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Abstract

We consider a scheduling problem, where a set of unit-time jobs has to be sequenced on
a single machine without any idle times between the jobs. Preemption of processing is not
allowed. The processing cost of a job is determined by the position in the sequence, i.e.,
for each job and each position, there is an associated weight, and one has to determine a
sequence of jobs which minimizes the total weight incurred by the positions of the jobs. In
addition, the ordering of the jobs must satisfy the given chain-precedence constraints. In this
paper we show that this problem is NP-hard even in a special case, where each chain consists
of two jobs (2-chains). Further on, we study the polyhedron associated with the problem,
and present a class of valid inequalities along with a polynomial-time separation procedure,
and show that some of these inequalities are facet-defining in the special case of 2-chains.
Finally, we present our computational results that confirm that separating these inequalities
can significantly speed up a linear programming based branch-and-bound procedure to solve
the problem with chains of two jobs.

Keywords Scheduling - Polyhedra - Cutting planes

1 Introduction

We consider a scheduling problem where a set of unit-time jobs has to be sequenced on a
single machine without any idle times between the jobs. Preemption of processing is not
allowed. The ordering of the jobs must satisfy a given precedence relation derived from a
directed acyclic graph. The processing cost of a job is determined by the position in the
sequence, i.e., for each job and each position, there is an associated weight (which can be
any rational number), and one has to determine a sequence of jobs which minimizes the total
weight incurred by the positions of the jobs.

This work has been supported by the OTKA Grant K112881, and by the Grant GINOP-2.3.2-15-2016-00002
of the Ministry of National Economy of Hungary.

B Tamas Kis
tamas.kis @sztaki.mta.hu

I Institute for Computer Science and Control, Hungarian Academy of Sciences, Budapest Kende str.

13-17, 1111, Hungary

@ Springer


https://core.ac.uk/display/286608529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-019-03180-8&domain=pdf
http://orcid.org/0000-0002-1062-6272
http://orcid.org/0000-0002-2759-1264

284 Annals of Operations Research (2020) 284:283-322

Formally, let 7 = {Ji,..., J,} be the set of unit-time jobs, that is, each job J; has
processing time p; = 1. For a given schedule S and job J; let ajS e {1, ..., n} indicate the

position of the job in the sequence (that is, o J-S = k if exactly k — 1 jobs are scheduled before
J;). For each job J; and position k there is a weight w; ; € Q, and thus the weight of job J;

for a given schedule S is w o The goal of the problem is to determine a schedule § that
U

minimizes the total weight Z;’;l W ;s Using the classification of deterministic sequencing
and scheduling problems introduced %y Graham et al. (1979), we denote the problem as
Lipj =1 Y wje ;- In the case of precedence relations we have a directed acyclic graph,
where the nodes correspond to the jobs, and if there is an arc from J; to J;, then job J; must
be assigned to an earlier position than job J;. This problem is denoted as 1|prec, p; =
1| > wjq;, and if the directed acyclic graph decomposes into chains (that is, each job has
at most one immediate predecessor and at most one immediate successor), then the problem
is 1 |chains, pj = 1| 3 wj ;. Note that problem 1|p; = 1] 3 w; o, is equivalent to the
well-known assignment problem (Kuhn 1955), thus problem 1 |prec, p; = 1| > w j.o; can
be considered as a generalized assignment problem, where the set of positions is ordered,
and the assignment must satisfy the given precedence constraints.

In our model, the positions of the jobs in the solution determine the job-weights in the
objective function. Another, more thoroughly studied model is scheduling with position-
dependent processing times, i.e., the processing time of each job is a function of its position
in the sequence, see e.g., (Bachman and Janiak 2004; Rudek 2012).

In this paper we study the scheduling problem 1 |chains, p; = 1] Y w j.o;» and provide
new complexity, polyhedral, and computational results. We show that this scheduling problem
is NP-hard in the strong sense, even if each chain consists of two jobs only. We also provide
a natural integer programming formulation whose integer feasible solutions represent all
the feasible schedules. For the corresponding polyhedron, we derive new valid inequalities
strongly related to the chain structure of the precedence constraints. Our inequalities are
obtained by establishing a connection to the parity polytope, investigated in Lancia and
Serafini (2018). We also provide a polynomial time separation procedure. Further on, for
2-chains, i.e., where all chains consist of two jobs, we show that a sub-class of the new
inequalities induces facets of the convex hull of feasible solutions of the scheduling problem.
Since the problem is NP-hard in the strong sense, identifying non-trivial facets becomes even
more significant. We have tested the effectiveness of our inequalities in a branch-and-cut
based exact method which was implemented in C++ and tested on a number of problem
instances. Our computational results show that for 2-chains, the new cuts are very effective
as they accelerate the solution procedure by orders of magnitude.

The paper is organized as follows. In Sect. 3, we give an integer programming for-
mulation for problem 1 |prec,p; = 1| Y} w j.oj» Which is also appropriate for problem
Lchains, pj = 1| 3 wjq;. In Sect. 4, we derive valid inequalities for the convex hull
of feasible solutions of the problem 1 |chains, pj = 1|y after establishing a linear rela-
tion to the parity polytope, and we also describe a polynomial-time separation procedure.
In Sect. 5 we consider a special case of 1|chains, pj = 1|y, where each chain consists
of two jobs (i.e., the precedence graph is a directed perfect matching). We denote this
problem by 1|2-chains, p;j = 1|y, where the term 2-chains indicates that each chain
consists of exactly two jobs. In Sect. 5.1 we define the polytope Q%"@"s of the feasible
solutions of the class of problems 1|2-chains, pj = 1]|y. In Sect. 5.2 we prove that the
problem 1|2-chains, pj = 1| Y _w; s, is NP-hard in the strong sense. In Sect. 5.3, we
determine the dimension of Q24" and in Sect. 5.4 we reconsider the valid inequalities
derived for the general case, and we prove that some of these inequalities are facet-defining
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for Q*chains Finally, in Sect. 6 we present our computational experiments, where we
demonstrate that separating the facet-defining inequalities of Sect. 5.4 can significantly
speed up a linear programming based branch-and-bound procedure to solve problems
1 |2-chains, pj = 1| 3 wjq; and 1 |chains, chain-length € {1,2}, p; = 1| Y w;,;,
where in the latter case each chain consists of one or two jobs.

2 Literature review

For a given schedule S, let C jS denote the completion time of a job J;. The makespan of some
s

schedule S is the maximum of the job completion times, i.e., C) .

i= max; CJS. If a due-date
d; is given for each job J;, then the tardiness of the job is TjS := max{0, CJS —d;}, while
UjS indicates if the job is late, i.e., UJ.S =1,if Cf > dj, and 0 otherwise. The jobs may also
have some non-negative weight w ;. The optimality criterion for minimizing the makespan,
the sum of completion times, the weighted sum of completion times, the total tardiness and
the throughput is denoted by Ciax, > Cj, > w;C;, > T and ) U}, respectively.

Lenstra and Rinnooy Kan (1980) and Leung and Young (1990) present complexity results
for scheduling unit-time jobs on a single machine with chain-precedence constraints, i.e.,
problems of the form 1|chains, p; = 1|y. Clearly, the problems with y = Cpax and
y = > C; are trivial (since each feasible schedule is optimal), and polynomially solvable
fory =3 w;C; [see e.g., Lawler (1978)]. Lenstra and Rinnooy Kan (1980) and Leung and
Young (1990) show that problems with y = > U; and y = ) T; are strongly NP-hard,
respectively. Our results in this paper imply that the problem with y = > w j.o; is NP-hard
in the strong sense even if each chain in the precedence relation has length 2. We summarize
these results in Table 1. Although we do not consider multiple-machine scheduling problems
in this paper, for the sake of completeness we also refer to some results about scheduling
unit-time jobs on parallel machines under precedence constraints, i.e., problems of the form
P |prec, pj = 1|y, where P indicates identical parallel machines. Ullman (1975) shows that
problem P |prec, pj = 1| Cpax is strongly NP-hard, however, problems P |chains, p; =
1| Cimax and P2 |prec, pj = 1| Cpax are polynomially solvable [see e.g., Hu (1961) and
Coffman and Graham (1972), respectively], where P2 refers to the case of two parallel
identical machines. Hoogeveen et al. (2001) show that problem P |prec, p; = 1] ) C; is
APX-hard, however, problems P |chains, p; = 1| > Cjand P2 |prec, p; = 1| > C; are
polynomially solvable [see e.g., Hu (1961) and Coffman and Graham (1972), respectively].
Finally, Timkovsky (2003) shows that problem P2 |chains, p; = 1| > w;C; is strongly
NP-hard.

The traditional precedence constraints can be considered as AND-precedence constraints,
thatis, a job can only be started after all of its (immediate) predecessors are completed. In con-
trast, in case of OR-precedence constraints, a job can be started as soon as one of its immediate
predecessors is completed. Note that in this case the precedence graph can be cyclic, however,
one can decide in linear time whether the problem has a feasible solution [see e.g., Mohring
et al. (2004)]. According to this, problem 1 |or-prec, p;j = 1| y is trivial for y = Cyyax and
y = Y Cj, where or-prec refers to the presence of OR-precedence constraints. Among
other results, Johannes (2005) shows that problem 1 |or-prec, p; = 1] 3 w;C; is strongly
NP-hard. Note that the chain-precedence constraints are both AND- and OR-precedence
constraints, since in this case each job has at most one immediate predecessor, thus prob-
lems of the form 1 |chains, p; = 1| y considered in this paper are special cases of problem
1 |or-prec, pj = 1| y. We also summarize these results in Table 1.
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Table 1 Scheduling unit-time jobs on a single machine under precedence constraints (1|8, p; = 1| y)

B = chains B = prec B = or-prec
y = Cmax In P (trivial)?
y=2C; In P (trivial)?
y =2 w;C; In P (Lawler Strongly Strongly NP-hard (Johannes 2005)
1978) NP-hard
(Lenstra and
Rinnooy
Kan 1978)
y=xT,; Strongly NP-hard (Leung and Young 1990)
y=>U; Strongly NP-hard (Lenstra and Rinnooy Kan 1980)
y=3 Wi, Strongly NP-hard (in this paper)

4Each feasible schedule is optimal

Wan and Qi (2010) introduce new scheduling models where time slot costs have to be
taken into consideration. In their models the planning horizon is divided into K > Z;’z 1 Pj
time slots with unit length, where the kth time slot has cost 774, and the time slot cost of ajob J;
with starting time # is Zkesj 7, wheres; = {t+1, ..., t+ p;}. The objective of their models
is a combination of the total time slot cost with a traditional scheduling criterion, that is, they
consider problems of the form 1 |slotcost|y +3_; 3 e, 7k Wan and Qi (2010) show that
in case of non-decreasing time slot costs (thatis, 71 < --- < mg) the problem can be reduced
to one without slot costs. Under the assumption of arbitrarily varied time slot costs they prove
that the problems with y = >~ Cj, ¥ = Lmax, ¥ = Tmax, ¥ = »_ Ujand y = Y T, are
strongly NP-hard. They also show that in case of non-increasing time slot costs some of these
problems can be solved in polynomial or pseudo-polynomial time. Zhao et al. (2016) prove
that in case of non-increasing time slot costs, problem 1 [slotcost| Y (C; + Zkesj 7y) is NP-
hard in the strong sense. Kulkarni and Munagala (2012) introduce a model similar to that of
Wan and Qi (2010), however, they deal with online algorithms to minimize the total time slot
costs plus the total weighted completion time. Note that the problem investigated in this paper
can be considered as a generalization of a special case of the model of Wan and Qi (2010).
That is, in case of unit-time jobs (with K = Z'}zl pj = n) problem 1 |slotcost, p; =
1> ZkEs, 7 is similar to that of 1|p; = 1| 3_wj o;, however, in the latter problem the
time slot costs depend on the jobs.

3 Problem formulation

Recall that 7 = {Jy, ..., J,} is the set of unit-time jobs, and let P = {1, ..., n} be the set
of positions. Let D = (7, A) be the directed acyclic precedence graph whose nodes are the
jobs. We will denote by J;, << J;, if J;; # J;, and there is a directed path from J;, to
Ji, in D. In this case we say that J;, is a predecessor of J;,, and J;, is a successor of J;,.
Further on, we say that J;, is an immediate predecessor of J;, (denoted by J;; < J;,) if and
only if J;; << J;,, but there exists no job J;; such that J;, << J;; and J;; << J;,. In any
schedule which satisfies <, for each pair of jobs J;, and J;; such that J;; < J;,, job J;; must
be scheduled before J;, .

Let x; ; be the binary variable indicating whether job J; is assigned to position j. The
problem 1 |prec, pj = 1] 3 Wj,o; can be formulated as
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n n
minimize » Y " w; jxi (1)

i=1 j=1

Z-xi,jzl, ie{la"'7n}’ (2)
j=1
n
doxij=1,je(l,....n), ©
i=1

k+1 k

inz,jszxil.ja Ji1 <Ji2, ke{lv""n_l}’ (4)
xij €01}, iell....n) jell.....n), ®)

where constraints (2) and (3) model the job-position assignment constraints. Constraint set (4)
ensures that the precedence constraints are satisfied. That is, for each pair of jobs J;, and J;,
such that J;, < J;,, there are n — 1 linear constraints ensuring that job J;, cannot be assigned
to the same or to an earlier position than job J;,. Let Py ““ := {x € {0, 1}"" : x satisfies (2)—
(4)} be the set of the feasible solutions, and the polytope Q5 ““ := conv(P} ‘) the convex
hull of feasible solutions of (2)—(5). By construction, we have the following proposition.

Proposition 1 P/ is the set of incidence vectors corresponding to feasible job-position
assignments.

For later use we provide some valid equations for 0P Let Jl.Jr ={JypeJ:Ji << Jy}
(T, ={Jir € T : Jy << Ji}) be the set of successors (predecessors) of job J;. Clearly, for
each point x € P we have

-xl',j=07 ie{l""vn}! je{l""7|h7i_|}7 (6)
xij=0, iefl,....n}, jefn—|TTI+1,...,n} 7

Since Q7" is the convex hull of the points PP these equations are valid for orree,

4 Problem 1 |chains, pj = 1|y

In this section we present a class of valid inequalities for the case of chain-precedence
constraints along with a polynomial time separation procedure. We derive these inequalities
by using the so-called parity inequalities, which constitute the non-trivial facets of the parity
polytope (see Sect. 4.1).

For chain-precedence constraints, let P¢"4/" and Q%" denote the set of feasible solutions
and the convex hull of feasible solutions, respectively, of the integer program (1)—(5). Let
C = {Cy,...,C,} be the set of chains (i.e., chain-precedence constraints), where C; =
(Jiys ooy Jiy) with J;; < --- < J;, foreach i € {1,..., m}. The length of a chain C, i.e.,
the number of its jobs, denoted by len(C). For a given integer k we denote the index set
{1,...,k} by [k].
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4.1 Parity polytope, parity inequalities

Let Q5" (Q[”ld") be the convex hull of those d-dimensional 0-1 vectors in which the number
of I’sis even (odd). The characterization of the parity polytope Q4"*" is attributed to Jeroslow
(1975), however, for a direct proof of this result we refer to Lancia and Serafini (2018).

