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Abstract

Background

Kenya has made significant progress in the elimination of mother to child transmission

of HIV through increasing access to HIV treatment and improving the health and well-

being of women and children living with HIV. Despite this progress, broad geographical

inequalities in infant HIV outcomes still exist. This study aimed at assessing the spatial

distribution of HIV amongst infants, areas of abnormally high risk and associated risk

factors for mother to child transmission of HIV.

Methods

Data were obtained from the Early infant diagnosis (EID) database that is routinely col-

lected for infants under one year for the year 2017. We performed both areal and point-

reference analysis. Bayesian hierarchical Poisson models with spatially structured ran-

dom effects were fitted to the data to examine the effects of the covariates on infant

HIV risk. Spatial random effects were modelled using Conditional autoregressive model

(CAR) and stochastic partial differential equations (SPDEs). Inference was done using

Integrated Nested Laplace Approximation. Posterior probabilities for exceedance were

produced to assess areas where the risk exceeds 1. The Deviance Information Criteria

(DIC) selection was used for model comparison and selection.

Results

Among the models considered, CAR model (DIC = 306.36) performed better in terms

of modelling and mapping HIV relative risk in Kenya. SPDE model outperformed the

spatial GLM model based on the DIC statistic. The map of the spatial field revealed that

the spatial random effects cause an increase or a decrease in the expected disease count in

specific regions.

Highly active antiretroviral therapy (HAART) and breastfeeding were found to be neg-

atively and positively associated with infant HIV positivity respectively [-0.125, 95%

Credible Interval = -0.348, -0.102], [0.178, 95% Credible Interval -0.051, 0.412].

Conclusion The study provides relevant strategic information required to make invest-

iii



ment decisions for targeted high impact interventions to reduce HIV infections among

infants in Kenya.

Keywords

Markov Chain Monte Carlo, Integrated Nested Laplace Approximation, Stochastic Partial

Differential Equation, Early Infant Diagnosis
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Chapter 1

Introduction

1.1 Background

The global super-fast-track framework launched by The Joint United Nations Programme

(UNAIDS) and President’s Emergency Plan for AIDS Relief (PEPFAR) in 2016 aims at

eliminating new HIV infections among children to less than 20,000 (start free), prevent-

ing new infections among adolescents and young women (Stay free) end paediatric and

adolescents AIDS (AIDS free) by 2020 (PEPFAR et al., 2016). This framework builds

on the previous global framework HIV "Global Plan towards the elimination of new HIV

infections among children by 2015 and keeping their mothers alive".

Globally, there has been a remarkable progress in elimination of mother to child HIV

transmission. There was a decline in the number of new infections among children from

290,000 (250,000-350,000) in 2010 to 150,000 (110,000-190,000) in 2015 reflecting the

scale-up of coverage of prevention of mother-to-child transmission services (PMTCT)

(UNAIDS, 2016).

In Sub-Saharan countries, new HIV paediatric infections declined marginally between

2010 to 2015. A decline of 66% and was reported in Southern and Eastern Africa while

31% was reported in Western and central Africa (UNAIDS, 2016).

Despite these achievements, concerted efforts are required to reach the UNAIDS targets
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by 2020 (PEPFAR et al., 2016). This can be achieved through ensuring all pregnant

women living with HIV receive lifelong ART, scale up the provision of early diagnosis,

treatment optimization and care for HIV exposed infants to prevent mother to child trans-

mission of HIV (WHO, 2016b).

Elimination of mother to child transmission (eMTCT) of HIV would directly contribute

to the attainment of Sustainable Development Goal targets of reduction of maternal mor-

tality ratio, ending preventable deaths of newborns and children under 5 years and ending

the AIDS epidemic (Griggs et al., 2013).

In Kenya, an estimated 6,613 infants were infected with HIV through mother to child

transmission in 2015 (NASCOP, 2015). This is a decline in mother to child transmission

rates from 16% in 2013 to 8.3% in 2015 (NASCOP, 2015). These gains are attributed to

the increase in HIV treatment coverage for women and infants. Kenya is one of the 22

priority countries focused for reduction of mother-to-child Transmission (MTCT) of HIV

and has been chosen to be validated for the pre-elimination of MTCT of HIV and Syphilis

by 2021.

The government of Kenya through the Ministry of Health (MOH) established the PMTCT

program as part of continuing strategies for dealing with the epidemic and interventions

to reduce MTCT of HIV. The goal of the program is to reduce the rate of MTCT of HIV to

less than 5% and reduce maternal mortality by 50% in line with the "Global Plan towards

the elimination of new HIV infections among children by 2015 and keeping their mothers

alive".

The program implements the four-pronged strategy to prevent mother to child transmis-

sion of HIV :

1. Prevention of HIV transmission to HIV-negative women of reproductive age (pri-

mary prevention),

2. Prevention of unintended pregnancies among HIV-positive women by using family

planning,
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3. Prevention of HIV transmission from HIV-positive mothers to their babies during

pregnancy, labour and delivery and infant feeding,

4. Provision of treatment, care and support to women infected with HIV, their children,

and their families.

In Kenya, the early infant diagnosis (EID) program, under the umbrella of the PMTCT

program, is responsible for making HIV diagnosis in HIV exposed infants (HEI) and

young children under 18 months of age. Polymerase chain reaction (PCR) is the most

common virological test used in PMTCT settings for HIV exposed babies and there are

seven laboratories nationally with capacity to conduct PCR testing of HIV. According to

the current HEI testing guidelines, DNA PCR should be conducted 6 weeks or at first

contact thereafter, 6 months and 12 months for those breastfeeding. HIV antibody test 6

weeks after cessation of breastfeeding and HIV antibody test at 18 months and every 6

months thereafter until complete cessation of breastfeeding.

Despite the marked progress in elimination of mother to child transmission (eMTCT) of

HIV, few counties in Kenya are still registering high number of infections. Some of the

counties include; Laikipia, Taita taveta, Kwale, Mombasa, Mandera, Wajir, Lamu, Man-

dera. New HIV infections amongst infants exhibits marked geographical disparities with

counties contributing disproportionately high number of new infections annually. To ac-

celerate and achieve a drastic reduction in the new HIV infections, focussed efforts needs

to be directed to the non performing counties.

Disease mapping has developed immensely in the recent years due to availability of geo-

referenced data with advances in computing, geographical information systems (GIS) and

statistical methodology. The interest lies in providing estimates of the relative risks of a

disease across a geographical study area, assessing clustering and clusters of disease and

assessing geographical distribution of disease in relation to potential risk factors (spatial

regression). Disease mapping is often used as an exploratory tool to calculate and visu-

alize disease risk across space allowing for an ad-hoc way of examining areas of higher

risk and their risk factors through the use of statistical techniques.
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Disease clustering is a technique used to assess whether a disease is clustered and where

the clusters are located to identify potential environmental hazards. There is extensive

use of scanning techniques for disease cluster detection after (Kulldorff & Nagarwalla,

1995) developed these methods. One of the first representations of disease on a map was

by John Snow (Snow, 1854) who studied the geographical distribution of cholera victims

through creating a dot map related to the location of the broad street pump.

Bayesian methods which offer a flexible and robust approach are increasingly being uti-

lized in disease mapping. In disease mapping, a popular spatial model is the conditional

autoregressive model (CAR) (Besag et al., 1991). In the conditional autoregressive model

(CAR), the conditional distribution is modelled via the neighbourhood structure where

the random effects in a region given all the others is the weighted average of all the other

random effects. The weights are based on the neighbouring structure on adjacent areas.

Extensions of the CAR include the Besag-York-Mollie (BYM) model, the proper CAR

and the Leroux model.

1.2 Problem Statement

Bayesian approach requires integration over high dimensional probability distributions to

make inference about a parameter of interest and predictions. A limitation of the Bayesian

approach has been the Intractabilities involved in the calculation of the posterior dis-

tribution (Ntzoufras, 2011). The advent of the MCMC algorithms in the early 1990’s

for obtaining posterior distribution in combination with the rapid evolution of computers

sparked an increase in application of Bayesian statistics in statistical research. MCMC

is essentially Monte Carlo Integration using Markov chains (Gilks et al., 1995). The

technique enables simulation from a probability distribution of the unknown quantities

through construction of a Markov chain that eventually converges to the target (equilib-

rium/stationary) distribution which should be the posterior distribution.

The primary ways of constructing these chains are metropolis-Hastings algorithm and
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Gibbs sampler.

In the last few years, MCMC methods have boosted the implementation of fixed ef-

fects and hierarchical models particularly in spatial and spatial temporal field (Ntzoufras,

2011). Despite the progress made in bayesian computing, MCMC methods are not with-

out potential problems. MCMC samplers involve computationally and time intensive

simulations especially for high dimensional models such as hierarchical models. The

computational issue is due to the infeasibility of the linear algebra operations involv-

ing big dense covariance matrices when large spatial datasets are present (Brooks et al.,

2011). Furthermore, Parameter estimation might be impossible and the algorithms may

induce large Monte Carlo standard errors if they’re not run for many iterations (Gilks et

al., 1995). Additionally, MCMC methods present issues with convergence of the algo-

rithm to the posterior distribution as well as choice of prior distributions.

Analysis of large datasets with vast level of spatial disaggregation could lead to long

computation time to perform Bayesian inference via MCMC. Cross validation tests and

sensitivity analyses might be impractical because of the computational demands that come

with MCMC. This can translate to poor interpretation of the results.

