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ABSTRACT 

 

 

IMPROVING VIDEO GAME RECOMMENDATIONS USING A HYBRID, NEURAL 

NETWORK AND KEYWORD RANKING APPROACH 

 

Nick Crawford Advisors: 

Sheridan College, 2019 Professor Khaled Mahmud, 

Professor Richard Pyne 

 

Recommendations systems are software solutions for finding high-quality and relevant content 

for a given user type ranging from online shoppers, to music listeners, to video game players. Traditional 

recommendation systems use user review data to make recommendations, but we still want 

recommendations to perform well for new users with no review data. Currently, one of the problems that 

exists in recommendations is poor recommendation accuracy when only a small amount of data exists 

for a user, called the cold start problem. In this research we investigate solutions for the cold start problem 

in video game recommendations and we propose a solution that uses a hybrid neural network and 

keyword ranking approach. We evaluate this system with precision and recall metrics and compare the 

results to a traditional recommendation system. We present that this hybrid system offers performance 

gains when recommending to users who have low-medium previous reviews. 

 

Keywords: Recommendation system, cold start problem, collaborative filtering, content-based filtering, 

embeddings, nearest neighbor. 
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CHAPTER 1  
INTRODUCTION 

Video game consumers are increasingly shopping online for new games on sites like 

Amazon.com. Recommendation systems on Amazon learn about user’s interests and they recommend 

similar video games that they may enjoy. Unfortunately, these systems have problems when trying to 

recommend to users who have few or no previous video game reviews, this is the cold start problem. 

We investigate recommendation systems and methods to improve them, specifically our research 

will focus on hybrid recommendation systems. Our research area will be about recommending video 

games. The main goal of our research is to recommend video games to users in a way that aims to solve 

the cold start problem. Our research will be a significant contribution to the field of recommendations 

systems both because of the unique algorithm being used and also because the field of recommendations 

in video games is one that is not often explored. 

Our research is a valuable contribution to the field of recommendations systems because we are 

contributing to the discussion of how we can solve the cold start problem in recommendations and also 

proposing an algorithm to do so. 

1.1 Terms and Definitions 

Recommendation System (RS) An information filtering system that seeks to 

predict the rating that a user would give to an item. 

In order to suggest content to the user that is 

relevant to them. 
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Content-based filtering A recommendation system algorithm where 

predictions are based on a description of the item 

and a profile of the user’s preferences. 

Collaborative based filtering A recommendation system algorithm where the 

data of previous users is tracked and used to create 

predictions for the behavior of future users. 

Cold start problem When a software system cannot draw any 

inferences for users or items about which it has 

not yet gathered sufficient information. 

Hybrid Recommendation Algorithms A recommendation algorithm that combines 

collaborative based filtering and content-based 

filtering. 

Embeddings A categorical feature represented as a continuous-

valued feature. An example is representing a 

video game with features as an n-dimensional 

vector. 

Nearest Neighbors A method for finding items that are closest to a 

given item. Calculated using cosine similarity of 

vectors. 
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t-Distributed Stochastic Neighbor Embedding 

(TSNE) 

A dimensionality reduction machine learning 

algorithm used to visualize high dimensional data 

in a low dimensional space like 2 dimensions. 

Latent Latent means hidden. Eg. Latent features are 

features that are immediately visible, they must be 

learned. 

 

1.2 Problem Statement 

Traditional recommendation systems use the behavior data of previous users of the system to 

predict content for future users. Unfortunately, when new users try to use the website, there is no user 

review data to make recommendations with. Similarly, when new items are added to a website, no user 

has initially interacted with those items, so there is no user behavior data available to make 

recommendations for those items. This is called the cold start problem [7]. 

 Hybrid recommendation systems are a potential solution to the cold start problem that work by 

only requiring small amounts of user data. Hybrid recommendation systems use a combination of 

collaborative filtering and content-based filtering algorithms. Content-based filtering uses the properties 

of the digital content itself and compares the properties with the properties of other content in order to 

find recommendations. Our research is to build and evaluate a hybrid recommender that will help to 

overcome the cold start problem. 
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1.3 Purpose of the Study 

The purpose of the study is to progress the quality of recommendation systems. The goal of the 

research is come up with a more effective strategy for recommending relevant content than what is 

currently being used and ultimately to improve the content discovery experience for users. 

1.4 Motivation 

The motivation for this research was to try and improve the quality of recommendation systems. 