Theorem 1 (Lancia and Serafini (2018))

Qg = {Z elo,11% : Zzi — ZZ,’ <|S|—1, forall odd-subset S C [d]] ,

ieS igs
Q% = {Z efo, 117 : Zzi - Zzi <|S|—1, forall even-subset S C [d]} .
ies igs

We say that a subset S C [d] is an odd-subset (even-subset) if its cardinality |S]| is odd
(even), and we call the inequalities of Theorem 1 parity inequalities.

4.1.1 Separation of the parity inequalities

Since we have not been able to find any paper that provides a separation procedure for the
parity inequalities, we provide our own procedure. First, we reformulate the parity inequalities
as

1< Z(l —zi)+ Z z;, for each odd-subset S C [d], (8)
ieS i¢S
and
1< Z(l —zi)+ Zzi, for each even-subset S C [d]. )
= i¢S

Note that in the sake of convenience we allow S to be the complete set [d], with this the
corresponding inequality is still valid but redundant.

Theorem 2 Inequalities (8) and (9) can be separated in polynomial time, that is, for a given
vector 7 € [0, 119 the following problems can be solved in polynomial time:

maximize {1 - (Z(l — i)+ Zz) S C[d]isan odd-subsez} , (10)

ieS i¢S
maximize {1 — (Z(l —Z7Zi)+ ZZ,) :SC[d]isan even-subset} . (11
ieS igS

Clearly, if the maximum value is less than or equal to zero then all of the inequalities are
satisfied, otherwise, the corresponding subset gives one of the most violated inequalities.

Lemmal Lerl > vy > vy > - >vg >0, and let f(S) =) ;cs(1 —vi) + Zi¢s v; for
all S C [d]. Consider the following problems:

minimize {f(S) : S C [d] is an odd-subset} (12)
minimize {f(S): S C [d] is an even-subset} . (13)
(@) Let So :=Wand S; :=[i]l foralli = 1,...,d. There is an optimal solution So pr for

problem (12) [problem (13)] such that Sopr = S; for some i € {0, ...,d}.
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(b) Lett :=0if1 —v; > v; holds foralli =1,...,d, andlett := max{i : 1 —v; <v;}
otherwise. One of the sets S;_1, St and S;y1 is an optimal solution for problem (12)
[problem (13)].

Proof To prove statement (a), consider an optimal solution So pr for problem (12) which
maximizes the parameter p := max{i : S; C Sopr}, i.e., for any optimal solution S* we
have max{i : S; € S*} < p.Clearly, p+1 ¢ Sopr. Suppose for the sake of a contradiction
that there is an index ¢ > p + 1 such that ¢ € Sopr. Let 8’ := (Sopr U {p + 1)\{g}.
Now, we have f(Sopr) < f(S) = f(Sopr) + (1 —vpp1) —vpr1 — (1 —vy) + vy =
fSopr) +2(wg —vpt1) < f(Sopr), thus §” is also an optimal solution for problem (12),
however p < max{i : S; C S’} which contradicts our assumption for Sp p7.

According to statement (a) problems (12) and (13) can be restricted to subsets of the form
Si,i €{0,...,d}. Foreachi <t,1 —vi41 < viy1, thus f(Siy1) = f(Si) + (1 —viy1) —
vie1 = f(S).Foreachi > 1,1—v; > v, thus £(S) = f(Si—1)+ (1 —v)—vi < f(Siz).
Therefore, we have

JS) =z = f(Si—1) = f(S) and f(S) < f(Si41) <--- < f(Sn),

thus if S; has odd (even) cardinality, then it is an optimal solution for problem (12) (prob-
lem (13)), otherwise, arg min{ f(S;—1), f(S;+1)} is an optimal solution for problem (12)
[problem (13)]. O

Proof (Theorem 2) For a given vector zZ € [0, 119 letv; ;= z; foralli = 1,...,d, and let
f(8) =3 esI—vi)+ Zi¢s v; forall S C [d]. Without loss of generality (e.g., by sorting
and reindexing the values), we can assume that v; > vy > --- > v,. By this, separation
problem (10) [problem (11)] is equivalent to problem (12) [problem (13)] which can be
solved in polynomial time according to Lemma 1. O

4.2 Valid inequalities for Q@i

We introduce the variables z; ; i € {1,...,m}, j € {l,...,n}) indicating whether the
number of jobs from chain C; that are assigned to one of the positions from {1, ..., j}is odd
(zi,j = D oreven (z; j = 0).

Claim Let x € P,fh“i”. For each chain C; = (J;, ..., J;,) and each position j € {1, ..., n}
we have

4 J
k—1
G, =D (DY i
k=1 p=1

Proof For an x € P,fh“i” the value & = ZZ:] Xi,p (k = 1,...,0) equals to 1 if and
only if job J;, is assigned to one of the positions {1, ..., j}, otherwise it is 0. Clearly, for
jobs Jiy; < --- < J;, wehave 1 > § > --- > &y > 0, thus summing these values with
alternating factors (=D (k=1,...,0), the sum (i.e., zi,j) is 1 if the number of §-values
that are equal to 1 is odd, otherwise it is O. O
Claim For an even (odd) position j € {1, ..., n} the number of 1’s in vector (21 j, ..., Zm, ;)

is even (odd).

Proof If j is even (odd), then the number of chains C; such that the cardinality of the
set {k ef{l,....j} r zix= 1} is odd (i.e., C; has an odd number of jobs assigned to the
positions 1, ..., j) must be even (odd). O
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According to the second claim, the corresponding parity inequalities are valid for the
convex hull of the feasible solutions of the formulation extended by the z-variables. However,
due to the first claim, one can transform these inequalities to the original x-variables, thus
we have the following theorem.

Theorem 3 The following inequalities are valid for Q;h“i”.'

len(C;) j len(C;) i
)M DD EDDI IDDECH D BE v IR
ieS \ k=1 p=1 i¢s \ k=1 p=I
for each even position j and odd-subset S C [m], (14)
and
len(C;) len(Cj)
2| 2 e ‘Zm 3 DB IZM =ISI-1,
ieS k=1 i¢S k=1
for each odd position j and even-subset S C [m]. (15)

The separation procedure of inequalities (14) [inequalities (15)] is similar to the separation
procedure of inequalities (8) [inequalities (9)], that is, for a given vector x € [0, 1]*", fix
an even (odd) position j, and let z; := Zk 1 (= l)k 1 ZP | Xiy,p for each chain C; =
(Jiys.-» Jiy),i =1, ..., m. By this, one can use the separation procedure of inequalities (8)
[inequalities (9)] described above.

5 Problem 1 |2-chains, p; = 1|y

In this section we investigate the problem 1 |2-chains, p; = 1| y. Recall that in this problem
we have an even number of jobs, i.e., 2n, and the relation < partitions the set of jobs into
n disjoint pairs, i.e., each jobs has exactly one predecessor or one successor, but not both.
In Sect. 5.1 we reformulate the integer program of Sect. 3 to make our notation easier and
reflect that each chain consists of two jobs. The problem 1 [2-chains, p; = 1| Y wj o, is
shown to be strongly NP-hard in Sect. 5.2. In Sect. 5.3 we analyze the polyhedron spanned
by the feasible solutions of our integer programming formulation, namely, we determine its
dimension, and then in Sect. 5.4 we show that some of the inequalities from Sect. 4 are facet-
defining. For basic concepts of polyhedral combinatorics we refer the reader to Nemhauser
and Wolsey (1988) or Conforti et al. (2014).

5.1 Problem formulation

In order to simplify our notation, in this section let 7 = {Ji, ..., J2,} be the set of unit-
time jobs, and C = {Cy, ..., C,} be the set of 2-chains, where C; = (J2;_1, J2;), that is,
Joi—1 < Jpi foreachi € {1,...,n}. We say that job Jo;_1 (J2;) is the first (second) job of
chain C;. In addition, let P = {1, ..., 2n} be the set of positions.

Let s;,; (e;,;) indicate whether the first (second) job of chain C; € C is assigned to
position j € P. Note that we just renamed the variables of the formulation (2)—(7), that is,
si,j = X2i—1,j and ¢; ; := x2; j, thus we get the following equivalent formulation:
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Fig. 1 Representation of point Ch
P =(s.e) € PFhains with ,—,_’&‘
sip=e13=s2=e4=1 C===-]---
| | | | ---P
1 2 3 4
2n
D sij=1, iefl,....n}, (16)
j=1
2n
D ej=1, ief{l,....n}, (17)
j=1
Sion =0, iefl,...,n}, (18)
ei1 =0, iefl,...,n}, (19)
n
> osia=1, (20)
i=1
n
Y (sijtes)=1 je2....2n—1}, @1

D e =1, (22)

k+1 k

eij <Y sij. i€{l,....n), kefl,... 2n-2}, (23)
j=1 j=1

sij, eij €10,1) ie{l,....n}, je{l,..., 2n). (24)

Constraints (16)—(17) and (20)—(22) are the job-position assignment constraints [see (2)
and (3)]. Constraint (23) ensures that each first-job precedes the corresponding second-job
[see (4)]. Finally, constraints (18)—(19) forbid to assign a first-job to the last, or a second-job
to the first position [see (6)—(7)]. Similarly to the general case in Sect. 3, we introduce the
set of feasible solutions PZM4s .= {(s, e) € {0, 11" x {0, 1} : (16)—(23) holds},
and the polytope Q%;l“h“"” = conV(Pzzrfh“i"S ).

For a given point P = (s,e) € PycMins let s(P,i) = j (e(P,i) = j) if
si;j = 1 (e;;j = 1). For a given i € {l,...,n} let 0;(P) be a 2-dimensional vector
such that o;(P) = (s(P,i),e(P,i)), and o(P) be a 2n-dimensional vector such that
o(P) = (01(P),...,0,(P)). For example, for the point P indicated in Fig. 1 we have
P = (1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1), o1(P) = (1,3), 02(P) = (2,4), and
o(P)=1(1,3,2,4).

5.2 Complexity of problem 1 |2-chains, pj = 1| }_ W, g;

In Theorem 4 we will show that problem 1 [2-chains, pj = 1| }_w; o, is NP-hard in the
strong sense.

Sketch of proof of Theorem 4 We will transform the INDEPENDENT SET (IS) problem to
problem 1[2-chains, p; = 1| Y w j.o;- An instance of IS is given by an undirected graph
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o ——aeo—o possible start positions of the first job of chain t3

Fig.2 Construction for the 2-length path

V1 v V3
*—o—o
I e e e e e e
L1 L L1 L L1 L
t1 to t3 t L—1 [— to L | L1 t3
fi2 10— L fo.3 f2’3\_1 L1
91,2 91,2 92,3 92,3

Fig.3 Solution representing independent set {v;}

U1 v2 v3
——eo—o
L e e e e e e e e
L L L1
t1 t2 t3 t L L [oJ N R — t3
J1,2 fiol— L f2,3 fosb— L

g1,2 g1,2 ST g2,3 92,3

Fig.4 Solution representing independent set {vy, v3}

G = (V, E) with node set V = {vy, ..., v,}, and a maximum size subset of nodes I C V
is sought such that for each edge {u,v} € E, |{u,v} N I| < 1. The basic idea of the
transformation can be seen in Fig. 2, where we depict the construction for the 2-length path
(without the dummy chains). Briefly stated, we will create a chain #; for each node v; and two
chains f; ; and g; ; for each edge {v;, v;} of the IS instance, and some additional dummy
chains. To each of these chains we will designate two potential start and two potential end
positions. First, by determining appropriate weights we ensure that in each solution with
non-positive total weight, each of these chains either starts and ends at its first start and
end position, respectively, or at its second start and end position. In Fig. 2 we depict the
two potential states of these chains. Second, by designating these positions properly, it is
guaranteed that each solution with a non-positive total weight represents an independent set
in the IS instance and vice versa. Namely, a node is in the independent set if and only if the
corresponding chain starts and ends its second start and end position, respectively. Note that
the role of the edge-chains is to ensure that for adjacent vertices one of the corresponding
node-chains must start and end at its first start and end position, respectively, i.e., at most one
of these nodes can be in the independent set. For example, in Fig. 3 we depict the solution
that represents the independent set {v;} (without the dummy chains). Note that since chain
1 starts/ends at its second start/end position, i.e., v, is in the independent set, thus chains
g1,2, f1,2 and therefore f; must start/end at its first start/end position, i.e., vy cannot be in
the independent set. Similarly, 73 cannot start/end at its second start/end position, that is,
v3 cannot be in the independent set. In Fig. 4 we depict the solution that represents the
independent set {vy, v3} (without the dummy chains).
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Theorem 4 Problem 1 |2-chains, pj = 1] ) Wj,o; is NP-hard in the strong sense.

Proof We transform the INDEPENDENT SET (IS) problem to problem 1 |2-chains, p; =
1Y w j.o;- Let G = (V, E) be an instance for the independent set problem with node set

= {v1,..., Uy}, and edge set E,andletf ={(vi,vj) : {vi,v;} € E, i < j}be thesetof
directed edges, i.e., we replace undirected edge {vi, v;} by directed edge (v;, v;) fori < j.
For a node v; let succ(i) = {v; : (v;,v)) € E} (pred(i) = {v; : (vj,v;) € 75)}) denote its
immediate successors (predecessors).

Based on the IS instance we will construct an instance for problem 1|2-chains, p; =
Y w J.oj with 2|V | 4 3| E| chains (that is, we will create 1 chain for each node, 2 chains
for each edge, and |V | + | E| additional dummy chains) and 4|V | 4+ 6| E| positions.

For each v; € V we create a node-chain #;, and for each edge (v;,v;) € E We create
edge-chains f; jand g; ;. Let 7y = {t; : v; € V} and Tzz ={fij.&.j: Wi,vj) € E}

To each node-chain #; € 7y we designate four distinct positions a(ty) < B(t) < a(ty) <
B(t;) such that

() 2i =1 =oa(y) = B@) — L foralli € {1,...,n},
() 2n+1=a() = ,B(zl) -1,
(i) B(t) < a(tip)) = ﬂ(t,_H) —1,foralli e {l,...,n—1},

see Fig. 5. To each edge-chain f; ; € 75 we designate four distinct positions: a(f;,j) <

B(fi.;j) <a(fi.j) < B(fi.j).Consideranodev; € V anditsimmediate successors succ(i) =
{vj,..., U jisuce(i)| ). Let

(v) a(fij) = B,

) alfij) =Bfi,j,) —1=a(fij)—2 foralll e {l,..., |succ@)|},

vi) a(fi,j,) = a(fi, Jz+1) forall £ € {1, . |succ(i)| — 1},

(Vi) @ (S, jieey) = BUfij) — 1= B(fi, ,2) —2=" = B(fi_jeeiy) — Isucc@!,
Vi) B(fi o) < @it1)s

see Fig. 6. Finally, to each edge-chain g; ; € TE we designate four distinct positions:

algi,j) < B(gi,j) <a(gj) < B(g,'yj). Consider a node v; € V and its immediate prede-
cessors pred(j) = {vi, ..., v,-‘pmd(j)‘}. Let

a(ty)  B(tr) a(tn) Bltn) a(t1) Bt) a(t2) Bt2) a(tn)  B(tn)
\ | \ \ o o \

1 2 2n —1 2n 2n +1 2n +2

Fig.5 Designated positions for node-chains

@ Vi a(fijy) a(fijs) a(fijs)

v; B(ti) a(fijy) a(fijp) _ _ _
/ T B N BUis) T BUfis) allis) Bfis) Blfis) Blfis) altisn)
Y L e T IR

Fig.6 Designated positions for edge-chains (part 1)

; a(giyj) (ging) (giss) B(gisj) B(giy5) a(ty)
) Vis ! ! ! B(gizj) a(gizj) _ ! a(giyj) ! a(gij) _ ! B(t;)
Viy @, (fm) ﬁ(fm) ﬂ(fm) B(9giss) B(gizj) B(giy5)
N S e e T T T

Fig.7 Designated positions for edge-chains (part 2)
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(ix) B(gi,;) = a(t)), .
(x) B(8iy,j) = (8i,,j) — 1 = B(gi,,j) — 2, forall £ € {1,..., |pred(j)I},
(xi) B(&iy,j) = B(Giyy,,j)s forall £ € {1,..., |pred(j)| — 1},

(xii) a(gi,,j) = B(fi,.j), forall £ € {1, ..., |pred(j)[},

(xiil) B(tj—1) < B(&i,pred(j)])>

see Fig. 7.
Foreachv; € V wehave created 1 chain and designated 4 positions, and for each (v;, v;) €

f we have created 2 chains and designated 8 positions, however, positions a( f;, ;), ﬁ(g[,j)
and B( fi,j) coincide with other positions [see (iv), (vi), (ix), (xi), and (xii)], hence we have
|V |4 2|E| chains, and 4|V | + 5| E| distinct positions. Thus, we also create |V |+ | E| dummy
chains and | E| dummy positions, therefore we have 2|V |+ 3| E| chains and 2 x 2|V |+ 3| E|)
positions, that is, we have a valid instance for problem 1 |2-chains, p; = 1| Y- w o

Let M > n.Foreacht; € 7Ty let

M ifj=a), -M if j = Bn),
w(t, j) = 0 ifj=a(), and w'(y,j):=41 —1 ifj=p8@),
2M  otherwise, 2M  otherwise.