The Integrated Nested Laplace Approximation (INLA) proposed by (Rue et al., 2009)

provides a alternative approach to handling these complexities and providing precise and

consistent estimates within a short computational time. Whereas MCMC algorithms take

hours or days to run, INLA will take seconds or minutes to run. This is due to the fact

that INLA is parallelized thus making it possible to exploit the new trend of having multi-

core processors. In addition, this approach permits automation of the inference process

and can be used to analyse latent gaussian models (Rue et al., 2009). INLA is designed

for latent Gaussian models ranging from generalised linear (mixed) models, generalised

additive (mixed) models, geoadditive models and time series models (Martino & Rue,

2009). The development of R package named R-INLA has proved valuable for the im-

plementation of INLA. In addition, INLA can be integrated with the Stochastic Partial

Differential Equation (SPDE) approach proposed by (Lindgren et al., 2011) to execute
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spatial and spatio-temporal models for geostatistical data.

There has been a gradual increase in the utilization of these methods in analysis of epi-

demiological and public health data particularly in spatial and spatial temporal models.

This project describes how spatial models can be fitted to areal and point-referenced data

to assess the association between maternal/infants covariates and HIV sero-conversion

among HEI using INLA.

1.3 Objectives

1.3.1 Main Objective

To develop a Bayesian model for HEI born to HIV positive mothers in Kenya using INLA.

1.3.2 Specific Objectives

i. To review and investigate the relative performance of conditional autoregressive

models for analysing areal data within the integrated nested laplace approximation.

ii. To review and investigate the statistical properties of the spatial partial differential

equations (SPDE) approach with INLA for the analysis of point reference spatial

data.

iii. To develop a conditional autoregressive model that assesses the relationship be-

tween HIV positivity in infants born to women in Kenya and various mother spe-

cific, facility specific and county specific covariates using INLA.

iv. To develop a smooth map for HIV positivity for Kenyan EID data within the SPDE

framework in INLA.
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Chapter 2

Epidemiological Literature Review

2.1 Established risk factors for mother to child HIV trans-

mission

Mother-to-child transmission of HIV can occur in utero (intrauterine), during labour, de-

livery (intrapartum) and through breastfeeding (postpartum). In the absence of PMTCT

interventions, transmission rates ranges from 15% to 45% (WHO, 2016b). Various factors

are known to increase the risk of HIV transmission from mother to infant. Understanding

these factors is crucial in identifying potential interventions against disease progression

and transmission. Risk factors for vertical transmission can be grouped into three cate-

gories; maternal, infant and obstetric factors. A study by (Landesman et al., 1996) showed

that duration of ruptured amniotic membranes is significantly associated with the risk of

HIV transmission. The results indicated prolonged (more than four hours) rupture of

membranes doubled the risk of transmission of HIV. According to the WHO guidelines

(WHO, 2016a), HIV positive mothers on ART should exclusively breastfeed their infants

for the first six months of life, introducing complementary foods thereafter and continue

breastfeeding until 24 months or beyond. Breastfeeding should stop once a nutritionally

adequate and safe diet without breast milk can be provided. Longer durations (24 months

or beyond) of breastfeeding has been shown to improve HIV free survival among HIV
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exposed infants particularly in settings where pneumonia and diarrhoea are significant

causes of child mortality. However, the risk of transmission is high if a woman is not

receiving ART or when maternal ART adherence is inconsistent (WHO, 2016a).

Postnatal transmission through breastfeeding was observed in a infant who was breast

fed by a seropositive wet nurse (Colebunders et al., 1988). A randomized clinical trial to

assess infant HIV-infection and mortality rates between breastfeeding and formula feed-

ing intervention groups conducted in Nairobi Kenya indicated that breast milk accounted

for 44% of all infant HIV infections among those exposed to breast milk (Nduati et al.,

2000). In addition, according to the study, 75% of breast milk transmission occurred

within 6 months of breastfeeding.

A couple of studies have reported that maternal viral load is a strong risk factor for both

utero and intapartum transmission. A high maternal viral load increases the likelihood of

perinatal transmission of HIV (Thea et al., 1997; Mock et al., 1999; Bryson, 1996; Ioan-

nidis et al., 2001). Low CD4 (<1000 cells/ml) count has been shown to be significantly

associated with increased risk of MTCT of HIV (Semba et al., 1999; Ngwende et al.,

2013; Louis et al., 1993; Fawzi et al., 2001).

The mode of delivery has been shown to be associated with the rate of MTCT of HIV.

Evidence suggests that caesarian section in comparison with vaginal delivery increases

an infants exposure or susceptibility to acquiring HIV (DeHovitz et al., 2000).

Consistent use of highly active antiretroviral therapy (HAART) has been shown to sup-

press viral replication and increase CD4 counts substantially (DeHovitz et al., 2000; Led-

ergerber et al., 1999; Lucas et al., 1999). In addition, the use of infant prophylaxis is

recommended to decrease the risk of HIV transmission (Bernstein et al., 2001).

In 2015, Kenya adopted lifelong ART option B+ as the preferred regimen for pregnant

and breastfeeding women regardless of WHO clinical age and at any CD4 cell count as

per the World health organization recommendations (World Health Organization(WHO),

2015).
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2.2 INLA for Areal data

Aggregated data collected over space on irregular/regular polygons with well defined ad-

ministrative boundaries are referred to as lattice/areal data. Areal data is used when the

main interest lies in smoothing or mapping an outcome over space to assess the spatial

distribution of a disease and identify areas characterized by unusually high or low relative

risk (Lawson, 2013). INLA which is a novel numerical inference approach has been used

widely in areal data analysis to implement Bayesian hierarchical spatial models.

(Beguin et al., 2012) investigated the performance of INLA and MCMC methods in anal-

ysis of spatially autocorrelated ecological data on the distribution of woodland caribou

in Eastern Canada. Findings of the study indicated that INLA performs better in terms

of accuracy of results and rapidity as compared to MCMC. The CAR model fitted in

GIBBS took many hours to converge whereas INLA took 5 seconds. The fast algorithms

allowed for both sensitivity analyses on priors and cross-validation tests to be performed.

Furthermore, similar results for parameter estimates for the Bayesian CAR models were

obtained from the two algorithms. (Moraga et al., 2017) proposed a joint Bayesian model

for fusion of concentration of fine particulate matter PM2.5 data obtained at point and

areal resolutions. The models were fitted using INLA and SPDE approaches. Although

the models were limited to Gaussian data and could not be extended to non-Gaussian

data, they reported quicker results by these methods. Unlike MCMC based methods that

require convergence of chains, INLA uses numerical approximations to obtain the vari-

ables of interest. A recent study revealed that there is some substantial differences in the

performance of OpenBUGS and INLA (Carroll et al., 2015). Comparisons of the two

algorithms was accomplished by calculating the number of effective parameters, mean

Squared error (MSE), mean squared predictive error (MSPE) and DIC for the models fit-

ted. INLA outperformed OpenBUGS in computation time though as shown by the MSE,

OpenBUGS outperformed INLA with respect to the precision parameter estimates for

the spatial random effects. In a simulation study done by (Konstantinoudis et al., 2018)

to investigate the performance of discrete and continuous domain models to recover risk
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surfaces and identify high-risk areas, inference was conducted using INLA. They used

root mean integrated squared error evaluated on a fine grid to gauge the potential of the

models to capture the true risk and found out that log-Gaussian Cox processes (LGCPs)

models outperformed BYM models in quantifying disease risk over space and identifying

areas of high risk. (Okuto, n.d.) investigated the spatial distribution of tuberculosis treat-

ment outcomes in Kenya given risk factors associated with the disease from January 2014

to March 2014. Test for spatial autocorrelation was done using Moran’s I and Inference

was done using INLA.

2.3 INLA for Point-reference data

In a recent paper by (Simpson et al., 2012) that compared two approximations to gaus-

sian random fields (GRFs) with Matérn covariance functions : the kernel convolution ap-

proximation and the stochastic partial differential equation approach, the SPDE approach

seemed to outperform the kernel approximations in terms of accuracy and computational

efficiency for approximating the class of Matérn random fields. Kernel methods proved to

be unstable and the approximations depend on the scale and smoothness parameters un-

like finite element basis functions which do not have this problem. SPDE approach was

employed to estimate and predict a spatial-temporal hierarchical model that involved a

Gaussian field and a state process characterized by first order autoregressive dynamics for

particulate matter concentration (Cameletti et al., 2013). Computational strength of the

SPDE clearly stood out and there were no issues of convergence and mixing. (Musenge

et al., 2013) investigated the effects of different covariates on zero inflated spatiotemporal

HIV/TB child mortality data using INLA and SPDE approach. They fitted zero inflated

Poisson and Binomial spatial temporal models to the data and assessed the accuracy of

the posterior marginals using the effective number of parameters and DIC. The analysis

demonstrated that the big "n" problem can be resolved with the aid of SPDE and INLA.
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Chapter 3

Critical Review of Statistical Methods

3.1 Bayesian Inference

Implementation of the MCMC algorithms in combination with the rapid evolution of com-

puters has made Bayesian approach to gain popularity over the years amongst researchers.

One of the advantages of Bayesian approach is that it takes into account the uncertainty in

the estimates and predictions and its potential to deal with issues like missing data (Blan-

giardo & Cameletti, 2015).

