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Thesis abstract 

Sweet stem sorghum is a form of grain sorghum that has been increasingly used for the 

industrial production of bio-ethanol. In comparison with the world’s principal biofuel crops, 

sweet stem sorghum exhibits a number of valuable traits, such as its ability to grow under 

relatively harsh growing conditions, and its high biomass production. The sweet stem sorghum 

enterprise for bioenergy production requires highly productive, open pollinated or hybrid 

cultivars, delivered through a dedicated breeding program. Therefore, the objectives of this 

study were: i) to determine the phenotypic variability present among diverse sweet stem 

sorghum genotypes based on ethanol production and related agronomic traits to select 

promising breeding lines; ii) to evaluate the genetic interrelationships among selected sweet 

stem sorghum genotypes using polymorphic simple sequence repeat (SSR) markers to 

complement the phenotypic data; iii) to investigate the concentration, stage of application and 

frequency of application of ethyl 4'fluorooxanilate (E4FO) for inducing male sterility of sweet 

stem sorghum without affecting female fertility for hybrid breeding; and iv) to determine the 

combining ability between selected sweet stem sorghum testers and lines, and to assess 

heterosis in sweet stem sorghum hybrids for bio-ethanol production and related traits. 

One hundred and ninety sorghum genotypes were phenotypically evaluated. Data 

collected included days to 50% flowering, plant height, stem diameter, fresh biomass yield, 

dry matter yield, fibre content, stalk brix and ethanol yield. Data were subjected to analysis of 

variance, cluster analysis, correlation analysis, path coefficient analysis and principal 

component analysis. Significant differences were detected among tested genotypes for all 

measured traits. The best genotypes for ethanol productivity were AS203, AS391, AS205, 

AS251 and AS448, which provided estimated mean ethanol yields of 5474 l ha-1, 4509 l ha-1, 

4315 l ha-1, 4205 l ha-1 and 3816 l ha-1, in that order. Days to flowering, plant height, stalk brix 

and stem diameter exerted the greatest indirect effects on ethanol production through higher 

biomass production. Biomass yield had the greatest direct effect on ethanol production.  

Eighteen phenotypically divergent sweet stem sorghum genotypes were evaluated 

using 25 polymorphic simple sequence repeat (SSR) markers. The results revealed the 

presence of clear genetic differentiation among the studied sweet stem sorghum genotypes. 

The polymorphic information content (PIC) values for all markers ranged from 0.00 to 0.85, 

with a mean value of 0.56, implying that the markers were highly informative and 

discriminatory. Sixty eight percent of the markers used had a PIC value > 0.50. Analysis of 

molecular variance revealed highly significant differences (P<0.001) among the test 

population. Among and within individual variances contributed to 78% and 21% of the total 
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genetic variance, respectively. This allowed selection of representative and well-differentiated 

sweet stem genotypes such as AS391, SS27, AS204 and AS244.  

Two experiments were conducted to investigate the concentration, stage of application 

and frequency of application of a putative male gametocide, ethyl 4'fluorooxanilate (E4FO), for 

the induction of male sterility in sweet stem sorghum parents, without affecting female fertility. 

Three sweet stem sorghum genotypes were tested at three application stages, with five E4FO 

doses during the first experiment. In the second experiment, the frequency of application of 

E4FO was determined using three sweet stem sorghum genotypes, three E4FO doses, and 

six frequencies of application. Data on male sterility was inferred, based on seed set and seed 

count from the treated plants. To determine female fertility, controlled crosses were performed, 

seed set was assessed and the number of seeds on cross pollinated plants were counted. 

Male sterility and female fertility were assessed against comparative control treatments. High 

levels of male sterility were achieved when E4FO was applied during the heading stage using 

the following rates: 1000 mg l-1, 1500 mg l-1 and 2000 mg l-1, with more than one application. 

Applying E4FO twice during the heading stage at a rate of 2000 mg l-1 would induce male 

sterility in the tested sweet stem sorghum genotypes. 

Eight selected sweet stem sorghum lines and four testers were crossed using a Line x 

Tester mating design. The F1 hybrids and parental lines were evaluated for bioethanol yield 

and related traits. Data were subjected to analysis of variance, combining ability and heterosis 

analyses. Tested sweet stem sorghum genotypes showed ethanol yields varying from 787 l 

ha-1 to 5470 l ha-1, with a mean of 2055 l ha-1. Four hybrids (AS246 x AS391, AS251 x AS204, 

AS79 x AS204, AS74 x AS204) expressed the best ethanol productivity with positive better-

parent heterosis (>30 %). Lines AS253, AS246, AS 105 and testers AS391 and SS27 had 

highly positive general combining ability (GCA) effects for almost all the traits in a desirable 

direction. Due to its consistent, significant and positive GCA effect across majority of the traits, 

line AS253 can be recommended for sweet stem sorghum hybrid breeding. Among the new 

hybrids or test parents, ethanol productivity had significant and positive correlations with plant 

height, stem diameter and biomass.  

Overall, the study established the existence of considerable genetic diversity among 

sweet stem sorghum genotypes morphologically and genotypically. The selected promising 

parental genotypes and experimental hybrids are recommended for bio-ethanol production 

and breeding.  
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Introduction to thesis 

 

Sorghum (Sorghum bicolor L. Moench) is the fifth important cereal crop after wheat, rice, 

maize and barley (Deepak et al., 2018). Sorghum originates from Ethiopia and its cultivation has 

spread from Africa to Asia, Australia and the Americas (Doggett, 1988). It has been documented 

that sorghum was grown in the Near East as early as 700 BC (Ziggers, 2006). At least 86 countries 

grow sorghum in an area of 38 million hectares and with an annual grain production of about 58 

million tons. The mean productivity under smallholder production systems reaches up to 1.5 t ha−1 

(FAO, 2016), which is well below the potential yields of 4  to  5  t  ha−1. 

Sorghum is a C4 crop and is well adapted to grow in semi-arid and arid agro-ecologies 

(Hons et al., 1986). Studies have shown that when sorghum is grown in arid conditions, it sustains 

physiological activity comparable to plants with adequate moisture by increasing root length, 

density, and water-use efficiency (Zegada-Lizarazu et al., 2012). Depending on genotype and 

location, sorghum can grow up to a height of 3 m, and can produce fresh biomass yields of 45–

112 t ha-1 (Shuklaa et al., 2017). 

Taxonomically, the genus Sorghum has only one species, bicolor. Two types of sorghum 

are widely recognised, grain sorghum and sweet stem sorghum (Doggett, 1988). Sweet stem 

sorghum is a variant of grain sorghum. It belongs to S. bicolor subsp. bicolor. Sweet stem sorghum 

is characterised by juicy and sweet stalks, accumulating high concentrations of soluble sugars 

(10–25%) in the stem as sap or juice. Traditionally, sweet stem sorghum has been used for sugar 

production (Ou et al., 2016; Shuklaa et al., 2017; Li et al., 2018). In some countries, sweet stem 

sorghum is cultivated as a forage crop or a raw material for the paper industry (Koeppen et al., 

2009; Oyier et al., 2017). More recently, sweet stem sorghum has been established as promising 

crop for use in the bioenergy industry. Compared with maize, a traditional biofuel cereal crop, 

sweet stem sorghum produces 23% more fermentable carbohydrates, and requires 37% less 

nitrogen fertilizer and 17% less irrigation water (Hills et al., 1990; Putnam et al., 1991; Mullet et 

al., 2014). Sweet stem sorghum can potentially produce up to 8000 l ha−1 of ethanol, which is 

twice the amount that can be potentially produced from maize, and 30% greater than that 

obtainable from sugarcane (Hunter and Anderson, 1997). 

Biofuels are defined as renewable energy that is produced from organic matter in the form 

of biomass. The use of biofuels has been driven by the need to establish energy sustainability, 
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lessen import costs, and strengthen domestic agricultural development (Kovarik, 2013; Araújo, 

2017). The use of biofuels in the transportation industry has been minimal (2.5%). This is because 

of the high cost involved in the production of maize and sugarcane as the primary feedstocks for 

the production of biofuels (Searchinger and Heimlich, 2015). Lately, plant biomass-based 

transport fuels have become a strategic focus for countries aiming to reduce vehicle emissions, 

and to counter climate change (REN21, 2016). Also, researchers are now focusing on emerging 

biofuel sources that are less expensive, aiming to produce lignocellulosic biomass, and plants 

that can be grown on marginal lands (e.g., sweet stem sorghum) (Searchinger and Heimlich, 

2015). The global biofuels supply has increased by 8% of the world’s transport fuels from 2000 to 

2015 (BP, 2016; REN21, 2016). Moreover, positive characteristics such as its short growth cycle, 

easy propagation from seed, fully mechanized production, dual purpose cropping for both stem 

sugar and grain, high water and nutrient use efficiency, and its wide adaptability to different 

environments, make sweet stem sorghum a biofuel of choice (Fernandez and Curt, 2005; Reddy 

et al., 2005; Mullet et al., 2014). Furthermore, ethanol from sweet stem sorghum is carbon neutral, 

harmless to the environment owing to low sulphur content, low biological, and chemical oxygen 

demand, and has a high octane rating (Reddy et al., 2006).  

Some of the major problems that the world is facing include the global energy crisis, climate 

change and food insecurity. Global energy security, independence from fossil fuels, reduction of 

greenhouse gases emissions, and mitigation of adverse global climatic change are a few of the 

motives driving the use of renewable energies worldwide. Conventional first generation biofuels 

produced mainly from maize, soybean and sugarcane are also used for food. Hence, using them 

for biofuel aggravates global food insecurity. Sweet stem sorghum, on the other hand, is a second-

generation biofuel crop, implying that it is a dual-purpose crop that can be used for both biofuel 

and food without compromising on either (Daystar et al., 2014). Sweet stem sorghum has been 

underutilized as a bio-fuel crop despite its evident potential.  

Collection of seed of many genotypes, and characterisation of germplasm, are two 

important procedures in developing a gene pool for an under-researched crop for breeding. 

Genetic groups can be established, based on data on geographical origin, agronomical traits, 

pedigree data and on molecular marker data (Melchinger, 1999). Traditionally, analysis of 

morphological traits has been used to establish genetic diversity in a given population. Given the 

relative simplicity of phenotyping in assessing the extent of diversity, it is a useful tool for 

preliminary germplasm evaluation. Several researchers have estimated genetic diversity in 

cultivated sorghum using morphological traits (Dahlberg, 2002; Shehzad et al., 2009; Adugna, 
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2014; Mangena et al., 2017). Genetic variability estimates among genotypes are helpful in 

selecting parental combinations for creating segregating populations to harness genetic diversity 

in a breeding program (Menz et al., 2004; Becelaere et al., 2005).  

Genetic diversity can also be established by molecular markers, which are not influenced 

by the environment, and do not require previous pedigree information (Bohn et al., 1999), which 

is especially valuable for crops where there is little or no pedigree information. Molecular markers 

have played a noteworthy role in the preservation and use of sorghum genetic resources (Morris 

et al., 2013), in recognition of diverse lines, mapping of genomic regions controlling economic 

traits and their use in marker-assisted breeding. Many studies have endorsed the use of simple 

sequence repeat (SSR) markers in genetic diversity analysis owing to their high polymorphism, 

abundance, codominance, being multiallelic, and chromosome-specificity (Parker et al., 2002; 

Geleta et al., 2006; Ali et al., 2008; Shehzad et al., 2009). SSR markers are currently the preferred 

marker system in genomic analysis and molecular breeding of sorghum (Ali et al., 2008; Muraya 

et al., 2011).  

Traditionally, seed of sorghum hybrids has been produced using an expensive and slow 

system called Cytoplasmic Male Sterility (CMS), which uses three parental populations, the A, B 

and R parents (Guilford et al., 1992). Recently, researchers have started using chemical 

hybridizing agents (CHAs) or male gametocides to sterilise pollen in designated female lines in 

crops such as wheat, maize and tef (Chakraborty et al., 2001; Ghebrehiwot et al., 2015). Chemical 

hybridizing agents are chemicals that stop pollen development, rendering the treated plants male 

sterile but female fertile. Hence, all seed found on the treated plants are the result of cross-

pollination. Application of CHAs on sweet stem sorghum has not been evaluated previously. The 

use of CHAs has many advantages over the conventional CMS, including reducing the time taken 

to develop new hybrid varieties by 5-10 years, thereby increasing hybrid seed production. This 

approach would reduce the costs of production of a sorghum hybrid dramatically.  

In sorghum hybrid development, it is essential to comprehend the genetic nature of the 

parental genotypes (Makanda et al., 2010). Identification of suitable parental genotypes to be 

used in a hybridization program can be carried out through combining ability studies. Combining 

ability estimates also forecast the relative performance of various genotypes in hybrid 

combinations. Knowledge of combining ability helps in optimizing the breeding strategy. Use of 

the recurrent selection procedure is important when general combining ability (GCA) effects are 

predominant. This approach ensures the accumulation of desirable unfixable or fixable gene 

effects (Nadarajan and Gunasegaram, 2005). In contrast, hybrid breeding is important when 
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specific combining ability (SCA) effects are predominant. GCA effects are attributed to 

preponderance of genes with additive effects and SCA indicates predominance of genes with 

non-additive effects (Kenga et al., 2004).  

Research aim 

The principal aim of the proposed research was to develop superior sweet stem sorghum 

hybrids over a short period of time, using a male gametocide, which can be used for bio-fuel 

production and related activities.  

Research objectives 

The specific objectives of the study were to: 

i) investigate the phenotypic variability present among diverse sweet stem sorghum 

genotypes based on their estimated ethanol production and related agronomic traits; 

ii) evaluate the genetic interrelationships among phenotypically selected sweet stem 

sorghum genotypes using simple sequence repeat (SSR) markers; 

iii) investigate the concentration, stage of application and frequency of application of ethyl 

4'fluorooxanilate (E4FO) for the induction of  male sterility in sweet stem sorghum plants, 

without affecting female fertility; 

iv) investigate the combining ability between the selected sweet stem sorghum testers and 

lines; and  

v) assess heterosis in sweet stem sorghum hybrids for bio-ethanol production and related 

traits. 

Structure of the thesis 

Table 0.1 shows the thesis outline. The thesis is written in the form of discrete research 

chapters, each following the format of a stand-alone research paper (whether or not, the chapter 

has already been published). This is the dominant thesis format adopted by the University of 

KwaZulu-Natal. As such, there is unavoidable repetition of some references and some 

introductory information between chapters. 
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Table 0.1: Thesis outline 

Chapter Objective  

-  

Chapter 1 Literature Review 

Chapter 2 Characterization of sweet stem sorghum genotypes for bio-ethanol 

production 

Chapter 3 Genetic interrelationship of sweet stem sorghum genotypes assessed 

through simple sequence repeat markers 

Chapter 4 Preliminary investigation of the effect of ethyl 4'fluorooxanilate as male 

gametocide in sweet stem sorghum 

Chapter 5 Combining ability and heterosis of sweet stem sorghum genotypes for 

bioethanol yield and related traits 
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Chapter 1  

 

Literature review  

1.1 Introduction  

The review of literature in this chapter aims to provide information associated with 

development of sweet stem sorghum (Sorghum bicolor L.) hybrids using various approaches. The 

review covers characterization of sweet stem sorghum, its potential as a biofuel crop and breeding 

procedures involved in producing superior sweet stem sorghum hybrids. The chapter concludes 

with a summary of the findings and the knowledge gaps relevant to the current study. 

1.2 Sorghum characterization  

According to Mann et al. (1983) sorghum was first cultivated some 5 000 years ago in 

northeastern Africa, north of the Equator and east of 10˚E latitude. Conversely, carbonized seeds 

of sorghum with radiocarbon dates of 8,000 years BP were unearthed at Nabta Playa near the 

Egyptian- Sudanese border (Wendorf et al., 1992; Dahlberg and Wasylikowa, 1996). Despite the 

initial cultivation of sorghum being in North Africa, the domestication events may also have taken 

place elsewhere and more than once.  

Wider genetic assortment of sorghum was generated by means of disruptive selection and 

via isolation and recombination in the tremendously wide-ranging environments of northeast 

Africa and the migration of people to other parts of the continent (Miller, 1982). The largest 

diversity of cultivated and wild sorghum is in Africa (Doggett, 1970; de Wet and Harlan, 1971; de 

Wet, 1977). Moreover, sorghum is considered a crop with universal value because it can be grown 

in tropical, subtropical, temperate, and semi-arid regions of the world (Davila-Gomez et al., 2011). 

Plant breeding progress has brought about the innovation of sorghum genotypes that are adapted 

to numerous geographic and climatic regions of the world, consequently extending their 

production area from the initial region of adaptation.  

Knowledge of the biological background of sorghum is vital for plant breeding and 

conservation. Sorghum is a self-pollinated diploid (2n=2x=20) with outcrossing reaching up to 

15%. Sorghum is categorized under the genus Sorghum (Clayton and Renvoize, 1986). De Wet, 

(1978) documented that S. bicolor denotes all annual cultivated, wild and weedy sorghums 

together with two rhizomatous taxa, namely S. halepense and S. propinquum. Cultivated 
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sorghums are classified as S. bicolor subsp. bicolor. Harlan and de Wet (1972) divided the 

cultivated sorghums (subspecies bicolor), into five basic races: Bicolor, Guinea, Caudatum, Kafir, 

and Durra, and 10 hybrid races that are combinations, and really stable intermediate hybrids, of 

the basic races. These include Guinea-Bicolor, Guinea-Caudatum, Guinea-Kafir, Guinea-Durra, 

Caudatum-Bicolor, Kafir-Bicolor, Kafir- Caudatum, Kafir-Durra, Durra-Bicolor, and Durra-

Caudatum. Sorghum is a herbaceous annual grass that is planted from seed, accumulates a 

substantial quantity of sugar with moderate use of water and reaches maturity in 90 to 180 days. 

Moreover, sorghum is a C4 grass with a high photosynthetic efficiency under hot conditions 

(Doggett, 1988). 

1.3 Sweet stem sorghum  

The value of sorghum can be attributed to the fact that its photosynthates can be utilized in 

numerous ways. Sorghum has been developed into four categories: grain, sweet, broom and 

grass sorghum. The main use of grain sorghum is for human consumption and is frequently 

exploited as a raw material for alcoholic beverages, sweets and glucose industries. It is estimated 

that more than 300 million people from developing countries essentially rely on sorghum as a 

source of energy (Dicko et al., 2006). In contrast, broom sorghum is for crafting brooms, whereas 

grass sorghum is used as a source of forage and silage for livestock production (Mwadalu and 

Mwangi, 2013). Sweet stem sorghum has been successfully used for the production of bio-ethanol 

(Anami et al., 2015a).  

1.4 Production constraints to sorghum 

Regardless of its high photosynthetic efficiency, there are production constraints that inhibit 

sorghum’s production potential. The yield and quality of sorghum products is affected by an 

extensive array of biotic and abiotic stresses. Biotic stresses which affect sorghum include weeds, 

pests and diseases. There are numerous diseases of sorghum and they can be categorized into 

bacterial, fungal, and viral diseases. Widespread fungal diseases include anthracnose, leaf blight, 

sorghum downy mildew, zonate leaf spot, rough spot, sorghum rust, charcoal rot, and stalk 

rot/grain mold (van den Berg and Drinkwater, 1997). Mosaics are the main viral diseases of 

sorghum with maize dwarf mosaic disease causing the most damage. Bacterial leaf stripe is the 

most common bacterial diseases of sorghum (Kucharek, 1992). On the other hand, pests of 

sorghum can be split into groups including soil and seedling insects (wireworms, white grubs, 

beetle larvae, rootworms, cornstalk borers, cutworms, and chinch bugs), leaf and stalk boring 

insects (aphids, green bugs, whorl-worms, budworms, fall armyworms, grasshoppers, mites, stalk 

boring moth caterpillars), and panicle and seed insects (sorghum midge, corn earworms, fall 
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armyworm, sorghum webworm, stink bugs, false chinch bugs) (Buntin, 2012). To control diseases 

and insect pests, some of the measures taken include selection of resistant genotypes, planting 

of disease-free seed at the appropriate soil temperatures, avoiding field operations when foliage 

is wet, proper crop rotation, control of weeds, and removing or burying crop debris (Buntin, 2012). 

Abiotic stresses are non-living factors with a negative impact on production that can also limit 

sorghum. Soils which are acidic and water logging usually affect sorghum productivity negatively. 

Conversely, sorghum is a crop of significant value due to its tolerance to arid and saline growing 

conditions. 

1.5 Production trends of sorghum 

Sorghum is the fifth most important cereal crop of the worldwide production next to wheat 

(Triticum aestivum L.), rice (Oryza sativa L.), maize (Zea mays L.) and barley (Hordeum 

vulgare  L.) (Shahwar et al., 2012; Mace et al., 2013; Cuevas et al., 2014). At least 86 countries 

grow sorghum in an area of 38 million hectares and with an annual grain production of about 58 

million tons. The mean productivity under smallholder production systems reaches up to 1.5 t ha−1 

(FAO, 2016). According to the Food and Agricultural Organization (FAO), the mean productivity 

of sorghum globally has increased over the years. This can be attributed to improvements in 

production technology and knowledge generation. Productivity in South Africa is higher than that 

observed in Africa and globally. However, more and greater fluctuations in productivity are also 

observed in South Africa compared to Africa and the world at large. Considering the area allocated 

to sorghum production, Africa has increased the quantity of sorghum production over the years, 

whereas globally sorghum production has remained more or less constant and has decreased in 

South Africa. 

1.6 Sweet stem sorghum: a biofuel crop 

Sweet stem sorghum has attracted the attention of the scientific and industrial community 

because it possesses a number of traits that make it suitable as a biofuel crop. In comparison 

with other principal biofuel crops globally, sweet stem sorghum exhibits a number of valuable 

traits. Adaptation of sweet stem sorghum for bioenergy purposes will require the identification and 

incorporation of advantageous traits into breeding programs. Recent reviews have made the case 

for sweet sorghum as a bioenergy crop (Vermerris, 2011; Calvino and Messing, 2012; Mullet et 

al., 2014; Prakasham et al., 2014; Anami et al., 2015a; Anami et al., 2015b).  

The high photosynthetic efficiency of sweet stem sorghum has been attributed to its 

physiological qualities such as its anatomical structure and physiological performance. The 
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response to environmental conditions of CO2 of C4 plants differs from those of C3 plants. Firstly, 

the compensation point of the concentration of C4 plants such as sweet sorghum is close to zero; 

while the saturation point is very high. Additionally, its photorespiration is extremely efficient and 

is difficult to measure, while in other crops such as soybean and sugar beet, 47-75% and 34-55% 

of photosynthetic products may be consumed by their photorespiration, respectively. Also, sweet 

stem sorghum has very high light saturation point. Lastly, under high temperature, the 

photosynthetic capacity of a C4 plant is twice that of a C3 plant. Therefore, the photosynthetic 

efficiency of sweet sorghum is over two times than that of C3 plants such as soybean, sugar beet 

or wheat (Dajue, 1997; Xu et al., 2011). 

In addition to its high photosynthetic efficiency, sweet stem sorghum has the aptitude to 

yield a high biomass per hectare on marginal lands that are unsuitable for food and feed 

production (Lipinsky and Kresovich, 1980; Rosenow and Clark, 1995; Saballos, 2008; Vermerris 

and Saballos, 2013). Researchers dedicated to sweet stem sorghum as a bioenergy crop have 

reported yields of 14.1-17.6 ton ha-1 of dry biomass, 3.9 ton ha-1 of grain and 8.14 ton ha-1 of 

hexose sugars from the stem juice (Murray et al., 2008; Tew et al., 2008). Ligno-cellulosic biomass 

for ethanol production can attain a yield of 12 340 l ha-1. High yields are likely to be improved 

further through breeding directed towards traits advantageous for bioenergy production. Another 

trait that qualifies sweet stem sorghum for biofuel production is that it will not impede food 

production, making it a third-generation biofuel crop.  

Sweet stem sorghum stalk juice can be used productively for the production of syrup, fuel-

grade ethanol, specialty and bulk organic chemicals, industrial alcohol, etc. Also, it can be 

cultivated on less fertile lands, is drought tolerant, has a wide adaptability (e.g. it grows in different 

types of soils with pH = 5 - 8.5) and has waterlogging tolerance. Moreover, sweet sorghum 

possesses readily available fermentable sugars within its stem (McBee et al., 1988; Sipos et al., 

2009). Sweet stem sorghum’s short growth period (3–5 months), makes it an ideal short maturing 

biofuel crop (Rooney et al., 2007; Carpita and McCann, 2008; Vermerris, 2011; Mullet et al., 

2014).  

Sweet stem sorghum has proven to have better biofuel production related characteristics 

when compared to sugarcane, currently the main biofuel crop. Sweet stem sorghum is sown with 

seed (at a rate of 4.5-7.5 kg ha-1) and it can be sown by machine, while sugarcane is propagated 

with stem cuttings at a rate of 4,500-6,000 kg ha-1 and it is not suitable for machine planting.  
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Paterson et al. (2009) and Masood et al. (2015) reported sweet stem sorghum as an ideal 

model bioenergy crop due to its relatively small genome (735 Mbp), the availability of the sorghum 

genome sequence, its diploid character and its close evolutionary relationship to other crops being 

considered for bioenergy purposes, such as sugarcane and maize. Sweet sorghum-based 

ethanol is sulfur-free and cleaner than ethanol produced by most biofuel crops when mixed with 

gasoline. Table 1.1 compares sweet stem sorghum with two other biofuel crops. Figure 1.1 further 

illustrates the wide geographic suitability of sweet stem sorghum as a biofuel crop compared to 

sugarcane and sugar beet. Numerous traits have been identified which make sweet sorghum the 

ideal biofuel crop but that there is need to improve existing varieties. 

Table 1.1: Comparative advantages of sweet sorghum vs. sugarcane and sugar beet for 

ethanol production (Adapted from Almodares and Hadi, 2009) 

Parameter  Sweet sorghum Sugarcane  Sugar Beet 

Crop duration (months) 3.5 12-13  5-6  

Growing seasons / year 1 Temperate areas 

2 Tropical areas 

1 1 

 

Soil requirement  All types of drained soil Loamy soil Sandy loam 

Tolerates 

alkalinity 

Water management (m3 ha-1) 12000 36000  18000  

Crop management  

 

Simple 

Little fertilizer  

Less pests and diseases  

Complex Moderate 

High fertilizer  

Yield (ton ha-1)  54 - 69  70 - 80  30-40  

Sugar content on weight basis (%) 8-10 10-12 15-18 

Sugar yield (ton ha-1) 6-8 7-8 5-6 

Ethanol production directly from juice (l 

ha-1)  

3000 3000-5000 5000-6000 

Harvesting  Very simple 

Both manual and 

mechanical 

Difficult  

Laborious  

Very simple 

Normally manual  
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Figure 1.1: World map depicting approximate areas where sweet stem sorghum, sugarcane and sugar beet can be grown 

(Adapted from Debor, 2009) 
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1.7 Sweet stem sorghum breeding  

1.7.1 Diversity analysis in sweet stem sorghum   

1.7.1.1 Morphological diversity analysis   

Success of a breeding program through devising appropriate breeding strategies is of 

paramount importance and is based on the genetic variation in a breeding population. Genetic 

variability for agronomic traits is a principal component of breeding programs for the reason that 

it broadens the gene pool of crops. Diversification of the genetic base of cultivars is achieved by 

intercrossing genetic sources of diverse origin. Sorghum is endowed with high variability due to 

its wide range of adaptation in tropical and temperate climates and free gene exchange among 

various races (Elangovan et al., 2014).  