Recommendation systems are popular with different online web applications and e-commerce platforms 

but there are improvements that could be made to these systems, notably in the area of the cold start 

problem. We will offer those improvements with this research.  

1.5 Proposed Work 

Our research consists of the following steps. 

• Download, clean and sort Amazon video game review data 

• Train a collaborative filtering model to predict the rating a user will give a particular 

movie. This model subsequently generates a weight matrix of the latent features of each 

video, that we can represent as a vector.  

• Create user vectors by averaging the video game vectors in their review history. 

• Use a nearest neighbor search algorithm to find video games vectors nearby our user 

vectors. These neighbors are our recommendations. 

• Implement a content-based filtering method into our nearest neighbor algorithm that ranks 

video games based on their category keywords. 
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• Recommend video games based on this new hybrid method. 

• Benchmark our recommendations using average precision and recall. 

1.6 Thesis Statement 

Recommendation systems can be used to recommend video games to users based on their unique 

tastes and preferences. User review data can be used to train a collaborative filtering model and video 

game categories can be used build a category-similarity model. This research proposes a hybrid algorithm 

using both a collaborative and a category-similarity model and evaluates the performance using precision 

and recall metrics. This research aims to offer a solution to the cold start problem. 

1.7 Significance of the Study 

In the past, content-based recommendation algorithms have been shown to be less powerful than 

the popular collaborative filtering based algorithms. An early study of content-based filtering measured 

a 60% prediction accuracy, this paled in comparison to the 70% accuracy for collaboration filtering based 

filtering recommendation systems. [2] More recently, content-based filtering research is being done at 

YouTube. In a study by Google, the audio and video content of a video was processed with a content-

based recommendation algorithm. Specifically, machine learning was used to classify the content and 

similar videos could be recommended from that information [31]. This method worked really well for 

recommending related videos and dealing with the cold start problem; though the researchers do admit 

there are weaknesses to their solution. What we can take away from this is that content-based filtering is 

still an algorithm under active development and further contributions are needed to improve the 

technique. 
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1.8 Organization of the Thesis 

Our research begins with an overview of the current literature surrounding recommendation 

systems and its popular implementation methods. It discusses machine learning based recommendation 

methods and the details of the cold start problem. We then discuss our research methodology and specific 

algorithms and metrics that were used. This includes discussing selected training data, the software being 

used, illustrating our hybrid algorithm design, and how we calculate our metrics. Finally, we offer a 

conclusion to our research and suggestions for future exploration. 

1.9 Conclusion 

In this chapter we discussed the value of recommendation systems and the value that our research 

can bring to the field.  Recommendation systems are software systems that are actively being used today 

in companies like Amazon and Google. They offer a lot of value but they still have room for 

improvement. These systems are under active research in the computer science community and our 

research will be a significant contribution to the library of research in this area. We hope that our 

contributions will bring a significant inquiry into the field.   
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CHAPTER 2  

LITERATURE REVIEW 

In this literature review we outline the current state of research in the field of recommendation 

systems (or RSs). This review covers different algorithms being used to optimize and build 

recommendation systems, different types of recommendations systems and different applications for 

recommendation systems. The purpose of this literature review is to develop an understanding of the 

current stage of research in recommendation systems. The strategy used to develop this literature review 

was a lot of investigation and discovery of relevant papers; especially highly acclaimed relevant papers. 

Resources such as Google Scholar and Google Research were used to discover relevant and industry 

leading papers.  

 In summary, the topics discussed in this literature review are: the differences between 

collaborative filtering and content-based filtering recommendation systems, implementation methods for 

RSs, applications of RSs and the cold-start problem of RSs. 

2.1 Recommendation Systems 

Recommendation systems provide value to websites of all kinds; they are currently used in e-

commerce websites, online library databases, video streaming services and music streaming services. In 

this review we will discuss different RS implementation strategies in order to guide us to a new and 

valuable area of research. The first thing that will be discussed is the two major categories of 

recommendation systems, collaborative filtering RSs and content-based filtering RSs. 
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2.2 Collaborative Filtering 

Recommendation systems are used to recommend new and relevant content to users, but in order 

to recommend relevant content the algorithm needs to learn which content to recommend. These two 

algorithms use two different types of data in order to make recommendations. 

 Traditional recommendation systems use collaborative filtering approaches [1] to suggest related 

content to a user, it works by using aggregate user data to make recommendations. For example, if the 

content being recommended is YouTube videos, the system will keep track of how many users have 

watched a particular candidate video right after watching the seed video and recommend these related 

videos to users. This approach works very well when there are plenty of users and the videos are relatively 

popular, but what about when there are no users? This is called the “cold-start problem” [21]; when there 

are not enough users to generate data to build quality predictions. 