Bayesian statistics differ from the classical statistics since all unknown parameters are

considered to be random variables. Prior distribution which expresses the information

available to the researcher must be defined initially. The goal of Bayesian inference is the

calculation of the posterior distribution p(θθθ|yyy) of the parameters θθθ given the observed data

y where θθθ denotes the vector of the model parameters. This distribution which is based

on the Bayes theorem can be written as

p(θθθ|yyy) = p(yyy|θθθ)p(θθθ)∫
p(yyy|θθθ)p(θθθ) ∝ p(yyy|θθθ)f(θθθ), (3.1)

11



where p(θθθ) is the prior distribution and
∫
p(yyy|θθθ)p(θθθ) which is the constant of proportion-

ality ensures the posterior distribution integrates to 1.

p(yyy|θθθ) =
n∏
i=1

f(yi|θθθ),

is the likelihood of the model. The combination of the likelihood and the prior results to

the posterior distribution.

Prior specification is crucial in Bayesian inference since it influences the posterior infer-

ence. To assess the robustness of the posterior distribution to the selection of the prior

distribution, we conduct a sensitivity analysis in which we use different priors and assess

changes in the posterior distribution. Bayesians often use non-informative priors to en-

sure that all information about the posterior comes from the data and not the prior. When

prior distributions for the parameters have parameters controlling its form and since they

are regarded as stochastic, then these parameters must also be characterized by a distri-

bution. The parameters are known as hyperparameters and the distributions are known as

hyperprior distributions. This idea of parameters arising from distributions leads to the

fundamental feature of hierarchies which is common in disease mapping models.

Consider data vector y and the latent field x with a vector of hyperparameters θθθ. the three

stages of the hierarchical model are as follows:

yyy|xxx,θθθ ∼
∏
i

p(yi|xxx,θθθ),

x|θθθ ∼ p(xxx|θθθ),

θθθ ∼ p(θθθ),

with
∏
i p(yi|xxx,θθθ) denoting the data model, p(xxx|θθθ) is a GMRF and p(θθθ) hyperprior (ran-

dom effects covariance parameters). The corresponding posterior distribution becomes:

p(xxx,θθθ|yyy) ∝
∏
i

p(yi|xxx,θθθ)p(xxx|θθθ)p(θθθ). (3.2)
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3.2 Inference with Monte Carlo Methods

Bayesian inference requires evaluation of complex integrals of the type

E[g(θθθ|yyy)] =
∫

Ω
g(θθθ)p(θθθ|yyy)dθθθ, (3.3)

to obtain quantities of interest such as the mean E[g(θθθ|yyy)] where g(.) is some function of

the parameter of interest θθθ.

One of the proposed solutions in the literature is based on random samples generation and

computing the statistical unbiased estimate the sample mean (Ntzoufras, 2011).

MCMC methods works by generating samples from the posterior distribution p(θθθ|y) to

estimate quantities such as mean and variance. These techniques are based on construc-

tion of a Markov chain that eventually converges to the target distribution (stationary or

equilibrium) which is the posterior distribution p(θθθ|yyy).

A Markov chain is a stochastic process of a set of random variables θθθ1, θθθ2, ....., θθθT such

that

p(θθθt+1|θθθt, ...., θθθ1) = p(θθθt+1|θθθt) (3.4)

the distribution of θθθ at sequence t+1 given all the preceding values of θθθ depends only on

the value of θθθ of the previous sequence t.

As t→ ∞, the distribution of θθθt converges to its equilibrium distribution if the Markov

chain is aperiodic, irreducible and positive-recurrent (Egordic) (Ntzoufras, 2011).

The combination of the Monte Carlo methods on samples from a Markov chain led to the

development of MCMC methods. MCMC methods are not without limitations including

lack/slow convergence of the algorithm, length of burn-in periods and choice of starting

values (Brooks et al., 2011). Some of the ways to assess convergence include : Monitor-

ing the MCMC error and autocorrelation plot, monitoring trace plots and evolution of the

ergodic mean, running multiple chains with different starting points. Two most common

MCMC algorithm are the Gibbs sampler and the Metropolis Hastings algorithm. In the
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Metropolis Hastings algorithm, one samples from the proposal distribution and based on

the acceptance probability, creates a Markov chain (Metropolis et al., 1953). Gibbs sam-

pler (Geman & Geman, 1984) is a special case of the Metropolis Hastings that requires

that one samples from full conditional distributions. Convergence using Gibbs sampler is

expected to be faster than the Metropolis Hastings algorithm (Carlin et al., 2014).

3.3 Latent Gaussian Models

INLA algorithm used to carry out approximate Bayesian inference is used with latent

Gaussian models which are a sub class of structured additive regression models.

In structured additive regression models, the response variable yi belongs to the exponen-

tial family of distributions such as Binomial, Gaussian, Poisson and many others. The

structured additive predictor ηi defines the mean ( µi) through a link function g(.) such

that g( µi) = ηi. The linear predictor ηi is defined as:

ηi = β0 +
M∑
m=1

βmtmi +
L∑
l=1

flzli + εi, (3.5)

where β0 is the model intercept, βm’s quantify the linear effects of covariates t = (t1, t2, . . . , tM)′,

f = (f1(.), f2(.), . . . , fL(.))′ is a function of the covariates, z = (z1, z2, . . . , zL)′ and the

εi’s are the error terms. fl(.) can assume different forms such as spatial random effects,

spline, time trends, non linear effects of covariates (Blangiardo & Cameletti, 2015).

Latent Gaussian models are under these class of models with a structured additive predic-

tor ηi (1). The latent (unobserved) variables, denoted by x = (β0,βββ,fff,εεε) are assigned a

Gaussian prior whereas θθθ = (θ1, . . . , θk) denotes the vector of K hyperparameters. When

the latent field xxx has Markov properties.That is, it satisfies the conditional independence

assumptions, then it is referred to as a Gaussian Markov random field (GMRF). GMRFs

are exceedingly useful in practice because of the lower computational cost owing to the

sparseness of the precision matrix and the structure of its non-zero terms see (Rue & Held,

2005) for a detailed account.
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Assuming conditional independence, the likelihood of the data is given by

p(yyy|xxx,θθθ) =
n∏
i

p(yi/xi, θθθ).

Assume a multivariate Normal prior on x with mean 000 and precision matrixQQQ(θθθ) (inverse

covariance). That is,

p(xxx|θθθ) ∼ Normal(000,QQQ−1),

with density function given by p(xxx|θθθ) = (2π)−n/2 | QQQ(θθθ) |1/2 exp(−1
2xxx
′QQQ(θθθ)xxx). Assum-

ing that yi, i = 1, 2, . . . , n are conditionally independent, the joint posterior distribution

of xxx and θθθ is given by

p(xxx,θθθ|y) = p(θθθ)× p(xxx|θθθ) ∗ p(yyy|xxx,θθθ).

3.4 Integrated Nested Laplace Approximations

INLA is a deterministic Bayesian inference approach which works by approximating the

marginal posterior distributions for the parameter vectors. Marginal distributions are ob-

tained by factoring out a term from the joint distribution. This means we need to solve

the following integrals:
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p(xi|yyy) =
∫
p(xi, θθθ|yyy)dθθθ. (3.6)

p(θθθk|yyy) =
∫
p(θθθ|yyy)dθθθ−k. (3.7)

.

Using the conditional probability rules (3.2) becomes

p(xi|yyy) =
∫
p(xi, θθθ|yyy) ∗ p(θθθ|yyy)dθθθ. (3.8)

We need to compute

(i) p(θθθ|yyy) from which all the p(θθθk|yyy) can be obtained;

(ii) p(xi, θθθ|yyy). This is required to compute the posterior marginals of the latent field.

INLA performs numerical approximation to the posteriors of interest based on the Laplace

approximations (Tierney & Kadane, 1986). The INLA scheme proceeds in three succes-

sive steps:

1. Compute the posterior marginals of the hyperparameters p(θθθ|yyy)

p(θθθ|yyy) = p(xxx,θθθ|yyy)
p(xxx|θθθ,yyy) = p(yyy|xxx,θθθ)p(xxx|θθθ)p(θθθ)

p(yyy)p(xxx|θθθ,yyy)

∝
p(yyy|xxx,θθθ)p(xxx|θθθ)p(θθθ)

p(xxx|θθθ,yyy)

≈ p(yyy|xxx,θθθ)p(xxx|θθθ)p(θθθ)
p̃G(xxx|θθθ,yyy)

∣∣∣∣∣
xxx=xxx∗(θθθ)

=: p̃(θθθ|yyy).

(3.9)

Here p̃G(xxx|θθθ,yyy) is the Gaussian approximation to the full conditional ofxxx andxxx∗(θθθ)

is the mode of p̃G(xxx|θθθ,yyy) given θθθ. Laplace approximation proposed by (Tierney &

Kadane, 1986) is used for p(xxx|θθθ,yyy). For a univariate x with a density function that

can be written as exp f(x), we can evaluate the integral
∫

exp f(x) by representing

f(x) as a Taylor series expansion evaluated at x = x0. Setting x0 = x∗ to be the

16



mode of the function f(x), the integrand is the kernel of a Normal distribution that

is, ∼ N(x*,[d2logf(x)/dx2]−1.

p̃G(xxx|θθθ,yyy) is used to select good evaluation points to integrate out the uncertainty

with respect to θθθ when approximating the posterior marginals of each parameter xi.

(Rue et al., 2009) highlighted the importance of representing p̃G(xxx|θθθ,yyy) in a non

parametric way to ensure accuracy of the approximations.

