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Thesis abstract 

Pigeonpea [Cajanus cajan (L.) Millsp.] is an important multi-purpose crop widely 

grown in the tropics and sub-tropics. However, pigeonpea productivity has been 

stagnant with grain yield of 750 kg ha-1due to several biotic, abiotic and socio-

economic constraints. Narrow genetic diversity present in the cultivated species 

has further hampered progresses in the development and deployment of 

improved cultivars and genomic resources. 

The main objective of this study was to develop improved cultivars of pigeonpea 

through agronomic characterization and by identifying genomic regions 

associated with yield and yield-related traits for efficient marker-assisted selection 

programs. The specific objectives of this study were: 1) to assess the phenotypic 

variability and to identify promising genotypes among F2 segregants of pigeonpea 

populations derived from crosses of six parental lines with diverse genetic 

backgrounds, 2) to apply correlation and path coefficient analyses and identify 

most useful yield and yield-related components of newly developed pigeonpea 

mapping populations, 3) to determine the genetic control of eight yield and yield-

related traits involving a total of 460 F2 pigeonpea progenies derived from three 

families of varied genetic backgrounds and 4) to identify quantitative trait loci 

(QTL) associated with eight yield and yield-related traits using 420 F2 progenies 

developed from three divergent pigeonpea families. 

 

The following six parental lines: AL 201, ICPL 20325, ICP 8863, ICPL 87119, ICP 

5529 and ICP 7035 were crossed using a bi-parental mating design. Parents and 

a total of 611 F2 individuals were phenotyped. Data collected included days to 

flowering, number of primary branches plant-1 number of secondary branches 

plant-1 number of pods plant-1, number of seeds pod-1, seed weight and seed yield 

plant-1. ICP 7035 and ICP 5529, which are long maturity lines had desirable 

attributes such as increased seed weight, reduced plant height, greater number 

of primary branches and better seed yield plant-1 followed by medium maturity 

lines, ICPL 87119 and ICP 8863. Short maturity lines ICPL 20325 and AL 201 had 

the least preferred traits. Results suggested that number of pods plant-1, followed 

by seed yield plant-1, number of secondary branches plant-1 and number of 
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primary branches plant-1 exhibited higher variation across all the studied 

geneotypes. The highest phenotypic variability was exhibited by ICP 5529 × ICP 

7035, followed by ICP 8863 × ICPL 87119 and AL  201 × ICPL 20325.Phenotypic 

correlations of eight yield and yield-related characters were investigated to 

determine desired characters for selection of progenies with improved seed yield. 

Significantly positive correlations were found between seed yield and number of 

pods plant-1, followed by the number of secondary branches plant-1, number of 

primary branches plant-1 and 100-seed weight across all populations. Partitioning 

of the correlation coefficients into direct and indirect effect, revealed number of 

pods plant-1 and 100-seed weight to have the highest direct effect on seed yield 

plant-1. Selection of number of pods plant-1,100-seed weight, and number of 

secondary branches enhances seed yield in the present populations of 

pigeonpea. 

A study on the genetic control of yield and yield-related traits involving a total of 

460 F2 pigeonpea individuals was conducted in three mapping populations. The 

skewness and kurtosis of evaluated characters were tested. The results indicated 

predominance of additive gene action affecting the studied characters.  The 

estimated coefficients of skewness and kurtosis revealed there were no gene 

interactions found for some of the traits implying that there were no influences 

among the genes for the phynotypic expression of the respective traits. The traits 

were days-to-50% flowering in the cross AL 201 × ICPL 20325, plant height for 

crosses ICP 8863 × ICPL 87119 and ICP 5529 × ICP 7035, the number of primary 

branches, secondary branches and 100-seed weight for cross ICP  5529 × ICP 

7035. Number of seeds pod-1 in cross AL 201 × ICPL 20325, days-to-50 % 

flowering, number of seed pod-1 and 100-seed weight in population ICP 8863 × 

ICPL 87119, and 100-seed weight in ICP 5529 × ICP 7035, recorded negative 

skewness values indicating the presence of duplicate epistatic gene interaction. 

All other remaining characters in all the crosses recorded positive skewness 

indicating the presence of complementary epistasis interaction among loci. 

QTL analyses were conducted for the above eight yield and yield-related traits 

using three mapping populations with composite interval mapping (CIM). A total 
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of 42 QTLs were detected of which 5 were in AL 201 × ICPL 20325, 7 in ICP 5529 

× ICP 7035 and 30 in ICP 8863 × ICPL 87119. QTLs ranged from 1 to 4 per trait 

and the phenotypic value explained (PVE %) ranged between 10.35 to 16.27% in 

AL 201× ICPL 20325, 10.44 to 17.9% in ICP 5529 × ICP7035 and 10.71 to 89.12% 

in ICP 8863 × ICPL 87119. The detected QTLs were co-localized within the same 

genomic regions indicating the presence of pleiotropic effect or linkage.  

In summary, the present study identified useful genetic resources for further 

breeding, determined the most influential traits in pigeonpea breeding to improve 

seed yield and yield components and developed mapping populations 

segregating for yield and yield-related traits in the crosses of AL 201 × ICPL 

20325, ICP 5529 × ICP 7035 and ICP 8863 × ICPL87119. The 42 putative QTLs 

identified in the study associated with seed yield and yield-related traits are useful 

for strategic marker-assisted breeding of pigeonpea. 
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Thesis Introduction 

 

Background  

Pigeonpea (Cajanus cajan L. Millsp.) is an important grain legume of the tropical 

and subtropical regions of the world. Pigeonpea is the least widely grown crop 

among the six major tropical legumes (Abate et al. 2012). It accounts for less than 

5%   of   total   world   pulse   production (Josh et al.2001). Pigeonpea is grown 

extensively in India, South-East Asia, East Africa, Latin America and the 

Caribbean, where it plays significant role in the food and nutritional security. The 

protein content of commonly grown pigeonpea has been reported to range 

between 18–26% (Odeny 2007).  Further, it has significant usage as animal feed, 

fodder, firewood, thatching material and for improving soil structure and fertility 

(Odeny 2007). 

There is a large variation in its maturity that helps in its wide adaptation including 

diverse locations and cropping systems (Saxena 2010). Generally, the short-

duration (100-140 days) cultivars of pigeonpea are grown as a sole crop, while 

the medium (160-180 days) and long-duration (> 200 days) types are invariably 

grown as intercrop or mixed crop with other short-duration cereals and legumes 

(Saxena 2010). Pigeonpea has self-compatible flowers, but it is often cross-

pollinated by bees with 25-35% outcrossing (Saxena 2008). The estimated size 

of pigeonpea genome packed in 11 chromosomes is 833Mbp (Varshney et al. 

2012).  

Pigeonpea is constrained by inadequate genomic resources, such as genome 

sequence or molecular markers for improving the productivity of this crop. Its yield 

gain has lagged behind due to limited breeding progress and lack of basic 

information on the genomics and genes associated with yield and yield 

components (Kumawat et al. 2012). 
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Constraints to pigeonpea production 

Pigeonpea production has shown an increasing trend worldwide with harvested 

area of 2.7 million hectare (Mha) during 1961 to 4.6 Mha (2009) (FAO 2009, 

http://faostat.fao.org/). However, no increase has been observed in its 

productivity, which in the past five decades remained stagnated at around 

750 kg/ha (Bohra et al. 2012). Average yields are approximately 730 and 840 kg 

per ha for Sub-Saharan Africa (SSA) and Southern Asia (SA), respectively, 

compared to 885 kg per ha of the world average productivity (Abate et al. 2011). 

Pigeonpea productivity is challenged by several biotic and abiotic stresses under 

marginal field conditions, and as a result there is a huge yield gap between 

realizable yield (2500 kg ha-1) and the yield in farmer’s fields (866 kg ha-1in Asia 

and 736 kg ha-1in Africa) (Abate et al. 2011). 

A number of factors are responsible for the poor productivity of the crop in Sub-

Saharan Africa (SSA), including lack of improved cultivars, poor crop husbandry, 

pests, and diseases. Major diseases include Fusarium wilt caused by Fusarium 

udum Butler, sterility mosaic disease caused by sterility mosaic virus and 

phytophthora blight (Phytophthora drechsleri). The major pests include gram pod 

borer (Helicoverpa armigera), maruca (Maruca vitrata), pod fly (Melanagromyza 

obtusa), plume moth (Exelastis atomosa) causing substantial yield reduction to 

pigeonpea production annually (Varshney et al. 2010a). 

To increase the productivity of pigeonpea, identification of candidate genes 

responsible for desired traits and subsequent breeding efforts to transfer the 

desired trait(s) in the elite background is a prerequisite (Varshney et al. 2012; and 

Kumawat et al. 2012). New breeding approaches using genome-wide information 

with high precision phenotyping can assist in harnessing the genetic diversity 

present in the gene pools for crop improvement programmes in a number of crop 

species. However, this has not been the case in pigeonpea especially in SSA. 

 

http://faostat.fao.org/
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Problem statement  

In the past, conventional breeding of pigeonpea had limited success in 

overcoming biotic and abiotic challenges and in boosting productivity of the crop 

(Varshney et al. 2007; and Saxena 2008). Lack of intensive breeding efforts and 

unavailability of high yielding cultivars, among others, have significantly 

contributed to the stagnant productivity of the crop (Zaveri and Pathank 1998).  

 
Narrow genetic diversity in cultivated germplasm, caused by domestication and 

breeding from a small number of genotypes (Bohra et al. 2012). has further 

hampered the effective utilization of conventional breeding as well as 

development and utilization of genomic tools, resulting in pigeonpea being often 

referred to as an ‘orphan crop legume’ (Varshney et al.2010b).  

 
Rationale of the study 

Genomic-assisted breeding has the potential of accelerating cultivar development 

in conventional breeding programs (Varshney et al. 2005; Varshney et al. 2010). 

In addition, genomic tools can help in selecting suitable parents and promising 

segregants to develop elite breeding lines (Pazhamala et al. 2015). Linkage and 

marker-trait association analyses and efficient phenotyping of pigeonpea 

populations may enhance genetic gains and cultivar development. 

 
 Therefore, this study was conducted for the purpose of selecting suitable parents 

and promising segregants, and availing the information on genomic resources for 

pigeonpea, needed by conventional breeders in accelerating the pigeonpea 

breeding of elite cultivars through marker-assisted transfer. 

 
Overall objective 

The overall goal of the project was to identify quantitative trait loci (QTLs) 

associated with yield and yield-related traits in newly developed pigeonpea 

populations for marker-assisted breeding of the crop. 
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The specific objectives 

The specific objectives of the study were: 

1. To assess the phenotypic variability and identify promising genotypes among 

F2 segregants of pigeonpea populations derived from crosses of six parental lines 

with diverse genetic backgrounds. 

2. To apply simple correlation and path analyses and identify most useful yield 

and yield-related components of newly developed pigeonpea mapping 

populations. 

3. To determine the genetic control of yield and yield-related traits involving a total 

of 460 F2 pigeonpea progenies derived from three families of varied genetic 

backgrounds. 

4. To identify quantitative trait loci associated with yield and yield-related traits 

using 420 F2 progenies developed from three diverse pigeonpea families for 

marker-assisted breeding. 

Outline of the thesis 

This thesis consists of five distinct chapters in accordance with a number of 

activities related to the above objectives. All chapters were written in the form of 

discrete research chapters, each following the format of a stand-alone research 

paper (whether or not the chapter has already been published). As such, there is 

some unavoidable repetition of references and some introductory information 

between chapters. The contents of Chapter 1 have been published in the Journal 

of Plant Breeding.      

Table 0.1: Structure of the Thesis 

Chapter Title 

- Thesis introduction 

1  Review of Literature 
2 Phenotypic variability among F2 individuals of pigeonpea derived from three 

genetic backgrounds 
3 Correlation and path-coefficient analyses of seed yield and related traits in 

newly developed pigeonpea populations 
4 Prediction of gene action controlling yield and yield-related traits in pigeonpea 
5 Quantitative trait loci mapping for yield and yield- related traits in pigeonpea 
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CHAPTER ONE 

A review of the literature 1 

Abstract 

Pigeonpea (Cajanus cajan [L.] Millspaugh) is an important multipurpose grain 

legume crop primarily grown in tropical and subtropical areas of Asia, Africa and 

Latin America. In Africa, the crop is grown for several purposes including food , 

income generation, livestock feed and in agroforestry. Production in Eastern and 

Southern Africa (ESA) is however faced with many challenges including limited 

use of high-yielding cultivars, diseases and pests, drought, under-investment in 

research and lack of scientific expertise. The aim of this review is to highlight the 

challenges facing pigeonpea breeding research in ESA and the existing 

opportunities for improving the overall pigeonpea subsector in the region. We 

have discussed the potential of the recently available pigeonpea genomic 

resources for accelerated molecular breeding, the prospects for conventional 

breeding and commercial hybrid pigeonpea, and the relevant seed policies, 

among others, which are viewed as opportunities to enhance pigeonpea 

productivity. 

Key words: Africa — Cajanus cajan — climate change — food security 

 

1 This literature review was published as: Kaoneka, S.R., Saxena, R.K., Silim, S.N., Odeny, D.A., 

Ganga Rao, N.V.P.R., Shimelis, H.A., Siambi, M., and Varshney, R.K. 2016. Pigeonpea breeding 

in eastern and southern Africa: challenges and opportunities. Plant Breeding 135 (2): 148–154, 

doi: 10.1111/pbr.12340. 

 

 

 

 

 



8 

 

1.0. Introduction 

Climate change and nutritional food security have attracted global concerns in the 

recent years. Generally, the resource- poorer developing countries are more 

vulnerable to climate change because of their low incomes and dependence on 

climate sensitive sectors such as agriculture (IPCC 2007). Although African 

countries have recorded improved economic growth over the last 5 years, the 

continent is still considered most susceptible to climate change due to its 

vulnerability and inability to cope with the physical, human and socio-economic 

consequences of climate extremes (Kabasa and Sage 2009). Furthermore, an 

estimated 30% of children under the age of five in sub-Saharan Africa (SSA) are 

underweight, mainly due to malnutrition (Mula and Saxena 2010). Sustainable 

solutions to agriculture and food security in Africa must consider more focused 

research efforts on locally adapted, highly nutritious and stress-tolerant crops 

alongside sustainable government support to agricultural research and 

development. One such crop with potential to cope with climate change and 

provide nutritional food security is pigeonpea (Cajanus cajan [L.] Millspaugh).  

Pigeonpea, a diploid legume crop species (2n = 2x = 22), belongs to Cajaninae 

sub-tribe of the economically most important leguminous tribe Phaseoleae (Van 

der Maesen 1990). The crop derives its name from Barbados, where the seeds 

were once used to feed pigeons (Van der Maesen 1990). It is generally grown 

under risk-prone marginal lands with low inputs (Mula and Saxena 2010). 

Pigeonpea is increasingly gaining importance in Africa, especially in ESA, where 

it occupies an area of about 990 000 ha (Table 1.1) (TIA/IAI 2012; FAO 2013). 

Both local and export demand for this multipurpose legume crop continue to rise, 

presenting an opportunity for faster productivity enhancement and strengthening 

of seed delivery systems, as well as improvement of existing value chains. 

Pigeonpea is likely to become a major player in ESA’s agriculture, especially with 

increased research investment. The aim of this review is to highlight the 

challenges affecting pigeonpea production and improvement and the existing 

opportunities for improving pigeonpea research and overall subsector in ESA.  
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Table.1.1. Area, yield and production of pigeonpea in five countries between 1990 

to 2011 

  

 

1.1 Historical perspectives of pigeonpea genetic diversity and breeding in 

Africa 

The centre of origin of pigeonpea has been a subject of discussions in the past. 

For instance, some studies (Leslie 1976; Purseglove 1976; Singh et al. 2001) 

suggest the origin of pigeonpea to be in Africa. Many other studies (Van der 

Maesen 1990; Fuller and Harvey 2006; Saxena et al. 2014) suggest India as the 

origin of the crop. The presence of several wild relatives, the diverse genepool of 

the crop in the Indian subcontinent and some recent molecular studies provide a 

stronger evidence of the latter group. Africa harbours only two wild species of 

pigeonpea: C. kerstingii (Harms) and C. scarabaeiodes (L.) Thouars (Van der 

Maesen 1990). It is most likely that pigeonpea was introduced by immigrants in 

the 19th century who moved to Africa to become railway workers and 

storekeepers (Odeny 2007).  

 

From eastern Africa, pigeonpea spread over the African continent, albeit without 

acquiring a prominent position. In Africa and the Far East, pigeonpea has been 

Country 

Area (‘000 ha) Yield (Kg/ha) Production (‘000 t) 

1990-
92 

2000-
02 

2011 
1990-
92 

2000-
02 

201
1 

1990-
92 

2000-
02 

2011 

Kenya 159.8 166.7 182.3 409 465.4 608 65.2 77.4 111 

Malawi 142.3 137.4 196.5 683.8 752.9 
110
3 

97.3 103.4 217 

Mozambique - 68.8 193.2 - 465.1 504 - 32.0 97.4 

Tanzania 56.0 134.0 288.1 673.2 650 946 37.7 87.1 273 

Uganda 61.3 80.0 92.5 827.1 1000 
102
5 

50.7 80.0 94.8 

Total 419.4 586.9 952.6 598.2 647.3 832 250.9 379.9 793 
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grown for at least 4000 years (Van der Maesen 1980) and therefore considerable 

agro-ecological adaptation has been obtained locally. 