Foreacht; j € T3 (1, is either f; j or g; ;) let

M ifk=oa(t;), -M ifk:é(ti,j),
ws(t,-h,-, k) := 0 ifk= 5!([1',]'), and we(t,',‘,-, k) = 0 ifk= ﬂ(l‘,’h,‘),
2M  otherwise, 2M  otherwise.

Finally, let w® (¢, j) := we(t, j) := 0, foreach dummy chainz and forall j = 1, ..., 4|V|+
6|E]).

Remark 1 By construction, in any feasible solution for the constructed problem, for each

t € Ty we have

0 ifs o) =ernpn =1,

Dwe Ny wi, =1 1 ifsan =e 5, =1
j j > M otherwise,

and for each ¢ € Tf we have

. . 0 if s =e =lors, qgu =¢€ gn =1,
St )+ Y, ) = { 0 e =epo L0 = €0
J J - '

Remark that M > n = |7y, thus a solution for the created problem has non-positive total
weight if and only if each chain 7 € 7y U7 starts/ends either its first start/end or its second
start/end position.

Proposition2 Let I C V an independent set in G = (V, E). Then the corresponding
scheduling problem instance admits a feasible solution of total weight —|I|.
—
Proof 1f v; ¢ I, then let s;; o) = e p(;) := 1, for each (v;,vj) € E let Sfiialfi) =
A4 : .
ef . Bfij) == 1, and for each (vg, v;) € E let sg; a(e) = o Blaw) = 1 (see Fig. 8).
—_—
Otherwise, if v; € I, then let s, 5(;,) = €, By = L, for each (v;,v;) € E let

Sfijafip) = Cp B = 1, and for each (vk, v;) € E let Sgy; a(eri) ‘= €gi.pleri) ‘= 1
(see Fig. 9). The variables for dummy chains can be arbitrarily fixed.
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Ghgi Gk fija fijo
[ \ [ \
\ \ \ \ \ \ \ \ \ \
B(gry4) a(ts) Bt a(fijy)
B(gryi)  a(gryi) _gk a(gryi) (1) B(fij1) ! B(fija)  afizy)
(9kqi) Blgryi)  odfizy) a(fijs)

Fig.8 Assignments for node v; € V\/

Ghoyi t; fig
1 1 1
[ \ \ \ \ \ \ [

B(gk4) a(ti) Bt:) a(figy) _
a(gryi)  algrqi) algrkyi) B(fijy) B(fize)  B(fijy
" o B(gkyi) o Blgryi)  ofijr) ! o(fizy) ! i)

Fig.9 Assignments for node v; € 1

First, we claim that this assignment yields a feasible solution. We need to show, that each
position that designated to multiple jobs is assigned to a single job. It is easy to check that
it is true for positions «(f; ;) and B(g,-,j). We also know, that B(f,',j) = a(g;,;) for all
edge (v;, vj) € J_E> [see (xii)], however, we assigned position B(f,',j) to job f; ; and position
a(g;,j) to job g; ; if and only if v; € I and v; € I, respectively, however it is impossible,
since / is independent. Second, it is clear that the weight of the solution is equal to —|/|. O

Proposition 3 For an independent set problem in graph G = (V, E), suppose the corre-
sponding scheduling problem admits a feasible solution of value W < 0. Then there is an
independent set I in G with |I| = —W.

Proof Since W is non-positive, according to Remark 1, foreachr € 7y U Tf we have either
Sta@) = epa) = 1l ors an = € By = 1. We claim that the node set I = {v; € V :
Si;,a() = €, ;) = 1} 1is independent.

Suppose for a contradiction that there is an edge (v, v;) € J_E) such that v;,v; € I.
Let succ(i) = {vji,---, Vjeem} be the set of the immediate successors of node v;.
Since ¢, 5,y = 1 and by construction B(t:) = a(fij,), thus 8 fij,.a(fy) = 0 and there-
fore Sty afi) = €fi Blfy) = 1. Again, by construction. &.(f,-jl) = a(fij,), thus
S fijp.a(fiy,) = 0 and therefore sz, a(f;,) = €t Bfy) = 1. Similarly, we can show that
8 i@l fij) = eﬁje’ﬁ(-fivj«) = lholdsforall ¢ =1, ..., |succ(i)|, moreover, since j = j, for
some ¢ € {1, ..., |succ(i)|} we have €n Blfi) = 1.

Let pred(j) = {vi;s - -+, Vij,,04.;, } be the set of the immediate predecessors of node v;.
Similarly, we can show thatsgi[j,a(gl.”) = €g,;.Bsi,) = lholdsforall¢ =1, ..., |pred(j)|,
and since i = iy forsome £ € {1, ..., |pred(j)|} we have s, o(g;) = 1.

To sum up, we have e 5.7 ) = Sg;j.a(g;) = 1 which yields a contradiction, since by
construction B(fi;) = a(gi;). O

Finally, it is easy to see that our transformation is a pseudo-polynomial transformation, thus
the problem is NP-hard in the strong sense. O

Corollary 1 Problem 1 |chains, pj = 1| ) Wj,qo; is strongly NP-hard even in the case of
chains of length at most 2.
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Corollary 2 Problem 1 |prec, pj = 1| } wj 5, is strongly NP-hard.

Corollary 3 Problem 1|or-prec, pj = 1| Y wj o, is strongly NP-hard.

5.3 Dimension of Qi;,‘h"i"s

In this section we investigate the dimension of the polytope Q%;f”"ins .

Theorem 5
‘ 0 ifn=1,
dim(Q%;fhams) — 4 ifn=2,
4n* —6n+1 ifn=>3.

Sketch of the proof of Theorem 5 (n > 3) In the case of n > 3 we will apply the well-known
theorem about the dimension of a non-empty polyhedron Q = {x € R? : Ax < b} claiming
that dim(Q) 4+ rank(E) = d [see e.g., Nemhauser and Wolsey (1988)], where Ex = f is an
equation system for Q, thatis, any x € Q satisfies Ex = f,andif ex = §is a valid equation
for Q, then there exists a vector A of suitable dimension such that A\E = « and A f = . So,

we will provide an equation system for Q%;fha" "5 (see Theorem 6) with rank 6n — 1 (see

Proposition 6), which gives that the dimension of Q%;fh“”” - R4 is 4n2 — (6n — 1). The
detailed proof of Theorem 5 can be found at the end of Sect. 5.3.

Theorem 6 Letn > 3. The equation set £:={(16)—(22)} is an equation system for Q%;l"h”ins.

Proof Clearly, the equations of £ hold for every point of Q%;fh””” , since they are defining
equations for this polyhedron. In order to show that £ is an equation system for Q%;fha" " we

show that any other equation which holds for all points of Q%;l"h“i"s is a linear combination
of the equations of £. Assume that
n  2n n 2n
DD eyt ) ) Bijeii=v (25)
i=1 j=1 i=1 j=1

holds for all (s, e) € Q%;lc}’”i”‘f. To show that Eq. (25) is a linear combination of Egs. (16)—
(22) we explicitly create a linear combination (26), and in Propositions 4 and Swe prove that
(25) and (26) are the same. In those proposition we use Lemma 2, however, for its proofs we
refer to the “Appendix”.

Lemma 2 Equation (25) satisfies the following properties:

Q) ap jr—apj=pgim—Bgj YPoge{l,....n}, 1 <j <j" <2n,
(i) ap jr —ap jr=ag jr—oq i Yp,gefl,....n}, 1 <j <j" <2n,
(i) Bp,j» = Bp.jr = Bq.j» — Bg.jy YP.gefl,....n}, 1 <j < j" <2n.

Note that in case of (i) p may be equal to q.

Consider the linear combination of Eqs. (16)—(22) with coefficients ki16, ki17, kilg, Ailg,
XZO’ kal, )L22 (iefl,...,n},je{2,...,2n — 1}), respectively, where

o MO —a; | —ayforalli e{l,...,n},
N )‘i17 =Bioam—Pron+Pia2—aipforalie{l,...,n},
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o M8 =in —aii +ap foralli e {l,...,n),

o =Bi1—Bion+Pron— P12 +arpforalli e{l,... n},
° )»202011,1,

° Ajz.l =apjforall j €{2,...,2n -1},

0222 = Bron — Br,2 +aq 2.
Let

n n 2n

ZZ“’JS’J+ZZﬂlJel]_V (26)

i=1 j=1 i=1j=1

be the equation obtained. Note that the left-hand side can be written as

n
S (0422050 + O+ afBysi o + T e + 1T +27er 20)
i=1
n 2n—1
+ 303 (@10 +a3hsiy + T+ 22 e ).

i=1 j=2
Proposition 4 Equation (26) satisfies the following:
(D a;,j=a;jforallie{l,....,n}and j €{1,...,2n}.
Proof Leti € {1, ..., n} be fixed. For j = 1 we have
a1 = )»,16 +220 = (@i —a) toar =01,

and for j = 2n we have

Qjon = )»,-16 +)»,~18 = (0,1 —a1,1) + (@20 — 1 +@11) = & 2p.
Foragiven j € {2,...,2n — 1} we have
~ i)
ajj = )»1»16 -H»jZI = (aj,1 —ap1) +oy,j = Qi js

where for the last equation we use statement (ii) of Lemma 2 with p = 1, =i, j' = 1 and
" -
= J . o

Proposition 5 For linear combination (26) the following statement holds:
(L) B =B forallie{l,...,n}and j € {1,...,2n).
Proof Leti € {1, ..., n} be fixed. For j = 1 we have
Bia = )»17 + )»19 (Bi2n — Bron + P12 — a12)
+(Bi.t — Bion + Bron — P2+ a12) = Bii,
and for j = 2n we have
Bron = ?»,17 222 = (Bion — Bron + Bra —a12) + (Br.on — Br2 + @1.2) = Bion.
Foragiven j € {2,...,2n — 1} we have
Bij =17+ )L]zl = Bion—Bron+ B2 —ar) v 2 Bio—ars+ar; LB
since B; 2, — B1,2n + PB1,2 = Bi 2 according to statement (iii) of Lemma 2, and B; » — o1 2 +

ay,j = fB;,; due to statement i) of Lemma 2. o
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Corollary 4 Equation (26) is equivalent to (25).
Proof According to Propositions 4 and 5, the left-hand-sides of (26) and (25) are the same.

2-chains

Since both of them are satisfied by all the points in Q5 , the right-hand-sides also
coincide. O

Proposition 6 Let n > 3. The rank of the equation system £ = {(16)—(22)} is 6n — 1.

Proof Consider a linear combination of Egs. (16)—(22) with coefficients 1}6, Al.”, kils, kllg,

)LZO, Ajz.l, 222 @ efl,...,n}, j €{2,...,2n — 1}), respectively. This linear combination
can be written as

n
S (6103200 + 3O+ aSBysion + LT+ 41 ens + T +32D)ei )
i=l1
n 2n—1
303 (6042255 + T +220e )

i=1 j=2

n 2n
=220 4321 3 (W0l T) + 32
i=1 =1

The expression above reduces to the zero-equation (0 - s + 0 - e = 0) if and only if A}S =
a6 =320506 = 521 — 517 and 3]0 = <317 = 322 hold for all i € {1,...,n),
J € {2,...,2n — 1} and the right-hand side is zero. On the one hand, it is clear that we
can easily choose non-zero coefficients that yield the zero-equation, thus the equations are
linearly dependent. On the other hand, if we omit a single equation from (16)—(22), that is,
we fix a single coefficient from Ai16, R )»22 to zero, then all the remaining coefficients
will be zero, that is, that remaining equations are linearly independent. Hence, the equation
system {(16)—(22)} containing 6n equations has rank 6n — 1. ]

Proof (Theorem 5) Incaseof n = 1, P7h4iS consists of a single point P witho (P) = (1, 2),
thus dim(Q3"%i"s) = 0.

In case of n = 2 in order to prove that dim(Qi'“h“”” ) = 4 we show that the maximum
number of affinely independent points in Pf"'h“ins is 5. We have Pf"'h“im ={P,..., P},
where o (P)) = (1,2,3,4),0(P2) = (1,3,2,4),0(P3) = (1,4,2,3),0(Py) = (2,3, 1,4),
o(Ps) = (2,4,1,3), 0(Ps) = (3,4, 1,2), see Fig. 10. The linear combination of these
points with coefficients A1, ..., Ag, respectively, is

(A1 + 22 +A3)51,1 + (Ag +As5)s12 + Aes1,3 + (Mg + As + Ag)s2,1 + (A2 + A3)s22
+ A1s23 +Arern + (A2 +Ag)e1 3 + (A3 + As + Ag)era + Aeenn
+ (A3 +As)e23 + (A1 + A2 + Ag)ena.

Clearly, we get the zero-vector if and only if A; = 0, A¢ = 0and A = —A3 = A5 = —X4.0On
the one hand, we can easily choose non-zero A, ..., A5 coefficients to get the zero-vector
such that A; 4+ - - - + Ag = 0 also holds, thus points Py, ..., Ps are affinely dependent. On
the other hand, if we omit for example P», i.e., we fix A = 0, we could get the zero-vector
if and only if .| = --- = X¢ = 0, that is, points P;, P3, P4, Ps5, Pg are linearly and hence
affinely independent. Therefore dim(Q%'Ch“i"‘g) =4.