To select the values of the hyperparameters θθθ, (Rue et al., 2009) suggested to per-

form a grid exploration of p̃G(xxx|θθθ,yyy) by locating its mode through some quasi-

Newton algorithm. This is followed by computation of the negative Hessian ma-

trix H > 0 at the modal configuration to construct principal components. Finally

performing a grid search to locate the mass of the probability distribution. Due

to the computational cost associated with this exploration scheme, (Blangiardo &

Cameletti, 2015) suggested using this approach when the dimension of θθθ is < 4

otherwise central composite design (CCD) which is the default option in R-INLA)

should be used. In the above procedure we have evaluated p̃(θθθq|yyy) on q points.

Posterior marginals for θθθj can be obtained from p̃(θθθq|yyy) through numerical integra-

tion.

2. Build a Laplace approximation (or or its simplified version) to p(xi|θθθ,yyy).

To approximate the posterior marginals of the latent field for selected values of the

hyperparameters, (Rue et al., 2009) proposed three approximations that is Gaus-

sian, Laplace and simplified Laplace approximation.

p(xi|θθθ,yyy) can often be well approximated with a Gaussian distribution derived from

p̃G(xxx|θθθ,yyy) by matching the mode and the curvature at the mode.

While this is a simple and fast approximation to p(xi|θθθ, yyy) it present errors in shape

(lack of skewness) and location (Rue & Martino, 2007).
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Laplace approximation given by

p(xi|θθθ,yyy) = p(xi, x−i)|θθθ,yyy)
p(x−i|(xi, θθθ,yyy) = p(x,θθθ|yyy)

p(θθθ|yyy)p(x−i|xi, θθθ,yyy) = p(x,θθθ|yyy)
p(x−i|xi, θθθ,yyy)

≈ p(x,θθθ|yyy)
p̃(x−i|xi, θθθ,yyy)

∣∣∣∣∣
x−i=x∗−i(xi,θθθ)

= p̃(xi|θθθ,yyy).

(3.10)

p̃(x−i|xi, θθθ,yyy) is the Laplace Gaussian approximation to p(x−i|xi, θθθ,yyy) and x ∗−i

(xi, θθθ) is its modal configuration. p̃(x−i|xi, θθθ,yyy) must be computed for each value

of θθθ and x rendering the approximation computationally intensive.

A computationally efficient alternative is the simplified Laplace approximation p̃SLA(xi|θθθ,yyy)

which corrects for skewness and location in Gaussian approximation. p̃SLA(xi|θθθ,yyy)

is derived by performing a Taylor series expansion of p̃LA(xi|, yyy) around xi = µ(θθθ)

and corrects by including a mixing term (For example, cubic splines) to increase

the fit to the required distribution (Blangiardo & Cameletti, 2015).

3. Numerical integration (finite sum) to obtain approximations of the marginal of in-

terest xi

The marginal posterior distributions p(xi|θθθ) are approximated by

p̃(xi|yyy) ≈
∫
p̃(xi|θθθ,yyy)p̃(θθθ|yyy)dθθθ, (3.11)

which is integrated numerically with respect to θθθ through a finite weighted sum:

p̃(xi|yyy) ≈ Σqp̃(xi|θθθq, yyy)p̃(θθθq|yyy)4q, (3.12)

where θθθq are the integration points with corresponding set of weights4q.
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3.5 Stochastic Partial Differential Equation

Geostatistical data are realizations of a stochastic/random process Z(s) : s ∈ D where D

is a fixed subset of Rd with positive d-dimensional volume and the spatial index s varies

continuously in the domain D (Cressie, 1993).

Let s be a continuously indexed GRF, X is a covariate that varies spatially, β is the effect of

covariate X, s is the data location and εn is Gaussian noise that is i.i.d for the observations.

Z(sn) = XXX(sn)βββ + s(sn) + εn. (3.13)

The random process is a Gaussian field if the collection of the random variablesZ(s1), Z(s2), ...., Z(sn)

have a multivariate Normal distribution for integer n and set of locations sn with mean

µµµ = (µ(s1, ..., µ(sn) and covariance matrix ΣΣΣ that is Cov(z(s), z(s’)).

The process Z(s) : s ∈ D is weakly stationary if E [Z(s)] = µ for some finite constant µ

and Cov (Z(s), Z(s’) = c(‖ s− s′ ‖), where ‖ . ‖ denotes the Euclidean distance. Isotropy

means that the covariance function is directionally invariant so that only the distance be-

tween two points determines their covariance and not the direction you have to travel to

get from the first to the second.

For a finite set of locations, the covariance function must induce a positive definite ma-

trix. Some of the isotropic covariance functions used in geostatistics include; Exponential,

Gaussian, Powered exponential and Matérn.

Hierarchical models used in large spatial and spatial temporal datasets require repeated

evaluations of the likelihood and the conditional densities arising from the process. Such

computations involve computation of the inverse and determinant of the covariance ma-

trix. When n is large, the computation of these matrices becomes very slow or even

infeasible. Spatial covariance matrices are in general dense and the Cholesky factoriza-

tion require about O(n3

3 ) flops. This problem is known as "the big n problem" (Carlin

et al., 2014). Beyond the computational issues, Gaussian random field can present other

challenges such as introduction of non-stationarity in the covariance function, creation of
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a covariance function for other geometries such as spheres (Bakka et al., 2018). To cir-

cumvent this problem, (Carlin et al., 2014) proposed two approaches that is approximate

likelihood approaches and developing models that can can be fitted with large values of

n. One of the approximate likelihood approaches is approximating a Gaussian process

with a Gaussian Markov random field (GMRF). GMRFs are commonly in spatial discrete

models and a practical question would be how do we extend this to continuously indexed

spatial models owing to their Markov property. Gaussian Markov random fields (GMRFs)

is a finite-dimensional random vector following a multivariate Gaussian distribution with

conditional independence properties, hence termed as Markov. We use undirected graphs

to represent the conditional independence structure in a GMRF.

More specifically, a GMRF is a random vector xxx = (x1, ..., xn)T ∈ Rn wrt to an undi-

rected graph G = (V, ε) with mean µ and precision matrix Q > 0 with a density

p(xxx) = (2π)
−n

2 |Q|
1
2 exp(−1

2(xxx− µµµ)TQ(xxx− µµµ)). (3.14)

xi and xj are conditionally independent given variables x−ij that is x1 ⊥ x2|x−ij for i 6= j

thus Qij = 0 (Rue & Held, 2005).

The density of the matrix is given by the number of non-zero elements divided by the

number of elements. Most precision matrices for GMRF are sparse where only O(n) of

the terms of the n2 in Q are not zeros. This means sparse matrices are mostly character-

ized by zeros and majority of them are not stored in the computer. This translates to fast

numerical factorization of Q as SS’ where S is the lower triangular , matrix and S’ is the

conjugate transpose of S. It is easy to produce random samples and compute log density of

equation above and marginal variances from a GMRF using the Cholesky triangle (Rue,

2001).

The computational cost involved for two dimensional GMRFs is O(n 3
2 ) which is a speed

up compared to O(n3) of the GF where n is the dimension of the GMRF. Furthermore,
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beyond the fast computations, GMRF are quite stable with respect to conditioning. An

example of GMRF is the autoregressive process of order 1 in time series.

(Lindgren et al., 2011) provided an explicit link between Gaussian fields with the Matérn

covariance function for certain choices of the smoothing parameter (ν) and GMRFs.

The SPDE approach consists in representing a continuous indexed GF spatial process us-

ing a discretely indexed GMRF (Blangiardo & Cameletti, 2015) which in turn produces

substantial computational advantages. This approach extends the work of (Besag, 1981)

who approximated a Gaussian field when ν → 0 in the Matérn correlation function. Gaus-

sian field with Matérn covariance is a stationary solution to the linear fractional Stochastic

partial differential equation (SPDE) (Whittle, 1963).

(κ2 −4)α2 (τx(s)) = ω(s) u ∈ Rd, α = ν + d

2 , κ > 0, ν > 0, (3.15)

where4 is the Laplacian given by:

4 =
d∑
i=1

∂2

∂x2
i

. (3.16)

κ is the scale parameter, α controls the smoothness, τ controls the variance and ω is spa-

tial Gaussian white noise process.

By solving a certain SPDE, (Lindgren et al., 2011) showed that a GRF with a Matérn

correlation function and ν = 1 or ν = 2 has a GMRF representation. Matérn covariance

function between locations s, t ∈ Rd is defined as

Cov(X(s), X(t)) = σ2

2ν−1Γ(ν)(κ || t− s ||)νKν(κ || t− s ||), (3.17)

where || . || denotes the Euclidean distance in Rd, Kν is the Bessel function of the second

kind and order ν > 0. κ > 0 is a scale parameter with the dimensions of distance and

σ2 is the marginal variance. The smoothness parameter ν > 0 is a shape parameter that

is usually fixed due to poor identifiability and it determines the differentiability of the
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underlying process. The scaling parameter can be represented by a range parameter ρ.

Where ρ =
√

(8ν)/κ corresponding to correlations near 0.1 at distance ρ, the Matérn

covariance function becomes (Blangiardo & Cameletti, 2015):

Cov(s, t) = σ2

2ν−1Γ(ν)(
√

8ν || t− s ||)/ρ)νKν(
√

8ν || t− s ||)/ρ). (3.18)

It is worth noting that when ν = 0.5, the Matérn correlation function reduces to the expo-

nential whilst as ν →∞ to the Gaussian correlation function.

