundancy are considered
in failure cases [22].

However, a better assessment of fail-operational strategies for the functions of the dynamic driving
task (DDT) is needed to achieve higher levels of automation on ADS (SAE J3016 [23]). This work is
focused on this area, and its main contribution of this work is a fail-operational strategy approach
considering positioning failures in a last available device, implemented within a general control
architecture for automated vehicles. In brief, the improvements presented in this work are:

1. A fail-operational positioning system that comprises a UKF, a virtual sensor, and a monitor
system, capable of remaining operative from degraded to total failure of the position reception
and warns for fall-back triggering.

2. A real-time trajectory planner that defines the lateral and longitudinal references for the DDT
fall-back in degraded mode to achieve a minimal risk condition avoiding rear-end collisions.

3. A vehicle motion control that executes the planned trajectory, including a lateral reference
constraint avoiding undesirable lane departures.

4. A case study resembles a real urban scenario demanding a DDT fall-back strategy due to a major
positioning failure, working with minimum sensor interface bringing the vehicle to a safe place.

The rest of the paper is organized as follows. In Section 2, the fail-operational control architecture is
detailed, explaining each module. An overview of the fail-operational positioning system is presented
in Section 3, where the vehicle model, cornering stiffness estimation and the adaptive UKF are the
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main contributions. Section 4 describes the DDT fall-back strategy proposed for the decision stage,
considering a real-time trajectory generation, rear-end collision avoidance and vehicle motion control.
In Section 5, a description of the scenario, the test platform and the parameter of configuration for the
UKF and MPC are presented. Results and discussion are explained in Section 6. Finally, some remarks
and conclusions are presented in Section 7.

2. Fail-Operational Control Architecture

The proposed work has been developed in the framework of the AutoDrive Project [24].
This program targets the development of SAE Level 4 [23] automated driving capabilities.
More precisely, a highly automated driving bus to carry passengers in an urban scenario with mixed
traffic conditions.

Please note that the required automation level must include, moreover the lateral and longitudinal
motion control, a complete Object and Event Detection and Response (OEDR) system, and the capability
to be robust enough to support fail-operational operation [25], which is the focus of this work.

The control architecture proposed to achieve this goal is depicted in Figure 1, covering seven
stages of those suggested by [1] required for ADS developments (Database, Acquisition, Perception,
Supervisor, Decision, Control, and Actuation). This architecture allows the verification of the DDT
fall-back strategy after the occurrence of a positioning system failure.

In the next subsections, the different stages that compose the proposed architecture are detailed.

Figure 1. Control Architecture.

2.1. Database

The database is composed of a list of waypoints that contain relevant information of the fixed route,
such as global axis coordinates (X, Y), orientation angles (ψ) and velocity limits (vx). Additionally,
information related to safe-parking places is included, considering three different cases: stop not
permitted, stop on-lane permitted and stop on-shoulder available. These waypoints will be illustrated
in the case study in Section 5.

2.2. Acquisition

The acquisition system interface provides two features: the vehicle surrounding recognition,
and the vehicle global position on the route.

For the first feature, a sensor interface is used, which provides relevant information about the
surroundings. This will be processed by the perception stage simulating information from road borders
and objects. Please note that in the present work’s framework the sensor interface will be idealized to
provide information from 360 degrees around the vehicle, with a maximum detection radius. Elements
outer the range will not be detected.
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To define the position of the vehicle in the scenario, a global navigation satellite system integrated
with an inertial navigation system (GNSS-INS), odometer and steering sensors are considered.
These devices provide the vehicle position (X, Y), front-wheel angle (δ) and inertial parameters as
orientation (ψ), acceleration (ax) and velocity (vx).

Please note that commercial GNSS-INS interfaces present noise and signal quality reductions.
Hence, the failure of this sensor must be handled by the proposed fail-operational positioning system
and fall-back strategy.

2.3. Perception

The information provided by the acquisition blocks is used to detect the road borders and objects
within the sensor range. These are estimated in coordinates relative to the vehicle. This way, a 4-m road
width is considered, so that the road borders are placed at 2 m of lateral distance from the center-lane
(X, Y). The lateral distances are estimated from the vehicle’s position to the left (eL) and right (eR)
borders. On the other hand, an object list is provided considering relative distances and velocities.

2.4. Supervisor. Fail-Operational Positioning System

The supervisory system is continuously monitoring the positioning accuracy and the status of the
positioning sensor devices (GNSS-INS) of the acquisition blocks.

When the vehicle performance is highly compromised or a relevant sensor failure is detected,
a fail-operational strategy is activated. Using the data from the positioning sensors (GNSS-INS,
odometer and steering sensors), a virtual positioning sensor is switched on and employed to perform
the fall-back strategy that leads the test platform to a safe state. This one of the contributions of this
work, and its development is broadly detailed in Section 3.