Superior sorghum varieties can be attained through breeding, as long as adequate genetic 

variation is present in the diversity spectrum or by exploiting transgressive segregation or 

heterosis. An appreciable amount of genetic variability within a population is obligatory to facilitate 

and sustain an effective and durable plant breeding program (Ukaoma et al., 2013). Sizeable 

genetic variation in sorghum germplasm has been comprehensively documented making 

breeding for superior sorghum germplasm feasible. Warkad et al. (2008); Elangovan et al. (2014); 

Kamatar et al. (2015); Tesfamichael et al. (2015) and Salih et al. (2016) have reported variation 

in days to maturity, days to 50% flowering, plant height, stem diameter and dry fodder weight. 

The authors used both phenotypic coefficient of variation (PCV) and genotypic coefficient of 

variation (GCV) to study variability. Variability depends on heritable and non-heritable 

components, and coefficient of variation measures the magnitude of variability present in a 

population.  

In self-pollinating crops, germplasm improvement has been made through selection alone. 

Selection followed by hybridization has been confined to cross-pollinating crops such as maize. 

In recent developments, hybridization has been successfully used to develop hybrid cultivars in 

self-pollinating crops such as rice and sorghum (Makanda, 2009). This has enabled the 

exploitation of both additive genes and non-additive genes with the computation of combining 

abilities and heritability becoming more important in sorghum breeding. For its extensive 

economic significance and its adaptation to diverse agro-ecological environments, sorghum is a 

valuable species (Melil et al., 2013). The attainment of superior sorghum hybrids does not 



17 
 

exclusively depend on the magnitude of genetic variation but also on the heritability of traits under 

improvement.  

The ratio of genetic variance to the total phenotypic variance, also known as heritability, is 

used for assessing the breeding value of population. Heritability estimates can be either in the 

narrow-sense, where estimates take into account the fraction of total phenotypic variance that is 

due to additive effects or in the broad-sense which measures total genetic effects (additive, 

dominance, and epistatic effects) as a function of total phenotypic variance. Since only additive 

effects are transmitted from parents to offspring, narrow-sense heritability is more valuable than 

broad-sense heritability. Nevertheless, estimation of narrow-sense heritability requires special 

mating designs that may not be commonly used in breeding programs (Mangena, 2014). 

Estimates of heritability are important preliminary steps in any breeding program as they provide 

information needed to estimate the relative practicality of selection as they represent the genetic 

potential of a trait (Kamatar et al., 2015). Knowledge of heritability influences the choice of 

selection procedures used by the plant breeder to decide which selection methods would be the 

most useful to improve the character, to predict gain from selection and to determine the relative 

importance of genetic effects (Tesfamichael et al., 2015). Consequently, it can be concluded that 

evaluations of the components of variation and heritability are among characters that will facilitate 

improvement of crops such as sorghum. 

Success in breeding selections can be enhanced by studies of correlations between the 

traits. Several sweet stem sorghum populations have been studied for genetic variability and 

correlation of bio-fuel related traits (Murray et al., 2008; Ritter et al., 2008; Srinivas et al., 2009; 

Shiringani et al., 2010). For the reason that many morphological traits are related to ethanol 

production, it is useful to ascertain their correlation thereby establishing improved selection 

approaches of breeding. Assessment of one or more traits using the performance of another trait 

is made possible by employing correlation analysis, which essentially creates a way to perform 

indirect selection. Indirect selection is important at the initial stages of a breeding for traits that 

are not easily measured or are associated with low heritability (Carvalho and Cruz, 1996; Rios et 

al., 2012). Correlation studies can also reduce the time and resources directed towards a breeding 

program as selection for one trait will automatically select for all the traits positively correlated to 

the trait of selection. Focusing on correlation studies alone has proven to be inadequate as this 

approach is limited to only two traits a time. Additionally, simple correlation estimates may not 

represent the actual association between two traits, since there may be interference by a third 
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trait, or group of traits, that might distort the correlation estimates (Wright, 1921). For these 

reasons, Wright (1921) proposed Path Analysis. 

Path analysis separates phenotypic correlations into the direct and indirect effects of the 

traits on a chief variable, making for greater dependability in the choice of selection traits (Cruz et 

al., 2014). It allows a more practical study of the association between groups of traits by the 

breakdown of the simple correlation coefficients into direct and indirect effects of a group of traits 

over a basic or main variable. The knowledge of the direct and indirect effects of the explanatory 

variables on a key trait might help in deciding on to use a correlated response or progress in 

selection (Rios et al., 2012). Despite the importance of this analysis, studies that used path 

analysis in sweet stem sorghum are scarce (Kumar et al., 2012). The use of path analysis should 

enable the acquisition of knowledge on the relationships among the main agro-industrial traits in 

sweet sorghum in order to provide the necessary information to establish the optimal breeding 

program strategies.  

1.7.1.2 Diversity analysis using molecular marker technology  

Morphological descriptors and molecular marker technology have been used to map out the 

genetic diversity in crop plants (Mace et al., 2005). Molecular markers are nucleotide sequences 

corresponding to a physical position in the genome, and their polymorphisms between accessions 

allow the pattern of inheritance to be traced (Schulman, 2006). Genetic distance estimates among 

genotypes are important in selecting parental combinations for creating segregating populations 

so as to maintain genetic diversity in a breeding program (Becelaere et al., 2005) and the 

classification of germplasm into heterotic groups for hybrid crop breeding (Menz et al., 2004).. 

Molecular markers can play a significant role in the conservation and use of sorghum genetic 

resources (Aldrich and Doebley, 1992; Whitkus et al., 1992; Rami et al., 1998; Deu et al., 2006; 

Wang et al., 2006; Kumar et al., 2011; Morris et al., 2013b) and also in many aspects of sweet 

stem sorghum improvement programs ranging from identification of diverse lines, to mapping of 

genomic regions controlling desirable traits and their use in marker-assisted breeding. Molecular 

markers are also used to assess the identity in order to identify putative duplicate accessions, 

and also to establish relationships and genetic structure with the main aim of determining how 

variation is distributed among individuals (Westman and Kresovich, 1997). Because DNA markers 

are not affected by environmental factors, they are considered better than morphological markers 

as cultivar descriptors (Bowditch et al., 1993). Moreover, they can be detected in all tissues at all 

stages of development, contrary to morphological markers (Soriano et al., 2005). Various types 

of molecular markers are available for genome analysis. 
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Several diversity studies on sorghum have been done using restriction fragment length 

polymorphisms (RFLPs), random amplified polymorphic DNA (RAPDs), simple sequence repeats 

(SSRs), amplified fragment length polymorphisms (AFLPs), and single nucleotide polymorphisms 

(SNPs) (Klein et al., 2008; Smith et al., 2010; Morris et al., 2013a).  These marker systems are 

available for assessing the genetic diversity though they differ in principle, application, number of 

polymorphisms detected and also the time required. Simple sequence repeats are short repeated 

DNA sequences in the genome of 2 to 4 nucleotides in length (Reisch, 1998; Tawanda, 2004). 

They are abundant in genomes of plants where they are thought to be a source of genetic variation 

(Mahalakshmi et al., 2002). Simple sequence repeat markers are the preferred marker system for 

many sorghum genomics and molecular breeding applications because they are highly 

polymorphic even among closely related cultivars, which demonstrates that they are highly 

informative (Uptmoor et al., 2003; Caniato et al., 2007; Ali et al., 2008; Deu et al., 2008; Muraya 

et al., 2011). They are also multi-allelic and chromosome-specific (Ahmad, 2002; Huang et al., 

2002; Parker et al., 2002). These markers are co-dominant and can be analyzed by a rapid, 

technically simple, specific and inexpensive polymerase chain reaction (PCR) based assay that 

requires only small amounts of DNA. The SSR markers have proved to be a valuable asset for 

breeding programs and have been used for a wide range of application and this include measuring 

of genetic diversity (Xiao et al.,1996), in assigning lines to heterotic groups (Senior et al., 1998), 

in the genetic analysis of breeding schemes, genetic distance analysis (Chen et al., 1997) and in 

population genetic fingerprinting for legal protection of cultivars and parental lines, and in 

establishing genome relationship in species with putative interspecific parents.  

1.7.2 Male sterility system in sorghum 

In self-pollinated crops such as sweet stem sorghum, with the male and female organs in 

the same flower, selective sterilization of pollen is a prerequisite for crossing. There is typically 5 

to 15% outcrossing in sweet stem sorghum, depending upon the wind direction, nature of 

genotype, and humidity (House 1985), which makes it amenable for use in population 

improvement and hybrid development to exploit the heterosis. The establishment of a male sterile 

line renders any crop variety readily adaptable to hybridization with virtually any male line having 

desired characteristics. Male sterile lines may be established in a number of ways. Hand 

emasculation which is not feasible for the large-scale emasculation of species. Genetic male 

sterility is also a known trait, usually inherited as a recessive and monogenic trait that is used to 

produce hybrid seed of barley, tomato, pepper, marigold, zinnia, and other crops that have a 

shortcoming of being ales than 100% male sterile. Cytoplasmic male sterility provides an 
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alternative mechanism whereby the genetic factors controlling male sterility are found in the 

cytoplasm.  

In sorghum, Stephens and Holland (1954) discovered cytoplasmic male sterility (CMS). This 

has made it easier to create hybrid seed on a large scale (House 1985). However, this 

methodology is beset with many obstacles and limitations such as the non-availability of breeding 

stocks containing CMS and restorer systems, the instability of the CMS in various environments, 

and the laborious method of heterosis breeding. Besides being tedious and time-consuming, this 

technique sometimes becomes untenable because of the lack of a consistent restorer system for 

the genetic restoration of fertility (Guilford et al., 1992).  

A method of producing male sterile lines which circumvents the difficulties of genetic 

induction is the use of chemical sterilization agents. The principle involved here is that the 

chemical acts as a gametocide, selectively sterilizing the male gamete, i.e., pollen, by inducing 

physiological abnormalities, which in turn prevent pollen development, pollen shed, or pollen 

viability (McDaniel, 1992).  

In efforts to develop superior hybrids in self-pollinating crops, chemically induced male 

sterility is one avenue that plant breeders have pursued. Chemical-hybridizing agents (CHAs) 

emasculate treated plants by killing the male gametes, spores or organs and the selective 

elimination of the male sex has been termed chemical male sterility (Kaul, 1988). The first report 

of the effects of CHAs on crops was a study on the effects of maleic hydrazide on suppressing 

pollen development in spring wheat (Hoagland et al., 1953). McRae (1985) reported that chemical 

male sterility (gametocidal activity) and the production of hybrid seed could be traced to as early 

as 1957.  

Four main groups of CHAs can be distinguished regarding the mode of action. Growth 

regulators suppress the development of floral primordia; while metabolism inhibitors, pollen 

germination inhibitors and microsporogenesis inhibitors, prevent self-pollination and promote 

fertilization by an outside pollen source, thus offering opportunities to develop hybrids (Dotlacil 

and Apltauerova, 1978; Wong et al., 1995; Blouet, 1999).  

Considering how difficult it is to develop hybrids in self-pollinating crops, the use of chemical 

hybridizing agents could to be valuable as it enables plant breeders to manipulate self-pollinating 

crops more efficiently. Compared with CMS, an effective CHA allows for the production of a large 

number of parental combinations and allows for the evaluation of a great number of lines for 

combining capacity and genetic value. The time required for hybrid development is consequently 
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lessened substantially (Bruns and Peterson, 1998). Moreover, the use of CHAs includes the use 

of simple protocols of plant improvement, as in this system neither the conversion and 

maintenance of an androsterile line (line A) nor the incorporation of factors of fertility restoration 

in male progenitors is required (Cross and Schulz, 1997; Cisar and Cooper, 2003). Even the 

genotypes with short extrusion of stamens may be used as male progenitors. The evaluation of a 

great number of genotypes for general and specific combining capacity as well as for 

characteristics of seed production are relatively easy. Heterogeneous populations may be 

developed or improved. Using gametocides, one can develop a large pool of heterotic 

combinations with various traits, including higher productivity (Cross and Ladyman, 1991). This 

large pool could then provide an array of wheat hybrids. The unique advantage CHAs offer is that 

any variety or crop can be used for induction of male sterility in order to develop a hybrid with a 

pollen donor. In chemical induction of male sterility, only parental components of a hybrid variety 

(a double-component system) are needed. In addition to this, the advantage of a chemical 

induction of male sterility is also the absence of complex genetic engineering and facilitation of 

hybrid seed production in the F1 generation without backcrossing. Chemically induced male 

sterility obviates the use of genetic and gene-cytoplasmic male sterility (Virmani, 2003). 

The characteristics of a perfect CHA have been characterized by Liable (1974), Virmani and 

Edwards (1983) and Pickett (1993). The primary characteristics induction of male sterility only, 

without affecting female fertility; production of easily recognizable androsterility; lacking phytotoxic 

effects on the treated progenitor; consistent performance on all genotypes of a species; consistent 

activity in a wide range of environments; systemic activity and persistence; sterilizing early and 

late flowers of all the plants of the treated population; flexibility in the application stage to 

overcome adverse climatic conditions; wide dose flexibility to allow a secure margin of error; 

achieving sterility with only one treatment; no effect on the quality of F1 seed or the vigor of either 

F1 plantlets or plants; activity on several genera; being cheap to synthesize and practical to apply; 

being a non-toxic compound with no negative toxicological effects on humans or the environment. 

A gametocide with all the above mentioned traits will be able to fulfill all the benefits that chemical 

hybridizing agents could bring to the plant breeding world.  

Ethyl 4-fluoro oxanilate (E4FO) has been successfully used on various crops with minimal 

phyto-toxic effects (Table 1.2). It acts systemically. It has been reported to induce male sterility 

>95% should which is required for an effective production of hybrid seeds. This guarantees a high 

level of seed purity, where the resulting seed may be classified as pure hybrid (Wassel and 

Weaver, 1995; Nesvadba and Vyhnánek, 2001; Nesvadba et al., 2001).  
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Table 1.2: Previous studies on the use of Ethyl 4-fluoro oxanilate as a chemical sterilizing agent  

Crop Dose 

/ppm 

Time of application Frequency of 

application 

Success/failure References  

Oryza sativa 1500 Meiosis 1 High pollen and spikelet sterility 

Wide spectrum of varieties 

Low phytotoxity  

Ali et al., 1999 

Eragrostis tef 1000 Panicle initiation 1 86.41% pollen sterility 

No phytotoxicity symptoms  

Ghebrehiwot et al., 2015 

Eragrostis tef 1500 Panicle initiation 1 95.83% pollen sterility 

No phytotoxicity symptoms 

Ghebrehiwot et al., 2015 

Eragrostis tef 2000 Panicle initiation 1 98.61% pollen sterility 

No phytotoxicity symptoms  

Ghebrehiwot et al., 2015 

Eragrostis tef 3000 Panicle initiation 1 99.5% pollen sterility 

Floret dryness and early premature 

senescence 

Ghebrehiwot et al., 2015 

Triticum 

aestivum 

1000 Pre-meiotic  1 99.97 % pollen sterility Chakraborty and Devakumar, 

2006 

Triticum 

aestivum 

1500 Pre-meiotic 1 99.54 % pollen sterility Chakraborty and Devakumar, 

2006 

Cicer arietinum 1000 One week before flowering 1 100 % pollen sterility 

16.4 % basal flower sterility 

89.6 % total flower sterility 

Chakraborty et al., 2001 

Cicer arietinum 2000 One week before flowering 1 100 % pollen sterility 

18.2 % basal flower sterility 

92.6 % total flower sterility 

Chakraborty et al., 2001 
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1.7.3 Combining ability and gene action 

General combining ability (GCA) and specific combining ability (SCA) are concepts 

proposed by Sprague and Tatum (1942), using single crosses of maize. The ability of an inbred 

line to transmit desirable performance to its offspring is termed combining ability. Falconer (1989) 

defined GCA as the mean performance of a genotype when crossed with a series of other 

genotypes. The performance of a cross can deviate from the mean GCA of two parental lines due 

to genetic effects that are specific to that cross, and this deviation is referred to as SCA (Bernardo, 

2014). The term SCA is used to designate those cases in which certain combinations do better 

than would be expected on the basis of the mean performance of the lines involved (Deepak, 

2014). Sprague and Tatum (1942) defined SCA as the performance of two specific inbreds in a 

particular cross combination.  

Variations in GCA effects have been accredited to additive, the interaction of additive x 

additive, and the higher-order interactions of additive genetic effects in the base population, while 

discrepancies in SCA effects have been attributed to non-additive genetic variance. The analysis 

of combining ability, therefore, allows broad inferences on the nature of gene effects for a trait 

under selection (Yan and Hunt, 2002). The information on the nature and magnitude of gene 

action is important in understanding the genetic potential of a population and deciding the 

breeding procedure to be adopted in a given population (Tariq et al., 2014). Kenga et al. (2004) 

reported significant variation due to GCA and SCA effects in sorghum for days to anthesis and 

plant height. Haussmann et al. (1999) reported similar results. The significance of these findings 

is that both additive and non-additive gene action is important for these traits. Zhou et al. (2005) 

reported that inheritance of stalk biomass, Brix % and stalk weight were subject to both additive 

gene effects and non-additive gene effects, but were mainly controlled by non-additive genes. 

Schlehuber (1945) reported that genes with partial dominance action controlled sucrose content 

in hybrids. However, Baocheng et al. (1986) reported that genes with additive and dominance 

effects influenced stem sugar accumulation. In contrast, Guiying et al. (2000) reported that 

recessive genes exhibiting additive effects controlled stem sugar accumulation in sorghum.  

The success of any breeding program is dependent on combining ability studies of the 

parents because they assist in recognizing suitable parents which can be used for hybridization 

to produce superior hybrids. The estimates of combining ability are useful to predict the relative 

performance of different lines in hybrid combinations. Combining ability studies capture 



24 
 

knowledge on the genetic mechanisms regulating the inheritance of quantitative traits, and 

facilitate the selection of parents for their enhancement or their exploitation in hybrid breeding 

(Makanda et al., 2010; Thakare et al., 2014). The relative magnitude of GCA and SCA assist in 

selecting the appropriate procedure to breed for superior genetic gain (Justin et al., 2015). 

Recurrent selection should be employed when GCA effects are predominant; inbreeding followed 

by cross breeding should be used when SCA effects are predominant; recurrent selection 

followed by hybridization should be used if both are important (Singh et al., 2014). Combining 

ability studies provide useful information regarding the selection of suitable parents for effective 

hybridization programs and indicate the nature and magnitude of various types of gene action 

involved in the expression of quantitative characters (Bernardo, 2014). Combining ability studies 

also help in ensuring accumulation of desirable unfixable or fixable gene effects (Nadarajan and 

Gunasegaram, 2005).  

A line × tester mating design was developed by Kempthorne (1957), and is one of the most 

powerful tools for predicting the GCA of parents and selecting of suitable parents and crosses 

with high SCA. Line × tester analysis provides information about the combining ability effects of 

genotypes and knowledge regarding the genetic mechanism controlling yield components 

(İştipliler et al., 2015). The design has been widely used in sorghum breeding and continues to 

be utilized in quantitative genetic studies in sorghum.  

1.7.4 Heterosis 

The estimation of GCA effects helps to ascertain which genotypes may be hybridised to 

exploit heterosis and to select better crosses for further breeding (Singh and Chaudhary, 1985). 

Heterosis is the augmented vigor of the F1 generation of a cross for size, duration or yield of 

economic product over the mean of the parents or better parent is concerned (Hayes et al., 1955). 

Having progeny that out-performs both parental genotypes is the ultimate goal of all hybridization 

programs. In 1927, the first demonstration of heterosis was carried out by Corner and Karper 

(1927). The commercial exploitation of heterosis in sorghum, on the other hand, only became 

feasible when a stable and heritable cytoplasmic nuclear male-sterility (CMS) mechanism was 

developed (Stephens and Holland, 1954). Heterosis of the F1 generation is expressed over mid 

parent, better parent or available standard check variety. Significant heterosis over mid parent 

indicates partial dominance, while significant heterosis over better parent indicates over-

dominance. For profitability reasons, most breeders aiming for standard heterosis over best check 

variety when developing high yielding hybrids. Pfeiffer et al., 2010 reported that most sweet 
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sorghum cultivars are still inbred lines. Sweet sorghum has not been a major focus of commercial 

breeding programs; hybrids have been developed between grain and sweet sorghum (Murray et 

al., 2009). Increasing stalk sugar yields and hybridizing sweet sorghum has only gained impetus 

recently in efforts to increase bioenergy production and resolve the climate change crisis. There 

is heterosis in sorghum for most traits that are related to biofuel production, such as earlier 

blooming, increased height, larger stems and high biomass production (Quinby et al., 1963; 

Haussman et al., 1999; Makanda et al., 2010). It is therefore essential to direct biofuel production 

studies in sweet stem sorghum towards hybrid production. There has been little research on 

heterosis in sweet stem sorghum so far (Pfeiffer et al., 2010), although this area is now an area 

of intense research activity.  

1.8 Summary  

In conclusion, extensive genetic variation has to be established in the base population if a 

successful breeding program is to be realized. Variation can be analyzed morphologically or 

through the use of molecular markers. various hybridization systems have been proposed, 

including recessive male sterility genes combined with chemical restoration of fertility (Wilson, 

1984); male nuclear sterility (MNS), as the XYZ system of Driscoll (1985), or photo thermal-

sensible systems that require different photoperiods and thermal regimes (He et al., 1998; Murray, 

1998). With the continuous development of biotechnology, the development of hybridization 

systems via genetic engineering may be feasible. Nevertheless, the use of CHAs to develop 

improved populations and hybrids, seems efficient and may be necessary (Cisar and Cooper, 

2003). There is substantial literature on dosage, application time and frequency of application 

time of ethyl 4-fluoro oxanilate that can induce pollen sterility without a phytotoxic response in 

crops. However, no studies that have been done on sweet stem sorghum using CHAs. There is 

a need to generate information on GCA of parents, SCA in cross combinations, the extent of 

heterosis to identify promising heterotic crosses for sugar related traits, yield and yield 

components in sweet sorghum. 
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Chapter 2  

Characterization of sweet stem sorghum genotypes for bio-ethanol 

production  

Abstract 

In an effort to characterize and select promising sweet stem sorghum genotypes with 

enhanced biofuel productivity, the present study investigated the phenotypic variability present 

among diverse sorghum genotypes based on ethanol production and related agronomic traits. 

One hundred and ninety sorghum genotypes were evaluated at Ukulinga Research Station in 

South Africa. Data collected included days to 50% flowering, plant height, stem diameter, fresh 

biomass yield, dry matter yield, fibre content, stalk brix and ethanol yield. Data were subjected to 

analysis of variance, cluster analysis, correlation analysis, path coefficient analysis and principal 

component analysis. Significant differences (P < 0.01) were detected among tested genotypes 

for all measured traits. Days to flowering varied from 62 to 152 with a mean of 93 days. The 

genotypes with delayed maturity associated with increased biomass production were AS46, 

AS434, AS443, AS441 and AS205. Plant height varied from 90 to 420 cm with a mean of 236 cm. 

The tallest genotypes were AS442, AS443, AS447, AS448 and AS441. Stem diameter ranged 

from 7 to 31cm with a mean of 16 cm. Genotypes with the thickest stalks included AS143, AS441, 

AS251, AS250 and AS442. Biomass yield varied from 6.668 to 111.2 t ha-1 with a mean of 30 t 

ha-1. Genotypes AS203, AS205, AS448, AS443, AS251 had the highest biomass production. 

Stalk dry matter content ranged from 17.2 to 44.2 % with a mean of 29.8 %, while fibre content 

varied from 8.92 to 34.8 % with a mean of 17.2 %. The stalk brix yield of genotypes varied from 

3.3 to 18.9 % with a mean of 12.1 %. Ethanol productivity ranged from 240.9 to 5500 l ha-1 with a 

mean of 1886 l ha-1. The best genotypes for ethanol productivity were AS203, AS391, AS205, 

AS251 and AS448 providing mean yields of 5474 l ha-1, 4509 l ha-1, 4315 l ha-1, 4205 l ha-1 and 

3816 l ha-1, in that order. Days to flowering, plant height, stalk brix and stem diameter exerted the 

greatest indirect effects on ethanol production through higher biomass production. Biomass yield 

had the greatest direct effect on ethanol production. Therefore, the above traits should be 

considered during breeding sorghum for bio-ethanol production. Also, the traits had high 

heritability values, hence selection should provide for good genetic gains. Overall, the above 

sweet stem sorghum genotypes are useful genetic resources for breeding of sorghum with 

enhanced bio-ethanol production.  

Keywords: correlation, heritability, genetic advance, genetic coefficient of variation, 

morphological diversity, path coefficient analysis, phenotypic coefficient of variation, principal 

component analysis  
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2.1 Introduction 

Sweet stem sorghum possesses a number of adaptive and constituent traits rendering it 

suitable as a biofuel crop. In comparison with the other biofuel crops such as sugarcane and 

sugar beet, sweet stem sorghum exhibits more valuable traits such as lower water and fertilizer 

requirements, greater drought tolerance and salt tolerance, with greater adaptability to tropical, 

subtropical and temperate climates. The crop has a short harvesting period that lies in the 

intermittent sugar-harvesting period allowing for crop rotation (Ratnavathi et al., 2011; Eggleston 

et al., 2013; Morrissey and Thoma, 2017). Several recent studies have made the case for using 

sweet stem sorghum as a bioenergy crop (Vermerris, 2011; Calvino and Messing, 2012; Mullet 

et al., 2014; Prakasham et al., 2014; Anami et al., 2015 a and b).  

Genetic diversity is a vital prerequisite for selecting suitable parents for creating genetic 

diversity or for developing hybrid cultivars. Genetic enhancement of crops through conventional 

breeding is viable if substantial genetic variation is present and the desirable traits are heritable. 

Development of sweet stem sorghum cultivars for bioenergy requires efficient identification and 

incorporation of suitable traits from complementary genotypes. A number of morphological traits 

such as thick stems, talk stalks, late maturity and high biomass are regarded as important 

attributes of the crop for increased bioethanol production (Elangovan et al., 2014; Lekgari and 

Dweikat, 2014; Regassa and Wortmann, 2014; Tesfamichael et al., 2015). For example, Mathur 

et al. (2017) in their review on the potential of sweet stem sorghum as a biofuel crop indicated the 

high potential of the crop for biofuel production attributable to increased biomass yields, thicker 

and fleshier stems, with high juice yields reaching up to 78% of the total biomass, and Brix content 

ranging from 14 to 23% (Tesfamichael et al., 2015). Breeding for adaptation to tropical and 

temperate climates, and gene exchange among the five races of sorghum, have endowed sweet 

stem sorghum with a high level of genetic variability (Elangovan et al., 2014).  

Given that most breeding endeavors are time consuming and cost intensive, it is 

necessary to undertake simultaneous selection of several traits and to investigate the inter-

relationships of phenotypic traits. Understanding of the associations among traits will 

subsequently reduce time and funds invested in breeding programs for the reason that concurrent 

enhancement of a several traits can be pursued if they are positively correlated (Mangena, 2014; 

Lombardi et al., 2015). Studies on the correlation of traits are instrumental for assessing the 

feasibility of mutual selection of two or more traits, based on calculating the influence of selection 

for secondary traits on genetic gain for the primary trait under consideration. In contrast, if 
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characters are negatively associated, then it is difficult to implement concurrent selection (El Naim 

et al., 2012). Path coefficient analysis, originally proposed by Wright (1921) and later illustrated 

by Dewey and Lu (1959), permits apportioning of correlation coefficients into direct and indirect 

effects of traits on a dependent variable and accordingly assists in evaluating the cause-effect 

relationship for effective selection (Ezeaku and Mohammed, 2006; Ali et al., 2011). Path 

coefficient analysis has not been not widely applied in sweet stem sorghum selection programs 

(Kumar et al., 2012). Its application has gained momentum recently (Tesfaye et al., 2014; 

Kassahun et al., 2015) mainly due to the upsurge in research on sweet stem sorghum as a biofuel 

crop. 