The traditional African pigeonpea genotypes are long-duration, cream- and large-

seeded (Remanandan 1990). In Uganda, medium-duration, cream to mottle 

small-medium seeded type (Manyasa et al. 2009) have been part of the traditional 

cropping system (Silim et al. 1991; Kimani 2001). Uganda was the first country in 

ESA to implement a pigeonpea breeding programme in 1968 at Makerere 

University (Saxena 2008). However, there is a scope to expand further under 

sustainable intensification of cropping systems with pigeonpea as one of the 

component crops. 

 

1.2. Challenges facing pigeonpea production and improvement 

Challenges facing pigeonpea production and improvement in ESA are divided into 

two main categories, namely technical and institutional challenges. 

 

1.2.1. Technical challenges 

1.2.1.1. Limited use of high-yielding varieties 

Low realized productivity in pigeonpea remains one of the major constraints 

despite past and ongoing breeding efforts. In ESA, the yield of green pods varies 

from 1000 to 9000 kg/ha and that of dry grain may reach 2500 kg/ha in pure stands 

with modern cultivars. Present regional yields are about 800 kg/ha under 

intercropping systems which is much lower than the realizable yield potential. 

Malawi is the major producer of pigeonpea in the region with productivity of about 

1327 kg/ha at present (FAO 2013). Although several improved varieties are now 

available, adoption is limited and most farmers grow traditional landraces that are 

prone to soil borne fungal diseases and grain yields are of low quality (Høgh-

Jensen et al. 2007). 

 

 Short-duration varieties are much more susceptible to insect pest attack, 

necessitating the use of insecticides, which most ESA farmers cannot afford, 
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therefore opting to grow traditional long-duration types (Jones et al. 2002). 

However, recent trend was on cultivation of medium-duration varieties that can fit 

very well into existing cropping systems. More breeding efforts are needed to 

focus on developing farmer- and market preferred genotypes with high yield, 

Fusarium wilt resistance and pest tolerance. 

1.2.1.2. Biotic stresses 

Biotic stresses significantly reduce the pigeonpea yield in ESA (Reddy et al. 

1990). The most important fungal diseases of pigeonpea in ESA are Fusarium 

wilt, Cercospora leaf spot and powdery mildew (Brink and Belay 2006). Fusarium 

wilt is the most serious disease in all major pigeonpea-producing countries in the 

region (Silim et al. 1995). Surveys carried out in 1980 estimated wilt incidences to 

be 60% in Kenya, 36% in Malawi and 24% in Tanzania with annual losses of US$ 

5 million in each of these countries (Kannaiyan et al. 1984). Accessions with less 

wilt incidences and high yield, which are potential donors in resistance breeding, 

have been identified, such as ICEAP 00926, ICEAP 00576-1, ICEAP 00933, 

ICEAP 00040 and ICP 9145 (Rao et al. 2012). They have been identified as 

potential in terms of yield and resistance traits. Insects that are serious, widely 

distributed and cause heavy economic losses in pigeonpea in ESA are pod and 

seed boring Lepidoptera (Helicoverpa armigera (H€ubner), Maruca vitrata 

(=testulalis) Geyer, Etiella zinkenella (Treitschke), and pod fly (Melanagromyza 

chalcosoma (Spencer) (Johansen et al. 1993; Minja et al. 1999). H. armigera is 

the major biotic constraint to pigeonpea production (Lateef and Reed 1990), with 

yield loss estimated at 42% (Abate and Orr 2012). Reports on the seed damage 

due to pod-sucking bugs in Kenya, Malawi, Tanzania and Uganda have shown it 

ranges from 3 to 32% and varies among locations within and between countries 

(Minja 1997). 

 

Pigeonpea lines with resistance to H. armigera have been reported, but little 

progress has been made in incorporating resistance in cultivars that are 

acceptable to farmers (Shanower et al. 1999). The development of insect-
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resistant and/or -tolerant pigeonpea cultivars has been a high priority in the 

research programmes, but the progress is hindered by high variation in pest 

populations (within and across seasons) and the high degree of out-crossing in 

pigeonpea (Shanower et al. 1999). 

1.2.1.3. Abiotic stresses 

In ESA, pigeonpea is grown purely under rainfed conditions with varying 

temperatures, altitudes and latitudes (Silim et al. 2006). Pigeonpea encounters 

various abiotic stresses during its life cycle such as moisture stress (drought), 

temperature, photoperiod and mineral (salinity/acidity) stress (Choudhary et al. 

2011). Among these stresses, moisture stress is most prevalent (Silim and 

Omanga 2001). The medium and long-duration genotypes that are commonly 

grown in ESA depend on residual moisture for the reproductive phase 

development. In some cases, this leads to terminal drought stress which is 

causing substantial yield reduction (Kimani 2001). In a study concerned with 

field evaluation of pigeonpea germplasm, a high (>50%) yield loss was 

attributed to a combination of a severe mid-season drought and high 

temperatures (Gwata 2010).  

Through multi-locational and multiyear evaluations, medium-duration 

genotypes such as ICEAP 00673, ICEAP 01170 and ICEAP 01179, as well as 

long-duration genotypes such as ICEAP 01423 and ICEAP 01202 possessing 

drought tolerance coupled with high yield have been identified (Rao et al. 

2012). 

1.2.2. Institutional challenges 

1.2.2.1. Shortage of improved seed 

Access to improved seeds and markets is particularly limited in sub-Saharan 

Africa (ICRISAT 2009). Inadequate supply of the breeder seeds by the public 

sector (Rao et al. 2012), limited involvement of the private sector (Jones et al. 

2002) and non-existence of the commercial pigeonpea seed markets (Tripp 
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2000) are the major challenges facing the pigeonpea seed industry in ESA. In 

addition, lack of access to quality seeds (Abate and Orr 2012) and poor 

extension services (Abate et al. 2012) significantly contribute to the poor 

adoption of the improved pigeonpea seeds in ESA. 

1.2.2.2. Under-investment in research 

Most of the research on pigeonpea in ESA to date has been through donor funding 

to the National Agricultural Research Systems (NARS) and ICRISAT (Jones et al. 

2001). Despite positive growth in the 1980s, public investment in agricultural 

research and development (AR&D) in ESA has declined (Beintema and Stads 

2010). For instance, in Malawi, the major pigeonpea producer in ESA, the 

government currently invests only 4% of the agricultural budget in research (Phiri 

et al. 2012). In Tanzania, for the past decade, the government budget approved 

for the Department of Research and Training has been in the average of 24% of 

the total actual budget requirement for all agricultural crops (ESAFF 2013). 

1.2.2.3. Lack of human resource capacity 

In ESA, all major producers of pigeonpea have limited capacity to carry out 

effective research and development on pigeonpea, which have traditionally 

received less attention than cereals and cash crops (Abate and Orr 2012). 

Information from the Uganda National Agricultural Research Organization 

(NARO) revealed that is within the national programme, currently there is only one 

scientist who is actively involved in pigeonpea breeding (Yuventino Obong 

personal communication 2015). The same applies to Malawi where only one 

pigeonpea breeder and one agronomist within the national programme are 

working (Esnart Nyirenda Personal communication 2015). 

 

There is also still a huge gap in scientific capacity left by retired scientists, due to 

failure by the national governments to continue hiring and support agricultural 

scientists for a long time (Beintema and Stads 2006). For instance, in Tanzania, 

the situation is most extreme at Ilonga Agricultural Research Institute, a country 
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pigeonpea mandate, where most of the posts for senior research officers are 

vacant (Coulson and Diyamett 2012). 

1.3. Opportunities for Pigeonpea Production and Breeding in ESA 

1.3.1. Increased adoption for pigeonpea production as a strategy in climate 

smart agriculture 

The agricultural system in ESA is characterized by low productivity, low use of 

external inputs, traditional management practices and limited capacity to respond 

to environmental shocks (Tabo et al. 2007). Pigeonpea has a huge untapped 

potential for improvement both in quantity and in quality of production in ESA 

(Odeny 2007). Besides its ability to tolerate droughts and availing water and soil 

mineral nutrients (Valenzuela and Smith 2002; Mathews and Saxena 2005; and 

Adu-Gyamfi et al. 2007), pigeonpea is also a multipurpose crop (Boehringer and 

Caldwell 1989; Kimani 2001; Snapp et al. 2003; and Saxena et al. 2010). 

 Unreliable rainfall received in many parts of the sub-Saharan Africa has reduced 

cereal production especially maize and wheat, and made farmers to shift to 

legumes production especially pigeonpea which is drought tolerant, and in most 

cases intercropped with cereals mainly maize or sorghum. The drought-tolerant 

pigeonpea has a unique role in meeting food security needs of subsistence 

farmers in climatic risky regions of ESA (Snapp et al. 2003). With the regional 

breeding approach in place, the crop can now be grown in more targeted areas 

and breed for a wide range of uses. 

 

1.3.2. Increased market demand for pigeonpea 

Both local and export demand for pigeonpea exist in Africa, especially in ESA. 

Some studies indicate that a vibrant domestic, regional and export trade of dry 

grain and an emerging market for vegetable pigeonpea exist in ESA (Shiferaw et 

al. 2008a). ESA countries export about 200,000-ton grain annually to India. In 

ESA, Kenya and Malawi are the two biggest producers of pigeonpea. In Kenya, 

45% of the crop is sold, while in Malawi, the share is 35% (Shiferaw et al. 2008b; 
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Abate and Orr 2012). During recent years, Tanzania and Mozambique have 

increased area under cultivation and contributing to large quantities of grain 

export. Although informally traded, cross-border trade of pigeonpea between ESA 

countries do exist, for instance, between the northern Tanzania and Kenya (Brink 

and Belay 2006). In addition, the large Indian and Afro-Caribbean communities in 

Europe and North America offer new potential markets that can be accessed 

through the application of improved processing technologies such as freezing 

(Jones et al. 2006). 

1.3.3. Improved seed access and policy support 

One of the key factors for stimulating technology uptake and increasing 

agricultural productivity in smallholder agriculture is access to quality seed of 

improved varieties (Shiferaw et al. 2008b). 

Many countries in ESA have regulations that only permit the sale of certified seed 

(Abate and Orr 2012). Community-based seed production and marketing systems 

like quality declared seed, which is tested in Tanzania for dissemination of 

truthfully labelled seed of high quality, could be one strategy for easing the seed 

shortage problem, especially for open-pollinated cereals or self-pollinated 

legumes like pigeonpea (Abate et al. 2012). For an efficient seed system to 

operate, the public sector must play a bigger role in plant breeding and some 

aspects of quality control, while the private sector has better incentives in the area 

of seed multiplication, processing and distribution (Minot et al. 2007). 

The ongoing seed policy reforms in the region have facilitated more participation 

of the private sector within pigeonpea seed systems. For instance, right now in 

Tanzania, there are more than 10 big companies/estates producing quality seeds 

and grain for sale excluding community-based organizations, NGOs, PMGs, 

farmer’s groups and contract farmers (Rao et al. 2014). The move towards 

formation of strategic partnership with different stakeholders has accelerated the 

release of pigeonpea seeds as well as increasing the quantity of seeds produce 

in the region. Commercial seed companies are also expected to develop interest 



16 

 

in pigeonpea, due to ever growing demand for pigeonpea exports.  About 200,000 

tons of pigeonpea grain is exported annually by ESA countries to India. 

1.3.4. Improved varieties and potential for hybrid pigeonpea 

Breeding activities supported by ICRISAT over the years developed several 

region-specific genotypes through intensive genetic enhancement programme. In 

close collaboration with national programmes, 32 high-yielding varieties were 

released as follows; Malawi (7), Kenya (7), Tanzania (7), Mozambique (5), 

Uganda (2), Zambia (2), Ethiopia (1) and Sudan (1). Further, 10 varieties (4-

Ethiopia, 2-Zambia, 4-Uganda) are being processed for release. Most of these 

varieties were developed from local germplasm with region-specific breeding 

priorities such as high grain yield, intercropping compatibility, photoperiod 

insensitivity, consumer-preferred grain quality, resistance/tolerance to Fusarium 

wilt, Helicoverpa pod borer and resilience to climate change. List of popular 

pigeonpea varieties released in ESA is given in Table 1.2. 

Table 1.2. List of popular pigeonpea varieties released in ESA 

Country Variety Year of 
release 

Special varietal attributes 
 

Kenya KARI Mbaazi2 (ICEAP 
00040) 

1995 Long duration, large cream 
seed and Fusarium wilt 

resistant 
Katumani 60/8 (Kat 60/8) 1998  

Karai (ICEAP 00936) 2011  
Peacock (ICEAP 00850) 2011 Medium duration 

Malawi Sauma(ICP 9145) 1987 Long duration, fusarium wilt 
resistant 

Kachangu(ICEAP 00040) 2000 Long duration, large seeded, 
fusarium wilt resistant 

Mwaiwathualimi(ICEAP 
00557) 

2010 Medium duration 

Chitedze; pigeonpea 1 
(ICEAP 01514/15) 

2011 Medium duration and high 
pod load 

Mozambique ICEAP 00040 2011 Long duration 
ICEAP 00020 2011 Long duration 

Tanzania Komboa (ICPL 87091) 1999 Short duration (110–120 days) 
Mali (ICEAP 00040) 2002 Long duration (180–270 days ) 

Tumia (ICEAP 00068) 2003 Medium duration (140–180 
days) 
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Kiboko (ICEAP 00053) 2015 Long duration and erect plant 

type 
Karatu 1(ICEAP 00932) 2015 Long duration 

Ilonga 14-M1(ICEAP 00554) 2015 Medium duration 
Ilonga 14-M2 (ICEAP 00557) 2015 Medium duration 

Uganda Sepi I (Kat 60/8) 1999 Medium maturity 
Sepi II (ICPL 87091) 1999 Short duration, multiple 

cropping 

 

A key to success factor in pigeonpea breeding in ESA was the adoption of the 

breeding strategy for the establishment of the regional approach taking into 

consideration the key factors such as adaptation, crop phenology, market 

preference and pathogen specificity (Silim et al. 1995; Silim and Omanga 2001; 

and Silim et al. 2006). Kenya transect considered as an open laboratory (Table 

1.3) was used. It varied from 50 to 2500 m above sea level and where 

temperature decreases with increase in altitude. It was the basis for 

understanding the adaptation for developing and targeting varieties (Table 1.4). 

In addition, sources of resistance in the medium- and long-duration background 

were also identified. Efforts are under way to increase the adoption of these 

varieties in farmers’ fields. 

Table 1.3. Geographical positions and weather information of the location (study 

sites in Kenya) 

Latitude/Altitude 
       (m) Temp (°C) 

Location 

Kabete Katumani Kiboko Mtwapa Muguga 

1° 150(1825) Max 24.61 22.12     

Min 12.91 12.22     

Mean 18.71 17.12     

1° 350(1560) Max  25.61 23.62    

Min  14.41 12.92    

Mean  201 18.72    

4° 250(900) Max   29.41 27.82   

Min   17.71 15.52   

Mean   23.51 21.62   

4° 250( ) Max    31. 41   28.92  

Min    23.21  21.52  

Mean    27.31  25.22  

1° 150(2110) Max     221 1 9.42 

Min     11.51  10.22 

Mean     16.81  14.92 

KEY: Rainfall duration = 1Short, 2Long 

Table 1.2: Continued 
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Table 1.4. Days to flowering of the selected pigeonpea genotypes tested under 
natural day length at the selected study sites in Kenya 

ICRISAT in Asia has developed a number of hybrid varieties that have been 

released by NARS and commercial seed companies. The hybrid varieties have 

a 20–40% yield advantage over the open pollinated varieties (Shiferaw et al. 

2008b). Hybrid varieties that are regional –specific, meeting consumer 

preference and adapted to cropping systems are the priority of ICRISAT-ESA. 

Efforts are underway to identify stable CMS lines that are adaptable to ESA, 

maintainers in local germplasm and heterotic parental combinations as hybrid 

vigour is associated with genetic diversity, crosses between the genetically 

diverse African and Asian gene pools could result in considerable yield 

improvement and create greater incentive for adoption of such varieties (Kimani 

1991). 

1.3.5. Availability of genomic resources for pigeonpea genetic enhancement and 

breeding 

To meet the growing demand for pigeonpea in ESA, conventional breeding on its 

own will not be sufficient in developing superior genotypes. Pigeonpea genome 

has now been sequenced, availing more genomic resources for exploitation to 

speed up the ongoing conventional breeding activities (Bohra et al. 2011, 

Varshney et al. 2011, and Varshney et al. 2012). 

Availability of DNA markers for pest and disease resistance will be of utmost 

importance, as it will be easier to conduct resistance breeding to achieve both 

Genotype Maturity 

Location 

Kabete Katumani Kiboko Mtwapa Muguga 

ICEAP 00040 Long 149 178 227 300 156 

T-7 Long 150 185 164 – 170 
ICP 6927 Medium 123 105 121 119 160 

ICP 7035 Medium 119 94 125 122  

ICPL 87091 Short 91 81 74 84  

ICPL 9001 Extra short 80 78 64 79  
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stability and productivity of the crop which is top priority in the genetic 

enhancement of this pulse in ESA (Crouch and Ortiz 2004). 

