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Abstract

Monitoring the size and demographic characteristics of animal populations
is fundamental to the fields of wildlife ecology and wildlife management. A
diverse suite of population monitoring methods have been developed and em-
ployed during the past century, but challenges in obtaining rigorous population
estimates remain. I used simulation to address survey design issues for moni-
toring a moose population at Togiak National Wildlife Refuge in southwestern
Alaska using finite population block kriging. In the first chapter, I compared
the bias in the Geospatial Population Estimator (GSPE; which uses finite pop-
ulation block kriging to estimate animal abundance) between two survey unit
configurations. After finding that substantial bias was induced through the
use of the historic survey unit configuration, I concluded that the "standard”
unit configuration was preferable because it allowed unbiased estimation. In
the second chapter, I examined the effect of sampling intensity on performance
of the GSPE. I concluded that bias and confidence interval coverage were un-
affected by sampling intensity, whereas the coefficient of variation (CV) and
root mean squared error (RMSE) decreased with increasing sampling inten-
sity. In the final chapter, I examined the effect of spatial clustering by moose
on model performance. Highly clustered moose distributions induced a small
amount of positive bias, confidence interval coverage lower than the nominal
rate, higher CV, and higher RMSE. Some of these issues were ameliorated by
increasing sampling intensity, but if highly clustered distributions of moose are
expected, then substantially greater sampling intensities than those examined
here may be required.
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Introduction

Monitoring the size and demographic characteristics of animal popula-
tions is fundamental to the fields of wildlife ecology and wildlife manage-
ment [Williams et al., 2002]. A diverse suite of population monitoring meth-
ods have been developed and employed during the past century. Farly ef-
forts relied heavily on the use of uncalibrated indices obtained through at-
tempted censuses to approximate the states and dynamics of wildlife popula-
tions (i.e., raw counts of individuals across the entire area of interest). How-
ever, modern approaches commonly employ more rigorous estimation methods
with data obtained through sampling (e.g., capture-mark-recapture [McCrea
and Morgan, 2015]; distance sampling [Buckland et al., 1993|; repeat-visit
point counts, [Royle, 2004]). Additionally, the use of spatial statistics to im-
prove wildlife population estimation has become more popular during the past
decade, as new techniques have been developed and associated software made
available (e.g., spatial capture-recapture [Royle et al., 2014]).

Moose (Alces alces) populations in North America provide an illustrative
example of the evolution of population monitoring methods over time. Moose
are ecologically important herbivores in boreal systems [Kielland and Bryant,
1998], and are culturally valued as a source of food. As such, the development
of reliable monitoring techniques has received considerable attention. Early
moose management relied on aerial censuses, in which biologists attempted to
count all individuals in a given region [Timmerman, 1974|. Such approaches
were largely replaced by design-based probabilistic sampling efforts (e.g., [Gas-
away et al., 1986]). More recently, model-based approaches, assuming a spatial
stochastic process as the data-generating mechanism, have been developed. In
Alaska and some other regions of North America, the most widely used popula-
tion estimation method for moose at present is finite population block kriging
(FPBK), developed by Ver Hoef [2002]. Advantages of FPBK over design-
based methods include: increased precision, the ability to perform small-area
estimation (i.e., estimation for a specific subset of units in the sample frame),
and the ability to employ non-random sampling designs [Ver Hoef, 2008|.

Overview of Finite Population Block Kriging

Generally, kriging can be described as a geostatistical method that com-
bines information on spatial trend and spatial correlation structure for the
purpose of prediction [Cressie, 1991]. Unlike some other interpolation meth-
ods, kriging provides optimal interpolation based on mean squared prediction



error (MSPE). The following overview of kriging procedures closely follows the
treatments and notation of [Ver Hoef, 2002| and [Ver Hoef, 2008|, and partially
those of [Cressie, 1991] and [Banerjee et al., 2015].

Variogram estimation!

Fundamental to the kriging process is selection and estimation of a vari-
ogram model, which approximates the spatial correlation structure in a given
system. Common assumptions in the use of variogram models are second-order
stationarity and isotropy. More explicitly:

(1) The process mean is the same at all points in the spatial region of
interest: E[Z(s)] = p, where Z(s) is a random variable at location s, and s is
a two-dimensional vector of coordinates.

(2) The spatial covariance depends only on the distances, |h|, between
points, and not on the exact locations of points:

C(h)y = ClZ(s), Z(s + h)|. (1)

(3) Similarly, the covariance depends only on |h| and does not depend upon
the directional relationship between points.

A variety of standard variogram models exist, including exponential, spher-
ical, Gaussian, and Matern. Choice of variogram models is important and can
affect spatial predictions [Mazzella and Mazzella, 2013]. An essential charac-
teristic of selected variogram models is that they must yield a valid variance-
covariance matrix. The standard theoretical models (e.g., exponential, spher-
ical) guarantee that this condition is met. An example of an exponential
semivariogram fit to fictitious data, with the empirical semivariogram overlaid
is depicted in Figure 1. Converting between covariogram and semivariogram
formulations of a variogram model is accomplished through the relationship

7(h) = C(0) - C(h), (2)

where y(h) is the semivariance at distance = |h|, C'(0) is the covariance at
distance = 0, and C'(h) is the covariance at distance = |h|.

T use the term ”variogram” here to refer generically to the group of models that can
be fit as covariograms and semivariograms. When refering to one specific formulation (e.g.,
semivariogram), | use the more specific term. Usage of these terms varies somewhat among
authors.



Variogram parameter estimation is often conducted with restricted maxi-
mum likelihood (REML; [Patterson and Thompson, 1974]), which is reported
to be less biased in spatial analyses than full maximum likelihood [Mardia and
Marshall, 1984]. Weighted least squares is another commonly used estimation
approach.

Block kriging

Generally speaking, ordinary and universal kriging use information from
sampled points to interpolate values of the variable of interest at unsampled
points. Block kriging employs the same principle, but the kriging units are
areal, rather than points. For simplification, distances between units are often
quantified as the distances between block centroids. Following Cressie [1991]
and Ver Hoef [2008], we begin with a linear model for our data, z:

zZ=pte, (3)

where p = X3 if covariates are to be included (i.e., "universal” block kriging),
X is the typical n x p dimensional design matrix and Bis a p x 1 dimensional
parameter vector. The random errors, €, exhibit second-order stationarity, as
defined above, with Ele(s)] = 0, and Var(e) = >.. For standard block kriging,
we average the value of interest from a continuous spatial process, Z(s), over
the area of the block, B:

Z(B)E/BZ(s)ds/|B|, (4)

where |B| is the area of B and the expectation of the process is

E[Z(B)] = u(B) = /BM(S)dS/|B|- (5)
Using standard block kriging, we minimize the MSPE,

EXNz - Z(B)], (6)

to solve for the kriging weights, A. If we sample at n sites and consider p
predictors, the estimator for the mean of this spatial process over B is

A

Z(B) = Nz~ ¥z — ) + s, ()

where:



cp = [c1(B),c2(B), ...,ca(B)] with ¢;(B) = [, C(s—s;)ds/|B| for i = 1,2,...,n,
p=Xg,
fip = X3,
B = (X'S71X)"1X'Y"z, i.c., the generalized least squares estimator of 3,
xp = [21(B), 22(B), ..., (B)]', with z;(B) = [, x;(s)ds/|B| for j = 1,2,....p.
The corresponding MSPE is
Var[Z(B)] = ENz — Z(B)]> = 0% — cXlep + A (X2 'X) "M dp,  (8)

where 0% is the variance within B and dp = (xp — X' 71cp).

Block kriging for infinite populations and variants of the kriging equations
in general are discussed in greater depth by [Journel and Huijbregts, 1978§]
and |[Cressie, 1991], among others.

Finite population block kriging

Finite-population methods are frequently used in wildlife management and
related fields. The goal with finite-population inference is to estimate the value
of a particular realization of some stochastic process when the sample frame is
composed of a finite and countable number of experimental units. In the case
of plot-based sampling, this means that sampled plots (m) are selected from
a known number of plots composing the sample frame (M). The information
on the proportion of plots sampled (%) is used to adjust variance estimates.
Ver Hoef [2002] proposed a finite population version of block kriging (FPBK),
which is appropriate for plot-based sampling situations in which inference is
limited to a particular realization of a given process on a finite spatial lattice.
The fundamental difference between block kriging and FPBK is that the focus
in the former is on estimation of some unknown parameter (e.g., the population
mean) of the data-generating process. In contrast, the focus in FPBK is on
predicting the actual values (or some function thereof) that were realized by
the data-generating process within the sample frame.

In FPBK, we start by considering a basic linear model similar to that in
Equation 3,



() (X)e+(2) o

where the data vector, z, is now divided into sampled, z,, and unsampled,
Z,, components. Similarly, the design matrix, X, is composed of sampled and
unsampled components (X, and X,,, respectively), as is the random error term,
e (g5 and g,, respectively). z, and e, are n x 1 vectors, whereas z, and e, are
(N —n) x 1 vectors. Similarly, X and X, are n x p and (N —n) x p matrices,
respectively. The key difference thus far is that we know the dimension of the
unsampled portion of the spatial lattice, whereas in standard block kriging we
know only how many blocks are sampled.
Analagous to the previous model,

€5\ €s\ Ess Esu
E <€u> =0 and Var <€u> = <Eus Euu) ,
We define a M x 1 vector, b = {bg, b,}’, that will weight the data vector,
z, to provide the form of plot-level predictions in which we are interested. In
the case of animal abundance, we would define b = {1,1,...;1}/, which will
yield predictions of the number of individuals in each cell and, ultimately the
total number of individuals in the sample frame.
The FPBK abundance predictor () is then found by minimizing the
MSPE, E[Nz, — b'z]?, yielding
N =blz, + b z,. (10)

The unknown component of this expression is predicted with
= X X0 (Zs — fbs) + fb, (11)

where:

fts = X8, when covariates are included,

~

ft, = X3, when covariates are included,

A

B = (XXX )Xz, ie., the generalized least squares estimator of 3.

The MSPE for N is

Var(N) = E[Nz, — b'z]> = b'Sb — ¢, % e, + dy(X.E1X) 7y, (12)

9



where:
Cp = Essbs + Essbuy
d, — Xlsbs + XLbu — X;Es_slcb.

Ver Hoef [2008] discusses FPBK and its derivation in greater depth.

The Geospatial Population Estimator

Ver Hoef (2008) developed an abundance estimator based on FPBK, which
is widely known as the Geospatial Population Estimator (GSPE; [Kellie and
Delong, 2006]). Throughout this thesis, I use the term ”"GSPE” to refer to the
specific implementation of FPBK developed for animal abundance estimation
by Ver Hoef (Appendix 4; see moose example in [Ver Hoef, 2008]) and adopted
by the Alaska Department of Fish and Game (ADF&G) as the standard anal-
ysis procedure for moose survey data. The GSPE applies FPBK to counts
from sampled survey units in a specified spatial region to predict abundance
in unsampled survey units, thereby facilitating an estimate of total abundance
across the spatial region of interest. The centroids of each unit are used to
quantify proximity of units for fitting an exponential semivariogram:

v(h) = ¢y + cc[l — exp(—|[h][/a)], (13)

where v(h) is the semivariance, h is a vector of distance lags, ¢, > 0 is the
nugget parameter, c. > 0 is the partial sill parameter, and a. > 0 is the
range parameter |[Cressie, 1991]. Semivariogram parameters are estimated
using REML.

Density-based stratification is a component of the GSPE. Generally, geo-
statistical procedures assume that the spatial correlation structure is constant
throughout the region of interest (stationarity). In systems where there may be
mutliple spatial processes generating the data (as is possible with non-uniform
animal distributions), stratification can help to ensure that this assumption is
sufficiently satisfied. In the case of the GSPE, units are partitioned into two
strata prior to sampling on the basis of anticipated density and each stratum
is assumed to have an independent spatial stochastic data-generating pro-
cess. Predictions are made separately within each stratum (with separately
fit semivariograms) and stratum-specific predictions are combined in a man-
ner equivalent to that used in stratified random sampling when there is no
spatial correlation structure [Ver Hoef, 2008]; also see [Scheaffer et al., 1996].

10



Cross-correlation between strata can also be incorporated into the MSPE, but
Ver Hoef [2008] concluded that such cross-correlation is either non-existent or
trivially small with moose abundance data.

Assumptions of the GSPE

Several assumptions are required for valid inference from the GSPE. As
previously stated, isotropy and second-order stationarity are assumed to exist
in the spatial region of interest. Additionally, it is assumed that the theoretical
exponential semivariogram (Equation 13) model is an accurate representation
of the spatial correlation structure in the system. Another important assump-
tion is that the moose in each sampled survey unit are perfectly enumerated,
as inaccurate counts will yield inaccurate interpolations in unsampled units
via mis-specified semivariograms. This assumption is easily satisfied in simu-
lation studies, but may not be adequately met in many field survey scenarios.
I assume perfect enumeration here, and do not address complications associ-
ated with imperfect detection of animals under field conditions. For detailed
discussion of sightability models for dealing with imperfect detection, see [Ver
Hoef, 2009], [Christ, 2011], and [Seaton, 2014].

An application of FPBK

The Togiak National Wildlife Refuge (TNWR) is located in southwestern
Alaska, adjacent to Bristol Bay (Figure 2). Moose numbers on TNWR. were
historically low, with fewer than 30 occurring on the refuge in the early 1980s,
and 84 counted during surveys in 1994. Since that time, numbers have in-
creased dramatically, with the most recent survey (2011) resulting in a count
of 1,626. The United States Fish and Wildlife Service (USFWS), which ad-
ministers the refuge, has attempted to conduct an aerial census of the refuge
annually since 1995. With approximately 1.7 million acres encompassed by
TNWR, censuses require substantial effort and are seldom successfully com-
pleted due to time, weather, and manpower constraints. Consequently, the
USFWS has identified a need to replace the annual census with a sampling-
based approach for estimating moose population size, so that surveys can be
completed annually with a reasonable amount of time and effort. Given its
success in population estimation for moose elsewhere in Alaska, application of
the GSPE to moose counts from a sample of survey units was identified as a
reasonable alternative to annual censuses.

11



Objectives

The purpose of this study is to assess the performance of the GSPE on
TNWR under a variety of simulated scenarios. I have three specific objectives:

(1) Assess the performance of the GSPE for moose abundance estimation un-
der two alternative survey unit configurations at TNWR.

(2) Assess the influence of sampling intensity on the performance of the GSPE
at TNWR.

(3) Assess the effect of clustered moose distributions on the performance of
the GSPE at TNWR.
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Figure 1: A theoretical exponential semivariogram (line) fit to fictitious data.
The dots are the associated empirical semivariogram.
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Figure 2: Location of Togiak National Wildlife Refuge.
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Chapter 1: Comparing bias of the Geospatial
Population Estimator between survey unit con-
figurations at Togiak National Wildlife Refuge

Introduction

The Alaska Department of Fish and Game (ADF&G), for whom the GSPE
was originally developed, established a standard grid of units for moose sur-
veys in Alaska and northern Canada (Figure 3). The dimensions of these
survey units are 2’ latitude by 5’ longitude, which yields unit areas ranging
from approximately 13.5 km? in northern Alaska to 20.1 km? in west-central
British Columbia (differences in area of the units is the result of convergence of
longitudinal axes at the earth’s poles). Latitudinal change in area of standard
units is gradual, so unit areas are relatively uniform within specific study sites.
This grid is used as the basis for moose surveys throughout most of Alaska, on
both state and federal lands. Consequently, most development and assessment
efforts involving application of the GSPE to moose population estimation have
relied on these standard unit configurations. However, on TNWR, survey units
that were used historically differ dramatically from the standard units in both
shape and size (Figure 4). The historic unit boundaries follow topographical
features and exclude elevations above 1000 ft as well as large bodies of water.
The resulting sample frame is composed of units with diverse shapes and areas
ranging from 8.8 km? to 433.8 km?. In contrast, the standard units on TNWR
are approximately equal in size (range: 17.3 km? - 17.9 km?) and shape (Fig-
ure 3). Wildlife biologists from the USFWS were interested in maintaining
their historic survey unit configuration for consistency and because of their
familiarity with the historic units, but they wanted to be sure that this non-
standard configuration would not cause estimates to be unreliable. To address
this concern, I developed a spatially explicit simulation approach designed to
compare the bias of the GSPE using the ADF&G standard grid to that using
the historic survey unit configuration on TNWR.

Methods

Sample frame

For the purpose of this simulation study, I used the most recently (2011)
surveyed subset of historic units to delineate the sample frame (Figure 5). The
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primary reason for delineating the sample frame in this way is that previous
counts could be used as a priori knowledge of the expected moose densities in
each unit, which is useful for stratification (discussed subsequently). In order
to make the standard and historic unit configurations comparable, I clipped the
standard survey unit grid to match the bounds of the sample frame (Figure 6).
Clipping the standard grid in this way resulted in additional heterogeneity in
the size of some standard units, but significantly less than that in the historic
unit configuration.

Stratification

Moose densities often vary substantially among survey units within specific
study areas. Typically, there are a large number of survey units with no or few
moose and a smaller number of units with higher moose densities. An effective
way of dealing with this variation in counts is to partition the sample frame
into "high” and "low” density strata. Previous survey data or pilot studies
can be used as the basis for stratification prior to conducting surveys. The
current recommendation from ADF&G is to assign units with densities lower
than approximately 0.2/km? to the low density stratum and units with den-
sities higher than that to the high density stratum [Kellie and Delong, 2006,
although this stratification cut-point will vary with study site. For this sim-
ulation study, I used the most recent survey data from TNWR (2011) as the
basis for stratification. Because available survey data were grouped by historic
sample units only, I delineated strata using the historic units (Figure 7). For
the standard unit configuration, I defined all standard units that overlapped
high-stratum historic units to be high-stratum standard units and all others to
be low-stratum standard units (Figure 8). Re-defining the strata for the stan-
dard configuration was necessary because it is important that each unit occurs
in only one stratum. Because the true strata were delineated using historic
unit boundaries, this re-delineation of stratum bounds for the standard grid
necessarily results in some high-stratum standard units that overlap the true
stratum boundaries. Thus the high stratum is slightly larger in the standard
unit configuration than in the historic unit configuration.

Simulations

I used a spatially explicit approach to repeatedly generate spatial distri-
butions of simulated moose populations within the sample frame. 1 separated
each historic stratum into a separate polygon layer using GIS applications in
R (|R Development Core Team, 2015]; also see packages listed below). Within
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each of these stratum polygons (high, low), I generated a specified number
of randomly distributed moose locations (Figure 9). Each individual location
had a set of coordinates associated with it and fell within the bounds of the
appropriate stratum polygon. A new layer of polygons corresponding to the
individual survey unit boundaries was then overlaid on this simulated moose
population and used to tally the number of moose occurring within each indi-
vidual unit, which is analogous to the counting of moose that occurs aerially
during field surveys (Figure 9). Centroid coordinates were then computed for
each survey unit polygon. After tallying moose abundance in each unit and
computing centroid coordinates, I randomly selected a specified number of
units from each stratum to serve as the sample. For each simulated moose
population, this procedure was conducted once with the standard survey grid
and once with the historic grid. The number of sampled units in each config-
uration was selected in such a way that the sampled areas per stratum were
comparable across unit configurations (i.e., the area sampled in the low stra-
tum of the standard configuration approximately matched that sampled in the
low stratum of the historic configuration, and the area sampled in the high
stratum of the standard configuration approximately matched that sampled in
the high stratum of the historic configuration). Ultimately, for each simulated
moose population, this procedure yielded one dataset for each of the two unit
configurations. Each dataset contained the following data for each unit: (1)
a unit identifier, (2) number of moose counted, (3) area of unit, (4) stratum
of unit, (5) latitude of unit centroid, (6) longitude of unit centroid, (7) binary
indicator of the unit being sampled or not, (8) binary indicator of the unit be-
ing included in the final abundance estimate. FPBK was then conducted with
each dataset, providing an estimate of abundance and an associated confidence
interval for each unit configuration.

This entire procedure was repeated for a specified number of iterations
using a for loop. The results from each iteration of the loop were stored
in matrix objects in R, then used to compute bias of the GSPE with the
different unit configurations following completion of the loop. The bias for
each configuration was estimated as:

k

e ——

B(N) = N;— N (14)

I =

1=

where & is the number of simulated populations, N, is the GSPE estimate for
the i simulated population, and N is the true abundance of the population.
The bias estimate was then converted to relative bias:
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B(N
Relative bias = % (15)

I simulated a range of moose densities to evaluate the bias of the GSPE
in each unit configuration under a variety of abundance scenarios (Table 1).
Simulated total abundance ranged from 500 to 14000, with a range of 50 to
5000 in the low stratum and 450 to 9000 in the high stratum (Table 1).

To determine the number of iterations to use in each simulation loop, I
computed abundance estimates for two populations at the extremes of the
range of simulated abundances (500 and 14000). I used loops with 50, 100, 500,
1000, 1500, 2000, 5000, and 10000 iterations with each unit configuration and
plotted the mean abundance estimate for each. I visually assessed convergence
of estimates towards a stable value to select the final number of iterations for
the simulation study.

Simulations and spatial data manipulation were conducted using R with
several packages developed for spatial analysis (maptools [Bivand and Lewin-
Koh, 2015], rgdal [Bivand et al., 2015], rgeos [Bivand and Rundel, 2015],
sp [Roger S. Bivand, 2013|, spatstat [Baddeley and Turner, 2005]). ArcGIS
10.0 [ESRI, 2011] was used for visual presentation of spatial data. For each
simulated population, the GSPFE was implemented using code written in R by
Jay ver Hoef for ADF&G (Appendix 4). Variograms were fit using restricted
maximum likelihood estimation (REML, [Patterson and Thompson, 1974]).
The R script for the simulation loops is available in Appendix 1.

Results

Plots of mean abundance estimates suggested that results stabilized within
1000 iterations (Figure 10), so I chose to use loops with 1000 iterations.