Phenotypic variability is a reflection of both genetic and non-genetic components, hence, 

approximation of genetic parameters in the context of trait characterization is an indispensable 

component for prospective sweet stem improvement programs (Sami et al., 2013; Yaqoob et al., 

2015). To initiate a successful breeding program, it is of paramount significance to have a clear 

comprehension of variability using parameters like genetic co-efficient of variation, heritability and 

genetic advance (Govindaraj et al., 2010; Govindaraj et al., 2011; Kassahun et al., 2015). Genetic 

coefficient of variation concurrently with heritability values give the best estimates of the extent of 

response anticipated from selection (Akhtar et al., 2007). 

The African Centre for Crop Improvement (ACCI) of University of KwaZulu-Natal (UKZN) 

is actively engaged in breeding sweet stem sorghum for bio-fuel production in South Africa. The 

center assembled a collection of over 190 sweet stem sorghum varieties from various sources. 

The objective of the present study was to determine the phenotypic variability present among 

diverse sweet stem sorghum genotypes based on ethanol production and seven related 

agronomic traits. Information presented in the study may assist in selecting promising sweet stem 

sorghum genotypes with enhanced biofuel productivity for direct production or for future breeding 

programs. 

2.2 Materials and methods 

2.2.1 Plant materials and experimental design 

The study used 190 sorghum genotypes. The genotypes were sourced from various origins 

including from Zimbabwe, South Africa, the Netherlands, Australia, India, Ethiopia, Mozambique, 

Kenya, United States of America, Sudan, Zambia, Malawi and Mexico. The South African 

genotypes were collected from the following provinces: KwaZulu-Natal, Eastern Cape and 
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Limpopo. The test genotypes included Urja and Sugargraze that were used as standard checks. 

Urja is a commercial sweet stem sorghum hybrid being commercialized by Praj Industries in India. 

Sugargraze also referred to as SS120 is a three-way hybrid developed in Australia. Detailed 

information about each genotype is given in Table 2.1. Experiments were laid out in a lattice 

design containing 22 incomplete blocks with two complete blocks. Nine genotypes were allocated 

in each incomplete block. Each entry was planted in two-row plots of 3.0 m length with inter-row 

and intra-row spacing of 80 cm and 20 cm, respectively.  
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Table 2.1: Description of the 190 sweet stem sorghum varieties used in the study 

Name Pedigree Origin Name Pedigree Origin Name Pedigree Origin 

AS1 KARI Mtama-1 Kenya AS197 SA landrace LP 43  - AS49 

MN 1618 (tall 

selection)  - 

AS10 MN 1812(Cream) USA AS198 SA landrace LP 44  - AS5 Pirira Malawi 

AS100 Sefofo  - AS199 SA landrace LP 45  - AS50 MN 1705  - 

AS101 ICSB 478  - AS2 Thar Kenya AS51 MN 1812   - 

AS102 RTX 436  - AS200 SA landrace LP 46 - AS52 MN 2365  - 

AS103 MN 2332  - AS202 SA landrace LP 48 - AS53 MN 2500  - 

AS105 FPR(168 x GS70)  - AS203 SA landrace LP 49 - AS54 MN 2622  - 

AS106 

KAT-369 x Makueni 

local  - AS204 SA landrace LP 50 Polokwane AS55 

MN 4002 (short 

selection)  - 

AS107 SDS 5232  - AS205 SA landrace LP 51   - AS56 

MN 4002 (tall 

selection)  - 

AS108 P9504B  - AS219 Imfe Bulawayo Zimbabwe AS57 MN 4137  - 

AS109 P9511B  - AS240 AS19  Ukulinga AS58 

MN 4320 (short 

selection)  - 

AS110 P9538B  - AS241 AS79  Ukulinga AS59 

MN 4320 (tall 

selection)  - 

AS111 P9539B  - AS242 AS1  Ukulinga AS6 Serena Kenya 

AS112 BKS24ms3/BON34  - AS243 AS2 Ukulinga AS62 MN 4519  - 

AS113 TX2737/91BE7414  - AS244 AS2  Ukulinga AS63 Nus 34  - 

AS114 BTx3197  - AS245 AS77  Ukulinga AS64 Nus 34 (2nd gen.)  - 

AS115 BTx631  - AS246 AS97  Ukulinga AS65 P9528  - 

AS116 01Aphid207  - AS247 AS79  Ukulinga AS66 BTX 378  - 

AS117 01Aphid148  - AS248 AS72  Ukulinga AS67 SDL 89473  - 
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Table 2.1 continued  

Name Pedigree Origin Name Pedigree Origin Name Pedigree Origin 

AS12 

CR35.5 x IESV8820 x 

Serena Kenya AS249 AS72  Ukulinga AS68 GV 3020 Zambia 

AS121 Kat 369 x EX-1 Chira  - AS250 AS97  Ukulinga AS69 ICSR 91030  - 

AS122 KSV 12  - AS251 AS97  Ukulinga AS7 Seredo Kenya 

AS124 

02mn4034-(K70647-1-

1/pl1  - AS252 AS97 Ukulinga AS70 SDS 3978  - 

AS127 Tx2737  - AS253 AS72  Ukulinga AS71 Dwarf Wonder  - 

AS128 Tx2883  - AS254 AS72  Ukulinga AS72 KAT-487  - 

AS129 

KARI Mtama 1 x ICS 

3-1  - AS255 AS72  Ukulinga AS73 IRAT-204  - 

AS13 Gadam El Hamam Sudan AS256 AS72  UKZN AS74 ICSV 111  - 

AS130 Gambella 1107  - AS257 AS72  UKZN AS75 SADC entry 35  - 

AS131 WK#1025 Sudan  - AS258 AS72  UKZN AS76 CR35.5xIS-882  - 

AS132 Parc 1260793  - AS259 AS72  UKZN AS77 SDSH 90162  - 

AS133 Marimanti Co 1110  - AS260 AS72  UKZN AS78 IS 8193xAF 28  - 

AS134 P6 NQ#23 Sudan - AS261 AS72  UKZN AS79 P9513B USA 

AS135 Dinkmash  - AS262 AS72  UKZN AS80 P9521  - 

AS136 FLO (107) x GS 3541  - AS263 AS72  UKZN AS81 P9526  - 

AS137 IESV 92022 DL  - AS264 AS13  Mtentu AS82 ICSR 93034 India 

AS138 Mugeta  - AS265 AS79  Mtentu AS83 ICSV 700  - 

AS14 NUS 18 SA4455 SA AS271 AS79 x SS27 Ukulinga AS84 NTJ 2  - 

AS140 Kaguru  - AS28 

NUS28 -

SA4470 

South 

Africa AS85 Ent 64 DTN  - 

AS141 Kiboko local  - AS3 ZSV 3 Zambia AS86 ICSV 574  - 

AS143 Red Swazi  - AS308 AS204 x AS138 Ukulinga AS87 ICSB 323  - 

AS145 AWN98  - AS391 SS 27 C Ukulinga AS88 SDSL 89569  - 

AS146 GV 3017 Zambia AS393 AS138 x SS27 Ukulinga AS89 Skalane Zimbabwe 
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Table 2.1  continued 

Name Pedigree Origin Name Pedigree Origin Name Pedigree Origin 

AS147 MRS94  - AS395 AS103 x AS97 Ukulinga AS9 Nus 35(2nd gen.)  - 

AS148 SDS 3472  - AS4 Macia Mozambique AS90 ICSB 724  - 

AS15 Lanet Kenya AS41 MN 1408  - AS91 ICSB 5  - 

AS150 SDSL89572  - AS42 MN 1435  - AS92 SV 1  - 

AS152 01MN1589  - AS421 #5 235466 Ethiopia AS93 SAR 29 India 

AS153 Mul  - AS43 MN 1439   - AS94 

ICSB731(ICSV1171

BF)  - 

AS154 SDSH 409  - AS432 #14 235929 Ethiopia AS95 SPV 1411  - 

AS155 

ICSV 91085 x IESV 

9105 DL  - AS434 #3 243684 Ethiopia AS96 ICSB 4  - 

AS158 964063 x Seredo  - AS436 N-13strigaesistant Ethiopia AS97 E 36-1 Ethiopia 

AS16 SDS 342  - AS44 MN 1500   - AS98 ICSVP 3046  - 

AS161 KAT 369 x PP 290  - AS440 White Degalet Ethiopia AS99 S 35  - 

AS162 IESV 920220L  - AS441 Red Degalet 1 Ethiopia PEX40287 61(07S)-35  - 

AS165 IS 155  - AS442 Red Degalet 2 Ethiopia SS120 Sugargraze Australia 

AS167 NUS 2 - SA4433  - AS443 Red Degalet 3 Ethiopia SS17 SS17 SA 

AS17 ICSV 3  - AS444 Yellow Degalet Ethiopia SS27 SS27 SA 

AS173 Sinankhomo Malawi AS445 IBRO 1 Ethiopia SS44 SS44 SA 

AS18 Mexican R Line 5 Mexico AS447 IS11167 Ethiopia SS49 SS49 SA 

AS19 Mexican R Line 15 Mexico AS448 IS11758 Ethiopia SS52 SS52 SA 

AS192 Msinga imphe  - AS45 MN 1557    - SS56 SS56 SA 

AS194 Mtentu imphe  - AS46 MN 1557   - Urja URJA India 

AS195 SA landrace LP 41  - AS48 MN 1618    - WD103 W Head 3 Netherlands 

AS196 SA landrace LP 42  - 
 

     

-=Unknown origin; SA= South Africa 
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2.2.2 Trial establishment and maintenance 

Experimental genotypes were planted in seedling trays at the greenhouse facility of 

Controlled Environment Research Unit (CERU) at the University of KwaZulu-Natal. At four weeks 

after planting seedling plants were transplanted to Ukulinga Research Farm at the University of 

KwaZulu-Natal, in South Africa (29°37′S 30°22′E; 596 m above sea level). The trial was conducted 

during the 2015/2016 summer season (November to April). The trial site received 581 mm 

moisture through rainfall and supplemental irrigation. The mean minimum temperature for the 

season was 10.2oC and the mean maximum temperature was 28.4oC. Experimental plots were 

fertilized at 0.006 kg per plot with 2:3:2 (N:P:K) granular fertilizer. At the flowering stage plants 

were side dressed with 0.002 kg per plot of urea (46 % N) granular fertilizer. After transplanting 

the trial was treated with 100 ml ha-1 of lamda cyhalothrin (Karate) to control a wide range of 

pests. When plants reached 60 cm height plots were treated with 120 ml ha-1 of lamda cyhalothrin 

to control pests.  

2.2.3 Data collection 

The following quantitative traits were measured during the study: days to flowering were 

counted as the date of seeding to the time that 50 % of the plants started flowering (Vanderlip 

and Reeves, 1972). Plant height was measured from the base of the plant to the tip of the panicle 

and expressed in cm at 50% flowering. Stem diameter (cm) was measured using a vernier caliper 

on the three mid-internode sections. Stalk biomass (𝑡 ℎ𝑎−1) was measured by removing leaves 

and heads, then cutting at ground level and weighing the stems at 50% maturity. Samples of 

chopped stalks were weighed green and re-weighed after oven drying at 60oC for 30 h. Dry matter 

was calculated using the formula:𝐷𝑟𝑦 𝑀𝑎𝑡𝑡𝑒𝑟 % =  
𝐷𝑟𝑦 𝑚𝑎𝑠𝑠

𝑊𝑒𝑡 𝑚𝑎𝑠𝑠
 × 100 %. Fibre content was 

calculated using the formula: 𝐹𝑖𝑏𝑟𝑒 % = 𝐷𝑟𝑦 𝑚𝑎𝑡𝑡𝑒𝑟 % − 0.005 − 
𝑆𝑡𝑎𝑙𝑘 𝐵𝑟𝑖𝑥

100
. Stalks were cut using 

a chaff cutter and a representative sample was analyzed for % Brix using hand-held refractometer 

method. Ethanol productivity was calculated using the formulae below: 

𝑇𝑜𝑡𝑎𝑙 𝐵𝑟𝑖𝑥 = 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑡 ℎ𝑎−1 ×  
𝑆𝑡𝑎𝑙𝑘 𝐵𝑟𝑖𝑥

100
 

                                    𝑇𝑜𝑡𝑎𝑙 𝑓𝑒𝑟𝑚𝑒𝑛𝑡𝑎𝑏𝑙𝑒 𝑠𝑢𝑔𝑎𝑟𝑠 = 𝑇𝑜𝑡𝑎𝑙 𝐵𝑟𝑖𝑥 × 0.85 

𝐸𝑡ℎ𝑎𝑛𝑜𝑙 𝑙 ℎ𝑎−1  =  
𝑇𝑜𝑡𝑎𝑙 𝑓𝑒𝑟𝑚𝑒𝑛𝑡𝑎𝑏𝑙𝑒 𝑠𝑢𝑔𝑎𝑟𝑠 × 0.46

0.79
 × 1000 
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2.2.4 Data analyses 

General analyses of variance were performed for all quantitative data using the REML 

program of GenStat 17th edition with number of plants as the covariate using a model by Cochran 

and Cox (1957). Multiple comparisons among variety means were conducted by Fisher’s 

unprotected least significant difference (LSD) test at 5% levels of significance (Fisher, 1935). 

Cluster analysis was performed using Genstat 18th edition to establish genetic relationships 

among genotypes. Principal component analysis (PCA) based on the correlation matrix was 

performed using Genstat to identify influential traits for selection. A PCA bi-plot was plotted using 

GenStat to show the associations among genotypes based on observed traits. The Pearson’s 

phenotypic correlation analysis was performed in GenStat 17th Edition (Payne et al., 2011) to 

describe the relationship among the morphological traits.  Path coefficient analysis was used to 

calculate direct and indirect effects of traits on ethanol production using the PathSAS program 

(SAS Institute, 2010) developed by Cramer et al. (2000). Variance components were partitioned 

using the restricted maximum likelihood (REML) approach in Genstat 17th. Heritability in the 

broad- sense was calculated using Hallauer and Miranda (1981) as follows:𝐻2 =  
𝛿𝑔

2

𝛿𝑝
2; where: 𝐻2 = 

broad-sense heritability; 𝛿𝑔
2 = genotypic variance; 𝛿𝑝

2 = phenotypic variance. The heritability % 

was categorized as low, moderate and high in accordance with Robinson et al. (1949) as follows: 

0-0.3, low; 0.3-0.6, moderate and >0.6, high. Genetic coefficient of variation (GCV) and 

phenotypic coefficient of variation (PCV) were computed according to Singh and Chaudhary 

(1979) and expressed as percentage as follows: 𝐺𝐶𝑉 =  
√𝛿𝑔

2

�̅�
 × 100 and 𝑃𝐶𝑉 =

√ 𝜕2
𝑝

�̅�
 × 100; 

where: 𝛿𝑔
2 = genotypic variance; 𝛿𝑝

2 = phenotypic variance; �̅� = grand mean of trait 𝑥. Predicted 

genetic gain (PG) was calculated by selecting 13 % of the superior genotypes and calculated 

using the following formula (Singh and Chaudhary, 1979): 𝑃𝐺 = 𝑖𝐻2√𝜕2
𝑝 × 100; where: 𝑖 = 

selection differential (1.627) at 13 % selection intensity; 𝐻2 = broad-sense heritability; 𝜕2
𝑝= 

phenotypic variance. Finally, predicted genetic gain % (PG %) was calculated as percent of the 

mean calculated according to Shukla et al. (2006): 𝑃𝐺 % =
𝑃𝐺

�̅�
 × 100; where: �̅� = grand mean of 

trait 𝑥.  
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2.3 Results and discussion 

2.3.1 Analysis of variance 

Genotypes showed highly significant (p<0.001) differences for all measured traits (Table 

2.2). The significant differences indicated the existence of high degree of variability among the 

genotypes that could be exploited for sweet stem sorghum improvement (Tesfamichael et al., 

2015). 

Table 2.2: Partial analysis of variance and significant tests for eight bioethanol related 

traits of 190 sweet stem sorghum genotypes 

Source  DF DTF PH SD BM DM FC SB EP 

Rep 1 262.1* 0.256 5.03* 50.05 0.0027 0.00301 0.035 142233 

Genotype 189 497** 0.44** 31.1** 276.1** 0.003** 0.0034** 12.1** 1374556** 

* significant at 5 %, ** significant at 1 %, Rep= replication, DF= degrees of freedom, DTF=days to 

flowering, PH= plant height, SD=stem diameter, BM=biomass, DM= dry matter, FC= fibre content, SB= 

stalk brix, EP= ethanol  

2.3.2 Mean response of test genotypes for eight bioethanol related traits 

Table 2.3 shows the mean response of test genotypes for eight bioethanol related traits. 

Days to flowering varied from 62 to 152 with a mean of 93 days. The genotypes with delayed 

maturity associated with increased biomass production were AS46, AS434, AS443, AS441 and 

AS205. Plant height varied from 90 cm to 420 cm with a mean of 236 cm. The tallest genotypes 

were AS442, AS443, AS447, AS448 and AS441. Stem diameter ranged from 7 cm to 31.33 cm 

with a mean of 16 cm.  Genotypes with the thickest stalks included AS143, AS441, AS251, AS250 

and AS442. Biomass yield varied from 6.668 to 111.2 t ha-1 with a mean of 30 t ha-1. Genotypes 

AS203, AS205, AS448, AS443, and AS251 had the highest biomass yield. Stalk dry matter 

content ranged from 17.2 to 44.2% with a mean of 29.8%, while fibre content varied from 8.92 to 

34.8% with a mean of 17.2%. The stalk brix of genotypes varied from 3.3 to 18.9% with a mean 

of 12.1%. Ethanol productivity ranged from 240.9 to 5500 l ha-1 with a mean of 1886 l ha-1.  

The best ethanol yielding genotypes were AS203, AS391, AS205, AS251 and AS448 

providing mean yields of 5474 l ha-1, 4509 l ha-1, 4315 l ha-1, 4205 l ha-1  and 3816 l ha-1 , in that 

order. The top ethanol producing genotype AS 203 also had the highest biomass yield of 84 t ha-

1. However, this genotype was slightly shorter, thinner and had lower stalk brix than genotype 

AS205. A similar trend was observed for the bottom yielding genotype. Genotype AS12 was the 
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lowest yielding only in terms of ethanol production. But genotype AS 12 was thicker, taller and 

later maturing than genotypes AS71 and AS194. The trend in ethanol production was not affected 

by other quantitative traits.  

Ethanol productivity of some of the tested genotypes were similar to the yields to the report 

of Regassa and Wortmann (2014). They reported that the highest ethanol productivity that can 

be anticipated from sweet stem sorghum as 6 000 l ha-1. However, stalk brix, plant height and 

stem diameter of the experimental genotypes did not reach the maximum of 24%, 480 cm and 45 

mm, respectively, reported by the same authors. Wide variability in plant height (90 cm to 270 

cm) and days to flowering (50 to 80 days) were reported by Tesfamichael et al., 2015. Elangovan 

et al. (2014) reported large variation among genotypes in days to flowering (68–100 days), plant 

height (232–497 cm) and stalk brix (4 to 22 %). Lekgari and Dweikat (2014) also reported a wide 

range in days to anthesis of 70 to 147 days, and plant height of 76 cm to 423.8 cm.  

Ample genetic variability was detected among the tested sweet stem sorghum genotypes 

allowing for selection for all the measured traits. Most traits had a low standard deviation (SD) 

from the mean, with plant height having an SD of 4 cm from a mean of 240 cm and stem diameter 

having an SD of 4.9 cm from a mean of 15.8 cm. On the other hand, biomass yield had a relatively 

high SD of 15 t ha-1 from a mean of 30 t ha-1. A relatively low coefficient of variation (< 17%) was 

detected for all traits except for biomass and ethanol production. The high coefficient of variation 

for both biomass and ethanol production denoted susceptibility to environmental factors 

influencing their expression (Sinha and Kumaravadivel, 2016). The selected top 13% of 

genotypes produced ethanol yields ranging from 3000 l ha-1 to 5 500 l ha-1 (Table 2.3). On the 

other hand, the bottom 13 % produced only 240 l ha-1 to 880 l ha-1. 

2.3.3 Clustering of sweet stem genotypes based on eight bioethanol related traits 

Table 2.4 presents clustering of test genotypes. Most high ethanol producing genotypes 

were allocated in Cluster III. Sub-clusters a and b in Cluster III contained genotypes that did not 

produce much ethanol. All Sub-cluster III-b genotypes were among the top five high ethanol 

producing genotypes. All the sub-clusters had at least 1 high ethanol producing genotype (in the 

top 13 %) except Sub-clusters I-a, I-b and II-a. This is an indication of a high level of morphological 

diversity among the tested population. Sub-cluster II-a contained three of the five late maturing 

genotypes (AS434, AS441, AS443) and four of the five tallest genotypes (AS441, AS442 AS 443, 

AS 447).   
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Table 2.3: Means of eight bioethanol and related traits of 190 sweet stem sorghum genotypes 

Name DTF PH SD BM DM FC SB EP Name DTF PH SD BM DM FC SB EP 

AS203 106 345 22.8 83.8 27.5 13.5 13.5 5474 AS69 79.0 143 13.5 22.7 28.1 13.0 14.6 1639 

AS391 116 305 13.7 62.8 28.1 13.1 14.5 4509 AS53 147.0 310 27.3 40.3 29.8 20.7 8.6 1621 

AS205 148 350 23.5 70.5 26.2 18.6 14.1 4315 AS444 140.0 375 18.8 38.9 27.4 18.5 8.4 1618 

AS251 136 385 29.2 64.2 31.1 17.5 13.1 4205 AS198 128.0 240 14.3 30.2 23.4 11.8 11.1 1615 

AS448 132 405 27.5 66.7 31.8 20.0 11.3 3816 SS120 87.5 260 16.7 31.7 26.7 16.0 10.2 1598 

AS44 130 300 19.2 56.1 31.2 17.0 13.8 3800 AS94 84.0 190 14.0 24.9 23.9 10.6 12.8 1571 

AS56 133 280 17.3 51.1 30.0 14.6 14.9 3761 AS14 74.0 190 13.5 29.1 22.7 11.4 10.8 1554 

AS246 87 305 17.2 48.7 33.0 17.2 15.3 3743 AS16 77.0 285 13.3 28.3 30.9 19.4 11.0 1542 

AS105 89 235 15.8 47.5 29.3 13.4 15.4 3619 AS162 77.0 160 17.8 24.6 29.4 16.3 12.6 1532 

AS59 106 285 20.8 54.7 32.3 18.3 13.5 3574 AS442 136.5 410 27.8 53.6 29.5 23.3 5.7 1524 

AS111 101 240 13.8 47.8 29.8 14.2 15.1 3570 AS202 89.5 240 17.2 31.4 22.2 12.1 9.6 1519 

AS113 85 210 18.5 43.4 30.6 13.7 16.4 3548 AS252 114.0 345 24.8 37.3 33.0 24.2 8.3 1517 

AS253 107 315 22.8 53.3 25.8 12.2 13.2 3476 AS85 82.5 180 15.0 19.9 29.4 13.6 15.3 1494 

AS254 99 330 19.8 57.7 27.6 15.2 12.0 3418 AS440 147.0 365 22.3 41.0 30.5 22.6 7.4 1481 

AS79 113 210 21.2 43.0 30.2 14.2 15.6 3313 AS248 86.0 310 21.5 30.9 25.0 15.0 9.6 1462 

AS195 107 270 18.3 51.3 25.4 11.9 13.0 3310 AS265 107.5 330 15.3 32.6 35.0 25.8 8.7 1451 

AS58 105 290 19.8 47.2 30.5 16.0 14.1 3286 AS3 76.5 220 14.7 25.6 32.3 20.4 11.4 1449 

AS255 127 360 20.0 48.5 28.7 14.5 13.7 3278 AS247 90.0 320 22.5 28.2 41.6 30.7 10.4 1446 

AS82 101 230 10.3 39.7 33.0 15.8 16.7 3260 AS436 81.0 210 11.8 23.3 27.7 14.9 12.3 1410 

AS127 82 245 9.0 42.0 29.1 13.2 15.5 3181 AS146 91.5 190 18.2 23.3 31.5 19.1 11.9 1395 

AS245 131 305 24.2 48.7 25.5 12.2 12.8 3152 AS88 85.0 150 12.8 18.7 29.5 14.1 14.9 1363 

AS74 75 220 14.8 36.9 33.0 15.5 17.1 3117 AS421 121.5 295 20.0 31.3 35.8 26.7 8.7 1341 

AS98 127 250 19.0 44.5 29.1 14.5 14.1 3105 AS441 148.0 400 30.5 46.1 25.9 19.6 5.8 1326 

AS443 149 405 23.8 65.0 30.7 21.0 9.2 3021 AS77 73.0 185 11.3 20.7 28.4 14.7 13.2 1324 

AS78 128 275 19.7 42.7 41.8 27.1 14.2 3021 AS52 106.0 370 20.7 36.8 33.3 25.5 7.3 1297 
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Table 2.3 continued 

Name DTF PH SD BM DM FC SB EP Name DTF PH SD BM DM FC SB EP 

SS27 97 275 13.3 42.0 30.8 15.8 14.6 3008 AS18 86.0 170 14.3 19.0 27.6 13.6 13.5 1272 

AS83 95 245 13.5 40.3 29.2 14.3 14.4 2869 AS51 86.5 305 20.7 27.2 34.0 24.3 9.2 1264 

AS45 119 345 17.8 47.1 24.3 11.5 12.3 2864 AS19 81.5 193 12.7 20.0 27.6 14.5 12.6 1242 

AS447 141 405 23.3 51.3 30.2 18.5 11.2 2813 AS1 83.5 170 13.3 19.2 28.3 14.8 13.0 1236 

AS86 107 230 20.7 37.0 32.9 17.3 15.1 2770 AS271 104.0 280 17.8 30.8 20.1 11.5 8.1 1230 

AS10 92 310 20.0 49.6 38.5 26.5 11.5 2723 AS243 120.0 330 20.7 36.3 35.3 28.0 6.8 1227 

AS122 86 200 13.8 35.6 30.9 15.1 15.3 2674 AS55 88.0 170 12.3 20.5 29.9 17.4 12.0 1214 

AS103 88 250 13.0 43.2 27.3 14.4 12.4 2667 SS44 78.0 190 13.3 17.8 29.5 15.1 13.9 1203 

AS158 100 185 12.0 36.3 31.2 15.7 15.0 2655 AS89 85.0 200 8.8 27.8 20.0 10.6 8.9 1201 

AS244 87 290 19.5 39.6 27.5 14.0 13.0 2548 AS15 125.5 275 22.2 29.9 34.1 25.7 7.9 1195 

AS95 106 255 16.2 35.7 30.1 15.1 14.5 2547 AS197 112.5 230 13.5 23.2 23.9 13.6 9.8 1173 

AS204 87 255 12.2 37.3 26.4 12.4 13.5 2517 AS242 82.0 265 26.0 23.1 25.2 14.5 10.2 1169 

AS97 86 175 15.0 33.7 28.7 13.4 14.8 2471 AS109 85.0 140 12.8 18.2 29.1 15.7 12.9 1159 

AS2 80 185 11.3 41.7 22.6 10.3 11.9 2448 AS100 86.0 255 17.5 25.9 35.4 26.0 8.9 1134 

AS72 87 185 14.3 27.0 33.3 15.0 17.8 2391 PEX40287 76.0 165 18.0 18.8 23.0 12.0 10.5 1131 

AS445 134 390 21.7 46.4 34.4 23.5 10.4 2387 AS432 114.5 295 18.8 26.7 34.3 25.2 8.6 1127 

AS108 84 245 20.0 31.5 34.6 18.8 15.3 2386 AS80 80.0 140 8.8 17.3 26.6 13.3 12.8 1096 

AS70 78 225 15.2 33.9 34.6 20.2 13.9 2348 AS154 83.5 165 15.3 19.4 26.6 14.8 11.3 1085 

AS106 87 300 23.3 39.2 30.2 17.7 12.0 2326 AS150 78.5 180 8.8 24.2 23.9 14.5 9.0 1084 

AS395 114 305 18.3 45.3 25.2 14.8 9.9 2321 AS65 79.0 135 10.2 16.2 27.5 13.6 13.5 1071 

AS199 84 220 16.0 33.3 29.1 14.6 14.0 2301 AS117 84.5 140 12.5 18.4 26.0 13.8 11.8 1065 

AS200 80 235 10.8 34.9 27.6 13.8 13.4 2285 AS165 74.0 160 12.8 18.9 32.3 20.6 11.2 1046 

AS240 106 280 15.8 32.0 31.4 16.4 14.5 2285 AS262 83.0 190 14.2 20.0 27.1 16.1 10.5 1038 

AS101 89 200 13.8 32.3 29.3 14.7 14.1 2256 AS140 73.0 205 10.0 16.4 39.5 26.3 12.7 1014 
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Table 2.3 continued 

