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Abstract
We consider a scheduling problem, where a set of unit-time jobs has to be sequenced on
a single machine without any idle times between the jobs. Preemption of processing is not
allowed. The processing cost of a job is determined by the position in the sequence, i.e.,
for each job and each position, there is an associated weight, and one has to determine a
sequence of jobs which minimizes the total weight incurred by the positions of the jobs. In
addition, the ordering of the jobs must satisfy the given chain-precedence constraints. In this
paper we show that this problem is NP-hard even in a special case, where each chain consists
of two jobs (2-chains). Further on, we study the polyhedron associated with the problem,
and present a class of valid inequalities along with a polynomial-time separation procedure,
and show that some of these inequalities are facet-defining in the special case of 2-chains.
Finally, we present our computational results that confirm that separating these inequalities
can significantly speed up a linear programming based branch-and-bound procedure to solve
the problem with chains of two jobs.

Keywords Scheduling · Polyhedra · Cutting planes

1 Introduction

We consider a scheduling problem where a set of unit-time jobs has to be sequenced on a
single machine without any idle times between the jobs. Preemption of processing is not
allowed. The ordering of the jobs must satisfy a given precedence relation derived from a
directed acyclic graph. The processing cost of a job is determined by the position in the
sequence, i.e., for each job and each position, there is an associated weight (which can be
any rational number), and one has to determine a sequence of jobs which minimizes the total
weight incurred by the positions of the jobs.
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Formally, let J = {J1, . . . , Jn} be the set of unit-time jobs, that is, each job J j has
processing time p j = 1. For a given schedule S and job J j let σ S

j ∈ {1, . . . , n} indicate the
position of the job in the sequence (that is, σ S

j = k if exactly k − 1 jobs are scheduled before
J j ). For each job J j and position k there is a weight w j,k ∈ Q, and thus the weight of job J j
for a given schedule S is w j,σ S

j
. The goal of the problem is to determine a schedule S that

minimizes the total weight
∑n

j=1 w j,σ S
j
. Using the classification of deterministic sequencing

and scheduling problems introduced by Graham et al. (1979), we denote the problem as
1 |p j = 1| ∑

w j,σ j . In the case of precedence relations we have a directed acyclic graph,
where the nodes correspond to the jobs, and if there is an arc from Ji to J j , then job Ji must
be assigned to an earlier position than job J j . This problem is denoted as 1 |prec, p j =
1| ∑

w j,σ j , and if the directed acyclic graph decomposes into chains (that is, each job has
at most one immediate predecessor and at most one immediate successor), then the problem
is 1 |chains, p j = 1| ∑

w j,σ j . Note that problem 1 |p j = 1| ∑
w j,σ j is equivalent to the

well-known assignment problem (Kuhn 1955), thus problem 1 |prec, p j = 1| ∑
w j,σ j can

be considered as a generalized assignment problem, where the set of positions is ordered,
and the assignment must satisfy the given precedence constraints.

In our model, the positions of the jobs in the solution determine the job-weights in the
objective function. Another, more thoroughly studied model is scheduling with position-
dependent processing times, i.e., the processing time of each job is a function of its position
in the sequence, see e.g., (Bachman and Janiak 2004; Rudek 2012).

In this paper we study the scheduling problem 1 |chains, p j = 1| ∑
w j,σ j , and provide

newcomplexity, polyhedral, and computational results.We show that this scheduling problem
is NP-hard in the strong sense, even if each chain consists of two jobs only. We also provide
a natural integer programming formulation whose integer feasible solutions represent all
the feasible schedules. For the corresponding polyhedron, we derive new valid inequalities
strongly related to the chain structure of the precedence constraints. Our inequalities are
obtained by establishing a connection to the parity polytope, investigated in Lancia and
Serafini (2018). We also provide a polynomial time separation procedure. Further on, for
2-chains, i.e., where all chains consist of two jobs, we show that a sub-class of the new
inequalities induces facets of the convex hull of feasible solutions of the scheduling problem.
Since the problem is NP-hard in the strong sense, identifying non-trivial facets becomes even
more significant. We have tested the effectiveness of our inequalities in a branch-and-cut
based exact method which was implemented in C++ and tested on a number of problem
instances. Our computational results show that for 2-chains, the new cuts are very effective
as they accelerate the solution procedure by orders of magnitude.

The paper is organized as follows. In Sect. 3, we give an integer programming for-
mulation for problem 1 |prec, p j = 1| ∑

w j,σ j , which is also appropriate for problem
1 |chains, p j = 1| ∑

w j,σ j . In Sect. 4, we derive valid inequalities for the convex hull
of feasible solutions of the problem 1 |chains, p j = 1| γ after establishing a linear rela-
tion to the parity polytope, and we also describe a polynomial-time separation procedure.
In Sect. 5 we consider a special case of 1 |chains, p j = 1| γ , where each chain consists
of two jobs (i.e., the precedence graph is a directed perfect matching). We denote this
problem by 1 |2-chains, p j = 1| γ , where the term 2-chains indicates that each chain
consists of exactly two jobs. In Sect. 5.1 we define the polytope Q2-chains of the feasible
solutions of the class of problems 1 |2-chains, p j = 1| γ . In Sect. 5.2 we prove that the
problem 1 |2-chains, p j = 1| ∑

w j,σ j is NP-hard in the strong sense. In Sect. 5.3, we
determine the dimension of Q2-chains , and in Sect. 5.4 we reconsider the valid inequalities
derived for the general case, and we prove that some of these inequalities are facet-defining
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for Q2-chains . Finally, in Sect. 6 we present our computational experiments, where we
demonstrate that separating the facet-defining inequalities of Sect. 5.4 can significantly
speed up a linear programming based branch-and-bound procedure to solve problems
1 |2-chains, p j = 1| ∑

w j,σ j and 1 |chains, chain-length ∈ {1, 2}, p j = 1| ∑
w j,σ j ,

where in the latter case each chain consists of one or two jobs.

2 Literature review

For a given schedule S, letCS
j denote the completion time of a job J j . Themakespan of some

schedule S is the maximum of the job completion times, i.e.,CS
max := max j C S

j . If a due-date

d j is given for each job J j , then the tardiness of the job is T S
j := max{0,CS

j − d j }, while
US

j indicates if the job is late, i.e., US
j = 1, if CS

j > d j , and 0 otherwise. The jobs may also
have some non-negative weight w j . The optimality criterion for minimizing the makespan,
the sum of completion times, the weighted sum of completion times, the total tardiness and
the throughput is denoted by Cmax,

∑
C j ,

∑
w jC j ,

∑
Tj and

∑
Uj , respectively.

Lenstra and Rinnooy Kan (1980) and Leung and Young (1990) present complexity results
for scheduling unit-time jobs on a single machine with chain-precedence constraints, i.e.,
problems of the form 1 |chains, p j = 1| γ . Clearly, the problems with γ = Cmax and
γ = ∑

C j are trivial (since each feasible schedule is optimal), and polynomially solvable
for γ = ∑

w jC j [see e.g., Lawler (1978)]. Lenstra and Rinnooy Kan (1980) and Leung and
Young (1990) show that problems with γ = ∑

Uj and γ = ∑
Tj are strongly NP-hard,

respectively. Our results in this paper imply that the problem with γ = ∑
w j,σ j is NP-hard

in the strong sense even if each chain in the precedence relation has length 2. We summarize
these results in Table 1. Although we do not consider multiple-machine scheduling problems
in this paper, for the sake of completeness we also refer to some results about scheduling
unit-time jobs on parallel machines under precedence constraints, i.e., problems of the form
P |prec, p j = 1| γ , where P indicates identical parallelmachines. Ullman (1975) shows that
problem P |prec, p j = 1|Cmax is strongly NP-hard, however, problems P |chains, p j =
1|Cmax and P2 |prec, p j = 1|Cmax are polynomially solvable [see e.g., Hu (1961) and
Coffman and Graham (1972), respectively], where P2 refers to the case of two parallel
identical machines. Hoogeveen et al. (2001) show that problem P |prec, p j = 1| ∑

C j is
APX-hard, however, problems P |chains, p j = 1| ∑

C j and P2 |prec, p j = 1| ∑
C j are

polynomially solvable [see e.g., Hu (1961) and Coffman and Graham (1972), respectively].
Finally, Timkovsky (2003) shows that problem P2 |chains, p j = 1| ∑

w jC j is strongly
NP-hard.

The traditional precedence constraints can be considered as AND-precedence constraints,
that is, a job can only be started after all of its (immediate) predecessors are completed. In con-
trast, in case ofOR-precedence constraints, a job can be started as soon as one of its immediate
predecessors is completed. Note that in this case the precedence graph can be cyclic, however,
one can decide in linear time whether the problem has a feasible solution [see e.g., Möhring
et al. (2004)]. According to this, problem 1 |or -prec, p j = 1| γ is trivial for γ = Cmax and
γ = ∑

C j , where or -prec refers to the presence of OR-precedence constraints. Among
other results, Johannes (2005) shows that problem 1 |or -prec, p j = 1| ∑

w jC j is strongly
NP-hard. Note that the chain-precedence constraints are both AND- and OR-precedence
constraints, since in this case each job has at most one immediate predecessor, thus prob-
lems of the form 1 |chains, p j = 1| γ considered in this paper are special cases of problem
1 |or -prec, p j = 1| γ . We also summarize these results in Table 1.
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Table 1 Scheduling unit-time jobs on a single machine under precedence constraints (1 |β, p j = 1| γ )
β = chains β = prec β = or -prec

γ = Cmax In P (trivial)a

γ = ∑
C j In P (trivial)a

γ = ∑
w j C j In P (Lawler

1978)
Strongly
NP-hard
(Lenstra and
Rinnooy
Kan 1978)

Strongly NP-hard (Johannes 2005)

γ = ∑
Tj Strongly NP-hard (Leung and Young 1990)

γ = ∑
Uj Strongly NP-hard (Lenstra and Rinnooy Kan 1980)

γ = ∑
w j,σ j Strongly NP-hard (in this paper)

aEach feasible schedule is optimal

Wan and Qi (2010) introduce new scheduling models where time slot costs have to be
taken into consideration. In their models the planning horizon is divided into K ≥ ∑n

j=1 p j

time slotswith unit length, where the kth time slot has costπk , and the time slot cost of a job J j
with starting time t is

∑
k∈s j πk , where s j = {t+1, . . . , t+ p j }. The objective of their models

is a combination of the total time slot cost with a traditional scheduling criterion, that is, they
consider problems of the form 1 |slotcost | γ + ∑

j
∑

k∈s j πk . Wan and Qi (2010) show that
in case of non-decreasing time slot costs (that is, π1 ≤ · · · ≤ πK ) the problem can be reduced
to one without slot costs. Under the assumption of arbitrarily varied time slot costs they prove
that the problems with γ = ∑

C j , γ = Lmax, γ = Tmax, γ = ∑
Uj and γ = ∑

Tj are
strongly NP-hard. They also show that in case of non-increasing time slot costs some of these
problems can be solved in polynomial or pseudo-polynomial time. Zhao et al. (2016) prove
that in case of non-increasing time slot costs, problem 1 |slotcost | ∑

(C j +∑
k∈s j πk) is NP-

hard in the strong sense. Kulkarni and Munagala (2012) introduce a model similar to that of
Wan and Qi (2010), however, they deal with online algorithms to minimize the total time slot
costs plus the total weighted completion time. Note that the problem investigated in this paper
can be considered as a generalization of a special case of the model of Wan and Qi (2010).
That is, in case of unit-time jobs (with K = ∑n

j=1 p j = n) problem 1 |slotcost, p j =
1| ∑

j
∑

k∈s j πk is similar to that of 1 |p j = 1| ∑
w j,σ j , however, in the latter problem the

time slot costs depend on the jobs.

3 Problem formulation

Recall that J = {J1, . . . , Jn} is the set of unit-time jobs, and let P = {1, . . . , n} be the set
of positions. Let D = (J , A) be the directed acyclic precedence graph whose nodes are the
jobs. We will denote by Ji1 ≺≺ Ji2 if Ji1 �= Ji2 and there is a directed path from Ji1 to
Ji2 in D. In this case we say that Ji1 is a predecessor of Ji2 , and Ji2 is a successor of Ji1 .
Further on, we say that Ji1 is an immediate predecessor of Ji2 (denoted by Ji1 ≺ Ji2 ) if and
only if Ji1 ≺≺ Ji2 , but there exists no job Ji3 such that Ji1 ≺≺ Ji3 and Ji3 ≺≺ Ji2 . In any
schedule which satisfies ≺, for each pair of jobs Ji1 and Ji1 such that Ji1 ≺ Ji2 , job Ji1 must
be scheduled before Ji2 .

Let xi, j be the binary variable indicating whether job Ji is assigned to position j . The
problem 1 |prec, p j = 1| ∑

w j,σ j can be formulated as
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minimize
n∑

i=1

n∑

j=1

wi, j xi, j (1)

n∑

j=1

xi, j = 1, i ∈ {1, . . . , n}, (2)

n∑

i=1

xi, j = 1, j ∈ {1, . . . , n}, (3)

k+1∑

j=1

xi2, j ≤
k∑

j=1

xi1, j , Ji1 ≺ Ji2 , k ∈ {1, . . . , n − 1}, (4)

xi, j ∈ {0, 1}, i ∈ {1, . . . , n}, j ∈ {1, . . . , n}, (5)

where constraints (2) and (3)model the job-position assignment constraints. Constraint set (4)
ensures that the precedence constraints are satisfied. That is, for each pair of jobs Ji1 and Ji2
such that Ji1 ≺ Ji2 , there are n−1 linear constraints ensuring that job Ji2 cannot be assigned
to the same or to an earlier position than job Ji1 . Let P

prec
n := {x ∈ {0, 1}n·n : x satisfies (2)–

(4)} be the set of the feasible solutions, and the polytope Qprec
n := conv(P prec

n ) the convex
hull of feasible solutions of (2)–(5). By construction, we have the following proposition.

Proposition 1 P prec
n is the set of incidence vectors corresponding to feasible job-position

assignments.

For later use we provide some valid equations for Qprec
n . Let J+

i = {Ji ′ ∈ J : Ji ≺≺ Ji ′ }
(J−

i = {Ji ′ ∈ J : Ji ′ ≺≺ Ji }) be the set of successors (predecessors) of job Ji . Clearly, for
each point x ∈ P prec

n we have

xi, j = 0, i ∈ {1, . . . , n}, j ∈ {1, . . . , |J−
i |}, (6)

xi, j = 0, i ∈ {1, . . . , n}, j ∈ {n − |J+
i | + 1, . . . , n}. (7)

Since Qprec
n is the convex hull of the points P prec

n , these equations are valid for Qprec
n .

4 Problem 1 |chains,pj = 1| �

In this section we present a class of valid inequalities for the case of chain-precedence
constraints along with a polynomial time separation procedure. We derive these inequalities
by using the so-called parity inequalities, which constitute the non-trivial facets of the parity
polytope (see Sect. 4.1).

For chain-precedence constraints, let Pchain
n and Qchain

n denote the set of feasible solutions
and the convex hull of feasible solutions, respectively, of the integer program (1)–(5). Let
C = {C1, . . . ,Cm} be the set of chains (i.e., chain-precedence constraints), where Ci =
(Ji1 , . . . , Ji� ) with Ji1 ≺ · · · ≺ Ji� for each i ∈ {1, . . . ,m}. The length of a chain C , i.e.,
the number of its jobs, denoted by len(C). For a given integer k we denote the index set
{1, . . . , k} by [k].
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4.1 Parity polytope, parity inequalities

Let Qeven
d (Qodd

d ) be the convex hull of those d-dimensional 0-1 vectors in which the number
of 1’s is even (odd). The characterization of the parity polytope Qeven

d is attributed to Jeroslow
(1975), however, for a direct proof of this result we refer to Lancia and Serafini (2018).

Theorem 1 (Lancia and Serafini (2018))

Qeven
d =

{

z ∈ [0, 1]d :
∑

i∈S
zi −

∑

i /∈S
zi ≤ |S| − 1, for all odd-subset S ⊂ [d]

}

,

Qodd
d =

{

z ∈ [0, 1]d :
∑

i∈S
zi −

∑

i /∈S
zi ≤ |S| − 1, for all even-subset S ⊂ [d]

}

.

We say that a subset S ⊆ [d] is an odd-subset (even-subset) if its cardinality |S| is odd
(even), and we call the inequalities of Theorem 1 parity inequalities.

