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Abstract

Lampreys contribute to the health of aquatic ecosystems and are targeted in both 

subsistence and commercial fisheries. Despite their ecological and commercial importance, the 

management and conservation of native lampreys have been largely overlooked. The goal of this 

study was to close current knowledge gaps of lamprey biology through the examination of 

Lethenteron spp. in Alaska. This study applied two molecular techniques, DNA metabarcoding 

and microsatellite genotyping, to (1) characterize the diet of marine-phase Arctic lamprey 

Lethenteron camtschaticum (N = 250) in the eastern Bering Sea and (2) investigate the 

population structure of larval lampreys Lethenteron spp. (N = 120) within and among three 

Yukon River tributaries. A combination of visual observations and DNA metabarcoding revealed 

the presence of diagnostic structures/tissues (i.e., eggs, fin[s], internal organs, otoliths, and 

vertebrae) and detected DNA sequences of ten ray-finned fishes in the diets of L. camtschaticum. 

The most frequent prey taxa were Pacific sand lance Ammodytes hexapterus, Pacific herring 

Clupeapallasii, gadids, and capelin Mallotus villosus. Five of the ten taxa identified in this study 

were reported for the first time as prey for L. camtschaticum. To investigate the genetic diversity 

of larval lampreys, a recognized knowledge gap for populations in Alaska, a total of 81 larval 

lampreys were successfully genotyped at all loci. Global FST of larvae was 0.074 (95% CI: 0.042 

-  0.110), while pairwise FST values among the three localities examined ranged from 0.066 -  

0.081. Hierarchical model-based Bayesian clustering analyses detected three genetic clusters (K 

= 3) among all larval lampreys and two genetic clusters (K = 2) among Chena River larvae; no 

further genetic clustering was identified within the remaining two tributaries. Estimates of 

contemporary gene flow indicated reciprocal migration among sites. The diet analyses indicated 

anadromous L. camtschaticum function as flesh-feeding predators that prey upon pelagic fishes
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in the eastern Bering Sea, while genetic analyses suggested that larval lamprey aggregations 

within three Yukon River tributaries exhibited higher levels of genetic diversity than are 

typically found among broad-ranging populations of anadromous lamprey species. Ultimately, 

this study highlighted the value of molecular techniques to improve our understanding of the 

biology of a poorly studied fish species in Alaska.
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General Introduction

The taxon Cyclostomata includes two surviving groups of agnathan (jawless) fishes, 

lampreys and hagfishes. Referred to as ‘living fossils’, lampreys (Petromyzontiformes) are an 

order of ancient vertebrate fishes with fossil records dating back to 360 million years before 

present (Renaud 2011). The life cycle of lampreys includes distinct larval, macrophthalmia (e.g., 

juvenile), and adult phases. All lampreys begin their life cycle as larvae burrowed in fine silt 

substrates, filter feeding on diatoms, organic detritus, and bacteria in freshwater tributaries 

(Hardisty and Potter 1971; Sutton and Bowen 1994, 2009). This larval period is estimated to last 

from two to seven years in duration, and appears to vary within and among species (Manzon et 

al. 2015). The metamorphic transition between the larval and macrophthalmia stages is 

characterized by radical morphological and physiological changes that occur over a period of up 

to four months (Manzon et al. 2015). During metamorphosis: 1) the larval buccal funnel (e.g., 

oral hood) develops into an adult oral suctorial disc; 2) eye spots undergo transformation into 

functional eyes; 3) fins differentiate and enlarge; 4) exterior pigmentation changes; 5) and the 

shape and structure of the branchial region surrounding gill pouches are modified (Hardisty and 

Potter 1971; Manzon et al. 2015). Although morphologically similar in their larval form, 

different lamprey species often exhibit discernable differences in both body size and feeding 

mechanisms as juveniles (Zanandrea 1959; Vladykov and Kott 1979).

Metamorphosed juvenile lamprey exhibit either parasitic or nonparasitic life-history 

strategies, depending on the species (Hardisty and Potter 1971; Renaud 2011; Manzon et al.

2015). Parasitic lampreys migrate to the ocean or remain in freshwater lakes or rivers 

(landlocked) during a maturing growth phase. Nonparasitic forms (referred to as brook lampreys) 

remain in freshwater throughout their lifecycle and do not feed after metamorphosis upon which
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they reach sexual maturity. Parasitic lampreys suction and feed on flesh and/or blood of teleost 

host fishes (Potter and Hilliard 1987; Renaud et al. 2009). Although rare, lampreys attached to 

sharks and large marine mammals (e.g., whales) have also been reported (Gallant et al. 2006; 

Nichols et al. 2011; Samarra et al. 2012). Anadromous juveniles are estimated to remain at sea 

for up to four years, but a portion of small-bodied individuals (i.e., praecox form) are 

documented returning to freshwater after only one year at sea upon reaching maturation 

(Kucheryavyi et al. 2007; Renaud 2011; Orlov et al. 2014). Previous research indicates that sea 

lamprey Petromyzon marinus do not exhibit natal homing during spawning migrations in part 

due to extensive migrations for marine feeding and involuntary host movements (Bergstedt and 

Seelye 1995; Waldman et al. 2008; Hatch and Whiteaker 2009). Instead, spawning migrations of 

sexually maturing, adult lampreys are guided to suitable habitat by pheromone odors (i.e., bile 

salts) from stream-resident larvae (Moore and Schleen 1980; Sorensen et al. 2003; Vrieze et al. 

2011). Although limited research has been conducted on lamprey homing, this behavior is 

believed to be similar among different lamprey species (Moser et al. 2015).

The functional role of lampreys in aquatic ecosystems should not be underestimated. 

Characterized as ‘ecosystem engineers’, lampreys provide an important function by maintaining 

the health of aquatic ecosystems throughout their life cycle (Shirakawa et al. 2013; Hogg et al. 

2014; Boeker et al. 2016). For example, larval lamprey burrowing and feeding mechanisms 

aerate substrates and contribute to nutrient cycling in freshwater ecosystems (Shirakawa et al. 

2013; Boeker et al. 2016). Spawning adults alter stream habitats during redd building and likely 

contribute marine-derived nutrients from spawned-out carcasses (Hogg et al. 2014; Maitland et 

al. 2015). Lampreys serve an important function as forage prey in freshwater and marine 

ecosystems. Fishes in freshwater tributaries prey upon eggs during lamprey spawning as well as
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upon emergent and burrowed larvae (Renaud 1997; Cochran 2009). Juvenile lampreys are also 

susceptible to predation by predatory fishes (e.g., burbot Lota lota, inconnu Stenodus nelma, 

northern pike Esox lucius) and birds (e.g., gulls Larus spp., terns Sterna spp., herons Ardea spp.) 

during their out-migration to the marine environment (Renaud 1997; Close et al. 2002; T. Sutton, 

UAF, personal communication). Although the extent to which predation on lampreys occurs in 

marine ecosystems remains unquantified, they are recognized as an important component of the 

diets of pinnipeds, seabirds, and various marine fishes (Roffe and Mate 1984; Close et al. 2002; 

Cochran 2009).

Current lamprey taxonomy recognizes life-history variants as distinct species 

(Mecklenburg et al. 2002; Renaud 2011; Potter et al. 2015). However, debate is still ongoing as 

to the degree of speciation between parasitic and nonparasitic forms (reviewed in Docker 2009). 

Analyses of mitochondrial DNA (mtDNA) markers suggest a lack of reciprocal monophyly 

through multiple independent formations of nonparasitic populations from parasitic species 

(Espanhol et al. 2007; Boguski 2009). Measures of fine-scale genetic variation using nuclear 

markers further supports gene flow between parasitic and nonparasitic forms (Yamazaki et al. 

2006; Docker et al. 2012; Rougemont et al. 2015; Bracken et al. 2015); however, the level of 

gene flow has been shown to be dependent on the degree of geographic connectivity (e.g., 

allopatric versus parapatric versus sympatric) among populations (Yamazaki et al. 2011; Taylor 

et al. 2012; Mateus et al. 2016; Rougemont et al. 2015; Rougemont et al. 2016). A study using a 

novel reduced representation sequencing approach was the first to report fixed allelic differences 

between parasitic and nonparasitic forms of Lampetra, but that study examined individuals from 

only a single tributary in Portugal (Mateus et al. 2013). Using a more robust dataset, a separate 

study similarly reported a subset of diagnostic alleles that could be used to unambiguously
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discriminate between parasitic and nonparasitic Lampetra regardless of geographic connectivity 

(Rougemont et al. 2016). These results failed to support the hypothesis of genotypic plasticity 

between Lampetra species pairs; however, a broader application of research is needed to 

examine the degree of differentiation for the other lamprey genera.

Five lamprey species (Pacific lamprey Entosphenus tridentatus, Arctic lamprey 

Lethenteron camtschaticum, river lamprey Lampetra ayresii, Alaskan brook lamprey L. 

alaskense, and western brook lamprey L. richardsoni) are found in Alaskan tributaries 

(Mecklenburg et al. 2002; Renaud 2011). Arctic lamprey is the most common species in Alaska, 

with known spawning aggregations throughout the Yukon, Kuskokwim, and Susitna river 

drainages (Morrow 1980; Mecklenburg et al. 2002). With a semi-circumpolar distribution 

ranging from eastern Eurasia to the coast of northwestern North America, Arctic lamprey have a 

more northerly distribution than any other lamprey species (Potter et al. 2015). Both landlocked 

and anadromous forms of parasitic Arctic lamprey have a semi-circumpolar distribution (Heard 

1966; Kucheryavyi et al. 2007; Yamazaki et al. 2011). Although four brook lamprey species are 

congeneric with Arctic lamprey (Alaskan brook lamprey Lethenteron alaskense, Siberian brook 

lamprey L. kessleri, American brook lamprey L. appendix, and the far eastern brook lamprey L. 

reissneri), Alaskan brook lamprey are the only brook lamprey species indigenous to Alaska and 

Canada (Mecklenburg et al. 2002; Renaud 2011).

Subsistence harvests of Arctic lamprey within the Yukon River drainage date back to the 

late 1800s (Renaud 2011). Village residents harvested lampreys with dip nets or ‘eel sticks’ 

during large, concentrated migrations in rivers that occurred under the ice from late October to 

early December (Brown et al. 2005). These harvests have not only been important to supplement 

summer and fall salmon harvests for human consumption and sled dog food, but lamprey skins
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and oil have functional uses such as small bags for holding fish and conditioning for animal skin 

boots (Brown et al. 2005). A test commercial fishery targeting anadromous Arctic lampreys was 

started in 2003, and currently remains in operation with annual harvest limits set at 20,000 kg 

(Hayes and Salomone 2004). The purpose of the test fishery was to assess the economic demand 

for lampreys, test collection gear types, and gain additional information on lamprey distribution 

and abundance (Hayes and Salomone 2004). Commercially harvested lampreys have been 

primarily sold to Asian pharmaceutical markets, European and Asian food markets, and research 

institutions (Renaud 1997, 2011). Despite the commercial and subsistence harvest of this species, 

the status of lamprey populations in Alaska and ancestral genetic relationships among 

aggregations in different drainages within the state are currently unknown (ADF&G 2006; 

Thorsteinson and Love 2016).

The overarching goal of this thesis was to increase our knowledge of lamprey biology 

through the utilization of molecular genetic techniques. Several research areas have been 

identified as priorities for the conservation of native lamprey species including (1) the role of 

anadromous lampreys as predators in marine ecosystems and (2) a further understanding of 

genetic diversity and fine-scale population structure (Mesa and Copeland 2009). Chapter one of 

this thesis utilized a novel high-throughput sequencing approach to investigate the diet of 

marine-phase Arctic lamprey in the eastern Bering Sea. Knowledge about lamprey-host 

interactions in the marine environment comes primarily from observations of lamprey scars on 

hosts. For Arctic lamprey specifically, many these observations are limited to Russian estuaries 

and rivers (Birman 1950; Nikol’skii 1956; Gritsenko 1968). Arctic lamprey are believed to be 

particularly abundant in the Bering Sea off the coast of Alaska, making this region an ideal 

system to examine trophic interactions in a different area of their distribution.
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Chapter two characterizes the genetic diversity among larval populations of Lethenteron 

spp. within the Yukon River drainage, Alaska, using microsatellite markers. Although studies 

focused on the population structure of Lethenteron spp. have been investigated in Eurasia, little 

is known about populations in Alaska, despite their abundance (Yamazaki et al. 2006, 2011, 

2014; Sutton 2017). The Yukon River is the largest river drainage in Alaska with known 

spawning aggregations of anadromous Arctic lamprey. In addition, both the commercial and 

subsistence fisheries are located along the lower Yukon River, making this drainage an important 

area to conduct initial investigations into the genetic population structure of Lethenteron spp. 

Overall, this research highlights the value of genetics as a research tool to investigate ecological 

and evolutionary knowledge gaps of Lethenteron spp., a largely overlooked Arctic fish species.
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Chapter 1: Utilizing DNA metabarcoding to characterize the diet of marine-phase 
Arctic lamprey (Lethenteron camtschaticum) in the eastern Bering Sea1

Abstract

To understand the marine feeding ecology of Arctic lamprey (Lethenteron 

camtschaticum) in the eastern Bering Sea, visual observations and DNA metabarcoding of gut 

contents were utilized to characterize diet composition (N = 250 lampreys) in 2014 and 2015. 

Differences among individual diets were evaluated by collection year, capture site, and fish size. 

Hard structures and tissues were observed during visual examinations of gut contents, and 10 

ray-finned fish taxa were identified by DNA metabarcoding. The most frequent taxa included 

Pacific sand lance (Ammodytes hexapterus), Pacific herring (Clupea pallasii), gadids, and 

capelin (Mallotus villosus). Five taxa were reported for the first time as prey for Arctic lamprey. 