 

1.4. Conclusions 

This chapter has shown that pigeonpea breeding research in ESA has moved 

knowledge forward and has resulted in impacts on the ground over a very short 

period, moving the crop from an orphan crop to where both national governments 

and development partners are now paying attention to it. In addition, the review 

has shown that much needs still to be performed to unlock the opportunities that 

exist in this crop. This will require a multifaceted approach from science-based 

solutions, policies to market requirements. 
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CHAPTER TWO 

Phenotypic variability among F2 individuals of pigeonpea derived from three 
genetic backgrounds 

Abstract 

Information on phenotypic variability of F2 individuals is useful for genetic analysis and 

selection programs. The objective of this study was to assess the phenotypic variability 

and to identify promising genotypes among F2 segregants of pigeonpea populations 

derived from three genetic backgrounds. Six parents including AL 201, ICPL 20325, ICP 

8863, ICPL87119, ICP 5529 and ICP 7035 were selected and crossed using a bi-parental 

mating scheme. The six parents and families derived from the three genetic background 

(AL 201 × ICPL 20325, ICP 8863 × ICPL 87119 and ICP 5529 × ICP 7035) were field 

evaluated. Data on F2 individuals were collected including days- to-50% flowering, plant 

height, number of primary branches, number of secondary branches, number of pods 

plant-1, number of seed plant-1, 100-seed weight and seed yield plant-1. Significant 

phenotypic variation was observed in the medium maturing (ICP 8863 and ICPL 87119) 

and long maturing (ICP 5529 and ICP 7035) parents. Significant variation was exhibited 

for days to 50% flowering, number of pods plant-1, number of seeds pod-1 and seed yield 

plant-1 among F2 individuals derived from medium maturity parents, whereas individuals 

from late maturing parents showed significant variations in plant height, number of pods 

plant-1 and seed yield plant-1. Transgressive segregations were recorded for all studied 

characters except seed yield. Transgression was more pronounced in the families of ICP 

5529 × ICP 7035 and AL 201 × ICPL 20325. This study demonstrated the presence of 

considerable genetic variation among F2 individuals derived from the three genetic 

groups. Identified transgressive segregants are useful genetic resources for further 

selection and breeding of pigeonpea.  

Key words: genotype, phenotype, pigeonpea, segregation analysis, transgressive 

segregation  
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2.1.Introduction 

Genetic variation and variability are crucial in biology (Hallgrímsson and Hall 

2005) and plant breeding programs. Although the terms are used interchangeably 

in the scientific literature, variation and variability are not synonymous (Wang et 

al. 2014).  Plant breeding is a three step process, wherein choice of appropriate 

mapping population that is critical for the success of quantitative trait loci (QTL) 

mapping project is made (Semagn et al. 2010), individuals with superior 

phenotypes are identified, and improved cultivars are developed following 

designed crosses and selections (Moose and Mumm 2008). 

 

 Mapping population can either be obtained from controlled crosses involving 

selected parent’s (experimental approach) or from naturally occurring mating 

systems (without artificial control). Parents of a mapping population must have 

sufficient genetic variation for the traits of interest both at DNA and phenotypic 

level (Liu 1997). This is important for creation of segregating progenies with 

maximum genetic variability for further selection (Barrett and Kid-well 1998), and 

to introgress desirable genes from diverse germplasm into the available genetic 

base (Thompson et al. 1998). Selection of superior genotypes in any crop is 

undoubtedly proportional to the amount of genetic variability present in the 

population and the degree to which the traits are inherited (Udensi et al. 2011). 

 

Once suitable parental lines have been selected, controlled crosses are 

undertaken to produce heterozygous F1 individuals, which are then selfed to 

generate F2 populations from which variable phenotypes and genotypes are 

scored (Falconer and Mackay 1996). Due to high level of segregation the F2 

population provides maximum genetic information when analyzed using co-

dominant marker system which is more powerful for detecting quantitative trait. 

Furthermore, the F2 population can also be used to estimate the degree of 

dominance for detected QTL. Data obtained from backcross (BC) populations 

using either co-dominant or dominant markers is less informative than that 

http://www.scialert.net/asci/result.php?searchin=Keywords&cat=&ascicat=ALL&Submit=Search&keyword=genetic+variability
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obtained from F2 populations because one, rather than two, recombinant gametes 

are sampled per plant (Semagn et al. 2006). Dominant markers supply as much 

information as co-dominant markers in recombinant inbred lines (RILs), near 

isogenic lines (NILs) and doubled haploids (DHs) (Burr et al. 1988). In practice, 

the population size used in preliminary genetic mapping studies varies from 50 to 

250 individuals (Mohan et al. 1997) but a larger population size is needed for high 

resolution fine mapping. Although molecular breeding strategies, such as marker-

assisted recurrent selection (MARS) and genomic selection, place greater focus 

on selections based on genotypic information, they still require phenotypic data 

(Jannick et al. 2010). 

Phenotyping can be defined as the set of methodologies and protocols used to 

measure plant growth, architecture, and composition with a certain accuracy and 

precision at different scales of organization, from organs to canopies (Fiorani and 

Schurr 2013). Replication of individual accessions within a site is usually needed 

to increase precision in phenotypic measurements, by eliminating environmentally 

induced noise and measurement errors (Hall et al. 2010). Phenotypic 

characterization and evaluation of germplasm are pre-requisites for the utilization 

of the available diversity in any crop improvement programme.  

 

Some studies of quantitative traits in segregating populations reported the 

presence of phenotypes that are extreme relative to those of either parental lines 

(deVicente and Tanksley11993; Rieseberg and Ellstrand 1993; Cosse et al. 

1995). This is referred to as transgression or transgressive segregation, the 

appearance of individuals in segregating populations that fall beyond their 

parental phenotypes (deVicente and Tanksley11993). 

 

Transgressive segregation is the result of additive gene action and reported due 

to fixation of dominant and recessive genes in separate individuals (Rick and 

Smith 1953; Singh 1996), and/or from complementary gene action (Vega and 
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Frey 1980). Complementary gene action has been a more popular general 

explanation for transgressive segregation in plant genetics (Grant 1975; Vega and 

Frey 1980). 

Pigeonpea (Cajanus cajan) is an important pulse crop grown world-wide. It is 

predominantly grown by small-holders in marginal environments in sub-Saharan 

Africa and Asia. Breeding efforts for this crop are challenged by, low level of 

genetic diversity present in the primary gene pool and non-availability of marker-

trait information for traits of interest. 

 Several studies have been conducted to determine the phenotypic and genotypic 

variability of different agronomic characters for this crop. For instance, Fakir et al. 

(1998), studied the phenotypic variability of selected yield –related characters and 

identified the number of pod plant-1, to be the main source of yield variation 

among studied characters. Sarsamkar et al. (2008), investigated the variation 

among the crosses consisting of parents and F2 of pigeonpea and found the wide 

variability to be exhibited by number of pods plant-1, plant height and seed yield 

plant-1. 

Niranjana et al. (2014), studied the genetic diversity, genetic variability and 

correlation on various morphological traits, yield and yield related components of 

pigeonpea, and observed greatest variation in number of pods plant-1 at 

phenotypic and genotypic level. 

Chaturved et al. (2013), studied variability in thirty genotypes of pigeon pea for 

grain yield and its attributing characters and recorded the highest Phenotypic 

Coefficient of Variation (PCV) and Genotypic Coefficient of Variation (GCV) for 

number of pods per plant followed by seed yield per plant and number of cluster 

per plant indicating the presence of ample variation for these traits in the present 

material. 

Vange and Egbe (2009), conducted a study to evaluate genetic variability among 

29 new pigeonpea genotypes and a local variety for the yield and yield component 
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traits, and the results indicated the phenotypic coefficient of variability and 

genotypic coefficient of variability to be relatively high for number of pods per 

plant, dry pod weight, dry grain yield and number of primary branches. 

Yerimani et al. (2013), studied genetic variability generated from the Gulyal white 

× Maruti cross in F3 and F4 generations and the results indicated the higher 

magnitude of variability to be recorded for 50 per cent flowering, number of 

secondary branches, number of seeds per pod, number of pod per plant, seeds 

yield per plant and seed yield (Kg/ha).  

To initiate any selection program of pigeonpea and for genetic mapping, it is 

necessary to assess the phenotypic variability present in the early segregation 

generation after designed crosses for yield and its components. Therefore, the 

objective of this study was to assess the phenotypic variability and to identify 

promising genotypes among F2 segregants of pigeonpea derived from three 

genetic backgrounds.  

2.2. Materials and Methods 

2.2.1. Study site 

The study was conducted at the International Crops Research for the Semi-Arid 

Tropics (ICRISAT), Patancheru (18° 78° E), Andhra Pradesh India. Field 

experiments were conducted during the rainy seasons over three growing 

seasons (2012/2013, 2013/2014 and 2014/2015). 

 

2.2.2. Parental materials, crosses and field management 

Six diverse parents were used to generate three families (Table 2.1). The parents 

were AL 201, ICPL 20325, ICPL 87119, ICPS 8863, 7035 and 5529. The parents 

were selected on the basis of their genetic diversity and high yield potential based 

on prior yield data. Original seeds of all parents were obtained from ICRISAT seed 

bank. Characteristics features of the parents are described in Table 2.1. 
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Table 2.1. Some agro-morphological features of the parental genotypes used in 

the study. 

Genotype Features 

AL 201 Selected from a cross of AL 16 × QLP 200. It was released in 1993 in 
Punjab. It has indeterminate growth habit. Matures in about 140 days, 

suitable for pigeonpea -wheat rotation. Average grain yield is about 
1550 kg/ha with potential yield of 2500 kg/ha. 

ICPL 20325 Extra early maturity, indeterminate plant height, good yielding. 

ICP 8863 Erect, mid to late maturing, highly resistant to Fusarium wilt (FW) and 

susceptible to Sterility Mosaic Disease (SMD). It is an extensively 
grown variety in Northern Karnataka and Maharashtra region of India. 

Red seeded genotype. 

ICPL 87119 Genome sequence available, leading variety in India which is resistant 
to FW and SMD. 

ICP 5529 Medium maturity, indeterminate plant height, good yield showing more 
branching habit. 

ICP 7035 Medium maturing, SMD resistant to both Patancheru and Bangalore 
races, large purple seed with high sugar content. 

 

The six selected parents were crossed using a bi-parental mating scheme 

resulting in the following three mapping populations: AL 201 × ICPL 20325, ICP 

8863 × ICPL 87119 and ICP 5529 × ICP 7035. The F1 and F2 generations were 

grown under field conditions at the research farm of ICRISAT, Patancheru during 

the rainy season of 2013 and 2014. The three mapping populations were field 

grown with inter-row spacing of 60 cm and intra-row spacing of 20 cm. True F1s 

were selfed using the single seed decent method to generate the mapping 

populations in each genetic combination. A total of 250 genotypes from AL 201 × 

ICPL 20325, 233 from ICP 8863 × ICPL 87119 and 128 from ICP 5529 × ICP 

7035 were selected for phenotyping.  

 

Legume/cereal rotation is the common agronomic practice at ICRISAT 

experimental fields. The field was thoroughly prepared for planting to prevent 

disease/pathogen build up in the soil for the next crop. Rotary cutter was used to 

cut the stubble followed by shedder to incorporate into the soil. Disc arrow was 

then repeatedly used in different directions to ensure fine tilt. Leveler was used to 

level the field. 
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Sowing was done by hand in the shallow furrows opened at the top of the ridge 

with spacing of 60 cm between rows and 20 cm between plants. Two seeds were 

sown per hill and thinning was done later to one plant per hill. Each F2 plant 

represent a genotype and replication was not required. 

Diammonium Phosphate (DAP) fertilizer as a source of 18% N and Triple 

Superphosphate (TSP 46% P2O5) was applied at a basal dose of 100 kg/ha, 

while 1st and 2nd mechanical intercultural fertilizer was applied 30 days and 45 

days after sowing. A pre-emergence herbicide was applied from a tank containing 

Fluchloralin 45% at 2.0 kg ha-1, Prometry 50% at 1.5 kg ha-1 and Paraquat 0.25 

at 3.0 kg ha-1. The 1st and 2nd weeding were done 30-35 days after sowing (DAS) 

and 60 DAS, respectively. After sowing soil was uniformly irrigated to field 

capacity using perforated pipes (provided with check gates for the control of water 

flow) so that soil moisture was sufficient for seed germination and good crop 

establishment. Furrow method of irrigation was opted. Harvesting was done by 

hand.  

 

2.3. Data collection and analysis 

Data was collected on individual plants in which observations were recorded on 

days to 50% flowering (DTF), plant height (PHT, expressed in cm), number of 

primary branches per plant (PB), number of secondary branches per plant (SB), 

number of pods per plant (PD), number of seeds per pod (SP), 100 seed weight 

(gram per 100 seed), and seed yield per plant (SYLD) (gram per plant). Briefly, 

these data were collected as follows: 

Days to flowering were recorded as number of days from planting to the date when 

50% of the plants showed flowers. Plant height was measured as the height to 

the nearest centimeters of a stretched plant from ground level to the tip of the 

main stem at harvest. Number of primary branches were counted as number of 

branches (productive and unproductive) arising from the main stem and counted 

at harvest. Numbers of secondary branches were determined as the total number 
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of branches arising from primary branches. Number of pods were counted as the 

total number of matured pods obtained at harvest. Number of seeds per pod was 

determined as the average number of seeds of 10 sampled pods, 100-seed 

weight was determined as the weight to the nearest grams of one hundred clean 

whole dry seeds. Seed yield was the seed weight measured to the nearest grams 

per plant. With an exception of DTF, all other measurements were recorded at 

maturity. 

Data collected were subjected to descriptive statistical analyses to calculate 

mean, standard deviation, standard error and coefficient of variation. The 

statistics were used to describe the phenotypic variability and draw various 

distribution curves using the SAS (Statistical Analysis System software (Littell 

2006) to make inferences.  

2.4. Results  

2.4.1. Summary statistics of traits among parents and F2 segregants  

Genetic variation is an important pre-requisite in designing any breeding program. 

Genetic variation enables identification of individuals with suitable characters for 

selection. Statistical parameters for yield and yield-related characters were 

computed for the six parental lines; AL 201, ICPL 20325, ICP 8863, ICPL 87119, 

ICP 5529 and ICP 7035 and their families. Pairwise statistical tests indicated the 

presence of significance differences (P<0.0.0) among parents used in the 

crosses. Table 2.2 summarizes the statistical analysis of six parental genotypes 

and F2 progenies in three crosses. 

There were no significant differences observed between AL 201 and ICPL 20325 

in any of the characters studied.  

The significance differences among the two parents ICP 8863 and ICPL 87119 

were obvious, with ICPL 87119 exhibiting superior performance than ICPL 8863 

for the majority of the yield parameters with an exception of plant height. Implying 
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that these characters, DTF, NSB, NPP and NSP contributed to the observed 

higher seed yield in ICPL 87119 as compared to ICP 8863. 

Parents ICP 7035 and ICP 5529 had significance differences for the observed 

characters. The ICP 7035 had more days to flowering, plant height, number of 

primary branches, number of seeds per pod and seed weight than ICP 5529.The 

NPP was the only character in which ICP5529 exhibited higher score than ICP 

7035, however this did not have significant effect on the seed yield as ICP 7035 

compensated this with its seed size that was more compared to those of ICP 

5529. 

 

2.4.2. Variation among F2 progenies for yield and related traits 

The F2 individuals derived from the three cross combinations showed within and 

between cross variation for all studied characters (Table 2.2). 

The family of AL 201 × ICPL 20325 recorded the highest coefficient of variation 

(13.3%) among the three crosses in plant height. The mean plant height of the 

cross AL 201 × ICPL 20325 was 95± 0.8 (Table 2.2).  The family of ICP 8863 × 

ICPL 87119 had the highest coefficient of variation recorded in DTF (9.6%), with 

a mean of 93.59 ±0.59, followed by the number of seeds per pod (cv=15.0%) and 

a mean of 3.44 ± 0.03. 

 

In the cross ICP5529 × ICPL 7035, the highest coefficient of variation was 

observed in the number of primary branches (34.2%) with a mean of 14.13 ± 0.43. 

The CV of the number of secondary branches was 7%, with a mean of 35.41 ± 

1.28. The number of pods plant-1 had a cv of 77.4% and a mean of 125.65 ± 8.6. 

Hundred seed weight displayed a cv of 31.2% and a mean of 21.4 ± 0.59 while 

the cv for seed yield plant-1 was 65.2% with a mean of 50.52 ± 1.92.  

Overall, this family recorded the highest phenotypic variation for the studied 

characters, as compared to the other two families. t. 



35 

 

 
Table 2.2. Summary statistics of the parental lines and their F2 families for seven yield and related traits in three 
studied crosses of pigeonpea 

Parent/Cross 

Traits 

DTF PHT NPB NSB NPP NSP HSW SYDP 

AL201 59 ±0.00 137±3.08 6.87± 0.27  98.67±9.08 3.78±0.05 8.01±0.14 18.23± 1.55 
ICPL2035 59±0.00 134.3±  3.54 7.8 ±0.43  104.47±9.74 3.77±0.10 8.32 ±0.09 19.1±2.09 
t-value and sig. test n.s. n.s. n.s.  n.s. n.s. n.s. n.s. 