2.5. Decision

The decision module creates the trajectories to be followed by the automated vehicle and is
integrated by the trajectory planner and a collision-avoidance system.

The trajectory planner, in the case of normal operation, will generate optimum trajectories for a
specified scenario. However, in the case of system failure, such as the case study analyzed in Section 5,
the trajectory planner will adjust the original route. Using the information of the safe-parking places
from the database, the planner will modify the route to achieve the nearest safe state. This is an
important contribution of this work and will be covered in Section 4.1.

On the other hand, the collision-avoidance system is focused on avoiding rear-end collisions with
previous vehicles or objects. Please note that the objects detected by the perception system are first
analyzed to evaluate if they are within the trajectory to be followed. Therefore, objects located outside
the road borders do not represent a collision risk and adjustments are not necessary over the original
trajectory, while objects within the trajectory will require adjustment of the trajectory by maintaining
a safe distance to the objects ahead. The proposed approach, which will be detailed in Section 4.2,
can work not only in normal operation, but also when there exists a degraded operation due to failure
in the positioning sensors.

2.6. Control

The trajectory references estimated in the decision stage are followed by the vehicle motion
control, providing reliable inputs to the vehicle interface. The velocity (vx), acceleration (ax) and jerk
(jx) are usually considered to be the main state parameters to control the longitudinal vehicle motion
behavior. The position in global coordinates (X, Y) and the yaw angle of the vehicle (ψ) are commonly
used for lateral and angular vehicle motion control, respectively. Additional relevant state parameters
can be included for control improvement as the lateral error concerning the route’s center-lane (ey).
A detailed explanation of this stage is presented in Section 4.3.
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2.7. Actuation

The actuation module receives information from the control stage. Its task is to move the actuator
of the automated vehicle, which means, steering wheel and pedals. Characterization of the actuators is
the proposed architecture, as presented in [26].

3. Fail-Operational Positioning System

The proposed approach uses a sensor fusion strategy that combines the information of the
GNSS-INS, odometer and steering sensor to provide positioning data even in degraded circumstances.
Moreover, it integrates a quality monitor that allows detecting the failure of the sensor. The overall
architecture of the proposed fail-operational positioning system is depicted in Figure 2.

Figure 2. Flowchart on fail-operational Positioning System.

This strategy first uses the current values of velocity (vx) and front-wheel angle (δ) to interpolate
the front (Cα f ) and rear (Cαr ) cornering stiffness from database values. This data will be used in a
second step, where an adaptive UKF is employed to attenuate the accuracy lacking on the GNSS-INS
positioning measurement. This is a problem regularly faced in urban environments due to obstructions
in the line-of-sight to the satellites [12].

When a relevant performance failure is detected, a virtual positioning sensor is activated. It makes
use of the last position acquired by the UKF system, the estimation of the cornering stiffness, and the
data provided by the odometer sensors and steering wheel sensor to estimate positioning to perform
dead reckoning and perform a safe state on the route.

The detection of a degraded condition and critical failure is performed by a positioning monitor,
which selects the source of the positioning data to provide a fail-operational response, and informs the
decision stage about the failure.

3.1. Vehicle Model and Cornering Stiffness Estimation

The proposed fail-operational positioning system requires a vehicle model to implement both
the lateral vehicle motion control and UKF. In this section, the model used for the development of the
UKF is briefly detailed.

3.1.1. The Kinematic and Dynamic Vehicle Models

The lateral motion of a vehicle can be estimated as well as controlled employing simplified vehicle
models, being this a technique that reduces the computational effort for real-time implementations
while providing enough accuracy for control purposes [27]. For velocities at less than 3 m/s the lateral
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forces on the tires can be neglected, and the vehicle motion can be calculated entirely on geometric
relationships of X, Y and ψ [28,29]. Above 3 m/s, the assumption of no lateral forces on the tires begins
to be compromised, as the lateral vehicle motion is affected by its dynamics being necessary to take into
consideration a more complex model to improve results [30]. In these cases, a mix of simplified bicycle
models for lateral vehicle dynamics (Figure 3) provides a good accuracy vs complexity relationship.

Figure 3. Simplified bicycle model for lateral dynamics.

In Figure 3, V represents the velocity at the center of gravity (CG) and β is the vehicle slip-angle
concerning the longitudinal axis of the vehicle (x). The lateral tire forces on the front and rear wheels
(Ff , Fr) are strongly affected by the cornering stiffness of each tire (Cα f , Cαr ), the slip-angle of each
tire (θ f , θr) and the δ of the front wheel. The lateral translation motion and the yaw dynamics for the
model can be written as,

m(v̇y + ψ̇vx) = 2Cα f (δ − θ f )− 2Cαr θr (1a)

Izψ̈ = 2l f Cα f (δ − θ f ) + 2lrCαr θr (1b)

where m is the mass, v̇y is the lateral acceleration, ψ̇ is the yaw rate, vx is the longitudinal velocity, Iz is
the moment balance around the z axis of the vehicle, ψ̈ is the yaw acceleration and, l f and lr are the
front and rear wheel distance from the CG. The slip angles of each tire (θ f and θr) can be calculated as,

θ f = atan
vy + l f ψ̇

vx
(2a)

θr = atan
vy − lrψ̇

vx
(2b)

In this work, a dynamic bicycle model approach is implemented for filtering and positioning. On the
other hand, a kinematic bicycle model approach is employed for vehicle motion control.