The link between the Matérn covariance function and the SPDE is given by ν = α − d
2

and the marginal variance is

Σ2 = Γ(ν)
Γα(4φ) d2κ2ντ 2

. (3.19)

For spatial sites are on irregular grid, (Lindgren et al., 2011) proposed overlaying a ir-

regular grid (mesh) and constructing a finite element representation of the solution to the

SPDE through a basis function that is defined on the triangulation of the domain D.

g(u) =
n∑
k=1

φk(u)wk, (3.20)

where φk is the set of basis functions (deterministic) and wk are zero mean Gaussian

weights and n is the number of vertices in the triangulation. wk determine the values of

the field at the vertices. The joint distribution of w = w1, ...., wn is chosen so that the

distribution of the functions gu approximates the distribution of solutions to the SPDE on

the domain. This distribution for the weights in the basis function is a GMRF.

To obtain a Markov structure, we use φk that are piecewise linear with compact support

in each triangle defined such that φk = 1 (sampling location on vertex k) and 0 (sampling

location is not on vertex k) (Blangiardo & Cameletti, 2015).

As noted earlier, the construction is done by projecting the SPDE onto the basis represen-

tation in what is essentially a finite element method. The default value of α in R-INLA is
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2 and the precision matrix Q for the Gaussian weight vector is:

Q = τ 2(κ4CCC + 2κ2GGG+GGGCCC−1GGG), (3.21)

where C is a diagonal matrix and G is a sparse matrix.

R-INLA implements the Matérn field by creating a mesh that comprises of triangles. The

mesh covers the entire domain and extends a bit more to account for boundary effects.

The corners/edges of the triangles are known as vertices/nodes. It is important to note

that when creating a mesh the triangles shouldn’t be big or irregularly shaped as this will

give poor interpolation results. Define the weighting factors wk also called the projector

matrix. For each of the vertices, R-INLA will estimate a wk, Define the SPDE and the

spatial field. Define a stack where we inform R-INLA at which sampling locations we

have the data for the response and covariate. Finally we specify the model formulae and

run the spatial model in R-INLA.

SPDE approach is flexible and can be extended to models on manifolds, non-stationary

and non-separable models with small changes to the differential operator in the SPDE.

The main objectives of geostatistical analysis are estimation (inference about the param-

eters of a stochastic model for the data) and prediction (inference about the unknown

stochastic process at unknown locations.
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Chapter 4

Methods

4.1 Study area and Data

The study was conducted in Kenya, a country situated in East Africa. The country is

divided into 47 administrative units (counties). We used early infant diagnosis (EID)

program data collected routinely by the Ministry of Health to investigate the spatial dis-

tribution patterns of HIV amongst infants in Kenya. Additionally, we aim to model infants

HIV positivity as a function of maternal prophylaxis and breastfeeding. HEI are tested

through EID which gives an opportunity for early identification of HIV and linkage to

care and treatment services. The facility-level data comprised of 68,600 PCR tests types

(Initial, 2nd, 3rd and confirmatory), PCR test results, sex and age of infant, infant and

maternal prophylaxis, mother HIV status, infant breastfed, Entry point, testing laboratory,

date samples received, tested and dispatched collected in the 47 counties in Kenya. The

analyses were restricted to infants under one year born to HIV positive women. The data

were aggregated to provide county level summaries that were used for areal analyses. The

facility level EID data was used for geostatistical analysis. Sampling took place in 2,547

locations (see Figure 5.5) in 2017.
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4.2 Statistical analysis

Variables

The outcome variable we considered in these analyses was the count of infant HIV posi-

tive test result. The covariates included in the model were proportion of infants breastfed

and HAART. We excluded infant prophylaxis since it is highly correlated with HAART.

4.2.1 Statistical models

We developed Bayesian hierarchical Poisson regression models to investigate the spatial

heterogeneity of HIV across the counties and assess the effects of the selected covariates.

For the i-th district, the count of HIV cases yi is modelled as yi ∼ Poisson (Eiθi), where

the mean θi is the risk of infection and Ei is the expected number of infants infected with

HIV in district i, i = 1,2,...,47.

The linear predictor is defined on the logarithmic scale:

ηi = β0 +∑M
m=1 βmtmi + ui,

where β0 denotes HIV outcome rate for all the 47 counties and ui are the spatially struc-

tured random effects that capture spatial variation modelled using conditional intrinsic

autoregressive model (ICAR) prior distribution. The ICAR model is given as

φi | φ−i ∼ Normal

 1
ni

n∑
j∼i

φj,
σ2

ni

 (4.1)

(Besag & Kooperberg, 1995).

The conditional expectation of random effect φi is the average of the effects of its neigh-

bours. The conditional variance depends on its number of neighbours ni. An area with

many neighbours will have a smaller variance.

Turning to the continuous spatial field, the linear predictor is defined on the logarithmic

scale:
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ηi = log(π) = β0 +∑M
m=1 βmtmi + S(xi),

where β0 is the intercept, β are the covariates effects, S = S(x_1),..., S(x_n) is a gaussian

process,

µ(x) = E[S(x)] (4.2)

ρ(h) = CovS(x], S(x+ h] = σ2Matern(|h|/φ, ν). (4.3)

ρ(h) is a symmetric definite function depending on the marginal variance σ2 and a range

parameter (φ), beyond which correlations fall beyond a certain threshold of 0.1. ν is the

smoothness parameter and |h| is the distance between two points on the plane (Diggle et

al., 1998).

To investigate the association between the outcome variable and the covariates, we fit-

ted four Poisson models : Model 1 the ordinary Poisson regression model, Model 2 the

generalized linear mixed model spatially unstructured random effects, Model 3 the gen-

eralized linear mixed model spatially structured random effects, Model 4 the generalized

linear mixed model with both spatially unstructured and structured random effects.

For the geostatistical data, we investigated spatial dependency in the Pearson residuals by

making a sample variogram. We proceeded with fitting two models: Model 1 the spatial

component model (GLM Poisson model), Model 2 the model without spatial component

(SPDE model).

Bayesian inference was done in R software (Team et al., 2013) using Integrated Nested

Laplace approximation (R-INLA) package. A stochastic partial differential equation

(SPDE) with INLA was employed to estimate the posterior marginals in the geostatis-

tical analysis.

Model comparison and selection was done using the deviance information criterion (DIC)

that takes into account the trade off between model fit and complexity (Spiegelhalter et

al., 2002). The best model was given by the model with the smallest value of DIC.
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Chapter 5

Results

5.1 Summary Results

Table 5.1 presents the summary statistics of the variables in the data. In total, of the

68,600 HIV exposed infants who provided their blood samples for PCR HIV testing,

2,363 (3.4%) turned positive for HIV. Of the 2,363 HIV positive women, 86.33% breast-

fed their infants while the remaining 13.24% did not breastfeed their infants. Majority

(77.06%) of these women accessed the health facility through the MCH/PMTCT. 61.32%

of the infants who turned out positive were on prophylaxis while 63.98% of their mothers

were on maternal prophylaxis. 81.17% of the infants who turned HIV positive had their

first diagnosis after 2 months.
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Table 5.1: Summary of infant and maternal risk factors associated with mother to child
transmission of HIV in Kenya 2017

Variable Total (N = 68,600) HIV Positive (N = 2,363)
Entry Point
CCC/PSC 6,544 (9.53) 233 (9.86)

IPD 293 (0.42) 87 (3.68)
Maternity 409 (0.59) 18 (0.76)

MCH/PMTCT 59,816 (87.19) 1,821 (77.06)
OPD 774 (1.12) 145 (6.13)
Other 350 (0.51) 35 (1.48)

Infant breastfed
BF 57,889 (84.39) 2,040 (86.33)

NBF 10,711 (15.61) 313 (13.24)
Sex

Female 34,651 (50.51) 1,197 (50.65)
Male 33,188 (48.38) 1,132 (47.91)

Infant prophylaxis
Yes 51,681 (75.33) 1,449 (61.32)
No 16,919 (24.66) 914 (38.67)

Maternal prophylaxis
Yes 62,769 (91.57) 1,512 (63.98)
No 5,831 (8.50) 851 (36.02)

Age at diagnosis
Under 8 weeks 14255 (20.78) 445 (18.83)
Over 8 weeks 54345 (79.22) 1918 (81.17)

5.2 Areal data analysis

The results of fitting the hierarchical models are shown in table 5.2. Based on these re-

sults, we deduce that the model with spatially structured random effects (Model 3) offered

a better fit (DIC 306.36).