Finally, assume that n > 3. According to Theorem 6, the equation set £ = {(16)—(22)}
is an equation system for Q%;fh‘” S and according to Proposition 6, the rank of this system
is 6n — 1. Since we have 4n2 variables, thus the dimension of Q%;l"h“im is4n? — (6n—1).0
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Fig. 10 The six points of Pf'd’”i’”

5.4 Parity inequalities

In the case of general chain-precedence constraints we showed that the parity inequalities (14)
and (15) are valid for th‘”'" (see Sect. 4), thus they are also valid in the case of 2-chains.
Using the replacement of the variables (remark that s; ; = x2;-1,; and ¢; ; = x; ;) the
following parity inequalities are valid for Q%h"h“i”sz

2% 2%
ZZ(si,j —eij) _ZZ(Si,j —eij) <IS|—1,

ieS j=1 i¢s j=1
for all odd-subset S C [n], and k < n, 27
and
2k—1 2k—1
Do Gig—ei) =D D (s —eij) <ISI= 1.
ieS j=1 igs j=1
for all even-subset S C [n], and k < n. (28)

In this section we show that some of the inequalities (27) are facet-defining for Q%;fha" s,
Similarly, one can show that a subset of inequalities (28) are also facet-inducing.

Let3 <t < nbeafixed odd number; 1 < k < nsuchthats < 2k andt < 2(n — k) hold;
and S C [n] with cardinality |S| = ¢. To simplify our notation, without loss of generality,
we assume that S = {1, ..., ¢}. The corresponding parity inequality is:

t n 2k

2%
Z Z(Si,j —ej)<t—1+ Z Z(Si,j — € j)- (29)

i=1 j=1 i=t+1 j=1

Theorem7 Let 3 < t < n be a fixed odd number; 1 < k < n such that t < 2k and
t <2(n—k)hold; and S = {1, ..., t}. Inequalities (29) are facet-defining for Qflh“i”.

Remark 2 Consider a point from Pzzr;"h“i "5 We say that a chain C; = (Jz;—1, Jo;) is active in
interval [2k, 2k+11if Y7 (si j—e; ;) = 1 holds (thatis, its first job J; 1 is assigned before

position 2k + 1, and its second job Jy; is assigned after position 2k). A point from Pﬁ”ha"m
satisfies (29) with equality if and only if
— exactly # — 1 chains from {1, . . ., #} and no chain from {r + 1, . . ., n} are active in interval

[2k, 2k + 1]; or

@ Springer



300 Annals of Operations Research (2020) 284:283-322

— exactly ¢ chains from {1, ..., ¢} and exactly 1 chain from {t 4+ 1, ..., n} are active in
interval [2k, 2k + 1].

Sketch of the proof of Theorem T Let us define the set of points
Pﬁarity ={(s,e) € P;,;Chai"s : (s, e) satisfies (29) with equality?},

and the polyhedron of their convex hull Qg: riy conv(Pz‘t;amy ). Note that Qé’: Y s a
proper face of Q%;fha"m, To prove that inequalities (29) are facet-defining for Q%;fh‘”'”, we
will show that Q5" is a facet of Q3" ie., dim(QL"™) = dim(Q% ") — 1.
To do this, we apply a similar procedure as in Sect. 5.3, that is, we will prove that the set
& = E£U{B0)} = {(16)—(22), (30)} of equations contains a minimal equation system
for Qg; "1 \yith rank dim(Q%;l"h“i"S ) — 1, where we have

t n

% 2%
ZZ(Si,j —eij)+ Z Z(ei,j —sij)=t—1 (30)

i=1 j=1 i=t+1 j=1
The detailed proof can be found in the end of Sect. 5.4.

Theorem 8 The equation set &' = {(16)—(22), (30)} is an equation system for Qgsmy.

Proof Clearly, the equations of &' hold for every point of Q5% since they are defining

. ity
equations for PJ*"""”. Assume that

n 2n n 2n

S aigsij+ Y>> Bijei=v €2

i=1 j=1 i=1 j=1

holds for all (s,e) € Q5" In order to show that Eq. (31) is a linear combination of
Egs. (16)—(22) and (30) we explicitly create a linear combination (32), and in Propositions 7—
10 we prove that (31) and (32) are the same. In those proposition we use Lemmas 3 and 4,
however for their proofs we refer to the “Appendix”.

Lemma 3 For Eq. (31) the following statements hold:

() apjr—ap jp=agjm—ag i Yp.ge{l,....t}, 1 <j < j <2k

(i) ap jr—ap j=agj—og iy Yp,gef{l,....1}, 1 <j <2k <j <2n-1,
(]]]) :3]7,1'”_:3]7,./" ::Bq,j”_ﬂq,j’ Vp’q e{]““’t}’ 2k <j/ <j”§27’l,

(iv) /gp,j” _IBp,j’ :ﬂq,j”_lgq,j’ Vp,ge{l,....,t}, 2<j <2k < j" <2n,

V) apjr—app=PBqim—PBgj Ypoge{l,....t}, 1 <j <j" <2k,

Vi) ap jr—ap jr=Pgjr —Bgjy YP.gefl,... 1}, 2k < j < j" <2n.

Note that in case of (v) and (vi) p may be equal to q.

Lemma4 For Eq. (31) the following statements hold:

(vii) Op jr —Qp 1 =0g i —0g i/ Vpe{l,....t}, ge{t+1,...,n}, lfj/ <j//§
2k,

(viii) By — Byt = Pajr—Bay Ypell,....th Gelt+1,....n), 2%k <j <)’ <
2n,

(ix) ap,j”_ap,j/:ﬁt},j”_/gé,j’ Vpel{l,...,t}, gef{t+1,....n}, 1 <j < j' <
2k,
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X) apjr—apy=PBa—Bs;r Ypel{l,....t}, gelt+1,...,n}, 1 <j <2k <
j" < 2n,

(xi) Bp,jn = Bp,jr =0z jn—ag i Ype{l,....t}, ge{t+1,...,n}, 1<j <2<
j" < 2n,

(xii) Bp,jr—Bpj =0z jpr—agp Ypef{l,... .1}, gelt+1,...,n}, 2k < j < j' <
2n

Consider the linear combination of Egs. (16)—(22) and (30) with coefficients Ail6, kl.”,
kllg, )Ll.lg, AZO, ka.l, 222 and k30, (ief{l,...,n},je{2,...,2n — 1}) respectively, where

o 130 =), where 1 := (@12 — a1,26+1 — Br.2 + Br2k+1)/2,
)\16— o1 —o1,1 ifié{l,...,t},
I T g —a g +20 ifie{t+1,...,n},

17_ . | Bra—aip+2x ifi=1,
o A" = i, where p; := {,31',2” Bt ific{2....n)
o1,2n ifi =1,
o /8= Qjon — 01 01 ifi € {2,...,1},

l

Qiop—oi1t+op g —20 ifieft+1,...,n},
319 _ f B A — i ifi e{l,...,t},

*h T Bin—r—p ifie{r+1,...,n},

o 320 =a;; -2,

o2l e ifje2... 2k,

J o ifje2k+1,....2n—1},

° )‘22:,81,2n — 1.

Let
n 2n n 2n
YD sy B =7 (32)
i=1 j=1 i=1 j=1

be the resulting equation. Note that the left-hand side can be written as

t
Z ((}»}6 +229 42301+ ()»}7 + )»}9 - )»30)61',1)

i=1

n
+ 30 (104320 3305+ a7 4412 45330
i=t+1

n
+ 30 (00425000 + 6T +2PD)ei20)

i=1
t 2k
+ 32 (00422 43305+ 01T 443 =230 )
i=1 j=2
n 2k
+ 30 (103 =230+ T 423 4230y )
i=it1 j=2
n  2n—1
+ Z Z (()%16 + )\.]2'1)5'[’]‘ + (A,-” + )»le)ei,j> .

i=1 j=2k+1
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Proposition 7 For linear combination (32) the following statement holds:

4)) &,‘,j =q; jforalli €{l,....t}and j €{l,...,2n}.

Proof By construction, the statement clearly holds fori = 1. Leti € {2, ..., t} be fixed. For
j = 1 we have

@i = )»il6 +220 4530 = (i1 —oap) + (@1 —A)+A =01,
and for j = 2n we have
Qi o = )»,-16 +k,-18 = (a;,1 —ar,1) + (020 011 — @ 1) = i 2p.
Fora given j € {2, ..., 2k} we have
@, =)»,~l6 -H»le +230 = (@i —ap)+ (@, —A)+A=oa; —ar+o Q Qi j,

where for the last equation we use statement (i) of Lemma 3 with p =1, ¢ =i, j/ = 1, and
j” = j.Finally, fora given j € {2k + 1,...,2n — 1} we have

A (@)
®ij = )‘i16 +)»,21 =y ot =,

where for the last equation we use statement (ii) of Lemma 3 with p = 1,¢ =i, j' = 1 and
g
J =17 O

Proposition 8 For linear combination (32) the following statement holds:
() Bij=pBijforalli €{l,...,t}and j € {l,...,2n).
Proof First, assume that i = 1. For j = 1 we have

Bra=mT4219 2030 = B A=) — A =B,

and for j = 2n we have

Bron = )»117 +222 = w1+ (Bi2n — 1) = Bi,2n-
Fora given j € {2, ..., 2k} we have

Brj=n" +A%1 330 = Bio — i+ 20) + (@) — M) — A

(v)
=Pip+ar; —aip = P,

where the last equation clearly holds for j = 2, and for 2 < j we can use statement (v) of
Lemma3 withp =g =1, j =2and j” = j. Foragiven j € 2k +1,...,2n — 1} we
have

5 (vi)
Bi,j = )»117 +k%1 =pfio+aj—aip+2h =a1j — a1 k41 + B1,2k+1 = Bi,j

according to statement (vi) of Lemma 3 with p = ¢ = 1, j' =2k + 1 and j” = j. Now, let
ie{2,...,t}.For j =1 we have

Bii= )»,17 +)»,~19 330 =+ B A=) — k=B,
and for j = 2n we have

Bron = )»,-17 +222 = (Bi,2n — Br.on + 11) + (Bron — 1) = Bi2n.
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Fora given j € {2, ..., 2k} we have

Big =T 432 =030 = (B0, — Brow + Bro — oo +20) + (@1 — ) — A
=PBiom—Proan+Bi12—ar2+ag; © Bij2n — Br2n + B1,j @ Bi,js

since B2 — a1 2 + ay,j = Bi,j according to statement (v) of Lemma 3 with p = ¢ = 1,
j'=2and j” = j,and Bj 2, — Bi,2n + B1,j = Bi,j due to statement (iv) of Lemma 3 with
p=1,q=1i,j = jand j” = 2n. Finally, for a given j € {2k + 1, ..., 2n — 1} we have
Bij = 1}7 ‘H»,z-l = Bion — Bron +1,j — &1 2k+1
i) iv)
+B12k41 = Bion — Brow + B = Bijs

since oty j—aq 2k+1+PB1,2k+1 = PBi,; according to statement (vi) of Lemma3 with p = g = 1,
Jj'=2k+1and j” = j,and B 2, — B1,2. + B1,; = Bi,j due to statement (iv) of Lemma 3
withp=1,¢g =i, j = jand j” = 2n. O
Proposition 9 For linear combination (32) the following statement holds:

() &;,;j =aj jforallief{t+1,....,n}Yand j €{1,...,2n}.
Proof Leti € {t+ 1, ..., n} be fixed. For j = 1 we have

@1 = )»,-16 +220 30 = (o1 — o1 +20) + (a1 —A) — A =041,
and for j = 2n we have

316,18

+ = (aj,1 — o1 +20) + (@20 — @i +op) —20) = o 2.

&i,Zn
Fora given j € {2, ..., 2k} we have
Qi j = k,-16 + )»/2-1 —230 = (i1 —oa11+20) + (a1, —A) — A
(vii)
=0y, —o1 o = A,

where for the last equation we use statement (vii) of Lemma 4 with p = 1, =i, j/ = 1
and j” = j. Finally, for a given j € {2k + 1,...,2n — 1} we have

@ = )»,-16 + )»le = (aj,1 —a1toar2 — Bro+ Brok+1 — o1 2k+1) o
(vi) (vii) (xi)
Zoi—ari+arn—Pia+ B1,j = ain—Bio+ B, = Qi j,

since B1,2k+1—a1,24+1+a1,j = Bi,; according to statement (vi) of Lemma3 with p = g = 1,
Jj/=2k+1land;” = j,and ;| —o, 1+ 2 = ;2 according to statement (vii) of Lemma 4
withp =1, =i, j =1and j” =2,and o; » — B1,2 + B1,j = o;,j due to statement (xi)
of Lemma4 withp =1, =i, j =2and j” = j. O
Proposition 10 For linear combination (32) the following statement holds:

av) /§,-,j =B jforalli e{t+1,...,n}and j €{1,...,2n}.

Proof Leti € {t + 1, ..., n} be fixed. For j = 1 we have

Bix =A}7 -H»,lg +230 = wi+Bin—A—ui) +A=pi1,
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and for j = 2n we have

Brow =21 42322 = (Biow = Brom + 111) + Broam — 1) = Bion-

Fora given j € {2, ..., 2k} we have

31‘,]' = k,-” + kal +230 = Bian + a1 — Br2n — a1 2k+1 + B12k+1

(viii) x)

= a1, j — a12k+1 + Bi2k+1 < Bi,j
since Bion — B1.2n + B1.2k+1 = Pi2k+1 according to statement (viii) of Lemma 4 with
p=1¢g=ij =2k+1and j” = 2n, and a1 — a1 2k+1 + Bi2k+1 = Bi,j due to
statement (x) of Lemma 4 with p = 1,§ =i, j' = j and j” = 2k + 1. Finally, for a given
je2k+1,...,2n— 1} we have

Bij = )»,-17 + ?»Jz-l = Bion — Bron + 1,
(vi) (viii)
— @12kt + B = Bion—Bron+ B = Bijs
since vy, j — a1 24+1 + B1,2k+1 = B1,; according to statement (vi) of Lemma 4 with p = 1,
g=1i,j =2k+1and j” = j,and B; 2, — P12, + B1,; = Bi,j due to statement (viii) of
Lemma4 with p =1, =i, j' = j and j” = 2n. O

Corollary 5 Linear combination (32) yields Eq. (31).

Proof According to Propositions 7-10, the left-hand sides of (31) and (32) are the same. Since
both of them are satisfied for the points from P{Zl " the right-hand sides also coincide with

each other. O

Proof (Theorem 7) First, by definition, rank(€’) < rank(€) + 1, thus (according to
Theorems 6 and 8) dim(Qgrf”'tyv) > dim(Q3chinsy — 1. Second, dim(Qg;”_’-‘")
dim(Q3<hins) — 1 since Q5¢""" is a proper face of QM4 thus dim(Q5e"") =
dim(Q3,"ns) — 1 and Q4" is a facet of Q3. .

6 Computational experiments

In this section we present the results of our computational experiments, where the main goal
was to examine the effectiveness of our parity inequalities. Since we proved that some of
these inequalities are facet-defining if each chain has length two, our experiments focused on
problems 1 |2-chains, pj = 1| }_w; o, and 1|chain-length € {1,2}, p; = 1| Y wj,;,
where in the latter case each chain has length at most two.

All the computational experiments were performed on a workstation with §GB RAM and
Intel(R) Xeon(R) CPU E5-2630 v4 of 2.20 GHz, and under Linux operating system using
a single thread only. Our solution approach is implemented in C++ programming language
using CPLEX (version 12.6.3.0) as the branch-and-cut framework.

