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A B S T R A C T

Electrostatic ion cyclotron waves are investigated in a charge-generated barium-shaped 

plasma directed parallel to the earth’s magnetic field. The barium plasma is generated as a 

result of a barium shape charge release in the upper Fi region of the ionosphere undergoing 

photoionization, Using a differential velocity distribution given by Stenbaek-Nielsen et al., 

[1984], this situation has been modeled based on the condition of collisionless plasma. The 

instabilities were studied for cases with and without an ambient oxygen ion background. 

It was concluded that fast ionization in excess of photoionization due to the excitation of 

electrons by electrostatic ion cyclotron waves was not feasible for the ejection directed along 

the earth’s magnetic field nor would there be any contribution to Alfven’s critical velocity 

mechanism if the injection was directed perpendicular to the magnetic field.
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Chapter 1: Introduction

Alfven’s critical velocity mechanism for the ionization of a neutral gas streaming 

through a plasma across a magnetic field has been the subject of interest since he first pro­

posed it as part o f a process in the formation of the planets [Alfven, 1954]. The mechanism 

was given further credibility when Danielsson and Brenning, [1975] obtained laboratory 

evidence to confirm an enhanced ionization that followed Alfven’s critical velocity relation

*
(i)

where vcr is the critical velocity, m the mass, e the charge, and the ionization potential 

of the particle.

The importance of active space experiments was later pointed out by Mobius, [1983]. 

He stated that all laboratory experiments differ from astrophysical situations in two basic 

features besides the scaling of dimensions and plasma parameters. First, in the laboratory 

the magnetized plasma is always driven by an external electromagnetic force rather than 

having the free energy available in the neutral gas and second the walls and electrodes are 

always present thus leading to unsuspected side affects. Efforts were then concentrated to 

verify Alfven’s critical velocity mechanism by active experiments in space.

In 1980, Haerendel carried out an experiment where barium gas, which has a low critical 

velocity vcr — 2.7km / $, was injected into space. The experiment revealed the existence of 

an enhanced ionization process consistent with the critical velocity mechanism [Haerendel, 

1982]. Experiments were then designed to specifically test the critical velocity mechanism in 

space. In March 1983, two such space experiments the star of Lima [Wescott et al., 1986a] 

and the star o f condor [Wescott et al., 1986b] were carried out. The star of Lima was set

1



up to inject barium vapor perpendicular to the earth’s magnetic field in a conical shaped- 

charge at an altitude of 430 km. The star of condor injected strontium vapor perpendicular 

to the earth’s magnetic field in a radially shaped-charge at an altitude of 571.11 km. In 

both experiments the Alfven process failed to produce an enhanced ionization that was 

visible from the ground.

It was later noted that the most rapid ionization appeared to take place in releases 

nearly parallel to the magnetic field [Hallinan, 1985]. But, after more rigorous scrutiny 

H allin an notes that the appearance of most jets were found to be consistent with the slow 

process o f photoionization. Some injection experiments did produce a thin confined jet 

that was suggestive of fast ionization. However, by comparison of intensity profiles through 

the jet for various assumed time constants, it was determined that the measured profile 

was consistent with any time constant of photoionization in excess o f 20 seconds and was 

inconsistent with fast ionization in excess of 1% of the barium [Hallinan, 1988].

It has been suggested that a possible mechanism for enhanced ionization could be due 

to the streaming of the photoionized ions through the plasma leading to the heating of 

electrons that would cause fast ionization. In 1987, Wei Xin investigated the hypothesis 

that rapid ionization is caused by electrons heated in an ion cyclotron wave excited by the 

field-aligned streaming of barium ions through the ambient ionospheric plasma. The model 

used assumed an ionosphere background plasma with a Maxwellian velocity distribution 

and a drifting Maxwellian distribution in the direction of the magnetic field to represent the 

photoionized barium. It was found that electrostatic ion cyclotron wave near the barium 

ion cyclotron frequence was dominant. It was proposed that the electrons can be heated 

by the doppler shifted waves via Landau damping of motion parallel to the magnetic field.

2



The purpose of this study is to include additional information for a revised model of a 

barium injection for the investigation of electrostatic ion cyclotron waves. This model shall 

take the injection to be parallel to the magnetic field and use a background of oxygen ions 

and electrons to represent the ionosphere. Upon injection of the neutral barium vapor a 

portion will become ionized due to photoionization. This seed population of ions produces 

a ring type distribution that gives rise to free energy in the system. The free energy is 

then transferred by plasma waves. In Chapter 2, expressions will be derived for the number 

density o f the injected neutral barium vapor, the barium ion distribution function, and 

the barium ion number density. Chapter 3 will deal with the derivation of the dispersion 

equation in which we shall make use of the derived expressions in Chapter 2 . In Chapter 

4 the roots to the dispersion equation will be shown for specific cases and be discussed. 

Finally, this thesis ends with an assessment of the likelyhood that the ion cyclotron waves 

excited could lead to anomalous ionization in Chapter 5.
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Chapter 2: Derivation of the Neutral Barium and Barium Ion Number 

Densities

In this chapter, expressions will be derived for the neutral barium and barium ion 

number densities caused by the release of barium vapor by a conical shaped charge directed 

at small angles to the earth’s magnetic field in the ionosphere. The barium shaped charge 

is an explosive device lined with barium metal. The geometry of the device is such that 

when detonated it projects the barium in a particular direction which we shall refer to as 

the burst direction [Stenbaek-Nielseri et al., 1984].

2.1 Number Density of the Neutral Barium Atoms

It is assumed that the neutrals are release from a point at time t — 0. The particles 

then follow straight-line trajectories, traveling radially outward from the shaped charge 

explosion. Also, we assume there are no collisions with ambient particles . The neutral 

density will be calculated from the differential velocity distribution

’ = * 3* (21)

which is the number of particles with speeds v and v+dv  and with polar angles 6 and 0+ d6, 

where 6 is the angle between the axis of the conical burst direction and the radial vector. 

Rotational symmetry is assumed about the burst direction. Specifically we assume

e21
rj =  pN F  (v ) exp ©2 ( 2 .2)

where N is the total number of neutral particles injected; /i is a normalizing constant, and 

0  the angular width of the burst which is taken to be 15°, The velocity distribution, F  (v), 

was taken from television observations of an ion jet and has been given by Wescott et al., 

[1975b], and Stenbaek-Nielsen et al., [1984].



The neutral barium number density is

A N (2.3)

where A N  and A V  are incremental changes in the number of neutrals and the volume, 

respectively. We can obtain an expression for A N  by multiplying 77 with a small change in 

spherical velocity space

A N — tj2tt sin QAQAv (2.4)

where Av  and A0 are incremental changes in velocity and polar angle 0. Using the assump­

tion that the distribution started from a point at t =  0 , we get a relationship between the 

velocity and the distance form the release point

r
v = -  

t

and thus for a small change in distance

A r =  tAv

The incremental volume is described by

AU =  A A tA v  (2.5)

where A A  is a small element of area. Since there is azimuthal symmetry, A^4 in spherical 

coordinates becomes

A^4 =  2ttr2 sin#A# (2 -6)

Substituting this into eqn(2.5)

AU =  r2t2ir sin 0AvA0 (2.7)



Now with the substitution of eqn(2.4) and eqn(2.7) into eqn (2.3) the neutral number 

density becomes

A N  tj2tt sinOAvAd (2 8)Tlr
A V  r2 t2n sin 9A vA 0

and thus

Tim
r2t

(2.9)

It can be seen that r2 comes from the conservation of flux and that t is a dispersion term 

for the velocity.