Simulation results indicated that there was substantial systematic bias in
the GSPE when using the historic survey unit configuration from TNWR
(Table 1, Figure 11). The magnitude of the bias was so great that the true
values of abundance did not even overlap the range of GSPE estimates, with
one exception (Figure 11). In the single case where the true value did fall
within the range of GSPE estimates, it was at the extreme lower tail of the
distribution. In contrast, the estimator appeared to be unbiased when used
with the standard survey unit configuration (Table 1, Figure 12).

Bias with the historic unit configuration was consistently positive, with a
range of 102.5 to 2163.0. Bias estimates ranged from and -9.1 to 36.8 with the
standard configuration. Expressed as a percentage of the true value (relative
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bias), bias ranged from 14.4% to 21.7% with the historic configuration, and
-0.2% to 0.4% with the standard configuration. 99.3-100% of estimates were
higher than the true estimate using the historic configuration, whereas only
47.4-53.3% of estimates were higher than the true estimate with the standard
configuration (Table 1).

Discussion

Clipping the grid of standard sample units to match the historic sample
units resulted in partial units being included in the standard grid (Figure 6).
Thus, some size heterogeneity was neccessarily created in the standard grid by
matching the extent of the unit configurations. This heterogeneity was small
relative to that in the historic unit configuration and did not appear to induce
bias (Table 1, Figure 12).

Another issue arising from attempting to match the characteristics of unit
configurations is that some standard units classified as high-stratum actually
overlapped the true stratum boundary. Thus, there is some stratum classifica-
tion error in the standard grid. The effect of mis-classifying units to the wrong
stratum in this case would be primarily to reduce the precision of estimates by
contaminating the high stratum with some area that truly belongs to the low
stratum. It is possible that this mis-classification inflated the standard errors
of our standard-unit estimates slightly, but the mis-classified area is relatively
small, so the effect should be minimal.

Although area of the individual survey units is an input used when imple-
menting the estimator, it appears that it is only used to provide an approxi-
mate correction for the slight variation in standard unit areas attributable to
latitudinal changes within a given survey area (see lines 140-143 and 162-163
in Appendix 4), rather than accounting for major size differences among units.
In fact, artificially assigning uniform areas to the historic units when imple-
menting the GSPE appears to eliminate the bias observed in this study, which
verifies that the source of bias is heterogeneity in unit size.

Another issue that could cause problems when using the historic survey
unit configuration at TNWR is the relatively small number of units in each
stratum. For the GSPE, a minimum of 20 survey units are required in each
stratum in order to estimate the covariance structure within strata, with >
30 strongly recommended by current practitioners [Kellie and Delong, 2006].
However, using the most recent data to delineate strata yielded only 25 units
in the high stratum and 129 in the low stratum. Some historic units were
excluded from the simulation sample frame because they were not surveyed in
2011 (see Figures 4 and 5), but even when including them, a relatively small
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number of units would be available in each stratum.

Given these problems with applying the GSPE to the historic unit con-
figuration and the comparatively good performance of the estimator with the
standard grid, my recomendation is that TNWR. switch to using the stan-
dard grid for future surveys. Although it is possible that the GSPE could be
extended to accommodate heterogeneity in unit size, the issue of having too
few units per stratum in the historic configuration would persist. Moreover, if
biologists wish to compare past survey results for particular groups of historic
units to those of new surveys conducted under the standard configuration,
this can be accomplished via small area estimation with the GSPE [Ver Hoef,
2008|. This would simply require the investigator to specify the extent of the
reduced estimation area when implementing the GSPE.

Future Work

Refining the GSPE to accommodate greater heterogeneity in survey unit
size would be a useful extension of this method. This would entail converting
the moose counts in each survey unit to densities prior to performing the
kriging, and then back transforming to counts while accounting for the area
of each individual unit when the interpolation is complete. This modification
will have to be included in the point estimate and MSPE components of the
current implementation.

The GSPE is currently implemented using only the exponential semivar-
iogram. Although this form of spatial correlation appears to perform well
(in terms of bias) when estimating moose abundance under the simulated
scenarios, it would be informative to examine the performance of alternative
theoretical semivariogram forms (e.g., spherical, Gaussian) relative to that of
the exponential. Selection of an appropriate semivariogram model is a poten-
tially important component of kriging-based spatial analyses [Van Groenigan,
2000, Mazzella and Mazzella, 2013].

A common issue in wildlife field surveys is imperfect detection. The GSPE
does not address this problem, but rather assumes moose are perfectly enu-
merated in all sampled units. This assumption is easily met in the context of
simulation exercises, but it much less realistic in the context of field surveys.
Extensions of the GSPE are presently being developed and tested to address
this problem. Specifically, researchers are presently working to incorporate
sightability models into the GSPE framework that will correct estimates of
abundance and precision for imperfect detection using separately derived es-
timates of detection error [Ver Hoef, 2009, Christ, 2011, Seaton, 2014].
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Table 1: Bias of the Geospatial Population Estimator for different simulated moose abundances in standard and
historic survey unit configurations at Togiak National Wildlife Refuge. For each abundance level, 1000 simulated
populations were generated for each survey unit configuration. The unit of measurement is number of moose.
Percent greater than N represents the proportion of the 1000 estimates that were greater than the true value.

Total High Stratum Low Stratum | Standard Bias Historic Bias | Standard % > N Historic % > N

500 450 20 0.1 108.5 50.6% 100%
700 450 250 0.3 102.5 49.8% 99.3%
1000 900 100 -2.2 216.7 49.1% 100%
1400 900 200 4.0 204.4 46.7% 100%
2000 1800 200 -3.4 432.5 49.5% 100%
2800 1800 1000 -3.7 404.5 51.9% 100%
5000 4500 200 -9.1 1080.4 A7.4% 100%
7000 4500 2500 -5.3 1009.6 18.6% 100%
10000 9000 1000 36.8 2163.0 53.3% 100%
14000 9000 5000 -6.8 2016.2 49.1% 100%
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Figure 3: Standard survey unit configuration on Togiak National Wildlife
Refuge.
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Figure 4: Historic survey unit configuration on Togiak National Wildlife
Refuge.
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Figure 5: Subset of historic survey units used to delineate the simulation
sample frame at Togiak National Wildlife Refuge.

27



Figure 6: Standard survey units clipped to match the simulation sample frame

at Togiak National Wildlife Refuge.
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Figure 7: Historic survey units stratified by expected moose density at Togiak
National Wildlife Refuge. Red units are in the high density stratum. Yellow
units are in the low density stratum.
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Figure 8: Standard survey units stratified by expected moose density at Togiak
National Wildlife Refuge. Red units are in the high density stratum. Yellow
units are in the low density stratum.
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Figure 9: Example of a simulated moose population at Togiak National
Wildlife Refuge. Red units are in the high density stratum. Yellow units
are in the low density stratum. FEach point represents an individual moose
location (800 in the high stratum, 500 in the low stratum).
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Figure 10: Mean GSPE abundance estimates as a function of number of sim-
ulation iterations for two levels of simulated abundance. Green dots represent
estimates from the historic unit configuration, and gray dots represent esti-
mates from the standard configuration. The dashed line, at 1000 iterations,
depicts the point a which stabilization was inferred.

32



Historic Unit Configuration

450 High Stratum 450 High Stratum
50 Low Stratum 250 Low Stratum
o (=]
g8 g ®
o o
El El
E’- 8 E’- (=]
w L w o)
(=} o
T T T T T T 1 T T T 1
200 300 400 500 600 700 800 400 600 800 1000
Point Estimate Point Estimate
900 High Stratum 900 High Stratum
100 Low Stratum 500 Low Stratum
o
> o > &
2 =@ g
o o
El El
g g 8
8 [
(=}
T T T T T T T 1
800 1000 1200 800 1000 1200 1400 1600 1800 2000
Point Estimate Point Estimate
1800 High Stratum 1800 High Stratum
200 Low Stratum 1000 Low Stratum
> o >
E E
o =3 o
r 2 r 8
o
T I T T T 1
2000 2000 2500 3000 3500 4000
Point Estimate Point Estimate
4500 High Stratum 4500 High Stratum
500 Low Stratum 2500 Low Stratum
8 [=]
C g R
3 o 3 =3
§ ¢ § 8
w w
o (=]
I T T T T T 1 I T T T 1
3500 4000 4500 5000 5500 6000 6500 5000 6000 7000 8000 9000
Point Estimate Point Estimate
9000 High Stratum 9000 High Stratum
1000 Low Stratum 5000 Low Stratum
o
7 & z 8
[ [ -
[ o
E 3
g 8 g o
w w 0
o o
T T T T T T 1 T T T T 1
7000 8000 9000 10000 11000 12000 13000 10000 12000 14000 16000 18000
Point Estimate Point Estimate

Figure 11: Histograms of moose population estimates from the Geospatial
Population Estimator applied to the historic survey unit configuration at To-
giak National Wildlife Refuge. Using simulated populations of the specified
size per stratum, 1000 estimates were generated for each abundance scenario.
The vertical red line denotes the true population size.
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Figure 12: Histograms of moose population estimates from the Geospatial
Population Estimator applied to the standard survey unit configuration at
Togiak National Wildlife Refuge. Using simulated populations of the specified
size per stratum, 1000 estimates were generated for each abundance scenario.
The vertical red line denotes the true population size.
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Chapter 2: Effect of sampling intensity on per-
formance of the Geospatial Population Estima-
tor at Togiak National Wildlife Refuge

Introduction

For plot-based sampling, it is reasonable to expect that the performance
of an estimator is related to sampling intensity (i.e., the proportion of plots
sampled). Because of the limited number of available units (M) in the his-
toric Togiak survey unit configuration, a fixed number of units was sampled
(m) in each simulation iteration for comparing survey unit configurations in
Chapter 1. However, it is reasonable to expect the performance of the GSPE
to be related to the number of units sampled. For example, one would expect
the precision of estimates to increase as a greater proportion of the available
(finite) units are sampled (i.e., as the 7} ratio increases, a greater number of
survey unit values are known with certainty). Here, I examine the influence
of sampling intensity on measures of estimator performance in the context of

moose abundance estimation with the GSPE on TNWR.

Methods

Sample frame

As previously, I used the most recently (2011) surveyed region of TNWR
to delineate the sample frame. However, given the conclusion in Chapter 1
that the GSPE exhibits substantial bias with the historic unit configuration,
I used only the standard configuration in this simulation study. Additionally,
since this study does not include a comparison between unit configurations, I
used a sample frame composed of whole standard units, rather than standard
units clipped by the bounds of the historic configuration (Figure 13).

Stratification

The stratification scheme used in this simulation study was the same as
that in Chapter 1. Specifically, moose densities often vary substantially among
survey units, and an effective way of dealing with this variation in counts is to
partition the sample frame into "high” and ”low” density strata. The current
recommendation from ADF&G is to assign units with densities lower than ap-
proximately 0.2/km? to the low density stratum and units with densities higher
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than that to the high density stratum [Kellie and Delong, 2006], although this
stratification cut-point will vary with study site. Because available survey
data were grouped by historic sample units only, I delineated strata using the
historic units (Figure 14). I defined all standard units that overlapped high-
stratum historic units to be high-stratum standard units and all others to be
low-stratum standard units. Unlike Chapter 1, these simulated distributions
were based on the delineation of standard unit strata, rather than historic unit
strata (Figure 13). Thus, the small amount of stratification error present in
the standard grid in Chapter 1 was eliminated in this analysis.

Simulations

Similar to Chapter 1, I repeatedly generated spatial distributions of sim-
ulated moose populations within the sample frame. I separated each stratum
into a separate polygon layer using GIS applications in R (|R Development
Core Team, 2015|; also see packages listed below). Within each of these stra-
tum polygons (high, low), I generated a specified number of randomly dis-
tributed moose locations (Figure 15). Each individual location had a set of
coordinates associated with it and fell within the bounds of the appropriate
stratum polygon. A new layer of polygons corresponding to the individual
survey unit boundaries was then overlaid on this simulated moose population
and used to tally the number of moose occurring within each individual unit,
which is analogous to the counting of moose that occurs aerially during field
surveys (Figure 15). Centroid coordinates were then computed for each sur-
vey unit polygon. After tallying moose abundance in each unit and computing
centroid coordinates, | randomly selected a specified number of units from each
stratum to serve as the sample. The number of units sampled ranged from
20-209 per stratum (discussed in more detail subsequently). Ultimately, one
dataset for each of the varied levels of sampling intensity contained the fol-
lowing data for each sampled survey unit: (1) a unit identifier, (2) number
of moose counted, (3) area of unit, (4) stratum of unit, (5) latitude of unit
centroid, (6) longitude of unit centroid, (7) binary indicator of the unit being
sampled or not, (8) binary indicator of the unit being included in the final
abundance estimate. The GSPE was then implemented with each individual
dataset. This entire procedure was repeated using a loop, and the results from
each iteration of the loop were stored in matrix objects in R. These stored
results were then used in computing model-performance metrics.
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Measures of model performance

After completing simulation loops, I used the stored results to compute
model-performance metrics. The bias, coefficient of variation, confidence in-
terval coverage, and root mean square error were estimated for each level of
sampling intensity. The bias was estimated as:

k

e ——

B(N) = N; — N, (16)

| =

1=

where & is the number of simulated populations, N, is the GSPE estimate for
the ith simulated population, and N is the true abundance of the population.
Bias was then converted to relative bias:

B(N
Relative bias = % (17)

The coefficient of variation was computed as:

A

SE

N
where SF is the mean value of the standard error for 1000 simulated pop-
ulations. True confidence interval coverage for the nominal rate of 95% was

estimated as:

S L L(LB; <N <UB;)
k

True coverage = x 100, (19)

where £ is the number of simulated populations, 1 is an indicator function
equal to 1 if the parenthetical logical statement is true and 0 if it is false, N; is
the estimate of N from the i simulated population, LB; is the lower bound
of the 95% confidence interval associated with the estimate of N from the
i simulated population, and U B; is the upper bound of the 95% confidence
interval associated with the estimate of N from the i* simulated population.

Simulated sampling intensities ranged from 20 units (9.5%) to 209 units
(100%) for the high stratum and 30 units (2.7%) to 200 units (26.7%) in the
low stratum. As in Chapter 1, I used 1000 iterations of the simulation loop for
each sampling scenario. For each sampling scenario, the true number of moose
in the population was held constant at 1144 in the high stratum and 482 in
the low stratum (i.e., the number counted during the most recent survey of
TNWR in 2011).
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Simulations and spatial data manipulation were conducted using R with
several packages developed for spatial analysis (maptools [Bivand and Lewin-
Koh, 2015], rgdal [Bivand et al., 2015], rgeos [Bivand and Rundel, 2015],
sp [Roger S. Bivand, 2013|, spatstat [Baddeley and Turner, 2005]). ArcGIS
10.0 [ESRI, 2011] was used for visual presentation of spatial data. For each
simulated population, the GSPE was implemented using code written in R
by Jay ver Hoef for ADF&G (Appendix 4). Semivariograms were fit using
REML [Patterson and Thompson, 1974]. The R script for the Chapter 2
simulation loops is available in Appendix 2.

Results

As expected, some aspects of estimator performance improved as sampling
intensity increased. In particular, precision of the GSPE increased as the num-
ber of units sampled increased, as evidenced by decreases in CV with increasing
sampling intensity (Figure 17). The CV decreased with increasing sampling
intensity in both the high and low strata. In contrast, estimator bias did not
appear to be related to sampling intensity for the range of sampling intensi-
ties examined (Figure 16). Rather, the GSPE appeared to be approximately
unbiased regardless of the number of units sampled. The RMSE exhibited sub-
stantial decreases as sampling intensity increased (Figure 19). This pattern
was evident for increased sampling intensity in both the low and high strata.
Confidence interval coverage did not appear to be related to sampling intensity,
but was slightly lower than the nominal rate in most cases (Figure 18).

Discussion

Results from these simulations suggest that greater sampling intensity gen-
erally improves model performance. However, this theme is only evident in
the CV and RMSE metrics. The CV results clearly indicate that the uncer-
tainty in GSPE estimates decreases as more units are sampled (Figure 17).
Kellie and Delong [2006] suggested that increasing sampling intensity in the
low stratum has minimal influence on the precision of GSPE estimates. In
contrast, results from these simulations suggest that precision in GSPE esti-
mates increases when sampling intensity increases within either stratum. This
is a logical result given that more information is available when more units are
sampled. In other words, greater sampling intensity requires fewer unit-specific
abundance predictions and therefore less uncertainty in the total number of
moose present. Nevertheless, with lower moose densities in the low stratum,
variance should generally be lower than in the high stratum. So, as Kellie and
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Delong [2006] suggest, the influence of increased sampling intensity in the low
stratum may be of lesser magnitude in many scenarios than the influence of
increased sampling intensity in the high stratum.

Estimates of relative bias did not indicate an influence of sampling intensity
on bias of the GSPE (Figure 16). In fact, estimated bias was low for all
simulated scenarios. This suggests that inducing bias is not a concern when
sampling relatively small numbers of units (20-30). Rather, reduced precision
appears to be the main cost of low-intensity sampling.

Estimates of RMSE are consistent with the pattern observed in CV and rel-
ative bias for the simulated scenarios. Since the GSPE appears to be unbiased
across the range of sampling intensities examined, the RMSE is almost en-
tirely a function of the variance, and thus decreases in concert with CV. More
explicitly, RMSE = [Bias(N)2 4+ Var(N)]¥2, so when Bias(N) ~ 0, RMSE ~
[Var(V)]'/2.

No relationship between sampling intensity and confidence interval cover-
age was apparent from the simulation results (Figure 18). True coverage was
reasonably close to the nominal rate in all cases. Interestingly, deviations from
the nominal rate (95%) were almost all in the negative direction.

As previously, several assumptions have been made in this analysis and
should be explicitly acknowledged here. First, isotropy and second-order sta-
tionarity are assumed for our underlying stochastic process (which we know
to be true in this case, because of the way in which moose locations were
simulated). Additionally, we assume that the theoretical exponential semi-
variogram (Equation 13) model is a reasonable representation of the spatial
correlation structure in this system. And, once again, we assume perfect enu-
meration of moose within sampled survey units. This is not an issue in these
simulated populations, but it can pose substantial difficulties when applying
this technique under field conditions.

It is important to consider the results from these simulations in the context
of these assumptions and the specific conditions simulated. In particular, the
distribution of moose within strata was simulated randomly, which is often not
the case for real moose populations. The implications of non-random moose
distributions are explored further in Chapter 3.
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Figure 13: Sample frame used for simulations examining the effect of sampling
intensity on performance of the Geospatial Population Estimator at Togiak
National Wildlife Refuge, Alaska. Red sample units are in the high density
stratum. Yellow units are in the low density stratum.
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Figure 14: Historic survey units stratified by expected moose density at Togiak
National Wildlife Refuge. Red units are in the high density stratum. Yellow
units are in the low density stratum.
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Red units are in the high

Figure 15: An example of a simulated moose population within the sample
Black dots represent individual moose.

frame.

density stratum. Yellow units are in the low density stratum.
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Figure 17: Coefficient of variation (CV) as a function of the number of units
sampled in the high stratum for each of four levels of sampling intensity in the
low stratum.
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Chapter 3: Effect of clustered moose distribu-
tions on precision of the Geospatial Population
Estimator at Togiak National Wildlife Refuge

Introduction

In previous chapters, I investigated the influence of survey unit configu-
ration and sampling intensity on GSPE performance at TNWR when moose
were distributed randomly within density-strata. However, moose are often
not distributed randomly upon real landscapes. Often moose occur in clus-
tered distributions to varied degrees. Clustering can increase the inter-unit
heterogeneity in moose abundance, and thus impact the performance of abun-

dance estimators. Here, [ investigate the influence of clustering on performance
of the GSPE at TNWR.

Methods

Sample frame

As in previous chapters, I used the most recently (2011) surveyed region
of TNWR to delineate the sample frame, which facilitated the identification
of realistic density strata. I used only the standard survey unit configuration
composed of whole standard units (Figure 20) in examining the effects of
spatial clustering.

Stratification

The stratification scheme used in this simulation study was the same as
that in previous chapters. Specifically, moose densities often vary substantially
among survey units, and an effective way of dealing with this variation in
counts is to partition the sample frame into "high” and "low” density strata.
The current recommendation from ADF&G is to assign units with densities
lower than approximately 0.2/km? to the low density stratum and units with
densities higher than that to the high density stratum [Kellie and Delong,
2006, although this stratification cut-point will vary with study site. Because
available survey data were grouped by historic sample units only, I delineated
strata using the historic units (Figure 21). I defined all standard units that
overlapped high-stratum historic units to be high-stratum standard units and
all others to be low-stratum standard units (Figure 20).
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Simulations

[ used the same general approach to repeatedly generating spatial distribu-
tions of simulated moose populations within the sample frame as that used in
previous chapters. However, the types of spatial distributions that I generated
varied from previous chapters. As before, I separated each stratum into a sep-
arate polygon layer using GIS applications in R ([R Development Core Team,
2015]; also see packages listed below) and within each of these stratum poly-
gons (high, low), I generated a specified number of moose locations. However,
for this simulation study the random moose locations were generated with var-
ied degrees of clustering. Specifically, I created a cluster index ranging from 0
to 1, which specified the degree of clustering. This cluster index was used to
scale the "nclusters” argument in the spsample function from the sp package
in R [Roger S. Bivand, 2013|, which generates points from a Poisson cluster
process. Small values of the cluster index (close to 0) yielded highly clustered
distributions, whereas large values (close to 1) yielded relatively unclustered
distributions. The theoretical (although highly unrealistic) minimum of the
cluster index is all moose occurring in a single group. The maximum is anal-
ogous to each individual occurring in its own group, which yields a random
distribution of individual moose, which is equivalent to the distributions used
in Chapters 1 and 2. Figure 22 visually depicts changes in the degree of spatial
clustering as the cluster index increases.