Increased use of HAART is associated with mother to child transmission of HIV. -0.80

(95% credible interval:-2.19, 0.60). Breast feeding is positively associated with mother to

child transmission of HIV 0.5576 (95% credible interval:-1.62,-2.77). The results how-

ever suggest that the covariates are not significant.
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Table 5.2: Posterior statistics of the four models

Variable Model 1 Model 2 Model 3 Model 4
β0 3.3285 (1.8445, 4.7958) 3.9853 ( 1.2337, 6.6126) 3.0724 ( 0.3483, - 5.6721) 3.7619 (1.0254, 6.3732)

HAART -0.3422 (-1.1703, 0.4926) -0.5565 (-2.0945, 0.9918) -0.8020 (-2.1955, 0.6030) -0.6588 ( -2.1714, 0.8674)
BF -0.4925 ( -1.7174, -0.7381) -0.1736 (-2.4892, -2.1779) 0.5576 (-1.6219, -2.7776) 0.0399 ( -2.2514, -2.3716)

medianage -0.3028 (-0.4115, -0.1922) -0.3777 (-0.5661, -0.1791) -0.3173 (-0.5125 , -0.1114) -0.3632 (-0.5504, -0.1660)
τv 20.47 (9.400, 39.498) 22.754 (10.084, 45.226)
τu 4.703 (2.134, 9.079) 8622.668 (142.832, 39713.666)

DIC 393.11 307.39 306.36 307.67
pD 4.031 27.14 27.55 26.93

[0.5,0.9]

(0.9,1]

(1,1.1]

(1.1,1.8]

Figure 5.1: Infants HIV Relative risk in Kenya in 2017
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Figure 5.2: Posterior relative risk exceedance probability map p (ξ > 1|y)

Figure 5.1 shows the relative risk map of the counties based on the best fitting model.

The relative risk ranges from 0.71 to 1.71. Counties that were predicted to have high risk

of Infant HIV infection were Makueni, Lamu, Turkana, Marsabit, Samburu, Mombasa,

Nairobi, Narok, Taita Taveta, Kilifi. Bungoma, Embu, Muranga, Garissa, Tana river, El-

geiyo Marakwet, Homabay and Nyandarua were associated with lower risk of infant HIV

infection (RR < 0.8). The exceedence probability map in figure 5.2 displays counties

with relative risk above the national risk (RR > 1). This map confirms counties associated

with high risk of HIV infection (darker color). The distribution of spatial random effects

(Fig 5.3) revealed strong spatial patterns at multiple scales. According to these patterns,
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the risk of HIV infection is associated with living in the following counties; Makueni,

Turkana, Marsabit, Lamu. This map shows a similar pattern to the relative risk map sig-

nifying counties highly affected by spatially structured random effects.

Clustering of risk and elevated risk can be observed in the North-west, south west coun-

ties of Kenya.

Figure 5.3: Estimates of the random effects from the spatially structured model

5.3 Geostatistical analyses

The variogram in figure 5.4 obtained from the Poisson GLM indicates presence of spatial

correlation in the data. This means that we should fit spatial models to the data. Table 5.3

displays the posterior estimates of the Poisson GLM and the SPDE models.

Table 5.3: Posterior statistics of the two models

Variable Poisson GLM Poisson GLM + SPDE
β0 -0.059 (-0.27727402, 0.15261972) -0.609 ( -0.904, -0.322) )

HAART -0.129 ( -0.313, 0.058) -0.125 (-0.348, 0.102)
BF 0.135178 ( -0.062, 0.338 ) 0.178 (-0.051, 0.412)
DIC 8463.834 5591.732
σ 0.019 (0.000, 0.003)
κ 0.495 (0.008, 1.388)

Range 14.621 (0.623, 48.579)
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The best fitting model was the SPDE model (DIC 5591.732). Consistent with the results

of the areal analysis, HAART was found to be negatively associated with infant positivity

whereas breastfeeding was positively associated with infant positivity. The associations

were however not significant.

Figure 5.4: Sample variogram of the pearsons residuals of the Poisson GLM
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Figure 5.5 shows a map of the sampled locations and the selected mesh is shown in figure

5.6. The triangulation produced a mesh with 1249 vertices. To avoid the boundary effects,

we used a mesh that extends the study region. The choice of mesh is a trade-off between

the GMRF representation accuracy and the computational costs (Blangiardo & Cameletti,

2015).
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Figure 5.5: Location of facilities

33



Constrained refined Delaunay triangulation

Figure 5.6: Mesh with sampled locations
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Figure 5.7: Spatial random field (top) and the predicted mean response (bottom)

The map of the spatial field (Figure 5.7 top left) reveals that the spatial random effects

causes an increase or decrease in the expected disease counts in specific regions.

The spatial pattern of the posterior mean of the latent field and of the mean response

are similar as seen in figure 4.5 whereas the latent field has a higher variability than the

response. The spatial effect ranges from 0.010 to 0.015 whereas standard deviation ranges

from 0.060 to 0.078.

Matérn correlation function is displayed in figure 5.8 which shows strong correlation is

upto about 0.495 km. The distance at which correlation is close to 0.1 is 14.621 km.
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Figure 5.8: Matérn correlation function
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Chapter 6

Discussion and conclusions

6.1 Discussion

In this work, deterministic Bayesian approaches (INLA and INLA-SPDE) were used for

analysis of areal and point reference data to assess the spatial distribution of HIV amongst

infants and associated risk factors for mother to child transmission. We employed INLA

to fit Bayesian hierarchical spatial models within the R library INLA. CAR model was

identified to be suitable for modeling and mapping relative risk of HIV amongst infants

in Kenya.

The findings revealed that breastfeeding increases mother to child transmission of HIV.

Previous studies (Nduati et al., 2000); (Colebunders et al., 1988); (Miotti et al., 1999),

noted a substantially higher risk of infection among breast fed infants within the first

months of breastfeeding compared to later months. A high early transmission rate might

be explained by the milk which is rich in HIV infected cells and the immaturity of the in-

fant’s immune system (Southern, 1998). In resource limited settings complementary feed-

ing increases the risk of morbidity and mortality from infectious disease. Until recently,

WHO recommended that HIV positive mothers breastfeed exclusively for the first six

months and continue breastfeeding with appropriate complementary foods for at least 12

months while taking their antiretroviral to reduce risk of post-natal transmission. (Slater
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et al., 2010) showed that perinatal transmission can be greatly reduced in breastfeeding

populations on antiretroviral therapy.

The results of the study indicated that the use of HAART by the mother reduces the trans-

mission rate of HIV. The use of HAART clearly stands out as a key determinant of MTCT

risk as has been consistently reported in many studies (Townsend et al., 2008),(Lederg-

erber et al., 1999), (Becquet et al., 2009). The risk of HIV infection among infants was

found to be high in Makueni, Lamu, Turkana, Marsabit, Samburu, Mombasa, Nairobi,

Narok, Taita Taveta, Kilifi counties suggesting the need of geographical prioritization of

infant HIV prevention interventions to optimise reduction of new HIV infections. The

random effects map revealed residual variation suggesting unaccounted variation after

including the covariates in the model. Additionally, the spatial patterns in the random

effects suggested possible covariates omitted from the model. INLA which is a promising

alternative to the MCMC is a recent methodology for Bayesian inference used in hierar-

chical models. The numerical inference approach has gained popularity due to the fast

and accurate estimates to the posterior distributions produced by the methodology. This

alleviates one of the most important bottlenecks associated with MCMC which is compu-

tationally intensive especially for models that are complex in nature. INLA methodology

can be used in the free R software with the package R-INLA. The methodology provides

several quantities for Bayesian model choice and selection such as effective number of

parameters(pD) and Deviance information Criterion (DIC).

We employed INLA-SPDE approach to perform Bayesian inference on spatial hierar-

chical Gaussian fields. The SPDE model was found to be suitable for modelling and

predicting point reference data as compared to the Poisson GLM. The posterior covari-

ates effects were similar to those of the areal analysis. It is apparent from the maps of

the random effects and the spatial random field that inclusion of spatial random effects

yields strong latent spatial patterns that were not explained by the explanatory variables.

As shown in Figure 5.7, the predicted risk of infant HIV infection is high in the western

part of Kenya and lowest in the eastern regions. The possible reason for this could be
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that the data exhibits clustering in the western regions with little or no observations in

the other parts. The standard errors are high on the peripherals which should be expected

since they are extensions of the triangulation. One advantage of INLA-SPDE is its ca-

pability of estimation and prediction of the posterior marginal distributions of the model

parameters and the model responses without carrying out extensive simulations. A major

limitation with INLA-SPDE is that it becomes computationally intensive when dealing

with non-Gaussian likelihood (Lindgren et al., 2011).

Limitations of this study include the use of routinely collected data which may not be

of quality due to missing information. Additionally, the data has limited information on

potential explanatory variables that could be important in explaining the positivity rates.

Lack of data on important covariates such as virological status and maternal immunologic

which could influence transmission rates.

6.2 Conclusion and Recommendations for further research

The aim of this study was to investigate the geographical variation of HIV and identify

risk factors among infants in Kenya in 2017. INLA which is a computationally effective

alternative to MCMC was used for Bayesian inference. This study has shown the deter-

minants of infant HIV infection and the spatial distribution through mapping of HIV risk.

It is apparent that there are still geographical disparities in infant HIV infection and tar-

geted PMTCT interventions and resources should be directed to counties that have high

infection rates. It is hoped that the presented outcome variations will stimulate further

research efforts to investigate the reasons underlying the disparities and inform policy.