In dealing with the derivation of nTl we have not included the loss of neutral barium by 

photoionization. Photoionization will cause a fraction of the barium neutrals to be ionized 

after a certain amount of time and then a fraction of the atoms not previously ionized 

will be ionized. This continues until all the barium atoms are ionized. Thus, we take the 

photoionization of the neutrals to be described by an exponential decay. Including this into 

the neutral barium number density we have

nn =  1 7  exP rzt
t

To
(2.10)

where the exponential represents the loss of neutrals to photoionization and r0 is the pho­

toionization lifetime. Substituting eqn(2.2) into eqn(2.10) we obtain

r2t ‘1
' e2 ' t '

exp © 2_ exp
T o .

(2.11)

which we write as



where /  ( j )  =  [iN F  (v) was obtained from Stenbaek-Nielsen et al. ,1984 and is plotted in 

Fig.l.

2.2 Calculation of Barium Ion Velocity Distribution and Density

The calculation of the barium ion distribution and density assumes that barium ions 

are created by photoionization of the injected barium neutrals. Once an ion is created, 

its motion is constrained by the magnetic field. Its velocity along the magnetic field stays 

constant while its perpendicular velocity with respect to the magnetic field causes cyclotron 

motion. We assume there is no electric field present and effects of gravity are negligible. 

Thus the ion behavior may be described in terms of a distribution function fs a 0 (x,v,£)  

that satisfies the equation

+ v . ^ ^  + ( v x n ) . ^ ^  =  - n n53 ( v - y )  (2.13)
d t o x  d v  t 0 \ t )

where O, the cyclotron frequency, is in the direction of the magnetic field. This states that 

the total time derivative for the ions with velocity v is given by the rate of decay of the 

neutrals present in a given volume element.

Since we assumed radial symmetry for the injection of the barium we wish to solve for

the zero order barium distribution function in cylindrical velocity and configuration space

coordinates. This should help simplify our expressions. The transformation from cartesian 

to cylindrical coordinates are

z — z x — p cos <j> y = p sin ^ 

vz =  vy vx — vj_ cos t[) Vy =  vxsini^ (214)

P ~  (x2 +  II2)2 VX =  ( +  Vy2) 2
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where z and vz are the magnitudes of the vectors along the magnetic field, p is the magnitude 

of the vector perpendicular to the magnetic field, the angle between p and a:,and the 

angle between v± and vx. Also, the angles ip and (p are related by a phase difference . The

transformation from the coordinates of nn to those just mentioned depends on the direction 

of the burst relative to the magnetic field. Since the axis of the burst is along the magnetic 

field, we take it to be in the z direction. The transformations from spherical to the above 

cylindrical coordinates for nn are

We now proceed with the transformation of the third term on the left hand side of

where fl  is in the z direction. The transformations of and are accomplished by 

making use of the chain rule. Since vx and vy are functions of v± and we have

r =  \] p2 + z

tan 6 =  — (2.15)
z

equation (2.13) into cylindrical coordinates. Since we took the magnetic field to be in the 

z direction, the third term can be written as

(2.16)

d dip d dv± d
dvx dvx dip dvx j_

(2.17)

d dip d d
dvy dvy dtp dvy J_

and we determine from the transformations that

(2.18)



We may get expressions for dip/dvx and dip/dvy by taking the derivative of the tan with 

respect to vx and vy and employing the chain rule

dip d dip d f  Vy
dvx dipn dvx dip \ vx

dip 2 , d f  Vy—  sec2 ip =  —  I —
dvx dvx \ vx

dip 2 _  vy
dvx Se° v 2

dlP Vy , ,=  v-  cos2 ip
dvx

With the substituting from the transformations of vx and vy we get

(2.20)

dip 1 • ,—  =  sin ip
dvx ux

(2.21)

and by the same means we have

dip 1 .——  = —  cos ip
dvy vx

(2.22)

Substituting equations (2.17), (2.18), and the appropriate transformations into eqn

(2.16) we get

(v  X O ) . ^ ^  =  fi
dv

. dip ddv± d 
Vx sm ip ( ——  —  +

dvx dip dvx dv±

, . dip ddv± d
Vx cos Ip ( —-----777 +

dvy dtp dvy dvx foa

(2.23)

which by rearranging we have



and with the substitutions of equations (2.19), (2.21), and (2.22) we arrive at

A 1
/ b «o(v  X n ) ^ ^  = nV C7V

d d(sin2 ip +  cos2 ip) —  + vx {simp cos -  cos sin ip)

(2.25)
v 9 av d'lp

The equation for the zero order distribution function is

#/Bao , / ̂ fBao | • i ^fBao , @f]3ao o
- g T  +  ^ cos^ —  + 1,1 ’ m * s r  + "  n “ 8T

=  ■ ^ r nn (z ,p ,t)S  (ti|| -  p -S  - y )  (2.26)

Now, with the assumption that the distribution is not affected by the particles’ gyromotion, 

we take dfi}nu/dx and d fn ao/dy to be independent o f ip. Averaging over ip we have

dJf r + °«SJi r  = ('»- f) i 6 (n  - 1) (2'27)

The left side of the above equation is a total derivative along a straight-line trajectory. The

solution is therefore given by the integral expression

fBao =  2 ^ 7 o l  dt'nn (z ',p ',t ')6  ( v|| -  , (2.28)

where

x’ =  z -  vy (t -  (2.29)

p' =  P

The implicit assumption is that the gyroradius is small compared to p.

The barium ion number density is found by integrating the zero order distribution 

function, /£?„„, over velocity space



nBa" =  T r T /  fj2nv±dv-i j  dvII î>_l -  J

With the substitutions for z' and p' the delta functions become

(2.30)

12

« (»ii -  f ? )  = V||
(z -  t>|| (t - t j )

and

(2.31)

(2.32)

putting these back into n^ao we obtain

ncao =  ~r J o dt' J  dv_L J  dv\\ Y«n (z- V|| ( - t ') ,p,t ')  6 (v± y) (v|| - I)

= r, l  dt' l dV± 7 n" ( 4 8 “ I) (2 33)

1 / • * < '  /  ,
= — J  dt - n n l z - , p , t

Now substituting in n „ we have

,  i  fM
To Jo

KBa o

since

£ r n V

J 2 ' 2 I ' 2r = p +  z

£
To

(3.34)

and

= PJ +

tan

zH
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which for small

pi  r   _ r _
“  ~  -I

z T

pt_
zt'

the barium ion number density is described by

=  —
TotJnnBa„

t / I V £  + f

n2 -4-P -T t*
exp (£)21 ' t '"

02 exp
T o .