Each individual location had a set of coordinates associated with it and fell
within the bounds of the appropriate stratum polygon. A new layer of poly-
gons corresponding to the individual survey unit boundaries was then overlaid
on this simulated moose population and used to tally the number of moose
occurring within each individual unit, which is analogous to the counting of
moose that occurs aerially during field surveys (Figure 23). Centroid coordi-
nates were then computed for each survey unit polygon. After tallying moose
abundance in each unit and computing centroid coordinates, I randomly se-
lected a specified number of units from each stratum to serve as the sample.
The number of units sampled ranged from 30-50 for the low stratum and 30-80
for the high stratum. Ultimately, one dataset for each of four levels of sam-
pling intensity (detailed subsequently) contained the following data for each
sampled survey unit: (1) a unit identifier, (2) number of moose counted, (3)
area of unit, (4) stratum of unit, (5) latitude of unit centroid, (6) longitude
of unit centroid, (7) binary indicator of the unit being sampled or not, (8)
binary indicator of the unit being included in the final abundance estimate.
The GSPE was then implemented with each dataset, providing an estimate of
abundance and associated measures of model performance. This entire proce-

49



dure was repeated using a loop, and the results from each iteration of the loop
were stored in matrix objects in R.

I ran 1000 iterations of this simulation loop for each of 20 levels of the
cluster index (values between 0.05 and 1.0 in increments of 0.05). These 20
levels of clustering with 1000 iterations per level were repeated for each of
four sampling-intensity scenarios: 30 high-density and 30 low-density units,
50 high-density and 30 low-density units, 50 high-density and 50 low-density
units, and 80 high-density and 50 low-density units.

Simulations and spatial data manipulation were conducted using R with
several packages developed for spatial analysis (maptools [Bivand and Lewin-
Koh, 2015], rgdal [Bivand et al., 2015], rgeos [Bivand and Rundel, 2015],
sp [Roger S. Bivand, 2013|, spatstat [Baddeley and Turner, 2005]). ArcGIS
10.0 [ESRI, 2011] was used for visual presentation of spatial data. For each
simulated population, the GSPFE was implemented using code written in R by
Jay ver Hoef for ADF&G (Appendix 4). Variograms were fit using REML [Pat-
terson and Thompson, 1974]. The R script for simulation loops with clustered
distributions is available in Appendix 3.

Measures of model performance

The same measures of model performance used in Chapter 2 were also used
to assess the influence of clustering. Specifically,

Bias:

S k

B(N) =

I =

N,— N (20)
1

1=

where & is the number of simulated populations, N, is the GSPE estimate for
the ith simulated population, and N is the true abundance of the population.

Relative bias:

B(N
Relative bias = % (21)

Coeffiencient of variation:
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SE
CV=— (22)
N
where SE is the mean value of the standard error for 1000 simulated popula-

tions.

True confidence interval coverage for the nominal 95% rate:

S LB < N <UB)
k

True coverage = * 100 (23)
where k is the number of simulated populations, 1 is an indicator function
equal to 1 if the parenthetical logical statement is true and 0 if it is false, V;
is the estimate of N from the ** simulated population, LB; is the lower bound
of the 95% confidence interval associated with the estimate of N from the
i simulated population, and U B; is the upper bound of the 95% confidence
interval associated with the estimate of N from the i* simulated population.

Results

In general, variation in the degree of clustering had a notable impact on
model performance. The most dramatic influences were on the precision of
estimates (CV; Figure 25) and the RMSE (Figure 27). With extremely clus-
tered distributions (i.e., low cluster index), a small amount of positive bias
was observed for lower sampling intensities (Figure 24). For moderate and low
degrees of clustering, bias did not appear to be a problem. Confidence interval
coverage was slightly below the nominal rate for most scenarios (Figure 26).
However, when distributions were highly clustered, coverage was well below
the nominal rate for lower sampling intensities.

Discussion

In general, results from these simulations suggest that increased spatial
clustering of moose reduces model performance. However, much of this effect
appears to be ameliorated by increasing sampling intensity. Issues with bias
and confidence interval coverage were only evident for extremely clustered
distributions. In those cases, a slight positive bias appeared and coverage
dropped slightly (Figures 24 and 26). The drop in coverage may be related
to the increase in bias, since confidence intervals will be pulled farther from
the true value as bias increases, resulting in fewer intervals containing the true

51



value. For moderate and low levels of clustering the estimator appeared to
be unbiased (Figure 24). Similarly, at moderate and low levels of clustering,
confidence interval coverage did not appear to be affected (Figure 26). Inter-
estingly, as observed in Chapter 2, coverage was almost always slightly below
the nominal rate.

The precision of estimates decreased and the RMSE increased as clustering
increased (Figures 25 and 27). Most of the change in RMSE with clustering
was driven by changes in CV, although the small amount of bias observed for
highly clustered distributions contributed to the highest values of RMSE when
sampling intensities were low (Figures 24 and 27).

It is noteworthy that moderate increases in sampling intensity largely ame-
liorated the issues of bias and reduced coverage (with the possible exception of
coverage for the most clustered distribution examined; Figure 26). Similarly,
for moderate to high degrees of clustering, the CV (Figure 25) and RMSE
(Figure 27) were substantially improved with moderate increases in sampling
intensity. Together, these results suggest that when moose distributions are
clustered, greater sampling intensity may be desirable in order to improve
estimator performance.
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Figure 20: Sample frame used for simulations examining the effect of clustered
moose distributions on performance of the Geospatial Population Estimator
at Togiak National Wildlife Refuge, Alaska
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Figure 21: Historic survey units used as the basis for stratifying standard
survey units at Togiak National Wildlife Refuge. Red units depict the high
density stratum. Yellow units depict the low density stratum.
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(c) Cluster index = 0.7 (d) Cluster index = 1.0

Figure 22: Examples of simulated moose distributions with different degrees
of clustering at Togiak National Wildlife Refuge, Alaska. Red boxes represent
survey units in the high density stratum. Yellow boxes represent survey units
in the low density stratum. Black dots represent the locations of individual
moose. A total of 1,626 (1,144 in the high stratum, 482 in the low stratum)
moose occur in each of these four example populations.
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An example of a simulated moose population within the sample

23:

Figure

with survey unit boundaries overlaid. Black dots

)

=1.0

cluster index

(

represent individual moose. Red units are in the high density stratum. Yellow

units are in the low density stratum.

frame
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Figure 24: Relative bias (%) as a function of simulated moose clustering for
each of four levels of sampling intensity. The cluster index represents the
degree of clustering. Low values correspond to more highly clustered distri-
butions and high values correspond to less clustered distributions. Figure 22
provides a visual representation of clutering for a range of cluster index values.
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Figure 25: Coefficient of variation (CV) as a function of simulated moose clus-
tering for each of four levels of sampling intensity. The cluster index represents
the degree of clustering. Low values correspond to more highly clustered dis-
tributions and high values correspond to less clustered distributions. Figure 22
provides a visual representation of clutering for a range of cluster index values.
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Figure 26: True (estimated) 95% confidence interval coverage as a function of
simulated moose clustering for each of four levels of sampling intensity. The
horizontal red line depicts the nominal 95% coverage rate. The cluster index
represents the degree of clustering. Low values correspond to more highly clus-
tered distributions and high values correspond to less clustered distributions.
Figure 22 provides a visual representation of clutering for a range of cluster
index values.
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Figure 27: Root mean square error (RMSE) as a function of simulated moose
clustering for each of four levels of sampling intensity. The cluster index repre-
sents the degree of clustering. Low values correspond to more highly clustered
distributions and high values correspond to less clustered distributions. Fig-
ure 22 provides a visual representation of clutering for a range of cluster index
values.
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General summary

The Geospatial Population Estimator (GSPE) is widely used to estimate
moose abundance via finite population block kriging. In Chapter 1, I com-
pared GSPE bias between two survey unit configurations at Togiak National
Wildlife Refuge (TNWR), Alaska. One configuration was composed of historic
survey units with heterogeneous shapes and sizes. The other configuration was
composed of survey units from the "standard grid” [Kellie and Delong, 2006/,
which are approximately the same shape and size. Substantial bias was ob-
served with the historic configuration for all population sizes examined. The
bias appears to result from the fact that the GSPE does not account for large
amounts of heterogeneity in unit size. Unless extensions of the GSPE that
accommodate unit-size heterogeneity are developed, future moose surveys at
TNWR should use a survey configuration with homogeneous unit sizes to avoid
bias in the GSPE. Even if such extensions are developed, the standard units
are preferable for TNWR. because the greater number of survey units available
per stratum enables better estimation of the spatial covariance structure.

In Chapter 2, I assessed the performance of the GSPE at TNWR under
varied levels of sampling intensity. Given the results of Chapter 1, only the
standard survey grid was used. Results suggested that bias and confidence
interval coverage were not problems even with low sampling intensities, but
that precision of estimates increased substantially when sampling intensity in-
creased in both the low- and high-density strata. These results are conditional
on random moose distributions within strata.

In Chapters 1 and 2, simulated moose distributions in TNWR were gen-
erated randomly. However, moose distributions often exhibit some degree of
clustering on natural landscapes. In Chapter 3, I simulated moose distribu-
tions with varied degrees of clustering to assess the influence of clustering on
model performance. In general, model performance decreased as the degree
of clustering increased. Clustering increased bias and root mean square error,
and decreased precision and confidence interval coverage. However, moderate
increases in sampling intensity helped to ameliorate the effects of clustering
on most aspects of model performance.

One aspect of these simulations worth considering is that survey units were
selected as a simple random sample within each density stratum. Because the
GSPE is a model-based approach to inference, random sample selection is
not a requirement. In fact, non-random sampling schemes (e.g., systematic
sampling) are often preferable to random sampling in model-based approaches
to inference [Cressie, 1991, Van Groenigan, 2000, Ver Hoef, 2002|. In other
words, the GSPE models the covariance among sample units explicitly, so it
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does not rely on random sampling schemes. With that in mind, it can be
beneficial to strategically sample units in such a way that avoids large areas
of unsampled space, which can inflate prediction variance. This may improve
the precision of population estimates even when faced with small samples or
highly clustered moose distributions. Similarly, intentional placement of some
sample units in close proximity to one another can aid in estimation of nugget
and range parameters in variogram-based approaches. Future efforts should
consider the effects of non-random sample selection on estimator performance.

As previously mentioned, the GSPE is currently implemented using only
the exponential semivariogram (Equation 13). Selection of an appropriate var-
iogram model is a potentially important component of kriging-based spatial
analyses [Van Groenigan, 2000, Mazzella and Mazzella, 2013]. The exponen-
tial semivariogram appeared to perform well in these simulations, but other
variogram forms were not examined. Future investigators should explore the
performance of alternative variogram models relative to that of the exponen-
tial. Similarly, it would be valuable to examine the robustness of different
semivariograms to mis-specification in the context of moose abundance sur-
veys. This could be easily accomplished by simulating distributions under
a given covariance structure, and then analyzing the data using a different
covariance model.
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Appendix 1: R code for Chapter 1 simulations

1

o|#HHHHF "~ Unit Configuration Simulations, Chapter 1 ~7 JHHHHF
s|#HHHE ™" Author: G.G. Frye, 2016 w3 41 41
4

6| FHHHHE Start with clean slate
firm( list=ls ())
s|dev.off()

10| #HHAHE Working directory
1| workdir <— "7

12| setwd (workdir )

13| getwd ()

1] dir ()

15
16| #HHEE Date
17| Date <— 77
15| RunNo <— 77

20| FHHHHE Packages

21| library (rgdal)

22| library (maptools)
23| library (spatstat)
21| library (sp)

25| library (rgeos)

or | Analysis Area: "HIGH” , "LOW” , or 7ALL”

o8| FHEHHE (This specifies the area for which a population
20 | FHEHHE estimate is desired: high/low stratum only

30| HHHHEE or whole survey region)

32| ANAREA <— 7 ALL”

34 ,",/
as|# Load shapefiles for: (1) Standard units (STD),
36| # (2) High stratum Togiak units (HIGH), and
ar|# (3) Low stratum Togiak units (LOW)

a8 |#

10|HIGH <— readOGR(dsn="", layer = 7")
11|[LOW <— readOGR (dsn="", layer = "")
12|STD <— readOGR (dsn="", layer = "")

13| projdstring (STD) = proj4string (HIGH) #Define the projection

45| #
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16|# Load GSPE functions
i

47|
1| source ("GSPE_Functions .t”)

1

51|
52|# Choose number of units to sample from each configuration
5

53| F and for each stratum
i

547

56| sizeHS <— 100 # Standard units, high stratum — 209 available
57| sizellS <— 80 # Standard units, low stratum — 748 available
58

50| sizeHG <— 20 # Togiak units, high stratum — 25 available

so| sizeLG <— 30 # Togiak units, low stratum —— 129 available

1
i

62|77

63|# Choose number of iterations for the loop
i

64 17
65

66| Numlter <— 1000 # Number of iterations for the loop

1
i

68/ 77

69|# Choose true population size for each stratum
A

70| H

72| NumHigh <— 450
73| NumLow <— 50
NumTotal <— NumHigh + NumLow

IS

ot

H

-3

7
# START LOOP HERE

7]
i

o

b B e S B S |
o IS

©

i
#**>)<>)<>)<**>)<****>)<>)<>)<**>)<>)<>)<****>)<>)<>)<>)<>)<>)<****>)<>)<>)<**>)<************************

= O

o0
(S

PtEstTog <— matrix (rep (NA, Numlter))
PtEstStd <— matrix (rep(NA, Numlter))

®
&

o
=

s5| SETog <— matrix (rep (NA, Numlter))
56| SEStd <— matrix (rep (NA, Numlter))

ss| AreaTog <— matrix (rep (NA, Numlter))
so| AreaStd <— matrix (rep (NA, Numlter))
q ConfInt95Tog <— matrix (NA, Numlter, 2)
ConfInt95Std <— matrix (NA, Numlter, 2)

9

[§]

93
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01| GassSemVarHi <— matrix (NA, nrow = Numlter, ncol = 3)

05| GassSemVarL.o <— matrix (NA, nrow = Numlter, ncol = 3)

(5}

or| StdSemVarHi <— matrix (NA, nrow = Numlter, ncol = 3)
os| StdSemVarLo <— matrix (NA, nrow = Numlter, ncol = 3)

wo| for (j in 1:Numlter){

1

101

102|#

103|# Generate random points within each stratum layer, with each
104 |# point representing an individual moose location

105 |#

106

1o7|#Random points, high stratum

10s| HIGH_PTS <— spsample (HIGH, n = NumHigh, ”random”)
109
1o|#Random points, low stratum

11 |LOW_PTS <— spsample (LOW, n = NumlLow, ”random”)

112

1
i

113|#

1144 Use ’over’ functions for point—in—polygon analysis

115 |# to assign the points to appropriate survey units
i

116 | 7

L1y
ns|#HAHAHE HIGH stratum historic units
119
120l HIGH_PTS$ GassUnit <— over (HIGH_PTS, HIGH)$UnitID
121
12| #HHAAE TOW stratum historic units
128
124|[LOW_PTS$ GassUnit <— over (LOW_PTS, LOW)$UnitlD
125
126 | #HHAHE HIGH stratum standard units
127
12s| HIGH_PTS$SUS _ID <— over (HIGH_PTS, STD)$SUS_ID

120| HIGH_PTS$SUS_ID _1 <— over (HIGH_PTS, STD)$SUS_ID_1

130| HHGH_PTS$StdUnit <— HIGH_PTS$SUS_ID + HIGH_PTS$SUS_ID _1
131
132 | HHHAE TOW stratum standard units
133
134|[LOW_PTS$SUS _ID <— over (LOW_PTS, STD)$SUS_ID
135|LOW_PTS$SUS_ID _1 <— over (LOW_PTS, STD)$SUS_ID_1

136 | LOW_PTS$Std Unit <— LOW_PTS$SUS_ID + LOW_PTS$SUS _1D_1
137
i

138 |9
130|# Tally number of simulated moose points in each unit
i

140| 77

141
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142
143
144

145

147
148
149

150

152
153
154
155
156
157
158
159
160

161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

178
179

180

=
]

182

o

18
184

185

5

186
187
188

189

LOW_PTS «<— data.frame (LOW_PTS) # SpatialPointsDataframe to regular
# dataframe

LOW_PTS$count <— 1 # Add column of 1’s to represent a count of 1
4# for each simulated moose

o HIGH_PTS <— data.frame (HIGH_PTS) # SpatialPointsDataframe to

# regular dataframe
HIGH_PTS$count <— 1 # Add column of 1’s to represent a count of 1
4# for each simulated moose

1| byGassUnitLow <— aggregate (IOW_PTS$count, list (IOW_PTS$GassUnit)

,sum) # low counts for each Togiak unit
byGassUnitLow$Stratum <— "LOW?

byGassUnitHigh <— aggregate (HIGH_PTS$count, list (HIGH_PTS$
GassUnit), sum) # high counts for each Togiak unit
byGassUnitHigh$Stratum <— "HIGH”

byGassUnit <— rbind (byGassUnitLow, byGassUnitHigh) # combined
# counts for each Togiak unit, both strata
byGassUnit <— byGassUnit[order (byGassUnit$Group.1) ,]

byStdUnitLow <— aggregate (IOW_PTS$count, list (LOW_PTS$StdUnit),
sum) # low counts for each standard unit

byStdUnitHigh <— aggregate (HIGH_PTS$count, list (HIGH_PTS$
StdUnit), sum) # high counts for each standard unit

byStdUnitBind <— rbind (byStdUnitLow, byStdUnitHigh) # combined
# counts for each standard unit

byStdUnit <— aggregate (byStdUnitBind$x, list (byStdUnitBind$
Group.1), sum) # Aggregate again — not unique units

;| byStdUnit <— byStdUnit [order (byStdUnit$Group.1) ,] # sort by

# unit number

1
rai
[

# Add missing O—count units back to compiled vector of counts
+# for historic Units

1
i
7

lowtest <— data.frame (LOW)

lowtest <— data.frame(lowtest$UnitID)
lowtest$Stratum <— "TOW?

lowtest$x <— 0

colnames (lowtest) <— c¢(”Group.1”, 7 Stratum”, ”x”)
lowtest <— data.frame(lowtest$Group.1l, lowtest$x, lowtest$Stratum)
colnames (lowtest) <— ¢(”"Group.1”, "x”7, ?”Stratum”)

hightest <— data.frame (HIGH)
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hightest <— data.frame( hightest$UnitID)
hightest$Stratum <— "HIGH”
hightest$x <— 0

3| colnames (hightest) <— ¢(”Group.1”, ”Stratum”, "x”)
hightest <— data.frame(hightest$Group.1l, hightest$x, hightest$
Stratum )

77X77 , 2 Stratum77 )

colnames (hightest) <— ¢(”Group.1”,
bothtest <— rbind(lowtest, hightest)
bothtest <— bothtest[order(bothtest$Group.1) ,] # sort by
# unit number
GassAll <— rbind (bothtest, byGassUnit)
GassCounts <— aggregate (GassAll$x, list (GassAll$Group.1), sum)

203| GassCounts <— GassCounts[order (GassCounts$Group.1) ,] # sort by

N
SCTR TR < Qi St i (i
® W R O © ®m 9 o o

%)
w

DR N N N NN N N

| # unit number

205| GassCounts <— data.frame( GassCounts$Group.1, GassCounts$x,
# bothtest$Stratum)

colnames (GassCounts) <— c¢(”Group.1”, "x”, ?Stratum”)

1
i

2
# Add missing O—count units back to compiled vector of counts

e for standard units
i

17

stdtest <— data.frame (STD)

stdtest <— data.frame(stdtest$SUS_ID, stdtest$SUS_ID_1)

s stdtest$Group.1 <— stdtest$stdtest .SUS_ID +
stdtest$stdtest .SUS_ID_1

stdtest <— data.frame(stdtest$Group.1)

stdtest$x <— 0

colnames (stdtest) <— ¢(”Group.1”, "x”)

StdAll <— rbind(stdtest , byStdUnit)
StdCounts <— aggregate (StdAll$x, list (StdAll$Group.1), sum)
1| colnames (StdCounts) <— ¢(” UnitID”, ”"Moose _Count” )

=
+

W
7|# Use ’over’ functions for point—in—polygon analysis

28| to assign the points to appropriate survey units

1
i

f
17

1|STD$Stratum <— NA

12| STD$ UnitlD <— STDSSUS_ID + STD$SUS_ID _1
233 HIGH$ Strat <— ”HIGH”

s5|#1f a standard unit overlaps a high unit, then the standard unit

#gets "HIGH” in STD$Stratum; else "[OW’

StdStrat <— data.frame(over (STD, HIGH, returnlList = FALSE), STD$
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238 UnitID)

230| StdStrat <— data.frame(StdStrat$STD. UnitlD, StdStrat$Stratum)
200 StdStrat$Stratum [StdStrat$StdStrat . Stratum = "HIGH” | <— "HIGH”
21| StdStrat$Stratum[is .na(StdStrat$StdStrat . Stratum)]| <— "LOW’

22| StdStrat <— data.frame(StdStrat$StdStrat .STD.UnitlD, StdStrat$
243 Stratum)

244| colnames (StdStrat) <— ¢ (7 UnitID”, ”Stratum”)

2150 StdStrat <— StdStrat[order (StdStrat$UnitlD) ,]

1

247 | Ff

24s|# Set up standard unit dataframe for FPBK
i

i
£

21| colnames (StdCounts) <— ¢ (? UnitID”, ”Moose _Count” )
22| StdCounts <— StdCounts[order (StdCounts$UnitlD) ,]
252| Stdmergel <— merge (StdCounts, StdStrat, by = ”UnitlD”)

255 STDdat <— data. frame (STD)

256| STDdat$Lat <— STDdat$SCENTRLAT + STDdat$CENTRLAT 1
257| STDdat$Long <— STDdat$CENTRLON + STDdat$CENTRLON_ 1
255| STDdat$Counted <— 0