AL201×ICPL20325         

Mean 50.7±0.3 95±0.8 7.1±0.1  63.5±1.9 3.6 ±0.0 7.8± 0.0 17.4 ±0.4 
Range 43-61 65-163 2-14  7-170 2-8.2 5.9-12.3 5-40.8 
STD 4.7 12.6 2.2  29.4 0.4 0.8 6.9 
CV (%) 9.2 13.3 31.1  46.3 12.3 10.00 39.6 

ICP8863 94±0.83 213.78±2.27 2.44±0.18 12.44±0.99 98.78±13.83 3.22±0.28 10.2±0.08 22.69±3.10 
ICPL87119 102.33±4.66 207.2±5.98 3.00±0.32 33.2±2.08 455±68.59 4.00±0.0 11.84±0.29 120±17.16 
t-value and sig. test * n.s. n.s. ** * ns ** ** 
ICP8863×ICPL87119         
Mean 93.59±0.59 192.9±0.75 2.55±0.05 13.04±0.28 157. 86±6.9 3.44±0.03 11.7±0.06 50.52±1.92 
Range 53-110 165 -230 1-5 5-28 16- 748 1.9-4.2 8.6-14.1 9- 192 
STD 8.97 11.38 0.77 4.29 105.38 0.52 0.94 29.33 
CV (%) 9.6 5.9 30.1 32.9 66.8 15.0 8.0 58.1 

ICP 5529 114.8±1.99 203±2.10 12.2±1.11 12.8±0.97 538.8±111.18 2.72±0.17 10.5±0.29 59.2±14.22 
ICP 7035 122±2.00 240±5.00 13.2±0.12 10.75±1.35 396±146.00 3.75±0.65 23.5±0.5 258.5±48.5 
t-value and sig. test n.s. * n.s. ** n.s. n.s. ** n.s. 

ICP 5529 × ICP 7035         
Mean 123.5± 0.78 209.43±1.10 14.13±0.43 35.41±1.28 125.65± 8.6 3.38±0.04 21.4± 0.59 103.54± 5.97 
Range 109 -148 179-240 5 -29 7- 69 21.8- 685 2.1 -5 7- 34.2 12.9 – 303.7 
STD 8.83 12.47 4.83 14.52 97.2 0.5 6.68 67.53 
CV (%) 7.1 6.0 34.2 41.0 77.4 14.8 31.2 65.2 

KEY: CV =Coefficient of variation, STD=Standard Deviation; n.s = non-significant   *, and**Significant at 5% and 1% levels of 
probability, respectively.DTF=Days to 50% flowering, PHT =Plant height (cm), NPB=Number of primary branches, 
NSB=Number of secondary branches, NPP=Number of pods plant-1, NSP=Number of seeds pod-1, HSW=100-seed weight 
(g/100 seed), SYDP =Seed yield plant1 (grams/plant). 
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Distribution patterns of parents and F2 progenies for yield and yield related 

traits 

 

Response of parental lines AL 201 and ICPL 20325 and their crosses  

Figure 2.1 summarizes the distribution of F2 progenies with respect to their 

parental lines (AL 201 and ICPL 20325) for the four selected characters: days 

to 50% flowering, number of pods plant-1, 100- grain weight and grain yield 

plant-1  

Days to 50% flowering 

 Parental lines (AL 201 and ICPL 20325) had no significance difference for the 

mean value of the days to 50% flowering (Figure 2.1). Progenies had DTF 

ranging from 43 to 61 days with a mean of 50.7 days, indicating that majority 

of the genotypes are early flowering. There were 234 F2 progenies with mean 

DTF less than that of the two parents, varying from 43 to 58 days. There were 

seven individuals with mean DTF of 60 to 61 days, greater than the parents 

(Figure 2.1). 

Plant height 

The mean PHT of AL 201 and ICPL 20325 were 137±3.08 and 134.3± 3.54 

cm respectively (Table 2.2). F2 progenies had PHT ranging from 65 to 163 cm, 

with a mean of 95 cm. Only 2 F2 individuals had PH at 135 and 163 cm which 

are greater than the mean of AL 201 (137.3 cm) or ICPL 20325 (134.3 cm). 

The mean PHT of the remaining 248 individuals varied from 65 to 130 cm. 

These values were less than the mean PHT of parents.  

Number of primary branches 

The mean number of branches for AL 201 was 6.87± 0.27, while ICPL 20325 

had 7.8 ±0.43 (Table 2.2). Most genotypes had mean NPB varying from 2 to 

14, with a mean of 7.1 branches. A total of 103 individuals displayed NPB from 

2 to 6 less than AL 201 (6.8). There were 50 individuals displaying NPB values 
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falling between the mean values of two parents. A total of 97 individuals had 

values greater than the mean of ICPL 20325 (7.8). 

Number of pods plant-1  

The mean number of pods plant -1 for AL 201 and ICPL 20325 were 98.67±9.08 

and 104.47±9.74, respectively (Figure 2.1). Progenies had number of pods per 

plant ranging from 7 to 170 days with a mean of 63.5 suggesting the presence 

of a wide genetic variation useful for selection of transgressive segregants. 

There were 213 individuals with mean number of pods plant-1 less than AL 201 

(98.6). Eight individuals were recorded with mean NPP falling between values 

of AL 201 (98.6) and ICPL 20325 (104.5). Furthermore, 29 genotypes had 

greater than 104.4 pods per plant (Figure 2.1).  

Number of seeds pod-1 

The two parents, AL 201 and ICPL 20325 had 3.78 ± 0.05 and 3.77 ±0.10 

seeds per pod, respectively (Table 2.2). The F2 individuals showed 2 to 8.2 

seeds per pod with a mean of 3.6 seeds per pod. In this character, a total of 

139 individuals had fewer seeds per pod than AL 201 (3.78 seeds per pod) 

and ICPL 20325 (3.76 seeds per pod). About 111 genotypes, had 3.8 to 4.3 

mean seeds per pod greater than the two parents. 

100-seed weight  

A mean HSW for parents AL 201 and ICPL20325 were 8.01±0.14 and 8.32 

±0.09 g/100 seed, respectively (Figure 2.1). The 100-seed weight of F2 

individuals varied from 5.9 to 12.3 g/100 seed, with a mean of 7.8 g/100 seed. 

This implies that many genotypes had poor grain filling capacity and hence less 

seed weight. About 155 F2 individuals had mean 100-seed weight less than AL 

201 (8.01g/100 seed). A total of 35 individuals had 100-seed weight greater 

than AL 201 (8.01 g/100 seed), but less than ICPL 20325 (8.32 g/100 seed). 

The 100-seed weight ranged between 8.06 and 8.31g/100 seed.  
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Seed yield plant-1 

The mean number seed yield plant -1 for AL 201 and ICPL 20325 were 18.23± 

1.55 and 19.1±2.09 g/plant, respectively (Figure 2.1). For F2 progenies, seed 

yield plant-1 ranged from 5 to 40.8, with the general mean of 17.4, suggesting 

that most of the genotypes have low seed yield. The distribution of F2 progenies 

followed binomial distribution with values between 10 and 30. Individuals with 

values less than mean value of AL 201 (18.23) were 156 ranging from 5 to 18.1. 

Individuals with values greater than the mean value of ICPL 20325 (19.1) were 

79 ranging from 19.4 to 40.8.  
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Figure 2.1: Distribution of F2 progenies for days to 50% flowering, number of pods 
plant, 100 grain weight and grain yield plant in the F2 population of the cross AL 
201×ICPL 20325. 

 

 

Response of ICP 8863, CPL 87119 and their crosses  

Days to 50% flowering 

ICP 8863 and ICPL 87119 had mean DTF of 94±0.83 and 102.33±4.66 days, 

respectively (Figure 2.2). The DTF of F2 progenies ranged between 53 and 

110 days with a mean of 93.59 days. This implies that most of the genotypes 
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are late flowering. A total of 132 F2 progenies had less DTF (5 to 95 days) than 

ICP 8863 (96 days). A total of 87 progenies had DTF (97 to 110 days) falling 

between the mean values of 2 parents. There were no individuals that had DTF 

score greater than the mean value of ICPL 87119 (116 days) (Figure 2.2). 

Plant height 

The mean PHT of ICP8863 and ICPL 87119 were 213.78 ±2.27 and 207.2 

±5.98cm respectively (Table 2.2). The PHT of F2 genotypes ranged from 165 

to 230 cm with a mean of 192.9. A total of 209 had mean PHT less than ICP 

8863 (213), and ICPL 87119 (207.2 cm). A total of 19 individuals had mean 

PH of 208 to 212 cm falling between the mean values of the two parents. There 

were five plants with PH varying from 215 to 230 cm which was greater than 

the two parents. 

Number of primary branches 

The mean number of primary branches for ICP 8863 and ICPL87119 were 

2.44±0.18 and 3.00±0.32 respectively (Table 2.2). The F2 individuals had 

mean branches ranging from 1 to 5 with a grand mean of 2.55 branches. A 

total of 125 individuals displayed mean NPB less than ICP 8863 which had 2.4 

branches per plant. There were 26 individuals whose values (4 to 5) were 

greater than the mean of ICPL 87119 (3). The remaining 82 F2 individuals had 

equal number of branches with that of ICPL 87119. 

Number of secondary branches 

ICP 8863 had a mean NSB of 12.44±0.99, while ICPL 87119 displayed a mean 

of 33.2± 2.08 (Table 2.2). F2 individuals had mean branches of 13.04 

branches. A total of 125 individuals had fewer branches (5 to 12) than ICP 

8863 (12.4). The rest of the F2 progenies (108 individuals) had branches 

varying from 13 to 28 with a mean of ICP 8863 (12.4) and ICPL 87119 (33.2). 

Number of pods plant-1 

The mean number of pods per plant for the two parents; ICP 8863 and ICPL 

87119 were 98.78±13.83 and 455±68.59 pods, respectively (Figure 2.2). F2 
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individuals showed 16 to 748 pods plant-1 with a grand mean of 157 pods. Most 

genotypes had larger number of pods plant-1. A total of 70 F2 individuals were 

noted showing fewer pods (73-90 pods) than ICP 8863 (98.8). There were 158 

individuals showing 100 to 440 pods per plant fallen between the mean values 

of the two parents.  Only 5 individuals had mean number of 520 and 748 pods 

plant-1 greater than 455 pods which is the mean value of ICPL 87119 (Figure 

2.2).  

Number of seeds pod-1 

Number of seeds pod-1 for ICP 8863 and ICPL 87119 were 3.22±0.28 and 

4.00±0.0 seeds respectively (Table 2.2). The range of F2 individuals were 

between 1.9 and 4.2 seeds, with a general mean of 3.44 days. In this 

character, individuals were distributed as follows; 61 had values less than that 

of ICP 8863 (3.2), the range was from 1.9 to 3.1.Nine individuals had values 

equivalent to the mean value of  ICP 8863 (3.2).A total of 112 individuals had 

values  ranging from 3.3  to 3.9, falling between the mean averages of the two 

parents(3.22 and 4.00).Forty eighty individuals had value equal to the mean 

value of parent ICPL 87119  (4.00).The remaining three individuals had values 

greater than that of ICPL 87119,and their range was from 4.1 to 4.2 seeds. 

100-Seed Weight 

As for 100-seed weight, the mean values of ICP 8863 and ICPL 87119 were 

10.2±0.08 and 11.84±0.29g/100 seed respectively (Figure 2.2). Genotypes 

were in a range of 8.6 to 14.1 g/100 seed and a general mean of 11.7 g/100 

seed, suggesting that most of the genotypes had moderate seed weight. A 

total of 17 individuals had values below that of the mean value of (10.2). They 

were in a range of 8.6 to 10.2 g/100 seed. A total of 110 F2 progenies had 

values found between the mean values of the two parents. These ranged from 

10.3 to 11.8. Individuals with values greater than the mean value of ICPL 

87119 (11.84) were 106.Their range was from 11.9 to 14.1 g/100 seed. 
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Seed yield plant-1   

In this character, the two parents; ICP 8863 and ICPL 87119 had mean scores 

of 22.69±3.10 and 120±17.16 g/ plant respectively (Figure 2.2). For F2 

progenies, the lowest and the highest values of seed yield plant -1 were 9 and 

192 grams per plant respectively, with the general average of 50.52 g/plant. 

This indicates that most of the genotypes had low seed yield. Individuals which 

had values that are less than that of ICP 8863 (22.7) were 29. The values 

ranges from 9.1 to 22.3. Whereas, the number of progenies with values found 

between the two mean values of the parents were 195.They ranged between 

23.6 and 116.9. A total of 9 individuals had values greater than the mean value 

of ICPL 87119 (120). Their range was between 124 to192.3. Figure 2.2 shows 

the distribution of F2 progenies in four selected characters; days to 50% 

flowering, number of pods plant-1, 100 grain weight and grain yield plant-1 in 

ICP8863 × ICPL 87119. 
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Figure 2.2: Distribution of F2 progenies for days to 50% flowering, number of pods per 

plant, 100 grain weight and grain yield per plant in the F2 population of the ICP8863 

× ICPL 87119. 

Parental lines ICP 5529 and ICP 7035 and their crosses  

Days to 50 % flowering 

The mean scores of days to 50 % flowering of the two parental lines; ICP5529 

and ICP 7035 were 114.8±1.99 and 122±2.00 days (Figure 2.3). The range of 

the F2 progenies were from 109 to 148 days, and a general mean of 123.5 

days, suggesting that most of the genotypes had moderate values. Individuals 

with values less than the mean value of ICP 5529 (116) were 22, ranging from 

109 to 115.The F2 progenies which had values greater than the mean value of 

ICP 5529 (116), but less than that of ICP 7035(122), were 39. These ranged 

between 117 -121. A total of 58 individuals had values which were greater than 
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the mean value of ICP 7035(122), and their range was between 123 and 148 

(Figure 2.3). 

Plant height 

For the plant height the mean scores of the parental lines ICP 5529 and ICP 

7035 were 203±2.10 and 240±5.00 cm respectively (Table 2.2). F2 progenies 

ranged from 179 to 240cm, having a general mean of 209.43cm. Most of the 

individuals (96) had values that were less than the mean value of ICP 5529 

(220). The range was from 179 to 215.Individuals with values falling between 

the mean values of the two parents were 16 and their range was from 222-

235.A total of 13 individuals had values which are equivalent to ICP 5529, 

whereas 3 individuals had values that is equivalent to that of ICP 7035 (240). 

Number of primary branches 

In this character, the ICP 5529 had a mean score of 12.2±1.11 branches, while 

ICP 7035 displayed 13.2±0.12 branches (Table 2.2). Number of primary 

branches for F2 progenies ranged from 5 to 29 having a general mean of 14.1. 

Individuals who had number of primary branches less than that of ICP 5529 

(12.2) were 50 and the range was from 5 to 12. A total of 10 individuals had a 

value of 13, which is falling between the mean values of the two parents (12.2 

and 13.2). Most of the individuals had number of primary branches that are 

more than that of ICP7035 (13.2). Total number was 68 and the range was 14-

29. 

Number of secondary branches 

Mean scores of the two parental lines; ICP 5529 and ICP 7035 were 12.8±0.97 

and 10.75±1.35 branches (Table 2.2). F2 genotypes in this character ranged 

from 7 to 69, and a general mean of 35.4. Two individuals had number of 

secondary branches that are less than that of ICP 7035 (10.75), and the range 

was from 7-9. Four individuals had values that are between the mean values 

of the two parents (10.75 and 12.8). These were in a range of 11-12. All 

remaining 122 individuals had values that are greater than that of the ICP 5529 

(12.8), and their range was 13-69. 
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Number of pods plant-1 

The mean values of ICP 5529 and ICP 7035 were 538.8±111.18 and 

396±146.00 pods respectively (Figure 2.3). Number of pods plant-1 for the F2 

progenies ranged from 21.8 to 685 pods, having a general range of 125.6 

pods, suggesting that majority of the genotypes had less number of pods per 

plant-1. Out of 128 F2 individuals, only one had a value (685.0) which was 

greater than the mean value of ICP5529 (538.6). One individual had a value 

(524) that falls between the mean values of two parents. The remaining 126 

F2 individuals had number of pods plant-1 which are less than the mean value 

of the ICP 7035 (396). Their range was between 21.8 and 382. 

Number of seeds pod-1 

Parental lines ICP 5529 and ICP 7035 had mean scores of 2.72±0.17 and 

3.75±0.65 seeds for the number of seeds pod-1(Table 2.2). The lowest and 

highest values of the F2 individuals were 2.1 and 5 seeds respectively, having 

a general range of 3.38. In this character, most of the individuals (88), had 

values falling between the mean values of the two parents (2.72 and 3.75). 

The range was between 3.8 and 5. Individuals having a values less than the 

mean value of ICP 5529 (2.72) were 13, having a range of 2.1 to 2.7. A total 

of 27 individuals had values which are greater than the mean value of ICP 

7035 (3.75). The range was between 3.8 and 5 (Table 2.2). 

100-seed weight 

For 100-seed weight, mean values of ICP 5529 and ICP 7035 were 10.5±0.29 

and 23.5±0.5g/100 seed   respectively (Figure 2.3). The range of F2 progenies 

were from   7 to 43.2. The general mean was 21.45g/100 seed. This suggests 

that majority of the genotype had moderate seed weight. In this character, a 

total of 125 F2 individuals had values that were greater than the mean value of 

ICP 5529(10.5), whereas three had values less than the same. The ranges 

were 10.8 to 34.2 and 7.7 to 9.7 respectively. A total of 64 individuals had 

values that were less than the mean value of ICP 7035 (23.5). The values 

ranged between 7.7 and 23.5.A total of 64 individuals had values that were 
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greater than the same. These were found in a range between 23.6 and 

34.2(Figure 2.3). 

Seed yield plant-1 

Parental lines ICP 5529 and ICP 7035 had mean score values of 59.2±14.22 

and 258.5±48.55 g/plant respectively for the seed yield plant-1 (Figure 2.3). F2 

progenies ranged from 5 to 40.8, with the general mean of 17.4 g/ plant, 

suggesting that most of the genotypes have low seed yield. The distribution of 

F2 progenies followed binomial distribution with values between 10 and 30. 