Many aspects of this study could be extended. Further research is required to determine

suitable spatio-temporal models for modeling and mapping relative risk of HIV among

infants in Kenya. This will allow to explain evolution of the relative risk of HIV in space

and time. Incorporating other covariates for mother to child transmission of HIV that

were not captured in the analysis could yield important insights on the spatial distribution
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of the disease.
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APPENDIX

AREAL DATA ANALYSIS

library(ape)

library(mapview)

library(spdep)

library(INLA)

library(maptools)

library(rgdal)

library(maptools)

library(RColorBrewer)

library(classInt)

library(classInt)

library(scanstatistics)

setwd("E:/MSC Project/EID_DATA")

data<-read.csv("Data.csv")

kenyacount<-readOGR("E:/MSC Project/EID_Data/County.shp")

plot(kenyacount,axes=T)

nbkenya<-poly2nb(kenyacount)

nbkenya

nb2INLA(file="kenya.graph",nbkenya)

nb2INLA("LDN.graph", temp)

48



LDN.adj <- paste(getwd(),"/kenya.graph",sep="")

H <- inla.read.graph(filename="kenya.graph")

image(inla.graph2matrix(H),xlab="",ylab="")

data<-cbind(data,region=as.numeric(data$id),

region.struct=as.numeric(data$id)))

View(data)

str(data)

#MODEL1-A generalized linear model (Full model)

fit1<- inla(Cases~HAART+BF,family="poisson",

data=data, E=Expectedcases,

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(fit1) #418.88 #Pd 3.032

####################################################

#MODEL 2-Model with spatially unstructured random effects

fit2a<- Cases ~ HAART+BF+f(region)

fit2<- inla(fit2a,family="poisson",

data=data,E=Expectedcases,

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(fit2) #309.99 29.37

####################################################

#MODEL 3-Model with spatially structured random effects

names(data)

View(data)
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fit3a<- Cases ~ HAART+BF+f(region.struct,

adjust.for.con.comp=TRUE,

model="besag",constr=T,graph.file= H)

#hyper = list(theta=list(prior="loggamma", param=c(.5,.005))))

fit3<- inla(fit3a,family="poisson",

data=data,E=Expectedcases,

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(fit3) # 308.56 28.17

#MAPPING RELATIVE RISK

csi <- fit3$marginals.random$region.struct[1:47]

zeta <- lapply(csi,function(x) inla.emarginal(exp,x))

zeta

ecxd2<-zeta<0.8

ecxd2

#Define the cutoff for zeta

zeta.cutoff <- c(0.5, 0.9, 1.0, 1.1, 1.8)

#Transform zeta in categorical variable

cat.zeta <- cut(unlist(zeta),breaks=zeta.cutoff,

include.lowest=TRUE)

cat.zeta

#Create a dataframe with all the information needed for the map

maps.cat.zeta <- data.frame(id=data$region.struct, cat.zeta=cat.zeta)

maps.cat.zeta

data.boroughs <- attr(kenyacount, "data")
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data.boroughs

#sp@data = data.frame(sp@data, df[match(sp@data[,by], df[,by]),])

attr(kenyacount, "data") <- merge(data.boroughs, maps.cat.zeta,

by="id", sort=FALSE)

attr(kenyacount, "data")

#names(kenyacount)

#View(kenyacount)

#Map zeta

#kenyacount

col.r <- rev(rainbow(20, alpha = 0.5))

my.palette <- brewer.pal(n = 7, name = "Greens")

spplot(obj=kenyacount, zcol= "cat.zeta",

col.regions=my.palette,cuts = 6)\\ #main="Posterior mean relative risk", asp=1)

#Exceedance probability >1

a<-0

exc <- lapply(csi, function(x) {1 - inla.pmarginal(a, x)})

ecxd<-exc>1.

ecxd

cutoff <- c(0,0.5,0.8,0.9,1)

#Transform zeta in categorical variable

exc.zeta <- cut(unlist(exc),breaks=cutoff,

include.lowest=TRUE)

#Create a dataframe with all the information needed for the map

maps.exc.zeta <- data.frame(id=data$region.struct, exc.zeta=exc.zeta)

maps.exc.zeta
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#Add the categorized zeta to the spatial polygon

#View(kenyacount)

data.boroughs <- attr(kenyacount, "data")

attr(kenyacount, "data") <- merge(data.boroughs, maps.exc.zeta,

by="id", sort=FALSE)

spplot(obj=kenyacount, zcol= "exc.zeta",

col.regions=my.palette, cuts = 6)#main="Probability exceedance", asp=1)

kenyacount$median=as.numeric(fit3$summary.fitted.values[,4])

kenyacount$median

kenyacount$q025=as.numeric(fit3$summary.fitted.values[,3])

kenyacount$q975=as.numeric(fit3$summary.fitted.values[,5])

kenyacount$mean=as.numeric(fit3$summary.fitted.values[,1])

at=c(0, 0.5,1.0, 1.5,2.0, 2.5,5.0,11)

#my.palette <- brewer.pal(n = 8, name = "Blues")

spplot(kenyacount,c("q025","median","q975"),

names.attr = c( "2.5% quantile","Median","97.5% quantile"),

as.table = TRUE,col.regions=my.palette, cuts=6)

kenyacount$mean=fit3$summary.random$region[,2]

kenyacount$median=fit3$summary.random$region[,5]

kenyacount$lowerquantile=fit3$summary.random$region[,4]

kenyacount$upperquantile=fit3$summary.random$region[,6]

plot(density(kenyacount$median))

#my.palette <- brewer.pal(n = 5, name = "YlOrRd")

spplot(kenyacount,c("lowerquantile","median",

"upperquantile"),
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names.attr = c("lowerquantile","median","upperquantile"),

as.table = TRUE,col.regions = my.palette,

cuts = 6)

#spplot(kenyacount,c("lowerquantile","upperquantile",

"mean","median"))

#spplot(kenyacount,c("lowerquantile","upperquantile",

"mean","median"))

#####################################################

#MODEL 4- Convolution model

fit4a<- Cases ~ HAART+BF+f(region)+f(region.struct,model="bym",graph.file="kenya.graph")

fit4<- inla(fit4a,family="poisson",

data=data,E=Expectedcases,

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(fit4) # 310.65 pD 28.96

names(fit4)

# Disease risk estimates/fitted values

kenyacount$median=as.numeric(fit4$summary.fitted.values[,4])

kenyacount$median

kenyacount$q025=as.numeric(fit4$summary.fitted.values[,3])

kenyacount$q975=as.numeric(fit4$summary.fitted.values[,5])
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my.palette <- brewer.pal(n = 7, name = "YlOrRd")

spplot(kenyacount,c("median","q025","q975"),

names.attr = c("Median", "2.5% quantile","97.5% quantile"),

as.table = TRUE,col.regions = my.palette, cuts = 6)

#######################################################

#######################################################

SPDE

library(spdep)

library(INLA)

library(maptools)

library(rgeos)

library(maptools)

library(RColorBrewer)

library(classInt)

library(lattice)

library(classInt)

library(scanstatistics)

library(ggplot2)

library(gstat)

library(INLA)

library(sp)

library(inlabru)

library(fields)

library(rgdal)

setwd("E:/MSC Project/EID_DATA/SPDE_APPROACH_ANALYSIS")

kenyacount<-readOGR("E:/MSC Project/EID_Data/SPDE_APPROACH_ANALYSIS/County.shp")
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data<-read.csv("spde_data.csv")

str(data)

data$PropBF<-as.numeric(levels(data$PropBF))[data$PropBF] # convert propBF to numeric

plot(kenyacount,asp=1)# main = ’Map of Kenya and Sampled locations

(dots)’)

data$Xkm = data$Longitude

data$Ykm = data$Latitude

points(x= data$Xkm,data$Ykm, col=1,pch=16, cex=0.5 ) # Map of sampled locations

#View(data)

I1 <- inla(Positive ~ PropBF + PropHAART,

family = "poisson",

control.predictor = list(compute = TRUE),

data = data)

#Spatial dependency?

#Let’s make a variogram of the Pearson residuals.

# Sample-variogram with distances up to 100 km

MyData <- data.frame(E1 = E1, Xkm = data$Xkm, Ykm = data$Ykm)

coordinates(MyData) <- c("Xkm", "Ykm")

Vario <- variogram(object = E1 ~ Xkm + Ykm,

data = MyData,

cressie = TRUE,

cutoff = 7,

width = 0.2)

p <- ggplot(data = Vario, aes(x = dist, y = gamma))

p <- p + geom_point()

p <- p + geom_smooth(method = "gam",

formula = y ~ s(x, bs = "cs"),
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colour = "black")

p <- p + ylim(0,1)

p <- p + theme(text = element_text(size = 15))

p <- p + xlab("Distance (km)") + ylab("Sample variogram")

p

#INLA ANALYSIS

# Creating a mesh-Triangulation with a SpatialPolygonsDataFrame

border<-unionSpatialPolygons(kenyacount, rep(1, nrow(kenyacount)))

bordery<-inla.sp2segment(border)

#mesh<- inla.mesh.2d(boundary = bordery,cutoff = 0.02,

#max.edge = c(1,1))

#mesh<- inla.mesh.2d(boundary = bordery, cutoff = 0.5,

#max.edge = c(0.3,0.3))

#mesh<- inla.mesh.2d(boundary = bordery,cutoff = 0.1,

#max.edge = c(0.1, 0.1))

mesh<- inla.mesh.2d(boundary = bordery,cutoff = 0.5,

max.edge = c(0.05, 0.5))

plot(mesh, asp=1)

# max.edge: maximum allowed triangle edge lengths in

# the inner domain and in the outer extension

# cutoff: minimum allowed distance between points. Points

# at a closer distance than the supplied value are

# replaced by a single vertex
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mesh$n #1249

points(x= data$Longitude,data$Latitude, col=1,pch=16, cex=0.5 ) # sampled locations on the mesh

Loc <- cbind(data$Xkm, data$Ykm)

#what are the distances between the points?