20| STDdat2 <— STDdat[,c(39,40,41,42) ]

260 STDdat2 <— STDdat2[order (STDdat2$UnitID) | ]

261| Stdmerge2 <— merge (Stdmergel , STDdat2)

262| Stdmerge2 <— Stdmerge2[,c(1,4,5,2,3,6)]

263| colnames (Stdmerge2) <— ¢(” UnitID” ;" CentrLat” ,” CentrLong” |
264 " Moose _Count” ,” Stratum” ,” Counted” )

265| StdData <— Stdmerge2

£
# Randomly select standard sample units
i

260 |

or1 |[#HHE High Stratum

o3| StdHigh <— subset (StdData, StdData$Stratum =— "HIGH” )
271l StdHigh <— data . matrix (StdHigh)

ors|nH <— length (StdHigh[,1])

27| Highlndex <— sample(nH, size=sizeHS ,replace = FALSE)
orr| for (i in 1:sizeHS){

278 StdHigh [HighIndex [i],6] <— 1

279 }

250l ZStdHigh <— data . frame (StdHigh)

os2 | FHHEHE Low Stratum

os1| StdLow <— subset (StdData, StdData$Stratum =— "LOW”)
255| StdLow <— data.matrix (StdLow)
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ss6|nl <— length (StdLow[,1])

2s7| LowIndex <— sample(nl, size=sizeLLS ,replace = FALSE)
oss| for (i in 1:sizelS){

289 StdLow [LowlIndex[i] ,6] <— 1

290 }

21| ZStdLow <— data . frame (StdLow)

203| ZStd <— rbind (ZStdHigh , ZStdLow)

i
i
206|# Add additional required columns to ZStd
|
T

200|STD <— STD[order (STD$UnitID) ,]

s0| Z8td <— ZStd [order (ZStd$UnitID) ]

a01| ZStd$ AreaMi <— STDSAREAMI + STDSAREAMI_1
s02| ZStd$surveyid <— 77

303| ZStd$columnpred <— NA

s04| ZStd$ Stratum [ZStd$Stratum — 2] <— "LOW’
05| ZStd$ Stratum [ZStd$Stratum =— 1] <— "HIGH”

1
i
7

s0s|# Define analysis area based on choice at start of script

300 |#

307

310
21| i f (ANAREA=—"HIGH” ) {
312 for (i2 in 1:length(ZStd$columnpred)){
313 if (ZStd$Stratum |[i2]| = "HIGH” ){ZStd$columnpred [i2] <— 1
314 }else{ZStd$columnpred[i2] <— 0}
315
316
a17| i f (ANAREA=—"TOW" ) {
318 for (i2 in 1:length(ZStd$columnpred)){
319 if (ZStd$Stratum|[i2] = "TOW’ ){ZStd$columnpred [i2] <— 1
320 }else{ZStd$columnpred[i2] <— 0}
321 }
5|}
a23| 1T (ANAREA="ALL” ) {ZStd$columnpred <— 1}
324

so5 | #HHHHE Reorganize columns
326
a7 4Std <— ZStd[,c(8,1,6,7,4,5,2,3,9)]
328
/f
12
4# Perform block kriging with functions written by Jay Ver Hoef
331 | on standard units

332| (see Appendix 4 for GSPE functions)

. 7]
333 | #

329

330
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35| data <— ZStd

336 column . pred <— ”columnpred”

337 column . ana <— ” Moose _Count”

szs| column . unitid <— 7 UnitID”

330l column . ana . formula <— 7”7 [UNKNOWN]”

sa0| strat <— 7 Stratum”

sa1| area <— "7 AreaMi”

sa2| column . lat <— 7 CentrLat”

343/ column . lon <— 7" CentrLong”

sa4| sampled <— 7 Counted”

sa5| column . surveyid <— "surveyid”

215| Stdeale . out <— geo.moosepop (column.ana = column.ana, strat =
347 strat , data = data, sampled = sampled, area = area,
348 column . pred = column.pred, column.lat=column.lat ,
349 column . lon=column . lon)

ssol inpt . parms <— list (column. pred=column . pred , column.ana=
351 column . ana , column . ana . formula=column . ana . formula ,

strat=strat ,area=area ,sampled=sampled)

21| PtEstStd [j,] <— Stdcalc.out$estimate.total

35| SEStd[j ,] <— Stdcalc.out$estimate .standard.error
a56| Conflnt95Std [j,] <— Stdcalc.out$conf.int.95

27| StdCl90i <— Stdcealc.out$cig0

55| StdC180i <— Stdcalc.out$ci80

as0| AreaStd [j,] <— Stdcalc.out$sampled.area[3,2]

ss0| StdSemVarHi[j ,1] <— Stdcalc.out$parmestl [1,1]
61| StdSemVarHi[j ,2] <— Stdcalc.out$parmestl[1,2]
s62| StdSemVarHi[j ,3] <— Stdcalc.out$parmestl[1,3]
a63| StdSemVarLo[j ,1] <— Stdcalc.out$parmest2[1,1]
364 StdSemVarLo[j ,2] <— Stdcalc.out$parmest2[1,2]
65| StdSemVarLo[j ,3] <— Stdcalc.out$parmest2][1,3]

1
rai

g
s6o|# Set up historic unit dataframe for block kriging

T i}
3 i

370 F

a2| GassCentr <— read.csv(”Togiak _centroids.csv”, header=IRUE)

o length (GassCounts[,1])
ams| colnames (GassCounts) <— ¢ (7 UnitID”, ”"Moose_Count”, ”Stratum”)
ar6| GassCounts <— GassCounts[order (GassCounts$UnitlD) ,]

ars| GassData <— merge (GassCentr, GassCounts, by = " UnitlD”)
aro| GassData <— GassData[,c(1,7,6,8,9)]

aso| colnames (GassData) <— ¢ (” UnitlD” ;” CentrLat” ,” CentrLong” ,
281 " Moose _Count” ,” Stratum” )
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33| GassData$Counted <— 0

sss | #HHAHAHE High Stratum sampling

57| GassHigh <— subset (GassData, GassData$Stratum — "HIGH” )
s| GassHigh <— data.matrix (GassHigh)

nH <— length (GassHigh[,1])

Highlndex <— sample(nH, size=sizeHG ,replace = FALSE)

s01| for (i in 1:sizeHG)

{
}

GassHigh [HighIndex [i],6] <— 1

05| ZGassHigh <— data. frame(GassHigh)

oo }

HHHAHHE Low Stratum sampling

GassLow <— subset (GassData, GassData$Stratum =— "LOW")
GassLow <— data.matrix (GassLow)
nl. <— length (GassLow[,1])
Lowlndex <— sample(nl, size=sizeLG ,replace = FALSE)
sl for (i in 1:sizelLG)
{

GassLow [LowIndex [i] ,6] <— 1

ZGassLow <— data.frame(GassLow)

7ZGass <— rbind (ZGassHigh, ZGassLow)

w2|FHHHAHF Add additional required columns to ZGass

LowDF <— data . frame (LOW)
5| LowArea <— data . frame (LowDF$UnitID , LowDF$unit _area_)

16| colnames (LowArea) <— c¢(” UnitID”, ”AreaKM”)

HighDF <— data . frame (HIGH)
HighArea <— data.frame(HighDF$UnitID , HighDF$unit_area_)

s10| colnames (HighArea) <— ¢ (7 UnitID” , 7 AreaKM”)

B
w W o= O

=

Y O
N o o

0
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GassL_H <— rbind (LowArea, HighArea)

GassL_H <— GasslL_H[order (GassL. _H$UnitlD) ,]
ZGass <— ZGass[order (ZGass$UnitlD) ,]
ZGass$AreaMi <— GassL _HSAreaKM x 0.386102159

H#HHHE Add final columns and convert numeric stratum labels to

A names

ZGass$surveyid <— 77
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130| ZGass$columnpred <— NA

121 ZGass <— ZGass[,c(7,1,6,9,4,5,2,3,8)]

152l ZGass$Stratum [ ZGass$Stratum — 1] <— "LOW’

33| ZGass$Stratum [ ZGass$Stratum = 2| <— "HIGH”

434

ass | HHHHHE Define analysis area based on choice at start of script

436

37| 1f (ANAREA=—"HIGH” ) {

438 for (i2 in 1:length(ZGass$columnpred)){

439 if (ZGass$Stratum [i2]| = "HIGH” ){ZGass$columnpred [i2] <—
1

440 }else {ZGass$columnpred[i2] <— 0}

441 }

442 }

s3] i f (ANAREA="TOW" ) {

444 for(i2 in 1:length(ZGass$columnpred)){

1445 if (ZGass$Stratum|[i2] = "TOW’ ){ZGass$columnpred [i2] <— 1

448 }else {ZGass$columnpred[i2] <— 0}

447 }

448

10| i f (ANAREA=—"ALL" ){ZGass$columnpred <— 1}

450

151 |H#

a52|# Perform block kriging with functions written by Jay Ver Hoef

53| on historic units

154 | (see Appendix 4 for GSPE functions)

455 | #

456

as7| data <— ZGass # Assign appropriate data frame

15| column . pred <— 7 columnpred”

150| column . ana <— " Moose _Count”

10| column . unitid <— 7 UnitlID”

w1| column . ana . formula <— 7 [UNKNOWN]”

12| strat <— 7 Stratum”

13| area <— "7 AreaMi”

a64| column . lat <— 7 CentrLat”

45| column . lon <— " CentrLong”

wo| sampled <— 7 Counted”

17| column . surveyid <— 7surveyid”

ss5| Gasscale . out<—geo . moosepop (column .ana = column.ana, strat =

469 strat ,data = data, sampled = sampled, area = area,

470 column . pred = column.pred, column.lat=column.lat ,

471 column . lon=column . lon)

ar2| inpt . parms<—list (column . pred=column . pred , column . ana=column . ana ,

473 column . ana . formula=column . ana. formula ,strat=strat ,

ar4 area=area ,sampled=sampled )

475

are| PtEstTog[] ,] <— Gasscalc.out$estimate. total
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17| SETog[j,] <— Gasscalc.out$estimate .standard.error
45| ConfInt95Tog[j ,] <— Gasscalc.out$conf.int .95

aro| GassCl90i <— Gasscale.out$ci90

1s0| GassCl80i <— Gasscalc.out$ci80

as1| AreaTog[j ,] <— Gasscalc.out$sampled.area[3,2]

as2| GassSemVarHi[j,1] <— Gasscalc.out$parmestl[1,1]

as3| GassSemVarHi[j ,2] <— Gasscalc.out$parmestl[1,2]

1s1| GassSemVarHi[j ,3] <— Gasscale.out$parmestl [1,3]

155 GassSemVarLo[j,1] <— Gasscale.out$parmest2[1,1]

1s6| GassSemVarLo [j,2] <— Gasscale.out$parmest2[1,2]

57| GassSemVarLo[j,3] <— Gasscalc.out$parmest2[1,3]

488

aso | #HHHHE Keep track of loop progress

490

ao1| print (paste(”Loop #, j, 7 — 7, j/Numlterx100, "% complete”))

a02| flush . console ()

494 #********>)<>)<>)<>)<******>)<>)<>)<>)<******>)<>)<>)<>)<*******************************
H

17
a06|# END LOOP HERE

7]

497 |

499 }

1
£

501 (7
so2|# Confidence interval coverage

1
i

503 |F

so5| 1f (ANAREA =— 7 ALL” ){

so6|#Historic Coverage:

507| CI95TogDF <— data . frame(ConfInt95Tog)

sos| colnames (CI95TogDF ) <— ¢(” Lower”, ”Upper”)

s00| CI95TogDF$in _interval <— 0

s10| C195Tog <— as.matrix (C195TogDF )

si| for (i in 1:Numlter){

512 if (CI95Tog[i,1] < NumTotal & CI95Tog[i,2] > NumTotal){
513 Cl95Tog[i ,3] < 1}

514 }

s15| (CoverageTog <— sum(CI95Tog[,3]) / nrow(Cl95Tog) )

516 }

if (ANAREA — "HIGH” ) {

#Historic Coverage:

ClI95TogDF <— data.frame(ConfInt95Tog)
colnames (CI95TogDF) <— c¢(”Lower” , "Upper”)
Cl95TogDF$in _interval <— 0

523| C195Tog <— as.matrix (CI95TogDF)

for (i in 1:Numlter){
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541

o[}

o}

if (CI95Tog[i,1] < NumHigh & CI95Tog[i,2] > NumHigh){
CI95Tog[i,3] < 1}
}

(CoverageTog <— sum(CI95Tog[,3]) / nrow(Cl95Tog))

if (ANAREA — "LOW” ){
#Historic Coverage:

33| CI95TogDF <— data. frame ( ConfInt95Tog)
s34 colnames (CI95TogDF ) <— ¢(” Lower”, 7 Upper”)

Cl95TogDF$in _interval <— 0

s26| C195Tog <— as. matrix (CI95TogDF)
7| for (i in 1:Numlter){

if (CI95Tog[i,1] < NumbLow & CI95Tog[i,2] > Numlow) {
CI95Tog[i,3] < 1}
}

(CoverageTog <— sum(CI95Tog[,3]) / nrow(Cl95Tog))
}

i f (ANAREA — " ALL” ) {

s|#Std Unit Coverage:
5| C195StdDF <— data. frame( Conflnt95Std)
sa7| colnames (CI195StdDF) <— ¢ (” Lower” , ”Upper” )

CI95StdDF$in_interval <— 0

sa0| CI95Std <— as.matrix (Cl195StdDF)
5ol for (i in 1:Numlter){
if (Cl95Std[i,1] < NumTotal & CI95Std[i,2] > NumTotal){

C195Std [i,3] <— 1}

(CoverageStd <— sum(Cl95Std[,3]) / nrow(CI95Std))

i f (ANAREA — "HIGH” ) {

ses|#Std Unit Coverage:
0| CI95StdDF <— data. frame ( ConfInt95Std )
oo colnames (CI195StdDF) <— ¢ (” Lower” , ”Upper”)

CI95StdDF$in _interval <— 0

se2| CI195Std <— as. matrix (Cl195StdDF)
sl for (i in 1:Numlter){

if (C195Std[i,1] < NumHigh & CI95Std[i,2] > NumHigh){
C195Std [i,3] <— 1}
}

| (CoverageStd <— sum(CI95Std [,3]) / nrow(Cl95Std))

}

if (ANAREA — "LOW” ){
#Std Unit Coverage:
CI95S5tdDF <— data. frame( ConfIlnt95Std )
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579

616

618
619

620

73| colnames (CI95StdDF) <— ¢ (7 Lower” , ” Upper”)

CI95StdDF$in_interval <— 0
Cl95Std <— as.matrix (CI95StdDF )
for (i in 1:Numlter){
if (Cl95Std[i,1] < NumbLow & CI95Std[i,2] > Numlow){
C195Std [i,3] < 1}
}

(CoverageStd <— sum(Cl95Std[,3]) / nrow(CI95Std))
}

1
i

2
1|# Write results to a file

1
i

7

workdir <— "7
setwd (workdir)
getwd ()

dir ()

#HHHAE File with raw results from each iteration

sink (paste (Date , RunNo,ANAREA,” -7 'NumHigh,”H_” ,NumlLow,”L_" |
Numlter ,” Iter” ,” Results . txt” , sep=""))
Cat (77 \n77)

| cat ( paste (Date , RunNo,ANAREA,” _” /NumHigh,”H_” ;NumLow,”L_” ,

Numlter ,” Iter” ,” Results” , sep=""))

cat (" \n\nNumber of iterations =)
Numlter

;| cat (”\nNumber of low stratum moose =")

NumLow

cat (" \nNumber of high stratum moose =")
NumHigh

cat ("\nTotal number of moose =")
NumTotal

cat ("\nVector of Togiak Grid Point Estimates =")

s13| data . frame ( PtEstTog)

15| cat (7 \nVector of Standard Grid Point Estimates =")

data . frame ( PtEstStd)

cat ("\nVector of Togiak Grid SEs =")
data . frame (SETog)
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cat ("\nVector of Standard Grid SEs =")
data . frame (SEStd)

cat ("\nVector of Togiak Grid Sampled Areas (sq miles) =")
data . frame ( AreaTog)

cat ("\nVector of Standard Grid Sampled Areas (sq miles) = \n\n”)
data . frame ( AreaStd)

cat ("\nTog 95% CI and 1/0 Pt Inclusion =)
CI95Tog

cat (?\nStd 95% CI and 1/0 Pt Inclusion =)
CI955td

cat ("\nTogiak Fitted Semi—variograms — High =")
GassSemVarHi
cat ("\nTogiak Fitted Semi—variograms — Low =")
GassSemVarLo

cat (”\nStandard Fitted Semi—variograms — High =")
StdSemVarHi

s13| cat (”\nStandard Fitted Semi—variograms —— Low =)

StdSemVarLo
sink ()
H#HHHHE File with summarized results

sink (paste (Date , RunNo,ANAREA,” .7 ,NumHigh,”H_” ,NumlLow,”L,_” Numlter ,
"Iter” ,”Summary.txt” , sep=""))

Cat (77 \n77)

cat ( paste (Date , RunNo,ANAREA,” -7 NumHigh,”H_” ,NumlLow,” L._” | Numlter ,
"Iter” ,”Summary. txt” , sep=""))

56| cat (7 \n\nNumber of iterations =)

Numlter

cat (" \nNumber of low stratum moose =")
Numlow

cat (" \nNumber of high stratum moose =")
NumHigh

cat ("\nTotal number of moose =")
NumTotal

cat (" \nMean( PtEstTog) =")
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sso| mean ( PtEstTog)

or1| cat (" \nMean( PtEstStd) =")
o72| mean ( PtEstStd )

o74| cat (7 \nMean SE(SETog) =")
s75| mean (SETog )

67| cat (" \nMean SE(SEStd) =")
o7s| mean ( SEStd )

oso| if (ANAREA — "ALL” ){
esi| cat ("\nTogiak Unit Bias =7)
es2| mean ( PtEstTog) — NumTotal

683 }

os5| 1f (ANAREA =— "LOW” ){

sss| cat ("\nTogiak Unit Bias =")
os7| mean ( PtEstTog) — Numlow

oss| }
689
s00| if (ANAREA — "HIGH” ) {

sar| cat ("\nTogiak Unit Bias =")
so2| mean ( PtEstTog) — NumHigh
693 }
694
sos| if (ANAREA =— " ALL” ){

sos| cat (" \nStandard Unit Bias =")
sor| mean ( PtEstStd) — NumTotal

698
699
7o0| if (ANAREA — "TOW’ ){

7o1| cat (" \nStandard Unit Bias =")
72| mean ( PtEstStd) — NumlLow

704
os| if (ANAREA — "HIGH” ) {

76| cat (" \nStandard Unit Bias =")
7or| mean ( PtEstStd) — NumHigh

708 }
rao] cat (" \nTogiak Coverage — 95% CI =")
70| CoverageTog

711
72| cat ("\nStd Coverage — 95% CI =")
13| CoverageStd

714
75| cat (" \nMean of Togiak Grid Sampled Area (sq miles) =)
716| mean ( AreaTog)
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7is| cat ("\nMean of Standard Grid Sampled Area (sq miles) = \n\n")
710l mean ( AreaStd)

720

71| sink ()

./Config_Simulations_Neat.R
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Appendix 2: R code for Chapter 2 simulations

1

o|#HHHE "7 Sampling Intensity Simulations, Chapter 2 ~~ JHHHHE
s|#HHHE ™" Author: G.G. Frye, 2016 -

4 ﬁﬁﬁ?#

6| FHHHHE Start with clean slate
lrm( list=ls () )
s| dev.off()

10| #HHAHE Working directory
1| workdir <— "7

12| setwd (workdir )

13| getwd ()

1] dir ()

15
16| #HHEE Date
17| Date <— 77
15| RunNo <— 77

20| FHHHHE Packages

21| library (rgdal)

22| library (maptools)
23| library (spatstat)
21| library (sp)

25| library (rgeos)

or | Analysis Area: "HIGH” , "LOW” , or 7ALL”

o8| FHEHHE (This specifies the area for which a population
20 | FHEHHE estimate is desired: high/low stratum only

30| HHHHEE or whole survey region)

32| ANAREA <— 7 ALL”
34 ,",/
s5|# Load shapefiles for whole standard units with strata
36 |# delineated on the basis of 2011 survey

1
i
17

a0 AllUnits <— readOGR(dsn="", layer = 77)
w| plot (AllUnits)
11| AllUnits@data$ID <— AllUnits@data$SUS_ID + AllUnits@data$

42 SUS_ID_1 + AllUnits@data$SUS_ID_12 + AllUnits@data$
43 SUS_ID__13 + AllUnits@data$SUS_ID__14 4+ AllUnits@data$
44 SUS_ID__15

15 AllUnits$UnitlD <— AllUnits$SUS_ID_1 + AllUnits$SUS_ID_12
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j| head ( AllUnits@data )

=
>

1s|STDHIGH <— AllUnits [which( AllUnits$Stratum = ”"HIGH” ) ]
10| plot (STDHIGH)

so| projdstring (STDHIGH)

51| str (STDHIGH®@data)

52| head (STDHIGH@data )

54| STDLOW <— AllUnits [which ( AllUnits$Stratum =— "LOW”) ]
55| plot (STDLOW)

56| projdstring (SIDLOW)

7| str (STDLOW@data)

ss| head (STDLOW@data )

60|

61|# Load shapefiles for whole standard units with strata
62| delineated on the basis of 2011 survey

e 1
63| Ff

65| source ("GSPE_Functions .r”)

=
>

1

[
Bt

i
# Choose number of units to sample from low stratum
o|# (NOTE: »= 20 required for each stratum)

1
1

()}
o0

[
o

o

7

(SR

HHHAHHE Low stratum fixed , high stratum varying with p—loop below

w

IS

sizeLS <— 30 # Standard units, low stratum — 748 available

ot

1

o

i
4# Choose number of iterations for the loop
i

-3

o

17

©

S S S B B S~ (R S (R B

®
=]