Individual diets differed between collection years, among capture sites, and among size classes; 

however, both collection year and size explained only a small portion of diet variability (R2 = 

0.02 and 0.04, respectively) relative to station site (R2 = 0.49). These study results indicate that 

Arctic lamprey are opportunistic flesh eaters, and highlighted the value of DNA metabarcoding 

to characterize the diet of a poorly understood lamprey species.

1 Shink, K.G., Sutton, T.M., Murphy, J.M., and Lopez J.A. Utilizing DNA metabarcoding to
characterize the diet of marine-phase Arctic lamprey (Lethenteron camtschaticum) in the eastern 
Bering Sea. Prepared for submission to Canadian Journal of Fisheries and Aquatic Sciences.
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Introduction

Characterizing marine-phase lamprey diets pose a special challenge to researchers. 

Occurrences of lamprey wounds on teleost fishes and hard structures (e.g., scales and/or fins) 

recovered from lamprey intestinal contents have been routinely used to identify prey species 

(Beamish 1980; Maitland et al. 1984; Novomodnyy and Belyaev 2002; Renaud et al. 2009). 

While occurrences of lamprey wounds provide insights into lamprey-host marine interactions, 

identified hosts may be biased toward highly valued and frequently encountered commercial 

fishes (Hardisty and Potter 1971). Hard structures can be taxonomically informative, but they 

often have variable recovery and digestion rates and may not be consistently ingested during 

predation, which can lead to biased or misleading dietary inferences (Cottrell et al. 1996; Cottrell 

and Trites 2002). In addition, digested blood and/or chunks of flesh recovered from lamprey 

intestinal tracts generally yield limited details on prey composition and are not taxonomically 

informative. As a result, marine trophic interactions of anadromous lamprey species remain 

poorly understood (Mesa and Copeland 2009).

The food habits of closely related species of lamprey can vary from blood to the flesh of 

their prey (Potter and Hilliard 1987; Renaud et al. 2009). Flesh-feeding species are generally 

characterized with having smaller buccal glands, a smaller oral disc with fewer teeth, and having 

an enlarged ‘tongue-like piston’ (Potter and Hilliard 1987; Renaud et al. 2009). Lampreys that 

exhibit flesh-feeding food habits target smaller-bodied fishes and inflict severe damage that often 

results in the death of the prey (Roos et al. 1973; Beamish 1980; Maitland et al. 1984; Renaud et 

al. 2009). Flesh-feeding species are known to ingest large pieces of flesh and, in some instances, 

have been shown to penetrate the prey’s body cavity to consume their internal organs (Beamish 

and Williams 1976; Beamish 1980; Maitland et al. 1984). In contrast, blood-feeding lampreys
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primarily target larger fish species that are less susceptible to damage because wounds from 

blood feeders are characterized by a single hole or slide where blood can continuously be 

extracted (Potter and Hilliard 1987; Renaud et al. 2009; Patrick et al. 2009). Previous research 

has identified the feeding mode of different lamprey species based on morphological 

characteristics of the oral disc and dentition (Potter and Hilliard 1987; Renaud et al. 2009).

Both European river lamprey (Lampetrafluviatilis) and Western river lamprey (Lampetra 

ayresii) are known to feed on flesh (Beamish and Williams 1976; Beamish 1980; Maitland et al. 

1984). Arctic lamprey (Lethenteron camtschaticum) was inferred to be a flesh-feeding lamprey 

species, but this conclusion was based on morphological similarities in dentition to European and 

Western river lampreys, not explicit diet evaluations (Potter and Hilliard 1987; Renaud et al.

2009). Visual examination of the intestinal contents of European river lamprey revealed the 

presence of large chunks of flesh, spines, scales, eggs, and internal organs (reviewed in Hardisty 

and Potter 1971; Maitland et al. 1984; Renaud et al. 2009). Similarly, fins, scales, skin, bones, 

muscle, and internal organs have been reported in the intestinal contents of Western river 

lamprey (Beamish and Williams 1976; Beamish 1980). Unidentifiable remains were reported in 

0 -  56% of examined lampreys (Beamish 1980; Maitland et al. 1984; Beamish and Neville 

1995). To date, no studies have examined the intestinal contents of Arctic lamprey, and the 

potential occurrence and frequency of these structures in the diet is currently unknown.

Much of what is known about the diet of Arctic lamprey has originated from visual 

observations of lamprey wounds on teleost fishes captured within Russian estuaries (Nikol’skii 

1956; Gritzenko 1968; Heard 1966; Novomodnyy and Belyaev 2002; Shevlyakov and Parensky

2010). Arctic lampreys are believed to be prey upon pelagic schooling fishes (e.g., Osmeridae, 

Clupeidae) and juvenile Pacific salmon (Oncorhynchus spp.; Nikol’skii 1956; Gritzenko 1968;
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Novomodnyy and Belyaev 2002; Shevlyakov and Parensky 2010; Siwicke 2014). General 

marine distributions of Arctic lamprey indicate high concentrations of these predators along the 

eastern Bring sea shelf, but information on lamprey trophic interactions in this region are scarce 

(Orlov et al. 2014). Overlapping patterns of abundance inferred from catch-per-unit effort 

(CPUE) data in the Bering Sea have shown co-occurrence between Arctic lamprey and Pacific 

herring (Clupea pallasii) and juvenile Pacific salmon (Siwicke 2014). In the Laurentian Great 

Lakes, the distribution of sea lamprey (Petromyzon marinus) appears to be influenced by the 

distribution of prey fish availability (Johnson and Anderson 1980; Bence et al. 2003; Harvey et 

al. 2008). If this relationship is an important driver of Arctic lamprey distribution in the Bering 

Sea, research suggests Pacific herring and Pacific salmon are important hosts for this species of 

lamprey (Siwicke 2014).

The application of molecular techniques to characterize prey species in predator diets 

improves detection and taxonomic resolution of prey relative to traditional morphological 

methods (Deagle et al. 2005; Braley et al. 2010; Carreon-Martinez et al. 2011; Moran et al.

2016). Continued development and refinement of ‘DNA metabarcoding’ approaches for accurate 

species identification has made it possible to characterize diet components that lack taxonomic 

characters without a priori information on predator diets (Valentini et al. 2009; Pompanon et al. 

2012; Taberlet et al. 2012). Prey DNA can be isolated from fecal or gastrointestinal tract samples 

and used for targeted sequencing of taxonomically informative genome regions (reviewed in 

Pompanon et al. 2012). However, DNA metabarcoding has only been used in a limited number 

of studies involving predatory fish diet evaluations (Leray et al. 2013, Berry et al. 2015; Leray et 

al. 2015; Harms-Tuohy et al. 2016).

The objective of this study was to characterize the diet of marine-phase Arctic lamprey in
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the eastern Bering Sea through a combination of visual observations of intestinal contents and 

DNA metabarcoding. The specific objectives of this study were to: (i) assess if diets of Arctic 

lamprey change as a function of capture year, capture site, and/or size class; and (ii) evaluate the 

relative performance of diet composition inferred from previous reports of visual observations of 

lamprey scars to that revealed by DNA metabarcoding.

Methods 

Lamprey Collections

Marine-phase Arctic lamprey (N = 250) were collected using surface rope trawls (Baker

2011) during the U.S. Bering-Aleutian Salmon International Survey (BASIS) on the eastern 

Bering Sea shelf between September 04 and September 22 in 2014 (n = 122), and September 01 

and September 16 in 2015 (n = 128; Figure 1.1). Lamprey were captured at 30 of 57 stations in 

2014 and 26 of 37 stations in 2015, and immediately frozen whole. Specimens were shipped to 

the University of Alaska Museum of the North where they were stored at -20°C until further 

processing.

Measurements and Processing

In the laboratory, whole Arctic lamprey were thawed and measured for total length (LT; 

nearest 1 mm) and total weight (WT; nearest 0.01 g) prior to dissection. Whole intestinal tracts 

were removed from each specimen, and contents were designated as anterior or posterior based 

on its location in the intestine. Contents within the first half of the intestine were identified as 

anterior, while contents within the second half were identified as posterior. Intestinal contents 

were separated using a metal forcep and scraped into separate sterile petri dishes and weighed to 

the nearest 0.01 g. Intestinal contents were examined using a Leica M125C stereoscope (Leica
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Microsystems, Wetzlar, Germany) at a magnification of 8 -  100x for the presence of diagnostic 

hard structures (e.g., scales, otoliths, bone fragments). Observed hard structures were removed 

and preserved in 96% molecular-grade ethanol. To act as a validation measure for DNA 

metabarcoding sequences, a subset (n = 61) of diagnostic tissues (e.g., sizable flesh pieces, 

internal organs) were removed and preserved in 96% molecular-grade ethanol to be used in 

targeted Sanger sequencing.

Upon completion of visual observations, anterior and posterior intestinal contents were 

placed in separate 15 mL vials and frozen at -20°C. Between processing each lamprey, all 

laboratory surfaces were wiped with a 10% bleach solution and covered with a fresh VWR® 

table protector with leak-proof moisture barrier to minimize the possibility of cross-specimen 

contamination. In addition, all dissecting tools were submerged in 20% bleach solution for five 

minutes and thoroughly rinsed with nuclease-free water.

DNA Extractions

Total genomic DNA (gDNA) was isolated from sub-sampled tissues using the Gentra 

Puregene Tissue Kit (Qiagen, California, USA). During the final elution step, DNA was eluted 

and suspended in 50 pL nuclease-free water for subsequent molecular analyses, which varied 

from the manufacturer’s recommendations.

To maximize the quality of isolated DNA, anterior intestinal contents were thawed and 

mechanically homogenized to reduce intra-sample variability and facilitate DNA isolation. The 

tip of the tissue homogenizer was submerged in a 10% bleach solution, rinsed with nuclease-free 

water, and wiped dry between samples. Total gDNA was extracted from four 200 mg sub

samples of homogenized anterior content using the DNeasy® mericon food kit (Qiagen,
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California, USA) following the manufacturer’s short fragment recovery protocol. When a total of 

800 mg could not be recovered from the anterior content, a combination of anterior and posterior 

content was used. Extraction negative controls were systematically incorporated during 

extractions. Final DNA concentrations were determined by fluorometry on a Qubit instrument 

using reagents from the double stranded broad range DNA fluorometry assay kit (Invitrogen, 

CA, USA).

PCR -  Sanger Sequencing

Polymerase chain reactions (PCRs) for Sanger sequencing of sub-sampled tissues were 

conducted using universal DNA barcode primers. Primers FishF1 -  5’

TCAACCAACCACAAAGACATTGGCAC 3’ and Fish R1 -  5’

TAGACTTCTGGGTGGCCAAAGAATCG 3’ were used to target a 655 basepair (bp) region of 

the cytochrome c oxidase subunit I (COI) in fishes (Ward et al. 2005). The COI PCR was 

conducted in 25 pL reaction volumes with 1 pL template DNA and the following reagent 

concentrations: 1X Go Taq polymerase buffer, 0.4 pM of each primer, 0.8 mM dNTP’s, 2.0 mM 

Mg2+, and 0.025 U/pL of Go Taq polymerase. Temperature cycling conditions for PCRs were an 

initial denaturation at 94°C for two minutes followed by 32 cycles of 94°C for 45 seconds, 51 °C 

for 30 seconds, and 72°C for 45 seconds, followed by a final extension at 72°C for seven minutes 

and 30 seconds then held at 4°C. A PCR negative control was included in all amplifications. The 

PCR products were visualized on 1.5% agarose electrophoresis gels to verify target amplification 

lengths and lack of external contamination. Sanger sequencing was conducted on an ABI 

3730XL at Eurofins MWG Operon (Louisville, KY, USA). Sequences were visually inspected 

and analyzed with the CodonCode Aligner software (Dedham, MA, USA) and compared to
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publically available DNA sequences in GenBank using the basic local alignment search tool 

(BLAST; Altschul et al. 1990).

PCR -  DNA Metabarcoding

A vertebrate-specific primer set targeting a 106 basepair (bp) segment of the 

mitochondrial genome coding the 12s ribosomal RNA gene was used for DNA metabarcoding 

(Riaz et al. 2011). Eight forward and 12 reverse primers with internal sequence tags (Appendix 

A) were generated following the approach described in Glenn et al. (2016) to preserve the ability 

to assign sequence reads back to individual lamprey specimens. The PCR reactions were 

conducted in 25 pL reaction volumes with 5 pL template DNA and the following reagent 

concentrations: 1X Go Taq polymerase buffer, 0.4 pM of each primer, 0.8 mM dNTP’s, 2 mM 

Mg2+, 10 ug/mL of bovine serum albumin (BSA), and 0.025 U/pL of Go Taq polymerase. The 

PCR conditions were an initial denaturation at 95°C for five minutes followed by 28 cycles of 

95°C for 30 seconds, 57°C for 30 seconds, and 72°C for 30 seconds. A PCR negative control 

was included in all amplifications. Fragment size and absence of contamination was confirmed 

by visualization of PCR products on 2.5% agarose electrophoresis gels.