3.1.2. Cornering Stiffness Estimation

Using the dynamic bicycle model defined in Equation (1) it is possible to estimate the cornering
stiffness coefficients Cα f and Cαr . Please note that most parameters are easy to obtain in real
applications [31]. This way, if a state-space representation is used,[

Cα f

Cαr

]
=

[
2(δ − θ f ) −2θr

2l f (δ − θ f ) 2lrθr

]−1 [
m(v̇y + ψ̇vx)

Izψ̈

]
(3)

An open-loop test method for determining the steady-state circular driving behavior described
in [32] (ISO 4138) is employed for the cornering stiffness estimation at constant steering wheel angles
and velocities. Using this procedure, a cornering stiffness map can be generated and integrated into
the control architecture, to implement a cornering stiffness estimator as input to the UKF (Figure 2),
so that for any vx and δ the coefficients Cα f and Cαr can be derived. Results of these tests for the case
study analyzed in this work are presented in Section 5.3.
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Please note that the use of an off-line cornering stiffness estimator implies that the open-loop tests
must cover the whole range of vx and δ to be performed by the test vehicle within the ODD. Although
this can be implemented for on-line estimations, this procedure helps to fix values when necessary
avoiding some singularities in circumstances, as no lateral accelerations [33].

3.2. Adaptive Unscented Kalman Filter

An adaptive Unscented Kalman Filter (UKF) is used to attenuate the errors introduced in the
GNSS-INS positioning measurement when the satellite signal quality is reduced. In contrast to other
Kalman filtering techniques, the UKF frequently provides a lower estimation error and is preferable for
implementations in automated driving applications [10]. In this sense, a UKF-based approach capable
of adapting the measurement noise covariance matrix is presented here, this is an adaptive UKF.

The development of the UKF requires the space-state transition model of the vehicle detailed in
Section 3.1, which can be defined as,



Ẋ
Ẏ
ẏ
v̇y

ψ̇

ψ̈


=



0 0 0 − sin ψ
vx cos ψ

ψ 0

0 0 0 cos ψ
vx sin ψ

ψ 0
0 0 0 1 0 0

0 0 0 −
2Cα f +2Cαr

mvx
0 −vx −

2Cα f l f −2Cαr lr
mvx

0 0 0 0 0 1

0 0 0 −
2l f Cα f −2lrCαr

Izvx
0 −

2l f
2Cα f +2lr2Cαr

Izvx





X
Y
y
vy

ψ

ψ̇


+



0
0
0

2Cα f
m
0

2l f Cα f
Iz


δ (4)

where X, Y, vy, ψ and ψ̇ are parameters obtained from the GNSS-INS interface. The vx and δ are
parameters received from the odometer and steering angle sensor interface. A linear relationship
between the steering angle and the front-wheel angle is employed to obtain the current value of δ.
The stiffness coefficients Cα f and Cαr are obtained through the procedure described in Section 3.1.2.

The process noise covariance matrix (Qn) in a vehicle model is suggested to be calculated as
the propagation of each value per time step [11], in this sense, gathering the standard deviation of
parameters from the test vehicle circulating in normal conditions helps to determine Qn.

The measurement noise covariance matrix (Rn) is mainly associated with the accuracy of the
acquisition devices. These can be extracted from commercial GNSS devices data-sheet.

3.3. Virtual Positioning Sensor

When a GNSS failure event occurs (lower signal quality or total disconnection), a virtual
positioning sensor is used to provide an indirect position measurement by combining information
from the remaining physical sensors.

The velocity from odometer (vodo
x ), the lateral velocity from the filter (vuk f

y ), and the yaw angle
obtained due a discrete integration from the filter yaw rate measure (ψint), are considered to estimate
the vehicle velocities in global coordinates (Ẋ,Ẏ). A state-space representation is described as,[

Ẋ
Ẏ

]
=

[
cos ψint − sin ψint

sin ψint cos ψint

] [
vx

odo

vy
uk f

]
(5)

The obtained velocities are consequently integrated to obtain X and Y. The last available values
before the failure for X, Y and ψ are considered to be the initial values for the newly integrated
parameters. The remaining available parameters as vy and ψ̇ are combined with the indirect estimations
to maintain the same structure information sent by the UKF.
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3.4. Positioning Monitor

The monitor role is to continuously evaluate the positioning quality of the GNSS. In case of a very
poor positioning accuracy (quality below 2 in Table 2) or a catastrophic failure (e.g., power supply
unavailable), the monitor will instantly switch the information received from the UKF to the one
received from the virtual sensor. The output state parameters are combined with a failure tag (1/0) to
inform this status to the decision stage so that a degraded condition and proper action taken.