Name DTF PH SD BM DM FC SB EP Name DTF PH SD BM DM FC SB EP 

AS128 77 180 18.3 28.4 33.2 16.7 16.0 2236 AS145 103.0 290 13.8 30.0 36.0 29.1 6.4 1014 

Urja 97 295 15.3 27.4 31.5 14.8 16.2 2193 AS28 62.0 200 11.0 15.9 32.9 19.7 12.7 995 

AS259 87 290 18.8 35.9 28.2 15.5 12.3 2185 AS167 85.0 285 13.7 29.3 34.8 27.9 6.4 957 

AS147 86 190 19.3 26.3 30.6 13.4 16.7 2178 AS99 75.0 170 9.8 14.2 29.3 16.3 12.6 919 

AS258 75 170 11.3 32.6 28.6 14.6 13.5 2176 AS5 81.0 135 11.3 16.6 23.8 12.1 11.2 916 

AS84 85 205 8.7 28.8 30.8 15.0 15.3 2176 AS173 85.5 315 15.2 23.8 40.2 32.2 7.5 909 

AS41 129 340 16.2 38.6 29.7 17.7 11.6 2154 AS68 79.0 140 9.0 12.6 27.5 12.4 14.6 906 

AS263 92 290 13.7 34.0 28.6 16.3 11.9 2134 AS393 106.0 280 16.0 24.7 23.2 15.7 7.0 887 

AS148 79 185 17.0 27.8 29.6 13.6 15.5 2129 AS73 82.5 123 7.3 12.1 25.8 11.0 14.3 851 

AS87 88 160 12.5 27.6 30.2 14.2 15.5 2121 AS194 74.0 160 11.0 13.7 38.1 25.1 12.5 849 

AS7 84 180 18.3 27.0 34.1 17.8 15.8 2113 AS64 74.5 185 12.3 18.5 31.4 21.6 9.3 848 

SS17 74 275 14.0 28.2 30.8 15.0 15.3 2098 AS4 80.0 125 13.5 19.2 20.4 10.6 9.3 842 

AS196 100 270 13.7 28.0 30.2 14.4 15.3 2096 AS71 73.5 120 8.2 18.7 27.2 17.6 9.2 837 

AS6 93 195 21.0 28.8 33.4 18.0 14.9 2083 AS81 90.5 120 15.2 18.4 22.2 12.9 8.8 803 

AS107 81 215 12.5 28.7 32.3 17.4 14.4 2045 SS56 68.0 170 9.2 15.4 28.7 18.1 10.1 770 

AS260 90 295 22.2 36.2 33.8 21.9 11.4 2037 AS116 85.5 110 11.0 19.7 22.2 13.8 7.9 769 

AS112 88 160 17.3 24.6 35.5 18.5 16.5 2011 AS91 81.0 130 10.0 15.9 25.7 16.1 9.2 736 

AS155 83 200 12.2 23.8 37.2 19.9 16.9 1993 SS49 76.5 170 13.5 8.9 33.0 24.4 8.1 716 

AS135 82 190 13.3 24.6 29.9 13.1 16.3 1987 AS62 83.5 225 12.5 29.5 18.7 13.4 4.9 707 

AS131 79 205 13.0 25.2 31.0 14.7 15.8 1942 AS42 120.0 270 18.3 20.5 39.9 32.2 7.2 701 

AS249 88 295 25.0 36.1 23.3 12.3 10.5 1925 AS43 119.0 275 17.0 19.7 34.1 26.5 7.2 672 

AS136 82 190 18.2 25.7 31.7 16.1 15.1 1924 AS13 76.5 125 9.2 11.0 24.8 12.1 12.2 663 

AS121 88 215 11.3 28.4 32.5 18.5 13.5 1922 AS49 77.5 190 8.7 12.9 32.8 22.7 9.6 615 

AS48 131 295 18.5 34.0 35.4 23.5 11.4 1919 AS114 78.0 120 8.3 14.5 22.7 14.2 8.0 605 
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Table 2.3 continued 

Name DTF PH SD BM DM FC SB EP Name DTF PH SD BM DM FC SB EP 

AS129 79 190 13.8 24.1 31.7 15.3 15.9 1899 AS9 84.0 160 9.3 17.8 23.8 16.5 6.8 599 

AS110 87 150 8.3 36.4 25.7 14.7 10.5 1889 AS57 86.5 200 14.0 12.7 27.5 18.0 9.0 567 

AS241 122 300 21.7 33.5 33.4 21.5 11.4 1887 AS264 83.5 335 12.8 18.1 30.5 23.7 6.3 556 

AS75 74 215 9.8 27.7 33.3 18.9 13.9 1883 AS115 92.5 110 8.7 17.1 26.0 19.8 5.7 482 

AS141 70 175 14.0 25.3 31.2 15.6 15.2 1862 AS96 86.0 125 8.5 11.7 21.0 12.3 8.3 481 

AS17 75 190 14.3 29.8 25.8 12.9 12.4 1853 AS124 84.0 95 12.2 10.6 18.7 12.5 5.7 363 

AS143 84 195 31.0 27.9 26.1 12.4 13.3 1829 AS54 64.5 195 11.0 10.1 30.5 25.0 5.0 309 

AS250 88 305 29.0 35.3 25.8 14.8 10.6 1816 AS12 74.5 165 12.0 8.4 38.5 31.9 6.1 241 

AS137 83 190 13.5 24.1 30.8 15.1 15.2 1815 AS102 83.5 * 12.2 * * * * * 

AS92 81 155 14.2 25.0 29.2 14.1 14.7 1792 AS152 78.5 90 10.8 7.8 * * * * 

AS134 86 210 18.3 28.3 31.2 18.3 12.4 1781 AS161 83.0 * 17.7 * * * * * 

AS50 95 335 21.3 39.8 31.7 22.2 9.1 1777 AS192 79.0 200 10.5 15.5 * * * * 

AS434 150 360 18.0 42.0 26.8 17.7 8.6 1773 AS219 96.5 290 17.5 * * * * * 

AS67 78 160 15.8 22.6 33.4 16.8 16.1 1769 AS256 72.5 230 9.7 8.4 * * * * 

AS63 78 220 15.3 23.8 31.4 16.0 14.9 1758 AS257 73.0 200 9.5 6.7 * * * * 

AS90 81 155 14.3 23.0 29.0 13.3 15.2 1744 AS261 68.5 180 14.3 16.6 * * * * 

AS76 72 205 24.3 23.5 36.5 21.0 15.0 1741 AS93 103.0 * 12.0 * * * * * 

AS66 77 172 13.7 23.4 29.2 13.6 15.1 1734 SS52 73.5 130 9.7 8.8 * * * * 

AS308 94 295 15.3 31.5 26.4 14.8 11.1 1733 WD103 62.5 220 13.7 7.9 * * * * 

AS130 82 225 14.3 24.4 30.9 16.5 13.9 1721 Mean 92.9 236 15.8 30.1 29.8 17.2 12.1 1886 

AS153 81 210 11.2 25.8 30.8 16.9 13.5 1720 Std D 20.9 4 5.0 14.4 4.8 5.2 3.2 1006 

AS46 151 310 20.0 37.0 35.3 25.4 9.5 1717 Min 62.0 90 7.0 6.7 17.2 8.9 3.3 240.9 

AS133 82 205 17.7 24.9 28.6 14.2 13.9 1693 Max 152.0 420 31.3 111.2 44.2 34.8 18.9 5474 

AS138 73 190 12.8 22.6 31.1 15.2 15.5 1688 % CV 22.5 1.7 31.6 47.8 16.1 30.2 26.4 53.3 

AS132 79 190 19.0 20.9 31.0 14.4 16.1 1653 LSD 19.7 64 1.9 19.5 8.6 8.3 4.7   

DTF=days to flowering, PH= plant height, SD=stem diameter,  BM=biomass, DM= dry matter, FC= fibre content, SB= stalk brix, EP= 
ethanol, Std D= standard deviation, Min= minimum, Max= maximum, CV= coefficient of variation, LSD= least significant difference, *= missing 
result, Bold text denote high ethanol producing genotypes selected at 13 % selection intensity. 
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Table 2.4: Clusters and sub-clusters of 190 sweet stem genotypes based on eight bioethanol related traits 

 

 

Cluster Sub-cluster Name of genotype 

I 

a 
AS1, AS109, AS110, AS114, AS115, AS116, AS117, AS124, AS13, AS14, AS146, AS147, AS148, AS150  AS152 AS154, 
AS17, AS18, AS19, AS2, AS262, AS4, AS436, AS5, AS55, AS57, AS62, AS65,  AS68,  AS73AS77, AS80, AS81, AS89, 
AS9, AS91,AS94, AS96, AS99, PEX40287, SS44, SS52, SS56, AS71 

b AS12, AS140, AS165, AS192, AS194, AS256, AS257 

c 

AS101, AS102, AS103, AS105, AS107, AS108, AS111, AS112, AS113, AS121, AS122, AS127, AS128, AS129, AS130, 
AS131, AS132, AS133, AS134, AS135, AS136, AS137, AS138, AS141, AS153, AS155, AS158, AS16, AS196, AS199, 
AS200, AS204, AS240, AS258, AS3, AS6, AS63, AS66, AS67, AS69, AS7, AS70, AS74, AS75, AS76, AS82, AS83, 
AS84, AS85, AS87,  AS88, AS90, AS92, AS93, AS95, AS97, AS162, AS161, AS72, SS17, SS27, Urja  

d 
AS106, AS197, AS198, AS202, AS219, AS242, AS244, AS248, AS249, AS250, AS259, AS263, AS271, AS308, AS393, 
SS120 

II 

a AS41, AS434, AS440, AS441, AS442, AS443, AS444, AS445, AS447, AS53 

b AS78 

c 
AS10,  AS100, AS145, AS15, AS167, AS254, AS260, AS264, AS265, AS42, AS173, AS241, AS243, AS247, AS252, 
AS421, AS43, AS432, AS46, AS48, AS50, AS51, AS52 

III 

a AS246, AS391, AS58, AS59, AS79, AS86 

b AS203, AS205, AS251, AS448 

c AS195, AS245, AS253, AS255, AS45, AS56, AS98, AS395, AS44 

IV a AS143 
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2.3.4 Phenotypic correlation among bioethanol related traits 

The correlation coefficients of the eight quantitative traits assessed are presented in 

Table  2.5. Correlations among quantitative traits were analyzed in terms of significance, strength 

and nature of correlation. Several traits showed highly significant (p≤0.001) correlations such as 

days to flowering with all traits; biomass with ethanol yield and plant height; ethanol with all traits 

except dry matter; plant height with all traits. Kumar et al. (2012) reported that plant height 

exhibited significant positive association with, days to flowering, and brix. A strong correlation was 

recorded between biomass with ethanol production (r = 0.83). Biomass was strongly correlated 

to days to flowering, ethanol production, plant height and stem diameter. These results were in 

agreement with Ganesh et al. (1995) and Prasad et al. (2013). Their studies indicated that high 

biomass with total sugar content is a pre-requisite for high ethanol production. Hence, these traits 

could be utilized in the sweet sorghum breeding programs for ethanol production. Selection for 

these traits would help in achieving highest ethanol productivity. Other strong correlations were 

detected between days to flowering with plant height and stem diameter, plant height with stem 

diameter, fibre content with dry matter. From these results, it is evident that these traits are 

associated with ethanol production and are inter-correlated among them. Thus, the selection in 

any one of these ethanol yield attributing traits will lead to increase in the other traits, thereby 

enhancing ethanol production. Stalk brix had a relatively weak positive association with biomass, 

agreeing with the reports of Bangarwa et al. (1989) and Kumar et al. (2012). 
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Table 2.5: Pearson’s correlation coefficients, among quantitative traits of sweet stem 

sorghum genotypes (n =190) 

 
DTF PH SD BM DM FC SB EP 

DTF 
 

       

PH 0.7285** 
 

      

SD 0.5948** 0.6877** 
 

     

BM 0.6653** 0.7331** 0.6014** 
 

    

DM 0.0765 0.2381** 0.3726* 0.041 
 

   

FC 0.2386** 0.1714** 0.2198** -0.0281 0.7811** 
 

  

SB -0.2339** -0.2272** -0.0824* 0.1411 0.1886** -0.4564** 
 

 

EP 0.3727** 0.4427** 0.3777** 0.8335** 0.109 -0.2403** 0.5701** - 

* significant at 5 %, ** significant at 1 %, DTF=days to flowering, PH= plant height, SD=stem diameter, 

BM= biomass, DM= dry matter, FC= fibre content, SB= stalk brix, EP= ethanol 

 

2.3.5 Path coefficient analysis 

Table 2.6 is a presentation of the direct and indirect effects of the component traits on 

ethanol productivity. Few traits exhibited significant (p≤0.001) direct effects on ethanol production 

including plant height, stem diameter and biomass. Biomass had the greatest direct effect on 

ethanol production. Hence, it may be concluded that these traits could enhance ethanol 

production more than other traits. Days to flowering, plant height, stalk brix and stem diameter 

showed the greatest indirect effects on ethanol production through biomass. Similar results have 

been reported by Kumar et al. (2012). Since biomass had the highest direct effect on ethanol 

production, these traits should be considered during future selection programs. This is in 

agreement with Naphade (1972), Potdukhe et al. (1994) and Kumar et al. (2012), who reported 

that days to flowering had an indirect positive association with biomass through plant height, while 

plant height had an indirect positive effect on biomass through days to flowering, which indicated 

that there is a real association between days to flowering and plant height. Hence, these traits 

should be considered during progeny selection. The greatest indirect effect on ethanol production 

via biomass was exerted by plant height. The greatest indirect effects on ethanol production via 

dry matter was fibre content and vice versa.
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Table 2.6: Path coefficients showing direct (bold) and indirect effects of quantitative traits 

on ethanol production in 190 sweet stem sorghum genotypes 

Traits DTF PH SD BM DM FC SB 

DTF -0.052 0.005 -0.041 0.559 -0.005 0.020 -0.114 

PH -0.038 0.007* -0.047 0.616 -0.016 0.031 -0.110 

SD -0.031 0.005 -0.068* 0.506 -0.012 0.018 -0.040 

BM -0.035 0.005 -0.041 0.841** -0.003 -0.002 0.069 

DM -0.004 0.002 -0.012 0.034 -0.068 0.065 0.092 

FC -0.012 0.003 -0.015 -0.024 -0.053 0.083 -0.222 

SB 0.012 -0.002 0.006 0.119 -0.013 -0.038 0.486 

* significant at 5 %, ** significant at 1 %, DTF=days to flowering, PH= plant height, SD=stem diameter, 

BM= biomass, DM= dry matter, FC= fibre content, SB= stalk brix 

2.3.6 Principal component analysis (PCA) 

Table 2.7 is a presentation of the rotated component matrix that displays the allocation of 

the entire variance explained by various principal components and their associations with 

quantitative traits. Principal component analysis suggested that only 3 first components (eigen 

value >1) are important, and account for 88 % of the total variation. This result differed from the 

studies of Mujaju and Chakuya (2008), Ali et al. (2011) and Tesfamichael et al. (2015) who 

reported on different agro-morphological traits in sweet stem sorghum. Ali et al. (2011) reported 

that out of a total of 21 PCs, seven had Eigen values >1 and these seven PCs contributed 

77.653% of the total variability amongst the sorghum genotypes assessed for various morpho-

physiological traits. Tesfamichael et al. (2015) reported that out of seven PCs the first 4 explained 

the majority of the total variation. These four PCs with Eigen value >1 contributed 74.6% of the 

total variability amongst the sorghum genotypes assessed for various morpho-physiological traits. 

In the present study principal component-1 (PC-1) and PC-2 were highly significant, contributing 

71% to the total variation. The sign of the loading signifies whether the relationship is positive or 

negative. The first principal component, which accounted for about 45% of the variation, was 

strongly associated with plant height, stem diameter, biomass and days to flowering. Therefore 

selection of tall, thick, high biomass and late maturing genotypes is essential for the breeding 

program. Fibre content had a high positive loading into the second principal component while 

ethanol yield and stalk brix had negative loading into the second principal component. Traits with 

a high correlation to the third principal component in a negative direction were dry matter and 

stalk brix. Principal component-3 explained only 18 % of the total variation. 
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Figure 2.1 is a presentation of the principal component bi-plot analysis of eight phenotypic 

traits of 190 sweet stem sorghum genotypes. The bi-plot is illustrative of the associations of the 

phenotypic traits and the genotypes, with the principal components. According to Mwadzingeni et 

al. (2016) a high correlation of traits in discriminating genotypes can be observed from traits that 

have small angles between dimension vectors in the same direction. In the current study, such 

relationships can be observed between stem diameter, plant height and days to flowering, 

between ethanol, biomass and stalk brix and between fibre content and dry matter. Genotypes 

excelling in a particular trait were plotted closer to the vector line and further in the direction of 

that particular vector, often on the vertices of the convex hull (Mwadzingeni et al., 2016). 

According to the bi-plot the following genotypes: AS391, AS203 and AS205, were the best 

performers for ethanol yield and biomass because they were closest to these traits and located 

on the convex hull. Most of the genotypes were scattered in the negative sides of PC-1 and PC- 2.  

 

Table 2.7: Rotated component matrix of 8 phenotypic traits of 190 sweet stem sorghum 

genotypes 

Trait PC-1 PC-2 PC-3 

Days to flowering  0.43148  0.08430  0.25804 

Plant height  0.47908  0.13052  0.11948 

Stem diameter 0.41913  0.05609  0.09837 

Biomass 0.47148  -0.24558  0.05053 

Dry matter 0.16168  0.32890  -0.69421 

Fibre content 0.16176  0.60491  -0.27921 

Stalk Brix -0.00608  -0.49564  -0.54753 

Ethanol productivity 0.36606  -0.43893  -0.21733 

Explained variance (eigenvalue) 3.548  2.121  1.397 

Proportion of total variance (%) 44.35  26.51  17.47 

Cumulative variance (%) 44.35 70.86 88.33 



60 
 

 

Figure 2.1: Bi-plot analysis of eight phenotypic traits of 190 sweet stem sorghum 

genotypes evaluated (PC= principal component) 
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2.3.7 Genetic parameters 

In this study all the traits had high heritability (>0.5) (Table 2.8). According to Insan et 

al. (2016), the characters that have broad genetic variability and high heritability estimates 

could be influenced by additive gene action. High heritability may not result in high levels of 

genetic gain (Johnson et al. 1955). Therefore it is necessary to oversee heritability estimates 

alongside genetic advance. In this case, high heritability estimates did not guarantee high 

predicted gain as the low predicted gain of < 30 % for most traits did not match the high 

heritability of > 0.8 for most traits. Similar results of low predicted gain were observed by Insan 

et al. (2016) and such results may be attributed to the non-additive gene effects. On the other 

hand, high heritability coupled with high levels of genetic gain for traits such as ethanol 

productivity signified the existence of additive gene action, hence a strong response to 

selection for ethanol productivity (Panse and Sukhatme 1964, 1989). Medium heritability and 

low genetic gain indicate the presence of epistatic gene action (Elangovan et al., 2014).  

 

Burton (1952) advocated for the use of genotypic coefficient of variation (GCV) in 

addition to the heritability estimate in advancing the efficacy of the selection. The phenotypic 

coefficient of variation (PCV) was higher than the GCV for all traits, indicating the role of 

environmental factors influencing the expression of the traits to some extent (Godbharle et al., 

2010; Elangovan et al., 2014). Differences in coefficients of variations (both genotypic and 

phenotypic) were exhibited with GCV ranging from 12 to 43.2% and PCV varying from 14 to 

48.2%. Considering ethanol productivity, the higher GCV and PCV values suggested strong 

opportunity to select for superior genotypes for ethanol productivity. The lower or equal GCV 

and PCV observed for dry matter, plant height and days to flowering signified that 

enhancement of these particular traits would be limited(Elangovan et al., 2014). Similar results 

of equal GCV and PCV for plant height in sweet stem sorghum genotypes have also been 

reported by other researchers (Reddy et al., 2009).
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Table 2.8: Predicted genetic gain for eight bioethanol related traits of sweet stem 
sorghum genotypes selected at 13% selection intensity 

Traits δ2
g h2 GCV PCV Predicted gain Predicted gain % 

Days to flowering 277.23 0.91 17.93 18.76 25.89 27.87 

Plant height 0.25691 0.91 21.51 22.57 0.79 33.37 

Stem diameter 20.9478 0.99 29.00 29.19 7.40 46.89 

Biomass 128.26 0.82 37.69 41.53 16.72 55.64 

Dry matter 0.001415 0.79 12.62 14.24 0.05 18.20 

Fibre content 0.001594 0.80 23.21 25.95 0.06 33.77 

Stalk Brix 6.522 0.85 21.09 22.85 3.84 31.67 

Ethanol productivity 663924 0.80 43.20 48.21 1188.08 62.99 

δ2
g = genetic variation, h2 =heritability, GCV =Genetic coefficient of variation, PCV =Phenotypic 

coefficient of variation 

 

2.4 Conclusions 

The present study selected the best ethanol yielding genotypes including AS203, 

AS391, AS205, AS251 and AS448 that provided mean yields of 5474 l ha-1, 4509 l ha-1, 4315 

l ha-1, 4205 l ha-1  and 3816 l ha-1 in that order. Days to flowering, plant height, stalk brix and 

stem diameter had the strongest indirect effect on ethanol production through biomass. Since 

biomass had the strongest direct effect on ethanol production, these traits should be 

considered during a selection program.  
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Chapter 3  

 

Genetic interrelationship of sweet stem sorghum genotypes assessed 

through simple sequence repeat markers 

Abstract 

Knowledge of the magnitude of genetic relatedness within and among breeding populations is 

valuable for a successful breeding program. The objective of this study was to evaluate the 

genetic interrelationships among 18 phenotypically selected sweet stem sorghum genotypes 

using 25 polymorphic simple sequence repeat (SSR) markers. The results revealed the presence 

of clear genetic differentiation among the studied sweet stem sorghum genotypes. The number 

of alleles detected per marker ranged from 1 to 10, with a mean of 4.64 per locus. The number of 

effective alleles varied from 1 to 6.75, with a mean of 2.9. The observed heterozygosity varied 

from 0.00 to 0.39 with a mean of 0.16. The inbreeding coefficient varied from 0.11 to 1.00, with a 

mean of 0.7, suggesting a considerable level of homozygosity existed among the tested 

genotypes. The polymorphic information content (PIC) values for all markers ranged from 0.00 to 

0.85, with a mean value of 0.56, implying that the markers were highly informative and 

discriminatory. Sixty eight percent of the markers used had a PIC value > 0.50. Analysis of 

molecular variance revealed highly significant differences (P<0.001) among the test population. 

Among and within individual variances contributed to 78% and 21% of the total genetic variance. 

This suggested that selection of representative and well-differentiated genotypes should be 

effective in broadening the genetic base of sweet stem sorghum genotypes used for targeted 

breeding for biofuel production. The study identified genetically unique sweet stem sorghum 

genotypes such as AS391, SS27, AS204 and AS244 that can be recommended for direct 

production or further breeding for the bio-fuel industry.   

 

Keywords: bio-fuel, SSR markers; Sorghum bicolor; yield components 
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3.1 Introduction 

Knowledge on the genetic variation and interrelationship among breeding populations is 

vital for effective breeding or strategic conservation of valuable germplasm. Sweet stem sorghum, 

a variant of grain sorghum, is successfully used for the production of bio-ethanol (Anami et al., 

2015). Sweet stem sorghum thrives under relatively harsh growing conditions, providing high 

biomass yield per hectare compared to other food and feed crops (Lipinsky and Kresovich, 1980; 

Rosenow and Clark, 1995; Vermerris et al., 2007; Saballos, 2008; Vermerris and Saballos, 2013). 

Various studies conducted on sweet stem sorghum as a bioenergy crop have reported yields of 

45 to 75 t ha-1 fresh biomass, 14.1 to 17.6 t ha-1 of dry biomass, 0.05 to 3.9 t ha-1 of grain, and 0.9 

to 8.14 t ha-1 of hexose sugars from the stem juice (Li, 1997; Murray et al., 2008; Tew et al., 2008; 

Atokple et al., 2014).  

Biofuel production from sweet stem sorghum does not compromise grain production for 

food, making it a second-generation bio-energy source (Daystar et al., 2014; Morrissey and 

Thoma, 2017). According to the Food and Agricultural Organization, biofuels make up 98% of the 

renewable energy produced in Southern Africa (FAO, 2016). In comparison to other biofuel crops 

such as sugarcane and maize, sweet stem sorghum exhibits advantageous traits including a high 

sugar content in its stem that is directly fermentable. Further, the crop has lower water and 

fertilizer requirements, is more drought and salt tolerant, with wider adaptability to tropical, 

subtropical and temperate climates. Also, it has a short harvesting period that lies in the 

intermittent sugarcane-harvesting period, allowing for crop rotation to extend the combined 

window for harvesting (Ratnavathi et al., 2011; Eggleston et al., 2013; Morrissey and Thoma, 

2017). 

For effective exploitation of parent populations, germplasm conservation and successful 

establishment of breeding programs, it is essential to assess the genetic relatedness present in 

the base population. Information on the genetic relationships among genotypes is essential for 

developing appropriate breeding strategies. Subudhi et al. (2002) noted that the determination of 

the genetic identity of crop collections is essential for conserving, evaluating and utilizing genetic 

resources. This will enable the exploitation of the diversity of the available germplasm as potential 

sources of genes that can enhance the productivity of future varieties.  

Genetic interrelationship can be established using morphological markers of crop germplasm. 

However, molecular markers are efficient in exploring the genetic constitution present among 

selections at a DNA level, which can assist conventional breeding in many aspects (Jain and 

Kharkwal, 2004; Iqbal et al., 2010). Several studies have also reported that estimation of genetic 
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relatedness using pedigree, agronomic and morphological traits can be less precise due to 

environmental and genotype by environment interactions (Cox et al., 1986; Van Beuningen and 

Busch, 1997; Bohn et al., 1999; Almanza-Pinzon et al., 2003; Fufa et al., 2005). Furthermore, the 

application of molecular markers is effective in classifying lines into heterotic groups to create 

hybrids or breeding populations (Menz et al., 2004; Becelaere et al., 2005), and for developing 

mapping populations for detecting quantitative trait loci (QTLs) (Varshney, 2011). Further, 

molecular marker techniques are discrete, co-dominant or dominant, and free from epistatic gene 

action (Tanksley et al., 1989; McIntyre et al., 2001).  