Indexed PCR products were combined into four pools. Each pool contained samples with 

a unique combination of indexes, one randomly selected DNA extraction negative control, and 

one amplified PCR negative control. Additional library preparation steps were conducted at 

GeneWiz (South Plainfield, NJ, USA). Pooled libraries were multiplexed and 150PE sequenced 

on an Illumina MiSeq. The run included 10% PhiX DNA spike-in control to improve the data 

quality of low-diversity samples.
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Bioinformatics

Initial performance of the MiSeq run was evaluated with FastQC v.0.11.5 (Andrews

2010). Individual sequencing reads were demultiplexed using BBDuk within BBTools package 

(J. Bushnell, Joint Genome Institute, unpublished data) and a modified PERL script by Eric 

Collins (University of Alaska Fairbanks, https://github.com/rec3141/demult/blob/master/run- 

bbduk.sh) allowing no mismatches per barcode. Primers were trimmed from demultiplexed reads 

using CUTADAPT v.1.12 (Martin 2011). Sequencing reads that contained no primer, contained 

greater than 10% error rates (> 1 primer mismatch), or fell outside of the target read length (96 -  

116 bp) were discarded. Paired-end reads were merged with a minimum overlap of 30 bp using 

PEAR v.0.9.6 (Zhang et al. 2014). Trimmed and merged reads were then run through a 

VESEARCH v.2.4.0 (Rognes et al. 2016) pipeline that included (1) de novo chimera checking, 

(2) dereplicating 100% identical sequence, and (3) clustering sequences at a > 96% similarity 

threshold into operational taxonomic units (OTUs). To exclude sequencing noise and/or artifacts, 

dereplicated sequences assigned to individual samples were removed from downstream analyses 

using VSEARCH. Dereplicated sequences were classified as noise and/or artifacts when a 

sequence occurred a fewer number of times in an individual sample when compared to the 

frequency with which it occurred in DNA and PCR negative controls.

A custom BLAST database of complete mitochondrial fish genomes was generated for 

this study using the downloaded fish genome files that were compiled in the Mitochondrial 

Genome Database of Fish (MitoFish; Iwasaki et al. 2013). The database was created using the 

‘makeblastdb’ option within BLAST+ v.2.6.0 (Camacho et al. 2009) and contained 2,148 unique 

fish mitochondrial genome sequences.
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Final OTU sequences were queried against the custom BLAST database using the 

command-line tool ‘blastn’ within BLAST+. Search parameters specified an e-value threshold of 

10-5, 90% or greater sequence identity, and a maximum retention of 10 sequence alignments. 

BLAST files were imported into MEGAN (Huson et al. 2016) to visualize taxonomic 

assignments using customized least common ancestor (LCA) parameters (min score = 100, top 

percent = 8, min support = 1) and the LCA algorithm weighted at 80%. A sequence similarity of 

> 98% was considered to be a species level match. Otherwise, OTUs were assigned to the 

highest taxonomic classification that encompassed all significant matches. The final taxonomic 

incidence (e.g., presence/absence) table contained all individual samples and was exported from 

MEGAN for subsequent analyses.

Statistical Analysis

Rarefaction analysis and the Chao2 species richness estimator was calculated to assess 

the effect of sample size on the number of detected host species and estimate the number of 

additional samples needed to fully describe the diet components of Arctic lamprey. Sample- 

based estimates and 95% confidence intervals were calculated in EstimateS v.9.1.0 (Coldwell 

2013) using 1,000 sample-order randomizations.

Multivariate statistical analyses were conducted using the VEGAN package (Oksanen et 

al. 2013) in R (R Core Team 2013). The incidence table was used to generate distance matrices 

among samples using the Jaccard distance measure. Permutational Multivariate Analysis of 

Variance using distance matrices (PERMANOVA) was run with 999 permutations using the R- 

VEGAN function ADONIS to examine the statistical significance and percentage of dietary 

variation that could be explained by collection year (e.g., 2014 and 2015), station sites where
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Arctic lamprey were captured (e.g., 39), and total length (e.g., LT). For LT analyses, lampreys 

were grouped into 12 size-class intervals of 25 mm, which corresponded to 1-inch length 

measurements. The 12 size-class intervals encompassed the smallest and largest individual 

lampreys (187 -  464 mm, respectively). Nonmetric multidimensional scaling (NMDS) plots 

were used to visually investigate patterns in the diets of individuals for each of the above factors.

Results

Intestinal contents from were recovered from all Arctic lamprey (N = 250). The LT of 

examined specimens ranged from 187 -  465 mm, while WT ranged from 8.0 -  192.1 g (Figure 

1.2). Recovered diagnostic structures included eggs, fins and/or fin rays, internal organs, otoliths, 

scales, vertebrae and uncategorized bone fragments (Figure 1.3). Hard structures were recovered 

from 103 (84%) and 112 (88%) intestinal tracts in 2014 and 2015, respectively (Figure 1.4). Fins 

and/or fin rays were the most abundant structure in both years, while otoliths were the most 

infrequent structures.

Sanger Sequencing

Genomic DNA from 28 of the 61 (46%) tissue samples were successfully amplified by 

PCR. Of those successful amplifications, 27 sequences were taxonomically identified to species 

based on the criteria of > 98% sequence similarity to publicly available sequences in the NCBI 

database. Seven species were detected in 2014 and 2015, respectively (Table 1.1). Two species, 

Chinook salmon and yellowfin sole (Limanda aspera), were detected only from samples 

collected in 2014. Two other species, pink salmon (Oncorhynchus gorbuscha) and Pacific sand 

lance (Ammodytes hexapterus), were detected only in 2015 samples. The remaining five species
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[walleye pollock (Gadus chalcogrammus), Pacific sand lance (Ammodytes hexapterus), capelin 

(Mallotus villosus), Pacific herring (Clupea pallasii), and saffron cod (Eleginus gracilis)] were 

detected in the samples from both study years.

DNA Metabarcoding

The high throughput sequencing run produced 21,590,316 raw reads of which 18,862,344 

were assigned back to unique index tags. A small proportion of the reads (0.1%) were assigned 

to one of the eight negative control samples; however, no sequencing reads remained in the 

negative control samples after the filtering process. A total of 7,557,159 high quality reads 

(Phred score > Q38) were partitioned among 221 (88%) samples and used in downstream 

analyses. The OTU clustering approach implemented in VSEARCH delineated 261 OTUs in the 

intestinal contents. All OTUs were identified to the level of taxonomic family, genus, or species. 

The sample-based rarefication curve appeared to reach a plateau, which indicated that the 

number of sampled individuals provided an adequate representation of species in the diet of 

Arctic lamprey in the eastern Bering Sea. However, the Chao2 estimator suggested that the 

dietary extent of Arctic lamprey had not been fully described (Figure 1.5).

A total of 10 ray-finned fish taxa were detected. These taxa were comprised of eight 

orders, with four taxa taxonomically identified to family, one identified to genera, and five 

identified to species (Table 1.2). Pacific sand lance, Pacific herring, Gadidae, and capelin 

occurred most frequently in the diet of Arctic lamprey (Table 1.2). Capelin and Pacific herring 

were the dominant taxa for 2014 and 2015, respectively. The number of taxa detected within 

individual Arctic lamprey intestinal contents ranged from one (66%) to four (0.5%), but two and 

three taxa were also observed within individual gut contents (27% and 6%, respectively).
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Only 27 of 61 (44%) tissue samples yielded high quality sequences. All species that were 

identified by sequencing a 655 bp region of COI from sub-sampled tissues were represented in 

the high-throughput final sequence library, but there were three taxonomic groups (i.e., daubed 

shanny (Leptoclinus maculatus), sculpins (Cottidae), and sticklebacks (Gasterosteidae)) were 

only detected in the high-throughput dataset (Table 1.1). Identical taxa were detected by both 

methods in 20 of 27 (74%) samples. The DNA metabarcoding approach detected more than one 

taxonomic group in 6 of 27 (22%) individual gut contents when compared to taxon identified by 

sub-sampled tissues.

Statistical analysis

The diets of Arctic lamprey were significantly different between collection years 

(ADONIS: R2 = 0.011, P = 0.009) and among the 12 size classes (ADONIS, R2 = 0.037; P = 

0.020), but each factor accounted for only a small proportion of diet variability. Diets of 

individual Arctic lamprey were also significantly different among station sites and accounted for 

a moderate proportion of diet variability (ADONIS: R2 = 0.487, P = 0.001). Although NMD 

scaling produced clustering in a two-dimensional plot and provided a good representation of the 

data (Kruskal’s stress value = 0.04), visual inspections of each plot did not reveal obvious 

patterns or clusters solely represented by individuals belonging to different temporal, spatial, or 

biological groups.

Discussion

This study is the first to implement gene-based identification of lamprey diet 

composition. Specifically, this study characterized the diet of marine-phase Arctic lamprey using

27



a combination of intestinal content observations and DNA metabarcoding. Metabarcoding 

analysis detected Pacific sand lance, Pacific herring, gadids, and capelin as the most frequent 

taxa in the gut contents of Arctic lamprey. Reports of lamprey wounds on clupeids and osmerids 

are common among flesh-feeding species (Nikol’skii 1956; Maitland et al. 1984; Beamish and 

Williams 1976; Beamish 1980; Beamish and Neville 1995). Identified diet components largely 

supported previous reports of Arctic lamprey wounds on species such as saffron cod, rainbow 

smelt, Pacific herring, and Pacific salmon (Nikol’skii 1956; Gritsenko 1968; Novomodnyy and 

Belyaev 2002; Shevlyakov and Parensky 2010). Attacks on juvenile Pacific salmon have also 

been widely reported in estuaries (Beamish 1980; Beamish and Neville 1995; Novomodnyy and 

Belyaev 2002; Shevlyakov and Parensky 2010). Surprisingly, Pacific salmon were detected in 

only eleven Arctic lampreys in the current study, which may be attributed to limited sampling of 

nearshore estuarine habitats or greater abundances of other prey species (Maitland et al. 1984; 

Siwicke 2014).

The current study was also the first to document three species (i.e., walleye pollock, 

Pacific sand lance, and daubed shanny) and two families (i.e., Cottidae and Pleuronectidae) as 

diet components of Arctic lamprey. Although these taxa were reported in lamprey diets for the 

first time, only Pacific sand lance and walleye pollock were detected in more than one 

individual. This suggests that the importance of Cottidae, Pleuronectidae, and daubed shanny as 

prey in this region may be relatively low. These results highlighted the ability of DNA 

metabarcoding to reveal rare and previously unreported dietary components of a poorly studied 

lamprey species in the eastern Bering Sea.

The presence of diagnostic hard structures and observations of tissue masses within 

Arctic lamprey intestinal tracts are indicative of a flesh-feeding approach. Morphological
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structure, dentition, and size of the oral disc determine the feeding mode of parasitic lampreys 

(Potter and Hilliard 1987; Renaud et al. 2009). Previous studies that examined these 

morphological differences classified Arctic lamprey as a flesh-feeding species, but this 

conclusion was inferred by morphological similarities to known flesh-feeding species and not 

visual examinations of intestinal contents (Potter and Hilliard 1987; Renaud et al. 2009). 

Although the occurrence of hard structures and internal organs in intestinal tracts have been 

widely documented for other flesh-feeding lamprey species (reviewed in Hardisty and Potter 

1971; Maitland et al. 1984; Beamish and Williams 1976; Beamish 1980; Renaud et al. 2009), 

these results are the first to visually confirm flesh, internal organs, and hard structures in the 

intestinal tracts of Arctic lamprey. Ultimately, the study results supported the hypothesis that 

Arctic lamprey are a flesh-feeding species; however, without prior knowledge or direct 

observations, the feeding modality of marine-phase Arctic lamprey remains unknown.

Flesh-feeding Arctic lamprey may be predators, scavengers, or exhibit a combination of 

these foraging behaviors. The frequency and type of diagnostic hard structures (i.e., fins, 

vertebrae, etc.) observed within the gut contents of Arctic lamprey offer limited insight into the 

specific feeding behavior(s) of this species because skeletal structures may be ingested after 

predation events or during scavenging. It is presumed that flesh-feeding lampreys actively pursue 

live prey and use their oral disc as a suction mechanism to facilitate feeding until they dislodge 

or the prey sustains life-ending injuries. The occurrence of Arctic lamprey attached to live prey 

and the presence of healed oral disc wounds suggest a predatory behavior (Birman 1950; 

Nikol’skii 1956; Heard 1966; Shevlyakov and Parensky 2010). Without direct visual 

observations, it is unknown if Arctic lamprey continues to feed after the death of its prey. 

However, this behavioral feeding modality has been observed in flesh-feeding Western river
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lamprey and the Miller Lake lamprey (Entosphenus minimus; Bond and Kan 1973; Beamish 

1980). This behavior directly contrasts with that of blood-feeding sea lamprey and Pacific 

lamprey (Entosphenus tridentatus), which are thought to abandon prey that are dead or dying 

(Hardisty and Potter 1971). Only one species of lamprey, the Caspian lamprey (Caspiomyzon 

wagneri), are thought to be scavengers, but this conclusion was based on indirect evidence 

(Renaud 2011).

If Arctic lamprey predominantly exhibits predatory behavior, the frequency with which 

vital skeletal structures and organs were observed suggests that prey attacked in the eastern 

Bering Sea sustain high mortality rates. Lamprey feeding mode (i.e., blood versus flesh) and prey 

body size are factors related to the survival probability of prey (Beamish and Williams 1976; 

Cochran 1984; Potter and Hilliard 1987; Renaud et al. 2009). Flesh-feeding wounds are typically 

larger in size than localized wounds characteristic of blood-feeding species (Beamish and 

Williams 1976; Potter and Hilliard 1987). Larger fishes are more likely to recover from a 

lamprey attack than smaller-bodied prey (Cochran and Jenkins 1994; Swink 2003; Patrick et al. 

2009). Flesh-feeding lampreys are thought to prefer smaller adult or juvenile fishes as prey even 

though some species grow to a larger body size (Birman 1950; Gritsenko 1968; Hardisty and 

Potter 1971; Roos et al. 1973; Maitland et al. 1984; Cochran and Jenkins 1994; Renaud et al. 

2009). Laboratory studies have demonstrated that flesh-feeding Western river lamprey can kill 

and consume a clupeid host within an hour; these attacks may expose the vertebral column as up 

to three quarters of the body can be consumed (Beamish and Williams 1976). Although the 

presence of skeletal structures and musculature suggests a predatory approach, scavenging of 

dead prey may also account for the presence of hard structures and tissues in intestinal contents.
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It is possible that the feeding behavior of lampreys varies with food availability. 