4. Fall-Back Strategies Implementation in the Decision Stage

The fail-operational positioning system provides information on the vehicle position and the
existence of a failure to the decision stage of the control architecture depicted in Figure 1. In this
section, the fall-back strategy, which includes both the trajectory planner and the collision-avoidance
subsystems, will be detailed.

4.1. Real-Time Trajectory Planner

In normal operation, a fixed route is planned off-line based on Bezier and feasible curvatures
generation procedure [34]. The velocities are limited considering the curvatures along the route [26]
defining bounds for lateral and longitudinal accelerations bearing in mind the passenger comfort [35].

In case of failure, a DDT fall-back strategy starts, and the trajectory planned is modified to achieve
a degraded driving mode. The velocity is instantly reduced to a degraded value, to avoid lateral
displacements in vehicle motion control while dead-reckoning is performed and maintained until the
vehicle is located over a safe-parking spot, where the vehicle stops. The path is not modified until a
safe-parking space is available.

The strategy for a degraded velocity (vdegr
x ) is depicted in Figure 4a. After the failure, a start

distance (dstart) is defined to reduce the speed at degraded deceleration (adegr
x ), as a sudden reduction

could affect negatively on the motion controller, producing undesirable and uncomfortable responses.
The same procedure is repeated to stop once the vehicle is located over the emergency shoulder.

The strategy for a degraded path is presented in Figure 4b. After the failure, the planned path is
maintained until a safe-parking place becomes available ([X, Y]start), at this point, the planned route
is moved perpendicularly based on a predefined lateral velocity (vey) to a proper distance in the
emergency shoulder (dey).

Figure 4. Real-time trajectory planning for (a) velocity and (b) path.

The degraded path reference is estimated to displace laterally from the original route faster than
the vehicle’s capabilities, therefore the absolute value of the lateral error increases and decreases during
the lane-change maneuver. The dey magnitude helps to predict when the vehicle goes out the main
route (dey > 0.64 m) and afterward is located enough on the emergency shoulder (dey < 0.16 m), finally
permitting reduction of the degraded velocity to zero. A flowchart of the real-time trajectory planning
is depicted in Figure 5. The practicability of this methodology is discussed in Section 6.1.
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Figure 5. Flowchart on real-time trajectory planning.

4.2. Rear-End Collision Avoidance

In both normal and degraded operation, the automated vehicle implements a rear-end
collision-avoidance system using the data provided by the fail-operational positioning system and a
detection system of the objects ahead.

For that purpose, a Model Predictive Control (MPC) approach has been implemented, generating
the velocity references to be followed by a low-level control, attempting to maintain a safe relative
distance (dr) and velocity (vr) from objects ahead on-route. A one-dimensional kinematic model is
considered to model the longitudinal vehicle motion,

v̇x

ȧx

ḋr

v̇r

 =


ax

jx
vt − vx

at − ax

 (6)

where jx is the longitudinal jerk, vt is the target object velocity and at is the target object acceleration.
The state parameters η = [vx dr vr] are optimized in the entire prediction horizon (H).

The references for vx are defined by the planned velocity discussed in Section 4.1. The reference
values for dr and vr are defined as,

dre f
r = dmin

r + vxthw (7a)

vre f
r = 0 (7b)

where dmin
r is the minimum safety distance at 5 m, and thw is a headway time equals to 1 s.

The state parameters weighting matrix Qw changes according to a dr-vr diagram [28], which
determines the operation mode to perform velocity or headway control in case an object detection.

The maximum deceleration permitted (are f
x ) changes also with the operation mode, being this an

important value to properly perform a longitudinal vehicle motion control. Lower and upper bounds
are considered to maintain properly a safe distance from objects ahead as 5 m < dr < 50 m.

As current detection sensors are mostly incapable of giving a reliable measurement of objects
accelerations [28], the target object acceleration at is neglected at any time. The dr and vr are calculated
from a pair of projection points over the tracked route, this functionality is supposed available in
system failure condition.