2.3 Matrix Factorization 

A collaborative filtering model is a model that predicts the recommendations for future users 

based on the data of previous users. 

Matrix factorization is a popular collaborative filtering algorithm that also uses user data to make 

predictions for future users. Matric factorization uses machine learning to learn to represent some content 

as a collection of features and how strongly each item contains that feature. For example, if it is 

recommending video games, a feature could be “an action game” or a “sports game”. The model would 

learn which features some particular game using training data, and the game is assigned a number 

between -1 and 1 for how strongly that game represents that feature. 

After each video game learns their features we use that numeric information and represent each 

video game as an n-dimensional vector and compare the cosine similarity between vectors in order to 
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find video games that are similar to each other. This is how music recommendations are done at Spotify 

[35] and this technique is a big inspiration for the collaborative filtering aspect of our model. A visual 

representation can be seen in Fig. 2-1. 

Another term for these vector feature representations are “Embeddings”. Because these vectors 

represent hidden features, naturally video games that are similar or related will be close together in the 

vector space.  

2.4 Content-based Filtering 

 A solution to the cold-start problem is content-based filtering RSs [22]. These RSs are used to 

analyze the content itself instead of analyzing the user behaviour around this content [19][20]. When the 

system analyzes only the data file itself, it does not need any other information about user behaviour and 

is therefore not affected by the cold-start problem. Joonseok Lee is a researcher at Google who has 

recently published two studies about using Content-based recommendations for YouTube videos using 

deep learning. His research revolves around analyzing thousands of video frames in order to make an 

Figure 2-1: Music Recommendations Via Vectors at Spotify 
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intelligent recommendation network. Initially he started doing only video analysis [1] and then combined 

both audio and video analysis [2]. The content-based filtering system uses convolutional neural networks 

(CNN) to allow video understanding. Joonseok concluded in the study that this is a useful tool to work 

alongside traditional collaborative filtering approaches. 

2.5 Cold-Start Problem 

Several researchers have developed strategies to solve the cold-start program. One solution to the 

cold-start problem was suggested by Zi-Ke Zhang et al. [3]. The team suggested the use of “social tags” 

[24] which are explicitly defined keyword tags by users which classify the content into categories. As 

soon as two objects share the same tag, then they can be considered related and eligible to be 

recommended to users. 

 A study by Manasi Vartak et al. [4] uses neural networks in order to develop a “meta-learning 

strategy”. Matrix factorization (MF) is one of the most popular techniques for product recommendation, 

but is known to suffer from serious cold-start problems. In Vartak’s research, his team developed an 

algorithm for new items that arrive continuously, in this example tweets. The research uses two deep 

neural network architectures that implement a meta-learning strategy. The first architecture learns a linear 

classifier whose weights are determined by the item history while the second architecture learns a neural 

network whose biases are instead adjusted. 

 Another technique for dealing with the cold start problem is using Latent Factor Models. These 

models map users and items into a dense and reduced latent space that captures their most salient features 

[17][18]. These models provide recommendations results which are better than traditional neighborhood 

methods. 
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2.6 Hybrid Systems 

We have seen good performance from both content-based filtering and collaborative filtering 

recommendation system algorithms. In industry, instead of using one algorithm or the other, it is often 

the case that a hybrid of both algorithms is used [12]. A system that uses both algorithms is called a 

hybrid recommendation system and they are useful because the combination of both algorithms helps to 

make up for the limitations that each other algorithms have [16]. 

 Content-based filtering algorithms are useful when building a user profile. We can look at the 

past purchases/transactions that a user has had on their account and we can use content-based filtering in 

order to infer the general categories of content that the user is interested in. [11] However content-based 

filtering has a limitation that the algorithm cannot differentiate between good and bad content, it simply 

finds a similarity between content. [15] 

 Collaborative filtering systems are powerful because they are better at discovering high popular 

content instead of just content that is similar. Furthermore, collaborative filtering algorithms can deal 

with any kind of content. Where these systems are limited is in regard to the cold-start problem that we 

mentioned earlier. Collaborative filtering algorithm performance also degrades as the number of users 

increases [13]. 

 The combination of both of these algorithm makes for a much more powerful and rounded out 

algorithm [14].  