Although live prey was shown to elicit an immediate feeding response in Western river lamprey 

and Pacific lamprey, these species were also observed scavenging on previously deceased fishes 

and carrion (Beamish and Williams 1976; Beamish 1980). A combination of predatory and 

scavenging behaviors was similarly proposed for flesh-feeding Miller Lake lamprey (Bond and 

Kan 1973). Likewise, Arctic lamprey may exhibit scavenging behavior during opportunistic and 

concentrated abundances of carrion (i.e., mass die-offs of semelparous capelin after spawning) in 

the eastern Bering Sea. Incidental deaths of individual shoaling fishes caused by larger predators 

may provide further scavenging opportunities. Because of the relatively poor swimming 

performance of lampreys relative to teleost fishes (Beamish 1974; Dauble et al. 2006), 

scavenging appears to a plausible scenario under which Arctic lamprey could more easily 

consume highly mobile fishes (i.e., Pacific sand lance). However, the possibility of ‘secondary 

predation’ (i.e., detecting the consumed prey of the primary prey in lamprey intestinal contents) 

may have influenced the study results.

The observation of entire digestive tracts within the intestinal tracts of Arctic lamprey 

increased the probability of detecting signals of secondary predation in this study. Secondary 

predation has been documented in other dietary studies, and is recognized as a limitation of DNA 

metabarcoding (Deagle et al. 2009; O’Rorke et al. 2012; Bowser et al. 2013; De Barba et al. 

2014; Pinol et al. 2014). The eastern Bering Sea is a highly connected and complex marine 

ecosystem (Aydin and Mueter 2007). Within this region, Pacific herring and gadids feed on 

larval and juvenile capelin (Hjermann et al. 2004; Godiksen et al. 2006), while Pacific sand lance 

are important prey for Pacific herring, capelin, rainbow smelt, and Pacific salmon (Robards and 

Piatt 1999). Pacific sand lance may also feed on Pacific herring eggs and larvae (Sturdevant et al.
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2000). Finally, both chum salmon (Oncorhynchus keta) and Chinook salmon (O. tshawytscha) 

consume juvenile walleye pollock in addition to Pacific herring and capelin (Davis et al. 2009). 

Due to the multifaceted roles of detected taxa as both predator and prey, it is not possible to 

definitively determine the extent of secondary predation in this study. The most frequent prey 

taxa were detected both individually and with multiple taxa within individual intestinal tracts. 

Ultimately, the ambiguity of Arctic lamprey feeding behavior and food-web interconnectivities 

in the eastern Bering Sea highlights a limitation of DNA metabarcoding. Without a priori 

knowledge or direct visual observations of feeding behaviors under natural conditions, key 

aspects of the feeding ecology of Arctic lamprey remain speculative. The use of DNA barcoding 

in combination with visual observations and stable-isotope techniques may circumvent the 

limitations of any one technique and provide additional insight into the trophic position of Arctic 

lampreys relative to other fish species in the Bering sea ecosystem.

Predator sample sizes were large enough to examine potential spatial (e.g., sample site), 

temporal (e.g., collection year), and biological (e.g., size class) variability in Arctic lamprey diet 

composition. Although both biological and temporal variables were significant, they explained 

only a small portion of the differences between diets (R2 = 0.011 and 0.037, respectively). 

Lamprey diet composition does not appear to be driven by inter-annual variation or body size in 

the eastern Bering Sea ecosystem; however, the significant relationship between lamprey size 

and consumed prey may support previous observations of larger lampreys consuming larger prey 

(Maitland et al. 1984; Swink 1990, 2003). Of the four dominant taxa identified in this study, 

Pacific sand lance were not detected in of large lampreys (> 425 mm). Herring and capelin were 

detected in gut contents belonging to lampreys of the largest size classes (i.e., 425 -  449 and 450 

-  475 mm). Gadids were detected in mid-range size classes (300 -  424 mm), and capelin was
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detected in all but one size class (250 -  274 mm). Herring was the only prey taxa that was 

detected in all size classes. This may reflect a forced transition to larger-bodied prey as lamprey 

body size and buccal funnel diameter increases, in comparison to lampreys of smaller body size, 

which may retain flexibility to prey upon fish species of varying body sizes.

Although it is recognized that different lamprey species exhibit specialized feeding 

mechanisms, Arctic lampreys may be generalist predators that opportunistically consume prey 

driven by regional species abundances in the eastern Bering Sea. Of the factors examined, spatial 

variability was significant and explained the greatest portion of differences between individual 

dietary components. This may be explained by the varying abundances of different species at 

station sites where lampreys were captured. Abundances of Arctic lamprey and potential hosts 

(mainly Pacific herring and Pacific salmon) were shown to be highly correlated in the eastern 

Bering Sea and were hypothesized to be driven by predator-prey interactions (Siwicke 2014). 

This trend has similarly been observed in regions of the Laurentian Great Lakes where sea 

lamprey wounds were most frequently observed on fish species with the highest seasonal 

abundance (Johnson and Anderson 1980; Bence et al. 2003; Harvey et al. 2008). Because flesh- 

feeding lamprey species are generally of smaller body size, it would be metabolically more 

efficient to feed on fish species of greater abundance as opposed to seeking out specific rarer 

prey species. The overlapping distribution of lampreys and pelagic schooling fishes may be 

primarily driven by habitat preferences along the eastern Bering Sea shelf, and these distributions 

exhibit temporal and spatial variations (Orlov et al. 2014). Further evaluations are necessary to 

assess dietary variation of Arctic lampreys that may be driven by seasonal fish assemblages.

Both gene-based identification techniques produced similar dietary results, however, 

there were discrepancies and biases associated with each approach. Species identification using
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DNA metabarcoding and the COI gene fragment detected identical taxonomic groups for 78% of 

individuals. Additional taxa were detected with DNA metabarcoding in 25% of individuals, 

suggesting that the tissue samples that could be analyzed with the COI gene fragment did not 

fully capture the dietary variability within individual lampreys. This also proved to be a 

limitation of DNA metabarcoding. Samples where different taxonomic groups were identified 

with different methods indicated that all taxa within individual intestinal tracts were not always 

detected, which may be an unintended result of isolating DNA from only the anterior portion of 

intestinal contents. The taxonomic resolution of the DNA metabarcoding primer set was unable 

to discriminate among sequences from fishes in the families Cottidae, Gadidae, Gasterosteidae, 

and Pleuronectidae and the genus Oncorhynchus. However, the fine-scale taxonomic resolution 

of the COI gene fragment provided additional trophic insight. Sequenced tissue samples 

identified one species within the family Gadidae, walleye pollock and pink and Chinook salmon. 

While it cannot be confirmed that the remaining Gadidae and Pacific salmon sequences were 

those specific species, it provided additional taxonomic resolution to the trophic dataset. 

Ultimately, the large sample size and little taxonomic variability observed in this study 

characterized the dietary variability of Arctic lampreys in the eastern Bering Sea.

We endeavored to improve our knowledge of the food habits of Arctic lamprey. Indeed, 

visual observations of intestinal contents confirmed the flesh-feeding approach of this species 

(Potter and Hilliard 1987; Renaud et al. 2009), while the DNA metabarcoding approach 

identified the importance of pelagic schooling fishes in the diet of Arctic lamprey. However, 

additional study is still needed to investigate if diet varies by season as well as throughout their 

geographic distribution. While this approach cannot explicitly ascertain the feeding behavior 

modality or ‘secondary predation’, it will provide insight into the food-web dynamics in the
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eastern Bering Sea and the need for additional observations of lamprey feeding behavior under 

both environmental and laboratory conditions. Finally, the term ‘parasitic’ has been used to 

describe fishes that consume tissue and/or internal fluids of a host species without killing their 

host (Elliott et al. 2002). While this description may apply to some lamprey species, the results 

from this study suggest that the term parasitic should not be used as a generalization to describe 

the feeding ecology of all lampreys.

35



References

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment 

search tool. J. Mol. Biol. 215(3): 403-410. doi:10.1016/S0022-2836(05)80360-2.

Andrews, S. 2010. FastQC: a quality control tool for high throughput sequence data. Available 

from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc

Aydin, K., and Mueter, F. 2007. The Bering Sea—a dynamic food web perspective. Deep-Sea 

Research II, 54(23): 2501-2525. doi: 10.1016/j.dsr2.2007.08.022.

Baker, B. 2011. A hydrodynamic mouth rope spreading system for an autonomous sampling 

trawl. AFSC Processed Rep. 2011-02, 17 p. Alaska Fish. Sci. Cent., NOAA, Natl. Mar. 

Fish. Serv., 7600 Sand Point Way NE, Seattle WA 98115.

Beamish, R.J. 1974. Swimming performance of adult sea lamprey, Petromyzon marinus, in 

relation to weight and temperature. Trans. Am. Fish Soc. 103(3): 355-358.

Beamish, R.J. 1980. Adult biology of the River lamprey (Lampetra ayresi) and the Pacific

lamprey (Lampetra tridentata) from the Pacific coast of Canada. Can. J. Fish. Aquat. Sci. 

37(11):1906-1923. doi: 10.1139/F80-232.

Beamish, R.J., and Williams, N.E. 1976. A preliminary report on the effects of river lamprey

(Lampetra ayresii) predation on salmon and herring stocks. Fisheries and Marine Service 

Technical Report No. 611, Fisheries Research Board of Canada, Nanaimo, B.C.

Beamish, R.J., and Youson, J.H. 1987. Life history and abundance of young adult Lampetra

ayresi in the Fraser River and their possible impact on salmon and herring stocks in the 

Strait of Georgia. Can. J. Fish. Aquat. Sci. 44(3): 525-537. doi:10.1139/F87-065.

36

http://www.bioinformatics.babraham.ac.uk/projects/fastqc


Beamish, R.J., and Neville, C.M. 1995. Pacific salmon and Pacific herring mortalities in the

Fraser River plume caused by river lamprey (Lampetra ayresi). Can. J. Fish. Aquat. Sci. 

52(3): 644-650. doi:10.1139/F95-064.

Bence, J.R., Bergstedt, R.A., Christie, G.C., Cochran, P.A., Ebener, M.P., Koonce, J.F., Rutter, 

M.A., and Swink, W.D. 2003. Sea lamprey (Petromyzon marinus) parasite-host 

interactions in the Great Lakes. J. Great Lakes Res. 29(1): 253-282. doi: 10.1016/S0380- 

1330(03)70493-6.

Berry, O., Bulman, C., Bunce, M., Coghlan, M., Murray, D.C., and Ward, R.D. 2015.

Comparison of morphological and DNA metabarcoding analyses of diets in exploited 

marine fishes. Mar. Ecol. Prog. Ser. 540:167-181. doi:10.3354/meps11524.

Birman, I.B. 1950. Parasitism of salmon of the genus Oncorhynchus by the Pacific lamprey.

Izv. Tikhookean. Nauchno-issled. Inst. Rybn. Khoz. Okeanoger. (TINRO) 32: 158-160. 

(Tranls. from Russian by Fish. Res. Board. Can. Transl. Serv. 290 (1960): 3 p.)

Bond, C.E. and Kan, T.T. 1973. Lampetra (Entosphenus) minima n. sp., a dwarfed parasitic 

lamprey from Oregon. Copeia, 1973(3): 568-574. doi: 10.2307/1443122.

Bowser, A.K., Diamond, A.W., and Addison, J.A. 2013. From puffins to plankton: a DNA-based 

analysis of a seabird food chain in the northern Gulf of Main. PLoS ONE, 8(12): e83152. 

doi: 10.1371/journal.pone.0083152

Braley, M., Goldsworthy, S.D., Page, B., Steer, M., and Austin, J.J. 2010. Assessing

morphological and DNA-based diet analysis techniques in a generalist predator, the 

arrow squid Nototodarusgouldi. Mol. Ecol. Resour. 10(3): 466-474. doi: 10.1111/j.1755 

0998-2009-02767.x.

37



Brodeur, R.D. 1990. A synthesis of the food habits and feeding ecology of salmonids in marine 

waters of the North Pacific. INPFC Document, FRI-UW-9016. Fisheries Resources 

Institute, University of Washington, Seattle. 38 pp.

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, 

T.L. 2009. BLAST+: architecture and applications. BMC Bioinformatics, 10(1): 421. 

doi:10.1186/1471-2105-10-42.

Carreon-Martinez, L.B., Johnson, T., Ludsin, S.A., and Heath, D.D. 2011. Utilization of stomach 

content DNA to determine diet diversity in piscivorous fishes. J. Fish Biol. 78(4): 1170

1182. doi: 10.1111/j.1095-8649.2011.02925.x.

Cochran, P.A. 1984. Size-selective attacks by parasitic lampreys: consideration of alternate null 

hypothesis. Oecologia, 67(1): 137-141. doi:10.1007/BF00378465.

Cochran, P.A., and Jenkins, R.E. 1994. Small fishes as hosts for parasitic lampreys. Copeia, 

1994(2): 499-504. doi: 10.2307/1446998.

Colwell, R.K. 2013. EstimateS: Statistical estimation of species richness and shared species from 

samples. Available from: http://purl.oclc.org/estimates

Cottrell, P.E., Miller, E.H., and Trites, A.W. 1996. Assessing the use of hard parts in faeces to 

identify harbor seal prey: results of captive-feeding trails. Can. J. Zool. 74(5): 875-880. 

doi: 10.1139/z96-101.

Cottrell, P.E., and Trites, A.W. 2002. Classifying prey hard part structures recovered from fecal 

remains of captive stellar sea lions (Eumetopias jubatus). Mar. Mamm. Sci. 18(2): 525

539. doi: 10.1111/j.1748-7692.2002.tb01053.x.

38

http://purl.oclc.org/estimates


Dauble, D.D., Moursund, R.A., and Bleich, M.D. 2006. Swimming behavior of juvenile Pacific 

lamprey, Lampetra tridentata. Env. Biol. Fish. 75: 167-171. doi: 10.1007/s10641-005- 

4698-7.