Individuals with values less than mean value of AL 201 (18.23) were 156 

ranging from 5 to 18.1. Individuals with values greater than the mean value of 

ICPL 20325 (19.1) were 79 ranging from 19.4 to 40.8. 

Figure 2.3: Distribution of  F2 progenies for days to 50% flowering, number of pods 

per plant, 100 grain weight and grain yield per plant in the F2 population of the cross 

ICP5529 × ICP 7035. 
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2.5. Discussion 

2.5.1. Phenotypic variability  

The current study has indicated the variation existing between the parental 

lines as well as between crosses studied for the yield and yield –related 

characters. The parental germplasms used to generate the crosses, were 

selected based on the main pigeonpea maturity groups; early, medium and 

long duration. 

ICP 5529 had superior scores in days to 50% flowering and highest number of 

pods plant-1 among all parental lines used in the current study. ICP 7035 had 

the highest score recorded for 100-seed weight, plant height, number of 

primary branches and seed yield plant-1. ICP 7035 have faster dry matter 

accumulation rate attributed to its big seed size (Singh et al. 1991). 

 

 This indicates, that the two parental lines which belongs to late maturing 

group, possess attributes such as tall plant, higher number of branches plant-

1, more number of pods plant-1 and higher seed weight resulting in to higher 

seed yield plant-1. 

ICPL 87119 and ICP8863, which are medium duration accessions, recorded a 

relatively higher number of secondary branches plant-1 as well as the number 

of seed pod-1.as compared to AL 201 and ICPL 20325 which are short duration 

accessions. Medium duration accessions possess attributes which also result 

into high seed yield plant-1 as it is the case with long duration accessions. 

AL 201 and ICPL 20325 which are short duration accessions, had least scores 

in all the characters studied including seed yield plant-1, as compared to 

parental lines belonging to medium and late maturity groups. In addition, these 

parents also didn’t show any significant difference among them. The finding is 

in agreement with that of Upadhyaya et al. 2007, who studied the phenotypic 

diversity in the pigeonpea (Cajanus cajan) core collection and found diversity 

level of the quantitative traits to be increasing from extra early group to late 

maturity group indicating the association of these traits with late maturity. 

Increase in variation from the extra early group to the late maturity group for 
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above traits may be attributed to the high proportion of highly photoperiod 

sensitive indeterminate  accessions in medium and late maturity groups 

(Remanandan et al. 1988).On the other hand, extra early and early maturing 

groups having maximum determinate type accessions, which are mostly the 

products of breeding programs and less sensitive to photoperiod and 

temperature has probably resulted in lower diversity (Saxena and Sharma 

1990). 

This study used F2 individuals which normally are characterized by higher 

segregations. As expected, observations showed variations to be existing 

among studied characters as well as in segregation patterns of individuals 

within and among crosses under study. In the current study, the characters 

that showed high variation across all the studied crosses were; number of pods 

plant-1, followed by seed yield plant-1, number of secondary branches and 

number of primary branches. This suggests they are important traits for 

consideration in selection for breeding purposes. In the current study, the 

number of pods plant-1 had the highest phenotypic variation among all the 

crosses.  

2.5.2. Distribution patterns and transgression of F2 individuals  

Understanding frequency distribution curves of characters is an important pre-

requisite towards determination of distribution patterns of segregating 

individuals in a population. Variation of parental lines and F2 progenies for the 

days to 50%, plant height, number of primary branches and number of 

secondary branches is shown in Figure 2.4, whereas Figure 2.5 summarizes 

the variability of parental genotypes and F2 progenies for the number of pods 

plant-1, number of seeds pod-1, 100-seed weight and seed yield plant-1. 

The observed ranges of genotypes in AL 201 x ICPL 20325, indicates that 

majority of the genotypes are early flowering, have short stature, with less 

number of primary branches and pods. The cross also comprises genotypes 

with combination of low and higher number of seeds pod-1, possessing less 

seed weight and are low yielding. Overall, this cross had the highest number 

of the transgressive segregants observed in DTF, PHT and NPP and NSP. 
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For the cross ICP 8863 × ICPL 87119, the pattern of distribution for most of 

the genotypes suggests they are late flowering, are of short stature had 

majority of individuals with less number of primary branches. In addition, F2 

progenies possess low to moderate number of secondary branches, having 

higher number of pods plant-1and in all ranges from low, medium and high, 

with respect to the number of seeds pod-1. Observations also suggests that 

majority of genotypes have seeds of moderate seed weight and seed yield.  

SYLD had the most observed transgressive segregants in this cross, 

compared to the remaining two. 

Most of the genotypes in ICP 5529 × ICP 7035, had moderate values of days 

to 50% flowering, suggesting they belong to medium and late flowering. The 

observations, also suggests that progenies in this cross were having short to 

moderate stature, with higher number of primary and secondary branches. The 

cross also comprised genotypes possessing less number of seeds pod-1 and 

seeds of moderate weight. For seed yield, comparisons of the ranges and 

general means across the studied crosses indicates this cross to have the 

highest score among the three crosses, followed by ICP 8863 × ICPL 87119 

and AL 201 × ICPL 20325 (Figure 2.5). The cross had majority of transgressive 

segregants observed in NPB, NSB and HSW. 

The findings from this study is in agreement with that of Chauhan and Singh 

(1981), in which long duration accession produced higher mean seed yield 

than all other accessions. Late pigeonpea maturing varieties have 

comparatively more significant stem length, number of pods plant-1 and 

secondary branches plant-1 than varieties belonging to the other maturity 

groups. 

Ranking studied crosses on the basis of phenotypic variation, on the present 

study indicates it was more in ICP 5529 × ICP 7035, followed by ICP 8863 × 

ICPL 87119, with AL 201 × ICPL 20325 having least variations on the studied 

characters. Early maturing accessions normally have determinate growth 

habit, whereas medium and long duration accessions are indeterminate. 

Generally, total dry matter and grain yield are relatively higher in the 
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indeterminate than in determinate group. Harvest index is relatively higher in 

the determinate group; however increased harvest index is not accompanied 

by increased total dry matter. 

With an exception of seed yield plant-1 in which transgression was not 

observed, in the remaining seven characters examined, there was evidence 

for transgressive segregation based on the occurrence of significant numbers 

of extreme individuals in the F2 generations. The occurrence of this 

transgression could be directly linked to the presence of complementary QTL 

alleles in the two parental species. 

In this study, transgression was mostly observed in crosses AL201× ICPL 

20325 and ICP 5529 × ICP 7035. In Cross ICP 8863 ×ICPL 87119, only two 

characters; plant height and days to 50 % flowering showed transgression. 

Parental phenotype similarity influences the occurrence of the transgression. 

Individuals formed by parental lines that have close phenotypic similarity are 

more likely to exhibit transgression. In other words, the more similar the 

phenotype of the parents, the greater the likelihood transgressive segregation 

will be observed in the F2 (Rieseberg et al. 1999). 

The genetic divergence of parental lines also influences the transgression, the 

more the genetic divergence of the parents, the higher the chances of 

transgression occurrence. This indicates that the phenotypes of parents used 

to generate crosses AL 201 × ICPL 20325 and ICP 5529 × ICP 7035 are closer 

in phenotypic similarity, but more genetically diverge as compared to the ones 

used in ICP 8863 × ICP 87119. Predominance of additive gene action among 

the loci controlling the traits in which segregation was observed, could also 

have contributed to the observed transgression. Observed transgression 

suggest the possibility of identifying positive and negative alleles in the 

superior parent and inferior parent respectively.  
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Figure 2.4: Variation in Days to 50% flowering, plant height, number of primary branches 

and number of secondary branches among parents and F2 progenies in three populations 

of pigeonpea 
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Figure 2.5: Variability for number of pods plant, number of seeds pod-1, 100-seed weight and 
seed yield plant-1 among parents and F2 progenies in three populations of pigeonpea 
 

2.6. Conclusions 

A study on the phenotypic characterization of six parental lines and three F2 

crosses of pigeonpea for eight yield and yield related traits has revealed the 

polymorphisms existing between parents and segregating individuals. 

Superior genotypes and characters exhibiting highest phenotypic variability 

have been identified for consideration on further breeding programme. In 

addition, transgression observed on the characters studied has provided 

useful information for crop improvement by identifying the potential source of 

genetic variation. 
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CHAPTER THREE 

Correlation and path-coefficient analyses of seed yield and related traits in 

newly developed pigeonpea populations 

Abstract 

Correlation analysis between yield and its contributing characters has been 

helpful as a basis for selection. Simple and path coefficient correlation 

analyses were conducted to determine association of seed yield and related 

traits using three newly developed populations of pigeonpea of the following 

crosses; AL 201 × ICPL 20325, ICP 8863 × ICPL 87119 and ICP 5529 × ICP 

7035. Data were collected involving eight traits such as days to 50% flowering 

(DTF), plant height (PHT), number of primary branches (NPB), number of 

secondary branches (NSB), number of pods per plant (NPP), number of seeds 

per pod (NSP), hundred seed weight (HSW) and seed yield per plant (SYDP). 

The results indicated that NPP exhibited relatively the highest phenotypic 

correlation with SYDP across all mapping populations. Path-coefficient 

analyses were applied to pinpoint influential traits(s) for selection in 

segregating populations of pigeonpea. The results revealed that NPP had the 

highest path co-efficient value influencing SYDP across all families. In the 

family AL 201 × ICPL 20325, the NPP had indirect effect on the SYDP through 

PHT and HSW. In the families of ICP 8863 × ICPL 87119 and ICP 5529 × ICP 

7035 selection for increased NSB and NSP had indirect effect on NPP. The 

high direct path value indicates that NPP tends to serve as a first order or 

principal selection criterion to improve SYDP among accessions. Results from 

simple correlation and path coefficient analyses suggest that PHT, NSP, HSW 

and NSB are the most important selection criteria for improving seed yield in 

the newly developed pigeonpea populations. Study also revealed that family 

ICP 5529 × ICP 7035 had the highest magnitude of correlation coefficient as 

well direct effect on the seed yield among the three studied families. 

Key words: Correlation analysis, path-coefficient analysis, pigeonpea 

population, selection criteria 
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3.1. Introduction 

Pigeonpea [Cajanus cajan (L) Millsp.] is a multi-use shrub legume of the 

tropics, sub-tropics and warmer regions of the world growing between 30°N 

and 35°S latitude. Unlike other grain legumes, pigeonpea production is 

concentrated in developing countries, particularly in south and south east Asia 

and eastern and southern African countries (Shuny et al. 2013).  

Seed yield is an important economic trait in pigeonpea, and is controlled by 

several contributing characters (yield components) which are often highly 

correlated to each other. Yield components are under the influence of the 

genotype, environment and genotype x environment interaction (Rauf et al. 

2004). Yield components do not only directly affect the yield, but also indirectly 

by influencing other components in negative or positive directions (Bidgoli et 

al. 2006). Therefore, knowledge on the nature and magnitude of trait 

association is relevant in a breeding population to identify the most influential 

trait(s) for selection (Sodavadia et al. 2009). 

Correlation analysis can provide information that selection for one character 

results in progress for other positively correlated characters (Manggoel et al. 

2012). It measures the mutual association between two variables, which aids 

in determining the most effective procedures for selection of superior 

genotypes (Udensi and Ikpeme 2012). 

The path coefficient analysis is a standardized partial regression technique 

that measures the direct influence of one trait upon another and permits 

separation of a correlation coefficient into components of direct and indirect 

effects (Board et al. 1997). According to Cramer and Wehner (2000), a large 

path coefficient value indicates that the change will result in a proportional (or 

inversely proportional) change in another correlated trait, whereas a weak 

coefficient indicates that the change will have little effect on that trait. In 

addition to the direct effects, the indirect effects of yield components should be 

calculated (based on the correlations among yield components). The indirect 

effect for each yield component is calculated by multiplying the correlation 

between two components by the direct effect of the opposite yield component. 
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Correlation and path coefficient analyses studies have been conducted in 

pigeonpea involving various yield and yield components (Thanki and 

Sawargaonkar 2010; Nag and Sharma 2012; and Udensi and Ikpeme 2012). 

 A thorough knowledge of existing phenotypic variation and extent of 

association between various yield contributing characters is essential in a 

newly developed population for breeding high yielding genotypes in pigeonpea 

(Chaithanya et al. 2014). Therefore, the objective of this study was to apply 

simple correlation and path analyses and identify most useful yield and yield 

related components of newly developed pigeonpea mapping populations 

developed from three diverse genetic groups. The selected traits may serve 

as important landmarks for pigeonpea improvement using the new 

populations.  

3.2. Materials and Methods 

Plant materials 

The study involved three mapping populations each comprising a total of 180 

individuals. The six parents used to generate the three populations were AL 

201, ICPL20325, ICP 8863, ICPL87119, ICP 7035 and ICP 5529. AL 201 was 

collected from Punjab Agricultural University (PAU) situated at 30.9028° N, 

75.8086° E and altitude of 247 m above sea level (m.a.s.l.). All other 

accessions were obtained from the International Crops Research Institute for 

Semi-Arid Tropics (ICRISAT), Patancheru. The parents belonged to three 

maturity groups: short maturity duration (AL 201 and ICPL 20325), medium 

duration (ICP 8863 and ICPL 87119) or long duration (ICP 7035 and ICP 

5529). 

3.2.1. Study site and experimental set up 

The experiments were conducted in three consecutive growing years (2012-

2013, 2013-2014 and 2014-2015) at the International Crops Research Institute 

for Semi-Arid Tropics, Patancheru (17.538 No, 78.278 Eo, 545 m.a.s.l.), 

Telangana, India. 

Initial crosses were made involving six parents using a bi-parental mating 

system in the 2012-2013 cropping season and the F1 seeds were self –
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pollinated to obtain F2 seeds in 2013-2014. The F2 seeds were sown in the 

cropping season of 2014-2015.  

Each experiment was laid out using an un-replicated augmented design. A 

total of six parental genotypes were used as comparative controls including AL 

201, ICPL 20325, ICP 8863, ICPL 87119, ICP 5529 and ICP 7035. The check 

accessions were planted after every 15 respective F2 genotypes. Each entry 

was established in a single row of 10-m length with inter-row spacing of 60 cm 

and intra-row spacing of 20 cm. All standard agronomic management practices 

were followed including basal fertilizer application, irrigation supplementation 

and pest and diseases control. 

3.2.2. Data collection and analysis 

Observations were recorded on eight quantitative traits: days to 50% flowering 

(DTF), plant height (PHT, expressed in cm), number of primary branches 

(NPB), number of secondary branches (NSB), number of pods plant-1 (NPP), 

number of seeds pod-1 (NSP), 100-seed weight (HSW, gram 100-1 seed) and 

seed yield per plant (SYDP, g plant-1). The data recorded were subjected to 

correlation analysis to estimate phenotypic correlation coefficients between 

traits. Simple correlation and path coefficient values were computed according 

to the methods described by Dewey and Lu (1959) and Wright (1921). For the 

path analysis, seed yield per plant (SYDP) was used as response variable, 

while DTF, PHT, NPB, NSB, NPP, NSP and HSW were regarded as causal or 

independent variables. 

3.3. Results. 

Simple correlation analysis 

Simple correlation coefficients showing pairwise associations between yield 

and related characters in three studied crosses are presented in Table 3.1.  

The results show that, among the characters studied, the highest phenotypic 

correlation coefficient was observed between NPP with SYDP in the families 

of ICP 8863 × ICPL 87119 (r = 0.929), AL 201 × ICPL20325 (r =0.888), and 

ICP 5529 × ICP7035(r= 0.708) (Table 3.1). 
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A summary of the magnitude of the correlation coefficients and significant tests 

for each family are described below.  

Family AL 201 x ICPL20325 

Highly significant and positive correlations (P<0.01) were observed between 

SYDP with NPP (r=0.888). This was followed by correlation of SYDP with NPB 

(r=0.478), PHT (r=0.384), HSW (r=0.288), NSP (r=0.263) and DTF (r =0.245) 

in a decreasing order. Pairwise association of characters’ revealed that PHT 

exhibited highly significant positive correlation (P<0.01) with DTF (r =0.254) 

(Table 3.1). Number of primary branches per plant showed highly significant 

(P<0.01) positive correlation with DTF (r=0.334) and PHT (r=0.492). Number 

of pods per plant exhibited significant and positive correlation (P<0.01) with 

NPB (r=0.523), PHT (r=0.353) and DTF (r=0.234).  

The NSP exhibited highly significant positive correlations (P<0.01) with NPP 

(r=0.242). Generally, there were poor and non-significant associations 

between NSP with NPB, PHT and DTF (Table 3.1). 

 

There were significant positive correlations (P< 0.05) between HSW with NSP 

(r=0.153) and PHT (r=0.134). This character also exhibited highly significant 

correlation (P<0.01) with NPP (r=0.154) and NPB (r=0.183). 

 

Family ICP 8863 x ICPL 87119 

A highly significant (P<0.01) phenotypic correlation was found between SYDP 

with NPP (r=0.943) only (Table 3.1). Further, significant positive correlation 

(P<0.05) was exhibited between SYDP with NSB (r=0.647), NSP (r=0.304), 

HSW (r=0.288), NPB (r=0.256), and PHT (r=0.243), in that order (Table 3.1). 