Various molecular assays have been applied in genetic analysis of sorghum, such as 

restriction fragment length polymorphism (RFLP) (Botstein et al., 1980), random amplified 

polymorphic DNA polymorphism (RAPD) (Williams et al., 1990; Prakash et al., 2008; Iqbal et al., 

2010; ShivjeeSah and Khanna, 2010), simple sequence repeat polymorphism (SSR) (Tautz, 

1989; Shehaz et al., 2009; Rajput et al., 2012; Reddy et al., 2012), single nucleotide polymorphism 

(SNP) (McCormick et al., 2017) and amplified fragment length polymorphism (AFLP) (Zabeau 

and Vos, 1993). Of all molecular techniques, SSR markers have proved to be effective in genetic 

characterization, and assessing genetic relationships and population structures among genotypes 

(Amelework et al., 2015). Most researchers have opted for SSR markers due to the following 

advantages: ease of detection through polymerase chain reaction (PCR); reasonably cheap; and 

high level of polymorphism (Brown et al., 1996; Powell et al., 1996). SSR can be detected easily 

without the use of radioisotopes techniques needed with RFLPs (Burr, 1994; Schloss et al., 2002). 

Furthermore, SSRs have advantages over AFLPs and RFLPs because they are highly 

discriminative, co-dominant, locus-specific, highly reproducible and highly informative (Powell et 

al., 1996; Bruford et al., 1998; Agrama and Tuinstra, 2003; Missiaggia and Grattapaglia, 2006).  

In an attempt to develop improved sweet stem sorghum varieties for bio-fuel production, the 

African Centre for Crop Improvement of the University of KwaZulu-Natal in South Africa acquired 

over 200 accessions from farmers’ fields in southern Africa, from national breeding programs in 

Africa and introductions from India and Australia. The germplasm collection was assessed and 

showed considerable variability for agro-morphological traits and sugar yields. However, these 

accessions were not previously genotyped using molecular markers to establish their genetic 

relationship for effective breeding for bio-fuel production. In light of this, the objective of this study 

was to evaluate the genetic interrelationships present among selected sweet stem sorghum 

genotypes using 25 polymorphic simple sequence repeat (SSR) markers. Results of the study 
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may assist to objectively identify genetically unique collections for development of new sweet 

stem sorghum genotypes for biofuel production in South Africa or similar agro-ecologies.  

3.2 Materials and methods 

3.2.1 Plant materials 

Eighteen sweet sorghum genotypes with distinct morphological attributes and greater 

ethanol production potential were selected from among 190 accessions assembled by the ACCI 

at UKZN, South Africa (Table 3.1). The test genotypes were originally collected from the USA, 

India, South Africa and Australia. Lines were selected based on their superior agro-morphological 

performances and higher levels of ethanol production. Table 3.1 presents descriptions of the 

genotypes including pedigree, origin and agro-morphological attributes, comprising of days to 

flowering, stem diameter, plant height, biomass, dry matter, fibre content, stalk brix content, and 

ethanol yield. The selected genotypes constituted self-fertilized entries or lines resulted from 

continuous controlled selfing, or open pollinated varieties (OPVs), constituting natural self-

fertilizing populations.  
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Table 3.1: Description of 18 sweet stem sorghum varieties used in this study.  

Genotype Pedigree Origin Type 
Days to 

flowering 

 Plant 
height 
(cm)  

Stem 
diameter 

(mm) 
Biomass 
(t ha-1) 

Dry 
matter 

(%) 

Fibre 
content 

(%) 

Stalk Brix 
content   

(%) 

Ethanol 
yield 

(l ha -1) 

AS79 P9513B USA Line  113  210 21.17 42.96 30.24 14.19 15.55 3313 
AS82 ICSR93034 India Line  100.5  230 10.33 39.69 33.02  15.82 16.7 3260 
AS103 MN2332 - Line  87.5  250 13 43.21 27.25 14.4  12.35 2667 
AS129 KARI Mtama 

X ICS 3-1 
- OPV  

79 
 

190 13.83 24.12 31.68 15.28 15.9 1899 
AS138 Mugeta - Line  73  190 12.83 22.61 31.14 15.19 15.45 1688 
AS204 SA Landrace 

LP50 
South 
Africa 

Line  
87 

 
255 12.17 37.3 26.41 12.41 13.5 2517 

SS27 SS27 South 
Africa 

Line  
96.5 

 
275 13.33 42 30.82 15.77 14.55 3008 

SS120 Sugargraze Australia Line  87.5  260 16.67 31.65 26.71 16.01 10.2 1598 
AS244 AS2 OPV South 

Africa 
OPV  

86.5 
 

290 19.5 39.58 27.51 14.01 13 2548 
AS246 AS97 OPV South 

Africa 
OPV 

86.5 
 

305 17.17 48.73 32.99 17.19 15.3 3743 
AS247 AS97 OPV South 

Africa 
OPV 

90 
 

320 22.5 28.23 41.55 30.65 10.4 1446 
AS251 AS97 OPV South 

Africa 
OPV 

135.5 
 

385 29.17 64.21 31.11 17.51 13.1 4205 
AS259 AS72 OPV South 

Africa 
OPV 

87 
 

290 18.83 35.88 28.21 15.46 12.25 2185 
AS271 AS79 X SS27 South 

Africa 
OPV 

104 
 

280 17.83 30.75 20.08 11.48 8.1 1230 
AS308 AS204 X 

AS138 
South 
Africa 

OPV 
93.5 

 
295 15.33 31.54 26.39 14.84 11.05 1733 

URJA URJA India Line 97  295 15.33 27.35 31.49 14.79 16.2 2193 
AS391 SS27 OPV South 

Africa 
OPV 

116 
 

305 13.67 62.82 28.1 13.1 14.5 4509 
AS393 AS138 X 

SS27 
South 
Africa 

OPV 
106 

 
280 16 24.69 23.23 15.73 7 887 

OPV=open pollinated variety
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3.2.2 DNA extraction, purification, and quantification 

Seeds of the 18 sweet sorghum genotypes were planted in seedling trays under 

greenhouse condition at the Controlled Environment Research Unit (CERU), UKZN, 

Pietermaritzburg, South Africa. Four weeks after planting, ten leaves from each of 18 

genotypes were sampled and sent to the INCOTEC PROTEIOS Laboratory (Incotech South 

Africa Pty Ltd, Pietermaritzburg, South Africa) for genetic profiling using simple sequence 

repeat markers (SSR). DNA was extracted from all samples using a cetyltrimethylammonium 

bromide (CTAB)-based method according to Mace et al., (2003). Twenty-five selected SSR 

markers were used for the analysis (Table 3.2). The markers used in this study were selected 

from an SSR diversity kit (Billot et al., 2012) from all the linkage groups of sorghum. PCR 

products were fluorescently labelled and separated by capillary electrophoresis on an ABI 

3130 automatic sequencer (Applied Biosystems, Johannesburg, SA). 
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Table 3.2: Description of the simple sequence repeat (SSR) primers used for sweet stem 
sorghum genetic diversity analysis 

Marker a Primer sequences (5′–3′) Repeat motif T (°C) Reference 

gpsb067 F:TAGTCCATACACCTTTCA 
R:TCTCTCACACACATTCTTC 

(GT)10 49 Billot et al. (2012) 

gpsb069 
  

F:CCCATAATACTTGACCTTC 
R:ACTTACTCCCTCTGTCCC 

(TC)12 
  

50 
  

Billot et al. (2012) 

gpsb089 
  

F:ATCAGGTACAGCAGGTAGG 
R:ATGCATCATGGCTGGT 

(TG)9 
  

50 
  

Billot et al. (2012) 

gpsb123 
  

F:ATAGATGTTGACGAAGCA 
R:GTGGTATGGGACTGGA 

(CA)7(GA)5 
  

50 
  

Mutegi et al., (2011) 

gpsb148 
  

F:CAACCACAAACCAAGAG 
R:ATAGAAATGGGGTGGAG 

(TC)3(CA)5 
  

50 
  

Billot et al. (2012) 

gpsb151 
  

F:ATACCAAGTTTCCTTTACCT 
R:GTTGGGGGAGAGTTTT 

(CT)12 
  

50 
  

Billot et al. (2012) 

mSbCIR223 
  

F:CGTTCCAATGACTTTTCTTC 
R:GCCAATGTGGTGTGATAAAT 

(AC)6 
  

55 
  

Billot et al. (2012) 

mSbCIR238 
  

F:AGAAGAAAAGGGGTAAGAGC 
R:CGAGAAACAATTACATGAACC 

(AC)26 
  

55 
  

Mutegi et al., (2011) 

mSbCIR240 
  

F:GTTCTTGGCCCTACTGAAT 
R:TCACCTGTAACCCTGTCTTC 

(TG)9 
  

55 
  

Mutegi et al., (2011) 

mSbCIR246 
  

F:TTTTGTTGCACTTTTGAGC 
R:GATGATAGCGACCACAAATC 

(CA)7 
  

55 
  

Mutegi et al., (2011) 

mSbCIR248 
  

F:GTTGGTCAGTGGTGGATAAA 
R:ACTCCCATGTGCTGAATCT 

(GT)7 
  

56 
  

Mutegi et al., (2011) 

mSbCIR262 
  

F:GCACCAAAATCAGCGTCT 
R:CCATTTACCCGTGGATTAGT 

(CATG)3 
  

57 
  

Mutegi et al., (2011) 

mSbCIR276 
  

F:CCCCAATCTAACTATTTGGT 
R:GAGGCTGAGATGCTCTGT 

(AC)9 
  

53 
  

Mutegi et al., (2011) 

mSbCIR283 
  

F:TCCCTTCTGAGCTTGTAAAT 
R:CAAGTCACTACCAAATGCAC 

(CT)8(GT)8 
  

54 Billot et al. (2012) 

mSbCIR286 
  

F:GCTTCTATACTCCCCTCCAC 
R:TTTATGGTAGGATGCTCTGC 

(AC)9 
  

55 Billot et al. (2012) 

mSbCIR300 
  

F:TTGAGAGCGGCGAGGTAA 
R:AAAAGCCCAAGTCTCAGTGCTA 

(GT)9 
  

61 Mutegi et al., (2011) 

mSbCIR306 
  

F:ACATGGGGAGGAAGATGA 
R:GCTATTCAGGAGCCATGC 

(CATG)3(GT)7 
  

56 Billot et al. (2012) 

mSbCIR329 
  

F:GATCTTCACCAGGAACAGG 
R:ATGAGAGGAAAACATTGCTG 

(AC)9 
  

55 Billot et al. (2012) 

sb4-72 
  

F:TGCCACCACTCTGGAAAAGGCTA 
R:CTGAGGACTGCCCCAAATGTAGG 

(AG)16 
  

55 Brown et al., (1996) 

sb5-206 
  

F:ATTCATCATCCTCATCCTCGTAGAA 
R:AAAAACCAACCCGACCCACTC 

(AC)13(AG)20 
  

55 Brown et al., (1996) 

Xcup02 
  

F:GACGCAGCTTTGCTCCTATC 
R:GTCCAACCAACCCACGTATC 

(GCA)6 
  

54 Schloss et al., (2002 

Xisep0107 
  

F:GCCGTAACAGAGAAGGATGG 
R:TTTCCGCTACCTCAAAAACC 

(TGG)4 
  

59 Ramuet al., (2009) 

Xisep0310 
  

F:TGCCTTGTGCCTTGTTTATCT 
R:GGATCGATGCCTATCTCGTC 

(CCAAT)4 
  

60 Ramuet al., (2009) 

Xtxp12 F:AGATCTGGCGGCAACG 
R:AGTCACCCATCGATCATC 

(CT)22 
  

55 Kong et al., (2000). 

Xtxp57 
  

F:GGAACTTTTGACGGGTAGTGC 
R:CGATCGTGATGTCCCAATC 

(GT)21 
  

55 Kong et al., (2000). 

NA = not available; T= annealing temperature. 
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3.2.3 Data analysis 

Two approaches were adopted to investigate the genetic structure and relatedness 

among the sweet stem sorghum genotypes. In the first approach, polymorphisms were treated 

as binary data (presence or absence). In this case, each amplified fragment was considered 

as one locus and evaluated as dominant markers. However, to determine the genetic structure 

within and among genotypes, a second approach based on the co-dominant nature of the 

marker was adopted, using GenAlex version 6.5 (Peakall and Smouse, 2012). Genotypic data 

were subjected to analyses with various measures of genetic diversity within and among 

genotypes using GenAlex software version 6.5 (Peakall and Smouse, 2012). The χ2 test was 

performed to determine the differences in allele frequencies among the SSR markers. 

Genetic diversity parameters such as total number of alleles per locus (Na), number of 

effective alleles per locus (Ne), Shannon’s information index (I), observed heterozygosity (Ho), 

gene diversity (He), number of putative alleles (Pa), percent polymorphism (%P), and 

inbreeding coefficient (FIS) were determined using the protocol of Nei and Li (1979). Other 

parameters such as differentiation and polymorphic information content (PIC) were estimated 

using GenAlex software.  

The binary data were used to obtain a dissimilarity matrix using the Jaccard’s index. The 

matrix was used to run a cluster analysis based on Neighbor-joining employing the software 

DARwin 5.0 (Perrier and Jacquemoud-Collet, 2006). A dendrogram was then generated on 

the dissimilarity matrix. Bootstrap analysis was performed for node construction using 10,000 

bootstrap values to estimate the liability of the clustering pattern.  

Based on Jaccards distances, analysis of molecular variance (AMOVA) was conducted 

using GenAlex software to partition total genetic variation into within and among groups of 

genotype based on type so as to quantify the level of diversity and genetic relationship among 

genotypes. 

3.3 Results 

3.3.1 Characteristics of the SSR markers 

 A summary of the genetic diversity parameters of the 25 SSR markers used in the study 

is given in Table 3.3. Overall, the markers amplified 106 putative alleles of different sizes 

among the sweet stem sorghum genotypes studied. The total number of alleles (Na) amplified 

per locus across genotypes ranged from 1 (marker Xisep0310) to 10 (markers mSbCIR238 

and Xgap206), with a mean of 4.64. All the markers except Xisep0310 were polymorphic. Ten 

markers (40%) had more alleles than the mean number of alleles per locus. The number 
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effective alleles (Ne) detected varied from 1 (Xisep0310) to 6.75 (Xgap206), with a mean of 

2.9 per locus. The effective numbers of alleles for 32% of the loci were less than 2 and 36% 

of the loci had Ne values of more than 3. Furthermore, the observed heterozygosity (Ho) varied 

from 0.00 (Xisep0310 and mSbCIR286) to 0.39 (Xgap206), with a mean of 0.16. The expected 

heterozygosity (He) had values ranging from 0.00 (Xisep0310) to 0.88 (Xgap206) with a mean 

of 0.58. The inbreeding coefficient (FIS) varied from 0.11 (Xisep0107) to 1.00 (mSbCIR286) 

with a mean of 0.7. The polymorphic information content values for all markers ranged from 

0.00 (Xisep0310) to 0.85 (Xgap206), with a mean value of 0.56. Sixty eight percent and 28% 

of the markers had a PIC value greater than 0.50 and 0.70, respectively. Marker mSbCIR238 

was the second most polymorphic locus with a PIC value of 0.84 followed by mSbCIR283 and 

Xtxp57 both with a PIC value of 0.78. 

3.3.2 Genetic interrelationship within and among populations 

Table 3.4 presents the genetic interrelationships within and among the 18 sorghum 

genotypes. The analysis classified genotypes into two populations based on their status as 

either lines or OPVs. Both the lines and OPVs showed a non-significant difference in most of 

the genetic parameters such as number of alleles per locus (Na), Shannon diversity index (I), 

expected heterozygosity (Ho) and percentage of polymorphic loci (% P). As expected, both 

populations confirmed the dominant nature of self-fertilization in sorghum. Lines had a higher 

number of effective alleles (2.70) than OPVs which had 2.59 effective alleles per locus. The 

mean number of effective alleles was 2.65 per locus. Observed genetic diversity was 0.25 and 

0.10 for the lines and OPVs, respectively even though they both had an expected genetic 

diversity of 0.57. Lines had an inbreeding coefficient of 0.52, while OPVs had an inbreeding 

coefficient of 0.80, giving a mean of 0.66, which was higher than the observed mean of 0.17. 

Test lines had high PIC values of 0.53 and 0.57, respectively, providing a mean of 0.53.  
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Table 3.3: Genetic relatedness within and among 18 sweet stem sorghum genotypes 
based on 25 microsatellite markers 

  

Loci 

Genetic parameter 

Na Ne Ho He FIS PIC 

 gbsb067 4 1.42 0.11 0.30 0.63 0.30 

 gpsb069 9 4.66 0.11 0.81 0.86 0.79 

 gpsb089 4 3.07 0.17 0.69 0.75 0.67 

 gpsb123 5 2.95 0.33 0.68 0.50 0.66 

 gpsb148 3 1.18 0.06 0.16 0.64 0.16 

 gpsb151 7 3.32 0.17 0.72 0.76 0.70 

 mSbCIR223 3 1.48 0.06 0.33 0.83 0.32 

 mSbCIR238 10 6.23 0.17 0.86 0.80 0.84 

 mSbCIR240 5 2.60 0.17 0.63 0.73 0.62 

 mSbCIR246 3 1.71 0.06 0.43 0.87 0.42 

 mSbCIR248 3 2.34 0.11 0.59 0.81 0.57 

 mSbCIR262 2 1.90 0.18 0.49 0.63 0.47 

 mSbCIR276 2 1.78 0.06 0.45 0.87 0.44 

 mSbCIR283 6 4.56 0.22 0.80 0.72 0.78 

 mSbCIR286 5 3.52 0.00 0.74 1.00 0.72 

 mSbCIR300 3 2.07 0.17 0.53 0.68 0.52 

 mSbCIR306 3 2.23 0.11 0.57 0.80 0.55 

 mSbCIR329 3 2.56 0.17 0.63 0.73 0.61 

 Xcup02 4 2.48 0.33 0.61 0.44 0.60 

 Xgap206 10 6.75 0.39 0.88 0.54 0.85 

 Xgap72 4 2.26 0.22 0.57 0.60 0.56 

 Xisep0107 2 1.46 0.28 0.32 0.11 0.31 

 Xisep0310 1 1.00 0.00 0.00 N/A 0.00 

 Xtxp12 8 4.44 0.22 0.80 0.71 0.77 

 Xtxp57 7 4.47 0.22 0.80 0.71 0.78 

Overall mean 4.64 2.90 0.16 0.58 0.70 0.56 

SE 0.51 0.31 0.02 0.05 0.04 0.04 

Na, total number of alleles per locus; Ne, number of effective alleles per locus; Ho, observed gene 

diversity within genotypes; He, average gene diversity within genotypes; FIS, inbreeding coefficient; 

PIC, polymorphic information content; SE, Standard error. 
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Table 3.4: Genetic interrelationship within and among the 18 sweet stem sorghum 
genotypes classified into lines and open pollinated varieties (OPV)  

  

Populations 

Genetic parameter 

N Na Ne I Ho He F PIC Npa %P 

Lines 8.00 3.76 2.70 0.99 0.25 0.57 0.52 0.533 22.00 96.00% 

OPV 10.00 3.76 2.59 0.99 0.10 0.57 0.80 0.517 22.00 96.00% 

Overall mean 8.96 3.76 2.65 0.99 0.17 0.57 0.66 0.525 22.00 96.00% 

SE 0.15 0.25 0.18 0.07 0.02 0.03 0.04 0.002 0.00 0.00% 

N =number of individual within each population; Na =total number of alleles per locus; Ne =number 

of effective alleles per locus; I =Shannon’s information index; Ho =observed gene diversity within 

genotypes; He =average gene diversity within genotypes; Npa =number of putative alleles 

%P =percentage of polymorphic loci; SE =Standard error 

 

3.3.3 Genetic interrelationships among sweet stem sorghum genotypes using 

neighbour-joining algorithm and principal coordinates analysis 

The genetic relationship among the 18 sweet stem sorghum genotypes was assessed 

using neighbour-joining algorithm with the unweighted pair group method (UPGMA). 

Figure  3.1 presents a dendrogram of clustering patterns of the 18 genotypes. Cluster analysis 

revealed the presence of three distinct major clusters (Clusters I, II and III). Cluster I was made 

up of 10 genotypes, of which 60% are OPVs. Cluster II consisted of seven genotypes of which 

57% are lines. Cluster III contained only one genotype which is an OPV. 

Principal coordinates analysis (PCoA) was performed on the genetic distance matrix 

using DARwin software. The first two principal components were plotted for visual examination 

of the clustering pattern of the genotypes. The results of the principal coordinate analysis of 

the 18 genotypes is presented in Figure 3.2. This analysis showed four major groups. Groups 

1, 2, 3 and 4 containing ten, two, three and three genotypes, respectively. There was high 

concordance between the neighbour-joining clustering and the principal coordinate analysis 

in assigning lines into distinct groups. Group 1 of the principal coordinate analysis contained 

the exact genotypes as those in Cluster I of UWPGM. Group 2 of the principal coordinate 

analysis was made up of the genotypes SS27 and URJA which were found in sub-cluster Y of 

Cluster II of UWPGM. Moreover, the genotypes of Group 4 of the principal coordinate analysis 

consisted of AS204, AS271 and AS308 which were in sub-cluster X of Cluster II of UWPGM. 

Genotypes AS391, AS244, SS27 and AS204 were the highest ethanol producing varieties 

allocated in Groups 1, 2, 3 and 4, respectively. 
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3.3.4 Analysis of molecular variance (AMOVA) 

The analysis of molecular variance (AMOVA) among sweet stem sorghum populations 

is shown in Table 3.5. AMOVA revealed non-significant variation among populations of sweet 

stem sorghum genotypes (P = 0.736). However, there was a highly significant difference (P ≤ 

0.001) in molecular variance among and within individuals. AMOVA apportioned the total 

molecular variances into among populations, within individuals and among individuals. The 

highest genetic variability (73 %) was attributable to variation among individuals, while 27 % 

of variation was explained by within individual’s variation. 

Table 3.5: Analysis of molecular variance among 18 sweet stem sorghum genotypes 
collected from two populations when tested using 25 SSR markers 

Source df SS MS Est. Var. Per. Var F-prob.  

Among Populations 1 11.17 11.17 0.00 0% 0.736 

Among individuals  16 206.19 12.89 5.43 73% 0.001 

Within individuals 18 36.50 2.03 2.03 27% 0.001 

Total 35 253.86  7.46 100%  

df= Degree of freedom, SS= sum of squares, MS= mean sum of squares, Est. var. = estimated 

variance, Per. Var. = Percentage variation 
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Figure 3.1: Un-weighted pair group method dendrogram showing the genetic 

relationships of the 18 sweet stem sorghum genotypes determined using 25 selected 

SSR markers
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Figure 3.2: Principal coordinate analysis of the 18 sweet stem sorghum genotypes 

using 25 SSR markers 
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3.4 Discussion 

3.4.1 SSR markers and allelic richness  

The total number of fragments detected in this study was higher than the number found 

by Lekgari and Dweikat. (2014), who reported a total of 84 alleles in assessing 142 sweet 

stem sorghum germplasm using 33 SSR markers. Moreover, Olweny et al. (2014) studied 86 

sweet stem genotypes using 11 SSR markers and reported a total of 86 alleles. On the other 

hand, the total number of alleles generated was lower than Ji et al. (2011) and Pei et al. (2010), 

who reported a total of 174 and 228 alleles using 63 and 46 markers on 29 and 47 elite sweet 

stem sorghum genotypes, respectively. Ali et al. (2008) reported 132 alleles using 41 SSR 

markers in 72 sweet stem sorghum accessions.  

In the current study, the mean number of alleles per locus was 4.64. This result is 

comparable to Pei et al. (2010) and Wang et al. (2013), who reported a mean of 4.96 and 4.6 

alleles per locus, respectively. Lower numbers of alleles were documented by Lekgari and 

Dweikat (2014) and Ali et al. (2008) who recorded a mean of 2.9 and 3.2 alleles per locus, 

respectively, implying low allelic richness. Wang et al. (2009) reported a mean of 7.6 allele per 

locus using 95 SSRs in 96 sweet stem sorghum accession. Olweny et al. (2014) reported a 

mean of 8 alleles per locus. The variation in the mean number of allele reported by different 

researches may be attributed to the variation in the number and type of SSR markers used, 

and the number and variable genetic background of genotypes. The higher number of alleles 

generated by SSR markers suggest the presence of extensive genetic diversity that can be 

utilized for breeding (Mashilo et al., 2016). The high number of alleles and allelic richness 

found in this study may indicate the presence of significant genetic variation among sweet 

sorghum genotypes which would benefit supplementary systematic breeding (Ngailo et al., 

2016). Twenty-eight percent of the markers used contributed to half of the total numbers of 

observed alleles in the study, suggesting the existence of significant polymorphism among the 

markers.  

As a self–pollinating species, sorghum is expected to have low level of heterozygosity. 

In this study, the mean observed heterozygosity of 18 sweet sorghum genotypes was 0.16, 

signifying that 84% of the loci were fixed and reached to acceptable level of homozygosity. 

However, the mean genetic diversity was 0.58, suggesting that the gene pool as a whole 

maintained a high level of allelic variation (Muui et al., 2016). Other researchers also observed 

similar trends in sorghum, for example, Wang et al. (2009) and Olweny et al. (2014) reported 

a mean genetic diversity of 0.58 and 0.56, respectively. Ali et al. (2008) reported a lower 

genetic diversity of 0.4, while Wang et al. (2013) and Pei et al. (2010) reported higher genetic 
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diversity of 0.64 and 0.73, respectively. Low heterozygosity is associated with a high fixation 

of alleles in the population and the stability of genotypes in the absence of gene flow and 

genetic drift. This was supported by a mean inbreeding coefficient of 0.7, indicating the 

presence of appreciable levels of homozygosity among the experimental genotypes. Gene 

diversity reflects substantial genetic diversity that will enhance selection efficiency (Mashilo et 

al., 2016). The moderate mean PIC of 0.56 found in the present study implies that half of the 

SSR markers used for analysis were informative, with strong discriminatory power; hence the 

markers can be used in analyzing the genetic diversity and relationship of sweet stem sorghum 

genotypes. These results are in agreement with the study by Wang et al., (2009), Pei et al. 

(2010), Wang et al., (2013) and Olweny et al. (2014). 

3.4.2 Genetic structure in sweet stem sorghum genotypes 

Genetic diversity analysis within a population is vital because it provides insights into the 

evolutionary aspects of species to employ for effective conservation strategies, and for the 

establishment of breeding programs (Li et al., 2011). In this study, the genetic relationship 

among the 18 sweet sorghum genotypes were assessed using a neighbor-joining algorithm, 

and principal coordinate analysis. Cluster analysis using UWPGM grouped the 18 genotypes 

into three distinct clusters, while the PCoA clustered the genotypes into four groups. The 

results indicated that there is strong correspondence between the two analyses in terms of 

number and types of genotypes assigned in each cluster.  The clustering patterns were 

independent of the genotypes status as either being a line or OPV, signaling the true breeding 

nature of sorghum owing to its self-fertilization.   

Genotypes AS391, AS244, SS27 and AS204 were the best ethanol producing varieties 

in each of Groups 1, 2, 3 and 4, respectively. These genotypes can be selected for future 

breeding program for biofuel production because of their high genetic diversity and good 

ethanol production potential.  

There was a non-significant difference between the two populations in terms of the 

genetic parameters used in the study except for the observed heterozygosity and inbreeding 

coefficient. The OPVs had a higher fixation index and lower observed heterozygosity. This 

resulted from the differences in the maintenance of the two populations. The lines are 

maintained by controlled selfing, eliminating any alien pollen and should attain complete 

homozygosity since sorghum is self-pollinated crop. The lack of significant population 

differentiation was also supported by AMOVA revealing that 73 % of variation was among 

individuals, while 27 % of variation was explained by variation within individuals. This signifies 

that the genotypes made small but significant contributions to the total molecular variances 

detected and that the maximum variation was among the genotypes. Similar results were 
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reported by Olweny et al. (2014). The genetic structure of sweet stem sorghum genotypes in 

the current study revealed high genetic diversity and low population divergence.  

