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EXPLORING PROJECTIVE NORM GRAPHS

T. BAYER, T. MÉSZÁROS, L. RÓNYAI and T. SZABÓ

Abstract. The projective norm graphs NG(q, t) provide tight constructions for the
Turán number of complete bipartite graphs Kt,s with s > (t−1)!. The determination

of the largest integer st, such that the projective norm graph NG(q, t) contains Kt,st

for all large enough prime powers q is an important open question with far-reaching
general consequences. Here we settle the case t = 4. Along the way we also develop

methods to count the copies of any fixed 3-degenerate subgraph, and find that
projective norm graphs are quasirandom with respect to this parameter. Some of

these results also extend the work of Alon and Shikhelman on generalized Turán

numbers. Finally we also completely determine the automorphism group of NG(q, t)
for every possible values of the parameters.

1. Introduction

Given a graph H and integer n ∈ N, the Turán number of H, denoted by ex(n,H),
is the maximum number of edges a simple H-free graph on n vertices may have.
For general H, as a corollary of the Erdős-Stone Theorem, Erdős and Simonovits

proved that ex(n,H) =
(

1− 1
χ(H)−1

) (
n
2

)
+ o(n2), where χ(H) is the chromatic

number of H. If H is not bipartite, this theorem determines ex(n,H) asymp-
totically, however for bipartite graphs it merely states that ex(n,H) is of lower
than quadratic order. A general classification of the order of magnitude of bi-
partite Turán numbers is widely open, even in the simplest-looking cases of even
cycles and complete bipartite graphs [6]. For even cycles the order of magnitude
of ex(n,Ck) is known only for k = 4, 6, 10. For complete bipartite graphs a gen-

eral upper bound ex(n,Kt,s) ≤ 1
2

t
√
s− 1 · n2− 1

t + t−1
2 · n was proved by Kővári,

T. Sós and Turán using an elementary double counting argument. In general it
is commonly conjectured that the order of magnitude in the Kővári-T.Sós-Turán
theorem is the right one.

Conjecture 1. For every t, s ∈ N, t ≤ s, ex(n,Kt,s) = Θ
(
n2−

1
t

)
.
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A general lower bound of Ω(n2−
s+t−2
st−1 ) can be obtained using the probabilistic

method, but this is of smaller order for all values of the parameters. Constructions
matching the order of the upper bound were first found for K2,2-free graphs by
Klein and later for K3,3-free graphs by Brown. In both cases further analysis has
also led to the determination of the correct leading coefficient (see e.g. [6]).

Alon, Rónyai and Szabó [2], by modifying a construction of Kollár, Rónyai and
Szabó [8], proved Conjecture 1 for t ≥ 2, s > (t− 1)! by constructing a family of
graphs, called projective norm graphs, that are Kt,(t−1)!+1-free and their density
matches the order of magnitude of the Kővári-Sós-Turán upper bound.

2. The projective norm graphs

Let q be a prime power, t ≥ 2 a positive integer and let N : Fqt−1 → Fq denote

the Fq-norm on Fqt−1 , i.e. N(A) = A · Aq · Aq2 · · ·Aqt−2

for A ∈ Fqt−1 . Then
the projective norm graph NG(q, t) has vertex set Fqt−1 × F∗

q and two vertices

(A, a) and (B, b) are adjacent if and only if N(A+B) = ab1. Clearly, NG(q, t) has
n = n(NG(q, t)) = qt−1·(q−1) = (1+o(1))qt vertices and it is a straightforward cal-
culation to check that the number of edges is e = e(NG(q, t)) = (1+o(1)) 1

2q
2t−1 =

(1 + o(1)) 1
2n

2− 1
t . Using a general algebro-geometric lemma [8], it was shown [2]

that NG(q, t) is Kt,(t−1)!+1-free and since it also has the desired density, it verifies
Conjecture 1 for s > (t− 1)!. Since their first appearance, projective norm graphs
served as important examples in many other areas of mathematics as well.