4.3. Vehicle Motion Control

The velocity references provided by the rear-end collision-avoidance system are considered when
objects are detected ahead instead of the trajectory references from the real-time planner. The vehicle
motion control follows the references based on an MPC strategy. To perform this task, the model
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implemented by the MPC is a kinematic bicycle model (Section 3.1) with additional equations for jx
and lateral error distance (ey) to constraint it and assure an accurate lane-keeping,



Ẋ
Ẏ
ψ̇

δ̇

v̇x

ȧx

ėy


=



vx cos(ψ + β)

vy sin(ψ + β)

vx cos(β) tan(δ)/L
∆δ

ax

jx
vx sin(ψ + β − ψre f )


(8)

where the ψre f is the yaw angle reference for a current position of the vehicle over the route.
The state parameters η = [X Y ψ vx] and the control inputs u = [∆δ jx] are optimized for the whole

H. The velocity reference is defined by the rear-end collision system when an object ahead is present,
in other cases this reference comes from the planned trajectory as well as those for lateral vehicle
motion control. The control inputs are after integrated to reproduce the steering and pedal position as
actuation signals for the vehicle interface.

5. Case Study

In this section, the case study to evaluate the fail-operational approach is presented. First, the test
scenario is defined based on a route in a real urban scenario. Secondly, the test platform to perform the
DDT fall-back strategy is detailed. Finally, the parameters considered from the database and for the
decision and control are mentioned.

5.1. Realistic Scenario

The realistic scenario considered to validate the proposed approach is a highly automated driving
bus to carry passengers at the port of Malaga city (Spain), as depicted in Figure 6.

Figure 6. Realistic environment scenario for automated driving system tests on simulation. (a) Satellite’s
view of urban route, (b) permitted and non-permitted stops in case of total positioning failure, and (c)
evaluation zone for test case study.

The selected test route covers a challenging environment with static objects in addition to difficult
vehicle motion maneuvers as roundabouts, merging streets and intersections, as seen in Figure 6a.
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In case of system failures, the ADS must respond without driver intervention to achieve a minimal
risk condition bringing the vehicle to a safe state. In this sense, permitted and non-permitted stops are
considered to be portrayed in Figure 6b avoiding to instantly stop.

The test case analyzed in this work is delimited to the evaluation zone depicted in Figure 6c.
The failure to be studied is the possible malfunction of the GNSS position receiver (which is a vital
part of the ADS), which starts degrading up to total failure and a dynamic driving task (DDT) fall-back
strategy must be activated by the ADS.

As an additional issue, the case is considered in which the emergency shoulder cannot be used,
as another vehicle is already parked, requiring driving of a longer distance to the next permitted stop
while performing dead reckoning. Three different failure scenarios are analyzed, as shown in Figure 7.

Figure 7. DDT fall-back strategy response under three different scenarios. A minimum risk condition
is achieved (a) before and (b) after an object parked on the emergency shoulder. A next permitted stop
necessary due (c) no space available on current emergency shoulder.

When a failure of the GNSS occurs, the distance required (dreq
r ) to achieve a safe-parking is

calculated constantly before to initiate the maneuver as presented in the Equation (9). If the dreq
r is

lower than dr from and object and the available emergency shoulder longitude, then the lane-change
maneuver initiates to achieve a minimal risk condition, parking the vehicle on the emergency shoulder.
Moreover, the first one of the two terms in the right-hand side of Equation (9) can be employed to
estimate a stop on-lane if permitted. On the contrary, the vehicle continues to the next permitted stop.

dreq
r = vx(

vx

adegr
x

+ tdelay + ttimeout) +
dey − ey

vey
(9)

where tdelay and ttimeout are additional times considered to complete the lane-change maneuver being
conservative. The tdelay is stated as 0.5 s and related to actuation devices and vehicle’s inertia that
retard the final stopping time. The ttimeout is defined as 1 s considering a required time for the vehicle
to be located enough on the emergency shoulder before totally stop.
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It should be noted that the case study has been implemented in a simulation environment.
This allows introduction of the degrading behavior in the perception system and evaluating the
proposed fall-back strategies with minimal risk before future implementation.

5.2. Test Platform

A standard electric bus has been selected as the test platform for the case study scenario. This bus
weights 16,000 kg and has a dimension of approximately 12.16 × 3.30 × 2.55 m, with a wheelbase of
5.77 m, a minimum turning radius of 7.2 m and a maximum front-wheel angle of 0.68 rad.

This way, the test platform has been modeled in Dynacar simulator [36], which uses a multi-body
formulation to link the chassis with a steering knuckle suspension at the front axle, and a rigid axle
suspension type at the rear. The suspensions are also linked to the two wheels at the front axle and
four wheels at the rear axle, based on a standard Pacejka tire model defined in [37].

Moreover, the sensors have been simulated from the data obtained from the Dynacar model,
introducing measurement errors to simulate degraded scenarios. The exteroceptive sensors can cover
360◦ around the vehicle, reaching a maximum radius of 60 m for object detection. In the case of the
GNSS sensor, which is the focus of the work, a random Gaussian noise associated with the quality
signal of the GNSS-INS interface is added around the nominal state parameter obtained from the
simulated test platform. The random noise values are introduced considering the quality of the signal
to be simulated, as in real commercial devices (Table 2). Future implementation will need some of
these exteroceptive sensors, the instrumentation necessary for real vehicles is detailed in [29].