2.7 Implementation Methods 

Looking beyond the cold-start problem we will describe popular and significant algorithms used 

to implement RSs of different kinds.  
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 Amazon was an early pioneer of recommendation systems, they introduced RSs to their site to 

personalize their online store for each customer [5]. Most recommendation algorithms start by finding a 

set of customers whose purchased and rated items overlap the user’s purchased and rated items (ex. 

collaborative filtering and cluster models). Instead of using those systems, Amazon developed an item-

to-item collaborative filtering algorithm — that focuses on finding similar items, not similar customers. 

Unlike traditional collaborative filtering which uses a very computationally heavy algorithm, the Amazon 

item-to-item algorithm uses online computation that scales independently of the number of customers 

and number of items in the product catalog. 

 Amazon’s algorithm set the stage in 2003 with their algorithm which made a big impact in the 

technological community. Since then there have been many new innovations with RSs, in particular with 

the integration of machine learning technology. Another recommendation system that was developed by 

Google for youtube.com recommends new videos to users [6] using 2 neural networks. The neural 

networks use user-to-user collaborative filtering (unlike amazon’s item-to-item filtering algorithm). For 

the ranking neural network, they use an extreme multi-class classification algorithm where the prediction 

problem is accurately classifying a specific video that is interesting to a given user. 

 Lastly, in another approach Andrew Schein et al. [7] used both collaborative and content-based 

filtering to make predictions to users. Instead of using a neural network for classification, they used a 

naive Bayes classifier. 

2.8 Applications of Recommendation Systems 

We discussed popular areas where RSs are useful, such as YouTube videos, Amazon products 

and tweets, but RSs have many more applications, some of which we’ll discuss here. In the process of 

investigation, we found different innovative application areas for RSs. One example is research at Google 



20 

about personalized news recommendations based on click behaviour [8][23]. They use a Bayesian 

framework for predicting user’s current news interests, which considers both the activities of that 

particular user and the news trends demonstrated in activities of a group of users. 

 MovieLens is an item-to-item collaborative filtering RS [9] inspired by Amazon’s algorithm, that 

recommends relevant movies to users based on user behaviour data. Netflix similarly invests a lot of 

resources into collaborative filtering algorithm [10]. in 2006 Netflix ran a worldwide competition asking 

researchers to develop a better collaborative filtering recommendation system algorithm for their 

platform. The winning team was able to produce an algorithm that improved performance by 10%. 

 There are many more applications of recommendations systems for all types of different 

industries. There is research about developing a RS for RSS feeds and Blogs [25], research to replace the 

need for word of mouth recommendations [26], and an outdoor recommendation system based on user 

location history [27]. Furthermore, there is research about RSs for locations for location-based social 

networks [28], a graph-based friend recommendation system using genetic algorithms [29] and a context 

aware personalized travel RS that recommends activities while traveling [30]. We can see that the 

application areas for RSs are limitless. 

2.9 Conclusion 

Throughout this research we have outlined modern innovations in the field of recommendations 

systems. We discussed machine learning based and non-machine learning based recommendation 

algorithms, contrasted the two popular RS types and illustrated some popular applications for 

recommendation systems. 

 The research done in this paper will be on hybrid recommendation algorithms, which is a 

combination of content-based filtering and collaborative filtering 
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 For our research, the area of interest and opportunity for a unique contribution is in the area of 

hybrid recommendations algorithms, similar to [1] [2] is an area that can be easily researched given the 

resource and time limitations of our research. Additionally, using new machine learning techniques can 

provide new innovations to the field. 
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CHAPTER 3  

METHODOLOGY 

 As discussed previously there are two commons methods for recommendations in 

literature, collaborative filtering and content-based filtering. This research integrates both of these 

and develops a unique hybrid recommendation system for video games that seeks to overcome the 

limitations of the cold start problem.  

Our recommendation system will recommend video games to a specific user, trying to 

personalize the recommendations for the user. We will be focusing on solving the cold start 

problem, which in our case means when a new user to the system has a small number of previous 

item interactions. Such a problem is typically hard for recommendation systems to solve. 

In this chapter we will discuss the details of the proposed model including how to build it, 

what metrics to use to benchmark it and the testing strategy. Fig. 3-1 gives a brief overview of the 

different steps of our research and also an outline of what will be discussed in this chapter. 

3.1 Data Source 

In order to do training and testing we will be using the 2018 Amazon product data set [33] 

which contains video game purchase ratings from May 1996 - July 2014.  