In these experiments we compared three solution approaches, more precisely, four
scenarios corresponding to the settings summarized in Table 2. Method BnB is pure branch-
and-bound, where we turned off all the presolves, heuristics and forbid to generate built-in
cuts. Method BnC (Default) refers to the default CPLEX settings (i.e., CPLEX performs pre-
solves and heuristics, and generates built-in cuts). Methods BnC (Parity)-1 and BnC (Parity)-2
use the same solver settings as BnB, but we also separate parity inequalities, i.e., both of
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Table 2 Solver settings of the different methods

Method CPLEX Parity cuts

Presolve Heuristics Cuts Root Non-root
BnB No No No No No
BnC (Default) Yes Yes Yes No No
BnC (Parity)-1 No No No No Yes
BnC (Parity)-2 No No No Yes Yes

these methods separate parity inequalities in search-tree node of depth at least 1, but BnC
(Parity)-1 does not generate any cuts in the root, while BnC (Parity)-2 does. In each case we
had a runtime limit of 600s, i.e., the search was stopped upon reaching the time limit.

We generated two families of problem instances for 1 |2-chains, p; = 1] Y- w j.o;» and
one family for 1 |chains, chain-length € {1,2}, p; = 1| ij,(,j. Each family consists
of 30 instances, which can be subdivided according to the number of jobs, which was n €
{50, 100, 150}, and we generated 10 instances for each n. In Tables 3, 4 and 5 we summarize
our results on these families, and the detailed results are presented in the “Appendix” (see
Tables 6, 7, 8,9, 10, 11, 12, 13 and 14). In these tables we indicate the number of jobs (1),
the settings of the solver (Method), the lower bound after the root node is solved (LB"), the
final lower and upper bounds (LB/, UBY), the final gap (Gap/) calculated as 100 x (U B/ —
LB/ / LB/, the number of investigated branch-and-bound nodes (Nodes), the number of
generated parity inequalities (Cuts), and the execution time (Time) in seconds.

6.1 Results on problem 1 |2-chains, pj = 1| ) Wj,g;

For the problem 1|2-chains, pj = 1| Y w;,, we generated two families of instances,
Family 1 and Family 2, that differ in the method of generating the cost functions. Both families
consist of 30 instances, which can be further divided into problems with n € {50, 100, 150}
jobs, i.e., 10 instances for each n. In order to generate challenging instances, for each first-
job we assigned higher weight for the early positions than for the late ones, however, for
each second-job we assigned lower weight for the early positions than for the late ones.
Formally, in case of Family 1, we partitioned the set of positions into 9 sets such that P, =
{Ttk—1)-2n/91+1,...,[k-2n/97} foreach k € {1, ..., 9}, then for job J; and position j
we chose w; ; uniformly at random such that

o w; ;j € {10(10 — k), ..., 10(11 — k) — 1} if J; is a first-job, and j € Py,

o w; ; € {10k, ..., 10(k + 1) — 1} if J; is a second-job, and j € P.
In case of Family 2, we partitioned the set of positions into 17 subsets such that P, =
{Ttk —1)-2n/171 + 1,..., [k - 2n/17]} for each k € {1, ..., 17}, then for job J; and
position j we chose w;,; uniformly at random such that

w; j € {10k, ..., 10(k + 1) — 1} if J; is a first-job, k < 9, and j € T,

w; j € {10(18 — k), ..., 10(19 — k) — 1} if J; is a first-job, 9 < k, and j € P,

w; j € {10(10 — k), ..., 10(11 — k) — 1} if J; is a second-job, k <9, and j € P,

w;,j € {10k = 9), ..., 10(k — 8) — 1} if J; is a second-job, 9 < k, and j € P.
In Tables 3 and 4 we summarize our results for Family 1 and Family 2, respectively, while
the detailed results can be found in Tables 6, 7 and 8, and in Tables 9, 10 and 11, respectively.
Our observations are the followings.

@ Springer



306 Annals of Operations Research (2020) 284:283-322

Table 3 Summarized computational results for Family 1 (averages over 10 instances)

n Method LB’ LB/ UB/ Gap/ Nodes Cuts  Time
50 BnB 2521.1 25254 25254 00 3196.1 0.0 172
BnC (Default) 25223 25254 25254 00 839.9 0.0 7.7
BnC (Parity)-1 ~ 2521.1 25254 25254 0.0 43 197 1.1
BnC (Parity)-2 25250 25254 25254 0.0 23 202 0.6
100  BnB 50048 50069 50219 03 14,017.2 0.0 4169
BnC (Default) 5005.1 50075  5011.0 0.1 10, 670.4 0.0 3972
BnC (Parity)-1 50048 50085 50085 0.0 1400 357 25.0
BnC (Parity)-2 50069 50085 50085 0.0 1276 264 233
150  BnB 7500.0 75000 75137 02 3740.6 0.0 3466
BnC (Default) 7500.0 75000  7500.1 0.0 12572 0.0 2275
BnC (Parity)-1 75000 75000  7500.0 0.0 128 354 42.8
BnC (Parity)-2 75000 75000  7500.0 0.0 82.8 267 82.0

— Methods BnC (Parity)-1 and BnC (Parity)-2 significantly outperformed the other ones
in all aspects. First, only these methods were able to solve all instances to optimality
(one can see that the average gap is always 0.0), Second, for each instance, method BnC
(Parity)-1 needed shorter execution time than methods BnB and BnC (Default). Note
that on average, method BnC (Parity)-2 was also significantly faster than methods BnB
and BnC (Default) [often faster than method BnC (Parity)-1 as well], however, for some
instances one of the other two methods outperformed it. Finally, both of the methods BnC
(Parity)-1 and BnC (Parity)-2 significantly reduced the number of the explored tree-nodes
as well.

— Separating parity inequalities at the root node [method BnC (Parity)-2 ] yielded the best
(i-e., highest) lower bounds at the root node, however, on large instances with 150 jobs
the separation procedure at the root node took a lot of time, which resulted in longer
execution times than the method BnC (Parity)-1. For example, in case of Family 1 and
n = 150, where the LP-relaxation of the problem (see column LB” of the pure branch-
and-bound method BnB) is basically strong, separating these inequalities at the root node
could not help a lot, and method BnC (Parity)-1 outperformed method BnC (Parity)-2.

To sum up, using parity inequalities [methods BnC (Parity)-1 and BnC (Parity)-2 ] can
significantly improve a pure branch-and-bound procedure (method BnB), moreover, they
also outperform the default CPLEX branch-and-cut procedure [method BnC (Default) ].

6.2 Results on problem 1 |chains, chain-length € {1, 2}, pj = 1| }_w; 5,

Given an n-length path (in terms of number of its nodes) as the precedence graph. To obtain
instances of Family 3 we randomly removed arcs from that path such that the remaining sub-
paths (i.e, chains) have length at most two. For each n € {50, 100, 150}, we generated 10
instances with n jobs, giving a total of 30 instances. Again, to generate challenging instances,
for each first-job we assigned higher weight for the early positions than for the late ones,
however, for each second-job we assigned lower weight for the early positions than for the
late ones (see Family 1).
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Table 4 Summarized computational results for Family 2 (averages over 10 instances)

n Method LB’ LB/ UB/ Gap/ Nodes Cuts  Time
50 BnB 1800.4 18165 18165 0.0 925.1 0.0 33
BnC (Default) 18159 18165 18165 0.0 14.7 0.0 0.6
BnC (Parity)-1 1800.4 18165 18165 0.0 35 2.7 0.3
BnC (Parity)-2 18163  1816.5 18165 0.0 1.7 2.6 0.2
100  BnB 35962 35986 36634 18 63,707.8 0.0  600.0
BnC (Default) 36023 36165 36445 08 14,762.8 0.0  600.0
BnC (Parity)-1 35962  3642.1 36421 0.0 43 271 5.4
BnC (Parity)-2 36421 36421 36421 00 45 169 5.2
150  BnB 5340.7 53409 53998 1.1 9099.5 0.0  600.0
BnC (Default) 53443 53528 53605 0.1 4944.9 0.0 5740
BnC (Parity)-1 53407 53604 53604 0.0 5.0 6.9 15.4
BnC (Parity)-2 53604 53604 53604 0.0 6.8  10.0 18.1

Table 5 Summarized computational results for Family 3 (averages over 10 instances)

n Method LB’ LB/ UB/ Gap/ Nodes Cuts  Time
50 BnB 2039.6 20561  2056.1 0.0 28,892.6 0.0 47.0
BnC (Default) 20498 20561 20561 0.0 851.1 0.0 2.0
BnC (Parity)-1 ~ 2039.6  2056.1  2056.1 0.0 4.2 7.8 0.3
BnC (Parity)-2 20556  2056.1  2056.1 0.0 2.9 5.3 0.3
100  BnB 4053.6  4056.1  4087.7 08 60, 305.6 0.0  600.0
BnC (Default) 4056.8 40704 40787 02 26,954.3 0.0  590.3
BnC (Parity)-1 ~ 4053.6 40767  4076.7 0.0 56.0  16.0 8.6
BnC (Parity)-2 40757  4076.7 40767 0.0 44.4 8.5 6.9
150  BnB 60624 60628 61095 08 16,331.7 0.0  600.0
BnC (Default) 60637 60683 60843 03 9923.6 0.0  600.0
BnC (Parity)-1 60624  6081.8  6081.8 0.0 329 164 233
BnC (Parity)-2 60814  6081.8  6081.8 0.0 1969  10.6 383

In Table 5 we summarize our results, and for detailed results we refer to the “Appendix”
(see Tables 12, 13 and 14). Similarly to the previous experiments, the methods BnC (Parity)-1
and BnC (Parity)-2 outperformed the other ones. For smaller instances with 50 and 100 jobs,
BnC (Parity)-2 slightly outperformed BnC (Parity)-1 in terms of search-tree nodes and total
running time, but on large instances with 150 jobs, the BnC (Parity)-1 proved better.

7 Conclusions, final remarks and future work

In this paper we presented polyhedral and complexity results for a single machine scheduling
problem where precedence constraints are given. Among several theoretical results we also
presented a class of valid inequalities that turned out to be facet-defining for 2-chains prece-
dence constraints. Our computational experiments show that separating these inequalities
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can significantly improve a linear programming based branch-and-bound procedure if the
length of each chain is at most two. Although these inequalities are also valid in the case of
chain-precedence constraints with arbitrary chain-lengths, according to our preliminary com-
putational experiments, separating these inequalities could not improve a branch-and-bound
procedure in that case.

In the future we would like to direct our attention to the case of chain-precedence con-
straints with arbitrary chain-lengths, and to the case of general precedence constraints as
well.

Acknowledgements Open access funding provided by MTA Institute for Computer Science and Control
(MTA SZTAKI).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

8 Appendix
8.1 Proof of Lemma 2

Proof (statement (i) Let p,q € {1, ..., n} be distinct elements, | < j; < jo < j3 < ju <
2n and consider points Py = (s, e!), P, = (s2,¢?) € Pzzl,fh“m suchthato, (P1) = (j1, j2),
oq(P1) = (J3, ja) and 04 (P2) = (J1, j3), 04(P2) = (j2, ja) and o, (P1) = o, (P2) for all
r¢{p.q} ie,

1 1 1 1 2 _ 2 _ 2 _ 2 _
Spoji = €pojp = Sq.s =gy = 1 and s, 5 =€) =g =€, =1
and sr1 .= sr2 . erll. = erzi forall r ¢ {p,q} and j € {1,...,2n}. Since P; and P,
satisfy (25), we have
n 2n
1 1) _
i + Bpoip + g T By D D (“rajsr,j + ﬂ"vfer,j) =
r=1 j=1
r#p.q
and
n 2n
2 2\ _
Wpji+ Bpjs + i+ Boist D D (Ofr,jsr,j + ﬁr,jer,j) =V
r=1 j=l1
r#p.q

thus, by subtracting the second equation from the first one, we have 8, j, +ay, j; = a4 j, +
Bp.js (1 < jo < j3 < 2n), that is, statement (i) holds for p # q.

Since n > 3, we can choose pairwise distinct elements p, g, r € {1, ..., n}, therefore we
have

(Xpyj// — O‘p,j’ = /quj// — ﬁq,j’ = ar,j” — ar,j’ = :31),]'” — ﬂp,j”

that is, statement i) also holds for p = g. O

Proof (statement (ii)) Let p,q € {1, ... ,An} be distinct elements, 1 < j; < j» < j3a < ju <
2n and consider points Py, P, € P22,;"h“”” such that 0, (P1) = (j1, j3), 04 (P1) = (j2, ja)
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Table 6 Detailed computational results for Family 1 with n = 50
Instance Method LB" LB/ UB/ Gapf Nodes Cuts Time
1 BnB 2524.0 2531.0 2531.0 0.0 12,377 0 54.1
BnC (Default) 2526.2 2531.0 2531.0 0.0 535 0 13.2
BnC (Parity)-1 2524.0 2531.0 2531.0 0.0 4 27 1.2
BnC (Parity)-2 2530.5 2531.0 2531.0 0.0 3 19 0.8
2 BnB 25223 2526.0 2526.0 0.0 520 0 6.8
BnC (Default) 25233 2526.0 2526.0 0.0 451 0 4.5
BnC (Parity)-1 25223 2526.0 2526.0 0.0 3 24 0.5
BnC (Parity)-2 2526.0 2526.0 2526.0 0.0 0 20 0.2
3 BnB 2527.2 2530.0 2530.0 0.0 332 0 6.1
BnC (Default) 2528.0 2530.0 2530.0 0.0 208 0 2.8
BnC (Parity)-1 2527.2 2530.0 2530.0 0.0 4 17 0.8
BnC (Parity)-2 2530.0 2530.0 2530.0 0.0 0 27 0.2
4 BnB 2518.6 2523.0 2523.0 0.0 5693 0 27.5
BnC (Default) 2519.2 2523.0 2523.0 0.0 2066 0 11.5
BnC (Parity)-1 2518.6 2523.0 2523.0 0.0 8 22 2.0
BnC (Parity)-2 2521.7 2523.0 2523.0 0.0 7 23 1.8
5 BnB 2516.7 2519.0 2519.0 0.0 7 0 1.6
BnC (Default) 2519.0 2519.0 2519.0 0.0 0 0 0.8
BnC (Parity)-1 2516.7 2519.0 2519.0 0.0 3 17 0.7
BnC (Parity)-2 2519.0 2519.0 2519.0 0.0 0 23 0.2
6 BnB 2521.0 2525.0 2525.0 0.0 232 0 5.6
BnC (Default) 2521.8 2525.0 2525.0 0.0 339 0 3.8
BnC (Parity)-1 2521.0 2525.0 2525.0 0.0 4 17 0.9
BnC (Parity)-2 2524.5 2525.0 2525.0 0.0 2 18 0.4
7 BnB 2524.6 2527.0 2527.0 0.0 133 0 3.1
BnC (Default) 2525.6 2527.0 2527.0 0.0 14 0 0.9
BnC (Parity)-1 2524.6 2527.0 2527.0 0.0 5 12 1.2
BnC (Parity)-2 2526.2 2527.0 2527.0 0.0 3 15 0.7
8 BnB 2519.0 2523.0 2523.0 0.0 1469 0 12.2
BnC (Default) 2519.8 2523.0 2523.0 0.0 624 0 4.7
BnC (Parity)-1 2519.0 2523.0 2523.0 0.0 5 21 1.3
BnC (Parity)-2 2522.0 2523.0 2523.0 0.0 5 18 0.9
9 BnB 2522.1 2528.0 2528.0 0.0 8774 0 38.1
BnC (Default) 25223 2528.0 2528.0 0.0 3460 0 29.6
BnC (Parity)-1 2522.1 2528.0 2528.0 0.0 4 18 1.2
BnC (Parity)-2 2528.0 2528.0 2528.0 0.0 0 20 0.2
10 BnB 2515.9 2522.0 2522.0 0.0 2424 0 17.0
BnC (Default) 2517.9 2522.0 2522.0 0.0 702 0 54
BnC (Parity)-1 2515.9 2522.0 2522.0 0.0 3 22 0.9
BnC (Parity)-2 2521.8 2522.0 2522.0 0.0 3 19 0.5
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Table 6 continued