(3.35)

Due to the singularity at t =  0 in eqn. (2.35), we shall treat the lower limit as r  — 

instead of zero, where f lDa is the gyrofrequency of the barium ions, which has the numerical 

value of t  — 0.180s"1 . Thus

^Cao = —  [  dt' 
Tot Jr

f [ \ / £  + £
exp ( i f ) 2] ’ t ' m

©2 exp
T o .

(3.36)
P2 + *W

2.3 Calculations and Results of Number Densities

In the calculations for the number densities we set the angular width, 0 , to be 15° 

and the photoionization rate, t 0, to be 20 sec [Drapatz, 1972]. Fig.l shows the differential 

velocity distribution taken from Stenbaek-Nielsen et al., 1984.

Fig.2 shows contours of the logarithm of the neutral number densities for the times 

of 1, 2, 5, and 10 seconds. The plots have the z-axis parallel to the magnetic field. Fig.3 

shows contours of the barium ion number densities at the same times and presented in the 

same manner. The distance scales in Fig.2 and Fig.3 are different for the various times. 

The distribution of the ions are greatly elongated in the z-direction. Note the difference in 

the p-scale and z-scale. Also, the plots at five and ten seconds show that the ion number 

density is greater than that of the neutrals within a kilometer of the z-axis.
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Chapter 3: Derivation of the Dispersion Relation

In the following discussion we will derive the electrostatic dispersion relation that will 

be used to analyze instabilities that arise from the injection of barium ions in the ionosphere. 

The behavior of the barium plasma can be described by the equation

+ V . V . /B .  + ( B + I  X b )  • V „ / 0 „ =  i n ,.*3 (v -  5) (3.1)
Ot TTT'Da '  c /  T0 \ I /

where /# a ( x >v >0 is the distribution function associated with the barium ions. Eqn(3.1) 

states that the total time derivative of f Da along a particle orbit is equal to the decay of 

the neutrals present in a given volume element.

Since we’re dealing with electrostatic waves the only Maxwell equation needed is Pois-

son’s equation

V • E =  47rp (3.2)

In solving the equation above we partition the distribution function

f  D a  = / C a „  + ,  (3 3 )

into a zero order solution, f B a0 , and a small perturbation, f Bai, associated with small 

amplitude waves.

We have assumed that there is a background magnetic field but no background elec­

tric field present. Thus, with the electrostatic approximations we have only a zero order 

magnetic field

B =  B0 (3-4)

and a perturbed first order electric field

E =  Ei (3.5)

16
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The electrostatic approximation is justified due to the 0, the ratio o f the plasma pressure

than 10-2 where electromagnetic effects become important [Hasegawa, 1975]. Also, since 

the effects o f gravity are small compared to the electro-magnetic interactions we have not 

included gravity in this model.

Substituting equations (3.3), (3.4), and (3.5) into (3.1) and collecting the zero order 

terms we get the equation that describes the motion of the zero order particles.

which is the same as eqn. (2.13). It was shown in Chapter 2 that / c „ 0 was described by 

eqn(2.88). With the substitution of eqn(2.31) and eqn(2.32) into eqn(2.88) we can write 

the zero order distribution as

to the magnetic pressure, in the F% region having the order of 10 5, which is much smaller

1
— r

{z ,p ,t)S 3 (v  -  y )  (3.6)

/bh» =  2WT̂  J0 dt'nn (z ',p ,t')S  ( j ;  (v\\t- z)̂ĵ ( « . L -  (3-7)

We now proceed to do the integration with respect to t'. Using the identity [Jackson,

1975]

(3.8)

where f  (x ) has only simple zeros located at Xi, eqn. (2.32) can be written as

(3.9)

where t„ =  -f-. Integrating this over t' we have

(3.10)
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from eqn(2.29) we have

/ i Pz = Z — V\\ I t -------
V±

Since there is a delta function on uy =  j

t \ V±J  v±t

and the zero order distribution function takes the form

= (311)

We have plotted f j )ao with respect to velocity in Fig.4, where t — Is, p — lfcm, and 

z =  5ifem. This distribution function describes the perpendicular velocity distribution of 

the ions at a particular point in space and time. We note that the distribution function 

resembles a delta function plus a slight spread in velocity space.

With an expression for fs a 0 we continue our derivation by solving for /.Bai- The first 

order terms upon substitution of eqn.(3.4) and eqn.(3.5) into (3.1) give the equation

d f n ai + v . V , / b «1 +  —  E1 . V „ / Ba0 +  —  ( -  x B „ ) . V „ / b 0i = 0  (3 .12)
o t  rriBa TTlDa V C /

because we assume an electrostatic perturbation , V x E  =  0, the electric potential can be 

used to represent the electric field

Ex =  - V xy> (3.13)

With this substitution the first order equation is

dfDax d f Dai f 0  X qi3a dtp d f Da„ „  1 ^—  (- v  • — -  1- (v  X S iBa)---- a  -------~aZ a-----  (3.14Jat ax av rnDa ax av
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BARIUM ION DISTRIBUTION 
TIME>1 SEC z=5.0e5 (cm) rho=i.0e5 (cm)

a  o

F ig u r e  4: D istribution o f barium  ions associated with velocity for a position o f 

z — okm , p =  lfcm , and a time o f 1 second after detonation.



where f i Da is the cyclotron frequency of the barium ions in the direction of the magnetic 

field. The left side of eqn. (3.14) is a total derivative along helical orbits and can be written

20

as

dfBax dfsa (3.15)
dt m Ba dx dv

We can solve for f s ai by integrating along the trajectories that satisfy the equation x = 

v X SIb <i , thus

i [  j  i . ! i B a  q
(316)

In choosing the magnetic field to be along the z axis the paths of the ions are described 

by [Hasegawa, 1975]

sc' (f ')  -  sc = 77^ - {sin [ft^a ( ' +  -  sin

y' ( t')- y =  {cos [nCa ( cos (3.17)
\lBa

z' (*') -  Z=V|| ( ' -  t) 

v'x ( t') =  Vj. COS [n (t' +  $

v'y (<') =  Vx sill [ftbo ( (3.18)

* 4 ( 0  = Ml

the final position at t' =  tis chosen to be x' =  x, y' =  y, and = while the corresponding

velocities are vx (t ) =  v± cos xft, vy (t ) =  —v± sint/>, and vz (t) =  vy. The sense of rotation is 

left-handed for the ions with respect to the magnetic field.

and



Now consider a perturbation of the form exp [t (k • x -  ut)], take the direction of prop­

agation of the wave to be in the x, z plane such that

k • x = k± + fcyz (3.19)

(p =  tpexp [i (Ay z' + — (3 .20)

and

V a.yj(t') =  ikip(t')(3.21)

this gives the equation

/na, {x ,v ,t )  -  J  dt' t , ; °  +  kdv*' )  exp [* +  ~

(3.22)

since
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then

dV± W ( f )  = =̂  cos [SlBa ( f  - t )  +  i>] (3.23)
dvx 'v~v >

Substituting eqn. (3.17) and eqn. (3.23) into eqn. (3.22) yields

fBax =  i -^ -p e x p  [t (k • x)] f dt' 
HlBa J — oo

d f B a ° +  k ±  COS [ f le a  ( f  +
dv\\ dv±

exp j t  up ( t'-  t )  + sin [0 Ba («' sin -  ut'̂ J j  (3.24)

where vy and v± are constants o f motion. Using the identity [Hasegawa,1975]