A drawback of the proof of the Kt,(t−1)!+1-freeness of NG(q, t) is that it does
not give any information about complete bipartite subgraphs with any other pa-
rameters. In particular, it is not even known whether NG(q, t) contains a Kt,(t−1)!.
Considering the fundamental nature of Conjecture 1, it was already suggested in
[2] that the determination of the largest integer st, such that NG(q, t) contains
Kt,st for every large enough prime power q is a question of great interest. It is
rather easy to see that s2 = 1 and s3 = 2, but the general bounds for t ≥ 4 are
very far apart: t− 1 ≤ st ≤ (t− 1)!. If st were found to be less than (t− 1)! then
the projective norm graphs verified Conjecture 1 for more values of the parameters
than what is known currently. The generality of the key lemma used in [2] gives
reason for some optimism here.

Recently Grosu showed that there is a sequence of primes of density 1
9 , such

that for any prime p in this sequence NG(p, 4) does contain a K4,6. Here, as our
first main result, we greatly extend this result.

Theorem 1. NG(q, 4) does contain a copy of K4,6 for any prime power q =
pk ≥ 5. In particular we have s4 = 6.

We remark that for q = 2 it is immediate that it does not contain a K4,6, and
for q ∈ {3, 4} one can easily check the same with a computer.

1For technical reasons here we allow the two vertices to be the same, i.e. we allow loop edges.
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3. Common neighbourhoods

The proof of Theorem 1 is based on a detailed analysis of the common neighbour-
hoods of small sets of vertices.

For a set of vertices T ⊆ V (NG(q, t)) let us denote by deg(T ) the size of the
common neighbourhood of the vertices in T . We call a set of vertices in NG(q, t)
generic, if the first coordinates of them are pairwise distinct. In particular, the
common neighborhood of non-generic vertex sets is empty. Also, a set of vertices
we be referred to as aligned if all its elements have the same second coordinate and
for T ⊆ V we set ξ(T ) = 1 if T is aligned and ξ(T ) = 0 otherwise. Furthermore, for
q odd let ηFq be the quadratic character of Fq. With all this notation in hand we
can now state our second main result about the sizes of common neighbourhoods
of small sets of vertices.

Theorem 2. Let q = pk be a prime power, t ≥ 2 an integer, and consider a
generic j-subset T = {(Ai, ai) : i = 1, . . . , j} of vertices in NG(q, t).

(a) If |T | = 2, then deg(T ) = qt−1−1
q−1 − ξ(T ).

(b) If |T | = 3 and q is odd, then

deg(T ) =


1− ηFq

(
(1 + c1 − c2)2 − 4c1

)
− ξ(T ) if t = 3,

2q + 1− ηFq (−3)− ξ(T ) if t = 4, (c1, c2) = (1,−1),

qt−3 +O(qt−3.5) otherwise,

where c1 = c1(T ) = a1
a3
·N
(
A2−A3

A1−A2

)
∈ Fq, c2 = c2(T ) = a2

a3
·N
(
A1−A3

A1−A2

)
∈ Fq.

(c) If |T | = 4 and t ≥ 4 then deg(T ) ≤ 6(qt−4 + qt−5 + · · ·+ q + 1).

One interesting feature of part (c) is that its proof provides a new, more ele-
mentary argument for the K4,7-freeness of NG(q, 4).

4. Quasirandomness

Szabó [9] (and independently Alon and Rödl [1]) showed that projective norm
graphs are quasirandom. This means that to some extent they behave like random
graphs. It is an interesting problem to determine to what extent does this random
behavior hold. There are definitely limits, as for example the Erdős-Rényi random
graph on the same number of vertices and with the same edge density is expected
to contain a Kt,(t−1)!+1, while NG(q, t) is Kt,(t−1)!+1 -free. For two graphs G
and H let us denote by XH(G) the number of labaled copies of H in G. We
say that a (sequence of) graph(s) G = G(n) on n vertices with edge density
p = p(n) is H-quasirandom if it contains roughly the same number of labeled
copies of H as the Erdős-Rényi random graph G(n, p) is expected to contain, i.e.
XH(G) = Θ

(
nvHpe(H)