Figure 3-1: An Overview of All Research Steps 
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The two files we are using are Video_Games.json.gz (review data) and 

meta_Video_Games.json.gz (product metadata). Fig. 3-2 shows the four columns we will be using, 

“overall” is a user rating out of 5. 

 

3.2 Data Processing and Filtering 

We have to do multiple operations to the original dataset in order to use it efficiently. Here 

is a list of those operations:  

• Drop table rows that consist of irrelevant video game subcategories like: Accessories, 

Cases, Chargers, and Controllers. 

• Drop video games with reviews from less than 5 people, so that video game data will be 

both in our training and validation set. 

• Drop reviewers with less than 5 reviews, so that user review data will be both in our training 

and validation. 

Figure 3-2: Sample of Filtered Video Game Review Data 
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• Drop columns that we did not use. From Video_Games.json.gz the columns that we didn’t 

use are: verified, reviewTime, asin, reviewerName, reviewText, summary, 

unixReviewTime, vote, style and image. From meta_Video_Games.json.gz the columns 

we did not use are: brand, rank, main_cat, description, also_buy, also_view, price, feature, 

date, tech1, details, similar_item and tech2. 

After dropping all unneeded data, the data was reduced from 2,848,246 rows of video game 

reviews, to 432,782 rows. 

3.3 Proposed Hybrid Model 

The way our hybrid algorithm works is illustrated simply in Fig. 3-3. 1)Pick a user. 

2)Calculate user vector from embedding matrix. 3)Extract top 5 most commons video game 

category keywords for user. 4)Find nearest neighbors of user. 5)Use category keywords to look 

for neighbours with similar keywords. 6)Choose n number of recommendations from these 

neighbours. 

3.3.1 Collaborative Filtering Details 

For our collaborative filtering model, we are using matrix factorization, a collaborative 

filtering algorithm that was described in the literature review. Most importantly we are using 

Figure 3-3: Steps of Hybrid Recommendation Algorithm 
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matrix factorization because of the video game embeddings that get trained from our model. The 

embeddings contain latent features of each video game and they give us numeric values that we 

use to represent each video game as a vector. 

We train a neural network using the Amazon review data, to predict the rating out of 5 that 

some user would give for some video game. We split the review data into 90% for training and 

10% for validation. After training our model, the neural network weight layer (also known as video 

game embedding layer) gives us the information we need to build our collaborative filtering model. 

Specifically, the video game embedding is an n x m matrix, where n is the number of video games 

in our data and m is the arbitrary embedding size, in our case we chose 40. Each row of the matrix 

represents a video game and the features of the game are represented using 40 different numbers. 

We use the 1 x m matrix given for each video game and we use it as a vector that we can compare 

with other video game vectors. The video game vectors are trained in our neural network which 

will be discussed in the following section.  

After each video game is represented as a vector, then we can use the relationship between 

video game vectors to make recommendations. For example, if each number in our m dimensional 

video game vector represents some feature, then different video games that have similar feature 

values should be related in some way. We use this assumption to make recommendations. 

Our collaborative filtering model is a nearest neighbor search of thousands of vectors. In 

order to generate recommendations, we first represent a user as a vector, then we use a nearest 

neighbor algorithm to find nearby vectors to that user which will find video games that should be 

relevant for that user and their vector. 
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Fig. 3-4 shows two examples of this nearest neighbor algorithm, it shows hundreds of blue 

dots which are vector representations of video games. The closer some dots are to each other, the 

more related they will be.  

In Ex. 1 we can see a red arrow pointing to one location and the location is showing 

different games from “The Sims” video game series concentrated nearby each other. This is 

because these games are related. It is to because expected that different games from The Sims 

series have similar vector values, because if the games are from the series they should have very 

similar characteristics. In Ex. 2 we see again an arrow pointing to a region, and this time we see 

different video games from the “Mario” series located nearby each other. 

This is the first element of our recommendation system. By combining this commonly 

practiced technique with a keyword-based content filtering system, the result is a unique algorithm 

Figure 3-4: Our Vector Representation of Video Games 

Ex.1 

Ex.2 
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that generates recommendations that work effectively even with new users that have very few 

reviews (the cold start problem). 

3.3.2 Collaborative Filtering Architecture and Training 

The collaborative filtering uses a neural network that is trained with the PyTorch Python 

library and a helper library called fast.ai. The feedforward structure of the network is as follows. 

There are two embedding layers for the users and the items, these are the weights of the neural 

network. Each row of the user embedding matrix is multiplied (dot product) with each column of 

the item embedding matrix. Afterwards a user bias value and an item bias value is added to the 

resulting value. Lastly the value is put through a sigmoid layer to force the output between values 

0 and 1, this purely makes the calculation more simplified for the hardware and therefore faster. 