OO
exp (iz sin ip) — Jn (z )exp (inip) (3.25)
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we can write , as 

QDa .
f  Dai = i-^^-tp  eXp [i (k • X — u>f)] f  fc||

mBa J—oc ^
dfDa„ ., dfu  a0-  +  K±---------

dv\\ dv±

~  ^ e x p  [t ( f i B a  ( t ' -  t )  +  i p ) }  +  e x p  [ - 1  ( f l e a  ( +  )  )

t  t  ' • { & )  { l i t )exp (i + "nB“ - u ) “ 1)1

(2.26)

Tl—  — O C Z =  — OC

exp [i (n — I) ip]

Since we are interested in plasma instabilities, where the imaginary part o f u> is positive, 

we can evaluate the integral over t1 by using the fact that and are independent of 

time and shifting the indices of the Bessel functions up and down by one [Xin, 1987].

fDai =
iDa

OC OC

m D
1 t*\ V '  V "  T f k ± v ± \ exp [t (n - / )  V>]
“ ̂  r ^ o o  l= ^ oo \ ^ B a  [*11*11 + n Q Ba ~

M  + T-t  (^e)+ (£ r)]} (3'27)

Finally, with the use of the identity

2n
J n —1 ( z )  +  Jn+ 1 { z )  — ~ ^ n ( Z )

the first order distribution function is described by

(3.28)

n= — oc I— — oc
» d f B * o I T l U B a  d f B a Q

II 0w|| v± ®v±
(3.29)

exp [i (n — I) xp]
k ||V|| + n^Ba — W

The first order barium ion number density, n #ai, is calculated by the integration of 

f Dax over velocity space

n-Bai -  J  (Pvfuai (3 30 )
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where

d3v =  dipdv\\v±dvj

thus

r  *r  *■ /r j l  ®  ®

fc||U|| + nUBa -  V

Since

U  0 / b « q  , nQjla8 / p « q

" St’H "x a"x exp [t (n -  I) (3.31)

f  dipexp [t (n — I) — 2(3.32)
Jo

the integration over ip yields [Hasegawa,1975]

_  27 rqBa ,.sY'  / *  , r  , 2 k xv± \ 0 ,,||IL +
UDai ~  m D(l *n^ oo J0 V|1 J e  V± V± " V )  *||t/|| + ”nca -

(3.33).

In proceeding with the derivation of riBai we split up the integration into two terms 

such that

(^n,, + T n±) (3.34)

where

T„ = 2 n f  dv\\ f  vxdv± Jl( ^ 7^ )  T — 77   (3.35)
1 Jo Jf  \ ^Ba /  &||V|| +  nVlBa ~ &

too frx>  / t  \  n f i g n  O / p

Tnx =  2tt /  dw|| I vLdvLJn2( - i - i  J   n° ’,x  (3.36)
x y(, 11 Jz \ n  J fc||t>|| +  ~ *

In order to avoid integrating over the derivatives of the discontinuous distribution functions, 

we integrate by parts and cast the partial derivatives onto other portions of the integrand.

r"il = 2»  /  v± dv1 J „' [  dv||---------- jZ 21 -----— 5 (3.37)h  V n B.  J h

and
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and

T n ± = r * A£ K i &)]l
-27XnVtBa

h ~ J .  aV1Sv±
dv ii fn a0

h - H H 1
(3.38)

Substituting / Ba„ into Tn|| and Tn± yields

„  r  j  F, .. pz n=  2„ y ? y

[-n_L
27rnfi2ja Z*00 5

at; I*/:
Z fcxu iX i r
V WCa / J 7o h  -  ( "

(3.40)

Doing the integration with respect to the parallel velocity we obtain 

1 1TV,,, -
z _  (  o'—niipa \ 1

.* V )\
/.'*■«(i e M s o *

nDijflCa 1 / “ j  T 5  r2 f  */> \ p2
Lri±_ k\\T0( “ - ’* » - ) ]  U  [d v

Now to simplify the form of Tnj_ we note that

(3.42)

d
dv±_

2 /fc]_v_|\ _  2A;X , /  fcj.uj.'N \
n V «Ba / n Ba " V n Ba / n V «Ba /

(3.43)

and by using the identity

Jn (z ) — 2 (2) ^n+l I-2)] (3.44)
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Finally for the first order barium number distribution we have

nBax — V?(0 [̂ n|| + Tn±]
m Ba

(3.34)

where

T — n„ - r 0 Jz _ J z V J  \ v ± t VL )
(3.41)

_ nk i
T —  =■

n x  “  L _aJ||T0

and where

nT
zp p 
 ,P , —

v±

?  (‘+ 4^)

(± lZ>©2

21

exp
Vl_T0

(3.47)
Uj_£ V li

The integrals for Tn.. and must be calculated numerically since it is not possible to 

integrate them analytically.

Now we consider the background plasma of electrons and oxygen ions. The zero order 

distribution function for the background plasmas are assumed to be Maxwellian distribu­

tions

=  n ,n (Mo ”  ,€,»0
\ V * vth,

\3 V2
1 exp

. v th,_
(3.48)

where vth — v/^ -jL is the thermal velocity and Ts involves the boltzmann constant. Sub-* V

stituting eqn. (3.48) into eqn. (3.33) we get [Xin, 1987]

/* 2 7T fOC f  OO
n„ =  dtp || / v± d v ± f gl

J 0 J-oc

oo oc

X X 27r5n*
Tl— “  OC I— — OC
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/_
00 fc||V|| + nft,

dvii-— —-— — exp
oo *j|V|| + n n s -u

” »
vth.

L v±dviJ- ( % r )  ( ^ n r ) exp
,2 1

v th.

n Sl = 2vn„0^-<pq, -2 (   w   _
m* v th.

L

[

00 dv V u  +
Af|| v|| + n n , -  u>

. t2v±dvj_Jn

exp

/o \ fl

The integral with respect to Vx can be evaluated as

exp

3 oc

£
T l ~  — OC

, _ ±  

X L

(3.49)

r »±<fax4  ( ^ )  exp ']th ( ^ ± v t \
t M - f f l  exp

M X ,
2n ;

(3.50)

While the integral with respect to vy can be evaluated by making use of the plasma disper­

sion function which is [Hasegawa,1975]

exp ( -® 2)
dx (3.51)

setting x =  we obtain

»/ — oc

r= vth, /
«/ — c

fcyVy +  nfi* 
AjiiUii +  nQs — u;

exp
uth9

dx

= Vth, V *

i  +

i +

_  /  u -n ii ,
exp (-a :2)

^ Tlfig \

Bringing these results together we have [Xin, 1987]

(3.52)

n - 2n.„g,V>
m gvtht £ 2fi*

exp *1 <  
2n? i +

—  r a f i .