Davis, N.D., Volkov, A.V., Efimkin, A.Ya., Kuznetsova, N.A., Armstrong, J.L., and Sakai. O. 

2009. Review of BASIS salmon food habit studies. N. Pac. Anadr. Fish Comm. Bull. 5: 

179-208.

De Barba, M., Miquel, C., Boyer, F., Mercier, C., Rioux, D., Coissac, E., and Taberlet, P. 2014. 

DNA metabarcoding and multiplexing and validation of data accuracy for diet 

assessment: application to omnivorous diet. Mol. Ecol. Resour. 14(2): 306-323. doi: 

10.1111/1755-0998.12188.

Deagle, B.E., Tollit, D.J., Jarman, S.N., Hindell, M.A., Trites, A.W., and Gales, N.J. 2005.

Molecular scatology as a tool to study diet: analysis of prey DNA in scats from captive 

Stellar sea lions. Mol. Ecol. 14(6): 1831-1842. doi: 10.1111.j.1365-294X.2005.02531.x. 

Deagle, B.E., Kirkwood, R., and Jarman, S.N. 2009. Analysis of Australian fur seal diet by

pyrosequencing prey DNA in faeces. Mol. Ecol. 18(9): 2022-2038. doi: 10.1111/j.1365 

294X.2009.04158.x.

Elliott, M., Hemingway, K.L., Costello, M.J., Duhamel, S., Hostens, K., Labropoulou, M.,

Marshall, S., and Winkler, H. 2002. Links between fish and other trophic levels. In Fishes 

in Estuaries. Edited by M. Elliott and K.L. Costello. Blackwell Science, London, U.K. pp. 

124-216.

39



Glenn, T.C., Nilsen, R., Kieran, T.J., Finger, J.W., Pierson, T.W., Bentley, K.E., Hoffberg, S., 

Louha, S., Garcia-De-Leon, F.J., Angel del Rio Portilla, M., Reed, K., Anderson, J.L., 

Meece, J.K., Aggery, S., Rekaya, R., Alabady, M., Belanger, M., Winker, K., and 

Faircloth, B.C. 2016. Adapterama I: Universal stubs and primers for thousands of dual 

indexed Illumina libraries (iTru and iNext). bioRxiv doi: 10.1101/049114.

Gritsenko, O.F. 1968. On the question of an ecological parallelism between lampreys and

salmon. Izv. Tikhookean Nauchno-Issled. Inst. Rybn. Khoz. I. Okeanogr. 65: 157-169. 

(In Russian).

Godiksen, J.A., Hallfredsson, E.H., and Pedersen, T. 2006. Effects of alternative prey on

predation intensity from herring Clupea harengus and sandeel Ammodytes marinus on 

capelinMallotus villosus larvae in the Barents Sea. J. Fish Biol. 69(6): 1807-1823. doi: 

10.1111/j.1095-8649.2006.01250.x.

Hardisty, M.W., and Potter, I.C. 1971. The general biology of adult lampreys. In the biology of 

lampreys, volume 1. Edited by M.W. Hardisty and I.C. Potter. Academic Press, London, 

U.K. pp. 127-206.

Harms-Tuohy, C.A., Schizas, N.V., and Appeldoorn, R.S. 2016. Use of DNA metabarcoding for 

stomach content analysis in the invasive lionfish (Pterois volitans) in Puerto Rico. Mar. 

Ecol. Prog. Ser. 558: 181-191. doi: 10.3354/meps11738.

Harvey, C.J., Ebener, M.P., and White, C.K. 2008. Spatial and ontogenetic variability of sea

lamprey diets in Lake Superior. J. Great Lakes Res. 34(3): 434-449. doi: 10.3394/0380- 

1330(2008)34[434:SAOVOS]2.0.CO;2

Heard, W.R. 1966. Observations on lampreys in the Naknek River System of South West 

Alaska. Copeia. 1966(2): 332-339.

40



Hjermann, D.O., Stenseth, N.C., and Ottersen, G. 2004. Indirect climatic forcing of the Barents 

Sea capelin: a cohort effect. Mar. Ecol. Prog. Ser. 273: 229-238. doi: 

10.3354/meps273229.

Huson, D.H., Beier, S., Flade, I., Gorska, A., El-Hadidi, M., Mitra, S., Ruscheweyh, H.J., and

Tappu, R. 2016. MEGAN Community Edition -  Interactive Exploration and Analysis of 

Large-Scale Microbiome Sequencing Data. PLoS Comput. Biol. 12(6): e1004957. doi: 

10.1371/journal.pcbi.1004957.

Iwasaki, W., Fukunaga, T., Isagozawa, R., Yamada, K., Maeda, Y., Satoh, T.P., Sado, T., 

Mabuchi, K., Takeshima, H., Miya, M., and Nishida, M. 2013. MitoFish and 

MitoAnnotator: a mitochondrial genome database of fish with an accurate and automatic 

annotation pipeline. Mol. Biol. Evol. 30(11): 2531-2540. doi: 10.1093/molbev/mst141.

Johnson, B.G.H., and Anderson, W.C. 1980. Predatory-phase sea lampreys (Petromyzon 

marinus) in the Great Lakes. Can. J. Fish. Aquat. Sci. 37(11): 2007-2020. doi: 

10.1139/F80-241.

Leray, M., Yang, J.Y., Meyer, C.P., Mills, S.C., Agudelo, N., Ranwez, V., Boehm, J.T., and R.J. 

Machida. 2013. A new versatile primer set targeting a short fragment of the 

mitochondrial COI region for metabarcoding metazoan diversity: application for 

characterizing coral reef fish gut contents. Front. Zool. 10(1): 34. doi: 10.1186/1742

9994-10-34.

Leray, M., Meyer, C.P., and Mills, S.C. 2015. Metabarcoding dietary analysis of coral dwelling 

predatory fish demonstrates the minor contribution of coral mutualists to their high 

partitioned, generalist diet. PeerJ. 3: e1047. doi: 10.7717/peerj.1047.

41



Maitland, P.S., Morris, K.H., East, K., Schoonoord, M.P., van der Wal, B., and Potter, I.C. 1984. 

The estuarine biology of the River lamprey, Lampetrafluviatilis, in the Firth of Forth, 

Scotland, with particular reference to size composition and feeding. J. Zool. 203(2): 211

225. doi: 10.1111/j.1469-7998.1984.tb02328.x.

Martin, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads.

EMBnet J. 17(1): 10-12. doi:10.14806/ej.17.1.200 

Mesa, M.G., and Copeland, E.S. 2009. Critical uncertainties and research needs for restoration 

and conservation of native lampreys in North America. In Biology, management, and 

conservation of lampreys in North America. Edited by L.R. Brown, S.D. Chase, M.G. 

Mesa, R.J. Beamish, and P.B. Moyle. American Fisheries Society Symposium 72, 

Bethesda, Maryland, pp. 311-321.

Moran, Z., Orth, D.J., Schmitt, J.D., Hallerman, E.M., and Aguilar, R. 2016. Effectiveness of 

DNA barcoding for identifying piscine prey items in stomach contents of piscivorous 

catfishes. Env. Biol. Fish. 99(1): 161-167. doi: 10.1007/s10641-015-0448-7.

Mundahl, N.D., Erickson, C., Johnston, M.R., Sayeed, G.A., and Taubel, S. 2005. Diet, feeding 

rate, and assimilation efficiency of American brook lamprey. Env. Biol. Fish. 72(1): 67

72. Doi: 10.1007s/10641-004-6591-1.

Nikol’skii, G.B. 1956. Some data on marine life cycle of Arctic lamprey Lampetra japonica.

Zool. Zh. 34(4): 588-591. (In Russian)

Novomodnyy, G.V., and Belyaev, V.A. 2002. Predation by lamprey smolts Lampetra japonica 

as a main cause of Amur chum salmon and pink salmon mortality in the early sea period 

of life. North Pacific Anadromous Fish Commission Technical Report No. 4, Khabarovsk 

Branch of Pacific Research Fisheries Centre (TINRO-Centre), Vancouver, B.C.

42



Oksanen, J., Guillaume-Blanchet, F., Kindt, R., and Wagner, H.H. 2013. Vegan: community 

ecology package. R package version 2.0-10.

Orlov, A.M., Baitalyuk, A.A., and Pelenev, D.V. 2014. Distribution and size composition of the 

Arctic lamprey Lethenteron camtschaticum in the North Pacific. Oceanology, 54(2): 180

194. doi: 10.1134/S0001437014020192.

O’Rorke, R., Lavery, S., Chow, S., Takeyama, H., Tsai, P., Beckley, L.E., Thompson, P.A.,

Waite, A.M., and Jeffs, A.G. 2012. Determining the diet of larvae of western rock lobster 

(Panulirus cygnus) using high-throughput DNA sequencing techniques. PLoS ONE, 7(8): 

e42757. doi: 10.1371/journal.pone.0042757.

Patrick, H.K., Sutton, T.M., and Swink, W.D. 2009. Lethality of Sea lamprey parasitism on Lake 

Sturgeon. Trans. Am. Fish. Soc. 138(5):1065-1075. doi: 10.1577/T08-058.1

Pinol, J., San Andres, V., Clare, E.L., Mir, G., and Symondson, W.O. 2014. A pragmatic 

approach to the analysis of diets of generalist predators: the use of next-generation 

sequencing with no blocking probes. Mol. Ecol. Resour. 14(1): 18-26. doi: 10.1111/1755

0998.12156.

Pompanon, F., Deagle, B.E., Symondson, W.O., Brown, D.S., Jarman, S.N., and Taberlet, P.

2012. Who is eating what: diet assessment using next generation sequencing. Mol. Ecol. 

21(8): 1931-1950. doi: 10.1111/j.1365-294X.2011.05403.x.

Potter, I.C., and Hilliard, R.W. 1987. A proposal for the functional and phylogenetic significance 

of differences in the dentition of lampreys (Agnatha: Petromyzontiformes). J. Zool. 

212(4): 713-737. doi: 10.1111/j.1469-7998.1987.tb05966.x.

R Core Team (2013) R: a language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Australia. Available from: http://www.R-project.org.

43

http://www.R-project.org


Renaud, C.B. 2011. Lampreys of the world: an annotated and illustrated catalogue of lamprey 

species known to date. FAO Species Catalogue for Fishery Purposes No. 5, Rome, FAO. 

Available from: www.fao.org/3/a-i2335e.pdf.

Renaud, C.B., Gill, H.S., and Potter, I.C. 2009. Relationships between the diets and

characteristics of the dentition, buccal glands and velar tentacles of the adults of the 

parasitic species of lamprey. J. Zool. 278(3): 231-242. doi: 10.1111/j .1469- 

7998.2009.00571.x.

Riaz, T., Shehzad, W., Viari, A., Pompanon, F., Taberlet, P., and Coissac, E. 2011. ecoPrimers: 

inference of new DNA barcode markers from whole genome sequence analysis. Nucleic 

Acids Res. 39(21): e145. doi: 10.1093/nar/gkr732.

Robards, M.D., and Piatt, J.F. 1999. Sand lance as cornerstone prey for predator populations.

U.S. Department of Agriculture. Research Paper PNW-RP-521, Portland, Oregon, U.S.

Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahe, F. 2016. VSEARCH: a versatile open 

source tool for metagenomics. PeerJ. 4: e2584. doi: 10.7717/peerj.2584.

Roos, J.F., Gilhousen, P., Killick, S.R. 1973. Parasitism on juvenile Pacific salmon

(Oncorhynchus) and Pacific herring (Clupea harenguspallasii) in the Strait of Georgia 

by the river lamprey (Lampetra ayresi). J. Fish. Res. Board Can. 30(4): 565-570. doi: 

10.1139/F73-098.

Sheppard, S.K., and Harwood, J.D. 2005. Advances in molecular ecology: tracking trophic links 

through predator-prey food-webs. Func. Ecol. 19(5): 751-762. doi: 10.1111/j .1365 

2435.2005.01041.x.

Shevlyakov, V.A., and Parensky, V.A. 2010. Traumatization of Kamchatka River Pacific salmon 

by lampreys. Russ. J. Mar. Biol. 36(5): 396-400. doi: 10.1134/S106307401005010X.

44

http://www.fao.org/3/a-i2335e.pdf


Siwicke, K. 2014. Relationships between anadromous lampreys and their host fishes in the 

eastern Bering Sea. M.Sc. thesis, Department of Fisheries, The University of Alaska 

Fairbanks, Fairbanks, A.K.

Sturdevant, M.V., Willette, T.M., Jewett, S.C., Debevec, E., Hulbert, L.B., and Brase, A.L.J.

2000. Forage fish overlap, 1994-1996. Exxon Valdez oil spill restoration project 97163C 

final report, National Marine Fisheries Science Center, Juneau, A.K.

Swink, W.D. 1990. Effect of Lake Trout size on survival after a single sea lamprey attack.

Trans. Amer. Fish Soc. 119(6): 996-1002. doi: 10.1577/1548- 

8659(1990)119<0996EOLTSO.2.3.CO;2

Swink, W.D. 2003. Host selection and lethality of attacks by sea lamprey (Petromyzon marinus) 

in laboratory studies. J. Great Lakes Res. 29(1): 307-319. doi: 10.1016/S0380 

1330(03)70496-1.

Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C., and Willerslev, E. 2012. Towards next 

generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21(8): 2045

2050. doi: 10.1111/j.1365-294X.2012.05470.x.

Valentini, A., Pompanon, F., and Taberlet, P. 2009. DNA barcoding for ecologist. Trends Ecol. 

Evol. 24(2): 110-117. doi: 10.1016/j.tree.2008.09.011.

Ward, R.D., Zemlak, T.S., Innes, B.H., Last, P.R., and Hebert, P.D.N. 2005. DNA barcoding

Australia’s fish species. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 360(1462): 1847-1857. 

Doi: 10.1098/rstb.2005.1716.