Instance Method LB” LB/ UB/ Gapf Nodes Cuts Time
Avg BnB 2521.1 2525.4 2525.4 0.0 3196.1 0.0 17.2
BnC (Default) 25223 25254 2525.4 0.0 839.9 0.0 7.7
BnC (Parity)-1 2521.1 25254 2525.4 0.0 43 19.7 1.1
BnC (Parity)-2 2525.0 25254 2525.4 0.0 23 20.2 0.6
Table 7 Detailed computational results for Family 1 with n = 100
Instance Method LB" LB/ UB/ Gapf Nodes Cuts Time
1 BnB 5004.7 5006.7 5016.0 0.2 19,580 0 600.0
BnC (Default) 5004.8 5009.0 5009.0 0.0 18,317 0 513.5
BnC (Parity)-1 5004.7 5009.0 5009.0 0.0 160 40 25.0
BnC (Parity)-2 5007.3 5009.0 5009.0 0.0 26 28 15.2
2 BnB 5005.0 5007.0 5007.0 0.0 3850 0 148.7
BnC (Default) 5005.1 5007.0 5007.0 0.0 2842 0 77.6
BnC (Parity)-1 5005.0 5007.0 5007.0 0.0 69 32 224
BnC (Parity)-2 5005.9 5007.0 5007.0 0.0 112 29 24.6
3 BnB 5004.7 5008.0 5008.0 0.0 9963 282.5
BnC (Default) 5004.9 5008.0 5008.0 0.0 4339 177.8
BnC (Parity)-1 5004.7 5008.0 5008.0 0.0 171 36 229
BnC (Parity)-2 5006.1 5008.0 5008.0 0.0 130 32 25.0
4 BnB 5007.4 5008.7 5058.0 1.0 21,653 0 600.0
BnC (Default) 5007.6 5008.5 5021.0 0.3 10,395 0 600.0
BnC (Parity)-1 5007.4 5013.0 5013.0 0.0 102 38 21.4
BnC (Parity)-2 5011.7 5013.0 5013.0 0.0 81 22 20.4
5 BnB 5003.9 5006.0 5011.0 0.1 18,585 0 600.0
BnC (Default) 5004.7 5008.0 5008.0 0.0 16,913 0 524.5
BnC (Parity)-1 5003.9 5008.0 5008.0 0.0 263 39 37.0
BnC (Parity)-2 5005.8 5008.0 5008.0 0.0 320 39 38.3
6 BnB 5006.9 5010.0 5010.0 0.0 5414 0 217.9
BnC (Default) 5007.1 5010.0 5010.0 0.0 3986 0 212.0
BnC (Parity)-1 5006.9 5010.0 5010.0 0.0 62 26 18.4
BnC (Parity)-2 5008.4 5010.0 5010.0 0.0 81 24 17.4
7 BnB 5004.0 5005.6 5010.0 0.1 21,114 0 600.0
BnC (Default) 5004.2 5007.0 5007.0 0.0 21,630 0 483.0
BnC (Parity)-1 5004.0 5007.0 5007.0 0.0 221 49 29.3
BnC (Parity)-2 5005.7 5007.0 5007.0 0.0 168 25 24.9
8 BnB 5004.1 5007.0 5007.0 0.0 1633 0 66.5
BnC (Default) 5004.5 5007.0 5007.0 0.0 11,646 0 517.4
BnC (Parity)-1 5004.1 5007.0 5007.0 0.0 122 19 23.5
BnC (Parity)-2 5005.7 5007.0 5007.0 0.0 112 20 27.7
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Table 7 continued

Instance Method LB”" LB/ UB/ Gapf Nodes Cuts Time
9 BnB 5004.3 5005.6 5087.0 1.6 22,484 0 600.0
BnC (Default) 5005.1 5005.9 5028.0 0.4 11,269 0 600.0
BnC (Parity)-1 5004.3 5011.0 5011.0 0.0 138 41 24.7
BnC (Parity)-2 5008.7 5011.0 5011.0 0.0 235 27 26.7
10 BnB 5002.6 5005.0 5005.0 0.0 15,896 0 453.6
BnC (Default) 5002.8 5005.0 5005.0 0.0 5367 0 266.3
BnC (Parity)-1 5002.6 5005.0 5005.0 0.0 92 37 25.6
BnC (Parity)-2 5004.0 5005.0 5005.0 0.0 11 18 12.6
Avg BnB 5004.8 5006.9 5021.9 0.3 14,017.2 0.0 416.9
BnC (Default) 5005.1 5007.5 5011.0 0.1 10,670.4 0.0 397.2
BnC (Parity)-1 5004.8 5008.5 5008.5 0.0 140.0 35.7 25.0
BnC (Parity)-2 5006.9 5008.5 5008.5 0.0 127.6 26.4 233

and o, (P2) = (j2, j3), 04(P2) = (j1, ja) and 0, (P) = 0, (P,) forall r ¢ {p, q}. Since P
and P, satisfy (25), we have atp, j, — ap jy =0y j, — og j; (1 < j1 < j2 < 2n — 1), that is,
statement (ii) holds for j” < 2n — 1.

Now, consider points P3, Py € Pzzr;"h“in“ such that 0, (P3) = (ji1,2n — 2), 04,(P3) =
(2n —1,2n) and 0, (P4) = (2n — 1,2n), 04(P4) = (j1,2n — 2) and 0, (P3) = 0,(Py) for
all ¥ ¢ {p, q}. Since P3 and Py satisfy (25), we have o), j; + Bpon—2 + Qg 201 + Bg,2n =
apon—1+Bpan+ag, j + By2n—2. According to statement i) (note that 1 < 2n —2) we have
ﬂp,2n - ,Bp,Zn—Z = ﬂq,Zn - ,3(1,271—2’ therefore Up ji +0gom—1 = g j +&p2n—1, that is,
statement (ii) also holds for j” = 2n — 1. m}

Proof (statement (iii)) Let p,q € {1, ..., n} be distinct elements, | < j; < jo < j3 < j4 <
2n and consider points Py, P, € Pzzrf"”i’” such that 0,(P1) = (j1, j3), 04(P1) = (j2, ja)
and 0,(P2) = (j1, ja), 04(P2) = (j2, j3) and o, (P1) = o,(P») for all » ¢ {p, q}. Since
Py and P, satisfy (25), we have B, i, — Bp.js = Bg,ju — Bg.js 2 < j3 < ja < 2n), that is,
statement (iii) holds for 2 < j’.

Now, consider points P3, Py € P34 guch that o, (P3) = (1,2), 04(P3) = (3, js)
and 0,(Py) = (3, ja), 04(P4) = (1,2) and 0, (P3) = 0,(Py) for all r ¢ {p, q}. Since P3
and Py satisfy (25), we have a1 + Bp2 + oy 3+ By js = ap3 + Bp,ju + g1 + By,2-
According to statement (i) (note that 3 < 2n) we have o), 3 — ) | = 0y 3 — 0y, 1, therefore
Bp.2+ By.js = Bg.2 + Bp, js» that is, statement (iii) also holds for j' = 2. |

8.2 Proof of Lemma 3

Proof (statement (i)) Let p,q € {1,...,1} _be distinct elements, 1 < j; < j» <2k < jz <
Jja < 2n and consider points P, P, € Pzpnamy suchthato, (P1) = (j1, j3),04(P1) = (j2, ja)
and 0,(P2) = (j2, j3), 04(P2) = (j1, ja) and 0, (P1) = o, (P,) forall r ¢ {p, q}, i.e.,

sbo—el =l —pl . —1 and s

. A 2 2 2 2 1
pP.J1 pP.J3 q.J2 q.J4 p.J2 ’

=z = Sq.i T Cq.s =
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Table 8 Detailed computational results for Family 1 with n = 150

Instance Method LB" LB/ UB/ Gapf Nodes Cuts Time
1 BnB 7500.0 7500.0 7529.0 0.4 7205 0 600.0
BnC (Default) 7500.0 7500.0 7500.0 0.0 472 0 228.2
BnC (Parity)-1 7500.0 7500.0 7500.0 0.0 6 26 31.9
BnC (Parity)-2 7500.0 7500.0 7500.0 0.0 52 17 100.4
2 BnB 7500.0 7500.0 7500.0 0.0 1054 0 193.7
BnC (Default) 7500.0 7500.0 7500.0 0.0 0 0 31.0
BnC (Parity)-1 7500.0 7500.0 7500.0 0.0 9 31 38.6
BnC (Parity)-2 7500.0 7500.0 7500.0 0.0 18 20 58.4
3 BnB 7500.0 7500.0 7500.0 0.0 5791 0 421.3
BnC (Default) 7500.0 7500.0 7500.0 0.0 135 0 88.5
BnC (Parity)-1 7500.0 7500.0 7500.0 0.0 13 35 50.2
BnC (Parity)-2 7500.0 7500.0 7500.0 0.0 84 28 88.6
4 BnB 7500.0 7500.0 7500.0 0.0 847 0 200.3
BnC (Default) 7500.0 7500.0 7500.0 0.0 2753 0 243.7
BnC (Parity)-1 7500.0 7500.0 7500.0 0.0 10 40 45.1
BnC (Parity)-2 7500.0 7500.0 7500.0 0.0 378 48 113.2
5 BnB 7500.0 7500.0 7500.0 0.0 42 0 70.2
BnC (Default) 7500.0 7500.0 7500.0 0.0 2461 0 495.3
BnC (Parity)-1 7500.0 7500.0 7500.0 0.0 16 37 53.0
BnC (Parity)-2 7500.0 7500.0 7500.0 0.0 150 40 106.9
6 BnB 7500.0 7500.0 7604.0 1.4 5132 0 600.0
BnC (Default) 7500.0 7500.0 7501.0 0.0 4221 0 600.0
BnC (Parity)-1 7500.0 7500.0 7500.0 0.0 4 78 29.2
BnC (Parity)-2 7500.0 7500.0 7500.0 0.0 33 27 80.2
7 BnB 7500.0 7500.0 7500.0 0.0 413 0 114.7
BnC (Default) 7500.0 7500.0 7500.0 0.0 0 0 18.6
BnC (Parity)-1 7500.0 7500.0 7500.0 0.0 2 26 18.5
BnC (Parity)-2 7500.0 7500.0 7500.0 0.0 24 29 71.1
8 BnB 7500.0 7500.0 7500.0 0.0 41 0 65.4
BnC (Default) 7500.0 7500.0 7500.0 0.0 246 0 89.3
BnC (Parity)-1 7500.0 7500.0 7500.0 0.0 9 26 38.8
BnC (Parity)-2 7500.0 7500.0 7500.0 0.0 54 21 84.3
9 BnB 7500.0 7500.0 7502.0 0.0 7464 0 600.0
BnC (Default) 7500.0 7500.0 7500.0 0.0 785 0 129.3
BnC (Parity)-1 7500.0 7500.0 7500.0 0.0 9 27 41.5
BnC (Parity)-2 7500.0 7500.0 7500.0 0.0 3 9 34.0
10 BnB 7500.0 7500.0 7502.0 0.0 9417 0 600.0
BnC (Default) 7500.0 7500.0 7500.0 0.0 1499 0 351.0
BnC (Parity)-1 7500.0 7500.0 7500.0 0.0 50 28 81.3
BnC (Parity)-2 7500.0 7500.0 7500.0 0.0 32 28 83.2
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Table 8 continued

Instance Method LB" LB/ UB/ Gap/ Nodes Cuts Time
Avg BnB 7500.0 7500.0 7513.7 0.2 3740.6 0.0 346.6
BnC (Default) 7500.0 7500.0 7500.1 0.0 1257.2 0.0 227.5
BnC (Parity)-1 7500.0 7500.0 7500.0 0.0 12.8 354 42.8
BnC (Parity)-2 7500.0 7500.0 7500.0 0.0 82.8 26.7 82.0
and srl_j = srz’j, erl_< = ef’j forall v ¢ {p,q}and j € {1,...,2n}. Note that such points
exist according to Remark 2. Since P; and P; satisfy (31), we have
n 2n
U ji + Bp.js + g+ Bejs+ D D (Ofr,jsrl,j + ﬂr,jerl,j> =7
i
and
no 2n
p.jy + Bpojs + g i + Bgjs + Z Z (“r,jsrz,j + ﬂr,jef,j) =V,
S

thus, by subtracting the first one from the second one, we have ), j, +ay, j, = ap j, +oy, ;-
o

Proof (statement (iii)) Let p,q € {1, ..., t} be distinct elements, | < j; < jo <2k < j3 <
Jja < 2n and consider points Py, P, € P{;“”’y suchthato,(Py) = (ji, j3),04(P1) = (ja, ja)
and o (P2) = (j1, ja), 04 (P2) = (j2, j3) and 0, (P1) = 0, (P,) forall r ¢ {p, q}. Since P,
and P satisfy (31) we have B, j, — Bp.j5 = Bq.js — Bq.js-

Proof (statement (ii)) Let p,q € {1, ...,t} be distinct elements and 1 < j; < 2k < jp <
Jj3 < ja < 2n.First, consider points P, P, € Pzpnamy suchthato, (Py) = (j1, j3),04(P1) =
(J2, ja) and 0 (P2) = (j2. J3), 0q(P2) = (J1, ja) and 0, (P1) = o, (P) forall r ¢ {p, q}.
Since Py and P, satisfy (31) we have o, j, — ap, j; = a4, j, — g, j,, that is, statement (ii)
holds if 2k < j” < 2n — 1.

Now, consider points P3, Py € P{thy such that 0,(P3) = (j1,2k + 1), 04(P3) =
(2n—1,2n)and 0, (Py) = 2n—1,2n), 04 (Ps) = (j1, 2k +1) and 0, (P3) = 04 (P3) for all
r ¢ {p, q}.Since P3 and P4 satisfy (31) we have ), j, + Bp 2k+1+0tg 0n—1+Bg.on = g, j; +
By, 2k+1 +ap2n—1+ Bp,2n- According to statement iii), By 20 — Bp2k+1 = By,2n — By, 2k+15
thus ap j, + g 2n—1 = g, j, + @p2n—1, that is, statement (ii) also holds for j” =2n — 1.0

Proof (statement (vi)) Let p,q € {1, ..., t} be distinct elements, 1 < j; < jo» < j3 <2k <
Jja < 2n. First, consider points Pi, P, € le;amy such that ,(P) = (j1, j3), 04(P1) =
(jo, ja) and oy (P2) = (ji, ja), 04 (P2) = (ja, j3) and 0, (Py) = o, (Py) for all 7 ¢ {p, q}.
Since Pj and P satisfy (31) we have B, j, — Bp.js = Bq.js — Bq.j;» that is, statement (iv)
holds if 2 < j’ < 2k.