(3.53)
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Substituting E =  -V ip  into p ’s equation gives

—  V 2<p = 4 (3.54)

We assumed that at the start

TlBao “b  n O o  ^ e o

thus eqn. (3.54) becomes

P<p =  4:re (nBai + -  ) (3.55)

Upon substituting eqn. (3.34) and (3.53) into eqn. (3.55) and dividing by we obtain

where

1 + P \ I

+

(jj (  uj — nQP\

/ X r 1 W ry ( &  ~  WOO \
i  +  l  i - p » )

4ne2 ^
k2m D aY , T^ + T ^ - °

A. =
87rn„„eM

, "W fc . J

(  ki  vI
2Q?

(3.56)

and Tn|| and Tn± are described by eqn(3.41) and eqn(3.46), respectively. Also, we have 

made use of the identity
OO

In(a*») exp [—Mil] =  1
— OO

The above equation, (3.56), is the dispersion relation that we shall analyze.



Chapter 4: Calculation of the Dispersion Relation for a Particular Model

In this chapter we will choose parameters for the dispersion relation to model the 

barium ion injection into the ionosphere. The derived expression will be solved numerically 

to determine ion cyclotron growth rates for two cases. The first case does not assume 

an ambient oxygen ion background and the second does assume an ambient oxygen ion 

background.

4.1 Parameters

The shaped charge barium release experiments of [Wescott et al., 1975a], [Wescott et 

al., 1975b], and [Wescott et al., 1986a] have taken place in the upper F2 region, charac­

teristically between 400 to 600 km. The experiments were oriented such that the injected 

barium would be directed nearly parallel to the magnetic field of the earth. Our model is 

for such a case.

It is known that the major ion constituent of the F2 region is monatomic oxygen ( 0 + ). 

Thus our model will consist of streaming barium ions with background distributions of 

monatomic oxygen and electrons [Banks and Kockarts, 1973].

In the ionospheric F region the number density of the oxygen ions varies with the time 

and altitude in the range of 102 to 105 per cubic centimeter. The oxygen ion tempera­

ture varies from 1000K  to 2000K  and the electron temperature is characteristically higher 

by a factor o f two [Banks and Kockarts, 1973]. We have taken the monatomic oxygen 

temperature and number density to be

To =  1200K 

n« 0 =  1000cm -3
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charge neutrality requires we set

ne0 ~  ™Oo "t” nBao

The temperature for the electrons is

Te =  2400K

The barium number density is determined from equation (2.36) in Chapter 2 by numerical 

integration. We take the magnetic field to be 0.5 gauss.

In a previous study Kindel and Kennel, [1971] showed that electrostatic waves could 

be excited by field-aligned currents. These waves could be electrostatic ion acoustic and 

ion cyclotron waves depending on the streaming velocity and the plasma temperature. In 

their paper they dealt with the case of electrons streaming along a magnetic field through a 

background of oxygen ions. It was shown that when the temperature ratio of the electrons to 

ions reached .02 to 20 , the critical drift velocity for the electrostatic ion cyclotron instability 

was smaller than for the ion acoustic instability. They went on to point out that when a 

heavy ion is introduced into a light ion plasma it should increase the range of ^  for ion 

cyclotron wave dominance.

Xin, [1987] studied the case where barium ions were streaming along a magnetic field 

through a background plasma composed of electrons and ions. It was shown, that for 

conditions where the temperature ratio =  0.5, ^  =  1.0, and the ratio o f the drift 

velocity to the thermal velocity of the barium ions u/vt}lDa =  23.5, the first harmonic ion 

cyclotron wave was dominant and that the maximum growth rate occurred when the oxygen 

number density equaled the barium number density. Also, the growth rate was found to be 

sensitive to the electron temperature.
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The cases studied by Xin, [1987] and Kindel and Kennel, [1971] assumed Maxwellian 

distributions drifting along a magnetic field to characterize the beam species. This gave 

each system an unstable distribution in velocity space parallel to the magnetic field. The 

present study differs from these in that the free energy that arises is due to the barium’s 

motion perpendicular to the magnetic field, as shown in Fig.4. It should therefore be 

expected that the roots will differ some from the above studies.

Roots are now sought that satisfy the dispersion relation for the above described pa­

rameters.

Since this study is only interested with instabilities, roots are sought in which /m (a;) > 

0. This is due to the assumption that the wave behaves as exp[k • x -  u;t]. When the wave 

number k has real values the frequency takes the form u  =  u>r + 17 and the exponential 

expression becomes exp[ik • x — iut + 7 1],

In determining roots for the dispersion relation we must stay within the framework of 

our assumptions. Since the dispersion relation is dependent upon position and time after 

detonation we must choose these variables such that the time is long enough to average 

over the gyrofrequency and the position if far enough away from the magnetic field axis 

compared to the gyroradius. For these reasons a time of 1 second and a position of z — 5km, 

p — 1 km has been picked. Where the z represents the distance from the detonation site in 

the direction of the magnetic field and p the distance in the direction perpendicular to the 

field. This time and position corresponds to a barium ion number density of 1618. cm -3 . 

Another reason we picked the above position was to be within the neutral beam half angle 

0  =  15°.
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4.2 No Ambient Plasma

The interest o f this study is in looking for electrostatic ion cyclotron waves. In or­

der to determine values of k corresponding to growing waves, zero frequency instabilities 

perpendicular to the magnetic field are sought for a plasma consisting of barium ions and 

electrons only. These instabilities should be expected since our transverse velocity distri­

bution somewhat resembles a delta function [Crawford and Tataronis, 1965].

The pure imaginary roots found had a maximum growth rate of 7 =  22.09a_1 for a 

wave number of k =  1.98 X 10- 3cm -1 . These roots have a first peak at ( 7^ “ ) ~  2.25 and 

subsequent peaks occur at intervals of as tt. In Fig.5 the growth rate divided by the

barium ion cyclotron frequency ( jy-1— ) versus the perpendicular wave number multipliedUBo +

by the gyroradius ( )  has been plotted. The second peak has the highest growth rate 

and as the wave number is increased further the peak growth rates diminish.

From the peak growth rates o f the zero frequency instability waves are sought propa­

gating a little off from the normal of the magnetic field. Using the wave number of the first 

peak k =  9.4 x 10- 4cm -1 , roots were then found for the angles between 89.9 and 89.995 

degrees from the magnetic field and over a range of wave numbers.