5.3. Parameters

To test the proposed approaches, the following parameter values have been applied.
The noise covariances for the UKF have been calculated as suggested by [11], the process noise

covariance matrix (Qn) is defined assuming the standard deviation of parameters from the test vehicle
circulating in normal conditions helps to determine Qn. The measurement noise covariance matrix (Rn)
is selected by taking into account the accuracy of commercially available acquisition devices. The Qn

and Rn are depicted in the Table 2.

Table 2. Process and measurement covariances in UKF.

Position Covariances Inertial Covariances

Parameter Quality Qn Rn Unit Parameter Qn Rn Unit

σ2
XY

5

1 × 10−3

0.0141 m σ2
y 1.26 × 10−2 2.78 × 10−2 m

4 0.2828 m σ2
vy

1.26 × 10−4 2.78 × 10−4 m
s

3 0.4243 m σ2
ψ 2.7 × 10−1 1.7 × 10−1 rad

s
2 1.1314 m σ2

ψ̇
2.7 × 10−3 1.7 × 10−3 rad

s2

The fail-operational positioning system requires the estimation of the Cornering Stiffness
coefficients. As detailed in Section 3.1.2, a set of open-loop tests is carried out to determine the
steady-state circular driving behavior described in [32], obtaining a set of data that can be used to
create a cornering stiffness map.

For that purpose, the open-loop tests must cover the whole range of vx and δ for the test platform
detailed in Section 5. Hence, the steering angle has been modified from −0.5 to 0.5 rad, in 0.1 rad steps,
while the longitudinal speeds have taken the values of 0.5, 1, 2, 3, 4, 5 m/s.

The resulting cornering stiffness map is shown in Figure 8. From this map, intermediate values
required by the fail-operational positioning system are estimated using interpolation.
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Figure 8. (a) Front and (b) rear cornering stiffness estimation

In the case of the Real-Time trajectory planner, the start distance dstart, longitudinal velocity and
deceleration in degraded mode are fixed to 5 m, 1.5 m/s and 0.2 m/s2, respectively, while (vey and dey)
are fixed for the case study proposed to 0.2 m/s and 4 m, respectively.

To implement the vehicle motion MPC controller, the following parameters have been used.
A prediction horizon of H = 10 is defined with a constant time step of 0.5 s. The states parameters
and control input weights for optimization are intuitively defined as Qw = diag([1 1 25 1]) and
Rw = diag([10 10]), respectively, giving more importance to the vehicle orientation over the route.
The physical constraints for state parameters and control inputs are summarized in Table 3.

Table 3. Constraints in the low-level control.

Parameter Lower Upper Unit

∆δ 1 1 rad
s

jx 1 1 m
s3

δ −0.68 0.68 rad
vx 0 vre f

x
m
s

ax −are f
x 0.2 m

s2

ey ere f
yL ere f

yR m

where vre f
x are the velocity references, are f

x depends to the longitudinal operation mode defined in Section 4.2, and
the ere f

yL and ere f
yR are the left and right lateral error distances to the borders, respectively, according the current

position of the vehicle on-lane.

Finally, it should be noted that the open-source ACADO Toolkit is employed to solve the
optimal control problem both in the rear-end collision-avoidance system and vehicle motion control.
A continuous output Implicit Runge–Kutta integrator of second-order simulates the system 1
integration step in both cases. The H is parametrized to obtain 10 elements with a constant time
step of 0.5 s.

6. Results and Discussions

In this section, the most relevant results associated with the proposed fail-operational positioning
system and the defined fall-back strategies are analyzed. Moreover, the effect of the proposed approach
in the comfort of the passengers is also analyzed.

6.1. Evaluation of the Fail-Operational Positioning System

The robustness of the control architecture is evaluated here performing complete laps on the test
circuit. The Figure 6a,b shows the route defined for the evaluation of the fail-operational positioning
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system based on UKF. This trajectory is executed using the control architecture proposed in Section 2.
Four different scenarios are proposed, with different GNSS positioning qualities (from 2 to 5).

In each simulation, the positioning data gave by the raw GNSS-INS sensor (with Gaussian noise),
the output of the UKF filter and the real position of the vehicle are measured, and compared with the
trajectory reference, to calculate the lateral positioning error ey (m).

Results for the four signal quality scenarios are shown in Figure 9, where the statistic distribution
of the lateral positioning error ey (m) is calculated considering the raw GNSS-INS sensor data (raw),
the UKF filter output (UKF) and the real position of the vehicle (real).

Figure 9. Lateral error under different GNSS positioning quality.