4.1.1 Separation of the parity inequalities

Since we have not been able to find any paper that provides a separation procedure for the
parity inequalities,we provide our ownprocedure. First,we reformulate the parity inequalities
as

1 ≤
∑

i∈S
(1 − zi ) +

∑

i /∈S
zi , for each odd-subset S ⊆ [d], (8)

and
1 ≤

∑

i∈S
(1 − zi ) +

∑

i /∈S
zi , for each even-subset S ⊆ [d]. (9)

Note that in the sake of convenience we allow S to be the complete set [d], with this the
corresponding inequality is still valid but redundant.

Theorem 2 Inequalities (8) and (9) can be separated in polynomial time, that is, for a given
vector z̄ ∈ [0, 1]d the following problems can be solved in polynomial time:

maximize

{

1 −
(

∑

i∈S
(1 − z̄i ) +

∑

i /∈S
z̄i

)

: S ⊆ [d] is an odd-subset

}

, (10)

maximize

{

1 −
(

∑

i∈S
(1 − z̄i ) +

∑

i /∈S
z̄i

)

: S ⊆ [d] is an even-subset

}

. (11)

Clearly, if the maximum value is less than or equal to zero then all of the inequalities are
satisfied, otherwise, the corresponding subset gives one of the most violated inequalities.

Lemma 1 Let 1 ≥ v1 ≥ v2 ≥ · · · ≥ vd ≥ 0, and let f (S) := ∑
i∈S(1 − vi ) + ∑

i /∈S vi for
all S ⊆ [d]. Consider the following problems:

minimize { f (S) : S ⊆ [d] is an odd-subset} , (12)

minimize { f (S) : S ⊆ [d] is an even-subset} . (13)

(a) Let S0 := ∅ and Si := [i] for all i = 1, . . . , d. There is an optimal solution SOPT for
problem (12) [problem (13)] such that SOPT = Si for some i ∈ {0, . . . , d}.
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(b) Let t := 0 if 1 − vi > vi holds for all i = 1, . . . , d, and let t := max{i : 1 − vi ≤ vi }
otherwise. One of the sets St−1, St and St+1 is an optimal solution for problem (12)
[problem (13)].

Proof To prove statement (a), consider an optimal solution SOPT for problem (12) which
maximizes the parameter p := max{i : Si ⊆ SOPT }, i.e., for any optimal solution S∗ we
have max{i : Si ⊆ S∗} ≤ p. Clearly, p+1 /∈ SOPT . Suppose for the sake of a contradiction
that there is an index q > p + 1 such that q ∈ SOPT . Let S′ := (SOPT ∪ {p + 1})\{q}.
Now, we have f (SOPT ) ≤ f (S′) = f (SOPT ) + (1 − vp+1) − vp+1 − (1 − vq) + vq =
f (SOPT ) + 2(vq − vp+1) ≤ f (SOPT ), thus S′ is also an optimal solution for problem (12),
however p < max{i : Si ⊆ S′} which contradicts our assumption for SOPT .

According to statement (a) problems (12) and (13) can be restricted to subsets of the form
Si , i ∈ {0, . . . , d}. For each i < t , 1 − vi+1 ≤ vi+1, thus f (Si+1) = f (Si ) + (1 − vi+1) −
vi+1 ≥ f (Si ). For each i > t , 1−vi > vi , thus f (Si ) = f (Si−1)+ (1−vi )−vi < f (Si+1).
Therefore, we have

f (S1) ≥ · · · ≥ f (St−1) ≥ f (St ) and f (St ) < f (St+1) < · · · < f (Sn),

thus if St has odd (even) cardinality, then it is an optimal solution for problem (12) (prob-
lem (13)), otherwise, argmin{ f (St−1), f (St+1)} is an optimal solution for problem (12)
[problem (13)]. 
�
Proof (Theorem 2) For a given vector z̄ ∈ [0, 1]d let vi := z̄i for all i = 1, . . . , d , and let
f (S) := ∑

i∈S(1−vi )+∑
i /∈S vi for all S ⊆ [d]. Without loss of generality (e.g., by sorting

and reindexing the values), we can assume that v1 ≥ v2 ≥ · · · ≥ vd . By this, separation
problem (10) [problem (11)] is equivalent to problem (12) [problem (13)] which can be
solved in polynomial time according to Lemma 1. 
�

4.2 Valid inequalities forQchain
n

We introduce the variables zi, j (i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}) indicating whether the
number of jobs from chain Ci that are assigned to one of the positions from {1, . . . , j} is odd
(zi, j = 1) or even (zi, j = 0).

Claim Let x ∈ Pchain
n . For each chain Ci = (Ji1 , . . . , Ji� ) and each position j ∈ {1, . . . , n}

we have

zi, j =
�∑

k=1

(−1)k−1
j∑

p=1

xik ,p.

Proof For an x ∈ Pchain
n the value δk := ∑ j

p=1 xik ,p (k = 1, . . . , �) equals to 1 if and
only if job Jik is assigned to one of the positions {1, . . . , j}, otherwise it is 0. Clearly, for
jobs Ji1 ≺ · · · ≺ Ji� we have 1 ≥ δ1 ≥ · · · ≥ δ� ≥ 0, thus summing these values with
alternating factors (−1)k−1 (k = 1, . . . , �), the sum (i.e., zi, j ) is 1 if the number of δ-values
that are equal to 1 is odd, otherwise it is 0. 
�
Claim For an even (odd) position j ∈ {1, . . . , n} the number of 1’s in vector (z1, j , . . . , zm, j )

is even (odd).

Proof If j is even (odd), then the number of chains Ci such that the cardinality of the
set

{
k ∈ {1, . . . , j} : zi,k = 1

}
is odd (i.e., Ci has an odd number of jobs assigned to the

positions 1, . . . , j) must be even (odd). 
�
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According to the second claim, the corresponding parity inequalities are valid for the
convex hull of the feasible solutions of the formulation extended by the z-variables. However,
due to the first claim, one can transform these inequalities to the original x-variables, thus
we have the following theorem.

Theorem 3 The following inequalities are valid for Qchain
n :

∑

i∈S

⎛

⎝
len(Ci )∑

k=1

(−1)k−1
j∑

p=1

xik ,p

⎞

⎠ −
∑

i /∈S

⎛

⎝
len(Ci )∑

k=1

(−1)k−1
j∑

p=1

xik ,p

⎞

⎠ ≤ |S| − 1,

for each even position j and odd-subset S ⊆ [m], (14)

and

∑

i∈S

⎛

⎝
len(Ci )∑

k=1

(−1)k−1
j∑

p=1

xik ,p

⎞

⎠ −
∑

i /∈S

⎛

⎝
len(Ci )∑

k=1

(−1)k−1
j∑

p=1

xik ,p

⎞

⎠ ≤ |S| − 1,

for each odd position j and even-subset S ⊆ [m]. (15)

The separation procedure of inequalities (14) [inequalities (15)] is similar to the separation
procedure of inequalities (8) [inequalities (9)], that is, for a given vector x̄ ∈ [0, 1]n·n , fix
an even (odd) position j , and let z̄i := ∑�

k=1(−1)k−1 ∑ j
p=1 x̄ik ,p for each chain Ci =

(Ji1 , . . . , Ji� ), i = 1, . . . ,m. By this, one can use the separation procedure of inequalities (8)
[inequalities (9)] described above.

5 Problem 1 |2-chains,pj = 1| �

In this section we investigate the problem 1 |2-chains, p j = 1| γ . Recall that in this problem
we have an even number of jobs, i.e., 2n, and the relation ≺ partitions the set of jobs into
n disjoint pairs, i.e., each jobs has exactly one predecessor or one successor, but not both.
In Sect. 5.1 we reformulate the integer program of Sect. 3 to make our notation easier and
reflect that each chain consists of two jobs. The problem 1 |2-chains, p j = 1| ∑

w j,σ j is
shown to be strongly NP-hard in Sect. 5.2. In Sect. 5.3 we analyze the polyhedron spanned
by the feasible solutions of our integer programming formulation, namely, we determine its
dimension, and then in Sect. 5.4 we show that some of the inequalities from Sect. 4 are facet-
defining. For basic concepts of polyhedral combinatorics we refer the reader to Nemhauser
and Wolsey (1988) or Conforti et al. (2014).

5.1 Problem formulation

In order to simplify our notation, in this section let J = {J1, . . . , J2n} be the set of unit-
time jobs, and C = {C1, . . . ,Cn} be the set of 2-chains, where Ci = (J2i−1, J2i ), that is,
J2i−1 ≺ J2i for each i ∈ {1, . . . , n}. We say that job J2i−1 (J2i ) is the first (second) job of
chain Ci . In addition, let P = {1, . . . , 2n} be the set of positions.

Let si, j (ei, j ) indicate whether the first (second) job of chain Ci ∈ C is assigned to
position j ∈ P . Note that we just renamed the variables of the formulation (2)–(7), that is,
si, j := x2i−1, j and ei, j := x2i, j , thus we get the following equivalent formulation:
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Fig. 1 Representation of point
P = (s, e) ∈ P2-chains

4 with
s1,1 = e1,3 = s2,2 = e2,4 = 1

2n∑

j=1

si, j = 1, i ∈ {1, . . . , n}, (16)

2n∑

j=1

ei, j = 1, i ∈ {1, . . . , n}, (17)

si,2n = 0, i ∈ {1, . . . , n}, (18)

ei,1 = 0, i ∈ {1, . . . , n}, (19)
n∑

i=1

si,1 = 1, (20)

n∑

i=1

(
si, j + ei, j

) = 1, j ∈ {2, . . . , 2n − 1}, (21)

n∑

i=1

ei,2n = 1, (22)

k+1∑

j=1

ei, j ≤
k∑

j=1

si, j , i ∈ {1, . . . , n}, k ∈ {1, . . . , 2n − 2}, (23)

si, j , ei, j ∈ {0, 1} i ∈ {1, . . . , n}, j ∈ {1, . . . , 2n}. (24)

Constraints (16)–(17) and (20)–(22) are the job-position assignment constraints [see (2)
and (3)]. Constraint (23) ensures that each first-job precedes the corresponding second-job
[see (4)]. Finally, constraints (18)–(19) forbid to assign a first-job to the last, or a second-job
to the first position [see (6)–(7)]. Similarly to the general case in Sect. 3, we introduce the
set of feasible solutions P2-chains

2n := {(s, e) ∈ {0, 1}n·(2n) × {0, 1}n·(2n) : (16)−(23) holds},
and the polytope Q2-chains

2n := conv(P2-chains
2n ).

For a given point P = (s, e) ∈ P2-chains
2n , let s(P, i) = j (e(P, i) = j) if

si, j = 1 (ei, j = 1). For a given i ∈ {1, . . . , n} let σi (P) be a 2-dimensional vector
such that σi (P) = (s(P, i), e(P, i)), and σ(P) be a 2n-dimensional vector such that
σ(P) = (σ1(P), . . . , σn(P)). For example, for the point P indicated in Fig. 1 we have
P = (1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1), σ1(P) = (1, 3), σ2(P) = (2, 4), and
σ(P) = (1, 3, 2, 4).

5.2 Complexity of problem 1 |2-chains, pj = 1| ∑
wj,�j

In Theorem 4 we will show that problem 1 |2-chains, p j = 1| ∑
w j,σ j is NP-hard in the

strong sense.

Sketch of proof of Theorem 4 We will transform the Independent Set (IS) problem to
problem 1 |2-chains, p j = 1| ∑

w j,σ j . An instance of IS is given by an undirected graph
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Fig. 2 Construction for the 2-length path

Fig. 3 Solution representing independent set {v2}

Fig. 4 Solution representing independent set {v1, v3}

G = (V , E) with node set V = {v1, . . . , vn}, and a maximum size subset of nodes I ⊆ V
is sought such that for each edge {u, v} ∈ E , |{u, v} ∩ I | ≤ 1. The basic idea of the
transformation can be seen in Fig. 2, where we depict the construction for the 2-length path
(without the dummy chains). Briefly stated, we will create a chain ti for each node vi and two
chains fi, j and gi, j for each edge {vi , v j } of the IS instance, and some additional dummy
chains. To each of these chains we will designate two potential start and two potential end
positions. First, by determining appropriate weights we ensure that in each solution with
non-positive total weight, each of these chains either starts and ends at its first start and
end position, respectively, or at its second start and end position. In Fig. 2 we depict the
two potential states of these chains. Second, by designating these positions properly, it is
guaranteed that each solution with a non-positive total weight represents an independent set
in the IS instance and vice versa. Namely, a node is in the independent set if and only if the
corresponding chain starts and ends its second start and end position, respectively. Note that
the role of the edge-chains is to ensure that for adjacent vertices one of the corresponding
node-chains must start and end at its first start and end position, respectively, i.e., at most one
of these nodes can be in the independent set. For example, in Fig. 3 we depict the solution
that represents the independent set {v2} (without the dummy chains). Note that since chain
t2 starts/ends at its second start/end position, i.e., v2 is in the independent set, thus chains
g1,2, f1,2 and therefore t1 must start/end at its first start/end position, i.e., v1 cannot be in
the independent set. Similarly, t3 cannot start/end at its second start/end position, that is,
v3 cannot be in the independent set. In Fig. 4 we depict the solution that represents the
independent set {v1, v3} (without the dummy chains).
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Theorem 4 Problem 1 |2-chains, p j = 1| ∑
w j,σ j is NP-hard in the strong sense.

Proof We transform the Independent Set (IS) problem to problem 1 |2-chains, p j =
1| ∑

w j,σ j . Let G = (V , E) be an instance for the independent set problem with node set

V = {v1, . . . , vn}, and edge set E , and let−→E = {(vi , v j ) : {vi , v j } ∈ E, i < j} be the set of
directed edges, i.e., we replace undirected edge {vi , v j } by directed edge (vi , v j ) for i < j .

For a node vi let succ(i) = {v j : (vi , v j ) ∈ −→
E } (pred(i) = {v j : (v j , vi ) ∈ −→

E }) denote its
immediate successors (predecessors).

Based on the IS instance we will construct an instance for problem 1 |2-chains, p j =
1| ∑

w j,σ j with 2|V | + 3|E | chains (that is, we will create 1 chain for each node, 2 chains
for each edge, and |V | + |E | additional dummy chains) and 4|V | + 6|E | positions.

For each vi ∈ V we create a node-chain ti , and for each edge (vi , v j ) ∈ −→
E we create

edge-chains fi, j and gi, j . Let TV = {ti : vi ∈ V } and T−→
E

= { fi, j , gi, j : (vi , v j ) ∈ −→
E }.

To each node-chain ti ∈ TV we designate four distinct positions: α(ti ) < β(ti ) < ᾱ(ti ) <

β̄(ti ) such that

(i) 2i − 1 = α(ti ) = β(ti ) − 1, for all i ∈ {1, . . . , n},
(ii) 2n + 1 = ᾱ(t1) = β̄(t1) − 1,
(iii) β̄(ti ) < ᾱ(ti+1) = β̄(ti+1) − 1, for all i ∈ {1, . . . , n − 1},
see Fig. 5. To each edge-chain fi, j ∈ T−→

E
we designate four distinct positions: α( fi, j ) <

β( fi, j ) < ᾱ( fi, j ) < β̄( fi, j ). Consider a node vi ∈ V and its immediate successors succ(i) =
{v j1 , . . . , v j|succ(i)| }. Let
(iv) α( fi, j1) = β̄(ti ),
(v) α( fi, j� ) = β( fi, j� ) − 1 = ᾱ( fi, j� ) − 2, for all � ∈ {1, . . . , |succ(i)|},
(vi) ᾱ( fi, j� ) = α( fi, j�+1), for all � ∈ {1, . . . , |succ(i)| − 1},
(vii) ᾱ( fi, j|succ(i)|) = β̄( fi, j1) − 1 = β̄( fi, j2) − 2 = · · · = β̄( fi, j|succ(i)|) − |succ(i)|,
(viii) β̄( fi, j|succ(i)|) < ᾱ(ti+1),

see Fig. 6. Finally, to each edge-chain gi, j ∈ T−→
E

we designate four distinct positions:

α(gi, j ) < β(gi, j ) < ᾱ(gi, j ) < β̄(gi, j ). Consider a node v j ∈ V and its immediate prede-
cessors pred( j) = {vi1 , . . . , vi|pred( j)| }. Let

Fig. 5 Designated positions for node-chains

Fig. 6 Designated positions for edge-chains (part 1)

Fig. 7 Designated positions for edge-chains (part 2)
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(ix) β̄(gi1, j ) = ᾱ(t j ),
(x) β(gi�, j ) = ᾱ(gi�, j ) − 1 = β̄(gi�, j ) − 2, for all � ∈ {1, . . . , |pred( j)|},
(xi) β(gi�, j ) = β̄(gi�+1, j ), for all � ∈ {1, . . . , |pred( j)| − 1},
(xii) α(gi�, j ) = β̄( fi�, j ), for all � ∈ {1, . . . , |pred( j)|},
(xiii) β̄(t j−1) < β(gi1,|pred( j)|),

see Fig. 7.
For each vi ∈ V wehave created 1 chain and designated 4 positions, and for each (vi , v j ) ∈−→

E we have created 2 chains and designated 8 positions, however, positions α( fi, j ), β̄(gi, j )
and β̄( fi, j ) coincide with other positions [see (iv), (vi), (ix), (xi), and (xii)], hence we have
|V |+2|E | chains, and 4|V |+5|E | distinct positions. Thus, we also create |V |+ |E | dummy
chains and |E | dummy positions, therefore we have 2|V |+3|E | chains and 2×(2|V |+3|E |)
positions, that is, we have a valid instance for problem 1 |2-chains, p j = 1| ∑

w j,σ j .
Let M > n. For each ti ∈ TV let

ws(ti , j) :=
⎧
⎨

⎩

M if j = α(ti ),
0 if j = ᾱ(ti ),

2M otherwise,
and we(ti , j) :=

⎧
⎨

⎩

−M if j = β(ti ),
−1 if j = β̄(ti ),
2M otherwise.