Plotted in Figures 6a-7a and 6b-7b are the growth rates and frequencies associated 

with the first and second harmonics o f the barium gyrofrequency = 35.12 for the case 

where there is no oxygen ion background. The growth rates, Fig.6a-7a, have been plotted 

against the propagation angle ip and the quantity . The frequencies , Fig.6b-7b, have 

been plotted against the same arguments, but note that the axis for has been reversed, 

in order to give a better view of the surface. Each curve in a plot represents a particular 

magnitude o f k and the graph on the back wall of each plot is the curve associated with the
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largest growth rate for that plot. In Fig.6a the most striking feature is that there are two 

peaks in some of the curves for the finite growth rate as a function of while in others 

there is only one. This is a consequence of the way the terms for the electron and barium 

expressions in the dispersion equation in (3.56) behave. For the five curves that only have 

one peak, the first, n = l, term of the barium expression is dominant through the range 

of angles; this term is balanced by the electron term. In the curves with two peaks, the 

same is true except that as the frequency decreases closer to zero and the angle approaches 

90° the electron term becomes small due to the parallel phase velocity being much greater 

than the electron thermal velocity. The first, n = l, barium term of eqn.(3.46) then interacts 

with the higher gyroharmonic terms of the barium expression Tn± of eqn.(3.46) to give the 

perpendicular propagating roots. The Tn|| expressions of eqn.(3.41) do not influence the 

roots for wave numbers with angles near 90°. The apparent discontinuity in the roots of 

Fig.6a is actually where the second harmonic roots, shown in Fig.7a-7b, take over. Fig.7a- 

7b shows the continuation of the features from Fig.6a-6b. The plot of the second harmonic 

shows the same pattern as the first harmonic but now the curves start with the second, n = 2 , 

barium term in the expansion of eqn.(3.46) dominating. For those curves that have the 

real part of the frequency decreasing to zero with a finite growth rate as the wave normal 

angle of propagation tends to 90°, the electron term of the dispersion equation becomes 

small. The second, n=2, barium term dominates at first then at the beginning of the next 

peak the first, n = l, term dominates. Finally, when the frequency approaches zero and the 

angle is nearly 90° we get the zero frequency instability o f Crawford and Tataronis. The 

second harmonic term also has finite frequency perpendicular propagating roots. One of 

these roots is shown quite well in the curves on the back walls o f figures 7a and 7b. These
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curves start with the second, n ~ 2 , barium term dominating and it continues over the range 

of angles. The reason we obtain the finite frequency perpendicular instability is because 

the electron term becomes small as we approach 90° for this particular k. The second, 

n = 2 , term in the expansion for the barium expression is then balanced by other terms in 

the barium expression . If we continue our examination for the third harmonic we would 

see a continuation of still higher growth rates. We find that our roots for perpendicular 

propagation indicate higher growth rates for larger wave numbers which agrees with the 

results of Crawford and Tataronis, [1965].

4.3 Effects of Ambient Plasma

In the figures 8a-11a the growth rates for the first four harmonics associated with the 

barium gyrofrequency for the case with an oxygen ion background have been plotted. These 

plots have similar labels for the axes as before but note that the axis has been reversed

to show a better view of the surface. Figures 8b -lib  are the same as before but with the 

\±V-L axis reversed. The curves on the back walls are the curves associated with the largest 

growth rates and each curve still represents a particular magnitude of k. Fig.8a shows that 

the maximum growth rate of the first gyroharmonic occurs for k =  8 X 10“ 4 propagating at 

an angle of ip — 89.97°. The waves corresponding to the peak are being driven by the n = l 

barium term. We note that in comparing Fig.6a with Fig.8a that we have no zero frequency 

growing modes of the Crawford and Tataronis, [1965] type at 90° in Fig.8a. This is due to 

the effect o f the ambient oxygen background. The n—0 term of the oxygen expression is 

dominant and has little change over the range of angles plotted. The reason for this is that 

the main contribution to the oxygen term is from [1 — 2o(/xo)exp (—/Jo)], where po

and A a are described in eqn(3.56). Expanding for small p o  we note that the oxygen term
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n  2 . 

for wave normal angles near 90° is roughly equivalent to tt#-, where IIo represents the 0  +
11 o

ion plasma frequency.

It can be seen that there is a decrease in the growth rates when the ambient oxygen 

background is included. In Fig.6a the first harmonic growth rate for k =  9 X 10“ 4 propa­

gating at ip =  89.970 was 7 =  18.15 with a frequency of w — 31.52 while for the same wave 

number in Fig.8a the growth rate was 7 =  11.92 with a frequency of u) — 32.60. In Fig.9a 

the peak growth rates associated with the second harmonic have been decreased by about 

half compared with those of Fig.7a. The third and fourth harmonics are decreased even 

further. In Fig6a-7a it can be seen that the growth rates are increasing with the increase 

in k whereas in Fig.lOa-lla the peak growth rates are decreasing. Also, the inclusion of 

the oxygen eliminated the mixing that occurred in Fig.7a-7b. This is because the second, 

third, and fourth harmonics are being driven by the n=2, n=3, and n=4 terms of the bar­

ium expression just as in the first harmonic. Thus the frequency of the roots tends to be 

tied more closely to the gyroharmonics. Comparing Fig.8a -lla  and Fig.8b -llb ., the spread 

of the peak growth rates with respect to k increases for increasing gyroharmonics as well 

as the spread with respect to the propagation angle xp. These roots associated with the 

ambient oxygen background had the maximum growth rate of 7 — 16.08 propagating at 

89.955° for k =  1.2 x 10" 3 with a frequency of u  =  62.55 appearing in the second harmonic.

In comparing roots with those obtained by Xin, [1987] note that the maximum growth 

rate is a factor o f ten larger and that the second, rather than the first, n = l ,  harmonic term is 

dominant. Also, the propagation direction of these roots is closer to 90° and the frequencies 

axe closer to the cyclotron harmonics than Xin’s results. We might have expected this since 

Crawford and Tataronis, [1965] analysis of a transverse velocity delta function distribution
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showed that the first harmonic did not dominate and that the propagation occurred 

frequency bands centered on the cyclotron harmonic frequency.
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ZERO FREQUENCY INSTABILITY 
kpar=G. p=  lk m  z -  5km  tim e=l sec 

Ba no. den.=1618. Oxy no. den.=0. (cm)’ 3

o

(kper vper/omegab)

Figure 5: Zero frequency instabilities, perpendicular to the m agnetic field, for the

case with no ambient oxygen ion background
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Figure 6a: Plasm a instability (electrostatic ion cyclotron waves) corresponding to

the first harmonic for the case with no ambient oxygen ion background.
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REAL PART OF ROOTS TO DISP EQN
first harmonic p = lkm  z=5km time=lsec

Ba no. aen.=1618. Oxy no. den.=0. (cm )'3

Figure 6b: Frequency associated with the first harm onic for the case with no am ­

bient oxygen ion background
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IMAGINARY PART OF ROOTS TO DISP. EQN.
second harmonic p=lkm  z=5km time=lsec

Ba no. den.=1618. Oxy no. den.=0. (cm )'3

Figure Ta: Plasm a instability (electrostatic ion cyclotron waves) corresponding to

the second harm onic for the case with no ambient oxygen ion background.
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REAL PART OF ROOTS TO DISP EON
second harmonic p = lk m  z=5km time=lsbc '

Ba no. aen =1618. Oxy no. aen.=0. (cm)’ 3

Figure 7b: Frequency associated with the second harm onic for the case with no

ambient oxygen ion background
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i m a g i n a r y  p a r t  o f  r o o t s  t o  d i s p . e q n
£  ™  S r m o H iCn P = L k m  z=5km  tim e=isec  
Ba no. den.=16l8. Oxy no. d e n -1000. (cm )"3

F ig u re  8 a: Growth rates corresponding to the first harm onic for the case with an 

ambient oxygen ion background. The largest growth rate for the first harm onic was 

7  =  12.53 se c -1  for wave number k =  8 x 10-4  cm " 1 propagating 89.97° from  the 

m agnetic field with frequency u; =  30.19 sec- 1 .
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KPART 0F ROOTS to  d is p . eqn
first harmonic p = lk m  z=5km  time=lsec '
Ba no. den.—1618. Oxy no. den.=1000. (cm)"3