Now, consider points P3, P4 € P{:lamy such that 0,(P3) = (1,2), 04(P3) = (2k, j4)
and 0, (Py) = (2k, ja), 04(Ps) = (1,2) and 0, (P3) = 0,(Py) forall r ¢ {p, q}. Since P3
and Py satisfy (31) we have ap 1 + Bp2 + agok + By, ju = Qg1 + Bg2 +p ok + Bpju-
According to statement i), ap ok — @p,1 = g2k — g, 1, thus By 2+ By = By2 + Bp,ju>
that is, statement (iv) also holds for j" = 2. O
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Table 9 Detailed computational results for Family 2 with n = 50

Instance Method LB" LB/ UB/ Gapf Nodes Cuts Time
1 BnB 1797.5 1816.0 1816.0 0.0 1978 0 5.4
BnC (Default) 1816.0 1816.0 1816.0 0.0 0 0 0.4
BnC (Parity)-1 1797.5 1816.0 1816.0 0.0 5 2 0.5
BnC (Parity)-2 1815.7 1816.0 1816.0 0.0 3 3 0.4
2 BnB 1804.5 1819.0 1819.0 0.0 495 0 22
BnC (Default) 1815.0 1819.0 1819.0 0.0 28 0 0.8
BnC (Parity)-1 1804.5 1819.0 1819.0 0.0 3 3 0.3
BnC (Parity)-2 1819.0 1819.0 1819.0 0.0 0 2 0.2
3 BnB 1798.5 1817.0 1817.0 0.0 751 0 23
BnC (Default) 1817.0 1817.0 1817.0 0.0 0 0 0.3
BnC (Parity)-1 1798.5 1817.0 1817.0 0.0 4 4 0.2
BnC (Parity)-2 1816.5 1817.0 1817.0 0.0 3 4 0.1
4 BnB 1798.8 1814.0 1814.0 0.0 530 0 2.8
BnC (Default) 1814.0 1814.0 1814.0 0.0 0 0 0.8
BnC (Parity)-1 1798.8 1814.0 1814.0 0.0 4 3 0.3
BnC (Parity)-2 1814.0 1814.0 1814.0 0.0 3 0.2
5 BnB 1799.0 1817.0 1817.0 0.0 845 0 35
BnC (Default) 1817.0 1817.0 1817.0 0.0 0 0 0.5
BnC (Parity)-1 1799.0 1817.0 1817.0 0.0 3 2 0.3
BnC (Parity)-2 1817.0 1817.0 1817.0 0.0 0 2 0.2
6 BnB 1806.0 1822.0 1822.0 0.0 1835 0 5.3
BnC (Default) 1822.0 1822.0 1822.0 0.0 0 0 0.6
BnC (Parity)-1 1806.0 1822.0 1822.0 0.0 4 2 0.4
BnC (Parity)-2 1821.3 1822.0 1822.0 0.0 4 2 0.5
7 BnB 1800.5 1817.0 1817.0 0.0 670 0 3.0
BnC (Default) 1814.8 1817.0 1817.0 0.0 119 0 1.2
BnC (Parity)-1 1800.5 1817.0 1817.0 0.0 3 2 0.2
BnC (Parity)-2 1817.0 1817.0 1817.0 0.0 0 3 0.1
8 BnB 1799.0 1814.0 1814.0 0.0 799 0 2.8
BnC (Default) 1814.0 1814.0 1814.0 0.0 0 0 0.5
BnC (Parity)-1 1799.0 1814.0 1814.0 0.0 3 3 0.2
BnC (Parity)-2 1814.0 1814.0 1814.0 0.0 2 2 0.2
9 BnB 1803.5 1819.0 1819.0 0.0 533 0 2.5
BnC (Default) 1819.0 1819.0 1819.0 0.0 0 0 0.3
BnC (Parity)-1 1803.5 1819.0 1819.0 0.0 3 4 0.2
BnC (Parity)-2 1819.0 1819.0 1819.0 0.0 0 3 0.1
10 BnB 1797.0 1810.0 1810.0 0.0 815 0 2.8
BnC (Default) 1810.0 1810.0 1810.0 0.0 0 0.5
BnC (Parity)-1 1797.0 1810.0 1810.0 0.0 2 0.2
BnC (Parity)-2 1810.0 1810.0 1810.0 0.0 2 0.1
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Table9 continued
Instance Method LB" LB/ UuB/ Gapf Nodes Cuts Time
Avg BnB 1800.4 1816.5 1816.5 0.0 925.1 0.0 33
BnC (Default) 1815.9 1816.5 1816.5 0.0 14.7 0.0 0.6
BnC (Parity)-1 1800.4 1816.5 1816.5 0.0 3.5 2.7 0.3
BnC (Parity)-2 1816.3 1816.5 1816.5 0.0 1.7 2.6 0.2
Table 10 Detailed computational results for Family 2 with n = 100
Instance Method LB" LB/ UB/ Gapf Nodes Cuts Time
1 BnB 3595.1 3598.5 3650.0 1.4 58,120 0 600.0
BnC (Default) 3595.5 3613.5 3644.0 0.8 15,623 0 600.0
BnC (Parity)-1 3595.1 3642.0 3642.0 0.0 3 24 3.4
BnC (Parity)-2 3642.0 3642.0 3642.0 0.0 3 24 3.7
2 BnB 3595.0 3598.3 3652.0 1.5 75,054 0 600.0
BnC (Default) 3600.3 3613.2 3642.0 0.8 15,739 0 600.0
BnC (Parity)-1 3595.0 3641.0 3641.0 0.0 4 27 4.9
BnC (Parity)-2 3641.0 3641.0 3641.0 0.0 0 23 3.0
3 BnB 3599.0 3599.5 3670.0 1.9 57,020 600.0
BnC (Default) 3608.5 3617.8 3645.0 0.8 14,084 600.0
BnC (Parity)-1 3599.0 3643.0 3643.0 0.0 4 26 5.6
BnC (Parity)-2 3642.5 3643.0 3643.0 0.0 2 16 4.6
4 BnB 3594.5 3599.5 3655.0 1.5 73,846 0 600.0
BnC (Default) 3601.0 3617.3 3644.0 0.7 14,320 0 600.0
BnC (Parity)-1 3594.5 3642.0 3642.0 0.0 3 29 4.2
BnC (Parity)-2 3642.0 3642.0 3642.0 0.0 0 22 2.7
5 BnB 3594.5 3594.5 3661.0 1.8 77,634 0 600.0
BnC (Default) 3599.0 3611.0 3643.0 0.9 14,053 0 600.0
BnC (Parity)-1 3594.5 3640.0 3640.0 0.0 7 31 7.1
BnC (Parity)-2 3640.0 3640.0 3640.0 0.0 4 8 5.9
6 BnB 3600.8 3603.8 3673.0 1.9 52,608 0 600.0
BnC (Default) 3602.0 3614.0 3649.0 1.0 16,714 0 600.0
BnC (Parity)-1 3600.8 3646.0 3646.0 0.0 3 24 4.2
BnC (Parity)-2 3646.0 3646.0 3646.0 0.0 2 22 33
7 BnB 3594.5 3596.5 3663.0 1.8 54,950 0 600.0
BnC (Default) 3604.8 3624.8 3642.0 0.5 11,172 0 600.0
BnC (Parity)-1 3594.5 3641.0 3641.0 0.0 3 18 4.6
BnC (Parity)-2 3641.0 3641.0 3641.0 0.0 10 12 9.9
8 BnB 3597.0 3597.0 3667.0 1.9 53,452 600.0
BnC (Default) 3609.0 3628.5 3647.0 0.5 13,020 600.0
BnC (Parity)-1 3597.0 3643.0 3643.0 0.0 4 27 4.0
BnC (Parity)-2 3643.0 3643.0 3643.0 0.0 2 17 3.1
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Table 10 continued

Instance Method LB”" LB/ UB/ Gapf Nodes Cuts Time
9 BnB 3597.5 3598.5 3691.0 2.5 75,310 0 600.0
BnC (Default) 3602.0 3617.3 3646.0 0.8 14,620 0 600.0
BnC (Parity)-1 3597.5 3642.0 3642.0 0.0 4 19 5.4
BnC (Parity)-2 3642.0 3642.0 3642.0 0.0 2 11 3.9
10 BnB 3594.5 3599.5 3652.0 1.4 59,084 0 600.0
BnC (Default) 3600.5 3607.5 3643.0 1.0 18,283 0 600.0
BnC (Parity)-1 3594.5 3641.0 3641.0 0.0 8 46 10.4
BnC (Parity)-2 3641.0 3641.0 3641.0 0.0 20 14 113
Avg BnB 3596.2 3598.6 3663.4 1.8 63,707.8 0.0 600.0
BnC (Default) 3602.3 3616.5 3644.5 0.8 14,762.8 0.0 600.0
BnC (Parity)-1 3596.2 3642.1 3642.1 0.0 43 27.1 5.4
BnC (Parity)-2 3642.1 3642.1 3642.1 0.0 4.5 16.9 52

Table 11 Detailed computational results for Family 2 with n = 150

Instance Method LB" LB/ UB/ Gapf ' Nodes Cuts Time
1 BnB 5342.0 53423 5392.0 0.9 9215 0 600.0
BnC (Default) 5346.0 5357.0 5362.0 0.1 4631 0 600.0
BnC (Parity)-1 5342.0 5362.0 5362.0 0.0 5 6 14.1
BnC (Parity)-2 5362.0 5362.0 5362.0 0.0 3 4 11.0
2 BnB 5340.0 5340.0 5392.0 1.0 10,210 0 600.0
BnC (Default) 5343.5 5347.0 5360.0 0.2 8701 0 600.0
BnC (Parity)-1 5340.0 5360.0 5360.0 0.0 4 3 14.6
BnC (Parity)-2 5360.0 5360.0 5360.0 0.0 3 7 12.7
3 BnB 5340.5 5341.0 5386.0 0.8 9459 0 600.0
BnC (Default) 5345.5 5354.0 5360.0 0.1 5531 0 600.0
BnC (Parity)-1 5340.5 5360.0 5360.0 0.0 8 7 20.7
BnC (Parity)-2 5360.0 5360.0 5360.0 0.0 16 6 27.9
4 BnB 5341.0 5341.0 5478.0 2.5 10,611 0 600.0
BnC (Default) 53425 5358.0 5361.0 0.1 7004 0 600.0
BnC (Parity)-1 5341.0 5361.0 5361.0 0.0 5 2 13.8
BnC (Parity)-2 5361.0 5361.0 5361.0 0.0 5 23 15.1
5 BnB 5342.0 5342.0 5404.0 1.2 10,160 0 600.0
BnC (Default) 5347.3 5361.0 5361.0 0.0 2253 0 340.2
BnC (Parity)-1 5342.0 5361.0 5361.0 0.0 3 10 12.0
BnC (Parity)-2 5361.0 5361.0 5361.0 0.0 3 5 11.6
6 BnB 5340.0 5340.3 5384.0 0.8 8241 0 600.0
BnC (Default) 53423 5347.8 5360.0 0.2 3865 0 600.0
BnC (Parity)-1 5340.0 5360.0 5360.0 0.0 5 9 17.2
BnC (Parity)-2 5360.0 5360.0 5360.0 0.0 7 13 20.0
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Table 11 continued
Instance Method LB" LB/ UB/ Gap/ Nodes Cuts Time
7 BnB 5341.0 5341.0 5398.0 1.1 8838 0 600.0
BnC (Default) 5343.5 5349.5 5361.0 0.2 5235 0 600.0
BnC (Parity)-1 5341.0 5360.0 5360.0 0.0 4 7 11.3
BnC (Parity)-2 5360.0 5360.0 5360.0 0.0 11 8 22.9
8 BnB 5340.0 5340.0 5386.0 0.9 9313 0 600.0
BnC (Default) 5345.0 5350.5 5360.0 0.2 3570 0 600.0
BnC (Parity)-1 5340.0 5360.0 5360.0 0.0 7 6 18.8
BnC (Parity)-2 5360.0 5360.0 5360.0 0.0 13 22 26.2
9 BnB 5340.0 5340.5 5377.0 0.7 7623 0 600.0
BnC (Default) 5342.0 5350.0 5360.0 0.2 3672 0 600.0
BnC (Parity)-1 5340.0 5360.0 5360.0 0.0 3 5 14.6
BnC (Parity)-2 5360.0 5360.0 5360.0 0.0 3 3 16.8
10 BnB 5340.5 5341.0 5401.0 1.1 7325 0 600.0
BnC (Default) 53453 5353.2 5360.0 0.1 4987 0 600.0
BnC (Parity)-1 5340.5 5360.0 5360.0 0.0 6 14 16.5
BnC (Parity)-2 5360.0 5360.0 5360.0 0.0 4 9 17.4
Avg BnB 5340.7 5340.9 5399.8 1.1 9099.5 0.0 600.0
BnC (Default) 53443 5352.8 5360.5 0.1 4944.9 0.0 574.0
BnC (Parity)-1 5340.7 5360.4 5360.4 0.0 5.0 6.9 15.4
BnC (Parity)-2 5360.4 5360.4 5360.4 0.0 6.8 10.0 18.1
Table 12 Detailed computational results for Family 3 with n = 50
Instance Method LB" LB/ UB/ Gapf Nodes Cuts Time
1 BnB 2133.7 2152.0 2152.0 0.0 41,718 0 77.2
BnC (Default) 21454 2152.0 2152.0 0.0 1475 0 3.2
BnC (Parity)-1 2133.7 2152.0 2152.0 0.0 4 6 0.4
BnC (Parity)-2 2151.5 2152.0 2152.0 0.0 3 5 0.3
2 BnB 1986.8 2003.0 2003.0 0.0 3628 0 43
BnC (Default) 1995.8 2003.0 2003.0 0.0 1178 0 1.6
BnC (Parity)-1 1986.8 2003.0 2003.0 0.0 4 3 0.1
BnC (Parity)-2 2002.8 2003.0 2003.0 0.0 3 5 0.1
3 BnB 2032.0 2048.0 2048.0 0.0 13,765 0 21.2
BnC (Default) 2036.9 2048.0 2048.0 0.0 534 0 2.9
BnC (Parity)-1 2032.0 2048.0 2048.0 0.0 3 11 0.2
BnC (Parity)-2 2048.0 2048.0 2048.0 0.0 0 6 0.1