We can see the whole network architecture in Fig. 3-5. 

PyTorch looks at the output value and compares it with the ground truth value of our 

training data and computes the error. The error is back-propagated in our network and our weights 

and bias values are changed along the direction of the gradient. We train for the number of epochs 

in order to most minimize our loss function. The optimization function we use is AdamW. 

Figure 3-5: Neural Network Architecture 
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In Fig. 3-5 we see the “User Weights” layer, this is the embedding matrix layer that was 

discussed in section 3.3.1. This is the main output that we care about from the neural network 

model. This weight/embedding matrix is what we use to represent each video game as a vector. 

3.3.3 Content-based Filtering 

For the content-based filtering aspect of our algorithm, we will be using category data for 

each Amazon video game. For example, in the Amazon dataset, the video game “Grand Theft Auto 

3” has the following category keywords “Video Games”, “Retro Gaming & Microconsoles", 

“PlayStation 2”, and “Games”. 

As discussed earlier, a collaborative filtering algorithm uses only past user behaviour to 

make recommendations. Whereas content-based filtering uses only item qualities such as video 

game title, video game publisher, and the year it was published in order to recommend video games 

with similar qualities.  

By combining both of these recommendation algorithms we can build a powerful 

recommender that is still effective even for users with few item interactions. 

Figure 3-6: Collaborative Filtering Only 
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In order to illustrate how this hybrid system will work, we will present here two diagrams. 

Fig. 3-6 is a pure collaborative filtering algorithm. The diagram illustrates a 2D vector space 

containing video games and a user. Given a user vector, the algorithm uses a nearest neighbours 

search to recommend nearby video game vectors.  

We can see the recommended items in red. This algorithm performs well but it suffers 

when the given user has a small number of item interactions, then the algorithm does not have 

enough information to offer accurate recommendations. 

In Fig. 3-7, we can see a given user is given nearest neighbor recommendations just as 

before, but this time the user is also given recommendations outside the nearest neighbor boundary. 

These new recommendations are discovered using our content filtering keyword search algorithm.  

Figure 3-7: Hybrid Model 
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3.3.4 Hybrid Collaborative Filtering and Keyword Search Algorithm  

Our hybrid algorithm combines the matrix factorization approach for collaborative filtering 

and a category keyword content-based filtering approach. The step by step process of 

recommending video games to users with our hybrid recommendation system is described below. 

Algorithm 1. 

1. Choose a user that has 1 or more video game reviews. We will recommend video games 

for this user. 

2. For each video game in user’s review history, look at our video game embedding matrix 

and calculate the average vector for all of the video games. This average vector will 

represent the average video game types this user is interested in. 

3. Extract the top 5 most common video game category keywords from all video games in 

the user’s review history. 

4. If we want to find k recommendations for a user, we will use n candidate neighbors, where 

n = k*2. We use “Annoy” nearest neighbor library to find some n candidate nearest 

neighbour video games for this user vector, using cosine similarity vector comparison. 

5. Using our top 5 most common category keywords, search within the nearest neighbours 

for video games that share similar category keywords. 

6. Rank each video game in our n candidate nearest neighbors by using a combination of 

video game vector cosine similarity and keyword set similarity using the user’s top 5 most 

common category keywords. The top k scoring rankings will be k recommendations for a 

user.   
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The specific function for ranking a video game, as mentioned in step 6 is as follows. Where R 

is a ranking value between 0 and 1, 1 the most relevant recommendation for a user. Where d is a 

measure of cosine similarity between 2 vectors that returns between 0 and 1. Where k is a keyword 

set similarity value between 0 and 1, that compares the similarity of keywords between a user 

keywords and each video game set of category keywords. And where w1 is a constant = 2 and w2 

is a constant = 1. 

𝑅 = 𝑑 ∗ 𝑤1 + 𝑘 ∗ 𝑤2 

We believe that a hybrid model such as this will provide the benefits of collaborative filtering 

along with the benefits of content-based filtering and most notably improving cold start situations 

when new users have a small amount of reviews. 

3.4 Metrics 

To prove the effectiveness of our hybrid recommender model we will compare 

performance between a pure collaborative filtering model versus our hybrid (collaborative and 

content-based recommender model). 