Figure 8 b : Frequency associated with the first harm onic for the case with an am

bient oxygen ion background
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I M A G I N A R Y  P A R T  O F  R O O T S  T O  DISP. E Q N .
SRa°i?o !?arm 1°T 1D Jp= lk m  z=5km  tim e=lsec  Ba no. den.=1618. Oxy no. den.=1000. (cm )'3

Figure 9a: Growth rates corresponding to the second harm onic for the case witli an 

ambient oxygen ion background. The largest growth rate for the second harm onic 

was 7  =  16.08 se c -1  for wave number k 1.2 x 10 -3  cm -1  propagating 89.955°

from  the m agnetic field w ith frequency u; =  62.55 se c - 1 .
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REAL PART OF ROOTS TO DISP. EQN.
second harmonic p = lk m  z=5km time=isec
Ba no. den.=1618. Oxy no. den =1000. (cm)'3

Figure 9 b : Frequency associated with the second harmonic for the case w ith an

ambient oxygen ion background
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IMAGINARY PART OF ROOTS TO DISP. EQN.
third harmonic p=lkm  z=5km time=lsec
Ba no. den =1618. Oxy no. den.=1000. (cm )'3

Figure 1 0 a: Growth rates corresponding to the third harm onic for the case with 

an ambient oxygen ion background. The largest growth rate for the third harmonic 

was 7  =  15.39 5ec_1 for wave number fc =  1 .6 x  1 (T 3 cm ' 1 propagating 89.94° from 

the m agnetic field with frequency u> =  97.96 s e c - 1 .
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r e a l  p a r t  o f  r o o t s  t o  d isp . eon
r»'r, i rrno,I2-‘.c„ p = lk m  z=5km  tim e=isec  Ba no. den =1618. Oxy no. den.=1000. (cm)-3

Figure 10b: Frequency associated with the third harm onic for the case with an

ambient oxygen ion background
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IMAGINARY PART OF ROOTS TO DISP. EQN
forth harmonic p=lkm  z=5km time=isec
Ba no. den.=1618. Oxy no. den.=1000. (cm)"3

F ig u r e  1 1 a: Growth rates corresponding to the fourth harm onic for the case with 

an ambient oxygen ion background. The largest growth rate for the fourth harm onic 

was 7  =  12.22 s e c " 1 for wavenumber k =  2.0 x  10-3  cm " 1 propagating 89.925° from

the m agnetic field with frequency u) =134.45 se c - 1 .
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Figure l i b :  Frequency associated with the fourth harm onic for the case with an

ambient oxygen ion background



In this thesis a barium shaped charge release directed nearly parallel to the magnetic 

field in the Fi region of the ionosphere has been modeled for the investigation of electrostatic 

ion cyclotron instabilities. Established in Chapter 2 were expressions for the barium ion 

and the neutral number densities, where the barium ions were created from the decay 

of the neutral barium by the process of photoionization. The expression for the neutral 

barium number density was derived from the differential velocity distribution given by 

Stenbaek-Nielsen et al., [1984]. In Chapter 3, using the velocity distribution that was 

derived in Chapter 2, the dispersion relation was developed. It was then analyzed at a 

specific position in the barium jet and at a specific time after detonation for two cases in 

Chapter 4. The first case assumed no ambient oxygen ion background and in the second 

case an ambient oxygen ion background was assumed. In the discussion that will follow the 

results from Chapter 4 will be briefly stated as well as considerations how the electrostatic 

ion cyclotron waves would be affected by changes in the oxygen ion temperature, oxygen 

ion density, electron temperature, and position within the barium jet. Finally, this thesis 

ends by considering whether electrons can be accelerated sufficiently by electrostatic ion 

cyclotron waves to cause enhanced ionization of the barium neutrals.

It was found that in the case with no ambient oxygen ion background the growth rates 

increased with increasing wave number and frequency. The roots had considerable mixing 

with other modes and Crawford and Tataronis, [1965] type instabilities, which have wave 

normals exactly perpendicular to the magnetic field, were found.

The addition of the ambient oxygen ion background caused the decrease of the growth 

rates. Real roots were tied closer to the barium gyroharmonics. The Crawford and Tataro-
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nis, [1965] type instabilities were eliminated, along with the mixing of the modes. Lastly, 

we found the second harmonic to be the dominant mode.

The introduction of the oxygen ion background had a considerable effect on the prop­

agation of the plasma waves. In analyzing the oxygen ion term in Chapter 4 it was deter-
j j 2

mined that the term was approximately j #  for small fio  in eqn(3.56). Thus, the oxygenS l Q

ion term was mainly dependent upon the density of the oxygen ions. Since including the 

oxygen ion density caused the frequency to be closer to the gyroharmonics and the growth 

rates to decrease, increasing the oxygen ion number density should further decrease the 

growth rates and tie the real roots even closer to the gyroharmonics. The oxygen term was 

not influenced by temperature unless /jlo «  1, which corresponds to a thermal velocity of 

vtho — 3.5 x 105 cm/s and a temperature of To =  12000 i f .  This temperature far exceeds 

the typical ion temperatures of 1000K to 2000K in the F2 region of ionosphere. Thus, the 

contribution of the oxygen ions is like that of a dielectric background which is only depen­

dent upon the density. Whether increasing or decreasing the oxygen number density would 

cause a different harmonic to be dominant can not be said without further calculations. It 

is expected that increasing the electron temperature should also decrease the growth rates. 

The reason is that with the instabilities having parallel phase velocities greater than the 

electron thermal velocity, increasing the electron temperature would allow more electrons 

to Landau damp the wave.

In the analysis of the dispersion relation it was noted that we analyzed a case appropri­

ate to only one point o f position at a specific time in the barium jet. In order to determine 

what might be expected to occur at other locations we must consider the spatial depen­

dence of the barium ion distribution. The distribution in velocity space perpendicular to
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the magnetic field broadens for points close to the center of the barium ion jet. It narrows 

as we approach the edge of the jet. The other consideration is that the density of the bar­

ium jet decreases relative to the density the farther we get away from its center. The 

appearance of the barium distribution stays similar to Fig.4 though the number density 

and the transverse velocity range can change. R.A. Dory et al., [1965] showed that abso­

lute instabilities like that of the Crawford and Tataronis, [1965] type can be suppressed by 

the broadening of the transverse velocity distribution. Therefore, we might expect points 

approaching closer towards the center of the jet to have decreased growth rates. Thus, we 

would propose that the area within the barium jet where electrostatic ion cyclotron insta­

bilities can exist may be limited to a band where the density is suitable and the barium 

velocity distribution has a thin enough spread in velocity. Considering the time dependence 

of the barium ion distribution, we would expect the area where the instabilities occur to 

change along with the barium jet density and velocity distribution.

Xin, [1987] examined ion cyclotron instabilities associated with the field-aligned motion 

of barium plasma through a background plasma of oxygen. The purpose of the study was 

to investigate how the instabilities may be related to the process of fast ionization reported 

by Hallinan, [1985]. Although the parallel phase velocity of the waves were less than the 

electron thermal speed, the parallel phase velocity could be Doppler shifted to speeds high 

enough for electrons to cause an ionization cascade. The doppler shift was associated with 

an E X B drift generated by the finite divergence of the injected barium neutrals.