D <- dist(Loc)

par(mfrow = c(1,2), mar = c(5,5,2,2), cex.lab = 1.5)

hist(D,

freq = TRUE,

main = "",

xlab = "Distance between sites (km)",

ylab = "Frequency")

text(2, 35000, "A", cex = 1.5)

plot(x = sort(D),

y = (1:length(D))/length(D),

type = "l",

xlab = "Distance between sites (km)",

ylab = "Cumulative proportion")

text(2, 1, "B", cex = 1.5)

# sampling locations match the points on the mesh

A5<-inla.spde.make.A(mesh,loc = Loc)

dim(A5) #2457 1249

#2457 observations on a 4089 grid

# A is a weight matrix

head(A5)
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??inla.spde2.pcmatern

#View(data)

#SPDE MODEL

spde<-inla.spde2.pcmatern(mesh, alpha=2,prior.range=c(8,0.5),

prior.sigma=c(log(1.1),0.01))

w.index<-inla.spde.make.index(name = ’w’,

n.spde = spde$n.spde,

n.group = 1,

n.rep1 = 1)

N<-nrow(data)

X<-data.frame(Intercept = rep(1,N),

Positive= data$Positive,

PropBF= data$ PropBF,

PropHAART = data$ PropHAART,

iidx=1:nrow(data))

N # sampled locations

X<-as.data.frame(X)

str(X)

# Tell INLA at which mesh points the covariates are sampled.

stk<-inla.stack(tag = ’est’,

data= list(y = data$Positive),

A= list(A5, 1),

effects =list (w= w.index, #spatial field

X=X)) #covariates

dim(inla.stack.A(stk)) #2457 2199#Define the Matern correlation

on the mesh
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#defining the stack- dataframe that contains intercept

and all covariates

inla.stack.data(stk)

# Specfying models to fit

#Model without spatial componenent

model1<-y~ -1 +Intercept + PropBF + PropHAART

#MODEL with spatial component

model2<- y ~ -1 + Intercept +PropBF + PropHAART + f(w,model= spde)+

f(iidx, model="iid")

# Run R-INLA

fit1<-inla(model1,

family = "poisson",

data = inla.stack.data(stk),

control.compute = list(dic= TRUE),

control.predictor = list( A= inla.stack.A(stk)))

fit2<-inla(model2,

family = "poisson",

data = inla.stack.data(stk),

control.compute = list(dic= TRUE),

control.predictor = list( A= inla.stack.A(stk)))

fit2$summary.fixed #Summary of beta0

fit1$summary.fixed
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fit2$marginals.hyperpar

# Visualise the differences of parameter estimates in the two models:

Combined <- rbind(fit1$summary.fixed[, c("mean", "0.025quant",

"0.975quant")],

fit2$summary.fixed[, c("mean", "0.025quant", "0.975quant")]

)

Combined$WhichModel <- rep(c("GLM", "spatial GLM"), each = 3)

Combined$WhichVariable <- rep(rownames(fit2$summary.fixed), 2)

colnames(Combined) <- c("Mean", "Lo", "Up", "WhichModel",

"WhichVariable")

Combined

p <- ggplot()

p <- p + geom_point(data = Combined,

aes(x = WhichModel,

y = Mean)

)

p <- p + geom_errorbar(data = Combined,

aes(x = WhichModel,

ymax = Up,

ymin = Lo),

width=0.2)

p <- p + xlab("Parameters") + ylab("Values")
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p <- p + theme(text = element_text(size=15))

p <- p + facet_wrap( ~ WhichVariable, scales = "free_y")

p <- p + theme(legend.position="none")

p <- p + geom_hline(yintercept = 0, linetype = 2)

p

# Comparing the two models using DIC

fit1$dic$dic # 8463.834

fit2$dic$dic # 5591.732 # Model with spatial correlation performs well

fit2$summary.fixed

#posterior mean values of the spatial random field

w.pm<-fit2$summary.random$w$mean

w.pm

w.sd<-fit2$summary.random$w$sd # posterior standard deviation of the spatial random field

length(w.pm)

# This is the spatial field calculated at all the mesh points

# Now we calculate the spatial field on a grid.

# Prediction of the mean values of random field on the grid

wproj <- inla.mesh.projector(mesh)

# This is a 100 by 100 field...and we can plot it,

# using standard 3-D software tools.

# Plot the spatial random field

# The function inla.mesh.project can then

# be used to project the 1829 posterior mean
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# values on this grid. By default a lattice

# of 100 by 100 is used.

w.pm100_100 <- inla.mesh.project(wproj, w.pm)

w.sd100_100 <- inla.mesh.project(wproj, w.sd)

# This w.pm100_100 is of dimension 100 by 100

# and is a projection (interpolation and extrapolation)

# of the random field w. We can use the levelplot

# function from the lattice package to plot w.pm100_100

Grid <- expand.grid(Xkm = wproj$x,

Ykm = wproj$y)

Grid$w.pm <- as.vector(w.pm100_100)

Grid$w.sd <- as.vector(w.sd100_100)

col.l <- colorRampPalette(c(’red’, ’green’))(30)

col.r <- rev(rainbow(20, alpha = 0.5))

plot.wpm <- levelplot(w.pm ~ Xkm * Ykm,

data = Grid,

aspect = "iso",

col.regions= terrain.colors(20),

scales = list(draw = TRUE),

xlab = list("X-coordinates ", cex = 1.5),

ylab = list("Y-coordinates", cex = 1.5),

main = list("Spatial random field", cex = 1.5))

plot.wpm
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# And do the same for the posterior standard deviation

plot.wsd<-levelplot(w.sd ~ Xkm * Ykm,

col.regions= terrain.colors(20),

data = Grid,

scales = list(draw = TRUE),

xlab = list("X-coordinates", cex = 1.5),

ylab = list("Y-coordinates", cex = 1.5),

main = list("Spatial random field SD", cex = 1.5), asp=1)

plot.wsd

#########################################

# And this is the correlation function that we are imposing

# on the residuals:

SpFi.w <- inla.spde2.result(inla = fit2,

name = "w",

spde = spde,

do.transfer = TRUE)

Kappa <- inla.emarginal(function(x) x,

SpFi.w$marginals.kappa[[1]] )

inla.hpdmarginal(0.95, SpFi.w$marginals.kappa[[1]])

Kappa 0.4953149

# low high

#level:level:0.95 0.007974941 1.388208

sigmau <- inla.emarginal(function(x) sqrt(x),

SpFi.w$marginals.variance.nominal[[1]] )
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inla.hpdmarginal(0.95, SpFi.w$marginals.variance.nominal[[1]])

sigmau 0.01910129

# low high

#level:0.95 5.207278e-08 0.002615157

range <- inla.emarginal(function(x) x,

SpFi.w$marginals.range.nominal[[1]] )

inla.hpdmarginal(0.95, SpFi.w$marginals.range.nominal[[1]])

range

# low high

#level:0.95 0.6234094 48.57928

c(Kappa, sigmau, range)

#[1]0.49531489 0.01910129 14.62118831

#Show correlation structure

D <- as.matrix(dist(Loc[,1:2]))

d.vec <- seq(0, max(D), length = 1000)

d.vec

Cor.M <- (Kappa * d.vec) * besselK(Kappa * d.vec, 1)

Cor.M[1] <- 1

par(mfrow=c(1,1), mar = c(5,5,2,2), cex.lab = 1.5)

plot(x = d.vec,

y = Cor.M,

pch = 16,

type = "l",

cex.lab = 1.5,
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xlab = "Distance (km)",

ylab = "Correlation",

xlim = c(0, 15))

abline(h = 0.1, lty = 2)

abline(v = range, lty = 2)

dim(A5)

str(data)

#### Predicting the response.

stk.pred <- inla.stack(tag=’pred’, A=list(A5, 1), data=list(y=NA), ## response as NA

effects=list(s=1:spde$n.spde, data.frame(X=X)))

stk.full <- inla.stack(stk, stk.pred)

p.res <- inla(model2, data=inla.stack.data(stk.full), ## full stack

control.predictor=list(compute=TRUE, ## compute the predictor

A=inla.stack.A(stk.full))) ## using full stack data

p<-p.res$summary.random$w$mean

p

s<-p.res$summary.random$w$sd

wproj <- inla.mesh.projector(mesh)

w.pm100_100 <- inla.mesh.project(wproj,p)

w.sd100_100 <- inla.mesh.project(wproj,s)

Grid <- expand.grid(Xkm = wproj$x,

Ykm = wproj$y)

Grid$p <- as.vector(w.pm100_100)

Grid$s <- as.vector(w.sd100_100)
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col.l <- colorRampPalette(c(’red’, ’green’))(30)

col.r <- rev(rainbow(20, alpha = 0.5))

pm <- levelplot(p ~ Xkm * Ykm,

data = Grid,

aspect = "iso",

col.regions= terrain.colors(20),

scales = list(draw = TRUE),

xlab = list("X-coordinates ", cex = 1.5),

ylab = list("Y-coordinates", cex = 1.5),

main = list("Mean response", cex = 1.5))

pm

wpm <- levelplot(s ~ Xkm * Ykm,

data = Grid,

aspect = "iso",

col.regions= terrain.colors(20),

scales = list(draw = TRUE),

xlab = list("X-coordinates ", cex = 1.5),

ylab = list("Y-coordinates", cex = 1.5),

main = list("Mean response SD", cex = 1.5))

wpm

require(gridExtra)

grid.arrange(plot.wpm,

plot.wsd,

pm,
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wpm,

nrow=2)
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