3.5 Conclusions 

Knowledge of genetic diversity within and among populations provides essential 

information in employing appropriate management strategies for germplasm conservation and 

for establishing a successful breeding program. The 25 SSR markers used were highly 

polymorphic and adequately demarcated the genetic relatedness of 18 sweet sorghum 

genotypes. In this study relatively few genotypes were used. However, theoretical population 

genetics predicts that large populations tend to maintain high allelic diversity. Therefore, 

collection of sweet sorghum genotypes adapted to extreme environments will improve the 

genetic base of the crop and allow mining of alleles from a diverse genetic background. 

Provided the high genetic diversity among genotypes and low population divergence observed 

in this study, selection of a few genetically diverse genotypes will be essential for future 

breeding programs and broaden the genetic base of the crop. Based on the SSR analysis and 

other suitable agronomic traits (e.g. high sugar yield), genetically unique genotypes such as 

AS391, SS27, AS204 and AS244 were selected to breed for sugar yield for bio-fuel production.  
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Chapter 4  

Preliminary investigation of the effect of ethyl 4'fluorooxanilate as a 

male gametocide of sweet stem sorghum  

Abstract 

An effective male sterility system enables targeted crosses between parent plants with desired 

and complementary characteristics. The use of chemical hybridizing agents (CHAs) to induce 

male sterility is quicker and more efficient than manual emasculation. This study investigated 

the concentration, stage of application and frequency of application of ethyl 4'fluorooxanilate 

(E4FO) for inducing male sterility of sweet stem sorghum without affecting female fertility. Trials 

were conducted in the Controlled Environment Facility (CEF) at the University of KwaZulu-

Natal. In Trial 1, the stage of application and dose rate of E4FO were determined to optimize 

male sterility. In this experiment three genotypes were tested at three application stages and 

five E4FO dose rates. In Trial 2 the frequency of application of E4FO was determined using 

three sweet stem sorghum genotypes, three E4FO doses, and six frequencies of application. 

Data on male sterility was inferred based on seed set and seed count from the treated plants. 

To determine female fertility, controlled crosses were performed and seed set was assessed 

and the number of seeds on cross pollinated plants were counted. Male sterility and female 

fertility were assessed against comparative control treatments.  Male sterility was achieved 

when E4FO was applied during heading stage using the following rates: 1000 mg l-1, 

1500  mg  l-1and 2000 mg l-1, with more than one application. Applying E4FO twice during the 

heading stage at a rate of 2000 mg l-1 would induce male sterility in the tested sweet stem 

sorghum genotypes, a result that could be useful in hybrid breeding programs. There is a need 

for further studies involving various yield components and the diverse responses of a range 

sweet stem sorghum genotypes.  

Keywords: chemical hybridizing agent, ethyl 4'fluorooxanilate, male sterility and sweet stem 

sorghum.
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4.1 Introduction  

United States of America, Nigeria, and India are the three major producers of sweet 

stem sorghum, a multi-purpose, annual, C4 crop (REN21, 2016). Among its many uses, sweet 

stem sorghum has emerged as a useful crop for the production of sugar as well as 

lignocellulosic biofuel feedstock (Mathur et al., 2017). Sweet stem sorghum bred for high 

biomass production can be converted to biofuels (Codesido et al., 2013). A lack of self-

sufficiency in non-renewable energy resources, import costs of petro-chemicals, and the need 

to boost agricultural development are some of the reasons that biofuel production has become 

important during the past 10 years (Kovarik, 2013; Araújo, 2017). According to Schaffert 

(1992), the crisis in the supplies of fuel oil that occurred in the 1970s was the genesis of the 

production of ethanol from sweet stem sorghum. Since the year 2000, the global biofuels 

supply has increased by a factor of 8% (REN21, 2016; BP, 2016). The utilization of sweet 

stem sorghum for biofuel production has since increased owing to its environment friendliness: 

low sulfur content, low biological and chemical oxygen demand, and high octane rating (Reddy 

et al., 2006). Enhancing the quantity and quality of the stalk juice are the chief drivers of sweet 

stem sorghum breeding. Meeting this goal not only requires extensive germplasm screening 

but also a well-defined strategy that takes less time because global climate change is an 

serious problem that calls for urgent mitigation strategies. 

Sweet stem sorghum is predominately a self-pollinated crop with a low but quantifiable 

incidences of outcrossing (Schertz and Dalton, 1980; Pedersen et al., 1998). For this reason, 

male sterility is essential for the production of hybrid sweet stem sorghum cultivars. Replacing 

sweet stem sorghum inbred lines with hybrid cultivars enables the exploitation of heterosis or 

hybrid vigor to increase stalk and sugar yields, and to protect breeder’s right. Sweet stem 

sorghum inbred lines are also known for their high ethanol productivity owing to their inherent 

genetic potential as pure line cultivars.  

Establishment of male sterility systems enables crosses between chosen parents having 

desirable and complementary characteristics. This is especially important in sorghum and 

other self-pollinating crops. In sweet stem sorghum both male and female flowers are found 

in the same spikelet. In the past, development of hybrid sweet stem sorghum cultivars has 

mainly relied on a cytoplasmic-genetic male sterility system (CMS), which requires male-sterile 

line (A-line), a sterility-maintainer line (B-line), and a fertility-restorer line (R-line). This system 

has been used for decades but it has various shortcomings: the non-availability of breeding 

stocks containing CMS and restorer systems, their instability and the laborious method of 

heterosis breeding using CMS. Besides being tedious and time-consuming, this technique 
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sometimes becomes untenable because of the lack of a consistent restorer system for the 

genetic restoration of fertility (Guilford et al., 1992; Pfeiffer et al., 2010). 

A feasible alternative to the male sterile-maintainer-restorer based on three-line hybrid 

breeding is two-line hybrid breeding that exploits chemical sterilization (McRae, 1985; Guilford 

et al., 1992). Chemical hybridizing agents (CHAs) can be used to develop a large pool of 

heterotic combinations expressing various traits (Mogensen and Ladyman, 1989). Induction 

of physiological deformities in the male gamete prevent pollen development, pollen shed or 

pollen viability is the modus operandi of most CHAs (Cross and Ladyman, 1991). Since the 

revolutionary studies on the gametocidal property of maleic hydrazide on gladiolus (Moore, 

1950), a wide range of chemicals have been screened. Some of them selectively induce male 

sterility in crops. Oxanilates have been reported to selectively impair the pollen formation in 

monoecious and hermaphrodite plants (Batch et al., 1980).  

Triticum aestivum (L.) (Chakraborty and Devakumar, 2006), Eragrostis tef (Zucc.) 

(Ghebrehiwot et al., 2015), Oryza sativa (L.) (Ali et al., 1999), Helianthus annuus (L.)(Tripathi 

and Singh, 2008) and Cicer arietinum (L.) (Chakraborty et al., 2001) are some of the crops 

that have been emasculated by ethyl 4'fluorooxanilate (E4FO). In contrast, there is no data on 

its effects on sweet stem sorghum. In order to use CHAs in sorghum hybrid breeding, it is 

essential to identify effective and safe chemical male gametocides (Amelework et al., 2016). 

The current study aimed at investigating the concentration, stage of application and frequency 

of application of E4FO to induce male sterility in sweet stem sorghum without affecting female 

fertility. 

4.2 Materials and methods 

4.2.1 Chemical formulation and application 

The CHA used in the current trial was E4FO. The E4FO, formulated as a white powder 

emulsion, was prepared by first dissolving at a 1:6 w/v ratio with dimethyl sulfoxide (DMSO) 

and adding 2% Tween 80 as a surfactant. Spray emulsions of 1000, 1500, 2000, 2500 and 

3000 mg l-1 concentrations were prepared by diluting the solution with water. Chemical 

spraying was done with a hollow cone (HCX) 80° nozzle, using sprayer (Figure 4.1). Spraying 

was done in the early morning. The spray mist was directed to the top of the head until run-off 

occurred. The quantity of the liquid sprayed per plant was approximately 8 to 10 ml. Distilled 

water was used to spray the control treatment.  
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Figure 4.1: Illustration of the administration of E4FO on to the plants 

 

4.2.2 Sweet stem sorghum genotypes and experimental design 

Trial 1: Determination of CHA concentration and stage of application  

In this trial, the time and dose of E4FO was determined to discern maximum male 

sterility. In this experiment three genotypes were tested using three application times and five 

E4FO doses. In the trial, the following three sweet stem sorghum genotypes were used: Kari 

Mtama, Dwarf Wonder and KAT 487, labelled as AS1, AS71, and AS72, respectively. This 

was aimed to determine the most conducive stage to apply the CHA and ascertain the most 

effective concentration of the CHA. Experimental unit comprised of four pots. Each 

experimental unit was replicated thrice and arranged using a randomized blocks design. Trial 

1 had 54 experimental units or treatments (six E4FO concentrations × three sweet stem 

sorghum genotypes × three application stages) and the control. The three sorghum genotypes 

were treated with six different concentrations of E4FO comprising of 0 mg l-1 (distilled water), 

1000 mg l-1, 1500 mg l-1, 2000 mg l-1, 2500 mg l-1, 3000 mg l-1. The aqueous solution of the 

E4FO was sprayed before heading (when the heads were released halfway from the flag leaf), 

during heading and after heading. 

Trial 2: Determination of the frequency of application of E4FO  

Trial 2 aimed at determining the frequency of application of E4FO required for male 

sterility using three sweet stem sorghum genotypes, three E4FO doses, and six frequencies 
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of application. Trial 2 was designed based on the results, deductions and conclusions of 

Trial  1 which indicated that E4FO needed to be sprayed more than once. To establish the 

frequency of application, AS71 was used together two other sweet stem sorghum genotypes, 

ICSV 3 and SDSL 89569, denoted as AS17 and AS88 respectively. Each experimental unit 

comprised of four pots. Each experimental unit was replicated thrice. The experimental units 

were arranged in a completely random fashion. Trial 2 also had 54 experimental units or 

treatments (three E4FO concentrations × three sweet stem sorghum genotypes × six 

application frequencies). Three sweet stem sorghum genotypes, AS17, AS71 and AS88, were 

treated with three concentrations of E4FO of 1000 mg l-1, 1500 mg l-1and 2000  mg l-1. All the 

E4FO applications were carried out during the heading period. Figure 4.2 illustrates the various 

E4FO application stages. Three plants of each experimental unit were bagged, and cross 

pollinated manually two days after the last E4FO application. This was done to test how each 

treatment affected female fertility of the sweet stem sorghum plants.
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Figure 4.2: Illustration of the different growth stages of the sweet sorghum head at 
which the E4FO was applied in Trial 2. A, B, C and D were approximately 0, 3, 6 and 9 days 
in the head protrusion process. E4FO application time combinations were termed as T1 (A+ 
B+C+D); T2 (B+C+D); T3 (A+B+C); T4 (A+C+D); T5 (B+D) and T6 (Control). 

 

4.2.3 Trial establishment  

The trial was conducted at the Controlled Environment Facility (CEF), University of 

KwaZulu-Natal. Experiments were conducted in an environmentally controlled greenhouse 

maintained at an air temperature of 28 ± 2.5°C. The sweet stem sorghum plants were grown 

from seeds sown directly into plastic pots (300 mm in diameter and 280 mm in height) filled 

with Gromor potting media (http://www.gromor.co.za). The plants were fertilized with Agchem 

http://www.gromor.co.za/
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hydroponic water-soluble fertilizer (http://www.agchem.co.za). The plants were irrigated four 

times a day for 3 min. Four seeds per pot were sown, then thinned-out to two plants per pot 

at three weeks after germination. All lateral tillers were constantly clipped off, allowing only 

one main tiller to grow to flowering. Weeds were hand controlled. The control plots were 

maintained at a distance of 3m to circumvent chemical drift and pollen contamination. 

4.2.4 Data collection and data analysis 

At the end of the trial season, seeds produced from the plants were manually collected, 

counted and recorded. Data for each replication was collected based on average 

measurements of four plants. To study female fertility, the number of seeds on cross pollinated 

plants were counted. Both male sterility and female fertility were calculated by comparison to 

the control plants. The following formulae were applied:  

𝑀𝑎𝑙𝑒 𝑠𝑡𝑒𝑟𝑖𝑙𝑖𝑡𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑒𝑑𝑠 𝑜𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑙𝑎𝑛𝑡 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑒𝑑𝑠 𝑜𝑛 𝐸4𝐹𝑂 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑝𝑙𝑎𝑛𝑡

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑒𝑑𝑠 𝑜𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑙𝑎𝑛𝑡
 × 100 

𝐹𝑒𝑚𝑎𝑙𝑒 𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑡𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑒𝑑𝑠 𝑜𝑛 𝑝𝑜𝑙𝑙𝑖𝑛𝑎𝑡𝑒𝑑 𝑝𝑙𝑎𝑛𝑡 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑒𝑑𝑠 𝑜𝑛 𝐸4𝐹𝑂 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑝𝑙𝑎𝑛𝑡

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑒𝑑𝑠 𝑜𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑙𝑎𝑛𝑡 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑒𝑑𝑠 𝑜𝑛 𝐸4𝐹𝑂 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑝𝑙𝑎𝑛𝑡
 × 100 

 Data was subjected to analysis of variance (ANOVA) using GenStat 17th edition Inc. (Payne 

et al., 2014). Means separation of treatments was Fisher’s LSD. 

4.3 Results and discussion 

4.3.1 Determination of CHA concentration and stage of application for effective 

sterilization of sweet stem sorghum in Trial 1 

4.3.1.1 Analysis of variance  

In Trial 1, data from two application stages (before and after heading) were excluded 

from analysis because no E4FO effect was observed. This can be attributed to the fact that 

pollen development in sweet stem sorghum only occurs during heading and a CHA can induce 

male sterility in this period only.  

Table 4.1 is a presentation of the analysis of variance (ANOVA) for male sterility. In Trial 

1 treatment with six different concentrations of E4FO on three different sweet stem sorghum 

genotypes showed that concentration of E4FO had a highly significant (p<0.001) effect on 

male sterility. However, genotype and the interaction of genotype and concentration had non-

significant effects on male sterility. From these results, it can be deduced that E4FO was not 

genotype specific as all the genotypes had roughly the same levels of male sterility at all the 

concentrations. This can be attributed to the fact that all the three genotypes are 
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morphologically similar, with short plants because the study targeted shorter varieties that 

could fit in a greenhouse, and for ease of hand spraying the E4FO. These results are similar 

to those of Amelework et al. (2016) who studied male emasculation in sorghum and reported 

highly significant emasculation due to variety and concentration. However, interaction was 

also significant.  

Table 4.1: Analysis of variance for seed set involving three sweet stem sorghum 
varieties and six E4FO concentrations in relation to induced pollen sterility 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Replication  2 9.21 4.6 0.43   

Concentration 5 63353.82 12670.76 1181.08 <.001 

Genotype 2 8.63 4.32 0.4 0.672 

Concentration*Genotype 10 97.49 9.75 0.91 0.536 

Residual 34 364.75 10.73     

Total 53 63833.91      

df =degrees of freedom, ss= sum of squares, ms= mean square, vr= variance ratio, F pr= F probability 

 

4.3.1.2 Mean responses of male sterility and treatment combinations 

Table 4.2 summarizes the degree of male sterility achieved by each treatment 

combination. As observed by Amelework et al. (2016), levels of pollen sterility increased with 

an increase in the concentration of test chemicals. Trial 1 showed that almost complete 

emasculation was achieved with both 2500 mg l-1 and 3000 mg l-1. However, these 

concentrations were phytotoxic causing premature senescence of the plants. Similar results 

were obtained by Ghebrehiwot et al. (2015) on tef, who reported that near complete male 

sterility was achieved by E4FO at rates ranging between 1500 mg l-1 and 3000 mg l-1. They 

also reported floret dryness and early premature senescence when E4FO was applied at 3000 

mg l-1. Amelework et al. (2016) reported that complete pollen sterility was caused by E4FO at 

concentrations ranging between 2000 to 3000 mg l-1.  No phytotoxicity was observed for 

concentrations of 1000 mg l-1, 1500 mg l-1and 2000 mg l-1which is similar to that Ghebrehiwot 

et al. (2015). However, the male sterility for these concentrations were low (<60%). This can 

be attributed to the fact that pollen on a sweet stem sorghum head are at different development 

stages at any given time. Consequently, depending on the application time of the CHA, it can 

sterilize some of the pollen and leave the rest unsterilized. For this reason, it was essential to 

conduct Trial 2, which applied three concentrations (1000 mg l-1, 1500 mg l-1and 2000 mg l-1) 

and apply them more than once.  

Chakraborty and Devakumar (2006) explained that when using E4FO, the CHA 

technology needed to be optimized in terms of variation in genotype, choice of CHA, stage of 
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spray, numbers of spray, types of formulation, and dose. Although there were no significant 

differences among the responses of the genotypes, the highest level of male sterility was 

observed on genotype AS71 for all concentrations except 1000 mg l-1 and 1500 mg l-1 where 

AS1 and AS72 had the highest levels of male sterility respectively.  

Table 4.2: Mean seed set of three sweet stem sorghum genotypes after treatment with 
E4FO at six concentrations 

Concentration (mg l-1) Genotype Observation 

  AS1  AS71  AS72  

1000 43.33 38.56 36.56 No phytotoxicity symptoms observed 

1500 47.19 48.95 50.72 No phytotoxicity symptoms observed 

2000 56.79 56.84 54.39 No phytotoxicity symptoms observed 

2500 97.85 98 96.9 Early, premature plant senescence 

3000 98.7 99.11 99.44 Early, premature plant senescence 

Control 0 0 0  

 

4.3.2 Determination of the optimum frequency of application of E4FO to sterilize 

sweet stem sorghum in Trial 2 

4.3.2.1 Analysis of variance  

Trial 2 is an extension of Trial 1 whereby the frequency of application was increased to 

more than once. Tables 4.3 and 4.4 present the ANOVA for male sterility and female fertility 

in sweet stem sorghum observed in Trial 2, respectively. It can be observed that all the 

treatment factors and their interactions were highly significant (p<0.001). Contrary to Trial 1, 

in Trial 2 E4FO was a genotype-specific CHA. The change in genotype specificity can be 

attributed to the fact that genotypes varied morphologically. Morphological variation affects 

the impact of surfactants that favor the penetration of gametocides into the plant (Parodi and 

Gaju, 2009; Amelework et al., 2016).  Similar female fertility results were obtained by 

Amelework et al. (2016) who reported that in the bagged panicles, a highly significant 

difference was observed between varieties, concentrations, and all their interactions.
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Table 4.3: Analysis of variance for seed set among three sweet stem sorghum 
genotypes to three E4FO concentrations at six frequencies in relation to induced pollen 
sterility 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Replication 2 4.823 2.411 2.41   

Genotype 2 105.687 52.844 52.7 <.001 

Concentration 2 4938.493 2469.246 2462.71 <.001 

Frequency 5 182343.538 36468.708 36372.1 <.001 

Genotype*Concentration 4 303.718 75.929 75.73 <.001 

Genotype*Frequency 10 1810.251 181.025 180.55 <.001 

Concentration*Frequency 10 5083.764 508.376 507.03 <.001 

Genotype*Concentration*Frequency 20 4471.158 223.558 222.97 <.001 

Residual 106 106.282 1.003     

Total 161 199167.713       

df =degrees of freedom, ss= sum of squares, ms= mean square, vr= variance ratio, F pr= F probability 

 

Table 4.4: Analysis of variance of seed set among three sweet stem sorghum genotypes 
to three E4FO concentrations at six frequencies in relation to female fertility 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Replication 2 42.063 21.032 3.76   

Genotype 2 211.644 105.822 18.92 <.001 

Concentration 2 619.633 309.817 55.38 <.001 

Frequency 5 51591.872 10318.374 1844.51 <.001 

Genotype*Concentration 4 534.05 133.512 23.87 <.001 

Genotype*Frequency 10 966.138 96.614 17.27 <.001 

Concentration*Frequency 10 1987.541 198.754 35.53 <.001 

Genotype*Concentration*Frequency 20 2116.044 105.802 18.91 <.001 

Residual 106 592.973 5.594     

Total 161 58661.958      

df =degrees of freedom, ss= sum of squares, ms= mean square, vr= variance ratio, F pr= F probability 

 

4.3.2.2 Mean responses of pollen sterility and female fertility 

Levels of male sterility and female fertility for all treatment combinations are presented in 

Table  4.5. Male sterility increased with increase in concentration. Moreover, the level of male 

sterility increased with the frequency of application. The highest level of male sterility observed 

was 99.6%, a result of applying 2000 mg l-1 four times (T1) and the lowest level of male sterility 

was for 1000 mg l-1 applied twice (T5). Similar results were also found in rice where 100% 

male sterility was induced by E4FO (Ali et al., 1999). For successful hybrid seed production on 

a commercial level mass emasculation is essential.  Ghebrehiwot et al. (2015) noted that the 
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lack of seed production together with high level of pollen sterility found in plants treated with 

E4FO were indicative of the effectiveness of E4FO in mass emasculation.  

The high levels of male sterility associated with higher frequency of application, however, 

came at a cost of lower female fertility. Female fertility increased with a reduction in 

concentration. The highest levels of female fertility was observed for AS88 sprayed with 

1000  mg l-1 twice (T5), while the lowest female fertility was for AS71 sprayed four times (T1) 

at 2000 mg l-1. Applying the CHA twice (T5) resulted in the highest levels of female fertility 

(desirable) for all genotype x concentration combinations. For genotype AS17, when CHA was 

applied twice (T5), the highest level of male sterility was observed at 2000 mg l-1. Hence, the 

recommendation for high male sterility with functional female fertility for genotype AS17 is 

2000 mg l-1 sprayed twice (T5). The same high level of male sterility with uncompromised 

female fertility was also achieved by applying the CHA at 2000 mg l-1 twice for both genotypes 

AS71 and AS88. Having considered all scenarios, the best balance between high levels male 

sterility without compromising female fertility were produced by applying the E4FO twice (T5) 

at a dose of 2000 mg l-1 (98.6% male sterility and 96% female fertility). Such male sterility 

percentages comparable to the 95% male sterility considered satisfactory for the production 

of hybrid seed (Parodi and Gaju 2009). Similar results were obtained by Chakraborty and 

Devakumar (2006) on wheat. They reported that E4FO induced high levels of male sterility 

(99.76 ± 0.37% at 0.15% concentration over 29 diverse wheat genotypes), and little reduction 

of female fertility (96.78 ± 2.07% in E4FO treated plants). Ghebrehiwot et al. (2015) reported 

that 96–99% male sterility was achieved without a significant reduction in female fertility in tef 

using E4FO at 1000–1500 mg l-1. Research has conveyed that E4FO not only induces a very 

high degree of male sterility, but also modifies the reproductive biology in such a fashion to 

ensure cross-pollination in the cleistogamous wheat flowers and increase the probability of 

the development of hybrids (Chakraborty and Devakumar, 2006). Ali et al. (1999) concluded 

that, of the CHAs they tested, E4FO was the most promising and capable of inducing higher 

levels of pollen sterility than sodium methyl arsenate, their check gametocide. 
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Table 4.5: Male sterility and female fertility as measured by seed set in three sweet stem 
sorghum genotypes after treatments with three E4FO concentrations at six frequencies  

Genotyp
e 

  

Concentrati
on  

(mg l-1) 
  

Frequency of application 

Male sterility Female fertility 

   T1  T2  T3  T4  T5  T6  T1  T2  T3  T4  T5  T6 

AS17 1000 91.9 87.1 88.4 86.1 48.8 0 49.7 74.5 78.2 85.4 99.2 100 

 1500 95.5 92.6 94.3 94.8 90.5 0 48.6 63.8 88.4 78.6 95.4 100 

 2000 98.8 98.6 98.7 98.5 98.8 0 43.4 58.6 72.8 68.5 94.7 100 

AS71 1000 87.8 85 86.6 86.8 62.1 0 56.5 73.2 60.7 85.1 96.4 100 

 1500 96.2 58.5 94 94.2 94.6 0 47.6 54.7 63.6 66.2 96.8 100 

 2000 99.1 98.6 98.8 97.2 98.8 0 45.5 54.1 71.6 84.6 95.3 100 

AS88 1000 90.2 85.3 87.4 62.3 78.6 0 54.8 76.8 65.4 73.9 99.5 100 

 1500 97.8 93.4 76.5 92.1 94.9 0 50.7 60.3 63 87.1 98.8 100 

 2000 99.2 75.3 98.9 98.6 98.4 0 44.5 58.6 86.2 72.1 97.6 100 

E4FO application time combinations are termed as T1 (A+ B+C+D); T2 (B+C+D); T3 (A+B+C); T4 (A+C+D); T5 (B+D) and T6 
(Control). A, B, C and D are approximately days 0, 3, 6 and 9 in the head protrusion process.  

 

4.4 Conclusions  

Emasculation of sweet stem sorghum without disrupting female fertility was achieved by 

the application of E4FO twice during heading at 2000 mg l-1 for all the test genotypes. However, 

it is recommended that the effect of the CHA on the other genotypes of sweet sorghum be 

tested. It is also essential to carry out large scale trial in the field to produce hybrids that can 

be evaluated. This will also be an opportunity to ascertain the logistics of mass emasculation 

for commercial settings using E4FO. 
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Chapter 5  

Combining ability and heterosis of sweet stem sorghum genotypes 

for bioethanol yield and related traits 

Abstract 

Sorghum hybrids can provide enhanced bioethanol yield if genetically complementary parents 

and progenies are developed using efficient crossing and selection methods. The objective of 

this study was to determine the combining ability of sweet stem sorghum genotypes, and to 

assess heterosis among F1 hybrids for ethanol production and associated traits. Eight sweet 

stem sorghum lines and four testers were crossed using a line x tester mating design. The F1 

hybrids and parental lines were evaluated for bioethanol yield and related traits. Data were 

subjected to analysis of variance, combining ability and heterosis analyses. Tested sweet stem 

sorghum genotypes had estimated ethanol yields of 787 l ha-1 to 5470 l ha-1, with a mean of 

2055 l ha-1. Stem diameter varied from 0.4 cm to 2.4 cm, with a mean of 1.53 cm, while plant 

height varied from 128 cm to 215 cm, with a mean of 163 cm. Biomass production of test 

populations varied from 11.6 t ha-1 to 68 t ha-1, with a mean of 30 t ha-1. Six hybrids were 

among the top ten biomass producing genotypes. Fibre content varied from 12 to 20%, with a 

mean of 16%, while dry matter varied from 25 to 34%, with a mean of 31%. Stalk brix varied 

from 9.9 to 16.4%, with a mean of 13.8%. Four hybrids (AS246 x AS391, AS251 x AS204, 

AS79 x AS204, AS74 x AS204) expressed greater ethanol productivity with positive better-

parent heterosis (>30 %). Lines AS253, AS246 and AS 105, and testers AS391 and SS27 had 

highly positive general combining ability (GCA) effects for almost of the traits in a desirable 

direction. Due to its consistent, significant and positive GCA effects across majority of the 

traits, line AS253 is recommended for utilization in sweet stem sorghum hybrid programs. 

Among the studied hybrids or test parents, ethanol productivity had significant and positive 

correlations with plant height, stem diameter and biomass.  

Keywords: sweet stem sorghum, line x tester analysis, combining ability, heterosis, ethanol 

productivity
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5.1 Introduction 

Sweet stem sorghum is a variant from of grain sorghum that is being promoted as a 

feedstock for biofuel production. It has great potential for the biofuel industry and may 

contribute to solving the twofold challenges of sustainable energy and environmental security, 

on a global scale. Ethanol yield gains can be achieved through dedicated sorghum breeding 

programs. Understanding of the gene action of traits like bioethanol production that are 

controlled by polygenes with complex gene action is essential (Jain and Patel, 2014). 