We now wish to explore the possibility of electrostatic ion cyclotron waves accelerating 

electrons to the ionization velocity of barium. In Chapter 4 the dominant root had a wave 

number o f k =  1.2 X 10~3 propagating at 89.955°. The parallel wavelength for this root,
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Ay =  67 km , is much greater than the 12 km for the length of the barium jet. The longest 

wavelength that can likely be excited in our jet would be 24 km, which corresponds to a half 

wavelength. The root with the largest growth rate that has a parallel wavelength within 

24 km is the fourth harmonic which has a growth rate of 7 =  12.2 sec~~l , a frequency of

(jj — 134.5 sec~l , and a wave number of k — 2 x 10“ 3 propagating at 89.925°. We shall

investigate this wave. The largest potential that a wave can have is limited to the energy 

available from the cyclotron motion of the barium. Thus

/ I 2
o ^  ^ rriB a v ±

e<j)0 < 1.14 x 10~12ergs 

where <f>0 is the potential of the wave and v± =  1 km/s. We defined earlier

(f> = (f>o exp[i(kxx  +  k^z — wt)]

E =  -V</>

So we take the maximum parallel electric field of the wave to be

|| ~ <M||

where fey — 2.6 X 10~6. The velocity needed for an electron to ionize a barium atom is

Vi =  4 / ^ — — 1.381 x 108 cm/s
V rne

where the barium ionization potential <j> — 5.19 eV [Hodgmann, 1949]. Using Newton’s law 

we have

€ it — Triad
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eE  || e<j>0k n
a — -----  —---------

me m e

Accelerating an electron from rest to the ionization velocity we use =  at, thus the time 

needed is

Vi ViTYlp
t =  — = =  .039sec

a e<p0«||

The distance that the particle has to travel is

x =  - a t 2 =  21km 
2

A rough estimate of how far an electron would travel if trapped in the wave based on 

the size of the plasma cloud would be 10 km. It would take 3 trappings with increasing 

velocity increments of Vinc =  4.6 X 107 cm/s to accelerate an electron from rest to the 

ionization velocity. This corresponds to a time that the electron is trapped by the wave 

of tp — .013 sec. Since an electron trapped by a wave can undergo either acceleration 

or deacceleration, there is an inherent randomness associated with its acceleration. The 

central limit theorem states that a stochastic process will reach a gaussian distribution as 

the number of velocity change events increases to a suitably large number [Kittel, 1958].

The standard deviation of a gaussian distribution goes as the square root of the number

of iterations. Thus, a reasonable number of random trappings would be the square of 

the number of cumulative velocity increments it would take to reach the ionization velocity. 

Thus we estimate the actual time needed for the acceleration of an electron to the ionization 

velocity to be

tact -  N 2tp =  .117

where N is the number of accelerating trappings. In a computer simulation study by 

Bennett, [1987] the escape of hot electrons from a region of enhanced plasma density was
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investigated. It was found that electrostatic coupling of electrons to slowly moving ions 

significantly inhibited the escape of hot electrons. The escape time appears to depend upon 

the replacement of a hot electron by a cold electron. The simulation results showed that a 

reasonable estimate for the containment time was given by the equation

N(t)  = iV (0 )ex p [-—]

where N(t) is the number of hot particles remaining in the enhanced plasma after time t 

has elapsed and 7 is the decay constant. The decay constant is described by

—  ^ l7Zl 
^ ^ono

where the subscript 1 refers to the hot region, the subscript 0 refers to the cold region, and 

L is the length of the enhanced region [Bennett,1987]. In our model we have n(, and rt\ 

being the same, thus the decay constant takes the form

=  h =  Li
1 v0 2.7 x 107

where is the electron thermal velocity. The decay constant for the first second after 

detonation would have a value of 7 =  .044 sec. This decay constant is smaller than our 

trapping time of .117 sec. Thus, it is unlikely that the electrostatic ion cyclotron waves 

would accelerate electrons to the ionization velocity. Electrons would escape well before 

reaching the ionization velocity and a cascade of ionization would not develop.

If the barium jet had been projected perpendicular to the magnetic field the energy 

available from the cyclotron motion of the barium would increase by two orders of magni­

tude. The wave number of the root scales as

kx v±
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Using a velocity of v± =  1. X 10® cm/s we have fcy =  2.6 X 10~7 and

e<t>0 < 1.14 X 10-1° ergs

The acceleration for an electron by the parallel electric field o f the wave would be

a =  ^ I L  = 3.49 X 10locm /s2 
me

The time for accelerating an electron from rest to the ionization velocity becomes

t = — =  .00395 sec 
a

and the distance needed to obtain the ionization velocity

x — - at2 =  2.7 km 
2

The time constant for the replacement of a hot electron by a cold electron for this scenario 

we estimate at

7  ~   —— -  =  .011 sec
1 2.7 x l O 7

where we take L\ =  3km the field aligned extent of the enhancement to be less than the 

previous case since the electrons will traverse the width of the barium cloud. The calcula­

tions for this scenario show that larger electric fields are possible in which electrons can be 

accelerated to the ionization velocity in an appropriate time and distance. But, we have 

not considered the geometric constraints imposed on the wave. The longest parallel wave­

length that can possibly propagate is twice the length of the enhanced area which is 6 km. 

The parallel wavelength of this case is An =  240 km which is much greater. Therefore, we 

conclude that electrostatic ion cyclotron waves for this case would not accelerate electrons 

to the ionization velocity causing an ionization cascade of the barium.
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In this chapter arguments have been presented on how various parameters should 

affect the electrostatic ion cyclotron instabilities found in Chapter 4. It was noted that 

the oxygen ion temperature would not affect the instability. The increasing of the oxygen 

ion density would have the effect of decreasing the growth rates and tying the frequencies 

closer to the gyroharmonics. The increasing of the electron temperature would cause a 

decrease in the growth rates. Considering what might be expected at other positions 

within the barium jet, it was concluded that the instability would be confined to a band 

where the density is suitable and the transverse velocity distribution has a thin enough 

spread in velocity. Calculations were done to determine if these instabilities could cause an 

ionization cascade of the barium. It was determined that, for the instabilities considered, 

an ionization cascade would not develop for the barium jet when it is injected in a direction 

parallel to the magnetic field. We then considered the situation where the injected barium 

jet was directed perpendicular to the magnetic field. In this case it was determined that 

the instability would not be present due to the geometric considerations of the parallel 

wavelength of the instability being much greater than the barium jet’s width. So, these 

waves would not cause a cascade of ionization to occur for a barium jet injected in a 

direction perpendicular to the magnetic field nor help contribute to Alfven’s critical velocity 

mechanism. The author wishes to note that computational considerations allowed only a 

particular point of position at a specific time to be evaluated. It was not possible to obtain 

the maximum growth rate associated with the barium jet. The arguments presented seem 

to dictate that the electrostatic ion cyclotron instabilities within the barium jet would not 

promote an enhanced ionization.
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