From the results, the decrease in the quality of the GNSS signal increases significantly the lateral
error if the raw data is used (raw case). It could be fatal in an automated vehicle operation such
as the one analyzed. Moreover, the errors could introduce instability in the controllers, depending
on the nature of the noise. This emphasizes the need for providing robust solutions to positioning
measurements in automated vehicles.

Results also demonstrate the positive performance of the proposed UKF approach (UKF case),
which can reduce in more than 90% the error associated with ey in the poorest quality condition
(GNSS 2). This demonstrates the validity of the proposed approach. In addition, the level of
performance that can be achieved using the UKF is demonstrated in the real position of the vehicle
(real case).

6.2. Evaluation of the Dynamic Driving Task Fall-back Strategy

In this section, the proposed fall-back strategy performance is evaluated in the three different
scenarios depicted in Figure 7: stopping before a parked vehicle, after a parked vehicle and continuing
to a next permitted stop due to no space availability.

In all three scenarios, the same GNSS failure sequence will be evaluated, as depicted in Figure 6c.
At the beginning of the test, the GNSS system has a higher signal quality, sequentially reducing it
until a total failure exists. At that point, the fall-back strategy will have to take on the control of
the automated bus and lead it to a minimum risk position using the data provided by the virtual
positioning controller.
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Figure 10 indicates, for each scenario, the fall-back sequence carried out. In the first row, the point
in which the failure occurs (the same in the three cases) is depicted. In the second one, the activation
of the degraded condition is shown, in which the speed of the vehicle is reduced. Then, when a
free parking spot is activated, the lane-changing maneuver is activated, to finally brake and stop.
Please note that the black lines represent the road borders, the green dotted line is the central line of
the road, while the red and violet lines are the executed and calculated trajectories.

Figure 10. DDT fall-back strategy under different use cases.

The performance data in the three scenarios are shown in Figure 11. In this graph, the vertical
dashed lines define the starting points of the failure, degraded, maneuver and brake phases (stop is
considered the end of the graph). Moreover, four main performance indicators are analyzed for each
scenario. In the first row (vx) the longitudinal speed reference given by the trajectory planner (Reference)
and the real speed of the vehicle (Ego-vehicle) is depicted. In the second one (dx), the longitudinal
distance to the nearest object (parked vehicle) (ObjectDistance) and to the next emergency shoulder
(SpaceAvailable) is shown. These distances are calculated with the position of these items in the planned
trajectory. Also, the longitudinal distance required for performing the lane-change maneuver is shown
(SpaceRequired). This calculation is detailed in the Equation (9). In the third row, the time evolution
of the lateral error ey for the planned trajectory is shown, considering the raw data provided by the
GNSS system (which fails) (raw), the output of the UKF (UKF) and the real position of the vehicle (real).
Finally, the computational cost of the high and low-level controllers is shown.
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Figure 11. DDT fall-back response due GNSS total failure after continuously degrading position.

From these graphs, several conclusions can be drawn. First, the robustness of the proposed
UKF-based position estimator is demonstrated in all scenarios. If ey is analyzed, it can be noted that the
effect of GNSS quality degradation directly affects the noise of the positioning system, which causes
important ey errors (up to 1 m). However, as previously analyzed, the use of the proposed UKF-based
estimator reduces the effect substantially.

Second, the proposed fail-operational Positioning System proves an effective approach in a total
failure case. When total failure happens (black vertical dashed line), the data provided by the GNSS
remains constant and no longer can be used to estimate the position. At this point, the Positioning
Monitor of the fail-operational positioning system switches to the Virtual Positioning Controller,
entering degraded mode while making use of the odometer and the steering wheel to estimate the
position of the vehicle. Please note that due to the nature of the selected sensors, estimation errors in ey

graphs will accumulate in time (see real), creating a drift. This effect is better seen in the third scenario,
in which the nearest emergency shoulder is not available (is full) and therefore, the vehicle needs to
move to the next one, operating more time in degraded mode. Hence, the degraded mode is intended
to be used in emergencies for limited amounts of time or small distances, which is a valid assumption
in urban environments such as the ones analyzed in the case study.

Third, the longitudinal speed (vx) and distance (dx) shows that the proposed fall-back strategy
performs properly using the data provided by the fail-operational positioning system. When the
failure occurs (black vertical dashed line), the vehicle reduced its speed to 1.5 m/s in all cases, entering
a degraded state (blue vertical dashed line) once constant speed is achieved.

In this state, the trajectory planner searches for available spaces on the next emergency shoulder.
For that purpose, the planner calculates the required space for the emergency parking maneuver
(SpaceRequired) which depends on the current velocity and compares it with the distance to the nearest
object/vehicle parked (ObjectDistance) and the available emergency shoulder distance (SpaceAvailable).
Only if both are higher than the required distance to maneuver, the trajectory planner modifies the
original route to start the lane-change maneuver. Please note that the object detection distance limit
is 50 m and that the emergency shoulder-distance limit detection is 60 m, hence higher distances are
limited to the maximum value.