Number of primary branches had poor correlations with DTF and PHT. Number 

of secondary branches per plant exhibited highly significant and positive 

correlations (P<0.01) with NPB (r=0.26) and PHT (r=0.343). Highly significant 

and positive correlations (P< 0.01) were observed between NPP and NSB 

(r=0.652), NPB (r=0.314) and PHT (r=0.223). Significant and positive 

correlation was exhibited between NSP with NPP (P<0.01, r=0.314) and NSB 
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(P<0.01, r=0.225) (Table 3.1). Hundred seed weight exhibited highly significant 

and positive correlation (P < 0.05) with NPB (r =0.156). Generally, there were 

poor and non-significant associations between other agronomic traits with 

days to 50% flowering. 

 

Family ICP 7035 x ICP 5529 

Among the quantitative traits evaluated, NPP had the highest phenotypic 

correlation (P<0.01, r=0.707) with the SYDP (Table 3.1). Further, SYDP 

exhibited highly and significantly positive correlations (P<0.01) with NSB (r 

=0.664), HSW (r=0.607), and NPB (r= 0.457) (Table 3.1). Number of 

secondary branches per plant had significant and positive correlation with NPB 

(r = 0.691; P < 0.01) and PHT (r = 0.431; P < 0.01). 

 

 Significant and positive correlations (P<0.01) were observed between NPP 

with NSB (r = 0.751), PHT (r = 0.416), and NPB (r = 0.382) (Table 3.1). 

Significant and positive correlations (P < 0.01) were observed between NSP 

with NPP (r =0.242), and NPB (r=0.361). Highly significant and positive 

correlations (P <0.05) was observed between NSP with PHT (r=0.281) and 

NSB (r = 0.252). Hundred seed weight (HSW) was significantly and positively 

correlated (P < 0.01) with NPP (r=0531), NSB (r=0.492), NPB (r= 0.261) and 

PHT (r=0.126) in that order (Table 3.1). Days to 50% flowering had poor and 

non-significantly association with other characters. 
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Table 3.1. Pearson's correlations coefficients showing pair-wise correlation of 

eight agronomic characters in three populations of pigeonpea 

 
AL 201 × ICPL 20325  

Traits DTF PHT NPB NSB NPP NSP HSW SYDP 

DTF 1.00      n.a.      0.245** 
PHT 0.254**   1.00    n.a.      0.384** 
NPB 0.334** 0.492**  1.00  n.a.      0.478** 
NPP 0.234** 0.353** 0.523**  n.a. 1.00   0.888** 
NSP 0.024ns 0.112 ns 0.125 ns  n.a. 0.242** 1.00  0.263** 
HSW 0.072 ns 0.134* 0.183**  n.a. 0.154** 0.153* 1.00 0.288** 

ICP 8863 × ICPL 87119  

Trait DTF PHT NPB NSB NPP NSP HSW SYDP 

DTF    1.00       -0.001 
PHT -0.023 ns 1.00      0.243** 
NPB -0.046 ns 0.023 ns 1.00     0.256** 
NSB -0.042 ns 0.343** 0.26** 1.00    0.647** 
NPP -0.091 ns 0.223** 0.314** 0.652** 1.00   0.943** 
NSP -0.026 ns 0.135 ns 0.067 ns 0.225** 0.314** 1.00  0.304** 
HSW 0.133 ns 0.082 ns 0.156* 0.041 ns -0.02 ns 0NS 1.00 0.114 

ICP 5529 × ICP 7035  

Trait DTF PHT NPB NSB NPP NSP HSW SYDP 

DTF    1.00       -0.198 
PHT   0.07ns 1.00      0.333** 
NPB  -0.323** 0.425** 1.00     0.457** 

NSB -0.316* 0.431** 0.691** 1.00    0.664** 

NPP -0.237* 0.416** 0.382** 0.751** 1.00   0.707** 
NSP -0.152 ns 0.281* 0.361** 0.252* 0.242** 1.00  0.349** 
HSW -0.235* 0.126 ns 0.261* 0.492** 0.531** 0.272** 1.00 0.607** 

KEY: ns=non-significant. DTF=Days to 50% flowering, PHT =Plant height, 

NPB=Number of primary branches, NSB=Number of secondary branches, 
NPP=Number of pods plant-1, NSP=Number of seeds pod-1, HSW=100-seed weight. 
SYDP= Seed Yield per Plant. 
 n. a.= data not available 
*Significant difference at the 0.05 probability level 

** Significant difference at the 0.001 probability level. 
 
 

3.3.2. Path coefficient analysis 

Results on the path coefficient analysis for the three studied crosses with 

SYDP as the response variable and DTF, PHT, NPB, NSB, NPP, NSP, and 

HSW as independent variables are summarized in Table 3.2. Values of direct 

effects were <1, indicating that inflation due to multi-collinearity was relatively 

low. 

In the cross AL 201 × ICPL 20325, relatively high direct path coefficients 

(0.826) and highly significant phenotypic correlation (rp = 0.888, P<0.05) were 
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estimated between NPP with SYDP (Table 3.2). Path analysis indicated that 

selection for increased NPP would bring about simultaneous increase in PHT 

and HSW in a desirable direction (Table 3.2)  

In the cross ICP 8863 × ICPL 87119, NPP also exhibited relatively the highest 

phenotypic correlation (r=0.929, P<0.01) and highest positive direct path 

coefficient (0.8765) on SYDP. The indirect effect via NSB and NSP were 

positive with 0.051 and 0.012, respectively. 

Hundred seed weight had non-significant correlation with SYDP, but had the 

higher magnitude of direct effect on seed yield (0.113). The number of 

secondary branches also showed significant correlation (r=0.66) with SYDP 

and it followed HSW in term of its significant direct effect on seed yield (0.081). 

Thus, increased seed yield in this family can be achieved through 

simultaneous selection of genotypes that display higher number of pods, more 

seed weight and higher number of secondary branches. 

In the family ICP 5529 × ICP 7035, NPP had the highest positive correlation 

(r=0.704) with SYDP, as well as the highest direct path coefficient value on 

SYDP (0.336). The indirect effect via NSB and NSP were positive with 

coefficients of 0.142 and 0.024, respectively. Hundred seed weight (0.277) and 

NSB (0.242) also had considerable direct effect on SYDP. 
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Table 3.2. Estimates of direct (boldfaced main diagonals) and alternate/indirect 

path coefficient values (off diagonals) of SYDP with seven related traits 

amongst F2 pigeonpea genotypes of three crosses. 

AL 201 × ICPL 20325 

Traits DTF PHT NPB NSB NPP NSP HSW SYDP 

DTF 0.029 0.018 -0.003 n.a 0.193 0.001 0.008 0.245** 
PHT 0.007 0.071 -0.001 n.a 0.288 0.004 0.015 0.384** 
NPB 0.010 0.035 -0.001 n.a 0.412 0.003 0.020 0.478** 
NPP 0.007 0.025 -0.001 n.a 0.827 0.009 0.022 0.888** 
NSP 0.001 0.008 -0.001 n.a 0.202 0.035 0.016 0.260** 
HSW 0.002 0.009 -0.001 n.a 0.158 0.005 0.116 0.288** 

ICP 8863 × ICPL 87119 

Traits DTF PHT NPB NSB NPP NSP HSW SYDP 

DTF 0.040 0.001 -0.001 -0.001 -0.058 -0.001 0.019 -0.001 
PHT -0.001 0.042 0.001 0.020 0.167 0.005 0.010 0.243** 
NPB -0.001 -

0.002 
-0.025 0.018 0.242 0.001 0.021 0.256** 

NSB 0.001 0.010 -0.006 0.080 0.547 0.010 0.004 0.647** 
NPP 0.003 0.008 0.007 0.051 0.865 0.012 -0.003 0.943** 
NSP 0.001 0.004 -0.001 0.017 0.236 0.044 0.002 0.304** 
HSW -0.006 0.003 -0.004 0.003 -0.016 0.001 0.133 0.114 

ICP 5529 × ICP 7035 

Traits DTF PHT NPB NSB NPP NSP HSW SYDP 

DTF -0.103 0.041 0.001 -0.033 -0.049 -0.009 -0.047 -0.198 
PHT -0.030 0.143 0.027 0.085 0.069 0.016 0.022 0.333** 
NPB -0.001 0.051 0.075 0.154 0.099 0.020 0.059 0.457** 
NSB 0.014 0.050 0.048 0.242 0.197 0.021 0.092 0.664** 
NPP 0.015 0.030 0.022 0.142 0.336 0.024 0.140 0.707** 
NSP 0.008 0.019 0.013 0.043 0.066 0.120 0.081 0.349** 
HSW 0.017 0.012 0.016 0.081 0.171 0.035 0.277 0.607** 

KEY: DTF (Days to 50% flowering), PHT (Plant height in cm), NPB (Number of 
primary branches), NSB (Number of secondary branches), NPP (Number of pods 
plant-1), NSP (Number of seeds pod-1), HSW (100-seed weight in g/100 seeds), SYDP 
(Seed yield plant-1(in g/plant). n a= not available. Residual factors=0.18905. 
*Significant difference at the 0.05 probability level. ** Significant difference at the 
0.001 probability level. 

 

3.4. Discussion 

Study of character association and path analysis helps the breeder in fixing 

the selection criteria for higher grain yield, so that selection will be effective in 

isolating the genotypes with desirable combination of characters (Vanisree et 

al. 2013). In the present study the number of pods plant-1 had the highest 

positive correlation and direct path coefficient on SYDP, among all other 

characters studied across all families. This association from the direct path 

value indicates that NPP tends to serve as a first order or principal selection 
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criterion to improve SYDP among accessions. Number of pods plant-1 has 

been reported to have maximum positive direct effect on SYDP in pigeonpea 

by several workers (Veeraswamy et al. 1973; Kingshlin and Subbaraman 

1999; Singh 1999; and Padi 2003).  

Number of pods produced by a crop plant is among the key yield components 

that significantly influence the seed yield production in grain legumes. It is a 

function of number of raceme/plant, number of flowers/plant and percentage 

floral abscission (Mostafa and Fakir 2008). Studies have shown that the pod 

is an important photosynthetic organ in re-fixing respired carbon within the pod 

wall that is then translocated to the developing seed (Ma et al. 2001; and 

Furbank et al. 2004). 

In this study, SYDP had significantly and positively correlated with the NPB, 

NSB, HSW, NSP and PHT. Such correlations indicate the possibility of 

selection of genotypes with higher number of pods per plant, primary and 

secondary branches per plant and plant height for pigeonpea improvement. 

The significant positive interrelationship between SYDP and these traits have 

also been reported in pigeonpea (Brar 1993; Lal et al. 2002; and Sodavadiya 

et al. 2009). 

In all the three populations studied, SYDP was positively and significantly 

associated with all the characters evaluated except with DTF in the population 

ICP 5529 × ICP 7035. This suggests that any positive increase in such traits 

will enhance SYDP. These findings are in agreement with the report by Thanki 

and Sawargaonkar (2010), who indicated that DTF to have negative and non-

significant association with SYDP. A study by Kaveris et al. (2007), in green 

gram also revealed similar results. In this case, it could be suitable to select 

short duration lines for increasing other characters, including SYDP.  

Partitioning of the correlation coefficients, into direct and indirect effects 

revealed that NPP exhibited the highest direct path coefficient on SYDP 

among all characters in all the studied crosses. High path coefficient value 

indicates that the change will result in a proportional (or inversely proportional) 

change in another correlated trait, whereas a strong correlation coefficient 
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indicates that the change will have marked effect on the second trait (Cramer 

and Wehner 2000). 

Hundred seed weight is an important character for seed yield improvement in 

pigeonpea. In the current study, this character followed NPP in exhibiting high 

direct path coefficient affecting SYDP across all the three families. This implies 

NPP and HSW are the desired characters for selection in the breeding 

programmes to enhance SYDP in pigeonpea.  

Except in the family ICP 8863 × ICPL 87119, increase in the two characters 

will contribute to increased SYDP in the studied populations. Increased HSW 

may be achieved by increasing the NSP, NPP and NSB.  

Results of the current study agrees with the findings of (Yadvendra et al. 1981; 

Sodavadiya et al. 2009; Chandirakala and Subbaraman 2010; and Saroj et al. 

2013), who reported 100-seed weight to be exhibiting high and positive direct 

effects on seed yield per plant-1. Similar results have also been reported in 

chickpea (Padmavathi et al. 2013), and soybean (Khanghah and Sohani 1999; 

and Ball et al. 2001). In all these studies, the number of pods plant-1 and 100 

seed weight had higher correlations as well as the highest positive direct effect 

on seed yield.  

Except DTF which exhibited negative indirect effect on NPP, on the two 

populations; ICP 8863 × ICPL 87119 and ICP 5529 × ICP 7035, remaining 

characters such as PHT, NSB and NSP, exhibited indirect positive effects. The 

analysis indicated that selection for increased NPP would bring about 

simultaneous and favorable change towards increased plant height and 

hundred seed weight than selecting for PHT, NSB and NSP per se. A similar 

result was reported by Thanki and Sawargaonkar (2010). Overall, to increase 

SYDP, large number of pods per plant, tall and vigorously-branching 

genotypes are desirable for selection in all studied populations. 

Ranking populations on the basis of the magnitudes expressed in their 

correlations and direct effects of the desired character on SYDP suggested 

that ICP 8863 × ICPL 87119 was the superior family, followed by ICP 5529 × 
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ICP 7035 and AL 201 × ICPL 20325. The direct path co-efficiencies estimated 

for NPP with SYDP in all three crosses were > 0.7, which is considered to be 

a relatively higher value. Cramer and Wehner (2000), suggested a statistical 

test for the relative importance of path coefficient as 0.7 to 1.0 or - 0.7 to-1.0 

(strong coefficients) and - 0.69 to 0.69 (weak coefficients). 

3.5. Conclusions 

Yield is an important polygenic trait that is a result of contribution of several 

interrelated characters. Knowledge on the degree of correlation and 

understanding of the relative direct and indirect effects of yield-related 

components is crucial in formulating the effective criteria in selecting desirable 

genotypes in early segregating populations. Through correlation and path 

coefficient analyses of eight yield and related characters of three F2 pigeonpea 

populations, number of pods plant-1, followed by 100 seed weight were 

identified as having the highest correlation and direct path coefficient on seed 

yield plant-1. Ranking crosses on the basis of magnitudes of expression of 

correlation and direct effect on seed yield have shown that the families ICP 

5529 × ICP 7035 to be superior among the three crosses. From the results of 

this study, it is concluded that effective selection for superior genotypes is 

possible considering number of pods plant-1, 100-seed weight and number of 

secondary branches. 

 

 

 

 

 

 

 



68 

 

References  

Ball, R.A., McNew, R.W., Vories, E.D., Keisling, J.C., and Purcell, L.C. 2001. 
Path analysis of population density effects on short-season soybean 
yield. Journal of Agronomy 93:187-195. 

 
Bidgoli, A.M., Akbari, G.A., Mirani, M.J.Z., and Soufizadeh, E.S. 2006. Path 

analysis of the relationships between seed yield and some 
morphological and phenological traits in safflower (Carthamus tinctorius 
L.). Euphytica 148:261- 268. 

 
Board, J.E., Kang, M.S., and Hartville, B.G. 1997. Path analyses identify 

indirect selection criteria for yield of late planted soybean. Journal of 
Crop Science 37:879-884. 

 
Brar, S.P.S., 1993. Correlation and path coefficient studies in F4 progenies of 

two crosses in Pigeonpea (Cajanus cajan (L.) Mill sp.). Indian J. 
Pulses Res., 6(1): 45-48.  

 
Cramer, C., and Wehner T.C. 2000. Path analysis of the correlation between 

fruit number and plant traits of cucumber populations. Journal of 
Horticultural Science 35:708–711. 

 
Chaithanya, K., Prasanthi, B., Reddy, L., Hariprasad, K., and Baskhara Reddy, 

B.V. 2014. Association and path analysis in F2 populations of pigeonpea 
[Cajanus cajan (L.) Millsp.]. International Journal of Legume Research 
37: 561-567. 

 
Chandirakala, R., and Subbaraman, N. 2010. Character association and path 

analysis for yield attributes in full-sib progenies in pigeonpea (Cajanus 
cajan (L.) Millsp.). Electronic Journal of Plant Breeding 1: 824-827. 

 
Dewey, D.R., and Lu, K.H. 1959. A correlation and path coefficient analysis of 

components of crested wheat grass and seed production. Journal of 
Agronomy 51:515-7. 

 
Furbank, R.T., White, R., Palta., J.A., and Turner, N.C. 2004. Internal recycling 

of respiratory CO2 in pods of chickpea (Cicer arietinum L.): The role of 
pod-wall, seed coat and embryo. Journal of Experimental Botany. 55: 
1687–1696. 

 
Kaveris, B.P., Salimath, M., and Ravi Kumar, R.L. 2007. Genetic studies in 

greengram and association analysis. Karnataka Journal of. Agricultural 
Science 20:843–844. 

 
Khanghah, H.Z., and Solani, A.R. 1999. Genetic evaluation of some important 

agronomic traits related to seed yield by multivariate of soybean 
analysis methods. Iranian Journal of. Agricultural Sciences. 30:807-
816. 



69 

 

 
Kingshlin, M., and Subbaraman, N. 1999. Correlation and path coefficient 

analysis among quantitative characters in pigeonpea. Journal of Crop 
Research.20:151–154. 

 
Lal, S.K., Rajma-Raina., and Raina, R. 2002. Interrelationships between yield 

and its component traits in long duration hybrids in pigeonpea. Annals 
of Agricultural. Research 23:101-104. 