Zhang, J., Kobert, K., Flouri, T., and Stamatakis, A. 2014. PEAR: a fast and accurate Illumina 

Paired-End reAd mergeR. Bioinformatics, 30(5): 614-620. doi: 

10.1093/bioinformatics/btt593.

45



N 
• 0
• 10 
• 20

Year
• 2014
• 2015

Figure 1.1. Map of the sample sites in the eastern Bering Sea in 2014 (black) and 2015 (gray). 

Each circle denotes a station where surface trawls were conducted. The diameter of each circle 

represents the number of lampreys captured at each locality.
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Figure 1.2. Weight versus total length of Arctic lamprey collected from the eastern Bering Sea in

2014 and 2015.
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Figure 1.3. Diagnostic hard structures and tissues recovered from intestinal tracts of Arctic 

lamprey: (a) caudal fin attached to vertebrae; (b) fin; (c) scales embedded within tissue masses; 

(d) otolith; (e) vertebral column; (f) eggs; (g) scale; (h) individual vertebrae; and (i) internal 

organs.
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Figure 1.4. Number of individuals with diagnostic hard structures and tissues within intestinal 

tracts of Arctic lamprey. The percentages above each column are the frequency of occurrence 

(e.g., presence/absence) relative to the number of individual lamprey for each collection year.
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Figure 1.5. Rarefaction curve (solid line) and Chao2 species richness estimator (dotted line). The 

shaded areas represent 95% confidence limits for each estimate.
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Table 1.1. Comparison of taxonomic assignments from tissue samples (Sanger sequencing) and 

gut contents (DNA metabarcoding). Bold taxa correspond to agreement in the taxonomic 

assignments. n = number of individuals that contained identical taxa identified by sequenced 

tissue samples.

Year Tissue type n  Sanger Sequencing DNA metabarcoding

2014 flesh 5 Gadus chalcogramma Gadidae

flesh Gadus chalcogramma Gadidae

flesh Gadus chalcogramma Gadidae

organ Gadus chalcogramma Gadidae

pyloric caeca Gadus chalcogramma Clupea pallasii

flesh 1 Limanda aspera Pleuronectidae Clupea pallasii

flesh 1 Oncorhynchus tshawytscha Clupea pallasii

flesh 1 Mallotus villosus Mallotus villosus

GI tract 1 Eleginus gracilis Ammodytes hexapterus

2015 flesh 7 Gadus chalcogramma Mallotus villosus

flesh Gadus chalcogramma Gadidae

GI tract Gadus chalcogramma Gadidae

organ Gadus chalcogramma Gadidae

pyloric caeca Gadus chalcogramma Gadidae

pyloric caeca Gadus chalcogramma Gadidae

pyloric caeca Gadus chalcogramma Gadidae

flesh 5 Ammodytes hexapterus Ammodytes hexapterus Clupea pallasii

flesh Ammodytes hexapterus Ammodytes hexapterus Clupea pallasii

flesh Ammodytes hexapterus Ammodytes hexapterus Clupea pallasii

flesh Ammodytes hexapterus Ammodytes hexapterus Clupea pallasii

organ Ammodytes hexapterus Ammodytes hexapterus Clupea pallasii

flesh 3 O. gorbuscha Clupea pallasii

GI tract O. gorbuscha -
GI tract O. gorbuscha Gadidae
organ 2 Mallotus villosus Mallotus villosus Gadidae
organ Mallotus villosus Mallotus villosus

flesh 1 Eleginus gracilis Gadidae

27
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Table 1.2. Taxonomic assignment of prey items found in Arctic lamprey intestinal contents. 

Species-level assignments were based on criteria of > 98% sequence similarity to sequences in 

the reference database. Taxa in bold occurred in over 10% of the gut contents.

Order Family Genus Species

Frequency
of
occurrence
(%)

Total
number of 
samples (n)

Clupeiformes Clupeidae Clupea pallasii 25.3 79

Gadiformes Gadidae 16.3 51

Gasterosteiformes Gasterosteidae 0.3 1

Osmeriformes Osmeridae Osmerus mordax 1.6 5

Mallotus villosus 31.1 97

Perciformes Ammodytidae Ammodytes hexapterus 20.8 65

Stichaeidae Leptoclinus maculatus 0.3 1

Pleuronectiformes Pleuronectidae 0.3 1

Salmoniformes Salmonidae Oncorhynchus spp. 3.5 11

Scorpaeniformes Cottidae 0.3 1
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Chapter 2: Characterizing the genetic variation among larval populations of 
Lethenteron spp. within the Yukon River drainage, Alaska, using microsatellite 
markers2

Abstract

Information regarding the genetic population structure among Lethenteron spp. 

populations within Alaskan rivers is limited. The objective of this study was to investigate the 

genetic diversity among larval populations of Lethenteron spp. from three tributaries within the 

Yukon River drainage, Alaska, using microsatellite genotyping. A total of 81 larval lampreys 

were genotyped at eight microsatellite loci. Global FST was 0.074 (95% CI: 0.042 -  0.110), while 

pairwise FST values ranged from 0.066 -  0.081. Model-based Bayesian clustering analyses 

without sampling locality priors identified one ancestral population typical of panmixia, while 

the model with sample locality priors detected three genetic clusters (K = 3). Within-river 

clustering analyses of population structure indicated panmixia within the East Fork of the 

Andreafsky and Gisasa rivers, but detected reduced levels of admixture within the Chena River. 

Estimates of contemporary gene flow indicated reduced but reciprocal migration among sites. 

These results suggest life-history variants of Lethenteron spp. may contribute to the moderate 

degree of genetic differentiation and reduced levels of gene flow among sample sites than 

typically found among anadromous L. camtschaticum populations.

2 Shink, K. G., Sutton, T. M., Murphy, J. M., and Lopez, J. A. Characterizing the genetic 
variation among larval populations of Lethenteron spp. within the Yukon River drainage, Alaska 
using microsatellite markers. Submitted to the Journal of Fish Biology.
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INTRODUCTION

Arctic lamprey Lethenteron camtschaticum (Tilesius 1811) are an agnathan fish widely 

distributed at mid to high latitudes in northwestern North America and eastern Asia 

(Mecklenburg et al. 2002; Renaud 2011). Six nonparasitic species are congeneric with L. 

camtschaticum, but the Alaskan brook lamprey L. alaskense is the only nonparasitic species 

endemic to Alaska rivers and streams (Vladykov and Kott 1978; Mecklenburg et al. 2002; 

Renaud 2011). Although morphologically similar in their larval form, parasitic and nonparasitic 

species diverge radically in feeding behavior and body size through successive life-history stages 

(Zanandrea 1959; Vladykov and Kott 1979; Docker 2009; Sutton 2017). Anadromous L. 

camtschaticum feeds on the blood and/or flesh of host fishes in marine environments before 

returning to freshwater tributaries to spawn, while L. alaskense is a fluvial, nonparasitic species 

that resides in freshwater tributaries for the duration of their lifecycle and do not feed as adults 

(Mecklenburg et al. 2002; Renaud et al. 2009a, 2011). Current taxonomics rely on morphology 

and life history to distinguish among species, despite uncertain phylogenetic relationships 

between parasitic and nonparasitic species pairs (Docker 2009; Renaud 2009b; Potter et al. 

2015).

Morphological and molecular studies have sought to resolve taxonomic relationships 

among parasitic and nonparasitic Lethenteron spp. Morphological and meristic evaluations have 

previously failed to identify diagnostic taxonomic characteristics to distinguish sympatric 

parasitic and nonparasitic forms within river systems (Kucheryavyi et al. 2007; Nazarov et al. 

2011; Sutton 2017). Molecular analyses suggest limited genetic divergence in sequenced regions 

of the mitochondrial genome among paired Lethenteron species (Yamazaki et al. 2006; 

Artamonova et al. 2011; Balakirev et al. 2014; Artamonova et al. 2015). Investigations of species
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differences between L. camtschaticum and L. alaskense revealed that these two life-history 

variants were expressed in populations that shared the same mitochondrial gene pool (Lang et al. 

2009; April et al. 2011). These results bring into question the taxonomic status of parasitic and 

nonparasitic species within the genus Lethenteron.

Fine-scale population genetic data for Lethenteron spp. are restricted in geographical 

scope to eastern Eurasia. Yamazaki et al. (2011) reported low levels of genetic differentiation 

and ongoing gene flow between sympatric parasitic and nonparasitic populations of L. 

camtschaticum. Results from microsatellite analyses among anadromous L. camtschaticum 

indicated heterogeneous populations despite broad distributions (Yamazaki et al. 2014). This 

trend has been observed in other anadromous lamprey species and was attributed, in part, to a 

lack of natal homing (Bryan et al. 2005; Goodman et al. 2008; Spice et al. 2012). Similarly, 

Yamazaki et al. (2014) hypothesized that a lack of natal homing contributed to the levels of 

panmixia among examined L. camtschaticum populations; however, the exact biological and/or 

environmental mechanisms facilitating high levels of gene flow among populations remain 

speculative. To date, no studies have characterized the genetic structure among populations of 

lamprey in Alaska rivers (ADF&G 2006; Thorsteinsen and Love 2016). This emphasizes the 

need of additional data to document relatedness among Lethenteron populations in the eastern 

part of their distribution and compare patterns in population genetic structure across their 

geographic range.

The objective of this study was to investigate the genetic diversity and levels of gene 

flow among three larval populations of Lethenteron spp. within the Yukon River drainage using 

microsatellite genotyping. Here, we use the term Lethenteron spp. to refer to sampled lamprey 

populations because a recent field study in the Chena River, Alaska, determined that
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morphological and meristic characteristics could not be used to differentiate between L. 

camtschaticum and L. alaskense during their larval stage (Sutton 2017). Because there are no 

physical barriers limiting dispersal and ongoing gene flow has been observed within the genus 

Lethenteron, we hypothesized that there would be low levels of genetic differentiation and high 

levels of gene flow among sampled sites.

MATERIALS AND METHODS

SAMPLE COLLECTION

Larval lampreys were collected from three tributaries in the Yukon River drainage, 

Alaska (Figure 2.1; Table 2.1). Larvae from the East Fork of the Andreafsky and Gisasa rivers 

were collected using a modified bottom sampler (Lasne et al. 2010). Fin tissue samples were 

removed from 40 individuals within each tributary that were released alive near their collection 

site. Larvae from the Chena River were collected using a Model ABP-2 backpack electrofishing 

unit (ETS Electrofishing LLC, Wisconsin, USA), and a maximum of ten individuals were 

collected at each collection site (Sutton 2017). These larvae were euthanized using tricaine 

methanesulfonate (MS-222) and frozen for subsequent molecular analyses. All tissue samples 

were preserved in 96% molecular-grade ethanol in the field and placed in cold storage (-20 °C) 

for long-term preservation.

MICROSATELLITE GENOTYPING

Total genomic DNA from individual tissue samples were isolated through tissue lysis followed 

by salt and alcohol precipitation using the Gentra Puregene Tissue Kit (Qiagen, California, USA) 

following the manufacturer’s protocol. Eight microsatellite loci previously identified and 

developed from a brook lamprey Lethenteron spp. N from Japan were targeted for genotyping
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(Takeshima et al. 2005). To generate allele amplicons for the targeted loci, a three-primer 

Polymerase Chain Reaction (PCR) approach was implemented (Schuelke 2000). The primer 

combination included: (1) a locus specific primer with the standard M13 sequence 5’ tail; (2) a 

locus specific complementary primer; and (3) a fluorescently labeled oligonucleotide 

corresponding to the M13 segment of the locus specific primer. The standard M13 sequence 5’ 

tail was incorporated on the locus specific forward primer for all loci except Lspn088.

Polymerase Chain Reactions (PCRs) were conducted in a 25 ^L reaction volume with 0.5 

^L variable concentration genomic DNA template, 1x GoTaq® buffer (Promega), 0.05 mM 

locus specific primer with M13 tail, 0.25 mM locus specific complementary primer, 0.25 mM 

fluorescently labeled M13 primer (FAM or HEX), 0.6 mM dNTP’s, 25 ^g/mL BSA, 1.5 - 2 ^M 

Mg2+, and 0.025 U/^L of GoTaq® polymerase. The Mg2+ concentrations in the reaction mix 

varied by locus (Table 2.2). Thermal cycler conditions were identical to those reported in 

Takeshima et al. (2005). The PCR products were run on 2.5% agarose gels with a negative 

control to confirm amplification length and lack of template contamination. These products were 

analyzed using an ABI PRISM 310 Genetic Analyzer (Applied Biosystems, California, USA) 

and allele sizes were determined using GeneMapper v 3.7 (Applied Biosystems, California, 

USA).

Potential genotyping errors resulting from null alleles and/or large allelic drop out were 

evaluated with the software program Micro-Checker (van Oosterhout et al. 2004). Deviations 

from genotype frequencies expected under Hardy-Weinberg equilibrium (HWE), and tests for 

linkage disequilibrium (LD) between pairs of loci in each population were evaluated with exact 

probability tests implemented in GENEPOP v 4.0.10 (104 dememorization, 103 batches, 104 

iterations per batch; Raymond and Rousset 1995).
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MICROSATELLITE GENETIC DIVERSITY

Statistics summarizing allelic frequencies, mean number of alleles (NA), expected heterozygosity 

(He), and observed heterozygosity (HO) were calculated with the program ARLEQUIN 3.5.2.2 

(Excoffier and Lischer 2010). Estimates of allelic richness (AR) and inbreeding coefficients (FiS) 

were calculated with the program FSTAT 2.9.3.2 (Goudet 2001).

The probability of identity (PI) estimate was conducted in GENALEX 6.5 (Peakall and 

Smouse 2012) to test the probability of identifying two independent samples with identical 

genotypes at specific combinations of loci. Values within the range of 0.01 -  0.0001 are 

recommended to increase confidence that the number of genotyped loci are sufficient to identify 

individuals (Waits et al. 2001). The PI among individuals genotyped at seven loci was well 

within the suggested range (0.0034 -  0.0001; Figure 2.2).