For each ti, j ∈ T−→
E
(ti, j is either fi, j or gi, j ) let

ws(ti, j , k) :=
⎧
⎨

⎩

M if k = α(ti, j ),
0 if k = ᾱ(ti, j ),

2M otherwise,
and we(ti, j , k) :=

⎧
⎨

⎩

−M if k = β(ti, j ),
0 if k = β̄(ti, j ),

2M otherwise.

Finally, letws(t, j) := we(t, j) := 0, for each dummy chain t and for all j = 1, . . . , (4|V |+
6|E |).
Remark 1 By construction, in any feasible solution for the constructed problem, for each
t ∈ TV we have

∑

j

ws(t, j) +
∑

j

we(t, j) =
⎧
⎨

⎩

0 if st,α(t) = et,β(t) = 1,
− 1 if st,ᾱ(t) = et,β̄(t) = 1,

≥ M otherwise,

and for each t ∈ T−→
E
we have

∑

j

ws(t, j) +
∑

j

we(t, j) =
{
0 if st,α(t) = et,β(t) = 1 or st,ᾱ(t) = et,β̄(t) = 1,
≥ M otherwise.

Remark that M > n = |TV |, thus a solution for the created problem has non-positive total
weight if and only if each chain t ∈ TV ∪T−→

E
starts/ends either its first start/end or its second

start/end position.

Proposition 2 Let I ⊆ V an independent set in G = (V , E). Then the corresponding
scheduling problem instance admits a feasible solution of total weight −|I |.
Proof If vi /∈ I , then let sti ,α(ti ) := eti ,β(ti ) := 1, for each (vi , v j ) ∈ −→

E let s fi j ,α( fi j ) :=
e fi j ,β( fi j ) := 1, and for each (vk, vi ) ∈ −→

E let sgki ,ᾱ(gki ) := egki ,β̄(gki ) := 1 (see Fig. 8).

Otherwise, if vi ∈ I , then let sti ,ᾱ(ti ) := eti ,β̄(ti ) := 1, for each (vi , v j ) ∈ −→
E let

s fi j ,ᾱ( fi j ) := e fi j ,β̄( fi j ) := 1, and for each (vk, vi ) ∈ −→
E let sgki ,α(gki ) := egki ,β(gki ) := 1

(see Fig. 9). The variables for dummy chains can be arbitrarily fixed.
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Fig. 8 Assignments for node vi ∈ V \I

Fig. 9 Assignments for node vi ∈ I

First, we claim that this assignment yields a feasible solution. We need to show, that each
position that designated to multiple jobs is assigned to a single job. It is easy to check that
it is true for positions α( fi, j ) and β̄(gi, j ). We also know, that β̄( fi, j ) = α(gi, j ) for all

edge (vi , v j ) ∈ −→
E [see (xii)], however, we assigned position β̄( fi, j ) to job fi, j and position

α(gi, j ) to job gi, j if and only if vi ∈ I and v j ∈ I , respectively, however it is impossible,
since I is independent. Second, it is clear that the weight of the solution is equal to −|I |. 
�
Proposition 3 For an independent set problem in graph G = (V , E), suppose the corre-
sponding scheduling problem admits a feasible solution of value W < 0. Then there is an
independent set I in G with |I | = −W.

Proof SinceW is non-positive, according to Remark 1, for each t ∈ TV ∪T−→
E
we have either

st,α(t) = et,β(t) = 1 or st,ᾱ(t) = et,β̄(t) = 1. We claim that the node set I = {vi ∈ V :
sti ,ᾱ(ti ) = eti ,β̄(ti ) = 1} is independent.

Suppose for a contradiction that there is an edge (vi , v j ) ∈ −→
E such that vi , v j ∈ I .

Let succ(i) = {v j1 , . . . , v j|succ(i)| } be the set of the immediate successors of node vi .
Since eti ,β̄(ti ) = 1 and by construction β̄(ti ) = α( fi j1), thus s fi j1 ,α( fi j1 ) = 0 and there-
fore s fi j1 ,ᾱ( fi j1 ) = e fi j1 ,β̄( fi j1 ) = 1. Again, by construction ᾱ( fi j1) = α( fi j2), thus
s fi j2 ,α( fi j2 ) = 0 and therefore s fi j2 ,ᾱ( fi j2 ) = e fi j2 ,β̄( fi j2 ) = 1. Similarly, we can show that
s fi j� ,ᾱ( fi j� ) = e fi j� ,β̄( fi, j� ) = 1 holds for all � = 1, . . . , |succ(i)|, moreover, since j = j� for

some � ∈ {1, . . . , |succ(i)|} we have e fi j ,β̄( fi j ) = 1.
Let pred( j) = {vi1 , . . . , vi|pred( j)| } be the set of the immediate predecessors of node v j .

Similarly, we can show that sgi� j ,α(gi� j ) = egi� j ,β(gi� j ) = 1 holds for all � = 1, . . . , |pred( j)|,
and since i = i� for some � ∈ {1, . . . , |pred( j)|} we have sgi j ,α(gi j ) = 1.

To sum up, we have e fi j ,β̄( fi j ) = sgi j ,α(gi j ) = 1 which yields a contradiction, since by

construction β̄( fi j ) = α(gi j ). 
�
Finally, it is easy to see that our transformation is a pseudo-polynomial transformation, thus
the problem is NP-hard in the strong sense. 
�
Corollary 1 Problem 1 |chains, p j = 1| ∑

w j,σ j is strongly NP-hard even in the case of
chains of length at most 2.
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Corollary 2 Problem 1 |prec, p j = 1| ∑
w j,σ j is strongly NP-hard.

Corollary 3 Problem 1 |or-prec, p j = 1| ∑
w j,σ j is strongly NP-hard.

5.3 Dimension ofQ2-chains
2n

In this section we investigate the dimension of the polytope Q2-chains
2n .

Theorem 5

dim(Q2-chains
2n ) =

⎧
⎨

⎩

0 if n = 1,
4 if n = 2,

4n2 − 6n + 1 if n ≥ 3.

Sketch of the proof of Theorem 5 (n ≥ 3) In the case of n ≥ 3 we will apply the well-known
theorem about the dimension of a non-empty polyhedron Q = {x ∈ Rd : Ax ≤ b} claiming
that dim(Q)+ rank(E) = d [see e.g., Nemhauser and Wolsey (1988)], where Ex = f is an
equation system for Q, that is, any x ∈ Q satisfies Ex = f , and if αx = β is a valid equation
for Q, then there exists a vector λ of suitable dimension such that λE = α and λ f = β. So,
we will provide an equation system for Q2-chains

2n (see Theorem 6) with rank 6n − 1 (see

Proposition 6), which gives that the dimension of Q2-chains
2n ⊆ R4n2 is 4n2 − (6n − 1). The

detailed proof of Theorem 5 can be found at the end of Sect. 5.3.

Theorem 6 Let n ≥ 3. The equation set E :={(16)−(22)} is an equation system for Q2-chains
2n .

Proof Clearly, the equations of E hold for every point of Q2-chains
2n , since they are defining

equations for this polyhedron. In order to show that E is an equation system for Q2-chains
2n , we

show that any other equation which holds for all points of Q2-chains
2n is a linear combination

of the equations of E . Assume that

n∑

i=1

2n∑

j=1

αi, j si, j +
n∑

i=1

2n∑

j=1

βi, j ei, j = γ (25)

holds for all (s, e) ∈ Q2-chains
2n . To show that Eq. (25) is a linear combination of Eqs. (16)–

(22) we explicitly create a linear combination (26), and in Propositions 4 and 5we prove that
(25) and (26) are the same. In those proposition we use Lemma 2, however, for its proofs we
refer to the “Appendix”.

Lemma 2 Equation (25) satisfies the following properties:

(i) αp, j ′′ − αp, j ′ = βq, j ′′ − βq, j ′ ∀ p, q ∈ {1, . . . , n}, 1 < j ′ < j ′′ < 2n,
(ii) αp, j ′′ − αp, j ′ = αq, j ′′ − αq, j ′ ∀ p, q ∈ {1, . . . , n}, 1 ≤ j ′ < j ′′ < 2n,
(iii) βp, j ′′ − βp, j ′ = βq, j ′′ − βq, j ′ ∀ p, q ∈ {1, . . . , n}, 1 < j ′ < j ′′ ≤ 2n.

Note that in case of (i) p may be equal to q.

Consider the linear combination of Eqs. (16)–(22) with coefficients λ16i , λ17i , λ18i , λ19i ,

λ20, λ21j , λ22 (i ∈ {1, . . . , n}, j ∈ {2, . . . , 2n − 1}), respectively, where
• λ16i = αi,1 − α1,1 for all i ∈ {1, . . . , n},
• λ17i = βi,2n − β1,2n + β1,2 − α1,2 for all i ∈ {1, . . . , n},
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• λ18i = αi,2n − αi,1 + α1,1 for all i ∈ {1, . . . , n},
• λ19i = βi,1 − βi,2n + β1,2n − β1,2 + α1,2 for all i ∈ {1, . . . , n},
• λ20 = α1,1,
• λ21j = α1, j for all j ∈ {2, . . . , 2n − 1},
• λ22 = β1,2n − β1,2 + α1,2.

Let
n∑

i=1

2n∑

j=1

α̂i, j si, j +
n∑

i=1

2n∑

j=1

β̂i, j ei, j = γ̂ (26)

be the equation obtained. Note that the left-hand side can be written as

n∑

i=1

(
(λ16i + λ20)si,1 + (λ16i + λ18i )si,2n + (λ17i + λ19i )ei,1 + (λ17i + λ22)ei,2n

)

+
n∑

i=1

2n−1∑

j=2

(
(λ16i + λ21j )si, j + (λ17i + λ21j )ei, j

)
.

Proposition 4 Equation (26) satisfies the following:

(I) α̂i, j = αi, j for all i ∈ {1, . . . , n} and j ∈ {1, . . . , 2n}.
Proof Let i ∈ {1, . . . , n} be fixed. For j = 1 we have

α̂i,1 = λ16i + λ20 = (αi,1 − α1,1) + α1,1 = αi,1,

and for j = 2n we have

α̂i,2n = λ16i + λ18i = (αi,1 − α1,1) + (αi,2n − αi,1 + α1,1) = αi,2n .

For a given j ∈ {2, . . . , 2n − 1} we have
α̂i, j = λ16i + λ21j = (αi,1 − α1,1) + α1, j

(i i)= αi, j ,

where for the last equation we use statement (ii) of Lemma 2 with p = 1, q = i , j ′ = 1 and
j ′′ = j . 
�
Proposition 5 For linear combination (26) the following statement holds:

(II) β̂i, j = βi, j for all i ∈ {1, . . . , n} and j ∈ {1, . . . , 2n}.
Proof Let i ∈ {1, . . . , n} be fixed. For j = 1 we have

β̂i,1 = λ17i + λ19i = (βi,2n − β1,2n + β1,2 − α1,2)

+(βi,1 − βi,2n + β1,2n − β1,2 + α1,2) = βi,1,

and for j = 2n we have

β̂1,2n = λ17i + λ22 = (βi,2n − β1,2n + β1,2 − α1,2) + (β1,2n − β1,2 + α1,2) = βi,2n .

For a given j ∈ {2, . . . , 2n − 1} we have
β̂i, j = λ17i + λ21j = (βi,2n − β1,2n + β1,2 − α1,2) + α1, j

(i i i)= βi,2 − α1,2 + α1, j
(i)= βi, j .

since βi,2n − β1,2n + β1,2 = βi,2 according to statement (iii) of Lemma 2, and βi,2 − α1,2 +
α1, j = βi, j due to statement i) of Lemma 2. 
�
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Corollary 4 Equation (26) is equivalent to (25).

Proof According to Propositions 4 and 5, the left-hand-sides of (26) and (25) are the same.
Since both of them are satisfied by all the points in Q2-chains

2n , the right-hand-sides also
coincide. 
�
Proposition 6 Let n ≥ 3. The rank of the equation system E = {(16)−(22)} is 6n − 1.

Proof Consider a linear combination of Eqs. (16)–(22) with coefficients λ16i , λ17i , λ18i , λ19i ,

λ20, λ21j , λ22 (i ∈ {1, . . . , n}, j ∈ {2, . . . , 2n − 1}), respectively. This linear combination
can be written as

n∑

i=1

(
(λ16i + λ20)si,1 + (λ16i + λ18i )si,2n + (λ17i + λ19i )ei,1 + (λ17i + λ22)ei,2n

)

+
n∑

i=1

2n−1∑

j=2

(
(λ16i + λ21j )si, j + (λ17i + λ21j )ei, j

)

= λ20 + λ22 +
n∑

i=1

(
λ16i + λ17i

)
+

2n∑

j=1

λ21j .

The expression above reduces to the zero-equation (0 · s + 0 · e = 0) if and only if λ18i =
−λ16i = λ20, λ16i = −λ21j = λ17i and λ19i = −λ17i = λ22 hold for all i ∈ {1, . . . , n},
j ∈ {2, . . . , 2n − 1} and the right-hand side is zero. On the one hand, it is clear that we
can easily choose non-zero coefficients that yield the zero-equation, thus the equations are
linearly dependent. On the other hand, if we omit a single equation from (16)–(22), that is,
we fix a single coefficient from λ16i , . . . , λ22 to zero, then all the remaining coefficients
will be zero, that is, that remaining equations are linearly independent. Hence, the equation
system {(16)–(22)} containing 6n equations has rank 6n − 1. 
�
Proof (Theorem 5) In case of n = 1, P2-chains

2 consists of a single point P withσ(P) = (1, 2),
thus dim(Q2-chains

2 ) = 0.
In case of n = 2 in order to prove that dim(Q2-chains

4 ) = 4 we show that the maximum
number of affinely independent points in P2-chains

4 is 5. We have P2-chains
4 = {P1, . . . , P6},

where σ(P1) = (1, 2, 3, 4), σ(P2) = (1, 3, 2, 4), σ(P3) = (1, 4, 2, 3), σ(P4) = (2, 3, 1, 4),
σ(P5) = (2, 4, 1, 3), σ(P6) = (3, 4, 1, 2), see Fig. 10. The linear combination of these
points with coefficients λ1, . . . , λ6, respectively, is

(λ1 + λ2 + λ3)s1,1 + (λ4 + λ5)s1,2 + λ6s1,3 + (λ4 + λ5 + λ6)s2,1 + (λ2 + λ3)s2,2

+ λ1s2,3 + λ1e1,2 + (λ2 + λ4)e1,3 + (λ3 + λ5 + λ6)e1,4 + λ6e2,2

+ (λ3 + λ5)e2,3 + (λ1 + λ2 + λ4)e2,4.