@ Springer



318 Annals of Operations Research (2020) 284:283-322

Table 12 continued

Instance Method LB”" LB/ UB/ Gapf Nodes Cuts Time
4 BnB 2098.0 2114.0 2114.0 0.0 15,020 0 29.8
BnC (Default) 2109.3 2114.0 2114.0 0.0 1217 0 4.0
BnC (Parity)-1 2098.0 2114.0 2114.0 0.0 3 9 0.3
BnC (Parity)-2 2113.8 2114.0 2114.0 0.0 3 7 0.3
5 BnB 2029.0 2046.0 2046.0 0.0 32,895 0 52.2
BnC (Default) 2039.7 2046.0 2046.0 0.0 224 0 1.1
BnC (Parity)-1 2029.0 2046.0 2046.0 0.0 6 4 0.3
BnC (Parity)-2 2044.9 2046.0 2046.0 0.0 4 4 0.4
6 BnB 2090.2 2108.0 2108.0 0.0 36,446 0 66.7
BnC (Default) 2103.8 2108.0 2108.0 0.0 282 0 1.4
BnC (Parity)-1 2090.2 2108.0 2108.0 0.0 8 13 0.5
BnC (Parity)-2 2106.9 2108.0 2108.0 0.0 6 8 0.4
7 BnB 2056.2 2074.0 2074.0 0.0 99,392 0 163.1
BnC (Default) 2070.0 2074.0 2074.0 0.0 120 0 0.7
BnC (Parity)-1 2056.2 2074.0 2074.0 0.0 4 9 0.7
BnC (Parity)-2 2072.4 2074.0 2074.0 0.0 5 5 0.7
8 BnB 1986.5 2001.0 2001.0 0.0 30,937 0 36.0
BnC (Default) 1996.6 2001.0 2001.0 0.0 347 0 1.0
BnC (Parity)-1 1986.5 2001.0 2001.0 0.0 4 6 0.2
BnC (Parity)-2 2000.9 2001.0 2001.0 0.0 2 5 0.2
9 BnB 1982.5 1997.0 1997.0 0.0 8791 0 9.9
BnC (Default) 1987.6 1997.0 1997.0 0.0 2630 0 29
BnC (Parity)-1 1982.5 1997.0 1997.0 0.0 3 8 0.1
BnC (Parity)-2 1997.0 1997.0 1997.0 0.0 0 4 0.1
10 BnB 2001.1 2018.0 2018.0 0.0 6334 0 9.9
BnC (Default) 2012.6 2018.0 2018.0 0.0 504 0 1.2
BnC (Parity)-1 2001.1 2018.0 2018.0 0.0 3 9 0.2
BnC (Parity)-2 2017.5 2018.0 2018.0 0.0 3 4 0.1
Avg BnB 2039.6 2056.1 2056.1 0.0 28,892.6 0.0 47.0
BnC (Default) 2049.8 2056.1 2056.1 0.0 851.1 0.0 2.0
BnC (Parity)-1 2039.6 2056.1 2056.1 0.0 42 7.8 0.3
BnC (Parity)-2 2055.6 2056.1 2056.1 0.0 2.9 5.3 0.3
Proof (statement (v)) Let p,q € {1, ..., t} be distinct elements, 1 < j; < jr» < j3 <2k <

Ja < 2n and consider points P, P, € Pzpnamy suchthato, (P1) = (ji, j3),04(P1) = (j2, ja)

and o, (P2) = (j1, j2), 04(P2) = (3, ja) and 0, (P) = 0, (P,) forall r ¢ {p, q}. Since P
and P, satisfy (31) we have ap, j; —ap j, = By, js — Bq. jo-

Since 3 < t, we can choose pairwise distinct element p, g, r € {1, ..., t}, therefore we
have

Upjs —Up.jo = Bg.js = Ba.jp =% js — U jo = Bp.js — Bp.jas

that is, statement (v) also holds for p = ¢. O
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Table 13 Detailed computational results for Family 3 with n = 100
Instance Method LB" LB/ UB/ Gapf Nodes Cuts Time
1 BnB 4156.5 4158.6 4203.0 1.1 49,005 0 600.0
BnC (Default) 4160.1 4174.8 4188.0 0.3 13,032 0 600.0
BnC (Parity)-1 4156.5 4184.0 4184.0 0.0 17 16 8.0
BnC (Parity)-2 4184.0 4184.0 4184.0 0.0 24 5 7.8
2 BnB 3995.3 3998.4 4018.0 0.5 57,409 0 600.0
BnC (Default) 3995.5 4001.9 4014.0 0.3 28,323 0 600.0
BnC (Parity)-1 3995.3 4013.0 4013.0 0.0 34 14 7.8
BnC (Parity)-2 4012.2 4013.0 4013.0 0.0 20 6 5.0
3 BnB 4164.2 4166.1 4216.0 1.2 46,005 0 600.0
BnC (Default) 4172.0 4188.0 4195.0 0.2 12,674 0 600.0
BnC (Parity)-1 4164.2 4192.0 4192.0 0.0 87 7 11.3
BnC (Parity)-2 4191.0 4192.0 4192.0 0.0 214 19 14.9
4 BnB 4200.5 4202.5 4249.0 1.1 52,099 0 600.0
BnC (Default) 4204.0 4213.6 4234.0 0.5 13,490 0 600.0
BnC (Parity)-1 4200.5 4229.0 4229.0 0.0 55 23 14.9
BnC (Parity)-2 4227.5 4229.0 4229.0 0.0 21 12 7.7
5 BnB 3995.3 3997.8 4021.0 0.6 68,900 0 600.0
BnC (Default) 3995.5 4010.9 4015.0 0.1 29,273 0 600.0
BnC (Parity)-1 3995.3 4014.0 4014.0 0.0 43 8 7.6
BnC (Parity)-2 4012.9 4014.0 4014.0 0.0 35 3 6.6
6 BnB 4044.5 4047.3 4077.0 0.7 57,242 0 600.0
BnC (Default) 4049.5 4072.0 4072.0 0.0 18,567 0 551.0
BnC (Parity)-1 4044.5 4072.0 4072.0 0.0 58 17 8.7
BnC (Parity)-2 4070.7 4072.0 4072.0 0.0 28 9 5.7
7 BnB 4082.7 4085.3 4129.0 1.1 59,258 0 600.0
BnC (Default) 4087.5 4100.9 4116.0 0.4 12,009 0 600.0
BnC (Parity)-1 4082.7 4111.0 4111.0 0.0 173 24 12.5
BnC (Parity)-2 4109.2 4111.0 4111.0 0.0 22 8 6.4
8 BnB 3993.5 3995.9 4014.0 0.5 75,567 0 600.0
BnC (Default) 3997.9 4009.8 4012.0 0.1 45,137 0 600.0
BnC (Parity)-1 3993.5 4012.0 4012.0 0.0 80 21 8.3
BnC (Parity)-2 4010.8 4012.0 4012.0 0.0 63 12 8.4
9 BnB 3952.7 3955.9 3975.0 0.5 66,204 0 600.0
BnC (Default) 3954.8 3971.0 3971.0 0.0 50,761 0 551.7
BnC (Parity)-1 3952.7 3971.0 3971.0 0.0 6 9 34
BnC (Parity)-2 3970.3 3971.0 3971.0 0.0 5 5 3.1
10 BnB 3950.8 3953.5 3975.0 0.5 71,367 0 600.0
BnC (Default) 3950.8 3961.5 3970.0 0.2 46,277 0 600.0
BnC (Parity)-1 3950.8 3969.0 3969.0 0.0 7 21 3.9
BnC (Parity)-2 3968.1 3969.0 3969.0 0.0 12 6 3.4
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Table 13 continued

Instance Method LB”" LB/ UB/ Gapf Nodes Cuts Time
Avg BnB 4053.6 4056.1 4087.7 0.8 60,305.6 0.0 600.0
BnC (Default) 4056.8 4070.4 4078.7 0.2 26,954.3 0.0 590.3
BnC (Parity)-1 4053.6 4076.7 4076.7 0.0 56.0 16.0 8.6
BnC (Parity)-2 4075.7 4076.7 4076.7 0.0 44.4 8.5 6.9
Proof (statement (vi)) Let p,q € {1, ...,t} be distinctelements, | < j; <2k < jo < j3 <

Jja < 2n and consider points Py, P> € lejlamy suchthato, (P1) = (ji, j3),04(P1) = (jo, ja)
and 0, (P2) = (j1, j2), 04(P2) = (J3, j4) and 0, (P1) = o, (P) forall r ¢ {p, g}. Since Py
and P, satisfy (31) we have ), j; — o j, = By, j3 — By, jo-

Since 3 < ¢, we can choose pairwise distinct element p, g, r € {1, ..., t}, therefore we
have

Upjs = p,jo = Ba.js = Ba.jo =% js = r jo = Bp.js = Bpjo

that is, statement (vi) also holds for p = ¢. O

8.3 Proof of Lemma 4

Proof (statement (vii)) Letp € {1,...,t},ge{t+1,...,n}and 1 < j; < jp <2k < j3 <
Jja < 2n. Consider points Py, Py € P{j,””"»" such that o, (P1) = (ji1, j3), 05(P1) = (j2, ja)
and o, (P2) = (j2, j3), 0G(P2) = (j1, ja) and 0, (P1) = 0, (P2) forall r ¢ {p, g}. Since P,
and P, satisfy (31) we have ), j, — oty j, =g, jo — Qg j;- O
Proof (statement (viii)) Letp € {1,...,t},g € {t+1,....,n}and1 < j1 < jp <2k < j3 <
Jja < 2n. Consider points Py, P> € szj;’”’y such that o, (P1) = (ji1, j3), 05(P1) = (j2, ja)
and 0, (P2) = (j1, ja), 0G(P2) = (j2, j3) and 0, (P1) = o, (Pp) forall r ¢ {p, g}. Since Py
and P satisfy (31) we have B, j, — Bp.j5 = Bg.js — Bi.js- m]
Proof (statement (ix)) Let p € {1,...,t},gef{t+1,...,n}and 1 < j; < jo < j3 <2k <
ja < 2n. Consider points Py, P, € lezlam'v such that 0}, (P1) = (j3, j4), 05 (P1) = (j1, j2)
and o, (P2) = (j2, ja), 0G(P2) = (j1, j3) and 0, (P)) = 0, (P,) forall ¥ ¢ {p, g}. Since P,
and P, satisfy (31) we have ot j; — oty j, = B3, 5 — B, j»- |
Proof (statement (x)) Let p € {1,...,t},gef{t+1,...,n}and 1 < j; < jo <2k < j3 <
ja < 2n. Consider points Py, P> € P;jf”"y such that o, (P1) = (j3, ja), 05(P1) = (j1, j»)
and 0,(P2) = (2, ja), 0G(P2) = (j1, j3) and 0, (P1) = o, (Pp) forall r ¢ {p, g}. Since Py
and P, satisfy (31) we have ), j; — o j, = B3, j3 — Bg.j»- m]
Proof (statement (xi)) Let p € {1,...,t},g € {t+1,...,n}and1 < j; < j» <2k < j3 <
ja < 2n. Consider points Py, P, € PQ';W”'V such that o), (P1) = (j1, j2), 05 (P1) = (3, j4)
and o, (P2) = (j1, j3), 0(P2) = (j2, ja) and 0, (P1) = o, (P) forall ¢ {p, g}. Since P,
and P, satisfy (31) we have B, j; — Bp.j, = g, j3 — g, js- a
Proof (statement (xii)) Letp € {1,...,t},ge{t+1,...,n}and1 < j1 <2k < jo < j3 <
ja < 2n. Consider points Py, P> € szjf””' such that o, (P1) = (j1, j2), 05(P1) = (j3, ja)
and 0,(P2) = (j1, j3), 05(P2) = (j2, j4) and 0, (P1) = 0, (P) forall r ¢ {p, g}. Since Py
and P satisfy (31) we have B, j; — Bp.j, = g, j3 — @3, j>- O
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Table 14 Detailed computational results for Family 3 with n = 150
Instance Method LB" LB/ UB/ Gapf Nodes Cuts Time
1 BnB 6332.0 6332.0 6399.0 1.1 10,615 0 600.0
BnC (Default) 6334.5 6337.0 6356.0 0.3 6019 0 600.0
BnC (Parity)-1 6332.0 6351.0 6351.0 0.0 22 22 38.0
BnC (Parity)-2 6351.0 6351.0 6351.0 0.0 621 23 88.8
2 BnB 6092.7 6093.0 6146.0 0.9 14,605 0 600.0
BnC (Default) 6094.9 6101.9 6115.0 0.2 10,180 0 600.0
BnC (Parity)-1 6092.7 6112.0 6112.0 0.0 17 9 23.6
BnC (Parity)-2 6111.5 6112.0 6112.0 0.0 421 11 524
3 BnB 6254.0 6254.0 6309.0 0.9 11,203 0 600.0
BnC (Default) 6254.0 6256.0 6277.0 0.3 8483 0 600.0
BnC (Parity)-1 6254.0 6273.0 6273.0 0.0 7 8 16.4
BnC (Parity)-2 6273.0 6273.0 6273.0 0.0 655 11 84.4
4 BnB 6171.0 6171.0 6244.0 1.2 13,616 0 600.0
BnC (Default) 6172.5 6173.5 6194.0 0.3 7869 0 600.0
BnC (Parity)-1 6171.0 6191.0 6191.0 0.0 3 21 11.2
BnC (Parity)-2 6191.0 6191.0 6191.0 0.0 28 5 35.2
5 BnB 5954.0 5954.8 5996.0 0.7 18,052 0 600.0
BnC (Default) 5957.9 5963.3 5975.0 0.2 10,208 600.0
BnC (Parity)-1 5954.0 5973.0 5973.0 0.0 55 14 28.2
BnC (Parity)-2 5972.1 5973.0 5973.0 0.0 69 6 27.7
6 BnB 6016.2 6017.1 6059.0 0.7 14,655 0 600.0
BnC (Default) 6016.3 6017.1 6041.0 0.4 10,356 0 600.0
BnC (Parity)-1 6016.2 6036.0 6036.0 0.0 60 18 27.7
BnC (Parity)-2 6034.7 6036.0 6036.0 0.0 115 10 26.4
7 BnB 6051.0 6051.3 6087.0 0.6 17,068 0 600.0
BnC (Default) 6052.0 6057.0 6070.0 0.2 7370 0 600.0
BnC (Parity)-1 6051.0 6070.0 6070.0 0.0 98 22 39.4
BnC (Parity)-2 6070.0 6070.0 6070.0 0.0 29 17 29.9
8 BnB 5932.0 5932.2 5963.0 0.5 20,137 0 600.0
BnC (Default) 5932.0 5933.0 5952.0 0.3 12,154 0 600.0
BnC (Parity)-1 5932.0 5951.0 5951.0 0.0 4 21 8.2
BnC (Parity)-2 5950.1 5951.0 5951.0 0.0 12 16 16.9
9 BnB 5891.0 5891.8 5929.0 0.6 22,698 0 600.0
BnC (Default) 5893.0 5908.8 5911.0 0.0 15,587 0 600.0
BnC (Parity)-1 5891.0 5911.0 5911.0 0.0 6 10 8.7
BnC (Parity)-2 5911.0 5911.0 5911.0 0.0 5 9.2
10 BnB 5930.1 5930.8 5963.0 0.5 20,668 600.0
BnC (Default) 5930.1 5935.4 5952.0 0.3 11,010 600.0
BnC (Parity)-1 5930.1 5950.0 5950.0 0.0 57 19 32.0
BnC (Parity)-2 5950.0 5950.0 5950.0 0.0 14 2 12.5
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Table 14 continued

Instance Method LB”" LB/ UB/ Gapf Nodes Cuts Time
Avg BnB 6062.4 6062.8 6109.5 0.8 16,331.7 0.0 600.0
BnC (Default) 6063.7 6068.3 6084.3 0.3 9923.6 0.0 600.0
BnC (Parity)-1 6062.4 6081.8 6081.8 0.0 329 16.4 233
BnC (Parity)-2 6081.4 6081.8 6081.8 0.0 196.9 10.6 38.3
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