 
Ma, Q., Behboudian, M.H., Turner, N.C., and Palta, J.A. 2001. Gas exchange 

by pods and subtending leaves and internal recycling of CO2 by pods 
of chickpea (Cicer arietinum L.) subjected to water deficits. Journal of. 
Experimental. Botany 52:123–131. 

 
Manggoel, W., Uguru, M.I., Ndam, O.N., and Dasbak, M.A. 2012. Genetic 

variability, correlation and path coefficient analysis of some yield 
components of ten cowpeas [Vigna unguiculata (L.) Walp] accessions. 
Journal of Plant breeding and Crop Science 4: 80-86. 

 
Mostafa, M.G., and Fakir, M.S.A. 2008. Performance of short duration 

pigeonpea morphotypes in relation to flower and pod production in 
mainstem and branches. Journal of. Agroforest and. Environment 
2:161-165. 

 
Nag, Y.K., and Sharma, R.N. 2012.Genetic diversity and path coefficient 

analysis in pigeonpea [Cajanus cajan (L.) Millsp.] germplasm 
accessions of Bastar origin. Electronic Journal of Plant Breeding 3: 818-
824. 

 
Padi, F.K., 2003. Correlation and path analysis of yield and yield components 

in pigeonpea. Pakistan Journal of. Biological Sciences 6:1689-1694. 
 
Padmavathi, P.V., Murthy, S.S., Rao, V.S., and Ahmed, L.M. 2013. Correlation 

and path coefficient analysis in Kabuli Chickpea (Cicer arietinum). 
International Journal of Applied Biology and Pharmaceutical 
Technology. 4: 107–110. 

 
Rauf, S., Khan, T.M., Sadaqat, H.A., and Khan, A.I. 2004. Correlation and 

path coefficient analysis of yield components in cotton (G. hirsutum 
L.). International Journal of Agriculture and Biology 6: 686 -688. 

 
Saroj, S.K., Singh, M.N., Kumar, I.R., Singh, I.T., and Singh, M. K 2013. 

Genetic variability, correlation and path analysis for yield attributes in 
pigeonpea. The Bioscan 8: 941-944. 

 
Singh, J., 1999. Correlation coefficient analysis for seed yield in pigeonpea. 

Journal of Crop Research.17:381-385. 
 
 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwifsIuEu_vSAhWBohQKHRfXBUQQFggZMAA&url=http%3A%2F%2Fwww.scimagojr.com%2Fjournalsearch.php%3Fq%3D10900153321%26tip%3Dsid&usg=AFQjCNGcFuWK6UqB6cDWB_dMaEFwGUtMVg&sig2=ownxipAb5Qc6qUD0uwztiA&bvm=bv.150729734,d.bGg


70 

 

Sodavadiya, P.R., Pythia, M.S., Savaii, J.J., Pansuriya, A.G., and Korat, V.P. 
2009. Studies on characters’ association and path analysis for seed 
yield and its components in pigeonpea (Cajanus cajan (L.) Millsp.). 
Legume Research. 32:203-205. 

 
Shuny, V., Chaturvedi, H.P., Changkija, S., and Singh, J. 2013. Genetic 

variability in pigeonpea [Cajanus cajan (L) Millsp.] genotypes of 
Nagaland. Indian Research. Journal of. Genetics. & Biotechnology. 5: 
165-171. 

 
Thanki, H.P., and Sawargaonkar, S.L. 2010. Path coefficient analysis in 

pigeonpea. Electronic Journal of. Plant Breeding 1:936-939. 
 
Udensi, O., and Ikpeme, E.V. 2012. Correlation and path coefficient analyses 

of seed yield and its contributing traits in Cajanus cajan (L.) Millsp. 
American Journal of Experimental Agriculture 2: 351-358. 

 
Vanisree, S., Sreedhar, M., and Raju, C. 2013. Studies on genetic 

characteristics of pigeonpea and determination of selection criteria with 
path co-efficient analysis. International Journal of Applied Biology and 
Pharmaceutical Technology 4:223-226.  

 
Veeraswamy, R., Rangaswamy, P., Fazlullah Khan, A.K., and Shareef, M. 

1973. Heterosis in Cajanus cajan (L.) Millsp. Madras Journal of 
Agriculture 60:1317-1319. 

 
Wright, S., 1921. Correlation and causation. Journal of. Agricultural. Research. 

20:557-585. 
 
Yadvendra, J.P., Dixit, S.K., and Shah, R.M. 1981. Genetic variability, 

correlation and path coefficient analysis in pigeonpea. Journal of 
Gujarat Agricultural University. Research 7:37-40. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



71 

 

CHAPTER FOUR 

Prediction of gene action controlling yield and yield related traits in pigeonpea 

 
Abstract 

Seed yield is an important trait with quantitative inheritance. Understanding the 

inheritance of yield and related traits is a prerequisite in choosing a breeding 

strategy and methodology in crop improvement programs.  Coefficients of 

skewness and kurtosis were used to determine gene action and to identify type 

of gene interaction for the yield and yield related traits in pigeonpea. The 

results indicated predominance of additive gene action affecting the studied 

characters conditioned by few to many genes. According to estimated 

coefficients of skewness and kurtosis of the characters tested, no gene 

interaction was observed for days to 50% flowering in the family of AL 201 × 

ICPL 20325 and for plant height in the crosses of ICP 8863 × ICPL 87119 and 

ICP 5529 × ICP 7035, and for the number of primary branches, secondary 

branches and 100-seed weight for family ICP 5529 × ICP 7035. The number 

of seeds pod-1 in the family AL 201 × ICPL 20325, and days to 50 % flowering, 

number of seed pod-1 and 100-seed weight in the family ICP 8863 × ICPL 

87119, and 100-seed weight in ICP 5529 × ICP 7035 recorded negative 

skewness values indicating the presence of duplicate gene action. The 

remaining characters across all the tested families had positive skewness 

indicating the presence of complementary gene action. The result suggests 

that for the traits where complementary gene interactions was observed, 

targeted pure line selection can be made in the segregating generations for 

attaining faster genetic gain, whereas duplicate gene effect can be exploited 

by inter-mating the selected segregants and delay the selection of the traits for 

advanced generations. 

 

Keywords: additive gene action, complementary gene action, duplicate gene 

action, kurtosis, pigeonpea, skewness 
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4.1. Introduction 

Breeding procedures involve designed crossing of parents, selection from 

recombined parents, and fixation of superior genotypes for development and 

deployment of improved cultivars suited to the diverse needs of humans 

(Moose and Mumm 2008). The breeding method to be adopted for genetic 

improvement of any crop species depends mainly on its mating system and 

nature of gene action involved in the expression of quantitative traits, among 

others (Aziz et al. 2006). Gene action refers to the behavior or mode of 

expression of genes in a genome (Singh 1996). Knowledge of gene action and 

heritability involved in several quantitatively inherited traits helps to choose an 

appropriate breeding method (Lamkey and Edwards 1999; Amand and 

Wehner 2001; and Dias et al. 2004).  

 

Depending upon the genetic variance, gene action is of three types; additive 

gene action, dominance gene action and epistatic gene action. Dominance 

and epistatic gene action are referred to as non-additive gene action (Singh 

1996). The additive component describes the variance associated with the 

independent and additive contributions of alleles, while dominance describes 

the variance contributed by interactions between alleles at the same locus, and 

epistasis refers to the contribution of interactions between alleles at different 

loci (Wang et al. 2014).  

 

Interaction between genes takes different forms such as duplicate gene 

interaction, complementary gene interaction or a more complex form of non-

allelic interaction (Holland 2001). Duplicate gene interaction can occur when 

two or more loci serve the same function, whereas complementary gene 

interaction can result when two or more genes code for enzymes that function 

at different points on the same pathway, so that functional products from all 

genes in the set are needed to produce the final product (Holland 2001). 

 

Complementary gene action has slower genetic gain with the mild selection 

and faster with intensive selection for that particular trait, whereas for duplicate 

epistatic gene action the gain is faster with mild selection and less rapid with 
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intense selection (Snape and Riggs 1975). Yield and its component characters 

have quantitative inheritance and exhibit either types of gene action (Saxena 

2008). 

Understanding the genetic architecture of complex traits is a major challenge 

in the post-genomic era (Yang et al. 2007), therefore, methods for identifying 

the nature of the gene interaction should be solicited to enhance genetic gain 

through breeding (Choo and Reinbergs 1982). Coefficients of skewness and 

kurtosis which are also referred to as third- and fourth-degree statistics are 

useful statistical tools for accurate determination of the presence or absence 

of gene interaction. Also these parameters help to identify the nature of gene 

interaction. Skewness describes the degree of departure of a distribution from 

symmetry and kurtosis is a measure of whether the data are heavy-tailed or 

light-tailed relative to a normal distribution (Jayaramachandran et al. 2010). 

 

The coefficients of skewness and kurtosis corrects the deficiencies emanating 

from the use of first- and second-degree statistics. For instance, there is a 

major limitation for the diallel analysis when significant amount of additive × 

additive genetic effect is found limiting a further study of the nature of gene 

interaction (Choo and Reinbergs 1982). Graphical analysis (Mather and Jinks 

1971) allows to detect complementary and duplicate gene action, but several 

assumptions should be met in order to interpret the results of this analysis 

(Choo and Reinbergs 1982). Furthermore, duplicate interaction is difficult to 

detect by a graphical analysis (Mather 1967). 

 

Estimated values of skewness and kurtosis are useful statistical parameters to 

discern gene action. If no gene interaction is found, the kurtosis will be smaller 

than zero. The kurtosis larger than zero suggest the presence of gene 

interaction. If duplicate interaction occurs, the skewness will be smaller than 

zero. Skewness larger than zero shows presence of complementary gene 

interaction (Choo and Reinbergs 1982; Zhang and Xue 1997; and Yu et al. 

1998). 

In comparison to other economically important crops, limited effort has been 

made to understand the genetics of important quantitative traits in pigeonpea 
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(Yermani et al. 2013). Only few few studies have been conducted on this crop 

in which, both additive and non-additive gene effects have been reported to be 

influencing yield and related traits in pigeonpea (Saxena and Sharma 1990; 

and Pandey et al. 2014).  Often pleiotropic gene effect, physiological changes, 

and the highly sensitive nature of pigeonpea due to environmental effects 

make difficult to interpret the inheritance of yield and associated traits (Byth et 

al. 1981). 

 Overall, there is limited study on gene action of seed yield and related traits 

in pigeonpea despite its economic importance. Underlying information on the 

genetics and inheritance of quantitative characters of this crop is necessary to 

develop populations for breeding and genetic analysis (Ajay et al. 2011). 

Therefore, the objective of present investigation was to determine the genetic 

control of eight yield and yield related traits involving a total of 460 F2 

pigeonpea progenies using three families of varied genetic backgrounds. 

 

4.2. Materials and methods 

Plant materials and crosses 

The study used a total of 460 F2 populations derived from bi-parent crosses of 

the following six parents: AL 201, ICPL 20325, ICP 8863, ICPL 87119, ICP 

5529 and ICP 7035. 

Study sites, field establishment and design 

An experiment was conducted during the 2014/2015 rainy season at the 

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), 

Patancheru (18° 78° E), Andhra Pradesh India.  

Plant materials were established under a well-prepared field condition. Each 

genotype was sown by hand in shallow furrows opened at the top of the ridge 

with an inter-row spacing of 75 cm and intra-row spacing of 30 cm. Initially two 

seeds were sown per hill and later thinned to provide one plant per hill. 

Diammonium Phosphate (DAP) fertilizer was applied at a basal dose of 100 

kg/ha (18% N and 46% P2O5). Urea (46% N-NH2) was used as a top dressing 

fertilizer and was split-applied 30 days and 45 days after sowing. A pre-
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emergent herbicide containing Fluchloralin 45% at 2.0 kgha-1, Prometry 50% 

per cent at 1.5 kgha-1 and Paraquat 0.25 %at 3.0 kgha-1 were mixed and 

applied. After sowing the soil was uniformly irrigated to field capacity using 

perforated pipes (provided with check gates for the control of water flow) so 

that soil moisture was sufficient for seed germination and crop establishment. 

Experimental plots were irrigated using furrow irrigation.  

 

4.2.1. Data collection and analysis 

The following data were collected during the study: days to 50% flowering 

(DTF), plant height (PHT), number of primary branches (NPB), number of 

secondary branches (NSB), number of pods plant-1 (NPP), number of seeds 

pod-1 (NSP), 100-seed weight (HSW) and plant seed yield (SYDP). Description 

of data collection are presented in Chapter 2, Section 2.3. Genotypes AL 201 

and ICPL 20325 have determinate growth habits. Consequently, data on 

secondary branches was not recorded in these genotypes and family AL 201 

× ICPL 20325. 

A total of 460 plants were available for data recording in the three families as 

follows: 180 plants from the cross of AL 201 × ICPL 20325, 180 (ICP8863 × 

ICPL 87119) and 100 (ICP 5529 × ICP 7035). From each parental genotype 

20 plants were randomly selected and tagged for data collection.  

Data collected was subjected to descriptive analysis to calculate the mean 

values of each trait. This was followed by calculation of the coefficients of 

skewness and kurtosis of phenotypic distribution in the F2 population.  

The parameters skewness and kurtosis were calculated with the following 

equations (Roy 2000): 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
∑ (𝑌𝑖−𝑌)3𝑁
𝑖=1

(𝑁−1)𝑆2
       

 

Kurtosis =  
∑ (𝑌𝑖−𝑌)4𝑁
𝑖=1

(𝑁−1)𝑆4
 

Where: 𝑌𝑖 − 𝑌  = deviation from the mean  

S= Sample standard deviation 

N= sample size 
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According to Roy (2000), a skewness value of < 0 imply additive gene action, 

while a skewness of > 0 shows complementary gene action. Likewise, negative 

kurtosis shows involvement of many genes influencing a trait, while a positive 

kurtosis shows control of a trait by few genes. Graphical distribution defining 

kurtosis are presented in Chapter 2, Section 2.4.3. Therefore, these reference 

values were used to deduce gene action in the studied populations. 

 

Two samples independent t-test analyses were performed using Statistical 

Analysis Systems (SAS) program (SAS 2009), to determine significant 

differences among parental genotypes for the measured agronomic attributes.  

 

4.3. Results  

4.3.1. Significant test of differences among parents  

A summary of an independent t-test with significant values comparing three 

pairs of parents is presented in Table 4.1. There was non-significant difference 

observed between parental genotypes AL 201 and ICPL 20325 for all the 

studied characters. 

  

Highly significant differences (P<0.01) were detected between the parents ICP 

8863 and ICPL 87119 for DTF (t=2.75), NSB (t= 10.29), NPP (t= -9.00), NSP 

(t=-2.79), HSW (t= -7.08), and SYDP (t=-7.45). The parental line ICPL 87119 

had more number of secondary branches (33.2 branches) associated with 

increased number of pods per plant (245.0 pods) and higher number of seeds 

per pod (4.0 seeds), resulting in better seed yield per plant (120.0 g/plant) 

when compared to ICP 8863 (Table 4.2). 

 

ICP 5529 and ICP 7035 were significantly different (P <0.05) for PHT (t= -

6.82), NPP (t= -7.06) and SYDP (t= -14.51) (Table 4.1). The mean values of 

measured traits of the parental lines are summarized in Table 4.2. In general, 

ICP 7035 had higher plant height (240.0 cm) than ICP 5529 (203.0 cm). ICP 

7035, popularly known as Kamica in India, has indeterminate growth habit 

(Rangaswamy et al. 2005). This variety has larger seeds (9–11 mm diameter) 

with purple seed coat and green cotyledons and suitable for consumption as 
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seed vegetable (Rangaswamy et al. 2005). These characteristics could have 

contributed to the observed higher seed weight (23.5 g/100 seeds) and higher 

seed yield (258.5 gm per plant) in line ICP 7035 than ICP 5529 (Table 4.2). 

However, ICP 7035 had significantly less number of pods per plant than 

ICP5529 (Table 4.1). 

Table 4.1. Significant tests of differences among six pigeonpea parents for 
eight characters (n= 20; d.f. = 9) 

KEY: ns=non-significant; * and ** denote significant differences at 5% and 1% levels 

of probability, respectively. n. a. = data not available 

 

4.3.2. Skewness and kurtosis of the F2 populations 

Gene action controlling the quantitative traits in the segregating generations 

was determined based on the frequency distribution of traits through third- and 

fourth-order statistics; skewness and kurtosis. Estimated coefficients of 

skewness and kurtosis for the studied characters in the three mapping 

populations are presented in Table 4.2. 

 

In the family AL 201 × ICPL 20325, positive kurtosis was observed for PHT 

and HSW. The remaining characters had skewness and kurtosis values that 

were less than 1.0 (Table 4.2). The coefficients of skewness and kurtosis for 

the studied characters were as follows: 0.2 and -0.7 for DTF, 0.8 and 3 for 

PHT, 0.4 and 0.1 for NPB, 0.8 and 0.7 for NPP, -0.8 and 0.9 for NSP, 0.9 and 

Character 

t-values and significant tests 

AL 201 and 
ICPL 20325 

ICP 8863 and 
ICPL 87119 

ICP 5529 and 
ICP 7035 

Days to 50% flowering 
(days) 

 
0.06ns 

 
0.78ns 

 
-1.68ns 

Plant height (cm) 0.64ns 1.03ns -6.82* 

Number of primary 
branches  

 
-1.84ns 

 
-1.54ns 

 
-1.07ns 

Number of secondary 
branches 

 
n.a. 