The two main metrics we will be using are Precision and Recall, these are common metrics 

used for recommendation system performance measurement. They both give values between 0 and 

1. These metrics can also be described as a function of true positive (TP), false positive (FP) and 

false negative (FN) values. A model that produces no false positives has a precision of 1.0, and a 

model that produces no false negatives has a recall of 1.0. 

Precision and recall [32] can be defined as, 
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𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
# of our recommendations that are relevant

# of items we recommended
 =  

𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

 

𝑹𝒆𝒄𝒂𝒍𝒍 =
# of our recommendations that are relevant

# of all possible relevant items
 =  

𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

They give us a measure of how good our recommendations are.  

3.5 User Group and Testing Strategy 

In order to generate these precision and recall metrics we will use our user review data for 

testing. We will use a specific user group subset of our data for testing. The user group is users 

have more than 100 item reviews, we choose this group so that we have a lot of data for us to work 

with. From this user group, we will use a sample of 100 users for testing. 

We want to recommend video games to users and we need a way to measure whether the 

recommendations we made were good or not. The way we do this is for every user in our user 

group, we will take their review history and split it in half. Half of their reviews will be used to 

create a model of their video games interest, and the other half of their reviews we will use for 

validation. We can use this data to calculate our metrics. To be more specific I will outline the 

steps of gathering these metrics: 

For each user in our sample 

1. Split user’s review data in half 

2. Create a model for the user’s video game preferences. This is just a vector we can put into 

our vector space. 
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3. Suggest recommendations for this user, using either the collaborative filtering or our hybrid 

recommendation system. 

4. Use the data from our recommendations and from their personal review data in order to 

calculate Precision and Recall from the given formulas. 

Then we can average the Precision and Recall values for each user. 

3.6 Time Complexity Analysis   

Refer to 3.3.4 for the steps of our algorithm. We will describe the time complexity of 

recommending 100 video games to 1 user. 

Y = n + n + c + f 

N is number of reviews in the user’s history. The first n in the equation represents calculating a 

user’s average vector, n the second time represents gathering all the keywords from a user’s item 

reviews. C is the cost of using the “Annoy” nearest neighbor library and reading the index that was 

generated of all the different vectors in order to find 100 nearest neighbors. This c operation is 

doing a search through an optimized index of vectors, it is a constant time, very fast operation, 

nowhere near brute force search. F is the cost of looking at the category keywords of each video 

game in our nearest neighbors in order to find the highest ranking video games. 

3.7 Software Used   

The different software packages we used are: PyTorch, fasti.ai (a helper library on top of 

PyTorch, “Annoy” Python library for finding nearest neighbors and Google Colaboratory for 

training our neural network models. 
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CHAPTER 4  

RESULTS AND ANALYSIS 

Our research goal is to show that by building a hybrid collaborative filtering and content-

based filtering model we can improve recommendation performance, especially for user’s that 

have few reviews (the cold start problem). 

We described the algorithms, data and metrics we would use to compare performance 

between a pure collaborative filtering model versus our novel hybrid model (collaborative and 

content-based filtering). We will now discuss the results of our research. 

4.2 Results 

We will call the pure collaborative filtering model “Collab” and we will call our unique 

hybrid model “Hybrid”. After testing 100 users with more than 100 video game reviews each and 

averaging the results, here are the results we obtained. 

Table 1: Precision Comparison 

 Collab Hybrid (our model) 

Mean Precision 0.014640 0.015960 

Max Precision 0.094000 0.110000 
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Table 2: Recall Comparison 

 Collab Hybrid (our model) 

Mean Recall 0.147731 0.158242 

Max Recall 0.523810 0.476190 

4.3 Analysis  

As we can see from the data in Fig. 4-1 and Fig. 4-2, while using our hybrid 

recommendation model, both Precision and Recall values were improved. Precision improved by 

nearly 9% and recall improved by 7%. Additionally, for our max precision, we see that our model 

returns a larger value. It is only in the case of max recall, where we see our model have a lower 

value.  

Figure 4-1: Precision Plot 
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In the last paragraph we were discussing only average precision and recall values. In Fig. 

4-3 we can see a sample of individual users and their metrics. In Fig. 4-3 we can see that almost 

without fail, when we recommend to users with our hybrid recommendation model, the precision  

and recall scores improve.  

 

What do these results tell us? We can see that with this user group, our recommendation 

performance improves when we use our hybrid system that utilizes the keywords from video game 

categories. 

Figure 4-2: Recall Plot 
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4.4 Literature Comparison 

We can see that precision and recall improved with our hybrid model compared to the 

baseline collaborative model, but we still must consider if these results are good in terms of other 

research studies. For that question we look at literature comparing the performance of different 

collaborative filtering algorithms [34].  