Clearly, we get the zero-vector if and only if λ1 = 0, λ6 = 0 and λ2 = −λ3 = λ5 = −λ4. On
the one hand, we can easily choose non-zero λ2, . . . , λ5 coefficients to get the zero-vector
such that λ1 + · · · + λ6 = 0 also holds, thus points P1, . . . , P6 are affinely dependent. On
the other hand, if we omit for example P2, i.e., we fix λ2 = 0, we could get the zero-vector
if and only if λ1 = · · · = λ6 = 0, that is, points P1, P3, P4, P5, P6 are linearly and hence
affinely independent. Therefore dim(Q2-chains

2 ) = 4.
Finally, assume that n ≥ 3. According to Theorem 6, the equation set E = {(16)−(22)}

is an equation system for Q2-chains
2n , and according to Proposition 6, the rank of this system

is 6n − 1. Since we have 4n2 variables, thus the dimension of Q2-chains
2n is 4n2 − (6n − 1). 
�
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Fig. 10 The six points of P2-chains
4

5.4 Parity inequalities

In the case of general chain-precedence constraintswe showed that the parity inequalities (14)
and (15) are valid for Qchain

n (see Sect. 4), thus they are also valid in the case of 2-chains.
Using the replacement of the variables (remark that si, j = x2i−1, j and ei, j = x2i, j ) the
following parity inequalities are valid for Q2-chains

2n :

∑

i∈S

2k∑

j=1

(
si, j − ei, j

) −
∑

i /∈S

2k∑

j=1

(
si, j − ei, j

) ≤ |S| − 1,

for all odd-subset S ⊆ [n], and k < n, (27)

and

∑

i∈S

2k−1∑

j=1

(
si, j − ei, j

) −
∑

i /∈S

2k−1∑

j=1

(
si, j − ei, j

) ≤ |S| − 1,

for all even-subset S ⊆ [n], and k ≤ n. (28)

In this section we show that some of the inequalities (27) are facet-defining for Q2-chains
2n .

Similarly, one can show that a subset of inequalities (28) are also facet-inducing.
Let 3 ≤ t < n be a fixed odd number; 1 ≤ k < n such that t < 2k and t < 2(n − k) hold;

and S ⊆ [n] with cardinality |S| = t . To simplify our notation, without loss of generality,
we assume that S = {1, . . . , t}. The corresponding parity inequality is:

t∑

i=1

2k∑

j=1

(si, j − ei, j ) ≤ t − 1 +
n∑

i=t+1

2k∑

j=1

(si, j − ei, j ). (29)

Theorem 7 Let 3 ≤ t < n be a fixed odd number; 1 ≤ k < n such that t < 2k and
t < 2(n − k) hold; and S = {1, . . . , t}. Inequalities (29) are facet-defining for Qchain

n .

Remark 2 Consider a point from P2-chains
2n . We say that a chain Ci = (J2i−1, J2i ) is active in

interval [2k, 2k+1] if∑2k
j=1(si, j−ei, j ) = 1 holds (that is, its first job J2i−1 is assigned before

position 2k + 1, and its second job J2i is assigned after position 2k). A point from P2-chains
2n

satisfies (29) with equality if and only if

– exactly t−1 chains from {1, . . . , t} and no chain from {t+1, . . . , n} are active in interval
[2k, 2k + 1]; or
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– exactly t chains from {1, . . . , t} and exactly 1 chain from {t + 1, . . . , n} are active in
interval [2k, 2k + 1].

Sketch of the proof of Theorem 7 Let us define the set of points

P parity
2n := {(s, e) ∈ P2-chains

2n : (s, e) satisfies (29) with equality},
and the polyhedron of their convex hull Qparity

2n := conv(P parity
2n ). Note that Qparity

2n is a
proper face of Q2-chains

2n . To prove that inequalities (29) are facet-defining for Q2-chains
2n , we

will show that Qparity
2n is a facet of Q2-chains

2n , i.e., dim(Qparity
2n ) = dim(Q2-chains

2n ) − 1.
To do this, we apply a similar procedure as in Sect. 5.3, that is, we will prove that the set
E ′ := E ∪ {(30)} = {(16)−(22), (30)} of equations contains a minimal equation system
for Qparity

2n with rank dim(Q2-chains
2n ) − 1, where we have

t∑

i=1

2k∑

j=1

(si, j − ei, j ) +
n∑

i=t+1

2k∑

j=1

(ei, j − si, j ) = t − 1. (30)

The detailed proof can be found in the end of Sect. 5.4.

Theorem 8 The equation set E ′ = {(16)−(22), (30)} is an equation system for Qparity
2n .

Proof Clearly, the equations of E ′ hold for every point of Qparity
2n since they are defining

equations for P parity
2n . Assume that

n∑

i=1

2n∑

j=1

αi, j si, j +
n∑

i=1

2n∑

j=1

βi, j ei, j = γ (31)

holds for all (s, e) ∈ Qparity
2n . In order to show that Eq. (31) is a linear combination of

Eqs. (16)–(22) and (30) we explicitly create a linear combination (32), and in Propositions 7–
10 we prove that (31) and (32) are the same. In those proposition we use Lemmas 3 and 4,
however for their proofs we refer to the “Appendix”.

Lemma 3 For Eq. (31) the following statements hold:

(i) αp, j ′′ − αp, j ′ = αq, j ′′ − αq, j ′ ∀ p, q ∈ {1, . . . , t}, 1 ≤ j ′ < j ′′ ≤ 2k,
(ii) αp, j ′′ − αp, j ′ = αq, j ′′ − αq, j ′ ∀ p, q ∈ {1, . . . , t}, 1 ≤ j ′ ≤ 2k < j ′′ ≤ 2n − 1,
(iii) βp, j ′′ − βp, j ′ = βq, j ′′ − βq, j ′ ∀ p, q ∈ {1, . . . , t}, 2k < j ′ < j ′′ ≤ 2n,
(iv) βp, j ′′ − βp, j ′ = βq, j ′′ − βq, j ′ ∀ p, q ∈ {1, . . . , t}, 2 ≤ j ′ ≤ 2k < j ′′ ≤ 2n,
(v) αp, j ′′ − αp, j ′ = βq, j ′′ − βq, j ′ ∀ p, q ∈ {1, . . . , t}, 1 < j ′ < j ′′ ≤ 2k,
(vi) αp, j ′′ − αp, j ′ = βq, j ′′ − βq, j ′ ∀ p, q ∈ {1, . . . , t}, 2k < j ′ < j ′′ < 2n.

Note that in case of (v) and (vi) p may be equal to q.

Lemma 4 For Eq. (31) the following statements hold:

(vii) αp, j ′′ − αp, j ′ = αq̄, j ′′ − αq̄, j ′ ∀ p ∈ {1, . . . , t}, q̄ ∈ {t + 1, . . . , n}, 1 ≤ j ′ < j ′′ ≤
2k,

(viii) βp, j ′′ −βp, j ′ = βq̄, j ′′ −βq̄, j ′ ∀ p ∈ {1, . . . , t}, q̄ ∈ {t +1, . . . , n}, 2k < j ′ < j ′′ ≤
2n,

(ix) αp, j ′′ − αp, j ′ = βq̄, j ′′ − βq̄, j ′ ∀ p ∈ {1, . . . , t}, q̄ ∈ {t + 1, . . . , n}, 1 < j ′ < j ′′ ≤
2k,
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(x) αp, j ′′ − αp, j ′ = βq̄, j ′′ − βq̄, j ′ ∀ p ∈ {1, . . . , t}, q̄ ∈ {t + 1, . . . , n}, 1 < j ′ ≤ 2k <

j ′′ < 2n,
(xi) βp, j ′′ − βp, j ′ = αq̄, j ′′ − αq̄, j ′ ∀ p ∈ {1, . . . , t}, q̄ ∈ {t + 1, . . . , n}, 1 < j ′ ≤ 2k <

j ′′ < 2n,
(xii) βp, j ′′ −βp, j ′ = αq̄, j ′′ −αq̄, j ′ ∀ p ∈ {1, . . . , t}, q̄ ∈ {t +1, . . . , n}, 2k < j ′ < j ′′ <

2n.

Consider the linear combination of Eqs. (16)–(22) and (30) with coefficients λ16i , λ17i ,

λ18i , λ19i , λ20, λ21j , λ22 and λ30, (i ∈ {1, . . . , n}, j ∈ {2, . . . , 2n − 1}) respectively, where
• λ30 = λ, where λ := (α1,2 − α1,2k+1 − β1,2 + β1,2k+1)/2,

• λ16i =
{

αi,1 − α1,1 if i ∈ {1, . . . , t},
αi,1 − α1,1 + 2λ if i ∈ {t + 1, . . . , n},

• λ17i = μi , where μi :=
{

β1,2 − α1,2 + 2λ if i = 1,
βi,2n − β1,2n + μ1 if i ∈ {2, . . . , n},

• λ18i =
⎧
⎨

⎩

α1,2n if i = 1,
αi,2n − αi,1 + α1,1 if i ∈ {2, . . . , t},
αi,2n − αi,1 + α1,1 − 2λ if i ∈ {t + 1, . . . , n},

• λ19i =
{

βi,1 + λ − μi if i ∈ {1, . . . , t},
βi,1 − λ − μi if i ∈ {t + 1, . . . , n},

• λ20 = α1,1 − λ,

• λ21j =
{

α1, j − λ if j ∈ {2, . . . , 2k},
α1, j if j ∈ {2k + 1, . . . , 2n − 1},

• λ22 = β1,2n − μ1.

Let
n∑

i=1

2n∑

j=1

α̂i, j si, j +
n∑

i=1

2n∑

j=1

β̂i, j ei, j = γ̂ (32)

be the resulting equation. Note that the left-hand side can be written as

t∑

i=1

(
(λ16i + λ20 + λ30)si,1 + (λ17i + λ19i − λ30)ei,1

)

+
n∑

i=t+1

(
(λ16i + λ20 − λ30)si,1 + (λ17i + λ19i + λ30)ei,1

)

+
n∑

i=1

(
(λ16i + λ18i )si,2n + (λ17i + λ22)ei,2n

)

+
t∑

i=1

2k∑

j=2

(
(λ16i + λ21j + λ30)si, j + (λ17i + λ21j − λ30)ei, j

)

+
n∑

i=t+1

2k∑

j=2

(
(λ16i + λ21j − λ30)si, j + (λ17i + λ21j + λ30)ei, j

)

+
n∑

i=1

2n−1∑

j=2k+1

(
(λ16i + λ21j )si, j + (λ17i + λ21j )ei, j

)
.
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Proposition 7 For linear combination (32) the following statement holds:

(I) α̂i, j = αi, j for all i ∈ {1, . . . , t} and j ∈ {1, . . . , 2n}.
Proof By construction, the statement clearly holds for i = 1. Let i ∈ {2, . . . , t} be fixed. For
j = 1 we have

α̂i,1 = λ16i + λ20 + λ30 = (αi,1 − α1,1) + (α1,1 − λ) + λ = αi,1,

and for j = 2n we have

α̂i,2n = λ16i + λ18i = (αi,1 − α1,1) + (αi,2n + α1,1 − αi,1) = αi,2n .

For a given j ∈ {2, . . . , 2k} we have
α̂i, j = λ16i + λ21j + λ30 = (αi,1 − α1,1) + (α1, j − λ) + λ = α1, j − α1,1 + αi,1

(i)= αi, j ,

where for the last equation we use statement (i) of Lemma 3 with p = 1, q = i , j ′ = 1, and
j ′′ = j . Finally, for a given j ∈ {2k + 1, . . . , 2n − 1} we have

α̂i, j = λ16i + λ21j = α1, j − α1,1 + αi,1
(i i)= αi, j ,

where for the last equation we use statement (ii) of Lemma 3 with p = 1, q = i , j ′ = 1 and
j ′′ = j . 
�
Proposition 8 For linear combination (32) the following statement holds:

(II) β̂i, j = βi, j for all i ∈ {1, . . . , t} and j ∈ {1, . . . , 2n}.
Proof First, assume that i = 1. For j = 1 we have

β̂1,1 = λ171 + λ191 − λ30 = μ1 + (β1,1 + λ − μ1) − λ = β1,1,

and for j = 2n we have

β̂1,2n = λ171 + λ22 = μ1 + (β1,2n − μ1) = β1,2n .

For a given j ∈ {2, . . . , 2k} we have
β̂1, j = λ171 + λ21j − λ30 = (β1,2 − α1,2 + 2λ) + (α1, j − λ) − λ

= β1,2 + α1, j − α1,2
(v)= β1, j ,

where the last equation clearly holds for j = 2, and for 2 < j we can use statement (v) of
Lemma 3 with p = q = 1, j ′ = 2 and j ′′ = j . For a given j ∈ {2k + 1, . . . , 2n − 1} we
have

β̂1, j = λ171 + λ21j = β1,2 + α1, j − α1,2 + 2λ = α1, j − α1,2k+1 + β1,2k+1
(vi)= βi, j ,

according to statement (vi) of Lemma 3 with p = q = 1, j ′ = 2k + 1 and j ′′ = j . Now, let
i ∈ {2, . . . , t}. For j = 1 we have

β̂i,1 = λ17i + λ19i − λ30 = μi + (βi,1 + λ − μi ) − λ = βi,1,

and for j = 2n we have

β̂1,2n = λ17i + λ22 = (βi,2n − β1,2n + μ1) + (β1,2n − μ1) = βi,2n .
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For a given j ∈ {2, . . . , 2k} we have
β̂i, j = λ17i + λ21j − λ30 = (βi,2n − β1,2n + β1,2 − α1,2 + 2λ) + (α1, j − λ) − λ

= βi,2n − β1,2n + β1,2 − α1,2 + α1, j
(v)= βi,2n − β1,2n + β1, j

(iv)= βi, j ,

since β1,2 − α1,2 + α1, j = β1, j according to statement (v) of Lemma 3 with p = q = 1,
j ′ = 2 and j ′′ = j , and βi,2n − β1,2n + β1, j = βi, j due to statement (iv) of Lemma 3 with
p = 1, q = i , j ′ = j and j ′′ = 2n. Finally, for a given j ∈ {2k + 1, . . . , 2n − 1} we have

β̂i, j = λ17i + λ21j = βi,2n − β1,2n + α1, j − α1,2k+1

+β1,2k+1
vi)= βi,2n − β1,2n + β1, j

iv)= βi, j ,

sinceα1, j−α1,2k+1+β1,2k+1 = β1, j according to statement (vi) ofLemma3with p = q = 1,
j ′ = 2k + 1 and j ′′ = j , and βi,2n − β1,2n + β1, j = βi, j due to statement (iv) of Lemma 3
with p = 1, q = i , j ′ = j and j ′′ = 2n. 
�
Proposition 9 For linear combination (32) the following statement holds:

(III) α̂i, j = αi, j for all i ∈ {t + 1, . . . , n} and j ∈ {1, . . . , 2n}.
Proof Let i ∈ {t + 1, . . . , n} be fixed. For j = 1 we have

α̂i,1 = λ16i + λ20 − λ30 = (αi,1 − α1,1 + 2λ) + (α1,1 − λ) − λ = αi,1,

and for j = 2n we have

α̂i,2n = λ16i + λ18i = (αi,1 − α1,1 + 2λ) + (αi,2n − αi,1 + α1,1 − 2λ) = αi,2n .

For a given j ∈ {2, . . . , 2k} we have
α̂i, j = λ16i + λ21j − λ30 = (αi,1 − α1,1 + 2λ) + (α1, j − λ) − λ

= α1, j − α1,1 + αi,1
(vi i)= αi, j ,

where for the last equation we use statement (vii) of Lemma 4 with p = 1, q̄ = i , j ′ = 1
and j ′′ = j . Finally, for a given j ∈ {2k + 1, . . . , 2n − 1} we have

α̂i, j = λ16i + λ21j = (αi,1 − α1,1 + α1,2 − β1,2 + β1,2k+1 − α1,2k+1) + α1, j

(vi)= αi,1 − α1,1 + α1,2 − β1,2 + β1, j
(vi i)= αi,2 − β1,2 + β1, j

(xi)= αi, j ,

sinceβ1,2k+1−α1,2k+1+α1, j = β1, j according to statement (vi) ofLemma3with p = q = 1,
j ′ = 2k+1 and j ′′ = j , andαi,1−α1,1+α1,2 = αi,2 according to statement (vii) of Lemma 4
with p = 1, q̄ = i , j ′ = 1 and j ′′ = 2, and αi,2 − β1,2 + β1, j = αi, j due to statement (xi)
of Lemma 4 with p = 1, q̄ = i , j ′ = 2 and j ′′ = j . 
�
Proposition 10 For linear combination (32) the following statement holds:

(IV) β̂i, j = βi, j for all i ∈ {t + 1, . . . , n} and j ∈ {1, . . . , 2n}.
Proof Let i ∈ {t + 1, . . . , n} be fixed. For j = 1 we have

β̂i,1 = λ17i + λ19i + λ30 = μi + (βi,1 − λ − μi ) + λ = βi,1,
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and for j = 2n we have

β̂1,2n = λ17i + λ22 = (βi,2n − β1,2n + μ1) + (β1,2n − μ1) = βi,2n .