Numlter <— 1000 # Number of iterations for the loop

o

7]
i

o0
(S

i
4# Choose true population size within each stratum
i

®
&

o
=

i
so|HHHHHE Using the 2011 counts
ss| NumHigh <— 1144

s0| NumLow <— 482

NumTotal <— NumHigh + NumLow

90

91
i

AE

gk
o3|# Fill HighVector with high stratum units to be sampled
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1

047

as| HighVector <— ¢ (20, 30, 50, 100, 200)

98 #*>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<************************

| L
9|

i
wo|# START LOOPS HERE
1

101 7T
102 #*****>)<>)<>)<>)<>)<>)<******>)<>)<>)<>)<>)<******>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<************************

04| for (p in 1:length (HighVector)){ # Loop through HighVector
ws| sizeHS <— HighVector [p]

18| PtEstStd <— matrix (rep (NA, Numlter))
19| colnames ( PtEstStd) <— ¢(” PtEst”)

11| SEStd <— matrix (rep (NA, Numlter))
12| colnames (SEStd) <— ¢ (”SE”)

14| UnitsSamp <— matrix (NA, nrow = Numlter, ncol = 3)
15| colnames (UnitsSamp ) <— c¢("HIGH” , "LOW” | ?TOTAL” )

17| TotalSamp <— matrix (NA, nrow = Numlter, ncol = 3)
ns| colnames (TotalSamp) <— c¢(”HIGH” , "LOW” , "TOTAL” )

120l MooseCount <— matrix (NA, nrow = Numlter, ncol = 3)
21| colnames (MooseCount ) <— c¢("HIGH” , "LOW” | ?TOTAL” )

23| SampAreaStd <— matrix (NA, nrow = Numlter, ncol = 3)
124 colnames (SampAreaStd) <— ¢ ("HIGH” , "LOW” , "TOTAL" )

12| TotalAreaStd <— matrix (NA, nrow = Numlter, ncol = 3)
26| colnames (TotalAreaStd) <— ¢("HIGH” , "LOW’ , "TOTAL" )

12s) ConfInt95Std <— matrix (NA, Numlter, 2)
20| colnames (Conflnt95Std) <— c¢(” Lower95CL” , ” Upper95CL” )

31| Conflnt80Std <— matrix (NA, Numlter, 2)
132| colnames (ConfInt80Std) <— c¢(” Lower80CL”, ” Upper80CL” )

134 ConfInt90Std <— matrix (NA, Numlter, 2)

35| colnames ( ConfInt90Std) <— ¢ (” Lower90CL” , 7 Upper90CL" )
136
137| ClpropMean95 <— matrix (NA, Numlter)

135| colnames (ClpropMean95) <— c¢(” ClpropMean95” )

0| ClpropMean80 <— matrix (NA, Numlter)
11| colnames (ClpropMean80) <— c¢(” ClpropMean80” )
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145| ClpropMean90 <— matrix (NA, Numlter)
11| colnames (ClpropMean90) <— c¢(” ClpropMean90” )

16| StdSemVarHi <— matrix (NA, nrow = Numlter, ncol = 3)
147| colnames (StdSemVarHi) <— ¢ (”Nugget” , ” Sill” , ”Range”)

10| StdSemVarLo <— matrix (NA, nrow = Numlter, ncol = 3)
50| colnames (StdSemVarlLo) <— ¢(”Nugget” , 7 Sill”, ”Range”)

152| for (j in 1:Numlter){ # Loop through specified number of
153|# simulated populations

1
i

i
156|# Generate random points within each stratum layer , with each
157 |# point representing an individual moose location

o | 4L
158 |

60| #HHAHE Random points , high stratum
162| HHGH_PTS <— spsample (STDHIGH, n = NumHigh, ”random”)
164 |#HHAHE Random points , low stratum

166 LOW_PTS «<— spsample (SIDLOW, n = Numlow, ”random”)

1
+

T
1o|# Use ’over’ functions for point—in—polygon analysis
1ro|# to assign the random points to appropriate survey units

171 |

s | #HHAE HIGH stratum points to units

175| HIGH_PTS$SUS _ID _1 <— over (HIGH_PTS, AllUnits)$SUS_ID_1
176| HIGH_PTS$SSUS _ID _12 <— over (HIGH_PTS, AllUnits)$SUS_ID_12
177| HIGH_PTS$STDSTRATUnit <— HIGH_PTS$SUS_ID_1 + HIGH_PTS$SUS_ID_12

1ro|[#HHAHE TOW stratum points to units
151 |LOW_PTS$SUS_ID _1 <— over (LOW_PTS, AllUnits)$SUS_ID_1

152|[LOW_PTS$SUS_ID _12 <— over (LOW_PTS, AllUnits)$SUS_ID_12
155 |LOW_PTS$STDSTRATUnit <— LOW_PTS$SUS_ID_1 + LOW_PTS$SUS_ID_12

1

185 | #

1s6|# Tally number of simulated moose points in each unit
i

187 |4

150|LOW_PTS <— data . frame (LOW_PTS) #Change SpatialPointsDataframe in
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190
191
102

193

w

194

196
197
198
199
200
201
202
203
204
205
206
207
208
209

210

212

# a regular dataframe

LOW_PTS$count <— 1 #Add column of 1’s to represent a count of 1
4# for each simulated moose

HIGH_PTS «<— data.frame (HIGH_PTS) #Change SpatialPointsDataframe
# in a regular dataframe

s|HIGH_PTS$count <— 1 #Add column of 1’s to represent a count of

# 1 for each simulated moose

byStdUnitLow <— aggregate (IOW_PTS$count, list (LOW_PTS$
STDSTRATUnit) , sum) # low counts for each standard unit

byStdUnitHigh <— aggregate (HIGH_PTS$count, list (HIGH_PTS$
STDSTRATUnit) , sum) # high counts for each standard unit

byStdUnitBind <— rbind (byStdUnitLow, byStdUnitHigh) # combined
# counts for each standard unit
byStdUnit <— aggregate (byStdUnitBind$x, list (byStdUnitBind$
Group.1), sum) # Aggregate again because these aren’t
# unique units
byStdUnit <— byStdUnit [order (byStdUnit$Group.1) ,] # sort by unit
# number

1
i

17

213|# Add missing O—count units back to compiled vector of counts

1
£

7

s stdtest <— data.frame( AllUnits)
7| stdtest <— data.frame(stdtest$SUS_ID_1, stdtest$SUS_ID_12)
s/ stdtest$Group.1 <— stdtest$stdtest .SUS_ID_1 4+ stdtest$

stdtest .SUS_ID_12

stdtest <— data.frame(stdtest$Group.1)
stdtest$x <— 0
colnames (stdtest) <— ¢(”Group.1”, "x”)

1| StdAll <— rbind(stdtest , byStdUnit)
;| StdCounts <— aggregate (StdAll$x, list (StdAll$Group.1), sum)
5| colnames (StdCounts) <— c¢(” UnitID” , ”Moose_Count”)

s|SSTRAT <— data . frame ( AllUnits)
220 SSTRAT$ UnitlD <— SSTRAT$SUS_ID -1 + SSTRATSSUS_ID _12

230l StdStrat <— SSTRAT[order (SSTRATS UnitID) | ]

1
3| #

5|
2T

12
# Set up final dataframe for FPBK
i

colnames (StdCounts) <— ¢ (" UnitID”, "Moose_Count”)

88




235| StdCounts <— StdCounts|[order (StdCounts$UnitlD) ,]

220| Stdmergel <— merge(StdCounts, StdStrat, by = " UnitlD”)
240
21| STDdat <— data.frame( AllUnits)

22| STDdat$UnitlD <— STDdat$SUS_ID_1 + STDdat$SUS_ID _12

214| STDdat$Counted <— 0
216| STDdat2 <— STDdat[order (STDdat$UnitID) ,]

247| Stdmerge2 <— merge (Stdmergel , STDdat2, by = ”UnitlD”)
215| Stdmerge3 <— Stdmerge2[,c(”UnitID” ,” Latitude .x” ,” Longitude .x” |

249 " Moose_Count” ,” Stratum .x” ,” Counted” ) ]

250| colnames (Stdmerge3) <— ¢(” UnitID” ,” CentrLat” ,” CentrLong” |
251 " Moose _Count” ,” Stratum” ,” Counted” )

252 StdData <— Stdmerge3

253

254

55 | A

4
256|# Randomly select sample units
i

257 | FH

260| A High Stratum
261
262| StdHigh <— subset (StdData, StdData$Stratum =— "HIGH” )
23| StdHigh <— data.matrix (StdHigh)

s61|nH <— length (StdHigh[,1])

265| Highlndex <— sample(nH, size=sizeHS ,replace = FALSE)
266 for (i in 1:sizeHS){

StdHigh [HighIndex [i],6] <— 1

20| ZStdHigh <— data . frame (StdHigh)

o1 | Low Stratum

3| StdLow <— subset (StdData, StdData$Stratum — "LOW”)
274| StdLow <— data.matrix (StdLow)

ors|nl <— length (StdLow[,1])

26| LowIndex <— sample(nl, size=sizelLS ,replace = FALSE)
orr| for (i in 1:sizelS){

278 StdLow [LowIndex [i] ,6] <— 1
279 }

as0| ZStdLow <— data . frame (StdLow)
281

2s2| ZStd <— rbind (ZStdHigh , ZStdLow)

osa | Add additional required columns to ZStd

39




286

288

289

290

ki
5|# Define analysis area based on choice at start of script

o177

STD <— AllUnits[order ( AllUnits$UnitID) ,]

| ZStd <— ZStd[order (ZStd$UnitID) ||

ZStd$AreaMi <— AllUnits$Area
ZStd$surveyid <— 77

7ZStd$columnpred <— NA
ZStd$Stratum [ZStd$Stratum 2] < "LOW”
ZStd$Stratum [ZStd$Stratum 1] <— "HIGH”

1

1
i

20s| 1 f (ANAREA—"HIGH"” ) {

309
310

311

3127

T
s13|4# Perform block kriging with functions written by Jay Ver Hoef

314

o 2]
5 |

for(i2 in 1:length(ZStd$columnpred)){
if (ZStd$Stratum |[i2]| = "HIGH” ){ZStd$columnpred [i2] <— 1
}else{ZStd$columnpred[i2] <— 0}

}

i f (ANAREA—"TOW" ) {
for(i2 in 1:length(ZStd$columnpred)){
if (ZStd$Stratum|[i2] = "TOW’ ){ZStd$columnpred [i2] <— 1
}else{ZStd$columnpred[i2] <— 0}

}
if (ANAREA="ALL" ) {ZStd$columnpred <— 1}

1
i

= (see Appendix 4 for GSPE functions)

.
£

sir|#HAHAHE Specify arguments for geomoosepop function

data <— 7ZStd

)| column . pred <— "columnpred”

column . ana <— ” Moose_Count”
column . unitid <— 7 UnitlID”

3| column . ana. formula <— ” [UNKNOWN]”

strat <— ”Stratum?”
area <— ” AreaMi”
column.lat <— 7 CentrLat”

227/ column . lon <— 7 CentrLong”
s sampled <— 7 Counted”

column . surveyid <— 7surveyid”

Stdcalc.out <— geo.moosepop(column.ana = column.ana, strat =
strat , data = data, sampled = sampled, area = area,
column . pred = column.pred, column.lat=column.lat ,

column . lon=column . lon)

90




[
UnitsSamp|[j ,2
22| UnitsSamp [j , 3
3| TotalSamp[j ,1
TotalSamp|[j ,2
TotalSamp|[j,3

a16| MooseCount [ j
147| MooseCount [ ]
;| MooseCount [j ,
ol ConfInt95Std |
so| Conflnt90Std |
[

2| SampAreaStd [ ,
51| SampAreaStd [] ,
s| TotalAreaStd
50| CIpropMean90
s60| CIpropMean80
361| StdSemVarHi |
62| StdSemVarHi |
a63| StdSemVarHi |
1| StdSemVarLo |

[

[

56| StdSemVarLo

6|7
T #**>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<************************

319 }

|y
//

s34/ inpt . parms <— list (column. pred=column . pred , column.ana=

column . ana , column . ana . formula=column . ana . formula ,

strat=strat

,area=area ,sampled=sampled)

PtEstStd[j,] <— Stdcalc.out$estimate.total

2

?

?

ConfInt80Std

—

1
SampAreaStd[j ,2
3
TotalAreaStd

TotalAreaStd
ClpropMean95

?

?

—_————

J
J
j 2
J
J
J

],1
J,.2
],.3
J,1
],.2
J,.3

StdSemVarLo

3

|
|
|
|
|
|
1
2
3
|
|
]
|
|
|
|
|
]

2

HHHHHE Keep track

print (paste(”Loop #°, j, 7 — 7, j/Numlter«100, "% complete”))

flush . console ()

1
i

(1,2
<— Stdcalc.out$sample.sizes [2,2]
<— Stdcalc.out$sample.sizes [3,2]
<— Stdcalc.out$total.samples[1,2]
<— Stdcalc.out$total .samples[2,2]
<— Stdcalc.out$total.samples[3,2]

[
[
[

,1] <— Stdcalec.out$total.area|l,
,2] <— Stdcalc.out$total .area|[2
3

| <— Stdcalc.out$total.area|

|SEStd[j,] <— Stdcalc.out$estimate.standard.error
UnitsSamp[j,1] <— Stdcalc.out$sample. sizes

|

|
|
|
|
|
,1] <— Stdcale.out$moose.counted |1 ,2]
2] <— Stdcale.out$moose.counted [2,2]
3] <— Stdcalec.out$moose.counted[3,2]
J

J

J

<— Stdcalec.out$conf.int .95
<— Stdcalc.out$ci90
Stdcale.out$ci80

&
<— Stdcalc.out$sampled. area
<— Stdcalc.out$sampled. area
<— Stdcalc.out$sampled. area

1
2
3

<— Stdcalc.out$ci.prop.mean.95
<— Stdcalc.out$ci.prop.mean.90
<— Stdcalc.out$ci.prop.mean.80
<— Stdcalc.out$parmestl [1,1
<— Stdcalc.out$parmestl [1,2
<— Stdcalc.out$parmestl [1,3
<— Stdcalc.out$parmest2[1,1

(1,2

(1,3

<— Stdcalc.out$parmest?2
<— Stdcalc.out$parmest?2

?

|
|
|
|
|
? ]

of loop progress
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s 7
|4 END j LOOP HERE
1

1

il




ss2|# Coverage
i

383 | F

sss| FHHHHF 95% HHHHHF

ss7| if (ANAREA — 7ALLY ) {

ass| C195StdDF <— data. frame ( Conflnt95Std )

as0| colnames (CI195StdDF) <— ¢ (” Lower” , ”Upper” )
300| CI195StdDF$in _interval <— 0

201| CI958td <— as.matrix (Cl95StdDF)

so2| for (i in 1:Numlter){

303 if (Cl195Std[i,1] < NumTotal & CI95Std[i,2] > NumTotal){
304 Cl95Std [i,3] <— 1}

395 }

306 (Coverage95Std <— sum(Cl95Std[,3]) / nrow(CI95Std))

s0a| if (ANAREA — "HIGH” ) {

10| C195StdDF <— data. frame( ConfInt95Std )

wi| colnames (C195StdDF) <— ¢(” Lower”, ”Upper”)
102| C195StdDFS$in _interval <— 0

13| CI195Std <— as.matrix (CI95StdDF )

s for (i in 1:Numlter){

105 if (Cl95Std[i,1] < NumHigh & CI95Std[i,2] > NumHigh) {
406 CI95Std [i,3] <— 1}

107

as| (Coverage95Std <— sum(Cl95Std [,3]) / nrow(CI95Std))

409 }

410

a11| 1f (ANAREA — "LOW” ) {

12| C195StdDF <— data. frame( ConfInt95Std )

113 colnames (CI95StdDF) <— ¢ (7 Lower” , ” Upper”)
114 CI195StdDF$in _interval <— 0

15| C195Std <— as.matrix (CI195StdDF)

s6| for (i in 1:Numlter){

a7 if (Cl95Std[i,1] < NumbLow & CI95Std[i,2] > Numlow){
418 Cl95Std [i,3] <— 1}

419 }

10| (Coverage95Std <— sum(CI95Std [,3]) / nrow (CI95Std))

421 }

423 |FHHEHE 90%

5| if (ANAREA — 7ALL” ){

CI90StdDF <— data. frame( ConfInt90Std )
colnames (CI90StdDF) <— c¢(”Lower”, " Upper”)
CI90StdDF$in_interval <— 0

Cl90Std <— as.matrix (CI90StdDF )

B

S
3 o

OISR R )
2 % >
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5| if (ANAREA = "HIGH” ) {
a76| CI80StdDF <— data . frame( Conflnt80Std)

for (i in 1:Numlter){
if (Cl90Std[i,1] < NumTotal & CI90Std[i,2] > NumTotal){

C190Std [i,3] <— 1}
}
(Coverage90Std <— sum(CI90Std [,3]) / nrow(CI90Std))
}

if (ANAREA — "HIGH” ) {
CI90StdDF <— data. frame(ConfInt90Std )
colnames (CI90StdDF) <— c¢(”Lower”, " Upper”)

0| CI90StdDF$in _interval <— 0
1| CI190Std <— as.matrix (ClI90StdDF)
of for (i in 1:Numlter){

if (C190Std[i,1] < NumHigh & CI90Std[i,2] > NumHigh){
C190Std [i,3] <— 1}

(Coverage90Std <— sum(CI90Std [,3]) / nrow(CI90Std))
}

i f (ANAREA — "LOW" ) {

10| CI90StdDF <— data. frame ( ConfIlnt90Std )

colnames (CI90StdDF) <— c¢(”Lower”, " Upper”)

2| C190StdDF$in _interval <— 0

Cl90Std <— as.matrix (CI90StdDF)
for (i in 1:Numlter){
if (CI90Std[i,1] < NumlLow & CI90Std[i,2] > NumlLow){
CI90Std [i,3] <— 1}
}

(Coveraged0Std <— sum(CI90Std [,3]) / nrow(CI90Std))
}

S ROV HHHE

ws| 1f (ANAREA — 7ALL” ) {

1| CI80StdDF <— data.frame(ConfIlnt80Std )

65| colnames (CI80StdDF ) <— c¢(” Lower” , ”Upper”)
6| CI80StdDF$in _interval <— 0

7| CI80Std <— as.matrix (CI80StdDF)

for (i in 1:Numlter){
if (CI80Std[i,1] < NumTotal & CI80Std[i,2] > NumTotal){
CI80Std [i,3] <— 1}
}

(Coverage80Std <— sum(CI80Std[,3]) / nrow(CI80Std))

colnames (CI80StdDF) <— c¢(”Lower”, " Upper”)
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a7z CI80StdDFSin _interval <— 0
10| C180Std <— as.matrix (CI80StdDF)
aso| for (i in 1:Numlter){

481 if (CI80Std[i,1] < NumHigh & CI80Std[i,2] > NumHigh) {
482 CI80Std [i,3] <— 1}
483

as1| (Coverage80Std <— sum(Cl80Std[,3]) / nrow(CI80Std))
485 }

as7| 1f (ANAREA — "LOW” ) {

1s5| CI80StdDF <— data. frame( ConflInt80Std)

1s0| colnames (CI80StdDF) <— ¢ (7 Lower” , ” Upper”)
100| CI80StdDFS$in _interval <— 0

101 CI80Std <— as.matrix (CI80StdDF)

a2 for (i in 1:Numlter){

103 if (CI80Std[i,1] < NumLow & CI80Std[i,2] > NumlLow){
494 Cl80Std [i,3] <— 1}
495

16| (Coverage80Std <— sum(CI80Std[,3]) / nrow(CI80Std))
497 }

498
I

499 |

soo|# Write results to text files

1
i

501 (%

so3| workdir <— 77
so1| setwd (workdir )
s05| getwd ()

o] dir ()

sos|#HHHF File with raw results from each iteration

s10] sink (paste (” Togiak Intensity” ,Date,RunNo,ANAREA,” .7  sizeHS ,
511 "H_”  sizelLS ,”L_7 ,” Results.txt” , sep="))

s12| cat ("\n”)
s1z| cat ( paste (” Togiak Intensity” ,Date, RunNo,ANAREA,” .7 sizeHS ,"H_” ,
514 sizelLS ,”L_”" ,” Results” , sep=""))

s16] cat (7 \n\nNumber of iterations =)
si7| print (Numlter)

s19] cat ("\nTrue number of low stratum moose =)
520 print (NumLow)

s22| cat (" \nTrue number of high stratum moose =")
s22| print (NumHigh)

5| cat (”\nTrue total number of moose =)
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s26| print ( NumTotal )

sos| cat ("\nVector of Standard Grid Point Estimates =)
s20| print (data . frame (PtEstStd) )

sa1| cat ("\nVector of Standard Grid SEs =")
sa2| print (data . frame (SEStd ) )

ssaf cat ("\nStd 95% CI and 1/0 Pt Inclusion =)
sa5| print (C195S8td )

ssr| cat ("\nStd 90% CI and 1/0 Pt Inclusion =)
sas| print (C190Std)

saof cat ("\nStd 8% CI and 1/0 Pt Inclusion =")
sa1| print (CI180Std)

saz| cat ("\nMatrix of Standard Grid Sampled Areas (sq miles) = \n\n”)
sa4| print (data . frame (SampAreaStd) )

sas| cat ("\nMatrix of Standard Grid Total Areas (sq miles) = \n\n”)
sar| print (data . frame (TotalAreaStd))

sa0 cat ("\nMatrix of Moose Counts = \n\n")
sso| print (data . frame ( MooseCount ) )

ss2| cat ("\nVector of ClpropMean95 = \n\n")
ss2| print (data . frame (ClpropMean95) )

ss5| cat ("\nVector of ClpropMean90 = \n\n")
ss6| print (data . frame (ClpropMean90) )

sss| cat ("\nVector of ClpropMean80 = \n\n")
ss0| print (data . frame ( ClpropMean80) )