Knowledge of the gene action also helps plant breeders in choosing suitable breeding 

approaches.  

The ability of a parent to transmit its desirable genes to its progeny in crosses has 

been referred to as combining ability. For effective hybridization programs and perception of 

the nature and magnitude of various types of gene action involved in the expression of 

quantitative characters, combining ability studies have proven beneficial because they result 

in the selection of suitable parents (Bernardo, 2014). Falconer (1989) described general 

combining ability (GCA) as the mean performance of a genotype when crossed with a series 

of other genotypes. Falconer also defined specific combining ability (SCA) as the  deviation 

from the average general combining ability of two parental lines due to genetic effects that are 

specific to that cross. Additive gene effects and higher order additive interactions result in 

differences in GCA, while non-additive gene effects bring about differences in SCA (Kenga et 

al., 2004).  

Knowledge of combining ability helps in optimizing the breeding strategy. Use of the 

recurrent selection procedure is important when GCA effects are predominant. This will drive 

the accumulation of desirable unfixable or fixable additive gene effects (Nadarajan and 

Gunasegaram, 2005). In contrast, back cross breeding is important when SCA effects are 

predominant.  

In order to fully realize the potential of sweet stem sorghum for ethanol production, it is 

essential to exploit hybrid vigour or heterosis. In the preliminary evaluation of germplasm for 

use in hybridization, line × tester analysis is valuable in recognising good combiners that may 

be used to increase a population with favourable fixable genes for increased ethanol 

production. The line × tester mating design helps in assessing the combining ability of potential 

parents  resulting in the selection of superior parents, as well as cross combinations (Sprague 

and Tatum, 1942). Line x tester analysis is one of the most efficient approaches of assessing 

the genetic worthiness of a large number of inbred lines for their combining ability 

(Kempthorne, 1957). Line x tester analysis has been dubbed the most fitting technique to 

investigate the combining ability for a number of parents (Dehinwal et al., 2017), consequently, 
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simplifying commercial development of hybrids. Therefore, the objective of this study was to 

determine the combining ability of selected sweet stem sorghum genotypes, and to assess 

heterosis among the resultant F1 hybrids for ethanol production and associated traits, using 

line x tester analysis. 

5.2 Materials and methods 

5.2.1 Plant materials, crosses and experimental design 

The study used four sorghum genotypes as testers and eight genotypes as lines. These 

provided 12 sweet stem sorghum genotypes for crosses. Lines were selected based on their 

previously established high ethanol producing abilities. The testers were selected based on 

their genetic diversity, coupled with their ability to produce ethanol (Mangena et al., 2017). 

Based on a Simple Sequence Repeat (SSR) analysis, and suitable agronomic traits 

(e.g. high sugar yield), genetically unique genotypes, including AS391, SS27, AS204 and 

AS244, were selected as male parents (tester parents) (Table 5.1). These were crossed with 

eight selected South African adapted lines that were used as female parents. The crosses 

were carried out in accordance with a Line x Tester mating scheme to generate 32 hybrids. 

Detailed information about each genotype is given in Table 5.1.  

The chemical hybridising agent (CHA), ethyl 4'fluorooxanilate (E4FO), was applied 

(see Chapter 4, Section 2) twice at 2000 mg l-1 to induce male sterility in the female genotypes 

selected for this study. Because male sterility induction was through a novel CHA system, the 

amount of seed set was minimal per cross combination, hence the F1 hybrids were only 

evaluated at one location and during one season. The 32 experimental hybrids and 12 parents 

were field evaluated. Experiments were laid out using a randomised complete blocks design 

with two replications. Each entry was planted in two-row plots of 3.0 m length with inter-row 

and intra-row spacing of 80 and 20 cm, respectively. 
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Table 5.1: Description of the 12 sweet stem sorghum varieties used in the study 

Name Pedigree Origin Role in cross 

AS105 FPR(168 x GS70)  - Line 

AS111 P9539B  - Line 

AS113 TX2737/91BE7414  - Line 

AS246 AS97  South Africa Line 

AS251 AS97  South Africa Line 

AS253 AS72  South Africa Line 

AS74 ICSV 111  - Line 

AS79 P9513B USA Line 

AS391 SS 27 C South Africa Tester 

SS27 SS27 South Africa Tester 

AS204 LP 50 
South Africa Tester 

AS244 AS2  
South Africa Tester 

-not available  
  

  
  

 

5.2.2 Trial establishment and maintenance 

Seed of the experimental genotypes were planted in seedling trays at the greenhouse 

facility of the Controlled Environment Facility (CEF) at the University of KwaZulu- Natal. Four 

weeks after planting, the seedlings were transplanted to the Ukulinga Research Farm of the 

University of KwaZulu-Natal, South Africa (29°37′S 30°22′E; 596 m above sea level). The 

hybrid evaluation trial was conducted from August 2017 to February 2018. The trial site 

received 526 mm moisture through rainfall and supplemental irrigation. The mean minimum 

temperature for the season was 6°C and the mean maximum temperature was 32°C. 

Experimental plots were fertilised at 375 kg ha−1 with 2:3:2 (N:P:K) granular fertiliser. At the 

flowering stage, plants were side dressed with 130 kg ha−1 of urea (46% N) granular fertiliser. 

Due to the fact that the trial was conducted off-season, growth of the crop was limited by the 

cold hence it was essential to boost growth by fertilization. After transplanting, the trials were 

treated with 100 ml ha−1 of lamda cyhalothrin (Karate) to control a wide range of pests, 

including cutworm. When the plants reached 60 cm height, the plots were treated with 120 ml 

ha−1 of lamda cyhalothrin to control lepidopteran pests. 

 

5.2.3 Data collection 

The following quantitative traits were measured during the study: plant height was 

measured from the base of the plant to the tip of the panicle and expressed in cm. Stem 

diameter (cm) was measured using a Vernier calliper on the midsection of three plants. One 
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row was harvested from each plot at dough stage. Biomass (t ha−1) was measured at maturity 

by first removing the seed heads, then cutting the stems off at ground level, and weighing the 

stems and leaves.. Samples of chopped stalks were weighed green and reweighed after oven 

drying at 60°C until constant mass was reached, to gravitationally estimate dry mass (Hlophe 

2014). Dry matter was calculated using the formula: 𝐷𝑟𝑦 𝑚𝑎𝑡𝑡𝑒𝑟 % =  
𝐷𝑟𝑦 𝑚𝑎𝑠𝑠

𝑊𝑒𝑡 𝑚𝑎𝑠𝑠
 × 100 %.  

Fibre content was calculated using the formula: 𝐹𝑖𝑏𝑟𝑒 % = 𝐷𝑟𝑦 𝑚𝑎𝑡𝑡𝑒𝑟 % − 0.005 −

𝑆𝑡𝑎𝑙𝑘 𝑏𝑟𝑖𝑥

100
. 

Stalks were cut using a chaff cutter and a representative sample was analysed for % 

Brix using the hand-held refractometer method. 

Given the same brix reading, this calculation results in an upward adjustment of juicy 

cultivars over dry ones because at equal brix readings, juicier cultivars have more sugar 

compared to drier ones (Makanda 2009). Ethanol productivity was calculated using the 

formulae below: 

𝑇𝑜𝑡𝑎𝑙 𝐵𝑟𝑖𝑥 = 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑡 ℎ𝑎−1 ×  
𝑆𝑡𝑎𝑙𝑘 𝐵𝑟𝑖𝑥

100
                                                                               

𝑇𝑜𝑡𝑎𝑙 𝑓𝑒𝑟𝑚𝑒𝑛𝑡𝑎𝑏𝑙𝑒 𝑠𝑢𝑔𝑎𝑟𝑠 = 𝑇𝑜𝑡𝑎𝑙 𝐵𝑟𝑖𝑥 × 0.85                                                                   

𝐸𝑡ℎ𝑎𝑛𝑜𝑙 𝑙 ℎ𝑎−1  =  
𝑇𝑜𝑡𝑎𝑙 𝑓𝑒𝑟𝑚𝑒𝑛𝑡𝑎𝑏𝑙𝑒 𝑠𝑢𝑔𝑎𝑟𝑠 ×0.46

0.79
 × 1000                                                            

5.2.4 Data analyses 

The hybrid variation was partitioned into Line and Tester main effects, giving two 

independent estimates of general combining ability (GCA) effects. The Line × Tester 

interaction effects were used to estimate the specific combining ability (SCA) effects (Halluer 

and Miranda, 1988). The model for Line x Tester analysis within reciprocals was as follows: 

𝑌𝑖𝑗𝑘 =  𝜇 + 𝐿𝑖 +  𝑇𝑗 +   (𝐿 × 𝑇)𝑖𝑗 +  𝑟𝑘 +   휀𝑖𝑗𝑘  

where;  𝑌𝑖𝑗𝑘 = observed hybrid response;  𝜇 = grand mean;  𝐿𝑖= line main effect; 𝑇𝑗= tester 

main effect; (𝐿 × 𝑇)𝑖𝑗  = interaction between line and tester;  𝑟𝑘  = replications main effect; and 

휀𝑖𝑗𝑘 = random experimental error. 

General combining ability effects 

The GCA effects for parents, when used both as male and female parents, were 

calculated according to Kearsey and Pooni (1996) as follows:  

𝐺𝐶𝐴𝐿 =  𝑋𝐿 − 𝜇  and 𝐺𝐶𝐴𝑇 =  𝑋𝑇 − 𝜇   
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where:  𝐺𝐶𝐴𝐿  and 𝐺𝐶𝐴𝑇 = GCA of line and tester, respectively; 𝑋𝐿  and 𝑋𝑇  = mean of the lines 

and testers averaged over its crosses, respectively;  𝜇 = grand mean of all crosses. 

The standard error (SE) for line and tester GCA effects was calculated according to 

Dabholkar (1999) separately because the numbers of males and females were not balanced. 

This was as follows:  

𝑆𝐸𝐿 =  √
𝑀𝑆𝐸

𝑇 ×𝑟
 and 𝑆𝐸𝑇 =  √

𝑀𝑆𝐸

𝐿 ×𝑟 
  

where: 𝑀𝑆𝐸 = mean square error;  𝑟 = number of replications;  𝐿 and 𝑇 = number of lines and 

testers, respectively. 

T-tests were calculated to determine the significance of Lines, Testers and Line by 

Tester interaction effects as follows: 

 𝑡𝑋 =  
𝐺𝐶𝐴𝑋

𝑆𝐸𝑋
  

where:  𝑡𝑋 = t-statistic of either Line, Tester or Line × Tester interaction analysis; 𝐺𝐶𝐴𝑋  = 

general combining ability for either line or tester; and 𝑆𝐸𝑋 = standard error of either line or 

tester. 

Specific combining ability effects 

The SCA effects of the crosses were computed according to Kearsey and Pooni (1996) 

as follows: 

𝑆𝐶𝐴𝑋 =  𝑋𝑋 − 𝐸(𝑋𝑋) =  𝑋𝑋 − (𝐺𝐶𝐴𝐿 +  𝐺𝐶𝐴𝑇 +  𝜇)  

where: 𝑆𝐶𝐴𝑋 = SCA effects of the two parents in the cross;  𝑋𝑋  = observed mean value of the 

cross; 𝐸(𝑋𝑋) = expected value of the cross based on the GCA effects of the two parents; 𝐺𝐶𝐴𝐿  

and 𝐺𝐶𝐴𝑇 = GCA of Line and Tester parents, respectively. 

The standard error (SE) for the SCA effects was calculated according to Dabholkar 

(1999) as follows: 

 𝑆𝐸 =  √
𝑀𝑆𝐸

𝑟 
  

where:  𝑀𝑆𝐸 = mean square error; 𝑟 = number of replications; 

T-tests were calculated to determine the significance of Lines, Testers and Line by 

Tester interaction as follows: 

 𝑡𝑋 =  
𝑆𝐶𝐴𝑋

𝑆𝐸𝑋
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where: 𝑆𝐶𝐴𝑋 = specific combining ability for the cross and 𝑆𝐸𝑋 = standard error of the SCA 

effects of the cross. 

GCA and SCA variance estimates 

The variance components for GCA effects (Lines and Testers) and that of SCA effects 

were calculated. Heritability in the broad- sense was calculated using Hallauer and Miranda 

(1981) as follows: 

𝐻2 =  
𝛿𝑔

2

𝛿𝑝
2;  

where: 𝐻2 = broad-sense heritability; 𝛿𝑔
2 = genotypic variance; 𝛿𝑝

2 = phenotypic variance.  

The heritability % was categorized as low, moderate and high, in accordance with 

Robinson et al. (1949) as follows: 0-0.3, low; 0.3-0.6, moderate and >0.6, high. 

Heterosis  

Better-parent heterosis (%) was computed according Alam et al. (2004) as follows: 

𝐵𝑒𝑡𝑡𝑒𝑟 𝑝𝑎𝑟𝑒𝑛𝑡 ℎ𝑒𝑡𝑒𝑟𝑜𝑠𝑖𝑠 % =  
𝑋𝑋−𝑋𝐵𝑃

𝑋𝐵𝑃
× 100 %  

where: 𝑋𝑋 = observed mean value of the cross; 𝑋𝐵𝑃 = mean of the better parent. 

Mid parent heterosis (%) was computed as follows: 

𝑀𝑖𝑑 𝑝𝑎𝑟𝑒𝑛𝑡 ℎ𝑒𝑡𝑒𝑟𝑜𝑠𝑖𝑠% =
𝑋𝑋−𝑋𝑀𝑃

𝑋𝑀𝑃
 × 100%  

where: 𝑋𝑋 = observed mean value of the cross;  𝑋𝑀𝑃 = mean of both parents. 

Associations among traits 

The Pearson’s phenotypic correlation analysis was performed in GenStat 18th Edition to 

describe the relationship among the morphological traits.   

5.3 Results 

5.3.1 Analysis of variance 

Table 5.2 shows the analysis of variance for ethanol productivity and associated traits 

of sweet stem sorghum hybrids. The general analysis of variance for all genotypes showed 

that genotypes were significantly different for all traits except dry matter. Table 5.3 shows the 

combining ability analysis of variance. The lines exhibited significant differences for all traits 

except dry matter while testers were not significantly different for dry matter and fibre content. 
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The Line by Tester interaction was only significantly different for biomass, stalk brix and 

ethanol production. 

Table 5.2: Standard ANOVA showing mean squares and significance tests for ethanol 
productivity and associated traits of sweet stem sorghum hybrids 

Sources of 

variation  df SD PH BM FC DM SB EP 

Genotypes 43 0.24703*** 786.2*** 410.3*** 0.0007292* 0.001087 5.043** 2621866*** 

Replication 1 0.00047 320.4 131.2 0.0022977* 0.016316*** 63.677*** 112048 

Error 41 0.08584 263.8 133 0.000437 0.001017 2.391 882200 

df = degrees of freedom, SD = stem diameter, PH = plant height, BM = biomass, FC = fibre content, DM = dry 

matter, SB = stalk brix, EP = ethanol productivity. ***, **, * significant at p≤0.001, p≤0.01 and p≤0.05, 

respectively. 

 

Table 5.3: Line x Tester ANOVA mean squares and significance tests for ethanol 
productivity and associated traits of sweet stem sorghum 

Sources of 
variation df SD PH BM FC DM SB EP 

Replication 1 0.0016 140.7 522 0.003711 0.019712 63.173 437193 

Testers 3 0.2179* 1221.4** 50.5* 0.000592 0.001298 3.314* 244931* 

Lines 7 0.5102*** 2724.8*** 1236.4*** 0.00149** 0.002023 9.564** 7512952*** 

Lines x 

Testers 21 0.0930 191.2 
122.7* 0.000503 0.000824 3.054* 598690* 

Error 29 0.1022 237.7 132.9 0.000474 0.001119 2.442 772082 

df = degrees of freedom, SD = stem diameter, PH = plant height, BM = biomass, FC = fibre content, DM = dry 

matter, SB = stalk brix, EP = ethanol productivity. ***, **, * significant at p≤0.001, p≤0.01 and p≤0.05, 

respectively 

 

5.3.2 Mean performance of 32 hybrids and parents for seven bioethanol related traits 

Table 5.4 shows the mean performances of all the hybrids and their parents for seven 

traits measured in the study. Ethanol productivity varied from 787 l ha-1 to 5470 l ha-1, with a 

mean of 2055 l ha-1. The top ten ethanol producing genotypes included six hybrids (AS253 x 

AS244, AS246 x AS391, AS253 x AS204, AS251 x SS27, AS253 x SS27 and AS253 x 

AS391). In terms of stem diameter, genotypes varied from 0.4 cm to 2.4 cm, with a mean of 

1.53 cm, while plant height varied from 128 cm to 215 cm, with a mean of 163 cm. The top ten 

genotypes with thick stem comprised of nine hybrids (AS253 x AS391, AS253 x SS27, AS253 

x AS244, AS105 x AS204, AS79 x SS27, AS246 x AS391, AS251 x AS391, AS251 x AS204 

and AS111 x SS27), while the top ten tallest genotypes included eight hybrids (AS253 x 

AS244, AS251 x SS27, AS253 x SS27, AS246 x AS244, AS251 x AS244, AS253 x AS391, 

AS111 x AS244 and AS246 x SS27). Biomass production varied from 11.6 t ha-1 to 68 t ha-1, 
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with a mean of 30 t ha-1. Six hybrids (AS253 x AS244, AS253 x AS391, AS251 x AS391, 

AS253 x SS27, AS253 x AS204 and AS246 x AS391) were among the top ten biomass 

producing genotypes. Fibre content varied from 12 to 20%, with a mean of 16%, while dry 

matter varied from 25 to 34%, with a mean of 31%. Lastly, stalk brix varied from 9.9 to 16.4%, 

with a mean of 13.8%. Of the top ten genotypes, only five were hybrids (AS253 x AS204, 

AS253 x SS27, AS105 x AS244, AS79 x  AS204 and AS253 x AS391). 
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Table 5.4: Means of seven ethanol productivity related traits of 32 sweet stem 

sorghum hybrids and their 12 parents 

Genotypes 

Traits 

SD PH BM FC DM SB EP 

AS 253* 1.5 177 67.00 13 30 16.2 5468.6 

AS253 x AS244 2 215 68.00 15 29 14.2 4802.7 

AS246 x AS391 1.8 160 37.25 15 29 13.2 4622.2 

SS 27* 1.55 175 57.17 17 33 15.7 4562.0 

AS253 x AS204 1.7 170 48.38 12 29 16.6 3858.9 

AS 391* 1.6 185 46.88 17 31 13.45 3121.3 

AS251 x SS27 1.45 205 36.08 15 26 10.5 3018.6 

AS253 x SS27 2.35 197.5 49.63 14 31 16.5 2857.4 

AS253 x AS391 2.4 185 53.17 14 30 15.1 2814.5 

AS 246* 0.4 172.5 42.13 15 29 13.3 2779.8 

AS251 x AS391 1.8 164.5 52.25 15 29 13.3 2564.0 

AS 105* 1.4 147.5 29.21 17 34 15.95 2322.0 

AS 113* 1.05 135 28.42 17 34 16.4 2296.8 

AS246 x AS244 1.1 190 33.25 17 31 13.35 2197.8 

AS 244* 1.4 170 29.54 19 33 14.05 2055.7 

AS105 x AS204 1.9 147.5 30.00 15 29 13.8 2019.0 

AS105 x AS244 1.6 157.5 25.46 16 33 15.55 1983.3 

AS79 x AS244 1.45 157.5 28.21 17 31 13.8 1973.1 

AS105 x SS27 1.6 150 22.46 17 30 12.15 1945.5 

AS111 x SS27 1.8 170 34.88 16 31 14.3 1943.5 

AS251 x AS204 1.8 166 26.88 19 33 13.75 1816.1 

AS79 x AS204 1.7 136 23.79 17 33 15.2 1762.9 

AS 111* 1.8 157.5 21.92 18 34 15.95 1729.3 

AS79 x AS391 1.75 147.5 22.08 19 34 14.7 1535.3 

AS246 x SS27 1.25 180 35.58 14 25 9.9 1499.5 

AS111 x AS204 1.65 160 20.71 17 32 14.45 1472.6 

AS113 x SS27 1.45 149 17.75 15 29 13.3 1471.7 

AS105 x AS391 1.4 152.5 23.08 19 33 12.9 1469.8 

AS251 x AS244 1.4 189 24.04 20 33 12.25 1441.7 

AS 79* 1.25 130 21.00 13 27 13 1351.2 

AS246 x AS204 1.05 172.5 20.63 12 25 12.7 1312.3 

AS 251* 1.2 162.5 22.88 17 29 11.5 1298.7 

AS74 x SS27 1.25 165 25.92 16 30 13.65 1298.0 

AS113 x AS391 1.7 150 16.25 17 32 15.1 1296.2 

AS111 x AS391 1.6 164.5 17.71 17 32 14 1250.4 
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Table  5.4 continued 

Genotype SD PH BM FC DM SB EP 

AS74 x AS204 1.2 147.5 22.17 16 28 11.35 1230.5 

AS74 x AS244 1.25 155.5 16.88 18 32 14.05 1159.8 

AS113 x AS244 1.45 142.5 16.13 15 29 13.7 1139.0 

AS74 x AS391 1.7 160 17.13 14 28 13.25 1112.2 

AS111 x AS244 1.8 180 15.33 17 32 14 1050.7 

AS 204* 1.3 147.5 17.96 20 31 10.75 954.7 

AS79 x SS27 1.85 130 12.79 19 34 13.95 952.8 

AS113 x AS204 1.35 127.5 12.96 17 30 12.65 816.7 

AS 74* 1.1 146 11.63 18 32 13.6 786.5 

Mean 1.53 162.5 29.6 16 31 13.8 2054.9 

SD = stem diameter, PH = plant height, BM = biomass, FC = fibre content, DM = dry matter, SB = stalk brix, EP 
= ethanol productivity, * = parental genotype 

 

 

5.3.3 General combining ability effects 

The GCA effects of parental lines utilised in the study are shown in Table 5.5. General 

combining ability effects were significant for all lines, with the exception of genotypes AS105, 

AS251 and AS79. Of the five parental lines with significant ethanol production, only AS246 

and AS253 had positive GCA effects. Genotype AS 253 had the highest GCA effect for ethanol 

production of almost 2100 l ha-1 , making it the best general combiner. Regarding stem 

diameter, only three genotypes (AS253, AS391 and AS244) had positive significant GCA 

effects. AS253 had the highest GCA effect at 0.64. Genotypes AS251, AS253 and AS244 had 

significant GCA effects for plant height, AS253 being the highest with GCA of 35.8. Genotype 

AS253 also had the highest positive significant GCA effects for biomass (33), although only 

one other genotype (AS 251) had a positive significant GCA effect. In terms of fibre content, 

two parental lines (AS246 and AS253) had significant negative GCA effects. Only AS79 had 

a significant positive GCA effect for dry matter. The parental line AS253 had a significant 

positive GCA effect for stalk brix. The parental line AS253 had significant GCA effects for all 

traits with the exception of dry matter. No tester parents had significant GCA effects for 

biomass, fibre content, dry matter and ethanol production. 
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Table 5.5: General combining ability (GCA) effects for the sweet stem sorghum parents 
for ethanol productivity and associated traits 

 
Parents SD PH BM FC DM SB EP 

L
in

e
s
 

AS 105 0.15 -4.25* 2.89 0.0010 0.002 0.07 366.17 

AS 111 0.24 12.50 -0.20* -0.0003 0.006 0.65 -58.92* 

AS 113 0.01 -13.88** -6.58** -0.0099 -0.008 0.15 -307.33** 

AS246 -0.17** 19.50* 9.32 -0.0223* -0.035** -1.25** 919.71* 

AS 251 0.14 25.00** 12.46* 0.0050* -0.006 -1.08* 721.87 

AS 253 0.64** 35.75** 32.44** -0.0288** -0.008 2.07** 2095.13** 

AS 74 -0.12** 0.88 -1.83* -0.0076 -0.012 -0.46 -288.08* 

AS 79 0.21 -13.38** -0.64* 0.0118** 0.021* 0.88* 67.79 

SE 0.103586 5.742386 4.077377 0.007392 0.011275 0.546695 332.0768 

T
e

s
te

rs
 

AS 204 0.07 -2.75** 3.33 -0.0126 -0.010 0.28 297.91 

AS 244 0.03* 17.25* 6.06 0.0012* 0.004 0.33 480.28 

AS 391 0.30** 4.38 7.51 -0.0047 -0.001 0.41 594.86 

SS 27 0.15 12.19 7.03 -0.0094 -0.014 -0.50* 385.13 

SE 0.073246 4.06048 2.883141 0.005227 0.007973 0.386571 234.8138 

SD = stem diameter, PH = plant height, BM = biomass, FC = fibre content, DM = dry matter, SB = stalk brix, 
EP = ethanol productivity, SE = standard error, * = significant (t- statistic ≥ 2), **= highly significant (t- statistic 
> 3) 

 

5.3.4 Specific combining ability effects 

Table 5.6 presents the SCA effects of each sweet stem sorghum hybrid developed in 

the study. Each trait had a few hybrids with significant SCA effects. The only highly significant 

SCA effect, although negative, was for stem diameter when AS105 was crossed with AS391. 

All of the five significant SCA effects for stem diameter were in an undesirable direction. The 

same result was observed for plant height, biomass and stalk brix. Hybrid AS246 x AS391 

exhibited a significant positive SCA effect of 1620 l ha-1. 
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Table 5.6: Specific combining ability (SCA) effects for the sweet stem sorghum hybrids 
for ethanol productivity and associated traits 

Hybrid SD PH BM FC DM SB EP 

AS105 x AS204 0.20 -1.6 1.4 -0.007 -0.008 -0.08 -133.3 

AS111 x AS204 -0.13 -5.9 -4.8 0.011 0.011 -0.02 -254.6 

AS113 x AS204 -0.21 -12.0 -6.1 0.019 0.006 -1.32 -662.1 

AS246 x AS204 -0.32* -0.4 -14.4* -0.013 -0.012 0.13 -1393.5* 

AS251 x AS204 0.12 -12.4 -11.3 0.026* 0.036* 1.02 -691.9 

AS253 x AS204 -0.48* -19.1* -9.7 -0.004 0.004 0.72 -22.4 

AS74 x AS204 -0.22 -6.8 -1.7 0.016 -0.004 -2.00* -267.6 

AS79 x AS204 -0.02 -4.0 -1.3 0.003 0.009 0.51 -91.0 

AS105 x AS244 -0.06 -11.6 -5.8 -0.006 0.010 1.62 -351.4 

AS111 x AS244 0.05 -5.9 -12.9* 0.004 -0.001 -0.52 -858.9 

AS113 x AS244 -0.07 -17.0 -5.7 -0.009 -0.012 -0.32 -522.2 

AS246 x AS244 -0.23 -2.9 -4.5 0.021 0.028 0.73 -690.4 

AS251 x AS244 -0.25 -9.4 -16.8* 0.030* 0.024 -0.53 -1248.7* 

AS253 x AS244 -0.15 5.9 7.2 0.006 -0.011 -1.73* 739.1 

AS74 x AS244 -0.13 -18.8* -9.7 0.016 0.022 0.65 -520.6 

AS79 x AS244 -0.27 -2.5 0.4 -0.011 -0.021 -0.94 -63.2 

AS105 x AS391 -0.52** -3.8 -9.7 0.027* 0.016 -1.11 -979.4 

AS111 x AS391 -0.41* -8.5 -12.0 0.010 0.004 -0.60 -773.7 

AS113 x AS391 -0.08 3.4 -7.0 0.013 0.023 1.00 -479.5 

AS246 x AS391 0.20 -20.0* -1.9 0.012 0.017 0.50 1619.4* 

AS251 x AS391 -0.11 -21.0* 9.9 -0.016 -0.011 0.44 -240.9 

AS253 x AS391 -0.01 -11.3 -9.1 0.010 0.001 -0.91 -1363.8* 

AS74 x AS391 0.05 -1.4 -10.9 -0.015 -0.017 -0.24 -682.8 

AS79 x AS391 -0.23 0.4 -7.1 0.010 0.009 -0.12 -615.6 

AS105 x SS27 -0.18 -14.1 -9.8 0.012 0.002 -0.95 -294.1 

AS111 x SS27 -0.06 -10.8 5.7 -0.0004 0.006 0.61 129.1 

AS113 x SS27 -0.19 -5.4 -5.1 0.003 0.004 0.11 -94.4 

AS246 x SS27 -0.20 -7.8 -3.1 0.007 -0.012 -1.89* -1293.6* 

AS251 x SS27 -0.31* 11.7 -5.8 -0.014 -0.029 -1.45 423.4 

AS253 x SS27 0.09 -6.6 -12.2 0.013 0.027 1.40 -1111.1* 

AS74 x SS27 -0.25 -4.2 -1.6 0.009 0.019 1.08 -287.2 

AS79 x SS27 0.01 -24.9* -16.0* 0.023* 0.023 0.04 -988.4 

SE 0.207171 11.48477 8.154753 0.014783 0.02255 1.093389 664.1536 

SD = stem diameter, PH = plant height, BM = biomass, FC = fibre content, DM = dry matter, SB = stalk brix, 
EP = ethanol productivity, SE = standard error, * = significant (t- statistic ≥ 2), **= highly significant (t- statistic 
> 3) 
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5.3.5 GCA and SCA variance estimates  

Table 5.7 shows that the variance due to GCA (lines) was higher than SCA variance for 

all traits studied. On the other hand, the variance due to GCA (testers) was lower than SCA 

variance for all traits with the exception of plant height. The variance ratio of general to specific 

effects (δ2 GCA / δ2 SCA) is above one for all traits. Plant height showed the highest δ2 GCA / 

δ2 SCA ratio compared to other characters. In this study all the traits except fibre content and 

dry matter had high heritability values (>0.5).  