For a given j ∈ {2, . . . , 2k} we have
β̂i, j = λ17i + λ21j + λ30 = βi,2n + α1, j − β1,2n − α1,2k+1 + β1,2k+1

(vi i i)= α1, j − α1,2k+1 + βi,2k+1
(x)= βi, j ,

since βi,2n − β1,2n + β1,2k+1 = βi,2k+1 according to statement (viii) of Lemma 4 with
p = 1, q̄ = i , j ′ = 2k + 1 and j ′′ = 2n, and α1, j − α1,2k+1 + βi,2k+1 = βi, j due to
statement (x) of Lemma 4 with p = 1, q̄ = i , j ′ = j and j ′′ = 2k + 1. Finally, for a given
j ∈ {2k + 1, . . . , 2n − 1} we have

β̂i, j = λ17i + λ21j = βi,2n − β1,2n + α1, j

−α1,2k+1 + β1,2k+1
(vi)= βi,2n − β1,2n + β1, j

(vi i i)= βi, j ,

since α1, j − α1,2k+1 + β1,2k+1 = β1, j according to statement (vi) of Lemma 4 with p = 1,
q̄ = i , j ′ = 2k + 1 and j ′′ = j , and βi,2n − β1,2n + β1, j = βi, j due to statement (viii) of
Lemma 4 with p = 1, q̄ = i , j ′ = j and j ′′ = 2n. 
�
Corollary 5 Linear combination (32) yields Eq. (31).

Proof According to Propositions 7–10, the left-hand sides of (31) and (32) are the same. Since
both of them are satisfied for the points from P parity

2n , the right-hand sides also coincide with
each other. 
�
Proof (Theorem 7) First, by definition, rank(E ′) ≤ rank(E) + 1, thus (according to
Theorems 6 and 8) dim(Qparity

2n ) ≥ dim(Q2-chains
2n ) − 1. Second, dim(Qparity

2n ) ≤
dim(Q2-chains

2n ) − 1 since Qparity
2n is a proper face of Q2-chains

2n , thus dim(Qparity
2n ) =

dim(Q2-chains
2n ) − 1 and Qparity

2n is a facet of Q2-chains
2n . 
�

6 Computational experiments

In this section we present the results of our computational experiments, where the main goal
was to examine the effectiveness of our parity inequalities. Since we proved that some of
these inequalities are facet-defining if each chain has length two, our experiments focused on
problems 1 |2-chains, p j = 1| ∑

w j,σ j and 1 |chain-length ∈ {1, 2}, p j = 1| ∑
w j,σ j ,

where in the latter case each chain has length at most two.
All the computational experiments were performed on a workstation with 8GB RAM and

Intel(R) Xeon(R) CPU E5-2630 v4 of 2.20 GHz, and under Linux operating system using
a single thread only. Our solution approach is implemented in C++ programming language
using CPLEX (version 12.6.3.0) as the branch-and-cut framework.

In these experiments we compared three solution approaches, more precisely, four
scenarios corresponding to the settings summarized in Table 2. Method BnB is pure branch-
and-bound, where we turned off all the presolves, heuristics and forbid to generate built-in
cuts. Method BnC (Default) refers to the default CPLEX settings (i.e., CPLEX performs pre-
solves and heuristics, and generates built-in cuts).MethodsBnC (Parity)-1 andBnC (Parity)-2
use the same solver settings as BnB, but we also separate parity inequalities, i.e., both of
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Table 2 Solver settings of the different methods

Method CPLEX Parity cuts

Presolve Heuristics Cuts Root Non-root

BnB No No No No No

BnC (Default) Yes Yes Yes No No

BnC (Parity)-1 No No No No Yes

BnC (Parity)-2 No No No Yes Yes

these methods separate parity inequalities in search-tree node of depth at least 1, but BnC
(Parity)-1 does not generate any cuts in the root, while BnC (Parity)-2 does. In each case we
had a runtime limit of 600s, i.e., the search was stopped upon reaching the time limit.

We generated two families of problem instances for 1 |2-chains, p j = 1| ∑
w j,σ j , and

one family for 1 |chains, chain-length ∈ {1, 2}, p j = 1| ∑
w j,σ j . Each family consists

of 30 instances, which can be subdivided according to the number of jobs, which was n ∈
{50, 100, 150}, and we generated 10 instances for each n. In Tables 3, 4 and 5 we summarize
our results on these families, and the detailed results are presented in the “Appendix” (see
Tables 6, 7, 8, 9, 10, 11, 12, 13 and 14). In these tables we indicate the number of jobs (n),
the settings of the solver (Method), the lower bound after the root node is solved (LBr ), the
final lower and upper bounds (LB f , UB f ), the final gap (Gap f ) calculated as 100× (UB f −
LB f )/LB f , the number of investigated branch-and-bound nodes (Nodes), the number of
generated parity inequalities (Cuts), and the execution time (Time) in seconds.

6.1 Results on problem 1 |2-chains, pj = 1| ∑
wj,�j

For the problem 1 |2-chains, p j = 1| ∑
w j,σ j we generated two families of instances,

Family 1 andFamily 2, that differ in themethod of generating the cost functions. Both families
consist of 30 instances, which can be further divided into problems with n ∈ {50, 100, 150}
jobs, i.e., 10 instances for each n. In order to generate challenging instances, for each first-
job we assigned higher weight for the early positions than for the late ones, however, for
each second-job we assigned lower weight for the early positions than for the late ones.
Formally, in case of Family 1, we partitioned the set of positions into 9 sets such that Pk =
{�(k − 1) · 2n/9� + 1, . . . , �k · 2n/9�} for each k ∈ {1, . . . , 9}, then for job Ji and position j
we chose wi, j uniformly at random such that

• wi, j ∈ {10(10 − k), . . . , 10(11 − k) − 1} if Ji is a first-job, and j ∈ Pk ,
• wi, j ∈ {10k, . . . , 10(k + 1) − 1} if Ji is a second-job, and j ∈ Pk .

In case of Family 2, we partitioned the set of positions into 17 subsets such that Pk =
{�(k − 1) · 2n/17� + 1, . . . , �k · 2n/17�} for each k ∈ {1, . . . , 17}, then for job Ji and
position j we chose wi, j uniformly at random such that

• wi, j ∈ {10k, . . . , 10(k + 1) − 1} if Ji is a first-job, k ≤ 9, and j ∈ Pk ,
• wi, j ∈ {10(18 − k), . . . , 10(19 − k) − 1} if Ji is a first-job, 9 < k, and j ∈ Pk ,
• wi, j ∈ {10(10 − k), . . . , 10(11 − k) − 1} if Ji is a second-job, k ≤ 9, and j ∈ Pk ,
• wi, j ∈ {10(k − 9), . . . , 10(k − 8) − 1} if Ji is a second-job, 9 < k, and j ∈ Pk .

In Tables 3 and 4 we summarize our results for Family 1 and Family 2, respectively, while
the detailed results can be found in Tables 6, 7 and 8, and in Tables 9, 10 and 11, respectively.
Our observations are the followings.
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Table 3 Summarized computational results for Family 1 (averages over 10 instances)

n Method LBr LB f UB f Gap f Nodes Cuts Time

50 BnB 2521.1 2525.4 2525.4 0.0 3196.1 0.0 17.2

BnC (Default) 2522.3 2525.4 2525.4 0.0 839.9 0.0 7.7

BnC (Parity)-1 2521.1 2525.4 2525.4 0.0 4.3 19.7 1.1

BnC (Parity)-2 2525.0 2525.4 2525.4 0.0 2.3 20.2 0.6

100 BnB 5004.8 5006.9 5021.9 0.3 14, 017.2 0.0 416.9

BnC (Default) 5005.1 5007.5 5011.0 0.1 10, 670.4 0.0 397.2

BnC (Parity)-1 5004.8 5008.5 5008.5 0.0 140.0 35.7 25.0

BnC (Parity)-2 5006.9 5008.5 5008.5 0.0 127.6 26.4 23.3

150 BnB 7500.0 7500.0 7513.7 0.2 3740.6 0.0 346.6

BnC (Default) 7500.0 7500.0 7500.1 0.0 1257.2 0.0 227.5

BnC (Parity)-1 7500.0 7500.0 7500.0 0.0 12.8 35.4 42.8

BnC (Parity)-2 7500.0 7500.0 7500.0 0.0 82.8 26.7 82.0

– Methods BnC (Parity)-1 and BnC (Parity)-2 significantly outperformed the other ones
in all aspects. First, only these methods were able to solve all instances to optimality
(one can see that the average gap is always 0.0), Second, for each instance, method BnC
(Parity)-1 needed shorter execution time than methods BnB and BnC (Default). Note
that on average, method BnC (Parity)-2 was also significantly faster than methods BnB
and BnC (Default) [often faster than method BnC (Parity)-1 as well], however, for some
instances one of the other twomethods outperformed it. Finally, both of the methods BnC
(Parity)-1 andBnC (Parity)-2 significantly reduced the number of the explored tree-nodes
as well.

– Separating parity inequalities at the root node [method BnC (Parity)-2 ] yielded the best
(i.e., highest) lower bounds at the root node, however, on large instances with 150 jobs
the separation procedure at the root node took a lot of time, which resulted in longer
execution times than the method BnC (Parity)-1. For example, in case of Family 1 and
n = 150, where the LP-relaxation of the problem (see column LBr of the pure branch-
and-boundmethod BnB) is basically strong, separating these inequalities at the root node
could not help a lot, and method BnC (Parity)-1 outperformed method BnC (Parity)-2.

To sum up, using parity inequalities [methods BnC (Parity)-1 and BnC (Parity)-2 ] can
significantly improve a pure branch-and-bound procedure (method BnB), moreover, they
also outperform the default CPLEX branch-and-cut procedure [method BnC (Default) ].

6.2 Results on problem 1 |chains, chain-length ∈ {1, 2}, pj = 1| ∑
wj,�j

Given an n-length path (in terms of number of its nodes) as the precedence graph. To obtain
instances of Family 3 we randomly removed arcs from that path such that the remaining sub-
paths (i.e, chains) have length at most two. For each n ∈ {50, 100, 150}, we generated 10
instances with n jobs, giving a total of 30 instances. Again, to generate challenging instances,
for each first-job we assigned higher weight for the early positions than for the late ones,
however, for each second-job we assigned lower weight for the early positions than for the
late ones (see Family 1).
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Table 4 Summarized computational results for Family 2 (averages over 10 instances)

n Method LBr LB f UB f Gap f Nodes Cuts Time

50 BnB 1800.4 1816.5 1816.5 0.0 925.1 0.0 3.3

BnC (Default) 1815.9 1816.5 1816.5 0.0 14.7 0.0 0.6

BnC (Parity)-1 1800.4 1816.5 1816.5 0.0 3.5 2.7 0.3

BnC (Parity)-2 1816.3 1816.5 1816.5 0.0 1.7 2.6 0.2

100 BnB 3596.2 3598.6 3663.4 1.8 63, 707.8 0.0 600.0

BnC (Default) 3602.3 3616.5 3644.5 0.8 14, 762.8 0.0 600.0

BnC (Parity)-1 3596.2 3642.1 3642.1 0.0 4.3 27.1 5.4

BnC (Parity)-2 3642.1 3642.1 3642.1 0.0 4.5 16.9 5.2

150 BnB 5340.7 5340.9 5399.8 1.1 9099.5 0.0 600.0

BnC (Default) 5344.3 5352.8 5360.5 0.1 4944.9 0.0 574.0

BnC (Parity)-1 5340.7 5360.4 5360.4 0.0 5.0 6.9 15.4

BnC (Parity)-2 5360.4 5360.4 5360.4 0.0 6.8 10.0 18.1

Table 5 Summarized computational results for Family 3 (averages over 10 instances)

n Method LBr LB f UB f Gap f Nodes Cuts Time

50 BnB 2039.6 2056.1 2056.1 0.0 28, 892.6 0.0 47.0

BnC (Default) 2049.8 2056.1 2056.1 0.0 851.1 0.0 2.0

BnC (Parity)-1 2039.6 2056.1 2056.1 0.0 4.2 7.8 0.3

BnC (Parity)-2 2055.6 2056.1 2056.1 0.0 2.9 5.3 0.3

100 BnB 4053.6 4056.1 4087.7 0.8 60, 305.6 0.0 600.0

BnC (Default) 4056.8 4070.4 4078.7 0.2 26, 954.3 0.0 590.3

BnC (Parity)-1 4053.6 4076.7 4076.7 0.0 56.0 16.0 8.6

BnC (Parity)-2 4075.7 4076.7 4076.7 0.0 44.4 8.5 6.9

150 BnB 6062.4 6062.8 6109.5 0.8 16, 331.7 0.0 600.0

BnC (Default) 6063.7 6068.3 6084.3 0.3 9923.6 0.0 600.0

BnC (Parity)-1 6062.4 6081.8 6081.8 0.0 32.9 16.4 23.3

BnC (Parity)-2 6081.4 6081.8 6081.8 0.0 196.9 10.6 38.3

In Table 5 we summarize our results, and for detailed results we refer to the “Appendix”
(see Tables 12, 13 and 14). Similarly to the previous experiments, themethods BnC (Parity)-1
and BnC (Parity)-2 outperformed the other ones. For smaller instances with 50 and 100 jobs,
BnC (Parity)-2 slightly outperformed BnC (Parity)-1 in terms of search-tree nodes and total
running time, but on large instances with 150 jobs, the BnC (Parity)-1 proved better.

7 Conclusions, final remarks and future work

In this paper we presented polyhedral and complexity results for a single machine scheduling
problem where precedence constraints are given. Among several theoretical results we also
presented a class of valid inequalities that turned out to be facet-defining for 2-chains prece-
dence constraints. Our computational experiments show that separating these inequalities

123



308 Annals of Operations Research (2020) 284:283–322

can significantly improve a linear programming based branch-and-bound procedure if the
length of each chain is at most two. Although these inequalities are also valid in the case of
chain-precedence constraints with arbitrary chain-lengths, according to our preliminary com-
putational experiments, separating these inequalities could not improve a branch-and-bound
procedure in that case.

In the future we would like to direct our attention to the case of chain-precedence con-
straints with arbitrary chain-lengths, and to the case of general precedence constraints as
well.
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8 Appendix

8.1 Proof of Lemma 2

Proof (statement (i)) Let p, q ∈ {1, . . . , n} be distinct elements, 1 ≤ j1 < j2 < j3 < j4 ≤
2n and consider points P1 = (s1, e1), P2 = (s2, e2) ∈ P2-chains

2n such that σp(P1) = ( j1, j2),
σq(P1) = ( j3, j4) and σq(P2) = ( j1, j3), σq(P2) = ( j2, j4) and σr (P1) = σr (P2) for all
r /∈ {p, q}, i.e.,

s1p, j1 = e1p, j2 = s1q, j3 = e1q, j4 = 1 and s2p, j1 = e2p, j3 = s2q, j2 = e2q, j4 = 1,

and s1r , j = s2r , j , e
1
r , j = e2r , j for all r /∈ {p, q} and j ∈ {1, . . . , 2n}. Since P1 and P2

satisfy (25), we have

αp, j1 + βp, j2 + αq, j3 + βq, j4 +
n∑

r=1
r �=p,q

2n∑

j=1

(
αr , j s

1
r , j + βr , j e

1
r , j

)
= γ,

and

αp, j1 + βp, j3 + αq, j2 + βq, j4 +
n∑

r=1
r �=p,q

2n∑

j=1

(
αr , j s

2
r , j + βr , j e

2
r , j

)
= γ,

thus, by subtracting the second equation from the first one, we have βp, j2 + αq, j3 = αq, j2 +
βp, j3 (1 < j2 < j3 < 2n), that is, statement (i) holds for p �= q .