560

se1| cat ("\nStandard Fitted Semi—variograms —— High =")
se2| print (StdSemVarHi)
se3| cat ("\nStandard Fitted Semi—variograms —— Low =")

se4| print (StdSemVarLo)
ses| sink ()

ses| A File with summarized results

569

stol sink (paste (” Togiak Intensity” ,Date, RunNo,ANAREA,” .7  sizeHS ,
571 "H_” | sizelLS ,”L_7 ,” Summary. txt” , sep=""))

s72| cat ("\n”)

s7a| cat (paste (” Togiak Intensity” ,Date,RunNo,ANAREA,” 7  sizeHS |
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574 "H_”  sizelLS ,”L_" ,” Summary. txt” , sep=""))

so| cat (" \n\nNumber of iterations =)
77| print ( Numlter)

s7ol cat (7 \nTrue number of low stratum moose =)
ss0| print (NumLow)

ss2| cat (" \nTrue number of high stratum moose =")
ss2| print (NumHigh)

584

ss5| cat ("\nTrue total number of moose =")

ss6| print (NumTotal )

sss| cat (7 \nNumber of low stratum units sampled =")
sso| print (sizelLS)

590
so1| cat ("\nNumber of high stratum units sampled =")
sa2| print (sizeHS)

593
sat| cat ("\nTotal number of units sampled =)
so5| print (sizelLS + sizeHS)

596
sor| cat ("\nTrue total number of moose =")
ses| print ( NumTotal )

599
soo| cat (" \nMean( PtEstStd) =")
so1| print (mean( PtEstStd) )

602
soz| cat (7 \nMean SE(SEStd) =")
so1| print (mean (SEStd) )

sos| cat (7\nSD of SE(SEStd) = 7)
sor| print (sd (SEStd) )

soo| cat ("\n95% Wald ClI for SE(SEStd) = \n")

s10| cat ( paste (" Lower 95% CL = 7 jmean(SEStd) — 1.96xsd (SEStd) ,”\n”))
o1 cat ( paste (” Upper 95% CL = 7 ;mean(SEStd) + 1.96+sd (SEStd) ,”\n”))
612

o3| cat ("\n90% Wald CI for SE(SEStd) = \n”)

s14| cat ( paste (" Lower 90% CL = 7 ;mean(SEStd) — 1.645xsd(SEStd) ,”\n”))
s15| cat ( paste (” Upper 90% CL = 7 ;mean(SEStd) + 1.645xsd(SEStd) ,”\n”))
616

o7 cat ("\n80% Wald CI for SE(SEStd) = \n”)

s1z| cat ( paste (” Lower 80% CL = 7 'mean(SEStd) — 1.28xsd(SEStd) ,”\n”))
s10| cat (paste (” Upper 80% CL = 7 ;mean(SEStd) + 1.28x+sd(SEStd) ,”\n”))

620

e21| cat ("\nStd Coverage — 95% CI =)
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630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651

652

658
659
660
661
662

663

print (Coverage95Std )

1 cat ("\nStd Coverage — 90% CI =)

print (Coverage90Std)

cat ("\nStd Coverage — 80% Cl =)

os| print (Coverage80Std )

if (ANAREA = "ALL” ){
cat ("\nStandard Unit Bias =")
print (mean(PtEstStd) — NumTotal)

}

lf(ANAREA — "TOW” ){
cat (”\nStandard Unit Bias =")
print (mean( PtEstStd) — NumLow)

}

if (ANAREA — "HIGH” ) {
cat (”\nStandard Unit Bias =")
print (mean( PtEstStd) — NumHigh)

}

cat ("\nMean of Standard Grid Sampled Area (sq miles) = \n\n”)
print (mean(SampAreaStd) )

cat ("\nMean of Standard Grid Total Area (sq miles) = \n\n")
print (mean( TotalAreaStd))

cat ("\n% Area Sampled = \n\n”)
print (mean(SampAreaStd) / mean(TotalAreaStd))
sink ()

#*>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<************************
1

17
# END p LOOP HERE

1

i
#****>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<************************

}

./Intensity _Simulations_Neat.R
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Appendix 3: R code for Chapter 3 simulations

1

o|#HHHHE T Simulating clustered distributions , Chapter 3 77 JHHHHE
a|#HHHHF =~ Author: G.G. Frye, 2016 o

4 ﬁﬁﬁﬁ#

T|#EHHEE Start with clean slate
sirm( list=ls ())
aldev. off ()

11 |#HAHAEE Working directory
12| workdir <— "7

13| setwd (workdir )

11| getwd ()

15| dir ()

17| #HHHHE Date
15| Date <— 77
19| RunNo <— 77

o1 | FHHHEHE Packages

22| library (rgdal)

23| library (maptools)
21| library (spatstat)
25| library (sp)

2| library (rgeos)

g
os|H#HHHE Analysis Area: "HIGH” , "LOW” , or "ALL”

20 | FHEHHE (This specifies the area for which a population
30| HHHHHEE estimate is desired: high/low stratum only
31 | or whole survey region)

33| ANAREA <— 7 ALL”

1
rai

g
s6|# Load shapefiles for whole standard units with strata
7| delineated on the basis of 2011 survey

1
i
1

B oW oW

)| AllUnits <— readOGR(dsn="", layer = "")

11| plot (AllUnits)

2| AllUnits@data$ID <— AllUnits@data$SUS_ID + AllUnits@data$SUS_ID_1
a3 + AllUnits@data$SUS_ID_12 4+ AllUnits@data$SUS_ID__13 +

44 AllUnits@data$SUS_ID__14 4+ AllUnits@data$SUS_ID__15

45| AllUnits$UnitID <— AllUnits$SUS_ID_1 4+ AllUnits$SUS_ID_12

IS
S
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j| head ( AllUnits@data )

=
>

1s|STDHIGH <— AllUnits [which( AllUnits$Stratum = ”"HIGH” ) ]
10| plot (STDHIGH)

so| projdstring (STDHIGH)

51| str (STDHIGH®@data)

52| head (STDHIGH@data )

54| STDLOW <— AllUnits [which ( AllUnits$Stratum =— "LOW”) ]
55| plot (STDLOW)

56| projdstring (SIDLOW)

7| str (STDLOW@data)

ss| head (STDLOW@data )

1
+

60|

61|/# Load GSPE functions (see Appendix 4)
i

627

64| source ("GSPE_Functions .1r”)

65
| L

=
[sN

i
# Choose number of units to sample from each stratum
# (NOTE: >= 20 required for each stratum)

1

[
Bt

()}
o0

[
o

i
7

o

sizeHS <— 50 # High stratum —— 209 available
sizeLS <— 50 # Low stratum — 748 available

(SR

w

1

IS

i
# Choose number of iterations for the loop
i

ot

o

7

-3

Numlter <— 1000 # Number of iterations for the loop

o

©

S S S B B S~ (R S (R B

1
rai

®
=]

[

# Choose true population size within each stratum
i

o

o0
(S

}
7

®
&

o
=

#HHAHAE Using the 2011 counts
so| NumHigh <— 1144

s7| NumLow <— 482

ss| NumTotal <— NumHigh + NumlLow

89

1
i

90| #H
o1|# Suppress warnings (NOT errors) for entire script (lots of
92| irrelevant warnings related to version conflicts)

o3|# NOTE: Don’t forget to reinstate original warnings setting
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95

96

98
100
101
102
103
104
105
106
107
108
109
110
111

112

113|F

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

129

131
132
133
134
135
136
137

138

140

141

+# at end of script!!

1
£

}
1

oldw <— getOption (”warn”)
options (warn = —1)

1
£

7
# Fill cluster proportion vector (0—1; This scales "nclusters”

=k argument in spsample function. Lower values create fewer
H and denser clusters. 1.0 yields a random distribution of

e individuals .)

7]
i

.
£

1
5

.2
5

PropVector <— ¢(0.05,0.1,

0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,
0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95,1)

#**>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<************************
1

i
# START LOOPS HERE
1

7
#**>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<************************

for(p in 1:length (PropVector)){ # Loop through PropVector
ClusterPropHigh <— ClusterPropLow <— PropVector|[p]

PtEstStd <— matrix (rep(NA, Numlter))
colnames (PtEstStd) <— c¢(”PtEst”)

SEStd <— matrix (rep (NA, Numlter))

colnames (SEStd) <— ¢ (”SE”)

UnitsSamp <— matrix (NA, nrow = Numlter, ncol = 3)
colnames (UnitsSamp) <— c¢("HIGH” , "LOW” | ?TOTAL” )
TotalSamp <— matrix (NA, nrow = Numlter, ncol = 3)
colnames (TotalSamp) <— c¢("HIGH” , "LOW” |, ?TOTAL” )
MooseCount <— matrix (NA, nrow = Numlter, ncol = 3)
colnames (MooseCount) <— c¢("HIGH” , "LOW” | »TOTAL”)
SampAreaStd <— matrix (NA, nrow = Numlter, ncol = 3)
colnames (SampAreaStd) <— c¢("HIGH” , "LOW” | ?TOTAL” )
TotalAreaStd <— matrix (NA, nrow = Numlter, ncol = 3)
colnames ( TotalAreaStd) <— c¢("HIGH” , "LOW? , »TOTAL”)
ConfInt95Std <— matrix (NA, Numlter, 2)

colnames (ConfInt95Std) <— c¢(” Lower95CL" , ” Upper95CL" )
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o | Lt
3 |

L7

3l ConfInt80Std <— matrix (NA, Numlter, 2)

colnames (ConfInt80Std) <— c¢(” Lower80CL”, ” Upper80CL”)

6| ConfInt90Std <— matrix (NA, Numlter, 2)

colnames (ConfInt30Std) <— c¢(” Lower90CL” , ” Upper90CL”)

ClpropMean95 <— matrix (NA, Numlter)
colnames (ClpropMean95) <— c¢(” ClpropMean95”)

ClpropMean80 <— matrix (NA, Numlter)
colnames (ClpropMean80) <— c¢(” ClpropMean80”)

55| ClpropMean90 <— matrix (NA, Numlter)

colnames (ClpropMean90) <— c¢(” ClpropMean90”)

StdSemVarHi <— matrix (NA, nrow = Numlter, ncol = 3)
colnames (StdSemVarHi) <— c¢(”Nugget” , 7 Sill”, ”Range”)

StdSemVarLlo <— matrix (NA, nrow = Numlter, ncol = 3)
colnames (StdSemVarLo) <— c¢(”Nugget” , 7 Sill”, ”Range”)

5| for (j in 1:Numlter){ # Loop through specified number of
56 | H simulated populations

i
4# Generate random points within each stratum layer, with each

To|# point representing an individual moose location

7]
i

s|##H#HHE High stratum points

repeat{
X <— spsample (STDHIGH, n=NumHigh, type = ”clustered”,
nclusters=ceiling (NumHighx ClusterPropHigh), iter=1000)
X$StdUnit <— over (X, STDHIGH)$UnitID

if (length (X@Qdata$StdUnit) < NumHigh) {
X2 <— try ((spsample (x=STDHIGH, n=(NumHigh—
length (X@data$StdUnit) ), type = ”clustered”, iter=
1000, nclusters=ceiling (( NumHigh—length (
X@data$StdUnit) )« ClusterPropHigh))), silent=TRUE)
if("try—error’ %in% class(X2)) next
else for(i in 1:2000)({
if(length(X2) < NumHigh—length (X@data$StdUnit ) ){
try (X2 <— spsample (STDHIGH, n=NumHigh—length (
X@data$StdUnit ), type = "clustered”,
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190

191

nclusters=ceiling (( NumHigh—length (
X@data$StdUnit ) )« ClusterPropHigh)), silent=
TRUE)
if("try—error’ %in% class (X2)) next
}
if (length(X2) > NumHigh—length (X@data$StdUnit ) ){
X2 <— X2[1:(NumHigh—length (X@data$StdUnit)) ,]

else break
}
X28StdUnit <— over (X2, STDHIGH)$UnitlD
row.names(X) <— ¢(1l:length (X))
try (row.names(X2) <— seq(from=(length (X)+1), to=NumHigh,
by=1), silent=TRUE)
if("try—error’ %in% class (row.names(X2))) next
X <— spRbind (X, X2)
}

if (length (X@data$StdUnit) > NumHigh){
X <— X[1:NumHigh, ]
}

if (length (X) = NumHigh) {break}

length (X)

216| plot (STDHIGH)
7| points (X)

o0 | FHHHHE Low stratum points

repeat{
Y <— spsample (STDLOW, n=Numlow, type = ”clustered”
nclusters=ceiling (NumLowx ClusterPropLow ), iter=1000)
Y$StdUnit <— over (Y, SIDLOW)$UnitID

if (length (Y@Qdata$StdUnit) < NumlLow) {

Y2 <— try ((spsample (x=STDLOW, n=(NumlLow—length (Y@data$
StdUnit)), type = "clustered”, iter=1000,
nclusters=ceiling ((NumLow—length (Y@data$StdUnit) )=
ClusterPropLow))), silent=ITRUE)
if("try—error’ %in% class (Y2)) next

else for(i in 1:2000)({
if(length(Y2) < NumlLow—length (Y@data$StdUnit)){try(

Y2 <— spsample (STDLOW, n=NumLow—length (
Y@data$StdUnit ), type = "clustered”,
nclusters=ceiling ((NumLow—length (
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237

238

239

240

242

Y@data$StdUnit ) ) «ClusterPropLow) ), silent=ITRUE

)
if ("try—error’ %in% class(Y2)) next
}
if (length(Y2) > Numlow—length (Y@data$StdUnit)){
Y2 <— Y2[1:(NumLow—length (Y@Qdata$StdUnit)) ,]
i
else break
}
Y25StdUnit <— over (Y2, SIDLOW)$UnitlD
row.names(Y) <— c¢(1l:length(Y))
try (row.names(Y2) <— seq(from=(length(Y)+1), to=(length(
Y) + length(Y2)), by=1), silent=TRUE)
if ("try—error’ %in% class (row.names(Y2))) next
Y <— spRbind(Y,Y2)
}
if (length (Y@Qdata$StdUnit) > Numlow) {
Y <— Y[1:NumLow, |
}
if (length(Y) = Numlow) {break}
length (Y)
plot (SIDLOW)
points (Y)

5| HIGH_PTS <— X

265 | LOW_PTS «<— Y

1
i

17
is|# Use ’over’ functions for point—in—polygon analysis
260 | to assign the random points to appropriate survey units

.
rai
T

#HHAE HIGH stratum points to units

HIGH_PTS$SUS_ID_1 <— over (HIGH_PTS, AllUnits)$SUS_ID_1

5| HIGH_PTS$SUS _ID _12 <— over (HIGH_PTS, AllUnits)$SUS_ID_12

HIGH_PTS$STDSTRATUnit <— HIGH_PTS$SUS_ID_1 + HIGH_PTS$SUS_ID_12

HHHHHHE TOW stratum points to units

250 LOW_PTS$SUS_ID _1 <— over (LOW_PTS, AllUnits)$SUS_ID_1

LOW_PTS$SUS_ID_12 <— over (LOW_PTS, AllUnits)$SUS_ID_12
LOW_PTS$STDSTRATUnit <— LOW_PTS$SUS_ID_1 + LOW_PTS$SUS_ID _12
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284

286
287
288
289

200

316

317

320

1
i
17

5|# Tally number of simulated moose points in each unit
i

i
7

LOW_PTS <— data . frame (LOW_PTS) # SpatialPointsDataframe to
# dataframe

LOW_PTS$count <— 1 #Add column of 1’s to represent a count of 1
4# for each simulated moose

HIGH_PTS <— data.frame (HIGH_PTS) # SpatialPointsDataframe to
# dataframe

HIGH_PTS$count <— 1 #Add column of 1’s to represent a count of 1
4# for each simulated moose

byStdUnitLow <— aggregate (IOW_PTS$count, list (LOW_PTS$
STDSTRATUnit) , sum) # low counts for each standard unit

byStdUnitHigh <— aggregate (HIGH_PTS$count, list (HIGH_PTS$
STDSTRATUnit) , sum) # high counts for each standard unit

byStdUnitBind <— rbind (byStdUnitLow, byStdUnitHigh) # combined
# counts for each standard unit

byStdUnit <— aggregate (byStdUnitBind$x, list (byStdUnitBind$
Group.1), sum) # Aggregate again because these aren’t unique
# units

byStdUnit <— byStdUnit [order (byStdUnit$Group.1) ,] # sort by unit
# number

7]
+
7

# Add missing O—count units back to compiled vector of counts
i
i

;5| stdtest <— data.frame( AllUnits)

stdtest <— data.frame(stdtest$SSUS_ID_1, stdtest$SUS_ID_12)
stdtest$Group.1 <— stdtest$stdtest .SUS_ID_1 + stdtest$stdtest . SUS_
ID_12

sis| stdtest <— data.frame(stdtest$Group.1)

stdtest$x <— 0
colnames (stdtest) <— ¢(”Group.1”, "x”)

StdAll <— rbind(stdtest , byStdUnit)

223 StdCounts <— aggregate (StdAll$x, list (StdAll$Group.1), sum)

colnames (StdCounts) <— c¢(”UnitID”, "Moose_Count”)

SSTRAT <— data.frame( AllUnits)
SSTRATS UnitID <— SSTRAT$SUS_ID _1 + SSTRATSSUS_ID _12
StdStrat <— SSTRAT[order (SSTRAT$ UnitID) ,]

1
o
1
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s31|# Set up final dataframe for FPBK
i

i
1

a314| colnames (StdCounts) <— ¢(” UnitID”, ”Moose_Count” )
35| StdCounts <— StdCounts[order (StdCounts$UnitlD) ,]
326| Stdmergel <— merge (StdCounts, StdStrat, by = ”UnitlD”)

35| STDdat <— data . frame ( AllUnits)
330 STDdat$UnitlD <— STDdat$SUS_ID_1 + STDdat$SUS_ID _12

241| STDdat$Counted <— 0

33| STDdat2 <— STDdat[order (STDdat$UnitID) ,]
a1l Stdmerge2 <— merge (Stdmergel ; STDdat2, by = ”UnitID”)

315| Stdmerge3 <— Stdmerge2[,c(”UnitID” ,” Latitude .x” ,” Longitude .x” |
346 ”Moose_Count” ,” Stratum .x” ,” Counted” ) ]

a17| colnames (Stdmerge3) <— ¢ (7 UnitlD” ,” CentrLat” ,” CentrLong” |

348 " Moose _Count” ,” Stratum” ,” Counted” )

s10| StdData <— Stdmerge3

7]
i

£
352|# Randomly select standard sample units
5|

353 (H

o5 | #HHAE High Stratum

as7| StdHigh <— subset (StdData, StdData$Stratum = "HIGH” )
s StdHigh <— data . matrix (StdHigh)

aso|nH <— length (StdHigh[,1])

ss0| HighIndex <— sample (nH, size=sizeHS ,replace = FALSE)
31| for (i in 1:sizeHS){

362 StdHigh [HighIndex [i],6] <— 1

363 }

61| ZStdHigh <— data . frame(StdHigh)

366 | #HHHHE Low Stratum

a6s| StdLow <— subset (StdData, StdData$Stratum =— "LOW”)
50| StdLow <— data . matrix (StdLow)

sro|nl. <— length (StdLow|[,1])

1| Lowlndex <— sample(nl, size=sizelLS ,replace = FALSE)
ol for (i in 1:sizelS){

ar3 StdLow [LowlIndex [i],6] <— 1

ars| ZStdLow <— data . frame (StdLow)

ar7| ZStd <— rbind (ZStdHigh , ZStdLow)

105




st Add additional required columns to ZStd
380
251|STD <— AllUnits [order ( AllUnits$UnitlD) ,]
as2| Std <— ZStd[order (ZStd$UnitID) ,]

asz| ZStd$AreaMi <— AllUnits$Area

31| ZStd$surveyid <— 77

55| ZStd$columnpred <— NA

as6| ZStd$ Stratum [ZStd$Stratum — 2] <— "LOW’
ss7| ZStd$Stratum [ ZStd$Stratum — 1] <— "HIGH”
388
380 | #

s90|# Define analysis area based on choice at start of script

391 |

392

203 i f (ANAREA—"HIGH” ) {

304 for (i2 in 1:length(ZStd$columnpred))

395 {

306 if (ZStd$Stratum |[i2]| = "HIGH” ){ZStd$columnpred [i2] <— 1
307 }else{ZStd$columnpred[i2] <— 0}

398 }

399

s00| 1f (ANAREA="LOW” ) {

401 for(i2 in 1:length(ZStd$Scolumnpred))

402

103 if (ZStd$Stratum [i2] = "TOW’ ){ZStd$columnpred [i2] <— 1
1404 }else{ZStd$columnpred[i2] <— 0}

405 }

406

aor| if (ANAREA="ALL" ) {ZStd$columnpred <— 1}

408

400 | #

1
s10|# Perform block kriging with functions written by Jay Ver Hoef
a11|# (see Appendix 4 for GSPE functions)

7]

412|#

413

| HHHHHE Specify arguments for geomoosepop function
415

ue| data <— ZStd

a7| column . pred <— 7 columnpred”

s1s| column . ana <— 7 Moose _Count”

so| column . unitid <— 7 UnitID”

10| column . ana . formula <— 7 [UNKNOWN]”
1w2i|strat <— 7 Stratum”

12| area <— 7 AreaMi”

13| column . lat <— 7 CentrLat”

a4 column . lon <— " CentrLong”

15| sampled <— 7 Counted”

16| column . surveyid <— 7surveyid”
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434

435

438

439

441

452

Stdcalc.out <— geo.moosepop(column.ana = column.ana,

strat , data
column . pred

data ,

column . pred ,

sampled = sampled, area area ,
column . lat=column. lat ,

column . lon=column . lon)

inpt.