Because all tissue samples collected for this study came from larval lampreys, we 

investigated the likelihood that collected samples were from a small number of families. The 

probability of sampled full-sibling pairs was estimated using the full-pedigree likelihood (FL) 

approach in COLONY v. 2.0.6.2 (Jones and Wang 2010) under a female and male polygamy 

mating system, known allele frequencies, no sibship prior, and a long-run length with five 

independent runs. One randomly selected individual from each full-sibling pair within each 

tributary was removed from the dataset and estimates of FST were recalculated (Appendix C). 

Reported values of FST without full siblings decreased but remained highly significant, so all 

individuals were included in modeling analyses.

GENETIC DIFFERENTIATION

To assess the degree of genetic differentiation between populations, Weir and Cockerham’s 

(1984) Fst was estimated by the program GENEPOP. Fisher’s exact probability tests for genetic
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differentiation for each population pair across all loci was conducted in GENEPOP to evaluate 

the statistical significance of the observed FST values. Global FST and 95% confidence intervals 

were estimated in FSTAT with 20,000 permutations.

Sampling locations were grouped into two geographical regions (lower and upper Yukon 

area, respectively) depending on their location upstream or downstream of the village Shagluk 

within Alaska management areas for the Yukon River (Bue et al. 2009). The East Fork of the 

Andreafsky and Gisasa Rivers are located within the lower Yukon River area, while the Chena 

River falls within the upper Yukon River management area for Alaska. The percentage of 

variation within populations, among populations within geographical regions, and within 

geographical regions was calculated using a locus-by-locus analysis of molecular variance 

(AMOVA) test in ARLEQUIN with 20,000 permutations.

Genetic isolation-by-distance (IBD) was evaluated to test for population structure 

influenced by geographic distance. River distances previously reported by Templin et al. (2005) 

were used to perform a test for IBD using Isolation by Distance Web Service v 3.21 (Jensen et al. 

2005). Pairwise river distances were evaluated by the distance in river kilometers (rkm) between 

the confluences of sampled tributaries.

GENETIC STRUCTURE

The model-based Bayesian clustering analysis within STRUCTURE v 2.3.4 (Pritchard et al. 

2000) was used to identify genetic structure and estimate individual membership probabilities to 

genetic clusters. Evaluated genetic clusters (K ) ranged from 1 to 7, with 20 independent 

replicates conducted for each K  value. In each replicate analysis, Markov chain Monte Carlo 

(MCMC) simulations consisted of 750,000 iterations using an admixture model with correlated 

allele frequencies (Falush et al. 2003) discarding samples from the first 250,000 iterations as
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burn-in. Analyses of genetic structure were conducted among all individuals with and without 

prior information on the locality of samples (LOCPRIOR; Hubisz et al. 2009). Population-level 

analyses were conducted independently to further investigate genetic structure within each 

tributary. For population-level analyses, tested values of K  ranged from 1 to 5 with identical 

parameters to those described above. The prior model parameter LOCPRIOR was not used for 

these analyses.

For all STRUCTURE models, the most likely number of clusters was identified with the 

estimated log likelihood lnPr(X|K) reported in STRUCTURE output and the AK method 

(Evanno et al. 2005) implemented in STRUCTURE HARVESTER (Earl and vonHoldt 2012). 

The software program CLUMPP v 1.2 (Jakobsson and Rosenberg 2007) was used to identify the 

optimal alignment of estimated cluster membership matrices over the 20 runs for the chosen k . 

Plots were visualized using DISTRUCT v 1.1 (Rosenberg 2004).

Contemporary migration rates (m) were estimated using a Bayesian assignment method 

in the program BAYESASS 3.0.1 (Wilson and Rannala 2003) employing a MCMC procedure 

that does not assume HWE. Resultant estimates of m were used to estimate proportions of non

migrant individuals within each population and evaluate directionality of migration among 

population pairs within the last two generations. A total of 216 MCMC iterations and 56 burn-in 

were used to estimate m and produce convergent trace outputs for five independent runs with 

varied seed numbers. Delta values for migration rates, inbreeding coefficient, and allele 

frequencies were adjusted to attain acceptance rates between 40 and 60% of the total iterations. 

The convergence of the MCMC algorithm was assessed using the software TRACER 1.6 

(Rambaut et al. 2014) by visually plotting posterior parameter estimates.
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RESULTS

MICROSATELLITE GENETIC DIVERSITY

A total of 81 larval lampreys were successfully genotyped at eight loci. One locus (Lspn002-2) 

was monomorphic in all genotyped individuals and was excluded from downstream analyses. 

Micro-Checker indicated the occurrence of a null allele at locus Lspn019c in the Chena River 

population and at locus Lspn050 in all three populations (Table 2.3). Significant deviations from 

HWE were detected at locus Lspn019c and Lspn050 after Bonferroni correction (critical value: P 

= 0.003). No linkage disequilibrium (LD) was observed between pairs of loci. The number of 

observed alleles per locus varied from 2 -  6, and allelic richness per locus among all populations 

ranged from 2.000 -  3.995 (locus Lspn094 and Lspn088, respectively). Additional summary 

statistics including expected and observed heterozygosity and inbreeding coefficients (FIS) are 

provided in Table 2.4.

GENETIC DIFFERENTAITION

Measures of FST for all population pairs ranged from 0.066 -  0.081, with a global FST of 0.074 

(95% CI: 0.042 -  0.110; Table 2.5). Tests of population differentiation remained highly 

significant among all pairs of populations after Bonferroni correction (critical value: P = 0.0166). 

The AMOVA results partitioned 92.91% of observed variation within populations (P = 0.000), 

9.34% among populations within geographical regions (P = 0.000), and -2.25% among 

geographical regions (P = 0.724). The trend of IBD among Lethenteron populations was 

negatively correlated but not statistically significant (r = -0.9876, P = 0.1663).

GENETIC STRUCTURE

Results for the STRUCTURE model without prior information on the locality of samples 

reported the highest log-likelihood for K  = 1 with AK selecting K=2 (Figure 2.2a; 2.6). Average
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individual membership coefficients ranged from 0.481 to 0.519, suggesting almost equal 

proportions of global ancestry between genetic clusters. The STRUCTURE output with the 

LOCPRIOR parameter identified K  = 3 as the optimal number of genetic clusters, which was 

supported by both the highest log-likelihood and AK method (Figure 2.2b). The highest average 

individual membership coefficient within each cluster was 0.849, 0.875, and 0.875 for the East 

Fork of the Andreafsky, Gisasa, and Chena rivers, respectively.

Models without prior parameters were run in STRUCTURE to investigate potential 

genetic structure within each tributary. The highest log-likelihood supported K  = 1 for both the 

East Fork of the Andreafsky and Gisasa rivers; however, AK identified K  = 2 and K  = 4, 

respectively, as the best partition of genetic structure (Figure 2.2c). Average individual 

membership coefficients were divided equally between two (0.500) and four (0.250) clusters for 

each system implying genetic structure could not be detected. Within the Chena River, both the 

highest log-likelihood and AK method supported K  = 2 as the optimal number of clusters. The 

highest individual membership coefficient (qi) identified in each cluster was 0.797 and 0.789.

The proportion of non-migrant individuals ranged from 0.940 in the East Fork of the Andreafsky 

River to 0.799 in the Chena River (Figure 2.3). The highest proportion of migrants (m = 0.143) 

was detected from the Chena River into the Gisasa River. Estimated migration among 

populations was symmetrical, with the highest estimated migration rates occurring from 

upstream to downstream among all three localities.

DISCUSSION

These results represent the first examination of Lethenteron spp. genetic diversity and population 

structure within the Yukon River drainage. Both global and pairwise FST values observed among
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sampled tributaries were indicative of moderate genetic differentiation and reduced levels of 

gene flow. The moderate levels of genetic structure observed in this study were distinctive from 

the levels of panmixia reported among Lethenteron spp. populations throughout the western part 

of their distribution (Yamazaki et al. 2011, 2014; Artamonova et al. 2015).

Bayesian models with and without the LOCPRIOR model parameter produced 

contradictory results. The model without prior information on the locality of samples assigned all 

individuals with almost equal probability to two clusters. These results suggested: (1) all 

individuals belong to a single ancestral population; or (2) the genetic signal was too weak to be 

detected without prior parameters. The inability of STRUCTURE to detect genetic clusters 

without prior parameters can be influenced by numerous factors, including scored loci, sampling 

intensity and sample size, or recent divergence (Evanno et al. 2005; Hubisz et al. 2009; 

Fogelqvist et al. 2010; Kalinowski 2011). Integrating informative priors such as sample localities 

can improve the ability of Bayesian models to detect genetic structure without false positives and 

may be useful when working with a limited number of individuals and/or loci (Corander et al. 

2003; Corander and Marttinen 2006; Hubisz et al. 2009).

Results from the model that incorporated the LOCPRIOR model parameter identified 

three genetic population clusters supported by both the highest log-likelihood and AK methods. 

Average individual membership coefficients and reduced levels of admixture produced by this 

model appeared to reflect the observed levels of heterozygosity and positive FIS values within 

each river as well as the moderate levels of FST among population pairs. While we believe these 

results best depict the data, contrasting model outputs highlight the importance of additional 

sampling efforts across space and time to better inform and evaluate genetic relationships among 

populations of Lethenteron spp. within the Yukon River drainage.
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The high FST values observed in this study were unexpected given the knowledge of L. 

camtschaticum genetic structure in the western part of their geographic distribution and its 

inferred implications for migration ecology. The global FST value observed among sampled 

Lethenteron populations was higher than values observed among chum salmon Oncorhynchus 

keta (Fst = 0.018) and Chinook salmon O. tshawytscha (FST = 0.038) within the Yukon River 

drainage (Beacham et al. 2006, 2009). Natal homing in Oncorhynchus spp. largely influences 

geographic clustering and genetic population structure (Dittman and Quinn 1996; Sato et al. 

2004); however, previous research indicated that sea lamprey Petromyzon marinus and Pacific 

lamprey Entosphenus tridentatus do not exhibit natal homing (Bergstedt and Seelye 1995; 

Waldman et al. 2008; Hatch and Whiteaker 2009). Instead, pheromone odors from stream- 

resident larvae are one of the primary mechanisms that guide adult P. marinus to optimal 

spawning habitat independent of their natal streams (Moore and Schleen 1980; Sorensen et al. 

2003; Vrieze et al. 2011). This spawning strategy, referred to as the “suitable river strategy” by 

Waldman et al. (2008), is believed to contribute to the levels of panmixia among anadromous P. 

marinus and E. tridentatus (Bryan et al. 2005; Goodman et al. 2008; Spice et al. 2012). No 

studies have verified the role of larval pheromones on migratory behavior in L. camtschaticum, 

but it is suspected to be similar among lamprey genera (Moser et al. 2015). Previous genetic 

studies support this inference; Yamazaki et al. (2014) reported continuous reciprocal gene flow 

among L. camtschaticum populations not influenced by geographical distance. While our study 

also found the effects of IBD insignificant, we can only speculate as to the mechanisms 

restricting gene flow among sampled Lethenteron spp. populations within the Yukon River 

drainage.
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Our data suggested that nonparasitic L. alaskense and/or resident L. camtschaticum life- 

history variants contributed to the moderate values of FST reported in this study. Significant 

measures of genetic differentiation have been reported among nonparasitic resident lamprey 

populations of the same species, despite high levels of gene flow between parasitic and 

nonparasitic forms (Espanhol et al. 2007; Blank et al. 2008; Mateus et al. 2011; Boguski et al. 

2012; Docker et al. 2012; Bracken et al. 2015; Rougemont et al. 2015). Although contemporary 

estimates of migration were symmetric among sites, estimated proportions of non-migrants were 

greater in both the East Fork of the Andreafsky and Gisasa rivers. When evaluated with the 

reduced levels of heterozygosity and admixture detected within these rivers, analyses suggest 

reduced dispersal capabilities characteristics of resident forms. It appears that gene flow, while 

ongoing among sampled sites, occurs at reduced levels preventing the formation of a panmictic 

population.

Within-river analyses of population structure suggest the presence of both parasitic and 

nonparasitic forms in our samples. Bayesian clustering analyses raised the possibility of 

genetically diverging Lethenteron spp. populations (presumably representing parasitic and 

nonparasitic forms) occurring in sympatry within the Chena River; however, the small spatial 

scale of sampling efforts within the East Fork of the Andreafsky and Gisasa rivers (3.5 rkm) 

compared to efforts in the Chena River (145 rkm) and small sample sizes, may explain the 

genetic variability (or lack thereof) detected within each tributary. Although the scope of this 

study did not include an explicit examination of genetic differentiation between L. 

camtschaticum and L. alaskense within the Yukon River drainage, adult parasitic and 

nonparasitic forms are known to inhabit the Chena River (Sutton 2017; A. Gryska, Alaska 

Department of Fish and Game, personal communication). This further highlights the need to
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sample adult Lethenteron spp. to provide a comprehensive analysis of gene flow and address 

questions of divergence between this species pair.