Since n ≥ 3, we can choose pairwise distinct elements p, q, r ∈ {1, . . . , n}, therefore we
have

αp, j ′′ − αp, j ′ = βq, j ′′ − βq, j ′ = αr , j ′′ − αr , j ′ = βp, j ′′ − βp, j ′ ,

that is, statement i) also holds for p = q . 
�
Proof (statement (ii)) Let p, q ∈ {1, . . . , n} be distinct elements, 1 ≤ j1 < j2 < j3 < j4 ≤
2n and consider points P1, P2 ∈ P2-chains

2n such that σp(P1) = ( j1, j3), σq(P1) = ( j2, j4)
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Table 6 Detailed computational results for Family 1 with n = 50

Instance Method LBr LB f UB f Gap f Nodes Cuts Time

1 BnB 2524.0 2531.0 2531.0 0.0 12,377 0 54.1

BnC (Default) 2526.2 2531.0 2531.0 0.0 535 0 13.2

BnC (Parity)-1 2524.0 2531.0 2531.0 0.0 4 27 1.2

BnC (Parity)-2 2530.5 2531.0 2531.0 0.0 3 19 0.8

2 BnB 2522.3 2526.0 2526.0 0.0 520 0 6.8

BnC (Default) 2523.3 2526.0 2526.0 0.0 451 0 4.5

BnC (Parity)-1 2522.3 2526.0 2526.0 0.0 3 24 0.5

BnC (Parity)-2 2526.0 2526.0 2526.0 0.0 0 20 0.2

3 BnB 2527.2 2530.0 2530.0 0.0 332 0 6.1

BnC (Default) 2528.0 2530.0 2530.0 0.0 208 0 2.8

BnC (Parity)-1 2527.2 2530.0 2530.0 0.0 4 17 0.8

BnC (Parity)-2 2530.0 2530.0 2530.0 0.0 0 27 0.2

4 BnB 2518.6 2523.0 2523.0 0.0 5693 0 27.5

BnC (Default) 2519.2 2523.0 2523.0 0.0 2066 0 11.5

BnC (Parity)-1 2518.6 2523.0 2523.0 0.0 8 22 2.0

BnC (Parity)-2 2521.7 2523.0 2523.0 0.0 7 23 1.8

5 BnB 2516.7 2519.0 2519.0 0.0 7 0 1.6

BnC (Default) 2519.0 2519.0 2519.0 0.0 0 0 0.8

BnC (Parity)-1 2516.7 2519.0 2519.0 0.0 3 17 0.7

BnC (Parity)-2 2519.0 2519.0 2519.0 0.0 0 23 0.2

6 BnB 2521.0 2525.0 2525.0 0.0 232 0 5.6

BnC (Default) 2521.8 2525.0 2525.0 0.0 339 0 3.8

BnC (Parity)-1 2521.0 2525.0 2525.0 0.0 4 17 0.9

BnC (Parity)-2 2524.5 2525.0 2525.0 0.0 2 18 0.4

7 BnB 2524.6 2527.0 2527.0 0.0 133 0 3.1

BnC (Default) 2525.6 2527.0 2527.0 0.0 14 0 0.9

BnC (Parity)-1 2524.6 2527.0 2527.0 0.0 5 12 1.2

BnC (Parity)-2 2526.2 2527.0 2527.0 0.0 3 15 0.7

8 BnB 2519.0 2523.0 2523.0 0.0 1469 0 12.2

BnC (Default) 2519.8 2523.0 2523.0 0.0 624 0 4.7

BnC (Parity)-1 2519.0 2523.0 2523.0 0.0 5 21 1.3

BnC (Parity)-2 2522.0 2523.0 2523.0 0.0 5 18 0.9

9 BnB 2522.1 2528.0 2528.0 0.0 8774 0 38.1

BnC (Default) 2522.3 2528.0 2528.0 0.0 3460 0 29.6

BnC (Parity)-1 2522.1 2528.0 2528.0 0.0 4 18 1.2

BnC (Parity)-2 2528.0 2528.0 2528.0 0.0 0 20 0.2

10 BnB 2515.9 2522.0 2522.0 0.0 2424 0 17.0

BnC (Default) 2517.9 2522.0 2522.0 0.0 702 0 5.4

BnC (Parity)-1 2515.9 2522.0 2522.0 0.0 3 22 0.9

BnC (Parity)-2 2521.8 2522.0 2522.0 0.0 3 19 0.5
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Table 6 continued

Instance Method LBr LB f UB f Gap f Nodes Cuts Time

Avg BnB 2521.1 2525.4 2525.4 0.0 3196.1 0.0 17.2

BnC (Default) 2522.3 2525.4 2525.4 0.0 839.9 0.0 7.7

BnC (Parity)-1 2521.1 2525.4 2525.4 0.0 4.3 19.7 1.1

BnC (Parity)-2 2525.0 2525.4 2525.4 0.0 2.3 20.2 0.6

Table 7 Detailed computational results for Family 1 with n = 100

Instance Method LBr LB f UB f Gap f Nodes Cuts Time

1 BnB 5004.7 5006.7 5016.0 0.2 19,580 0 600.0

BnC (Default) 5004.8 5009.0 5009.0 0.0 18,317 0 513.5

BnC (Parity)-1 5004.7 5009.0 5009.0 0.0 160 40 25.0

BnC (Parity)-2 5007.3 5009.0 5009.0 0.0 26 28 15.2

2 BnB 5005.0 5007.0 5007.0 0.0 3850 0 148.7

BnC (Default) 5005.1 5007.0 5007.0 0.0 2842 0 77.6

BnC (Parity)-1 5005.0 5007.0 5007.0 0.0 69 32 22.4

BnC (Parity)-2 5005.9 5007.0 5007.0 0.0 112 29 24.6

3 BnB 5004.7 5008.0 5008.0 0.0 9963 0 282.5

BnC (Default) 5004.9 5008.0 5008.0 0.0 4339 0 177.8

BnC (Parity)-1 5004.7 5008.0 5008.0 0.0 171 36 22.9

BnC (Parity)-2 5006.1 5008.0 5008.0 0.0 130 32 25.0

4 BnB 5007.4 5008.7 5058.0 1.0 21,653 0 600.0

BnC (Default) 5007.6 5008.5 5021.0 0.3 10,395 0 600.0

BnC (Parity)-1 5007.4 5013.0 5013.0 0.0 102 38 21.4

BnC (Parity)-2 5011.7 5013.0 5013.0 0.0 81 22 20.4

5 BnB 5003.9 5006.0 5011.0 0.1 18,585 0 600.0

BnC (Default) 5004.7 5008.0 5008.0 0.0 16,913 0 524.5

BnC (Parity)-1 5003.9 5008.0 5008.0 0.0 263 39 37.0

BnC (Parity)-2 5005.8 5008.0 5008.0 0.0 320 39 38.3

6 BnB 5006.9 5010.0 5010.0 0.0 5414 0 217.9

BnC (Default) 5007.1 5010.0 5010.0 0.0 3986 0 212.0

BnC (Parity)-1 5006.9 5010.0 5010.0 0.0 62 26 18.4

BnC (Parity)-2 5008.4 5010.0 5010.0 0.0 81 24 17.4

7 BnB 5004.0 5005.6 5010.0 0.1 21,114 0 600.0

BnC (Default) 5004.2 5007.0 5007.0 0.0 21,630 0 483.0

BnC (Parity)-1 5004.0 5007.0 5007.0 0.0 221 49 29.3

BnC (Parity)-2 5005.7 5007.0 5007.0 0.0 168 25 24.9

8 BnB 5004.1 5007.0 5007.0 0.0 1633 0 66.5

BnC (Default) 5004.5 5007.0 5007.0 0.0 11,646 0 517.4

BnC (Parity)-1 5004.1 5007.0 5007.0 0.0 122 19 23.5

BnC (Parity)-2 5005.7 5007.0 5007.0 0.0 112 20 27.7
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Table 7 continued

Instance Method LBr LB f UB f Gap f Nodes Cuts Time

9 BnB 5004.3 5005.6 5087.0 1.6 22,484 0 600.0

BnC (Default) 5005.1 5005.9 5028.0 0.4 11,269 0 600.0

BnC (Parity)-1 5004.3 5011.0 5011.0 0.0 138 41 24.7

BnC (Parity)-2 5008.7 5011.0 5011.0 0.0 235 27 26.7

10 BnB 5002.6 5005.0 5005.0 0.0 15,896 0 453.6

BnC (Default) 5002.8 5005.0 5005.0 0.0 5367 0 266.3

BnC (Parity)-1 5002.6 5005.0 5005.0 0.0 92 37 25.6

BnC (Parity)-2 5004.0 5005.0 5005.0 0.0 11 18 12.6

Avg BnB 5004.8 5006.9 5021.9 0.3 14,017.2 0.0 416.9

BnC (Default) 5005.1 5007.5 5011.0 0.1 10,670.4 0.0 397.2

BnC (Parity)-1 5004.8 5008.5 5008.5 0.0 140.0 35.7 25.0

BnC (Parity)-2 5006.9 5008.5 5008.5 0.0 127.6 26.4 23.3

and σp(P2) = ( j2, j3), σq(P2) = ( j1, j4) and σr (P1) = σr (P2) for all r /∈ {p, q}. Since P1
and P2 satisfy (25), we have αp, j2 − αp, j1 = αq, j2 − αq, j1 (1 ≤ j1 < j2 < 2n − 1), that is,
statement (ii) holds for j ′′ < 2n − 1.

Now, consider points P3, P4 ∈ P2-chains
2n such that σp(P3) = ( j1, 2n − 2), σq(P3) =

(2n − 1, 2n) and σp(P4) = (2n − 1, 2n), σq(P4) = ( j1, 2n − 2) and σr (P3) = σr (P4) for
all r /∈ {p, q}. Since P3 and P4 satisfy (25), we have αp, j1 + βp,2n−2 + αq,2n−1 + βq,2n =
αp,2n−1 +βp,2n +αq, j1 +βq,2n−2. According to statement i) (note that 1 < 2n−2) we have
βp,2n − βp,2n−2 = βq,2n − βq,2n−2, therefore αp, j1 + αq,2n−1 = αq, j1 + αp,2n−1, that is,
statement (ii) also holds for j ′′ = 2n − 1. 
�

Proof (statement (iii)) Let p, q ∈ {1, . . . , n} be distinct elements, 1 ≤ j1 < j2 < j3 < j4 ≤
2n and consider points P1, P2 ∈ P2-chains

2n such that σp(P1) = ( j1, j3), σq(P1) = ( j2, j4)
and σp(P2) = ( j1, j4), σq(P2) = ( j2, j3) and σr (P1) = σr (P2) for all r /∈ {p, q}. Since
P1 and P2 satisfy (25), we have βp, j4 − βp, j3 = βq, j4 − βq, j3 (2 < j3 < j4 ≤ 2n), that is,
statement (iii) holds for 2 < j ′.

Now, consider points P3, P4 ∈ P2-chains
2n such that σp(P3) = (1, 2), σq(P3) = (3, j4)

and σp(P4) = (3, j4), σq(P4) = (1, 2) and σr (P3) = σr (P4) for all r /∈ {p, q}. Since P3
and P4 satisfy (25), we have αp,1 + βp,2 + αq,3 + βq, j4 = αp,3 + βp, j4 + αq,1 + βq,2.
According to statement (i) (note that 3 < 2n) we have αp,3 − αp,1 = αq,3 − αq,1, therefore
βp,2 + βq, j4 = βq,2 + βp, j4 , that is, statement (iii) also holds for j ′ = 2. 
�

8.2 Proof of Lemma 3

Proof (statement (i)) Let p, q ∈ {1, . . . , t} be distinct elements, 1 ≤ j1 < j2 ≤ 2k < j3 <

j4 ≤ 2n and consider points P1, P2 ∈ P parity
2n such thatσp(P1) = ( j1, j3),σq(P1) = ( j2, j4)

and σp(P2) = ( j2, j3), σq(P2) = ( j1, j4) and σr (P1) = σr (P2) for all r /∈ {p, q}, i.e.,

s1p, j1 = e1p, j3 = s1q, j2 = e1q, j4 = 1 and s2p, j2 = e2p, j3 = s2q, j1 = e2q, j4 = 1,

123



312 Annals of Operations Research (2020) 284:283–322

Table 8 Detailed computational results for Family 1 with n = 150

Instance Method LBr LB f UB f Gap f Nodes Cuts Time

1 BnB 7500.0 7500.0 7529.0 0.4 7205 0 600.0

BnC (Default) 7500.0 7500.0 7500.0 0.0 472 0 228.2

BnC (Parity)-1 7500.0 7500.0 7500.0 0.0 6 26 31.9

BnC (Parity)-2 7500.0 7500.0 7500.0 0.0 52 17 100.4

2 BnB 7500.0 7500.0 7500.0 0.0 1054 0 193.7

BnC (Default) 7500.0 7500.0 7500.0 0.0 0 0 31.0

BnC (Parity)-1 7500.0 7500.0 7500.0 0.0 9 31 38.6

BnC (Parity)-2 7500.0 7500.0 7500.0 0.0 18 20 58.4

3 BnB 7500.0 7500.0 7500.0 0.0 5791 0 421.3

BnC (Default) 7500.0 7500.0 7500.0 0.0 135 0 88.5

BnC (Parity)-1 7500.0 7500.0 7500.0 0.0 13 35 50.2

BnC (Parity)-2 7500.0 7500.0 7500.0 0.0 84 28 88.6

4 BnB 7500.0 7500.0 7500.0 0.0 847 0 200.3

BnC (Default) 7500.0 7500.0 7500.0 0.0 2753 0 243.7

BnC (Parity)-1 7500.0 7500.0 7500.0 0.0 10 40 45.1

BnC (Parity)-2 7500.0 7500.0 7500.0 0.0 378 48 113.2

5 BnB 7500.0 7500.0 7500.0 0.0 42 0 70.2

BnC (Default) 7500.0 7500.0 7500.0 0.0 2461 0 495.3

BnC (Parity)-1 7500.0 7500.0 7500.0 0.0 16 37 53.0

BnC (Parity)-2 7500.0 7500.0 7500.0 0.0 150 40 106.9

6 BnB 7500.0 7500.0 7604.0 1.4 5132 0 600.0

BnC (Default) 7500.0 7500.0 7501.0 0.0 4221 0 600.0

BnC (Parity)-1 7500.0 7500.0 7500.0 0.0 4 78 29.2

BnC (Parity)-2 7500.0 7500.0 7500.0 0.0 33 27 80.2

7 BnB 7500.0 7500.0 7500.0 0.0 413 0 114.7

BnC (Default) 7500.0 7500.0 7500.0 0.0 0 0 18.6

BnC (Parity)-1 7500.0 7500.0 7500.0 0.0 2 26 18.5

BnC (Parity)-2 7500.0 7500.0 7500.0 0.0 24 29 71.1

8 BnB 7500.0 7500.0 7500.0 0.0 41 0 65.4

BnC (Default) 7500.0 7500.0 7500.0 0.0 246 0 89.3

BnC (Parity)-1 7500.0 7500.0 7500.0 0.0 9 26 38.8

BnC (Parity)-2 7500.0 7500.0 7500.0 0.0 54 21 84.3

9 BnB 7500.0 7500.0 7502.0 0.0 7464 0 600.0

BnC (Default) 7500.0 7500.0 7500.0 0.0 785 0 129.3

BnC (Parity)-1 7500.0 7500.0 7500.0 0.0 9 27 41.5

BnC (Parity)-2 7500.0 7500.0 7500.0 0.0 3 9 34.0

10 BnB 7500.0 7500.0 7502.0 0.0 9417 0 600.0

BnC (Default) 7500.0 7500.0 7500.0 0.0 1499 0 351.0

BnC (Parity)-1 7500.0 7500.0 7500.0 0.0 50 28 81.3

BnC (Parity)-2 7500.0 7500.0 7500.0 0.0 32 28 83.2
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Table 8 continued

Instance Method LBr LB f UB f Gap f Nodes Cuts Time

Avg BnB 7500.0 7500.0 7513.7 0.2 3740.6 0.0 346.6

BnC (Default) 7500.0 7500.0 7500.1 0.0 1257.2 0.0 227.5

BnC (Parity)-1 7500.0 7500.0 7500.0 0.0 12.8 35.4 42.8

BnC (Parity)-2 7500.0 7500.0 7500.0 0.0 82.8 26.7 82.0

and s1r , j = s2r , j , e
1
r , j = e2r , j for all r /∈ {p, q} and j ∈ {1, . . . , 2n}. Note that such points

exist according to Remark 2. Since P1 and P2 satisfy (31), we have

αp, j1 + βp, j3 + αq, j2 + βq, j4 +
n∑

r=1
r �=p,q

2n∑

j=1

(
αr , j s

1
r , j + βr , j e

1
r , j

)
= γ,

and

αp, j2 + βp, j3 + αq, j1 + βq, j4 +
n∑

r=1
r �=p,q

2n∑

j=1

(
αr , j s

2
r , j + βr , j e

2
r , j

)
= γ,

thus, by subtracting the first one from the second one, we have αp, j1 +αq, j2 = αp, j2 +αq, j1 .

�

Proof (statement (iii)) Let p, q ∈ {1, . . . , t} be distinct elements, 1 ≤ j1 < j2 ≤ 2k < j3 <

j4 ≤ 2n and consider points P1, P2 ∈ P parity
2n such thatσp(P1) = ( j1, j3),σq(P1) = ( j2, j4)

and σp(P2) = ( j1, j4), σq(P2) = ( j2, j3) and σr (P1) = σr (P2) for all r /∈ {p, q}. Since P1
and P2 satisfy (31) we have βp, j4 − βp, j3 = βq, j4 − βq, j3 .