parms <— list (column.pred=column.pred ,column.ana—=

column . ana , column . ana . formula=column . ana . formula ,
strat=strat ,area=area ,sampled=sampled)

A Fill

matrices with appropriate values during each

PtEstStd[j,] <— Stdcalc.out$estimate.total
SEStd[j,] <— Stdcalc.out$estimate.standard.error

strat

iteration

UnitsSamp[j ,1] <— Stdcalc.out$sample.sizes[1,2]
UnitsSamp[j ,2] <— Stdcalc.out$sample.sizes [2,2]
UnitsSamp[j ,3] <— Stdcalc.out$sample.sizes [3,2]
o| TotalSamp[j ,1] <— Stdcalc.out$total.samples[1,2]
3| TotalSamp[j ,2] <— Stdcalc.out$total.samples[2,2]
1| TotalSamp[j ,3] <— Stdcalc.out$total.samples[3,2]
15| MooseCount [j ,1] <— Stdcalc.out$moose.counted [1,2]
MooseCount [j ,2] <— Stdcalc.out$moose.counted [2,2]
17| MooseCount [j ,3] <— Stdcalc.out$moose.counted [3,2]
s| ConfInt95Std [j ,] <— Stdcalc.out$conf.int .95
ConfInt90Std[j,] <— Stdcalc.out$¢i90
0| ConfInt80Std [j,] <— Stdcale.out$ci80
SampAreaStd[j,1] <— Stdcalc.out$sampled.area[1,2]
52| SampAreaStd [j ,2] <— Stdcalc.out$sampled.area[2 2]
as3| SampAreaStd [j ,3] <— Stdcalc.out$sampled.area[3,2]
51| TotalAreaStd [j,1] <— Stdcalc.out$total.area[l 2]
5| TotalAreaStd [j,2] <— Stdcalc.out$total.area[2,2]
16| TotalAreaStd [j,3] <— Stdcalc.out$total . area[3 2]
57| ClpropMean95[j ,] <— Stdcalc.out$ci.prop.mean.95
55| ClpropMean90[j ,] <— Stdcalc.out$ci.prop.mean.90
50| ClpropMean80 [j ,] <— Stdcalc.out$ci.prop.mean.80
StdSemVarHi[j,1] <— Stdcalc.out$parmestl[1,1]
51| StdSemVarHi[j ,2] <— Stdcalc.out$parmestl[1,2]
2| StdSemVarHi[j ,3] <— Stdcalc.out$parmestl|[1,3]
o3| StdSemVarLo[j ,1] <— Stdcalc.out$parmest2[1,1]
w61 StdSemVarLo[j ,2] <— Stdcalc.out$parmest2[1,2]
55| StdSemVarLo[j ,3] <— Stdcalc.out$parmest2[1,3]
67| HHHHHE Keep track of loop progress
print (paste(”Loop #°, j, 7 — 7, j/Numlter«100, "% complete”))

flush . console ()

1
i

2 #*>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<************************

17
# END j LOOP HERE
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1

5|4
476 #*>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<************************

arr| }

1
1

i
aso|# Coverage
1

£
7

as3| FHHHHE 95%

as5| if (ANAREA — 7ALL” ) {

1s6| C195StdDF <— data. frame ( ConfInt95Std )

157 colnames (CI95StdDF) <— ¢ (7 Lower” , ” Upper” )
ass| CI195StdDF$in _interval <— 0

as0| C195Std <— as.matrix (CI95StdDF)

a0 for (i in 1:Numlter){

101 if (Cl95Std[i,1] < NumTotal & CI95Std[i,2] > NumTotal){
CI195Std[i,3] < 1}

4903 }

11| (Coverage95Std <— sum(Cl95Std[,3]) / nrow(CI95Std))

195 }

496

07| 1f (ANAREA — "HIGH” ) {

105 CI195StdDF <— data . frame( Conflnt95Std)

10| colnames (C195StdDF) <— ¢(” Lower”, ”Upper”)

so0| CI195StdDF$in _interval <— 0

s01| C195Std <— as.matrix (CI95StdDF)

so2| for (i in 1:Numlter){

503 if (Cl95Std[i,1] < NumHigh & CI95Std[i,2] > NumHigh) {
504 CI95Std [i,3] <— 1}

so6| (Coverage95Std <— sum(Cl95Std[,3]) / nrow (CI95Std))
507 }

s00| if (ANAREA — "TOW’ ){

s10| CI195StdDF <— data. frame( Conflnt95Std )

s colnames (C195StdDF) <— ¢ (” Lower”, 7 Upper”)
s12| CI195StdDF$in _interval <— 0

513 C1955td <— as.matrix (CI95StdDF)

sie| for (i in 1:Numlter){

515 if (Cl95Std[i,1] < NumbLow & CI95Std[i,2] > Numlow){
516 Cl95Std [i,3] <— 1}
517 }

s1is| (Coverage95Std <— sum(Cl95Std [,3]) / nrow (CI95Std))
519 }

i
| A 0% Sttt
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s| if (ANAREA — 7 ALL? ) {

CI90StdDF <— data. frame(ConfIlnt90Std )

5| colnames (CI90StdDF ) <— ¢ (”Lower”, " Upper”)
5| C190StdDF$in _interval <— 0
7| C190Std <— as.matrix (Cl90StdDF)

for (i in 1:Numlter){
if (Cl90Std[i,1] < NumTotal & CI90Std[i,2] > NumTotal){
C190Std [i,3] <— 1}
}

(Coverage90Std <— sum(CI90Std [,3]) / nrow (CI90Std))
}

i f (ANAREA — "HIGH” ) {

s36| C190StdDF <— data. frame ( Conflnt90Std )

| colnames (CI90StdDF ) <— ¢ (”Lower” , "Upper”)

CI90StdDF$in _interval <— 0
Cl90Std <— as.matrix (CI90StdDF )

of for (i in 1:Numlter){

if (C190Std[i,1] < NumHigh & CI90Std[i,2] > NumHigh){
C190Std [i,3] <— 1}

sae| (Coverage90Std <— sum(CI90Std[,3]) / nrow(CI90Std))

}

/| if (ANAREA — "LOW” ) {

CI90StdDF <— data. frame( ConfInt90Std )

o| colnames (CI90StdDF ) <— ¢(”Lower” , "Upper”)

CI90StdDF$in _interval <— 0
Cl90Std <— as.matrix (CI90StdDF )
for (i in 1:Numlter){
if (Cl90Std[i,1] < NumbLow & CI90Std[i,2] > Numlow){
C190Std [i,3] <— 1}
}

56| (Coverage90Std <— sum(CI90Std [,3]) / nrow (CI90Std))

}

if (ANAREA — 7ALL” ){
CI80StdDF <— data.frame(Conflnt80Std )

se3| colnames (CI80StdDF ) <— ¢ (” Lower” , ”Upper”)

CIS0StdDF$in _interval <— 0

se5| CI80Std <— as.matrix (CI80StdDF)
| for (i in 1:Numlter){

if (CI80Std[i,1] < NumTotal & CI80Std[i,2] > NumTotal){
CI80Std[i,3] < 1}
}

50| (Coverage80Std <— sum(CI80Std[,3]) / nrow(CI80Std))
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[}

il
s7s| if (ANAREA — "HIGH” ) {
1| CI80StdDF <— data.frame( ConflInt80Std)
s75| colnames (CI80StdDF) <— c¢(” Lower” , ”Upper” )
s76| CI80StdDEF$in _interval <— 0
57| C180Std <— as. matrix (CI80StdDF)
7s| for (i in 1:Numlter){
579 if (CI80Std[i,1] < NumHigh & CI80Std[i,2] > NumHigh){
580 CI80Std [i,3] <— 1}

ss2| (Coverage80Std <— sum(Cl80Std[,3]) / nrow(CI80Std))

ss5] 1f (ANAREA =— "LOW” ) {

ss6| CI80StdDF <— data . frame( Conflnt80Std )

ss7| colnames (CI80StdDF) <— ¢ (” Lower”, ”Upper”)

sss| CI80StdDE$in _interval <— 0

ss0| C180Std <— as.matrix (CI80StdDF)

sao| for (i in 1:Numlter){

if (CI80Std[i,1] < NumbLow & CI80Std[i,2] > Numlow) {
502 Cl80Std [i,3] <— 1}

593 }

s01| (Coverage80Std <— sum(Cl80Std[,3]) / nrow(CI80Std))

595 }

596
i

5977

T
sos|# Write results to text files

1
i

599177
600

601| workdir <— 77
so2| setwd (workdir )
sos| getwd ()

sos| dir ()

605

sos| A File with raw results from each iteration

sos| sink (paste (” Togiak Cluster” ,Date ,RunNo,ANAREA,” 7 sizeHS ,"H_" |
609 sizeLS ,”L_”  ClusterPropHigh ,” Results.txt”, sep=""))

610
611 cat (”\n”)

s12| cat ( paste (" Togiak Cluster” ,Date ,RunNo,ANAREA,” 7 sizeHS ,"H_" |
613 sizelLS ,”L_”  ClusterPropHigh ,” Results” , sep=""))

614
615| cat (" \n\nNumber of iterations =)
5| print (Numlter)

617
s1s| cat ("\nTrue number of low stratum moose =)
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620
621
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639

640

642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665

666

o print (NumLow)

cat ("\nTrue number of high stratum moose =)
print (NumHigh)

cat ("\nTrue total number of moose =")
print (NumTotal)

cat ("\nVector of Standard Grid Point Estimates =")
print (data . frame ( PtEstStd))

cat ("\nVector of Standard Grid SEs =")
print (data . frame (SEStd))

cat (7\nStd 95% CI and 1/0 Pt Inclusion =)
print (CI95Std)

cat (7\nStd 90% CI and 1/0 Pt Inclusion =)
print (CI90Std)

cat (7\nStd 80% CI and 1/0 Pt Inclusion =)
print (CI80Std)

cat ("\nMatrix of Standard Grid Sampled Areas (sq miles) = \n\n”)
print (data . frame (SampAreaStd) )

cat ("\nMatrix of Standard Grid Total Areas (sq miles) = \n\n”)
print (data . frame ( TotalAreaStd))

cat ("\nMatrix of Moose Counts = \n\n")
print (data . frame ( MooseCount ) )

cat ("\nVector of ClpropMean95 = \n\n")
print (data . frame (ClpropMean95) )

cat ("\nVector of ClpropMean90 = \n\n")
print (data . frame (ClpropMean90) )

cat ("\nVector of ClpropMean80 = \n\n")
print (data . frame (ClpropMean80) )

cat (”\nStandard Fitted Semi—variograms — High =")
print (StdSemVarHi)
cat ("\nStandard Fitted Semi—variograms — Low =")

print (StdSemVarLo)

sink ()
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sor | HHHHH File with summarized results

668

sso| sink (paste (” Togiak Cluster” ,Date ,RunNo,ANAREA,” 7 sizeHS ,"H_" |
670 sizeLS ,”L_”"  ClusterPropHigh ,” Summary. txt” , sep=""))

e71| cat ("\n")

or2| cat (paste (” Togiak Cluster” ,Date ,RunNo,ANAREA,” 7 sizeHS ,"H_" |
673 sizeLS ,”L_” ClusterPropHigh ,” Summary. txt” , sep=""))

674

or5| cat (7 \n\nNumber of iterations =)

or6| print (Numlter)

677

ors| cat (" \nTrue number of low stratum moose =)
7o print (NumLow)

680

esi| cat (" \nTrue number of high stratum moose =")

es2| print (NumHigh)
683
esi| cat ("\nTrue total number of moose =)
es5| print ( NumTotal )

686
es7| cat (7 \nNumber of low stratum units sampled =")
sss| print (sizelS)

soo| cat (" \nNumber of high stratum units sampled =")
sot| print (sizeHS)

692
so3| cat ("\nTotal number of units sampled =)
sos| print (sizelLS + sizeHS)

695
sos| cat (" \nTrue total number of moose =")
sor| print (NumTotal )

698
soo| cat (" \nMean( PtEstStd) =")
ro0| print (mean( PtEstStd) )

701
72| cat (7 \nMean SE(SEStd) =)
ro3| print (mean ( SEStd ) )

ros5| cat ("\nSD of SE(SEStd) = 7)
7o6| print (sd (SEStd ) )

ros| cat ("\n95% Wald CI for SE(SEStd) = \n”)

70| cat (paste (" Lower 95% CL = 7 ;mean(SEStd) — 1.96xsd(SEStd),”\n"))
7ol cat ( paste (7 Upper 95% CL = 7 ,mean(SEStd) + 1.96xsd (SEStd) ,”\n"))
bl

riz| cat ("\n90% Wald CI for SE(SEStd) = \n")

73| cat (paste (" Lower 90% CL = 7 ;mean(SEStd) — 1.645xsd (SEStd) ,”\n"))
74| cat (paste (" Upper 90% CL = 7 ;mean(SEStd) + 1.645xsd (SEStd) ,”\n"))
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7156
716

71T

s| cat (paste (" Upper 80% CL = 7 ,mean(SEStd) +

o|}

cat (7\n80% Wald CI for SE(SEStd) = \n”)
cat (paste (” Lower 80% CL = ” ,mean(SEStd) 1.28+sd (SEStd) ,”\n” ) )
1.28xsd (SEStd) ,”\n” ))
cat ("\nStd Coverage — 95% Cl =)

print (Coverage95Std )

cat ("\nStd Coverage — 90% Cl =)
print (Coverage90Std )

ol cat ("\nStd Coverage — 80% CI =)

print (Coverage80Std)

if (ANAREA = 7ALL” ) {
cat (”\nStandard Unit Bias =")
print (mean( PtEstStd) — NumTotal)

lf(ANAREA — "TOW” ){
cat (”\nStandard Unit Bias =")
print (mean( PtEstStd) — NumLow)

}

30| 1f (ANAREA — "HIGH” ) {

cat (”\nStandard Unit Bias =")
print (mean( PtEstStd) — NumHigh)

}

cat (”\nMean of Standard Grid Sampled Area (sq miles) = \n\n”)
print (mean(SampAreaStd) )

7| cat (”\nMean of Standard Grid Total Area (sq miles) = \n\n")

print (mean( TotalAreaStd))

cat ("\n% Area Sampled = \n\n")
print (mean(SampAreaStd) / mean(TotalAreaStd))

;| cat (”\nRMSE = \n\n")
s+ print (sqrt ((sum(( PtEstStd — NumTotal) “2))/Numlter))
7| sink ()

9 #*>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<************************
|l

17
# END p LOOP HERE
i1

o
1
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763 #*>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<>)<************************

764

765 }
66| #HHHHE Restore old warnings setting
7e7| options (warn = oldw)

./Cluster_Simulations_Neat.R
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Appendix 4: R functions for implementing the
Geospatial Population Estimator

#HHHAHE " Functions used to implement GSPE 77 JHHHH
HHHHF "7 Author: Jay Ver Hoef 7777~ Ly

6| geo . moosepop <— function (column.ana, strat, data, sampled, area,

column . pred, column.lat, column.lon){

data <— chind (data,
LL.to .ARBUTM(mean(data [ ,column.lon]) , data[,column.lat],
data[,column.lon]) )

data[,strat] <— as.factor(data[,strat])

# SUMMARY STATISTICS

data.s <— data[!is.na(data], sampled]) & data[, sampled] =—
1, ]

cds <— as.integer(data.s[,strat])

cdu <— as.integer (data[,strat])

lvs <— levels(data.s[,strat])

nlvs <— max(cds)

if(sum(lvs = "") > 0 | sum(is.na(lvs)) > 0)
return (list (errstate = 1, errmessage = ”Stratification
has missing values”,
errextra = "7))
if (nlvs 1= 2)
return (list (errstate = 1, errmessage = ”Stratification
must have exactly 2 levels” jerrextra = ""))
if (length (unique(cds)) != length (unique(cdu)))
return(list (errstate = 1,
errmessage = "Some strata have not been sampled”,
errextra = data.frame(sampled = unique(as.character (data

.s[,strat])),all = levels(data[,strat])))
)
means <— matrix (NA, nrow=nlvs ,ncol=1)
vars <— matrix (NA, nrow=nlvs , ncol=1)
n <— matrix (NA, nrow=nlvs , ncol=1)
N <— matrix (NA, nrow=nlvs ,ncol=1)
areas <— matrix (NA, nrow=nlvs ,ncol=1)
areato <— matrix (NA, nrow=nlvs ,ncol=1)
counted <— matrix (NA, nrow=nlvs , ncol=1)
1 & 1
for (i in 1:nlvs) {
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67

68

ind.cds <— cds=i & data.s[,sampled]==1

ind.cdu <— cdu—i

counted [i] <— sum(data.s[ind.cds,column.ana],na.rm =
TRUE)

areas[i] <— sum(data.s[ind.cds,area])

means[i] <— counted[i]/areas[i]

n[i] <— length({data.s[ind.cds,column.ana])

N[i] <— length(data[ind.cdu,column.ana]l)

if(n[i] < 20 & N[i] !=n[i])
return(list (errstate = 1,
errmessage = "Cannot estimate autocorrelation with
< 20 samples in a stratum”
errextra = data.frame(stratum = as.character(lvs|[i

) 1), n=mn[i], N=N[i]))

areato[i] <— sum(data[ind.cdu,area])

o

.strat .df <— data.frame(Stratum=levels(data[,strat]) ,n = n)
.strat .df <— rbind(n.strat .df,
))

=

data . frame (Stratum="TOTAL” , n = sum(n.strat.df[,2])
N.strat .df <— data.frame(Stratum=levels(data[,strat]), N
N.strat .df <— rbind (N.strat .df,
data . frame (Stratum="TOTAL” , N = sum(N.strat .df[,2])))
areas.strat.df <— data.frame(Stratum=levels (data[,strat]),
Area=areas)
areas.strat.df <— rbind(areas.strat.df,
data . frame (Stratum="TOTAL” , Area = sum(areas.strat.df
[,21)))
areato.strat.df <— data.frame(Stratum=levels (data[,strat]),
Area=areato)
areato.strat.df <— rbind(areato.strat.df,
data . frame (Stratum="TOTAL” , Area = sum(areato.strat .df
[21)))
counted.strat .df <— data.frame(Stratum=levels (data[,strat]),
Counted=counted)
counted.strat .df <— rbind (counted.strat .df,
data . frame (Stratum="TOTAL” , Counted = sum(counted.strat .

dff,2])))

indl <— as.integer(data[,strat])==1 & data[,sampled]==1 & !is
.na(data[,sampled])

ind2 <— as.integer(data[,strat])==2 & data[,sampled]==1 & !is
.na(data[,sampled])

denl <— data[indl ,column.ana]/data[indl ,area]

den2 <— data[ind2,column.ana]/data[ind2, area]

strat.l <— data.frame(x = data[indl, "x”], y = data[indl, "y
], var = denl)

N)

2
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110
111
112
113
114
115

116

strat.2 <— data.frame(x = data[ind2, ”x”], yv = data[ind2, 7y”
], var = den2)

H EMPIRICAL SEMIVARIOGRAMS AND
SEMICROSSVARIOGRAMS
emp.varl <— empirical .semivariogram (data = strat.l, x = 7x”,
y ="y”, var = "var”, nlag = 8,
maxlag = 50, directions = ¢(0), tolerance = 180,
nlagcutoff = 3)
emp.var2 <— empirical .semivariogram (data = strat.2, x = 7x”,
y ="y", var = "var”, nlag = 8,
maxlag = 50, directions = ¢(0), tolerance = 180,

nlagcutoff = 3)

#- FIT SEMIVARIOGRAMS

nuggetli <— mean(emp.varl [,”gamma” |) /4

parsilli <— mean(emp.varl[,”gamma” |)

rangeli <— mean(emp.varl[,” distance”])

theta <— c¢(nuggetli,parsilli ,rangeli)

X1 <— matrix (1, nrow = length(denl), ncol = 1)

parmest]l <— optim(theta , m2LL, m2LLdata = strat.1, X=X1)$par
nugget2i <— mean(emp.var2[,”gamma” |) /4
parsil2i <— mean(emp.var2|[,”gamma’” |)

range2i <— mean(emp.var2[,” distance”])

theta <— c(nugget2i, parsil2i ,range2i)

X2 <— matrix (1, nrow = length(den2), ncol = 1)

parmest2 <— optim(theta , m2LL, m2LLdata = strat.2, X=X2)$par

nuggetl <— parmestl
parsill <— parmestl
rangel <— parmestl
nugget2 <— parmest2
parsil2 <— parmest2
range2 <— parmest?2
parmestl <— data.frame(nugget = parmestl[1], parsil =
parmestl [2] , range = parmestl [3])
parmest2 <— data.frame(nugget = parmest2[1], parsil =
parmest2[2] , range = parmest2[3])

[1]
[2]
[3]
[1]
[2]
[3]

if (sum(denl) = 0) {
nuggetl <— le—6
parsill <— 0
rangel <— 1

if (sum(den2) =— 0) {
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117
118
119
120
121

122
198

124

ot

SRS
N o O

128
129

130

131
132
133
134
135
136
ilfsrg
138
139
140
141
142
143
144

145

160

161

nugget2 <— le—6
parsil2 <— 0
range2 <— 1

}
# BUILD MATRICES
SS <— SS.mat(data, nuggetl = nuggetl , parsill = parsill ,
rangel = rangel,
nugget2 = nugget2, parsil2 = parsil2, range2 = range2,
sampled = sampled, strat = strat)
SU «<— SU.mat(data, nuggetl = nuggetl, parsill = parsill ,
rangel = rangel,
nugget?2 nugget2, parsil2 = parsil2, range2 = range2,
sampled = sampled, strat = strat)
UU «<— UU.mat(data, nuggetl = nuggetl, parsill = parsill ,
rangel = rangel,
nugget2 = nugget2, parsil2 = parsil2, range2 = range2,
sampled sampled , strat = strat)
4 FINITE POPULATION BLOCK KRIGING
ind.sa <— !is.na(data|, sampled] = 1) & data[, sampled] =1
ns <— sum(ind.sa)
ind.un <— is.na(data|, sampled] = 1) | data[, sampled] !=1
nu <— sum(ind.un)
7z <— matrix(data[ind.sa, column.ana], nrow = ns, ncol = 1)
area.s <— matrix(data[ind.sa, area], nrow = ns, ncol = 1)
7 <— z/area.s
area.tot <— matrix(data[, area], nrow = nutns, ncol = 1)