In Fig. 4-4 we look at precision values for three different datasets that were tested and we 

can compare it against our precision value of 0.015960. We see that our precision value belongs 

somewhere in the middle of these example values. 

 

Figure 4-3: Precision and Recall Model Comparison Per User 

Figure 4-4: Literature Collaborative Precision 
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In Fig. 4-5 we similarly look at recall values for three different datasets that were tested 

and we see how it compares against our model recall value of 0.158242. In this example we see 

our recall value being higher in all three dataset cases.  

What we can conclude from this comparison is that our research has the potential to be 

competitive against current literature metrics regarding recommendation systems.  

4.5 The Cold Start Problem 

In our thesis we state that this model is intended for use with users that have low-medium 

user reviews. The reason for this is unlike collaborative filtering, our model does not depend solely 

on user data, it also uses keywords of video games to make recommendations. 

A clarification is needed, the term the cold start problem is sometimes used to refer to the 

situation with recommendation systems where there is a new user who has no previous user 

reviews. This is not what we are referring to in our research, we are strictly doing research to aid 

in the cold start problem with users that have low-medium reviews. It is not possible to make 

accurate recommendations to a user when we have absolutely no information about that user. 

This model can be helpful for recommending to users with low-medium previous reviews 

because this method does not depend solely on user review data. Even if a user only has 1 or 2 

Figure 4-5: Literature Collaborative Recall 
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user reviews, our algorithm will still compute a vector for this user and provide reasonable results 

based using out category keyword comparison. This is the power of content-based filtering 

algorithms, that make use of item content like category keywords. Therefore, this model can be 

helpful to solve the cold start problem for users with low-medium previous reviews. 

Our research focused improving the cold start problem specifically when there were new 

users with a “small amount” of previous reviews. That is to say we were researching users who 

did have at least 1 previous item review.  

4.6 Limitations 

The problem with researching the cold start problem with a static dataset, is it can be harder 

to validate if our recommendations were of good quality. With a static dataset all we have is 

historical data. If we make a recommendation to a user, it may be a good recommendation but if 

the recommendation was not in their item history, then we could not validate it as relevant.  

If we built an online recommendation system, then we would be able to more easily validate 

if a recommendation was good or not. We could validate to see if the user interacted with that 

recommendation or not.  

4.7 Training Results 

Fig. 4-6 and Fig. 4-7 provide us with statistics about the training phase of our neural 

network model. We see our validation loss decrease over 9 epochs. 
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Figure 4-6: Validation Loss Over Time 

Figure 4-7: Validation Loss Over Epochs 
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CHAPTER 5  

CONCLUSION, FUTURE IMPROVEMENTS, DISCUSSION 

5.1 Conclusion 

This research proposes a novel technique for dealing with the cold start problem. By 

combining a neural network trained matrix factorization approach and a category keyword content-

based filtering approach, our model provides better precision and recall metrics than a standard 

collaborative filtering approach and comparable results to literature. We also presented an 

argument that this hybrid system can be beneficial to users who have low-medium previous 

reviews because of less dependence on user review data. 

5.2 Future Improvements  

Due to lack of time we did testing on only one user group, on users with a high number of 

video game reviews. This made our results more straightforward as there was a lot of data for us 

to use for validation and for calculating our metrics of precision and recall. In the future we would 

like to do further testing with different user groups. The first group that comes to mind is a group 

of users who have only a small-medium number of video game reviews. This would correlate more 

closely to the discussion of cold start problem and would be valuable data. We could do a 

comparison against different user groups. 

Also, in the future it would be beneficial for testing our recommendation relevancy if we 

deployed this recommendation onto the internet.  

A final improvement we could implement is adding additional information in our content-

based ranking. For example, instead of just using category keyword comparisons, we could also 
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integrate user features like a user’s age, gender, country of origin or analyze a user’s written review 

for keywords. 

5.3 Discussion 

Based on our research I would recommend that more research should be done into the area 

of hybrid-based recommendation systems. Collaborative filtering is the most popular algorithm 

for recommendations systems that is widely covered in literature [7], but it is valuable for research 

to be done in other content-based fields of recommendation systems. There are clearly benefits to 

be had when combining collaborative filtering with other methods, such as with a keyword-based 

content filtering algorithm like our case. Benefits like dealing with the cold start problem and less 

of a dependence on user data. 
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