Results of our study suggested that (1) sampled populations exhibited moderate levels of 

genetic structure and reduced levels of gene flow and (2) the possibility of diverging populations 

occurring in sympatry within the Chena River. The reported levels of genetic structure among 

the rivers examined in this study emphasized the need for additional sampling efforts within the 

Yukon River drainage and other major Alaska river drainages where Lethenteron spp. have been 

observed. In addition, future studies in Alaska should focus on parasitic L. camtschaticum and 

nonparasitic L. alaskense to provide a comprehensive evaluation of potential species divergence 

between these two forms. Continued efforts to address the connectivity of Lethenteron 

populations would inform the management of commercial and subsistence lamprey fisheries 

along the lower Yukon River drainage and provide further insight into the biology and migration 

ecology of this species throughout their geographic distribution.
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Figure 2.1. Map of sampled tributaries within the Yukon River drainage, Alaska. EFA -  East 

Fork of the Andreafsky River. GIS -  Gisasa River. CHE -  Chena River.
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Figure 2.2. Observed probability of identity (PiD) values for sampled populations at increasing 

combinations of microsatellite loci.
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Figure 2.3. STRUCTURE bar plots generated from microsatellite data. (A) global analysis of 

population structure without prior information on the locality of samples (K = 2); (B) global 

analysis of population structure with prior information on the locality of samples (LOCPRIOR; 

K = 3); (C) within-river analyses of population structure without prior information (K = 2, K = 4, 

and K = 2).
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Figure 2.4. Contemporary migration rates (m) among populations estimated using BAYESASS. 

Numbers within circles denote the proportion of non-migrants within populations. Arrows 

indicate the direction of gene flow and the corresponding m values.
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Table 2.1. Details for sampled rivers within the Yukon River drainage, Alaska. The number of 

sampled sites within each river, tissue sample size (N), and collection year is given for each 

locality.

Abb. River Sampled
Sites N Year

EFA East Fork of the Andreafsky 5 40 2014

GIS Gisasa 2 40 2014

c h e Chena 24 40 2011
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Table 2.2. Characteristics of eight microsatellite loci selected for this study. Information includes 

repeat motif, forward and reverse primer sequences, magnesium concentration (Mg2+), and 

fluorescent label used during PCRs.

Locus Repeat motif Primer Sequences 5' - 3' Mg2+ Fluorescent
Label

Lspn019c (CA)5AA(CA)5 F: TCTGCCGATATTTGATTCTC§ 
R: GATCTTTAGTCTTTGCTGTTGT 2.0 h e x

Lspn010-2 (CA)5 F: CAGGACCGGTTCAAATAATCA§ 
R: TGACCTTTGCTGACAGATGG 1.5 FAM

Lspn050 imperfect (CA) F: GCTCCGGTTATGAAATGGAA§ 
R: ATGCATTATATTCGTCCGCC 1.5 FAM

Lspn088 (CA)4CG(CA)6 F: GGATAATCGTCAGCAGTGTT R: 
TCCATCTCTCTCGTTACCAT§ 2.0 h e x

Lspn044 imperfect (CA) F: ACGGTTCAGATAATCGTCAC§ 
R: GACGGTAATTTAATTGCGAA 1.5 h e x

Lspn013 (CA)5 F: GCAGACTTTGCTTTAGGAGA§ 
R: ATTTGGTATAGCCCTGTGAG 1.5 FAM

Lspn094 imperfect (CA) F: GGTGTTGACTGAATCGAACT§ 
R: GTTCTCTAGAGCTGTCGCAC 2.0 FAM

Lspn002-2 (GA)9 F: TCGTGCCAACTCGTCATCTA§ 
R: GGATACGAACAGCTCCTGCT 1.5 FAM

§M13 tail
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Table 2.3. Summary of observed allele frequencies. P values in bold are significant deviations 

from HWE after Bonferroni correction (P = 0.003). Asterisks indicate the presence of a null 

allele.

Sampled Rivers

Locus Allele 

Lspn019c 150 

152 

158 

P

null allele 

Lspn010-2 224 

226 

228 

P

null allele 

Lspn050 314 

354 

356 

P

null allele 

Lspn088 163 

169 

181 

183 

185 

187

EFA

0.000

0.000

1.000

GIS

0.000

0.024

0.976

0.444

0.370

0.185

0.201

0.037

0.111

0.852

0.000

*

0.000

0.130

0.722

0.148

0.000

0.000

0.357

0.524

0.119

0.463

0.167

0.000

0.833

0.002

*

0.000

0.024

0.810

0.167

0.000

0.000

CHE

0.136

0.182

0.682

0.000

*

0.409

0.318

0.273

0.118

0.288

0.030

0.682

0.002

*

0.015

0.045

0.545

0.364

0.015

0.015
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Table 2.3 cont.
P 0.646 0.559 0.831
null allele - - -

Lspn044 218 0.370 0.071 0.318

220 0.315 0.714 0.409

226 0.185 0.000 0.000

228 0.130 0.214 0.273

P 0.349 0.156 0.348

null allele - - -

Lspn013 343 0.130 0.214 0.273

345 0.778 0.714 0.439

347 0.093 0.071 0.288

P 1.000 0.804 0.939

null allele - - -

Lspn094 283 0.111 0.429 0.182

287 0.889 0.571 0.818

P 0.267 0.663 1.000

null allele - - -
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Table 2.4. Summary statistics for Lethenteron spp. N = number of individuals genotyped at all 

seven loci, NA = mean number of alleles, He = expected heterozygosity, HO = observed 

heterozygosity, and FIS = inbreeding coefficient.

N NA He Ho Fis

EFA 27 2.714 0.443 0.389 0.125

GIS 21 2.571 0.379 0.320 0.160

c h e 33 3.286 0.546 0.459 0.162
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Table 2.5. Pairwise FST values for sampled population pairs. FST values shaded in grey are 

significant tests of population differentiation after Bonferroni correction (P = 0.0166).

EFA GIS CHE

EFA -

GIS 0.080 -

CHE 0.066 0.081 -
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Table 2.6. Comparisons between estimated log-likelihood (lnP(K)) STRUCTURE output and the 

statistic AK evaluated in STRUCTURE HARVESTER over 20 runs for tested values of k. 

Values in bold indicate the lowest estimated log-likelihood, while values shaded in grey indicate

the optimal value of k identified by AK.

STANDARD
LnP(K)

K Mean StDev AK
1 -943.020 0.207 -
2 -1038.465 26.222 1.75
3 -1088.030 95.633 0.159
4 -1152.755 62.480 0.651
5 -1258.180 215.721 0.699
6 -1212.830 162.987 0.045
7 -1174.890 49.730 -

LOCPRIOR
LnP(K)

K Mean StDev AK
1 -943.125 0.415 -
2 -921.540 7.015 0.928
3 -893.445 4.743 17.321
4 -947.500 37.803 1.125
5 -959.010 26.476 0.104
6 -967.760 35.350 0.350
7 -964.125 34.548 -

EFA

LnP(K)

K Mean StDev AK
1 -260.535 0.341 -
2 -261.345 0.438 1.996
3 -261.280 0.516 0.087
4 -261.170 0.895 0.078
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Table 2.6 cont.

5 -261.130 0.807

GIS
LnP(K)

K Mean StDev AK
1 -187.970 0.264 -
2 -188.380 0.577 0.035
3 -188.770 0.622 0.556
4 -188.820 0.839 0.703
5 -189.460 2.826 -

CHE
LnP(K)

K Mean StDev AK
1 -428.510 0.412 -
2 -407.830 2.642 26.887
3 -458.175 45.364 0.404
4 -526.865 44.582 0.569
5 -570.180 39.939 -
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General Conclusions

The results of this study were two-fold. First, results using a combination of visual 

observations of intestinal contents and high throughput sequencing reinforced the assumption of 

L. camtschaticum as a flesh-feeding predator with pelagic schooling fishes as their prey in the 

eastern Bering Sea. The frequency with which diagnostic hard structures and tissue masses were 

observed within the intestines of L. camtschaticum suggested a predatory, flesh-feeding 

approach. These diagnostic structures and tissues included eggs, fins and fin rays, internal 

organs, otoliths, scales, and vertebrae. It is likely that L. camtschaticum predation on prey fishes 

causes high mortality rates. The utilization of high-throughput sequencing highlighted the 

application of ‘DNA metabarcoding’ to characterize the diet of a marine predator that is difficult 

to observe under natural conditions. This study was the first to report three taxa (i.e., Cottidae, 

Gadidae, and Pleuronectidae) within the diets of L. camtschaticum. In addition, this method 

detected rare food items, as a portion of taxa identified in this study were associated with only a 

few number of individuals. High degrees of interspecies predation among taxa detected in this 

study proved to be a limitation of using DNA metabarcoding as a dietary technique in a highly 

connected marine system. Because of the detection sensitivity of high-throughput sequencing, 

this study was unable to dismiss the possibility of secondary predation that may ultimately affect 

interpretation of our results. Ultimately, these results not only provided additional insight into the 

complexity of food web dynamics in the eastern Bering Sea, but improved our understanding of 

the importance of pelagic schooling fishes as prey for L. camtschaticum.

An investigation into the genetic structure of larval Lethenteron spp. within the Yukon 

River drainage suggested moderate levels of genetic structure among examined populations. 

Hierarchical analyses of genetic clustering without sampling locality priors identified one
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ancestral population among all individuals, indicating a panmictic population. Further analyses 

that examined genetic clustering among individuals within rivers identified two ancestral 

populations within the Chena River, while no genetic divergence was detected among 

individuals within the East Fork of the Andreafsky and Gisasa rivers. These results suggest that 

two diverging populations are present within the Chena River that may be attributed to reduced 

levels of gene flow between nonparasitic and parasitic forms. Estimates of contemporary 

migration rates among populations indicated reciprocal migration among sites that may attribute 

to the levels of admixture identified in this study. Ultimately, these results indicate that the 

moderate degree of genetic differentiation and reduced levels of gene flow among sample sites 

may be attributed to life-history variants of Lethenteron spp. While this investigative study 

increased our understanding of the genetic diversity among larval Lethenteron spp. within the 

Yukon River drainage, it also emphasized areas where additional research effort is needed to 

further understand the degree of genetic divergence and levels of gene flow among nonparasitic 

and parasitic forms.

This research provided baseline genetic and dietary data on a poorly studied fish species, 

highlighting the importance and need for additional studies of Lethenteron spp. not only in 

Alaska but throughout their geographic distribution. Recommendations for future research 

include collecting marine-phase L. camtschaticum during different feeding seasons (e.g., winter, 

spring, etc.) to determine possible seasonality in their diet. Specimens were collected over two 

years, but collection days were restricted to one feeding season (August -  September). Sampling 

over all seasons would deepen our understanding of L. camtschaticum trophic interactions and 

potential seasonal dietary variability in the eastern Bering Sea. In addition, employing reduced 

representation sequencing techniques (e.g., RADseq, ddRAD, GBS) to investigate potential
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genome-wide divergence between nonparasitic L. alaskense and parasitic L. camtschaticum is 

recommended. Because larval Lethenteron spp. have no diagnostic morphological characteristics 

to differentiate between the putative species (Sutton 2017), sampling efforts should target 

spawning adults when each form can be morphologically distinguished. Reduced representation 

sequencing provides a method to sample hundreds if not thousands of shared molecular markers 

among individuals, which is orders of magnitude higher than the small number (i.e., 8) of 

microsatellites used in this study. Powerful demographic analyses can be conducted with high- 

throughput sequencing data and then compared to previous conclusions determined using 

microsatellite genotyping. This is recommended because distribution and abundance estimates of 

Lethenteron spp. within Alaska are limited (ADF&G 2006).

Appendix A. iTru Fusion Primers with custom tags.
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Primer name Primer Sequences : 5' - 3'

iTru_A_12S_V5_F

iTru_B_12S_V5_F

iTru_C_12S_V5_F

iTru_D_12S_V5_F

iTru_E_12S_V5_F

iTru_F_12S_V5_F

iTru_G_12S_V5_F

iTru_H_12S_V5_F

iTru_1_12S_V5_R

iTru_2_12S_V5_R

iTru_3_12S_V5_R

iTru_4_12S_V5_R

iTru_5_12S_V5_R

iTru_6_12S_V5_R

iTru_7_12S_V5_R

iTru_8_12S_V5_R

iTru_9_12S_V5_R

iTru_10_12S_V5_R

iTru 11 12S V5 R

ACACTCTTTCCCTACACGACGCTCTTCCGATCTGGTACTAGAACAGGCTCCTCTAG

ACACTCTTTCCCTACACGACGCTCTTCCGATCTcAACACTAGAACAGGCTCCTCTAG

ACACTCTTTCCCTACACGACGCTCTTCCGATCTatCGGTTTAGAACAGGCTCCTCTAG

ACACTCTTTCCCTACACGACGCTCTTCCGATCTtcgGTCAATAGAACAGGCTCCTCTAG

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAAGCGTAGAACAGGCTCCTCTAG

ACACTCTTTCCCTACACGACGCTCTTCCGATCTgCCACATAGAACAGGCTCCTCTAG

ACACTCTTTCCCTACACGACGCTCTTCCGATCTctGGATGTAGAACAGGCTCCTCTAG

ACACTCTTTCCCTACACGACGCTCTTCCGATCTtgaTTGACTAGAACAGGCTCCTCTAG

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGAATTAGATACCCCACTATGC

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTgAGTGGTTAGATACCCCACTATGC

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTccACGTCTTAGATACCCCACTATGC

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTttcTCAGCTTAGATACCCCACTATGC

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTAGGTTAGATACCCCACTATGC

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTtGCTTATTAGATACCCCACTATGC

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTgcGAAGTTTAGATACCCCACTATGC

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTaatCCTATTTAGATACCCCACTATGC

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTATCTGTTAGATACCCCACTATGC

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTgAGACTTTAGATACCCCACTATGC

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTcgATTCCTTAGATACCCCACTATGC

iTru 12 12S V5 R GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTtctCAATCTTAGATACCCCACTATGC

92



Appendix B. Measures of pairwise FST and exact tests of Arctic lamprey population 

differentiation were recalculated after one individual from each full-sibling pair identified by 

COLONY was removed. Adjusted sample sizes for each Yukon River tributary are reported 

along the diagonal, while pairwise FST values are reported below diagonal. FST values shaded in 

grey are significant after Bonferroni correction (P = 0.0166).

AND GIS CHE

AND 20

GIS 0.050 16

CHE 0.054 0.048 26
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