B <— data[, column.pred]

Blis.na(B)] <— 0

Bs <— Blind.sa]

Bu <— B[ind.un]

X1 <— as.numeric(as.integer(data[,strat])==I)
X2 <— as.numeric(as.integer(data[,strat])==2)
X <— cbind (rep (1, times=length (X1)),X1,X2)

Xs <— XJ[ind.sa,]

Xu <— X[ind .un, ]

SSi «<— solve(SS)

# PREDICTIONS

partl <— Xs %% mginv(t (Xs) %% SSi %% Xs)
part2 <— t(Xu) — t(Xs) %% SSi %% SU

D <— SU + partl %% part?2

FF <— SSi %% D

Ao <— Bs + FF %% Bu
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195

197

y.est <— t(Ao) %% z
v.est <— mean(area.tot)x*y.est

4 VARIANCE

partl <— t(FF) %% SS %% FF

part2 <— t(FF) %% SU

y.var <— t(Bu) %% ( partl — part2 — t(part2) + UU ) %% Bu
v.se <— mean(area.tot)*sqrt(y.var)

# CONFIDENCE INTERVALS

ci80 <— c(y.est — y.se x gqnorm(0.9), y.est + y.se *
gqnorm (0.9) )

cipm80 <— (y.se % qnorm(0.9))/y.est

ci90 <— c(y.est — y.se x gqnorm(0.95), y.est + y.se =x
gnorm (0.95))

cipm90 <— (y.se % qnorm(0.95))/y.est

ci95 <— c¢(y.est — y.se x qnorm(0.975), y.est + y.se x
gqnorm (0.975) )

cipm95 <— (y.se % qnorm(0.975))/y.est

outpt <— list (

estimate . total = as.numeric(y.est),

estimate .standard . error = as.numeric(y.se),

ci80 = ci80

¢i.prop.mean.80 = as.numeric(cipm80) ,

ci90 = ¢i90

ci.prop.mean.90 = as.numeric(cipm90) ,

conf.int .95 = ¢i9%5,

¢i.prop.mean.95 = as.numeric(cipm95) ,

sample.sizes = data.frame(n.strat.df, row.names = NULL) ,

total.samples = data.frame(N.strat. df row .names = NULL)

moose . counted = data.frame(counted.strat.df, row.names =
NULL) ,
sampled . area = data.frame(areas.strat.df, row.names =
NULL) ,
total.area = data.frame(areato.strat.df, row.names =
NULL) ,
strat.l.name = as.character(levels (data[,strat])[1]),
strat.2.name = as.character(levels (data[,strat]) [2]),
empirical .semivariogram .stratl = emp.varl[,1:3],
empirical .semivariogram .strat2 = emp.var2[,1:3],
parmestl = parmestl,
parmest2 = parmest2
)
outpt
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206
207
208
209

210

}
#(B)

# Latitude , Longitude to arbitrary UIM

LL . to . ARBUTM<—

function (em,lat ;lon)

# This function converts from Lat—Lon (decimal degrees) to the

# Universal Transverse Mercator Coordinates and returns the

# new coordinates in a 2—column matrix with x— and y— as
columns. In this program, the coordinates are calculated

returned in kilometers from the western—most longitude

i
# from a user supplied central meridian. # Coordinates are
#
i

and the southern-—-most latitude observed in the data set.

{

1|4 initialize some variables

e2 <— 0.00676865799729
a <— 6378206.4

ep2 <— e2 / (1—e2)

dre <— pi / 180

sc <— 0.9996

fe <— 500000

ftm <— 0.30480371

220|#calculate some frequently used values

237
239
240
241

242

# do

lar <— lat x drc
Is <— sin(lar)
1s2 <— 1872

els2 <— ep2 x Is2
le <— cos(lar)

le2 <— le"2
le3 <— 1e¢”3
le5 <— le™5

ele2 <— ep2 % lec2

1t2 <— tan(lar)"2

1t4 <— 1t272

the transformation

v <— a/sqrt (1 — e2xls2)

p <— dres(ecm — lon)

temp <— 5104.57388 — (1c2#(21.73607 — 0.11422x1¢2))
rl <— 6367399.689«(lar — lsxlc*x0.000001 xtemp)
r2 <— (vxlsxlexp”2)/2

temp <— 5 — 1t2 + 9xelc2 + (2xelc2)"2

r3 <— (vxlsxle3xp dxtemp)/24

rd <— vxlcxp

temp <— 1 — 1t2 + elc2

r5 <— (vxlc3*p " 3xtemp)/6

temp <— 61 — 58x%1t2 + 1t4 + 270xelc2 — 330xels2
ra6 <— (vxls*xlcbxp 6xtemp)/720
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254

256
257
258
259
260
261

262

280 | #

289
290
201
292
293
294
205
296
297
298
299
300

301

FH FH3:3

2|#

temp <— 5 — 18x%1t2 + 1t4 + 14xelc2 — 58xels2
rb5 <— (vxlcBxp " Bxtemp)/120

northing <— scx(rl + r2 + r3 + ra6)

easting <— —scx(r4 + r5 + rb5)

y<—(northing —min(northing)) /1000

x<—(easting —min(easting)) /1000

chind (x,y)

GENERALIZED INVERSE OF A MATRIX
GENERALIZED INVERSE OF A MATRIX
mginv <— function (X, tol = sqrt(.Machine$Sdouble.eps)) {

dnx <— dimnames (X)
if(is.null(dnx)) dnx <— vector(”list”, 2)
s <— svd(X)
nz <— s¥d > tol % s$d[1]
structure (
if(any(nz)) s$v[, nz] %% (t(sSu[, nz])/s$d[nz]) else X,

dimnames = dnx[2:1])
}
1|# EMPIRICAL SEMIVARIOGRAM AND SEMICROSSVARIOGRAM FUNCTIONS
1 EMPIRICAL SEMIVARIOGRAM

empirical .semivariogram<—
function (data, x, y, var,
nlag = 20, directions = ¢(0,45,90,135) ,
tolerance = 22.5, inc = 0, maxlag = 1e32, nlagcutoff = 1)
# EMPIRICAL SEMIVARIOGRAM FUNCTION
# varl is a matrix or data frame with x—coord in the first column

# y—coord in the second column
# z (response) in the third column
{
nl <— length (data[,1])
# distance matrix among locations
distance <— sqrt( ( matrix(data[,x],nrow=nl, ncol=1) %%
matrix (rep (1, times=nl) ,nrow=1,ncol=nl) —
matrix (rep (1,times=nl) ,nrow=nl, ncol=1) %%
matrix (data[,x],nrow=1,ncol=nl) ) "2 +
( matrix (data|,y],nrow=nl,ncol=1) %%
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302 matrix (rep(1,times=nl) ,nrow=1,ncol=nl) —

303 matrix (rep(1,times=nl) ,nrow=nl,ncol=1) %%
304 matrix (data[,y],nrow=1,ncol=nl) )"2 )

305 difx <— —(matrix(data[,y],nrow=nl, ncol=1) %%

306 matrix (rep(1,times=nl) ,nrow=1,ncol=nl) —

307 matrix (rep(1,times=nl) ,nrow=nl, ncol=1) %%
308 matrix (data[,y],nrow=1,ncol=nl))

300 signind <— —(matrix(data[,x],nrow=nl,ncol=1) %%
310 matrix (rep(1,times=nl) ,nrow=1,ncol=nl) —

311 matrix (rep (1,times=nl) ,nrow=nl, ncol=1) %%
312 matrix (data|,x]|,nrow=1,ncol=nl)) < 0

313 distance <— distancex1.0000000001

314 theta .deg<—acos(difx/distance)*180/pi

315 # matrix of degrees clockwise from north between locations
316 theta .deg[signind]| <— 360—theta.deg[signind ]

317 diff2 <— ( matrix(data],var],nrow=nl, ncol=1) %%
318 matrix (rep (1, times=nl) ,nrow=1,ncol=nl) —

319 matrix (rep (1,times=nl) ,nrow=nl, ncol=1) %%

~

20 matrix (data[,var],nrow=1,ncol=nl) )"2
1|# convert to vectors
22 distance <— matrix(distance , ncol = 1)

32

323 theta .deg <— matrix(theta.deg, ncol = 1)

324 diff2 <— matrix (diff2, ncol = 1)

3254 trim off wvalues greater than maxlag

32¢ indmax <— distance <= maxlag

327 distance <— distance[indmax ,]

328 theta .deg <— theta.deg[indmax ]

329 diff2 <— diff2 [indmax, ]

330

331 maxd<—max( distance)

if ( inc <= 0) inc <— maxd/nlag

333 ind <— distance==

334 ndir <— length(directions)

335 store.results <— matrix(data = NA, ncol = 6,

336 dimnames = list (NULL, c¢(”distance” , "gamma” , "np”, ”
azimuth77 ; ” hX77 ; 77hy77 )))

a7 for (j in 1l:ndir) {

338 for (1 in l:nlag){

330 if( (directions[j]—tolerance)<0 && (directions[]j]+

tolerance )>0 )
340 indl <— theta.deg >= 360+directions [j]—
tolerance |
341 theta.deg < directions[j]+tolerance
342 else if( (directions[j]+tolerance)>360 && (
directions|j]—tolerance ) <360 )
343 indl <— theta.deg < directions[j|+tolerance
—360 |
344 theta.deg >= directions[j]—tolerance
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345
346
347
348

349

351
352

353

358

359
360
361

362

364

|}
367 #

o1 {

else
indl <— theta.deg >= directions[j]—tolerance &
theta.deg < directions[j]+tolerance
ind<—distance >(i —1)*inc & distance<=ixinc &
lis .na(theta .deg) & indl
nclass <— sum(ind)
cv <— mean(diff2[ind])
mean. dis <— mean(distance [ind])
if(nclass > 0) store.results<—rbind(store.results ,
¢(mean.dis ,cv,nclass , directions [j],0,0))
}
}
store.results [,”hx” |<—store.results[,” distance” |xsin(store.
results [,”azimuth” |xpi/180)
store.results [,”hy” |<—store.results[,” distance” |xcos(store.
results [,”azimuth” |xpi/180)
store.results[,”gamma” |[<—store.results[,”gamma” | /2
ind <— store.results[,”np”]| >= nlagcutoff
store.results <— store.results[ind,]
ind <— !is.na(store.results[,”hx”])
store.results <— store.results[ind,]
as.data .frame(store.results)

#UNCTIONS FOR FITTING THE SEMIVARIOGRAM MODEL TO VARIABLE 1
7

#————— EXPONENTIAL VARIOGRAM MODEL

exponential . variogram . model<—
function (h, nugget = 0, parsil = 1, range = 1)

d <— sqrt(h[,1]"2 + h[,2]"2)
ind <—d =10

7 v <— nugget + parsil*x(l—exp(—d/range))

47 v[iind] <= 0

380 %

381 }

383 | H—— —— DATA COVARIANCE MATRIX BASED ON EXPONENTIAL VARIOGRAM
MODEL

384

3s5| exp.ve. matrix <— function (vematdata, x = "x”, y = 7y”",

386 nugget = nugget, parsil = parsil, range = range)

11

n <— length (vematdata|,1])
distance <— matrix (0, n, n)

123




399
400
401

402
403
404
405
406
407
408
409
410
411

412
413
414
415

417
418
419
420
421

422

424
425
426
427
428
429
430

431

432
433
434

o6 |

distance [lower . tri(distance)] <— dist(as.matrix(vematdata[,c(

X, ¥)1))

distance <— distance + t(distance)

{

distance <— parsilsexp(—distance/range) + diag(nugget, nrow =
n, ncol = n)
distance
}
REML EQUATION TO MINIMIZE
m2LL <— function (theta , m2LLdata, X)
{
nugget <— theta [1]
parsil <— theta [2]
range <— theta [3]
7z <— m2LLdata[,3]
if (nugget <= 0 || parsil <= 0 || range <= 0)
le32
else {
n <— length(z)
p <— length(X[1,])
V <— exp.ve.matrix (vematdata = m2LLdata,
nugget = nugget, parsil = parsil, range = range)
Vi <— solve (V)
b.hat <— mginv(t(X) %% Vi %% X) %% t(X) %% Vi %% z
fl <— sum(log(eigen(V)$values))
f2 <— t(z — X %% b.hat) %% Vi %% (z — X %% b.hat)
f3 <— sum(log(eigen (t(X) %% Vi %% X)$values))
fl + f2 + f3 + (n — p) xlog(2 x pi)
}
}
#
# BUILD MATRICES
3| 7+
#
# ——— BUILDS THE SAMPLE VARIANCE-COVARIANCE MATRIX
SS.mat <—
function (data, nuggetl, parsill , rangel

nugget2 , parsil2 , range2, sampled, strat)

sampled .ind <— !is .na(data], sampled] = 1) & data[, sampled]
=1

n <— sum(sampled .ind)

x <— matrix (data [sampled.ind,

1)

"x”], nrow = n, ncol =
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5| {

”

v <— matrix (data[sampled.ind, ”y”], nrow = n, ncol =
1)
x.mat <— matrix (rep(x, times = n), nrow = n,ncol = n)
x.mat <— t(x.mat) — x.mat
yv.mat <— matrix(rep(y, times = n), nrow = n, ncol = n)
y.mat <— t(y.mat) — y.mat
c.mat <— matrix (rep(as.integer (data[sampled.ind, strat]),
times = n),nrow = n,ncol = n)
s11.ind <— matrix( c¢.mat = 1 & t(c.mat) = 1, nrow = n"2,
ncol = 1)
522.ind <— matrix( c.mat = 2 & t(c.mat) = 2, nrow = n"2,
ncol = 1)
s12.ind <— matrix( c¢.mat = 1 & t(c.mat) = 2, nrow = n"2,
ncol = 1)
521 .ind <— matrix( c¢.mat = 2 & t(c.mat) = 1, nrow = n"2,
ncol = 1)
h <— cbind (matrix (x.mat, nrow = n"2, ncol = 1), matrix(y.mat,
nrow = n"2, ncol = 1))
gammall <— nuggetl + parsill — exponential.variogram.model(h,
nugget = nuggetl , parsil = parsill,
range = rangel )
gamma22 <— nugget2 + parsil2 — exponential.variogram.model(h,
nugget = nugget2, parsil = parsil2,
range = range?2)
gamma <— matrix (NA, nrow = n"2, ncol = 1)
gamma[s1]1.ind] <— gammall[sll.ind]
gamma [s22 . ind]| <— gamma22[s22.ind |
gamma[s12.ind] <— 0
gamma [s21.ind] <— 0
gamma <— matrix (gamma, nrow = n, ncol = n)
gamma

}

i
H#— BUILDS VARIANCE-COVARIANCE MATRIX BETWEEN SAMPLED AND
UNSAMPLED
2| SU . mat <—

function (data, nuggetl, parsill , rangel
nugget2 , parsil2 , range2, sampled, strat)

sampled .ind <— !is .na(data], sampled] = 1) & data[, sampled]
=1

unsampled.ind <— is.na(data], sampled] = 1) | data[, sampled
] =1

ns <— sum(sampled.ind)

nu <— sum(unsampled.ind)

xs <— matrix (data [sampled.ind ,
yvs <— matrix (data [sampled .ind ,

], nrow = ns, ncol = 1)

77XW
” " _ —
v’], nrow = ns, ncol = 1)
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481

xu <— matrix (data [unsampled.ind, "x”], nrow = nu, ncol = 1)
vu <— matrix (data [unsampled .ind, ”y”], nrow = nu, ncol = 1)
ones <— matrix (1, nrow = ns, ncol = 1)
oneu <— matrix(1, nrow = nu, ncol = 1)
x.mat <— —matrix(rep(xs, times = nu), nrow = ns, ncol = nu) +
t (matrix (rep(xu, times = ns), nrow = nu, ncol = ns))
y.mat <— —matrix(rep(ys, times = nu), nrow = ns, ncol = nu) +
t (matrix (rep(yu, times = ns), nrow = nu, ncol = ns))
¢.mats<—matrix (rep(as.integer (data[sampled.ind, strat]),
times = nu), nrow = ns, ncol = nu)
¢.matu<—t (matrix (rep (as.integer (data[unsampled.ind, strat]),
times = ns), nrow = nu, ncol = ns))

sll.ind <— matrix( c¢.mats==1 & c¢.matu==1, nrow=ns*nu, ncol=

$22 .ind <— matrix( c¢.mats==2 & c¢.matu==2, nrow=ns*nu, ncol=

s12.ind <— matrix( c¢.mats=1 & c¢.matu==2, nrow=ns*nu, ncol=

s21 .ind <— matrix( c¢.mats==2 & c¢.matu==1, nrow=ns*nu, ncol=

h<—cbind (matrix (x.mat, nrow=ns*nu, ncol=1) ,matrix (y.mat, nrow=n
*¥nu, ncol=1))

1
1
1
1

?

)
)
)
)

gammall <— nuggetl + parsill — exponential.variogram.model(h,
nugget = nuggetl , parsil = parsill,
range = rangel )

gamma22 <— nugget2 + parsil2 — exponential.variogram.model(h,
nugget = nugget2, parsil = parsil2,
range = range?2)

gamma<—matrix (NA, nrow = ns*nu, ncol = 1)

0| #

gamma[s1]l.ind] <— gammall[sll.ind]
gamma [s22 . ind]| <— gamma22[s22.ind |
gamma[s12.ind] <— 0
gamma [s21.ind] <— 0
gamma<—matrix (gamma, nrow = ns, ncol = nu)
gamma
}
01|# ———— BUILDS THE UNSAMPLED VARIANCE-COVARIANCE MATRIX
02| UU. mat<—

| {

function (data, nuggetl, parsill , rangel
nugget2 , parsil2 , range2, sampled, strat)

sampled .ind <— is.na(data], sampled] = 1) | data[, sampled]
l= I
n <— sum(sampled .ind)
X <— matrix(data[sampled.ind, ”"x”], nrow = n, ncol =
1)
v <— matrix (data[sampled.ind, ”y”], nrow = n, ncol =

1)
.mat<—matrix (rep(x, times=n) ,nrow=n, ncol=n)
.mat<—t (x.mat )—x . mat

Sl
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yv.mat<—matrix (rep(y, times=n) ,nrow=n, ncol=n)

yv.mat<—t (y.mat )—y . mat

c¢.mat<—matrix (rep(as.integer (data[sampled.ind ,strat]) ,times=n
) ,nrow=n, ncol=n)

s11.ind <— matrix( c.mat==1 & t(c¢.mat)==1, nrow=n"2, ncol=I)

522 .ind <— matrix( c.mat==2 & t(c.mat)==2, nrow=n"2, ncol=I)

s12.ind <— matrix( c.mat==1 & t(c¢.mat)==2, nrow=n"2, ncol=I)

521 .ind <— matrix( c.mat=2 & t(c.mat)==1, nrow=n"2, ncol=I)
)

ncol=1))
gammall <— nuggetl + parsill — exponential.variogram.model(h,
nugget = nuggetl , parsil = parsill ,
range = rangel )
gamma22 <— nugget2 + parsil2 — exponential.variogram.model(h,

nugget = nugget2, parsil = parsil2,
range = range2)
gamma<—matrix (NA, nrow=n"2,ncol=1)
gamma [s11 .ind |<—gammall[s11.ind ]
gamma [ 522 . ind |<—gamma22[s22 .ind |
gamma [s12.ind] <— 0
gamma[s21.ind] <— 0
gamma <— matrix (gamma, nrow = n,ncol = n)
gamma

}

# LIKELIHOOD FUNCTION FOR CROSS CORRELATION OF NUGGET EFFECT

26 m2LL . cross <— function(rho, thetal , theta2, m2LLdata, X)

{

nuggetl <— thetal[l
parsill <— thetal [2
rangel <— thetal [3]
nugget2 <— theta2[1]
parsil2 <— theta2[2
range2 <— theta2 [3]

z1 <— m2LLdata[,3]
72 <— m2LLdata[,4]
7z <— matrix(c(zl,22), ncol = 1)

X <— diag(2) %% X
n <— length(zl)

p <— length(X[1,])
V1 <— exp.ve.matrix (vematdata = m2LLdata,

nugget = nuggetl , parsil = parsill , range = rangel)

V2 <— exp.ve.matrix (vematdata = m2LLdata,

nugget = nugget2, parsil = parsil2, range = range2)

V <— matrix (0, nrow = 2xn, ncol = 2xn)
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V[l:n,1:n] <— exp.vec.matrix(vematdata = m2LLdata,

nugget = nuggetl , parsil = parsill , range = rangel)

VIi(n+1):(2#n) ,(n+1):(2+n)] <— exp.ve.matrix (vematdata =
m2LLdata ,

nugget nugget2, parsil = parsil2, range = range2)

7 <— rbind (diag(n), diag(n))

V[l:n,(n+1):(2xn)] <— rhoxsqrt(nuggetls*nugget2)xdiag(n)
V[(n+1):(2%n) ,1:n] <— rhoxsqrt(nuggetls«nugget2)xdiag(n)
Vi <— solve (V)

b.hat <— mginv(t(X) %% Vi %% X) %% t(X) %% Vi %% z
fl <— sum(log(eigen(V)$values))

f2 <— t(z — X %% b.hat) %% Vi %% (z — X %% b.hat)
f3 <— sum(log(eigen (t(X) %% Vi %% X)$values))

fl1 + f2 + f3 + (n — p) *log(2 x pi)

./GSPE_Functions_Neat.R
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