The first scenario (parking before an object/vehicle in a shoulder), is the simplest one. It can
be seen that when the degraded state is activated (97 s), the required space is less than the available
shoulder distance, and the distance to the next vehicle, activating the lane-change maneuver (which
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implies a peak in ey due to the lateral reference change), and moving through the shoulder until the
maneuver has been completed. In the second scenario (parking after an object/vehicle in a shoulder),
the degraded state is activated at the same time, but in this case, the emergency shoulder is still
available, but a vehicle is already parked and the relative distance to it is too low to maneuver. Hence,
the vehicle continues moving until the parked vehicle is surpassed (115 s). At this point, 50 m of
emergency shoulder remains, which is more than the space required for the maneuver. In the third
scenario (no space), there are two vehicles parked in the emergency shoulder. Hence, when the
degraded state is activated, the distance to the first vehicle, and then, to the second, is detected
(the vehicle change is shown as a peak at time 115 s). When the second vehicle is surpassed, however,
the remaining shoulder distance is not enough to maneuver safely, and the vehicle continues moving
to the next emergency shoulder.

Finally, if the computational cost graphs are considered, it can be seen that the proposed approach
is computationally efficient, requiring less than 1ms to execute in an Intel Core i7-6600u CPU, 2.60GHz
and 16GB RAM. This demonstrates that the approach can be implemented in real time.

Evaluation of Passenger Comfort

Comfort is a key issue when considering automated driving solutions. Traditionally, comfort
has been related to the magnitude of the lateral and longitudinal accelerations, being higher ones less
comfortable for passengers.

In Figure 12 the lateral and longitudinal accelerations associated with the three scenarios analyzed
in the previous section are depicted. Two situations are considered, the first row depicts the acceleration
results when a degraded GNSS quality (level 2) exists when the failure happens. The second situation
considers the case in which an optimal quality (level 5).

Figure 12. Longitudinal and lateral accelerations in DDT fall-back strategy.

As can be seen, even before the failure, the differences in the lateral acceleration are important due
to the noise that the GNSS presents in lower qualities. Lateral accelerations are an order of magnitude
higher in these cases, resulting in more uncomfortable driving. Therefore, sensor quality directly can
affect passenger comfort.

Please note that the longitudinal acceleration is not affected in this case, due to the odometry is
used to estimate it. When failure occurs, similar behavior is achieved. However, the vehicle speed and
accelerations are reduced when the positioning monitor switches to the virtual positioning sensor.

7. Conclusions and Future Works

Although the research and development in automated driving has considerably helped the
implementation of higher SAE automation levels, current control architectures rely on the driver as a
backup in case of system failures. Moreover, hardware redundancy is the usual action plan to ensure
fail-operational systems, as few software solutions exist in the literature.
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The present work targets the issue of the vehicle bringing itself to a safe state in degraded mode
after a major failure in the position receiver. Instead of a progressive deceleration on the current lane,
the system focuses on seeking a permitted space on the route, performing a lane-change maneuver to
the emergency shoulder, and then executes a safe stop.

The fail-operational control architecture and systems proposed here are explained in depth.
They include basic ADS features to achieve a minimal risk condition along a route, according to
a realistic case study presented for bus shuttling services as: fail-operational positioning system,
real-time trajectory planner, collision-avoidance system and vehicle motion controller.

The fail-operational positioning system comprises a UKF to improve the vehicle location due to
lack of quality in the position receiver, an issue very common in urban scenarios where the satellite
line-of-sight would be constantly obstructed. A virtual sensor switches on by a positioning monitor
in case of total failure in the position sensor is detected, then a DDT fall-back strategy is possible
performing dead reckoning with database information. A previous cornering stiffness estimation
through open-loop tests provides useful information for the vehicle model employed.

The real-time trajectory planner is capable of comfortably slow-down the velocity reference after
the failure, expecting an available and permitted space to perform a lane-change maneuver and safely
locating the vehicle on the emergency shoulder. The benefits of having an object parked in advance are
considered, hence the available space to initiate the parking maneuver is contrasted constantly with a
required space calculation. A rear-end collision-avoidance system is activated at all times adapting the
velocity reference to remain a safe distance to objects ahead.

Both the collision-avoidance system and the vehicle motion controller are based on MPC. It is
possible to optimize the trajectory bearing in mind safety and comfort in maneuvers. The vehicle motion
controller includes a lateral position restriction aiming to improve the lane-keeping performance, being
possible to enhance it on one side when lane-change maneuvers are required avoiding that the vehicle
goes out the road boundaries.

As this paper was focused on presenting a fail-operational control architecture approach in case
of positioning failures, future works will consider in depth the maximum time–distance travel capacity
in dead-reckoning circumstances under the influence of real instrumentation and the urban scenario
presented in this article.
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