Proof (statement (ii)) Let p, q ∈ {1, . . . , t} be distinct elements and 1 ≤ j1 ≤ 2k < j2 <

j3 < j4 ≤ 2n. First, consider points P1, P2 ∈ P parity
2n such that σp(P1) = ( j1, j3), σq(P1) =

( j2, j4) and σp(P2) = ( j2, j3), σq(P2) = ( j1, j4) and σr (P1) = σr (P2) for all r /∈ {p, q}.
Since P1 and P2 satisfy (31) we have αp, j2 − αp, j1 = αq, j2 − αq, j1 , that is, statement (ii)
holds if 2k < j ′′ < 2n − 1.

Now, consider points P3, P4 ∈ P parity
2n such that σp(P3) = ( j1, 2k + 1), σq(P3) =

(2n−1, 2n) and σp(P4) = (2n−1, 2n), σq(P4) = ( j1, 2k+1) and σr (P3) = σq(P3) for all
r /∈ {p, q}. Since P3 and P4 satisfy (31) we have αp, j1 +βp,2k+1+αq,2n−1+βq,2n = αq, j1 +
βq,2k+1 + αp,2n−1 + βp,2n . According to statement iii), βp,2n − βp,2k+1 = βq,2n − βq,2k+1,
thus αp, j1 + αq,2n−1 = αq, j1 + αp,2n−1, that is, statement (ii) also holds for j ′′ = 2n − 1. 
�
Proof (statement (vi)) Let p, q ∈ {1, . . . , t} be distinct elements, 1 ≤ j1 < j2 < j3 ≤ 2k <

j4 ≤ 2n. First, consider points P1, P2 ∈ P parity
2n such that σp(P1) = ( j1, j3), σq(P1) =

( j2, j4) and σq(P2) = ( j1, j4), σq(P2) = ( j2, j3) and σr (P1) = σr (P2) for all r /∈ {p, q}.
Since P1 and P2 satisfy (31) we have βp, j4 − βp, j3 = βq, j4 − βq, j3 , that is, statement (iv)
holds if 2 < j ′ ≤ 2k.

Now, consider points P3, P4 ∈ P parity
2n such that σp(P3) = (1, 2), σq(P3) = (2k, j4)

and σp(P4) = (2k, j4), σq(P4) = (1, 2) and σr (P3) = σr (P4) for all r /∈ {p, q}. Since P3
and P4 satisfy (31) we have αp,1 + βp,2 + αq,2k + βq, j4 = αq,1 + βq,2 + αp,2k + βp, j4 .
According to statement i), αp,2k − αp,1 = αq,2k − αq,1, thus βp,2 + βq, j4 = βq,2 + βp, j4 ,
that is, statement (iv) also holds for j ′ = 2. 
�
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Table 9 Detailed computational results for Family 2 with n = 50

Instance Method LBr LB f UB f Gap f Nodes Cuts Time

1 BnB 1797.5 1816.0 1816.0 0.0 1978 0 5.4

BnC (Default) 1816.0 1816.0 1816.0 0.0 0 0 0.4

BnC (Parity)-1 1797.5 1816.0 1816.0 0.0 5 2 0.5

BnC (Parity)-2 1815.7 1816.0 1816.0 0.0 3 3 0.4

2 BnB 1804.5 1819.0 1819.0 0.0 495 0 2.2

BnC (Default) 1815.0 1819.0 1819.0 0.0 28 0 0.8

BnC (Parity)-1 1804.5 1819.0 1819.0 0.0 3 3 0.3

BnC (Parity)-2 1819.0 1819.0 1819.0 0.0 0 2 0.2

3 BnB 1798.5 1817.0 1817.0 0.0 751 0 2.3

BnC (Default) 1817.0 1817.0 1817.0 0.0 0 0 0.3

BnC (Parity)-1 1798.5 1817.0 1817.0 0.0 4 4 0.2

BnC (Parity)-2 1816.5 1817.0 1817.0 0.0 3 4 0.1

4 BnB 1798.8 1814.0 1814.0 0.0 530 0 2.8

BnC (Default) 1814.0 1814.0 1814.0 0.0 0 0 0.8

BnC (Parity)-1 1798.8 1814.0 1814.0 0.0 4 3 0.3

BnC (Parity)-2 1814.0 1814.0 1814.0 0.0 2 3 0.2

5 BnB 1799.0 1817.0 1817.0 0.0 845 0 3.5

BnC (Default) 1817.0 1817.0 1817.0 0.0 0 0 0.5

BnC (Parity)-1 1799.0 1817.0 1817.0 0.0 3 2 0.3

BnC (Parity)-2 1817.0 1817.0 1817.0 0.0 0 2 0.2

6 BnB 1806.0 1822.0 1822.0 0.0 1835 0 5.3

BnC (Default) 1822.0 1822.0 1822.0 0.0 0 0 0.6

BnC (Parity)-1 1806.0 1822.0 1822.0 0.0 4 2 0.4

BnC (Parity)-2 1821.3 1822.0 1822.0 0.0 4 2 0.5

7 BnB 1800.5 1817.0 1817.0 0.0 670 0 3.0

BnC (Default) 1814.8 1817.0 1817.0 0.0 119 0 1.2

BnC (Parity)-1 1800.5 1817.0 1817.0 0.0 3 2 0.2

BnC (Parity)-2 1817.0 1817.0 1817.0 0.0 0 3 0.1

8 BnB 1799.0 1814.0 1814.0 0.0 799 0 2.8

BnC (Default) 1814.0 1814.0 1814.0 0.0 0 0 0.5

BnC (Parity)-1 1799.0 1814.0 1814.0 0.0 3 3 0.2

BnC (Parity)-2 1814.0 1814.0 1814.0 0.0 2 2 0.2

9 BnB 1803.5 1819.0 1819.0 0.0 533 0 2.5

BnC (Default) 1819.0 1819.0 1819.0 0.0 0 0 0.3

BnC (Parity)-1 1803.5 1819.0 1819.0 0.0 3 4 0.2

BnC (Parity)-2 1819.0 1819.0 1819.0 0.0 0 3 0.1

10 BnB 1797.0 1810.0 1810.0 0.0 815 0 2.8

BnC (Default) 1810.0 1810.0 1810.0 0.0 0 0 0.5

BnC (Parity)-1 1797.0 1810.0 1810.0 0.0 3 2 0.2

BnC (Parity)-2 1810.0 1810.0 1810.0 0.0 3 2 0.1
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Table 9 continued

Instance Method LBr LB f UB f Gap f Nodes Cuts Time

Avg BnB 1800.4 1816.5 1816.5 0.0 925.1 0.0 3.3

BnC (Default) 1815.9 1816.5 1816.5 0.0 14.7 0.0 0.6

BnC (Parity)-1 1800.4 1816.5 1816.5 0.0 3.5 2.7 0.3

BnC (Parity)-2 1816.3 1816.5 1816.5 0.0 1.7 2.6 0.2

Table 10 Detailed computational results for Family 2 with n = 100

Instance Method LBr LB f UB f Gap f Nodes Cuts Time

1 BnB 3595.1 3598.5 3650.0 1.4 58,120 0 600.0

BnC (Default) 3595.5 3613.5 3644.0 0.8 15,623 0 600.0

BnC (Parity)-1 3595.1 3642.0 3642.0 0.0 3 24 3.4

BnC (Parity)-2 3642.0 3642.0 3642.0 0.0 3 24 3.7

2 BnB 3595.0 3598.3 3652.0 1.5 75,054 0 600.0

BnC (Default) 3600.3 3613.2 3642.0 0.8 15,739 0 600.0

BnC (Parity)-1 3595.0 3641.0 3641.0 0.0 4 27 4.9

BnC (Parity)-2 3641.0 3641.0 3641.0 0.0 0 23 3.0

3 BnB 3599.0 3599.5 3670.0 1.9 57,020 0 600.0

BnC (Default) 3608.5 3617.8 3645.0 0.8 14,084 0 600.0

BnC (Parity)-1 3599.0 3643.0 3643.0 0.0 4 26 5.6

BnC (Parity)-2 3642.5 3643.0 3643.0 0.0 2 16 4.6

4 BnB 3594.5 3599.5 3655.0 1.5 73,846 0 600.0

BnC (Default) 3601.0 3617.3 3644.0 0.7 14,320 0 600.0

BnC (Parity)-1 3594.5 3642.0 3642.0 0.0 3 29 4.2

BnC (Parity)-2 3642.0 3642.0 3642.0 0.0 0 22 2.7

5 BnB 3594.5 3594.5 3661.0 1.8 77,634 0 600.0

BnC (Default) 3599.0 3611.0 3643.0 0.9 14,053 0 600.0

BnC (Parity)-1 3594.5 3640.0 3640.0 0.0 7 31 7.1

BnC (Parity)-2 3640.0 3640.0 3640.0 0.0 4 8 5.9

6 BnB 3600.8 3603.8 3673.0 1.9 52,608 0 600.0

BnC (Default) 3602.0 3614.0 3649.0 1.0 16,714 0 600.0

BnC (Parity)-1 3600.8 3646.0 3646.0 0.0 3 24 4.2

BnC (Parity)-2 3646.0 3646.0 3646.0 0.0 2 22 3.3

7 BnB 3594.5 3596.5 3663.0 1.8 54,950 0 600.0

BnC (Default) 3604.8 3624.8 3642.0 0.5 11,172 0 600.0

BnC (Parity)-1 3594.5 3641.0 3641.0 0.0 3 18 4.6

BnC (Parity)-2 3641.0 3641.0 3641.0 0.0 10 12 9.9

8 BnB 3597.0 3597.0 3667.0 1.9 53,452 0 600.0

BnC (Default) 3609.0 3628.5 3647.0 0.5 13,020 0 600.0

BnC (Parity)-1 3597.0 3643.0 3643.0 0.0 4 27 4.0

BnC (Parity)-2 3643.0 3643.0 3643.0 0.0 2 17 3.1
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Table 10 continued

Instance Method LBr LB f UB f Gap f Nodes Cuts Time

9 BnB 3597.5 3598.5 3691.0 2.5 75,310 0 600.0

BnC (Default) 3602.0 3617.3 3646.0 0.8 14,620 0 600.0

BnC (Parity)-1 3597.5 3642.0 3642.0 0.0 4 19 5.4

BnC (Parity)-2 3642.0 3642.0 3642.0 0.0 2 11 3.9

10 BnB 3594.5 3599.5 3652.0 1.4 59,084 0 600.0

BnC (Default) 3600.5 3607.5 3643.0 1.0 18,283 0 600.0

BnC (Parity)-1 3594.5 3641.0 3641.0 0.0 8 46 10.4

BnC (Parity)-2 3641.0 3641.0 3641.0 0.0 20 14 11.3

Avg BnB 3596.2 3598.6 3663.4 1.8 63,707.8 0.0 600.0

BnC (Default) 3602.3 3616.5 3644.5 0.8 14,762.8 0.0 600.0

BnC (Parity)-1 3596.2 3642.1 3642.1 0.0 4.3 27.1 5.4

BnC (Parity)-2 3642.1 3642.1 3642.1 0.0 4.5 16.9 5.2

Table 11 Detailed computational results for Family 2 with n = 150

Instance Method LBr LB f UB f Gap f Nodes Cuts Time

1 BnB 5342.0 5342.3 5392.0 0.9 9215 0 600.0

BnC (Default) 5346.0 5357.0 5362.0 0.1 4631 0 600.0

BnC (Parity)-1 5342.0 5362.0 5362.0 0.0 5 6 14.1

BnC (Parity)-2 5362.0 5362.0 5362.0 0.0 3 4 11.0

2 BnB 5340.0 5340.0 5392.0 1.0 10,210 0 600.0

BnC (Default) 5343.5 5347.0 5360.0 0.2 8701 0 600.0

BnC (Parity)-1 5340.0 5360.0 5360.0 0.0 4 3 14.6

BnC (Parity)-2 5360.0 5360.0 5360.0 0.0 3 7 12.7

3 BnB 5340.5 5341.0 5386.0 0.8 9459 0 600.0

BnC (Default) 5345.5 5354.0 5360.0 0.1 5531 0 600.0

BnC (Parity)-1 5340.5 5360.0 5360.0 0.0 8 7 20.7

BnC (Parity)-2 5360.0 5360.0 5360.0 0.0 16 6 27.9

4 BnB 5341.0 5341.0 5478.0 2.5 10,611 0 600.0

BnC (Default) 5342.5 5358.0 5361.0 0.1 7004 0 600.0

BnC (Parity)-1 5341.0 5361.0 5361.0 0.0 5 2 13.8

BnC (Parity)-2 5361.0 5361.0 5361.0 0.0 5 23 15.1

5 BnB 5342.0 5342.0 5404.0 1.2 10,160 0 600.0

BnC (Default) 5347.3 5361.0 5361.0 0.0 2253 0 340.2

BnC (Parity)-1 5342.0 5361.0 5361.0 0.0 3 10 12.0

BnC (Parity)-2 5361.0 5361.0 5361.0 0.0 3 5 11.6

6 BnB 5340.0 5340.3 5384.0 0.8 8241 0 600.0

BnC (Default) 5342.3 5347.8 5360.0 0.2 3865 0 600.0

BnC (Parity)-1 5340.0 5360.0 5360.0 0.0 5 9 17.2

BnC (Parity)-2 5360.0 5360.0 5360.0 0.0 7 13 20.0
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Table 11 continued

Instance Method LBr LB f UB f Gap f Nodes Cuts Time

7 BnB 5341.0 5341.0 5398.0 1.1 8838 0 600.0

BnC (Default) 5343.5 5349.5 5361.0 0.2 5235 0 600.0

BnC (Parity)-1 5341.0 5360.0 5360.0 0.0 4 7 11.3

BnC (Parity)-2 5360.0 5360.0 5360.0 0.0 11 8 22.9

8 BnB 5340.0 5340.0 5386.0 0.9 9313 0 600.0

BnC (Default) 5345.0 5350.5 5360.0 0.2 3570 0 600.0

BnC (Parity)-1 5340.0 5360.0 5360.0 0.0 7 6 18.8

BnC (Parity)-2 5360.0 5360.0 5360.0 0.0 13 22 26.2

9 BnB 5340.0 5340.5 5377.0 0.7 7623 0 600.0

BnC (Default) 5342.0 5350.0 5360.0 0.2 3672 0 600.0

BnC (Parity)-1 5340.0 5360.0 5360.0 0.0 3 5 14.6

BnC (Parity)-2 5360.0 5360.0 5360.0 0.0 3 3 16.8

10 BnB 5340.5 5341.0 5401.0 1.1 7325 0 600.0

BnC (Default) 5345.3 5353.2 5360.0 0.1 4987 0 600.0

BnC (Parity)-1 5340.5 5360.0 5360.0 0.0 6 14 16.5

BnC (Parity)-2 5360.0 5360.0 5360.0 0.0 4 9 17.4

Avg BnB 5340.7 5340.9 5399.8 1.1 9099.5 0.0 600.0

BnC (Default) 5344.3 5352.8 5360.5 0.1 4944.9 0.0 574.0

BnC (Parity)-1 5340.7 5360.4 5360.4 0.0 5.0 6.9 15.4

BnC (Parity)-2 5360.4 5360.4 5360.4 0.0 6.8 10.0 18.1

Table 12 Detailed computational results for Family 3 with n = 50

Instance Method LBr LB f UB f Gap f Nodes Cuts Time

1 BnB 2133.7 2152.0 2152.0 0.0 41,718 0 77.2

BnC (Default) 2145.4 2152.0 2152.0 0.0 1475 0 3.2

BnC (Parity)-1 2133.7 2152.0 2152.0 0.0 4 6 0.4

BnC (Parity)-2 2151.5 2152.0 2152.0 0.0 3 5 0.3

2 BnB 1986.8 2003.0 2003.0 0.0 3628 0 4.3

BnC (Default) 1995.8 2003.0 2003.0 0.0 1178 0 1.6

BnC (Parity)-1 1986.8 2003.0 2003.0 0.0 4 3 0.1

BnC (Parity)-2 2002.8 2003.0 2003.0 0.0 3 5 0.1

3 BnB 2032.0 2048.0 2048.0 0.0 13,765 0 21.2

BnC (Default) 2036.9 2048.0 2048.0 0.0 534 0 2.9

BnC (Parity)-1 2032.0 2048.0 2048.0 0.0 3 11 0.2

BnC (Parity)-2 2048.0 2048.0 2048.0 0.0 0 6 0.1
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Table 12 continued