)
. If we actually have XH(G) = (1 + o(1))

(
nvHpe(H)

)
then

we say that G is asymptotically H-quasirandom.
Theorem 2 allows us to estimate XH(NG(q, t)) for many graphs H and so to

explore the quasirandomness of NG(q, t).
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Theorem 3. Let q = pk be an odd prime power and H a simple graph. If
H is 3-degenerate and t ≥ 4 then NG(q, t) is H-quasirandom. Moreover, if H is
3-degenerate and t ≥ 5 or H is 2-degenerate and t ≥ 3, then NG(q, t) is asymp-
totically H-quasirandom.

As NG(q, 2) does not contain K2,2 and NG(q, 3) does not contain K3,3, the
bound on t in the first part is best possible for both 3- and 2-degenerate graphs.
We conjecture though that the stronger statement in the second part should also be
true for 3-degenerate graphs and t = 4. We also remark that the theorem remains
valid even if H = Hq and v = v(Hq) grows moderately, namely if v(Hq)) = o(

√
q)

as q tends to infinity, with an error term o
(
qtv(H)−e(H)

)
in the second part.

For graphs H with ∆ = ∆(H) ≤ t
2 already the Expander Mixing Lemma implies

that NG(q, t) is H-quasirandom. For ∆ = 2 this statement starts to work when
t is at least 4 and for ∆ = 3 when t is at least 6. Theorem 3 goes beyond the
Expander Mixing Lemma and improves the bound on t when ∆ ≤ 3, in particular,
it implies that NG(q, 4) is K4-quasirandom. Furthermore, it also deals with the
much wider class of degenerate graphs rather then merely bounded degree graphs.

5. Generalized Turán numbers

For two simple graphs T and H (with no isolated vertices) and a positive integer n
the generalized Turán problem asks for the maximum possible number ex(n, T,H)
of unlabeled copies of T in an H-free graph on n vertices. Note that by setting
T = K2 we recover the original Turán problem for H. A systematic study of this
function was done recently by Alon and Shikhelman [3]. Among others, they have
shown that for s > (t− 1)! we have

ex(n, T,Kt,s) = Θ
(
nv(T )− e(T )

t

)
,

whenever T = Km with m ≤ t+2
2 or T = Ka,b with a ≤ b ≤ t

2 . Using Theorem 3
we managed to extend the validity of their result.

Theorem 4. For every t ≥ 4 and s > (t− 1)! we have

ex(n, T,Kt,s) = Θ
(
nv(T )− e(T )

t

)
,

whenever T = K4 or T = Ka,b with min{a, b} ≤ 3.

6. The automorphism group

Finally, we were also able to determine the automorphism group of NG(q, t) for
every value of the parameters. Below Zn denotes the cyclic group of order n.

Theorem 5. For any odd prime power q = pk and integer t ≥ 2, the maps

(X,x) 7→ (C2 ·Xpi ,±N(C) · xp
i

)
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are automorphisms of NG(q, t) for any C ∈ F∗
qt−1 and i ∈ [k(t − 1)]. For any

q = 2k and integer t ≥ 2, the maps

(X,x) 7→ (C2 ·Xpi +A,N(C) · xp
i

)

are automorphisms of NG(q, t) for any choice of C ∈ F∗
qt−1 , A ∈ Fqt−1 , and

i ∈ [k(t− 1)]. Moreover, for q > 2 and t ≥ 2 these include all automorphisms and
the automorphism group has the following structural description.

Aut(NG(q, t)) '


Zqt−1−1 o Zk(t−1) if q, t− 1 are both odd(
Z2 × Z qt−1−1

2

)
o Zk(t−1) if q is odd, t− 1 is even(

(Zp)
k(t−1) o Zqt−1−1

)
o Zk(t−1) if q is even

Note that if q = 2 then NG(2, t) is a complete graph on 2t−1 vertices, and so
Aut(NG(2, t)) is the whole symmetric group of order 2t−1. The automorphisms in
Theorem 5 are not that difficult to find, the main challenge is to show that their
list is complete.

References
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