Table 5.7: Estimates of genetic components for the measured traits in sweet stem 
sorghum 

Variance 

components SD PH BM FC DM SB EP 

δ2 GCAline 0.063993 335.3368 151.9244 0.000189 0.000255 1.186071 647220.9 

δ2 GCAtester 0.013525 77.19368 3.486027 3.57E-05 7.34E-05 0.180026 16267.25 

δ2 SCAline x tester 0.019178 40.29615 33.15803 0.000124 0.000228 0.681521 169826.8 

δ2 GCA / δ2 SCA 

ratio 4.042021 10.23746 4.686964 1.803933 1.436172 2.004482 3.906851 

Error mean squares 0.1022 237.7 132.9 0.000474 0.001119 2.442 772082 

h2 0.660245 0.671522 0.680606 0.411048 0.076782 0.534925 0.670486 

SD = stem diameter, PH = plant height, BM = biomass, FC = fibre content, DM = dry matter, SB = stalk brix, EP 

= ethanol productivity, variance components for general (δ2 GCA) and specific (δ2 SCA) genetic effects, h2 = 

narrow sense heritability 

 

Table 5.8 shows that for all traits the order of contribution was lines > lines x testers > 

testers except for plant height, where the contribution of testers was greater than that of lines 

x testers. The contribution by lines was greater than 50% for all traits, with that of biomass 

being more than 80%. For biomass, stalk brix and ethanol productivity, the contribution of 

testers was less than 10%. 

Table 5.8: Contribution of lines, testers, and lines x testers to the total variance for 
seven traits in sweet sorghum 

Trait 
Contribution (%) 

Lines Testers Lines x Testers 

Stem diameter 66.18 13.99 19.83 

Plant height 74.05 17.05 8.90 

Biomass 80.57 1.85 17.58 

Fibre content 54.10 10.24 35.66 

Dry matter 45.76 13.20 41.04 

Stalk brix 57.92 8.80 33.28 

Ethanol productivity 77.67 1.95 20.38 

 



118 
 

5.3.6 Heterosis 

Only five traits had significant differences for better-parent heterosis values as presented 

in Table 5.9. Of the 18 hybrids that had positive better-parent heterosis for stem diameter, 11 

had values above 10%. The highest was 52% for cross AS253 x SS27. Plant height had nine 

hybrids exhibiting positive better-parent heterosis, with five of those being above 10%, the 

highest being 21% by AS253 x AS244. Biomass and stalk brix exhibited comparable highest 

better-parent heterosis values of 23% and 21%, although they had 4 and 2 hybrids above 

10%, respectively. Ethanol productivity had only four hybrids with positive better-parent 

heterosis, and all of them were 30% and above, the highest being AS246 x AS391 at almost 

50%. Hybrid AS251 x AS204 had positive better-parent heterosis for all five traits. Hybrid 

AS246 x SS27 was in the bottom five for three of the traits. 

All hybrids had positive mid-parent heterosis for stem diameter, with the exception of 

hybrids AS74 x SS27, AS111 x AS391 and AS105 x AS391. The highest mid-parent heterosis 

values for stem diameter, plant height, biomass, stalk brix and ethanol productivity were 80 

%, 24 %, 50 %, 28 % and 61 %, respectively. Hybrids AS251 x AS204, AS253 x AS204, AS79 

x AS244 and AS111 x AS204 had positive mid-parent heterosis for all five traits (Table  5.10).
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Table 5.9: Sweet stem sorghum hybrids exhibiting positive better-parent heterosis for five ethanol productivity related traits 

Hybrid SD Hybrid PH Hybrid BM Hybrid SB Hybrid EP 

AS253 x SS27 52% AS253 x AS244 21% AS74 x AS204 23% AS251 x AS204 20% AS246 x AS391 48% 

AS253 x AS391 50% AS251 x SS27 17% AS251 x AS204 17% AS79 x AS204 17% AS251 x AS204 40% 

AS251 x AS204 38% AS253 x SS27 12% AS79 x AS204 13% AS79 x AS391 9% AS79 x AS204 30% 

AS105 x AS204 36% AS251 x AS244 11% AS251 x AS391 11% AS253 x AS204 2% AS74 x AS204 29% 

AS253 x AS244 33% AS246 x AS244 10% AS105 x AS204 3% AS253 x SS27 2%     

AS79 x AS204 31% AS111 x AS244 6% AS253 x AS244 1%         

AS79 x SS27 19% AS246 x SS27 3%             

AS105 x AS244 14% AS251 x AS204 2%             

AS253 x AS204 13% AS111 x AS204 2%             

AS246 x AS391 13%                 

AS251 x AS391 13%                 

AS79 x AS391 9%                 

AS113 x AS391 6%                 

AS74 x AS391 6%                 

AS113 x AS204 4%                 

AS79 x AS244 4%                 

AS113 x AS244 4%                 

AS105 x SS27 3%                 

Bottom Five                   

AS105 x AS391 -13% AS113 x AS244 -16% AS111 x AS391 -62% AS105 x AS391 -19% AS113 x AS204 -64% 

AS246 x AS204 -19% AS105 x AS391 -18% AS74 x AS391 -63% AS113 x AS204 -23% AS246 x SS27 -67% 

AS246 x SS27 -19% AS113 x AS391 -19% AS113 x AS391 -65% AS105 x SS27 -24% AS113 x SS27 -68% 

AS74 x SS27 -19% AS79 x AS391 -20% AS113 x SS27 -69% AS251 x SS27 -33% AS74 x SS27 -72% 

AS246 x AS244 -21% AS79 x SS27 -26% AS79 x SS27 -78% AS246 x SS27 -37% AS79 x SS27 -79% 

SD = stem diameter, PH = plant height, BM = biomass, FC = fibre content, DM = dry matter, SB = stalk brix, EP = ethanol productivity 
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Table 5.10: Sweet stem sorghum hybrids exhibiting positive mid-parent heterosis for five ethanol productivity related traits 

Hybrid SD Hybrid PH Hybrid BM Hybrid SB Hybrid EP 

AS246 x AS391 80% AS253 x AS244 24% AS74 x AS204 50% AS79 x AS204 28% AS251 x AS204 61% 

AS253 x AS391 55% AS251 x SS27 21% AS251 x AS391 50% AS251 x AS204 24% AS246 x AS391 57% 

AS253 x SS27 54% AS251 x AS244 14% AS253 x AS244 41% AS253 x AS204 23% AS79 x AS204 53% 

AS251 x AS204 44% AS253 x SS27 12% AS251 x AS204 32% AS79 x AS391 11% AS74 x AS204 41% 

AS105 x AS204 41% AS246 x AS244 11% AS105 x AS204 27% AS111 x AS204 8% AS253 x AS244 28% 

AS253 x AS244 38% AS111 x AS244 10% AS79 x AS204 22% AS251 x AS391 7% AS105 x AS204 23% 

AS79 x AS204 33% AS246 x AS204 8% AS253 x AS204 14% AS246 x AS204 6% AS253 x AS204 20% 

AS79 x SS27 32% AS251 x AS204 7% AS79 x AS244 12% AS105 x AS244 4% AS251 x AS391 16% 

AS251 x AS391 29% AS79 x AS244 5% AS111 x AS204 4% AS253 x SS27 3% AS79 x AS244 16% 

AS113 x AS391 28% AS111 x AS204 5%     AS105 x AS204 3% AS111 x AS204 10% 

AS246 x SS27 28% AS253 x AS204 5%     AS79 x AS244 2% AS251 x SS27 3% 

AS74 x AS391 26% AS246 x SS27 4%     AS253 x AS391 2%     

AS246 x AS204 24% AS74 x SS27 3%     AS74 x AS244 2%     

AS79 x AS391 23% AS111 x SS27 2%     AS113 x AS391 1%     

AS246 x AS244 22% AS253 x AS391 2%             

AS253 x AS204 21% AS74 x AS204 1%             

AS113 x AS244 18%                 

AS113 x AS204 15%                 

AS105 x AS244 14%                 

AS111 x AS244 13%                 

AS113 x SS27 12%                 

AS79 x AS244 9%                 

AS105 x SS27 8%                 

AS251 x AS244 8%                 

AS111 x SS27 7%                 

AS111 x AS204 6%                 

AS251 x SS27 5%                 
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Table 5.10 continued 

Bottom Five                   

AS74 x AS204 0% AS105 x SS27 -7% AS105 x SS27 -48% AS105 x AS391 -12% AS74 x SS27 -51% 

AS74 x AS244 0% AS105 x AS391 -8% AS111 x AS391 -49% AS113 x SS27 -17% AS113 x AS391 -52% 

AS74 x SS27 -6% AS113 x AS204 -10% AS113 x AS391 -57% AS251 x SS27 -23% AS113 x SS27 -57% 

AS111 x AS391 -6% AS246 x AS391 -10% AS113 x SS27 -59% AS105 x SS27 -23% AS246 x SS27 -59% 

AS105 x AS391 -7% AS79 x SS27 -15% AS79 x SS27 -67% AS246 x SS27 -32% AS79 x SS27 -68% 

SD = stem diameter, PH = plant height, BM = biomass, FC = fibre content, DM = dry matter, SB = stalk brix, EP = ethanol productivity 

 

Table 5.11: Pearson’s correlations for the observed traits for experimental sweet stem sorghum genotypes for hybrids (above diagonal) 
and parents and hybrids (below diagonal) 

Trait SD PH BM FC DM SB EP 

SD - 0.1867 0.4385** -0.1227 0.1337 0.3912* 0.5241** 

PH 0.1809 - 0.6950** -0.2482* -0.1817 -0.0241 0.6353** 

BM 0.2488* 0.6260** - -0.2904* -0.1518 0.0812 0.9619** 

FC -0.0629 -0.2398* -0.3226* - 0.8497** 0.3097* -0.2196 

DM 0.1365 -0.1722 -0.0978 0.8075** - 0.7645** 0.0359 

SB 0.3000* -0.0093 0.2103* 0.1879 0.731* - 0.3333* 

EP 0.2883* 0.5425** 0.966** -0.2659* 0.0726 0.4284** - 

SD = stem diameter, PH = plant height, BM = biomass, FC = fibre content, DM = dry matter, SB = stalk brix, EP = ethanol productivity. **, * significant at p≤0.001 and 
p≤0.05, respectively 
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5.3.7 Associations among observed traits 

Table 5.11 is a presentation of Pearson’s correlations for the observed traits for 

experimental sweet stem sorghum hybrids,  parents and hybrids. In terms of the significance 

of correlation coefficients, there was not much difference between the analyses involving the 

two sets. For both the hybrid only and the hybrid and parents analyses, stem diameter was 

significantly correlated (P<0.001) with biomass (r=0.4385 and 0.2488, respectively), stalk brix 

(r=0.3912 and 0.3, respectively) and ethanol productivity (r=0.5241 and 0.2883, respectively). 

For both the hybrid only, and the hybrid and parents analyses, plant height was significantly 

(P<0.001) correlated to biomass (r=0.695 and 0.626, respectively), fibre content (r=-0.2482 

and -0.2398, respectively) and ethanol productivity (r=0.6353 and 0.5425, respectively). For 

both the hybrid only and hybrid and parents analyses, biomass was also significantly 

correlated to fibre content (r= -0.2904 and -0.3226, respectively) and ethanol productivity (r= 

0.9619 and 0.966, respectively). Biomass was not significantly correlated to stalk brix when 

considering crosses alone. Fibre content was significantly correlated to dry matter and ethanol 

productivity. For hybrids alone, fibre content was also significantly correlated to stalk brix 

(r=0.3097). Stalk brix was significantly correlated to dry matter (r=0.7645 and 0.731 for hybrids 

only and hybrid plus parent analyses, respectively) and ethanol productivity (r=0.3333 and 

0.4284 for hybrids only and hybrid plus parent analyses, respectively). On the other hand, 

considering the strength of the correlations, the hybrid only analysis was notably different from 

the analysis that included parental genotypes. For the analysis excluding parents, there were 

strong (>0.5) correlations between biomass and plant height; dry matter with biomass, fibre 

content and stalk brix; ethanol productivity with stem diameter; plant height and biomass. For 

the hybrid plus parents analysis, the strong correlations were that of ethanol productivity with 

plant height and biomass; dry matter with stalk brix and fibre content; plant height and 

biomass. 

5.4 Discussion 

5.4.1 Mean performance and heterosis 

Overall, the sweet stem sorghum genotypes tested, including the parents, performed 

slightly lower than expected for all traits. For example, the results were slightly lower in 

comparison to the morphological characterisation trial of the parental lines that was carried 

out in the summer season of 2015/2016 (Mangena et al., 2017). The authors observed highest 

stem diameter, plant height, biomass, stalk brix and ethanol productivity of 31 mm, 420 cm, 

111 t ha−1, 18.9% and 5500 l ha−1, respectively, compared to 24 mm, 215 cm, 68 t ha-1, 16.4% 

and 5470 l ha-1, respectively, observed in the current study. This can be attributed to the fact 
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that the trial was conducted off-season with weather conditions that do not encourage sweet 

stem sorghum to exhibit maximum growth potential. The genotypes were mostly affected by 

the low temperatures experienced from August 2017 to November 2017 with some days 

getting a mean minimum temperature as low as 3°C. However, the observed productivity was 

still more than that recorded in other studies. For example, Tsuchihashi and Goto (2004) and 

Umakanth et al. (2012) recorded their highest biomass of 39 and 54 t ha−1 ,, respectively, 

implying that heterosis breeding could be exploited to increase the biomass yields, owing to 

the importance of non-additive gene action in determining this character. On the other hand, 

for all traits, the majority of the best performing genotypes were hybrids (Table 5.4). This can 

be attributed to heterosis, reflecting the assumption that that sorghum hybrids are usually 

superior to most parental genotypes (Makanda, 2009). Similar conclusions were made by 

Corn (2008). For the parental genotypes that were in the top ten for the different traits, 

Makanda (2009) associated this phenomenon with the idea that the best parents still have a 

role to play in the hybrid breeding to be conducted in each region. 

To increase ethanol productivity in sweet stem sorghum it is imperative to exploit 

heterosis. Quantitative genetic theory states that heterosis is a function of increasing genetic 

diversity among the parents (Falconer, 1989). Significant and positive heterosis is an 

indication of the presence of non-additive gene action (dominance and epistasis).  One way 

to increase ethanol production derived from sweet stem sorghum is to manipulate the crosses 

with positive heterosis for ethanol productivity in future breeding programs (Tariq et al., 2014). 

Six and twelve hybrids had positive better-parent and mid-parent heterosis for stalk brix, , 

respectively (Table 5.9 and Table 5.10). Although the heterosis for these hybrids is positive, 

the magnitudes were low. The same observation was also made by Bunphan et al. (2015), 

who reported that of 12 hybrids tested, only one showed a positive heterosis of 3.6%. They 

concluded that it was unclear why positive heterosis for stalk brix is relatively rare in hybrid 

sweet stem sorghum. Likewise, in a study conducted by Umakanth et al. (2012)on 16 hybrids, 

only one hybrid showed a positive mid-parent heterosis of 9%. Other researchers have 

identified quantitative trait loci (QTL) for stalk brix or sugar concentration, although they were 

predominantly of small effects (Murray et al., 2008; Murray et al., 2009; Ritter et al., 2008). On 

the other hand, Yun-long et al. (2006) identified a QTL that explained up to 25% of the 

phenotypic variance in sugar concentration, also documenting an overdominance effect and 

insinuating that heterosis in hybrids should be anticipated. Tariq et al. (2014) also reported the 

highest better-parent heterosis of 35% with the second highest having 34% better-parent 

heterosis.  
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5.4.2 Combining ability 

If line or tester GCA effects are significant, then it is an indication of either the line or 

tester could produce valuable hybrids for breeding programs for the specific traits. The 

existence of such genetic variation can be exploited for the production of superior ethanol 

producing sweet stem sorghum hybrids. The fact that AS246 and AS253 were the only 

parental genotypes with significant GCA effects that were positive for ethanol production 

implies that future ethanol production breeding programs could include AS246 and AS253 

because they will positively influence their hybrids for ethanol production. Moreover, crossing 

two parents showing the highest general combining ability for a desirable trait may produce 

the best performing cross due to an increased frequency of favourable genes. On the other 

hand, the non-significant ethanol production GCA effects for all the testers indicated that better 

ethanol producing F1 hybrids could have been developed  if different testers had been used 

in the study. On the other hand, Testers AS244 and AS391 had positive significant GCA 

effects for stem diameter and plant height (Table 5.5). These testers can be included in future 

ethanol breeding programs because stem diameter and plant height influence ethanol 

productivity (Mangena et al., 2017). For its positive significant GCA effects for almost all the 

traits, Line AS253 should be used in future sweet stem sorghum breeding programs. It is 

therefore, essential to develop hybrids involving Line AS253 and the better combining testers, 

AS244 and AS391, or to utilise them in recurrent selection programmes. Small numbers of 

parents with favourable GCA effects can be used to generate hybrids for sweet stem sorghum 

improvement because additive variance is associated with effective response to selection 

(Valiolla, 2012; Chikuta et al., 2017). However, significance contributions of both lines and 

testers for stem diameter, plant height, biomass, stalk brix and ethanol production (Table 5.2) 

implied that genes with additive effects were important for the traits,  and therefore, that 

breeding progress could be achieved through selection of good parents (Makanda et al., 

2010). Similarly, Makanda et al., (2010) reported significant male and female parent GCA 

effects for stem diameter, plant height, biomass and stalk brix. Chikuta et al. (2017) reported 

significant GCA effects for both male and female genotypes for plant height and biomass. 

The significance of SCA effects for biomass, stalk brix and ethanol productivity, 

suggested that further gains can be achieved through hybridisation, capitalising on non-

additive gene effects (Makanda et al., 2010). Knowledge of the SCA of inbred lines is essential 

in hybrid-oriented programs because it accounts for good combinations of inbred lines, which 

can produce superior hybrids. Genotype AS253 had the best GCA effects for the majority of 

the traits, and it did not have significant SCA effects for most traits in most of its crosses. This 

is in agreement with Mwije et al. (2014) who reported that parents with the best GCA effects 

did not automatically develop hybrids with desirable SCA effects. 
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For stem diameter, plant height, biomass and ethanol productivity, both additive and non-

additive gene actions are important, with the preponderance of additive gene actions. 

Moreover, the magnitude of GCA/SCA variance ratio was high (< 4) for stem diameter, plant 

height, biomass and ethanol productivity (Table 5.7), indicating the relative importance of 

additive gene action in these traits (Gupta et al. 1976). The high heritability estimates observed 

in most traits implies that they could be influenced by additive gene action (Insan et al., 2016). 

5.4.3 Associations among observed traits 

Ethanol productivity had significant and strong correlations with plant height and 

biomass. Similar results were reported by Prasad et al. (2013) and Mangena et al. (2017). 

Ethanol productivity was also strongly correlated to stem diameter agreeing to the results of 

Ganesh et al. (1995). 

5.5 Conclusions 

Both additive and non-additive gene effects were shown to be important in controlling 

biomass, stem brix, and ethanol production in sweet stem sorghum. Due to its consistent, 

significant and positive GCA effects across majority of the traits, the line AS253 is 

recommended for utilization in sweet stem sorghum hybrid programs. For ethanol production 

improvement centred programs, genotypes AS253 and AS246 can be recommended because 

they both exhibited significant GCA effects for six out of seven traits. Hybrid AS246 x AS391 

should also be further tested because it was the only one with a significant positive SCA effect. 
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Thesis overview 

 

This chapter summarizes the major findings from the completed research. It gives a general 

overview of the conclusions deduced and the way forward. Recommendations on what future 

studies should focus on are also outlined in this chapter. 

To recap, the objectives of this study were to: 

i) investigate the phenotypic variability present among diverse sorghum genotypes 

based on ethanol production and related agronomic traits; 

ii) evaluate the genetic interrelationships among phenotypically selected sweet stem 

sorghum genotypes using polymorphic simple sequence repeat (SSR) markers; 

iii) investigate the concentration, stage of application and frequency of application of ethyl 

4'fluorooxanilate (E4FO) for inducing male sterility of sweet stem sorghum without 

affecting female fertility; 

iv) investigate the combining ability between the selected sweet stem sorghum testers 

and lines; and  

v) assess heterosis in sweet stem sorghum hybrids for bio-ethanol production and related 

traits. 

Major findings 

i) Characterization of sweet stem sorghum genotypes for bio-ethanol production 

One hundred and ninety sweet stem sorghum genotypes were phenotypically evaluated. 

Agronomic and ethanol yield related traits were collected. Data were subjected to analysis of 

variance, cluster analysis, correlation analysis, path coefficient analysis and principal 

component analysis.  

The main findings of the study were: 

 The study demonstrated that there was high phenotypic diversity among tested 

genotypes for all measured traits; 

 At least 20 experimental genotypes out-performed the checks for all observed 

traits; 

  Ethanol productivity ranged from 240.9 to 5500 l ha-1 with a mean of 

1886  l  ha- 1. The best genotypes for ethanol productivity were AS203, AS391, 

AS205, AS251 and AS448 providing mean yields of 5474 l ha-1, 4509 l ha-1, 

4315 l ha-1, 4205 l ha-1 and 3816 l ha-1, in that order; 
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 Days to flowering, plant height, stalk brix and stem diameter exerted the 

greatest indirect effects on ethanol production through higher biomass 

production; 

 Biomass yield had the greatest direct effect on ethanol production; and 

 All traits had high heritability values. 

 

ii) Genetic interrelationship of sweet stem sorghum genotypes assessed through 

simple sequence repeat markers 

Eighteen phenotypically divergent sweet stem sorghum genotypes were evaluated using 25 

polymorphic simple sequence repeat (SSR) markers. Genetic diversity parameters such as 

total number of alleles per locus (Na), number of effective alleles per locus (Ne), Shannon’s 

information index (I), observed heterozygosity (Ho), gene diversity (He), number of putative 

alleles (Pa), percent polymorphism (%P), and inbreeding coefficient (FIS) were determined. 

Other parameters such as differentiation and polymorphic information content (PIC) were 

estimated. The binary data were used to obtain a dissimilarity matrix using the Jaccard’s index. 

Based on Jaccard’s distances, analysis of molecular variance (AMOVA) was conducted.  

The core findings of the study were: 

 Genetic differentiation was observed among the studied sweet stem sorghum 

genotypes; 

 The polymorphic information content (PIC) values for all markers ranged from 

0.00 to 0.85, with a mean value of 0.56, implying that the markers were highly 

informative and discriminatory; and 

  Genetically unique sweet stem sorghum genotypes such as AS391, SS27, 

AS204 and AS244 were identified in the study.   

 

iii) Preliminary investigation of the effect of ethyl 4'fluorooxanilate as a male 

gametocide of sweet stem sorghum 

Two experiments were conducted to investigate the concentration, stage of application 

and frequency of application of ethyl 4'fluorooxanilate (E4FO) for inducing male sterility of 

sweet stem sorghum without affecting female fertility. Three sweet stem sorghum 

genotypes were tested at three application stages and five E4FO dose rates during the first 

experiment. In the second experiment the frequency of application of E4FO was 

determined using three sweet stem sorghum genotypes, three E4FO doses, and six 

frequencies of application. Data on male sterility was inferred based on seed set and seed 

count from the treated plants. To determine female fertility, controlled crosses were 

performed, seed set was assessed and the number of seeds on cross pollinated plants 
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were counted. Male sterility and female fertility were assessed against comparative control 

treatments.   

The main findings of the study were: 

 Male sterility was achieved when E4FO was applied during heading stage using 

the following rates: 1000 mg l-1, 1500 mg l-1and 2000 mg l-1, with more than one 

application; and 

 Applying E4FO twice during the heading stage at a rate of 2000 mg l-1 would 

induce male sterility in the tested sweet stem sorghum genotypes. 

 

iv) Combining ability and heterosis of sweet stem sorghum genotypes for bioethanol 

yield and related traits 

Eight selected sweet stem sorghum lines and four testers were crossed using a line x 

tester mating design. The F1 hybrids and parental lines were evaluated for bioethanol yield 

and related traits. Data were subjected to analysis of variance, combining ability and 

heterosis analyses. 

The main findings of the study were: 

 Tested sweet stem sorghum genotypes showed high phenotypic variation; 

 Ethanol yields varied from 787 l ha-1 to 5470 l ha-1 with a mean of 2055 l ha-1;  

 Hybrids AS246 x AS391, AS251 x AS204, AS79 x AS204, AS74 x AS204 

expressed greater ethanol productivity with positive better-parent heterosis 

(>30 %);  

 Lines AS253, AS246, AS 105 and testers AS391 and SS27 had highly positive 

general combining ability (GCA) effects for almost all the traits in a desirable 

direction; and 

 Among the studied hybrids or test parents ethanol productivity had significant 

and positive correlations with plant height, stem diameter and biomass.  

Implications of the research findings for breeding sweet stem sorghum for bio-

ethanol production 

The following implications and future directions were identified: 

i) The substantial amount of variation among the genotypes implicates that they can 

be used in breeding programs aiming for different better attributes in bioethanol 

production; 
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ii) Multiyear data are essential to establish stability and  the Genotype × Environment 

Interaction patterns that are repeatable across years; 

iii) Due to their  consistent, significant and positive GCA effects across majority of the 

traits, lines AS253, AS246, AS 105 and testers AS391 and SS27 with high GCA 

effects are ideal parents for subsequent crosses with commercial varieties using 

the gametocide methodology to produce high bioethanol yielding varieties; and 

iv) It is essential to standardise crossing genotypes using the gametocide 

methodology in a commercial capacity considering the different flowering dates 

and plant height that can be exhibited by different sweet stem sorghum genotypes. 

 

Conclusively, the study established the existence of considerable genetic diversity 

among sweet stem sorghum genotypes morphologically and genotypically. The selected 

promising parental genotypes and experimental hybrids are recommended for bio-ethanol 

production and breeding. 