Instance Method LBr LB f UB f Gap f Nodes Cuts Time

4 BnB 2098.0 2114.0 2114.0 0.0 15,020 0 29.8

BnC (Default) 2109.3 2114.0 2114.0 0.0 1217 0 4.0

BnC (Parity)-1 2098.0 2114.0 2114.0 0.0 3 9 0.3

BnC (Parity)-2 2113.8 2114.0 2114.0 0.0 3 7 0.3

5 BnB 2029.0 2046.0 2046.0 0.0 32,895 0 52.2

BnC (Default) 2039.7 2046.0 2046.0 0.0 224 0 1.1

BnC (Parity)-1 2029.0 2046.0 2046.0 0.0 6 4 0.3

BnC (Parity)-2 2044.9 2046.0 2046.0 0.0 4 4 0.4

6 BnB 2090.2 2108.0 2108.0 0.0 36,446 0 66.7

BnC (Default) 2103.8 2108.0 2108.0 0.0 282 0 1.4

BnC (Parity)-1 2090.2 2108.0 2108.0 0.0 8 13 0.5

BnC (Parity)-2 2106.9 2108.0 2108.0 0.0 6 8 0.4

7 BnB 2056.2 2074.0 2074.0 0.0 99,392 0 163.1

BnC (Default) 2070.0 2074.0 2074.0 0.0 120 0 0.7

BnC (Parity)-1 2056.2 2074.0 2074.0 0.0 4 9 0.7

BnC (Parity)-2 2072.4 2074.0 2074.0 0.0 5 5 0.7

8 BnB 1986.5 2001.0 2001.0 0.0 30,937 0 36.0

BnC (Default) 1996.6 2001.0 2001.0 0.0 347 0 1.0

BnC (Parity)-1 1986.5 2001.0 2001.0 0.0 4 6 0.2

BnC (Parity)-2 2000.9 2001.0 2001.0 0.0 2 5 0.2

9 BnB 1982.5 1997.0 1997.0 0.0 8791 0 9.9

BnC (Default) 1987.6 1997.0 1997.0 0.0 2630 0 2.9

BnC (Parity)-1 1982.5 1997.0 1997.0 0.0 3 8 0.1

BnC (Parity)-2 1997.0 1997.0 1997.0 0.0 0 4 0.1

10 BnB 2001.1 2018.0 2018.0 0.0 6334 0 9.9

BnC (Default) 2012.6 2018.0 2018.0 0.0 504 0 1.2

BnC (Parity)-1 2001.1 2018.0 2018.0 0.0 3 9 0.2

BnC (Parity)-2 2017.5 2018.0 2018.0 0.0 3 4 0.1

Avg BnB 2039.6 2056.1 2056.1 0.0 28,892.6 0.0 47.0

BnC (Default) 2049.8 2056.1 2056.1 0.0 851.1 0.0 2.0

BnC (Parity)-1 2039.6 2056.1 2056.1 0.0 4.2 7.8 0.3

BnC (Parity)-2 2055.6 2056.1 2056.1 0.0 2.9 5.3 0.3

Proof (statement (v)) Let p, q ∈ {1, . . . , t} be distinct elements, 1 ≤ j1 < j2 < j3 ≤ 2k <

j4 ≤ 2n and consider points P1, P2 ∈ P parity
2n such thatσp(P1) = ( j1, j3),σq(P1) = ( j2, j4)

and σp(P2) = ( j1, j2), σq(P2) = ( j3, j4) and σr (P1) = σr (P2) for all r /∈ {p, q}. Since P1
and P2 satisfy (31) we have αp, j3 − αp, j2 = βq, j3 − βq, j2 .

Since 3 ≤ t , we can choose pairwise distinct element p, q, r ∈ {1, . . . , t}, therefore we
have

αp, j3 − αp, j2 = βq, j3 − βq, j2 = αr , j3 − αr , j2 = βp, j3 − βp, j2 ,

that is, statement (v) also holds for p = q . 
�
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Table 13 Detailed computational results for Family 3 with n = 100

Instance Method LBr LB f UB f Gap f Nodes Cuts Time

1 BnB 4156.5 4158.6 4203.0 1.1 49,005 0 600.0

BnC (Default) 4160.1 4174.8 4188.0 0.3 13,032 0 600.0

BnC (Parity)-1 4156.5 4184.0 4184.0 0.0 17 16 8.0

BnC (Parity)-2 4184.0 4184.0 4184.0 0.0 24 5 7.8

2 BnB 3995.3 3998.4 4018.0 0.5 57,409 0 600.0

BnC (Default) 3995.5 4001.9 4014.0 0.3 28,323 0 600.0

BnC (Parity)-1 3995.3 4013.0 4013.0 0.0 34 14 7.8

BnC (Parity)-2 4012.2 4013.0 4013.0 0.0 20 6 5.0

3 BnB 4164.2 4166.1 4216.0 1.2 46,005 0 600.0

BnC (Default) 4172.0 4188.0 4195.0 0.2 12,674 0 600.0

BnC (Parity)-1 4164.2 4192.0 4192.0 0.0 87 7 11.3

BnC (Parity)-2 4191.0 4192.0 4192.0 0.0 214 19 14.9

4 BnB 4200.5 4202.5 4249.0 1.1 52,099 0 600.0

BnC (Default) 4204.0 4213.6 4234.0 0.5 13,490 0 600.0

BnC (Parity)-1 4200.5 4229.0 4229.0 0.0 55 23 14.9

BnC (Parity)-2 4227.5 4229.0 4229.0 0.0 21 12 7.7

5 BnB 3995.3 3997.8 4021.0 0.6 68,900 0 600.0

BnC (Default) 3995.5 4010.9 4015.0 0.1 29,273 0 600.0

BnC (Parity)-1 3995.3 4014.0 4014.0 0.0 43 8 7.6

BnC (Parity)-2 4012.9 4014.0 4014.0 0.0 35 3 6.6

6 BnB 4044.5 4047.3 4077.0 0.7 57,242 0 600.0

BnC (Default) 4049.5 4072.0 4072.0 0.0 18,567 0 551.0

BnC (Parity)-1 4044.5 4072.0 4072.0 0.0 58 17 8.7

BnC (Parity)-2 4070.7 4072.0 4072.0 0.0 28 9 5.7

7 BnB 4082.7 4085.3 4129.0 1.1 59,258 0 600.0

BnC (Default) 4087.5 4100.9 4116.0 0.4 12,009 0 600.0

BnC (Parity)-1 4082.7 4111.0 4111.0 0.0 173 24 12.5

BnC (Parity)-2 4109.2 4111.0 4111.0 0.0 22 8 6.4

8 BnB 3993.5 3995.9 4014.0 0.5 75,567 0 600.0

BnC (Default) 3997.9 4009.8 4012.0 0.1 45,137 0 600.0

BnC (Parity)-1 3993.5 4012.0 4012.0 0.0 80 21 8.3

BnC (Parity)-2 4010.8 4012.0 4012.0 0.0 63 12 8.4

9 BnB 3952.7 3955.9 3975.0 0.5 66,204 0 600.0

BnC (Default) 3954.8 3971.0 3971.0 0.0 50,761 0 551.7

BnC (Parity)-1 3952.7 3971.0 3971.0 0.0 6 9 3.4

BnC (Parity)-2 3970.3 3971.0 3971.0 0.0 5 5 3.1

10 BnB 3950.8 3953.5 3975.0 0.5 71,367 0 600.0

BnC (Default) 3950.8 3961.5 3970.0 0.2 46,277 0 600.0

BnC (Parity)-1 3950.8 3969.0 3969.0 0.0 7 21 3.9

BnC (Parity)-2 3968.1 3969.0 3969.0 0.0 12 6 3.4
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Table 13 continued

Instance Method LBr LB f UB f Gap f Nodes Cuts Time

Avg BnB 4053.6 4056.1 4087.7 0.8 60,305.6 0.0 600.0

BnC (Default) 4056.8 4070.4 4078.7 0.2 26,954.3 0.0 590.3

BnC (Parity)-1 4053.6 4076.7 4076.7 0.0 56.0 16.0 8.6

BnC (Parity)-2 4075.7 4076.7 4076.7 0.0 44.4 8.5 6.9

Proof (statement (vi)) Let p, q ∈ {1, . . . , t} be distinct elements, 1 ≤ j1 ≤ 2k < j2 < j3 <

j4 ≤ 2n and consider points P1, P2 ∈ P parity
2n such thatσp(P1) = ( j1, j3),σq(P1) = ( j2, j4)

and σp(P2) = ( j1, j2), σq(P2) = ( j3, j4) and σr (P1) = σr (P2) for all r /∈ {p, q}. Since P1
and P2 satisfy (31) we have αp, j3 − αp, j2 = βq, j3 − βq, j2 .

Since 3 ≤ t , we can choose pairwise distinct element p, q, r ∈ {1, . . . , t}, therefore we
have

αp, j3 − αp, j2 = βq, j3 − βq, j2 = αr , j3 − αr , j2 = βp, j3 − βp, j2 ,

that is, statement (vi) also holds for p = q . 
�

8.3 Proof of Lemma 4

Proof (statement (vii)) Let p ∈ {1, . . . , t}, q̄ ∈ {t + 1, . . . , n} and 1 ≤ j1 < j2 ≤ 2k < j3 <

j4 ≤ 2n. Consider points P1, P2 ∈ P parity
2n such that σp(P1) = ( j1, j3), σq̄(P1) = ( j2, j4)

and σp(P2) = ( j2, j3), σq̄(P2) = ( j1, j4) and σr (P1) = σr (P2) for all r /∈ {p, q̄}. Since P1
and P2 satisfy (31) we have αp, j2 − αp, j1 = αq̄, j2 − αq̄, j1 . 
�
Proof (statement (viii)) Let p ∈ {1, . . . , t}, q̄ ∈ {t +1, . . . , n} and 1 ≤ j1 < j2 ≤ 2k < j3 <

j4 ≤ 2n. Consider points P1, P2 ∈ P parity
2n such that σp(P1) = ( j1, j3), σq̄(P1) = ( j2, j4)

and σp(P2) = ( j1, j4), σq̄(P2) = ( j2, j3) and σr (P1) = σr (P2) for all r /∈ {p, q̄}. Since P1
and P2 satisfy (31) we have βp, j4 − βp, j3 = βq̄, j4 − βq̄, j3 . 
�
Proof (statement (ix)) Let p ∈ {1, . . . , t}, q̄ ∈ {t + 1, . . . , n} and 1 ≤ j1 < j2 < j3 ≤ 2k <

j4 ≤ 2n. Consider points P1, P2 ∈ P parity
2n such that σp(P1) = ( j3, j4), σq̄(P1) = ( j1, j2)

and σp(P2) = ( j2, j4), σq̄(P2) = ( j1, j3) and σr (P1) = σr (P2) for all r /∈ {p, q̄}. Since P1
and P2 satisfy (31) we have αp, j3 − αp, j2 = βq̄, j3 − βq̄, j2 . 
�
Proof (statement (x)) Let p ∈ {1, . . . , t}, q̄ ∈ {t + 1, . . . , n} and 1 ≤ j1 < j2 ≤ 2k < j3 <

j4 ≤ 2n. Consider points P1, P2 ∈ P parity
2n such that σp(P1) = ( j3, j4), σq̄(P1) = ( j1, j2)

and σp(P2) = ( j2, j4), σq̄(P2) = ( j1, j3) and σr (P1) = σr (P2) for all r /∈ {p, q̄}. Since P1
and P2 satisfy (31) we have αp, j3 − αp, j2 = βq̄, j3 − βq̄, j2 . 
�
Proof (statement (xi)) Let p ∈ {1, . . . , t}, q̄ ∈ {t + 1, . . . , n} and 1 ≤ j1 < j2 ≤ 2k < j3 <

j4 ≤ 2n. Consider points P1, P2 ∈ P parity
2n such that σp(P1) = ( j1, j2), σq̄(P1) = ( j3, j4)

and σp(P2) = ( j1, j3), σq̄(P2) = ( j2, j4) and σr (P1) = σr (P2) for all r /∈ {p, q̄}. Since P1
and P2 satisfy (31) we have βp, j3 − βp, j2 = αq̄, j3 − αq̄, j2 . 
�
Proof (statement (xii)) Let p ∈ {1, . . . , t}, q̄ ∈ {t + 1, . . . , n} and 1 ≤ j1 ≤ 2k < j2 < j3 <

j4 ≤ 2n. Consider points P1, P2 ∈ P parity
2n such that σp(P1) = ( j1, j2), σq̄(P1) = ( j3, j4)

and σp(P2) = ( j1, j3), σq̄(P2) = ( j2, j4) and σr (P1) = σr (P2) for all r /∈ {p, q̄}. Since P1
and P2 satisfy (31) we have βp, j3 − βp, j2 = αq̄, j3 − αq̄, j2 . 
�
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Table 14 Detailed computational results for Family 3 with n = 150

Instance Method LBr LB f UB f Gap f Nodes Cuts Time

1 BnB 6332.0 6332.0 6399.0 1.1 10,615 0 600.0

BnC (Default) 6334.5 6337.0 6356.0 0.3 6019 0 600.0

BnC (Parity)-1 6332.0 6351.0 6351.0 0.0 22 22 38.0

BnC (Parity)-2 6351.0 6351.0 6351.0 0.0 621 23 88.8

2 BnB 6092.7 6093.0 6146.0 0.9 14,605 0 600.0

BnC (Default) 6094.9 6101.9 6115.0 0.2 10,180 0 600.0

BnC (Parity)-1 6092.7 6112.0 6112.0 0.0 17 9 23.6

BnC (Parity)-2 6111.5 6112.0 6112.0 0.0 421 11 52.4

3 BnB 6254.0 6254.0 6309.0 0.9 11,203 0 600.0

BnC (Default) 6254.0 6256.0 6277.0 0.3 8483 0 600.0

BnC (Parity)-1 6254.0 6273.0 6273.0 0.0 7 8 16.4

BnC (Parity)-2 6273.0 6273.0 6273.0 0.0 655 11 84.4

4 BnB 6171.0 6171.0 6244.0 1.2 13,616 0 600.0

BnC (Default) 6172.5 6173.5 6194.0 0.3 7869 0 600.0

BnC (Parity)-1 6171.0 6191.0 6191.0 0.0 3 21 11.2

BnC (Parity)-2 6191.0 6191.0 6191.0 0.0 28 5 35.2

5 BnB 5954.0 5954.8 5996.0 0.7 18,052 0 600.0

BnC (Default) 5957.9 5963.3 5975.0 0.2 10,208 0 600.0

BnC (Parity)-1 5954.0 5973.0 5973.0 0.0 55 14 28.2

BnC (Parity)-2 5972.1 5973.0 5973.0 0.0 69 6 27.7

6 BnB 6016.2 6017.1 6059.0 0.7 14,655 0 600.0

BnC (Default) 6016.3 6017.1 6041.0 0.4 10,356 0 600.0

BnC (Parity)-1 6016.2 6036.0 6036.0 0.0 60 18 27.7

BnC (Parity)-2 6034.7 6036.0 6036.0 0.0 115 10 26.4

7 BnB 6051.0 6051.3 6087.0 0.6 17,068 0 600.0

BnC (Default) 6052.0 6057.0 6070.0 0.2 7370 0 600.0

BnC (Parity)-1 6051.0 6070.0 6070.0 0.0 98 22 39.4

BnC (Parity)-2 6070.0 6070.0 6070.0 0.0 29 17 29.9

8 BnB 5932.0 5932.2 5963.0 0.5 20,137 0 600.0

BnC (Default) 5932.0 5933.0 5952.0 0.3 12,154 0 600.0

BnC (Parity)-1 5932.0 5951.0 5951.0 0.0 4 21 8.2

BnC (Parity)-2 5950.1 5951.0 5951.0 0.0 12 16 16.9

9 BnB 5891.0 5891.8 5929.0 0.6 22,698 0 600.0

BnC (Default) 5893.0 5908.8 5911.0 0.0 15,587 0 600.0

BnC (Parity)-1 5891.0 5911.0 5911.0 0.0 6 10 8.7

BnC (Parity)-2 5911.0 5911.0 5911.0 0.0 5 5 9.2

10 BnB 5930.1 5930.8 5963.0 0.5 20,668 0 600.0

BnC (Default) 5930.1 5935.4 5952.0 0.3 11,010 0 600.0

BnC (Parity)-1 5930.1 5950.0 5950.0 0.0 57 19 32.0

BnC (Parity)-2 5950.0 5950.0 5950.0 0.0 14 2 12.5
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Table 14 continued

Instance Method LBr LB f UB f Gap f Nodes Cuts Time

Avg BnB 6062.4 6062.8 6109.5 0.8 16,331.7 0.0 600.0

BnC (Default) 6063.7 6068.3 6084.3 0.3 9923.6 0.0 600.0

BnC (Parity)-1 6062.4 6081.8 6081.8 0.0 32.9 16.4 23.3

BnC (Parity)-2 6081.4 6081.8 6081.8 0.0 196.9 10.6 38.3
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