 
-10.29** 

 
1.03ns 

Number of pods plant-1 
-0.44ns -9** -7.06* 

Number of seeds pod-1 -0.44ns -2.79 0.78ns 

100-seed weight 
(gram) 

 
0.12ns 

 
-7.08** 

 
-1.54ns 

Seed yield plan t-1 
(gram/plant) 

 
-1.86ns 

 
-7.45** 

 
-14.51* 
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3.7 for HSW. SYDP had skewness and kurtosis values of 0.9 and 0.8, 

respectively (Table 4.2).  

The family ICP 8863 × ICPL 87119, had positive skewness for seed yield plant-

1 and number of pods plant-1. Except for PHT, NPP and SYDP, all other traits 

in this family, had both skewness and kurtosis that were less than 1.0 (Table 

4.2). The coefficients of skewness and kurtosis scored for studied characters 

in that order were -1.1 and 2.9 for DTF, 0.1 and -0.5 for PHT, 0.58 and 0.1 for 

NPB, 0.75 and 0.4 for NSB, 2.3 and 3.9 for NPP, -0.9 and 0.1 for NSP, -0.3 

and 0.5 for HSW, and 1.7 and 3.1 for SYDP (Table 4.2.). 

 

In ICP 5529 × ICP 7035, there was marked segregation of F2 population except 

for the number of pods plant-1 and seed yield plant-1. In this population the 

remaining traits had values of skewness and kurtosis that were less than 1.0. 

The values of skewness and kurtosis scored for studied characters 

respectively were 0.8 and 0.3 for DTF, 0.2 and -0.1 for PHT, 0.2 and -0.4 for 

NPB, 0.3 and -0.4 for NSB, 2.5 and 4.7 for NPP, 0.01 and 0.5 for NSP, -0.36 

and -1.2 for HSW, and 1.1 and 0.6 for SYDP (Table 4.2). 

Table 4.2. Mean values of parents and crosses and skewness and kurtosis of F2 
families for eight yield and yield-related traits of pigeonpea. 

Genotype 
and 
parameters  

Traits 
DTF PHT NPB NSB NPP NSP SW SYDP 

AL 201 59.0  137.0 6.87  n.a 98.7  3.8  8.1 18.2 

ICPL 2035 59.0 134.3  7.8  n.a 104.5 3.8  8.3  19.1 

AL 201 × ICPL 2035 

Mean 50.7 95 7.1 n.a 63.5 3.6 7.8  17.4 

Skewness 0.2 0.8 0.4 n.a 0.8 -0.8 0.9    0.9 

Kurtosis -0.7 3.3 0.1 n.a 0.7 0.9 3.7    0.8 
ICP 8863 94.0 213.8 2.4 12.4 98.8 3.2 10.2  22.7 

ICPL 87119 102.3 207.2 3.00 33.2 245.0 4.00 11.8 120.0 

ICP 8863 × 87119 

Mean 93.6 192.9 2.55 13.04 157. 7 3.4 11.7   50.5 

Skewness -1.1 0.11 0.6 0.8 2.7 -0.9 -0.3     1.7 

Kurtosis 2.9 -0.5 0.1 0.4 3.9 0.1 0.5     3.2 

ICP 5529 114.8 203.0 12.2 12.8 538.8 2.72 10.5    59.2 
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Table: 4.2 Continued 

ICP 7035 122 240.0 13.2 10.6 396.0 3.75 23.5  258.5 

ICP 5529 × ICP 7035 

Mean 123.5 209.4 14.2 35.4 125.6 3.4 21.4  03.5 

Skewness 0.8 0.2 0.2 0.3 2.5 0.2 -0.4   1.2 

Kurtosis 0.3 -0.2 -0.4 -0.4 4.6 0.5 -1.2   0.6 

KEY: DTF=Days to 50 flowering, PHT =Plant height (cm), NPB=Number of primary 

branches, NSB=Number of secondary branches, NPP=Number of pods plant-1, NSP 

=Number of seeds pod-1, HSW=100-seed weight, SYDP =Seed yield plant-1, n.a. 

data not available 

4.3.3. Gene action  

Based on scores of skewness and kurtosis, the gene action for each of the trait 

and estimated number of genes involved in each trait were calculated. Table 

4.3 summarizes the results of the predicted gene action and interactions for 

each character in the three studied crosses. Additive gene action 

predominantly influenced the expression of studied characters across all the 

families (Table 4.3). Results indicated absence of gene interaction for DTF in 

the family AL 201 × ICPL 20325, for PHT in the families of ICP 8863 × ICPL 

87119 and ICP 5529 × ICP 7035. Also gene interaction was not detected for 

NPB, NSB and HSW in the family ICP 5529 × ICP 7035 (Table 4.3). In these 

characters, the values of kurtosis were less than zero (Tables 4.2 and 4.3). 

 

In AL 201 × ICPL 20325, all characters showed complementary epistasis gene 

action. Except in DTF where polygenes were involved in controlling this trait, 

the remaining characters were under the control of few genes (Table 4.3). Both 

duplicate and complementary gene actions were predominantly affecting some 

characters in ICP 8863 × 87119. Duplicate epistasis was responsible for DTF, 

NPP and NSP, whereas complementary epistasis was observed for NPB, 

NSB, SW and SYDP (Table 4.3). In this cross, except for PHT in which 

polygenic effect was observed, the remaining characters were under the 

control of few genes (Table 4.2). 

 

For ICP 5529 × ICP 7035, complementary gene action was observed in all 

characters except for seed weight in which duplicate gene action was involved. 
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Characters in which polygenic gene action was observed included PHT, NPB, 

NSB, NPP, NSP and SYDP. However, DTF and HSW were under the control 

of few genes (Table 4.3). 

Table 4.3. Summary of gene action for eight yield and yield related traits of three 
pigeonpea families. 

KEY: DTF=Days to 50% flowering, PHT =Plant height (cm), NPB=Number of primary 
branches, NSB=Number of secondary branches, NPP=Number of pods plant-1, 
NSP=Number of seeds pod-1, HSW=100-seed weight, SYDP=Seed yield per plant-1 
n.a. =Data not available. 
 

4.4. Discussion 

The current study revealed the predominance of additive gene action 

controlling DTF, PHT, NPB, NSB, NPP, NSP, HSW and SYDP in populations 

of pigeonpea developed using three genetic background (Table 4.3). This was 

highly expected due to the mode of pollination of pigeonpea which is 

predominantly self-fertilizing. Additive gene action is mainly associated with 

homozygosity accumulated through continuous generation of self-fertilization 

(Singh 1996). Therefore, pure line or pedigree selection methods can be used 

to improve the genetic gain of these traits.  

 

The estimated coefficients of kurtosis for DTF in the family AL 201 × ICPL 

20325, PHT (ICP 8863 × ICPL 87119 and ICP 5529 × ICP 7035), NPB, NSB 

Character Families 

AL201 × ICPL 20325 ICP 8863 × ICPL 87119 ICP 5529 × ICP7035 

DTF Additive, 
complementary, 

polygenic 

Additive, duplicate, 
few genes 

Additive, 
complementary, 

few genes 
PHT Additive, 

complementary, 
few genes 

Additive, complementary,  
polygenic 

Additive, 
complementary, 

polygenic 
NPB Additive, 

complementary, 
few genes 

Additive , 
complementary, few 

genes 

Additive 
,complementary , 

polygenic 

NSP Additive, 
complementary, 

few genes 

Additive, duplicate, 
few genes 

Additive, 
complementary, 

few genes 
HSW Additive, 

complementary, 
few genes 

Additive, complementary, 
few genes 

Additive , duplicate,  
polygenic 

SYDP Additive, 
complementary, 

few genes 

Additive, complementary, 
few genes 

Additive, 
complementary, 

few genes 
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and HSW (ICP 5529 × ICP 7035), were negative (Table 4.2). Coefficients of 

kurtosis helps in the prediction of the extent of genes involved in the control of 

quantitative traits. Traits which are under the control of few segregating genes 

exhibit positive coefficient of kurtosis. This is unlike traits that are under the 

control of many genes which will have negative kurtosis values (Roy 2000; 

Jayaramachandran et al. 2010). 

In the current study, most of the traits in the three families had positive scores 

of kurtosis indicating the presence of few genes in controlling trait expression. 

These traits were DTF (in the families of ICP 8863 × ICPL 87119 and ICP 5529 

× ICP 7035), PHT (AL 201 × ICPL 20325), NPB (AL 201 × ICPL 20325 and 

ICP 8863 × ICPL 87119), NSB (ICP 8863 × ICPL 87119), NPP (in all families), 

NSP (all families), HSW (AL 201 × ICPL 20325 and ICP 8863 × ICPL 87119) 

and SYDP (all families) (Table 4.2). 

The magnitude of skewness helps to infer the type of gene action for a 

particular trait. Positive skewness indicates the presence of complementary 

epistatic gene action controlling a trait, whereas negative skewness indicates 

the presence of duplicate epistatic gene action (Roy 2000; and 

Jayaramachandran et al. 2010).  

In this study, positive coefficients of skewness were recoded for DTF in the 

family AL 201 × ICPL 20325, NPB (AL 201 × ICPL 20325 and ICP 8863 × ICPL 

87119), NSB (ICP 8863 × ICPL 87119), NPP (all families), NSP (ICP 5529 × 

ICP 7035), HSW (AL 201 × ICPL 87119) and SYDP in all families (Table 4.2). 

Presence of complementary gene action for most traits indicates that parents 

selected for crosses are diverse. If selected parents show complementary 

traits, then it is possible to realize enhanced genetic gain through selection in 

the ensuing breeding populations (Reynolds et al. (2009). 

Varied coefficients of skewness were scored across all the studied families. In 

AL 201 × ICPL 20325, negative coefficient of skewness was observed only for 

NSP. In this family DTF, NSP and HSW, had positive skewness. In ICP 8863 

× ICPL 87119, only HSW had negative skewness (Table 4.2). This indicates 

the preponderance of additive gene action and presence of duplicate epitasis 
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gene interaction among loci controlling these characters in the three families. 

Duplicate gene action is not easy to be fully exploited in a breeding programme 

(Kumar et al. 2009). It is therefore suggested that heterosis breeding may be 

used where large magnitude of non-fixable gene effects is observed. Findings 

of the present study is partially similar to the studies of Pandey (1972), Gupta 

et al. (1981), Sindhu and Sandhu (1981), Craufurd et al. (2001), Sreelakshmi 

et al (2011), and Kumawat et al. (2012) who reported the presence similar 

results in pigeonpea. However, the current findings contradict the results of 

Patel et al. (1990); Hooda et al. (2000); Perera et al. (2001); and Kumar et al. 

(2009).  

The present study found that days to 50% flowering was under the influence 

of additive gene action. Except in the family AL 201 × ICPL 20325, where this 

character was found to be controlled by many genes, the other two families 

had few genes influencing the expression of DTF. The present findings are 

similar to the report of Gupta et al. (1981) who indicated predominance of 

additive gene action affecting days to flowering in pigeonpea.  

A study by Craufurd et al. (2001), also reported duration from sowing to 

flowering to be controlled by two genes assorting independently and with 

predominantly additive quantitative effects. Contrarily, studies by Patel et al. 

(1990), Hooda et al. (2000), Perera et al. (2001), and Kumar et al. (2009) 

identified the significance of additive, dominance and epistatic gene effects in 

controlling days to flowering in pigeonpea. 

In the present study plant height was found to be under the control of additive 

genes. Sharma (1981) reported this trait to be governed by both additive and 

dominance genes. The same author indicated that tallness was conditioned by 

dominant genes. Singh and Pandey (1974) reported additive gene action to be 

higher than non-additive gene action in governing plant height. Pandey et al. 

(2014) indicated additive gene action to be most important in the inheritance 

of the same trait.  

The present study noted that additive gene action with complementary 

interaction were responsible in controlling the inheritance of the number of 
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branches per plant. Similar findings were reported by D’Cruz et al. (1971), who 

observed branching habit to be governed by three duplicate complementary 

factors. Marekar (1982), reported that close branching habit was controlled by 

one basic and two inhibitory complementary genes. The study of Kumawat et 

al. (2012), indicated the presence of positive additive effects due to QTL 

sqPB4.1 and qPB5 which were responsible for the control of the number of 

primary and secondary branches, respectively. Sreelakshmi et al (2011) 

reported additive gene action affecting primary and secondary branches. 

Unlike the above reports, D’Cruz and Deokar (1970) indicated that a single 

dominant gene controlled spreading habit, while erect types were under the 

control of homozygous recessive genes.  

 

For the number of pods plant-1, except in the family ICP 8863 × ICPL 87119, 

in which duplicate gene interaction was predominant, additive gene action with 

complementary gene interaction involving few genes were responsible for the 

expression of this trait. A study by Kumawat et al. (2012) indicated significant 

epistatic interaction effects of several QTLs affecting the number of pods plant-

1 in which both complementary epistasis (additive x additive) and duplicate 

epistasis (additive x dominance) were expressed. Dahiya and Barar (1977) 

detected non-additive (over-dominance) gene action. Both additive and non-

additive gene actions were detected by Venkateswarlu and Singh (1982), 

whereas Singh et al. (1983), reported additive gene action. Kumar et al (2009) 

indicated the presence of duplicatory epistatic type of gene action for the 

number of pods plant-1. 

The number of seeds pod-1 in the current study was under the influence of 

additive gene action with both duplicate and complementary gene interactions, 

involving few genes. This is contrary to the report of Venkateswarlu and Singh 

(1982), who detected both additive and non-additive gene action to be present 

in pigeonpea. Mohamed et al. (1985) reported dominance, additive x 

dominance and dominance x dominance gene interactions to be responsible 

for expression of this trait. Furthermore, Patel et al. (1990), noted additive, 
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dominant and epistatic genes affecting the inheritance of the numbers of pods 

plant-1 and seed yield plant-1. 

 

In the present study 100-seed weight was governed by additive genes in all 

the three families. Except in the family ICP 5529 × ICP 7035 in which duplicate 

and polygenic interaction was found, 100-seed weight in the remaining two 

families was under the control of complementary genes where few genes were 

responsible in the expression of this trait. Sharma et al. (1972) reported 

predominance of additive gene action for seed size. The authors suggested 

that genes controlling smaller seed size were dominant over larger seeds. 

 

Other studies reported similar findings in pigeonpea (Gupta et al.1981; Sindhu 

and Sandhu 1981; and Mohamed et al. 1985). Conversely, studies by Dahiya 

and Barar (1977); Venkateshwarlu and Singh (1982); and Patel et al. (1987) 

indicated the presence of additive and non-additive (over-dominance) genes 

controlling seed size in pigeonpea. 

Seed yield plant-1 in the present study was under the control of additive genes. 

Further, the study indicated the presence of complementary gene interaction 

involving few genes to be responsible for controlling this trait. Conversely, 

several co-workers (Singh and Pandey 1974; Dahiya and Barar 1977; Singh 

et al. 1983; and Sreelakshmi et .al 2011), reported non-additive gene action 

governing seed yield plant-1 in pigeonpea. 

 

The current study was conducted on segregating F2 populations. In this case, 

duplicate epistasis might restrict the expression and subsequent selection of a 

trait in early segregating generations (Jindal et al. 1993; and Amawate and 

Behl 1995). It is therefore recommended to exploit duplicate gene effects by 

intermating the selected segregants and delay the selection of the traits for 

advanced generations. 
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4.5. Conclusions 

This study focused on prediction of gene action controlling yield and yield 

related traits in three families of pigeonpea using third- and fourth-degree 

statistics. The study revealed predominance of additive gene action controlling 

DTF, PHT, NPB, NSB, NPP, NSP, HSW and SYDP. Complementary and 

duplicate epistatic gene interactions were also present in conditioning the 

studied characters. Complementary gene interaction was noted influencing the 

expression of all studied traits in family AL 201 × ICPL 20325. Except DTF, 

NPP and NSP in which duplicate gene interaction was observed, 

complementary gene interaction was noted in all remaining traits in the family 

ICP 8863 × ICPL 87119, whereas in the family ICP 5529 × ICP 7035, only 

HSW was under the control of duplicate gene interaction. Additive genes are 

fixable; therefore, traits governed by such genes are expected to be effectively 

selected. Duplicate interaction indicates the presence of non-fixable genes, 

necessitating delayed selection involving advanced generations. For the 

characters observed to have large magnitude of non-fixable genes, heterosis 

breeding is recommended.  
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CHAPTER 5 

Quantitative trait loci mapping of yield and yield-related traits in pigeonpea 

Abstract 

Pigeonpea is an important multi-purpose crop widely grown in the tropics and sub-

tropics. However, biotic and abiotic stresses significantly affect pigeonpea production 

and productivity. Genomic assisted breeding has the potential to enhance genetic 

gains in conventional pigeonpea breeding. The objective of this study was to identify 

quantitative trait loci (QTL) associated with eight yield and yield-related traits using 

420 F2 progenies developed from the following three diverse pigeonpea families: AL 

201 × ICPL 20325, ICP 5529 × ICP 7035 and ICP 8863 × ICPL 87119. The following 

phenotypic data were collected:  days-to-flowering (DTF), plant height (PHT), number 

of branches (NPB), number of secondary branches (NSB), number of pods per plant 

(NPP), number of seeds per pod (NSP), 100- seed weight (HSW) and seed yield per 

plant (SYDP). A total of 63 indel markers were used in AL 201 × ICPL 20325, and 51 

and 56 simple sequence repeat (SSR) markers were used for ICP 8863 × ICPL 87119 

and ICP 5529 × ICP 7035, respectively. Genotyping by sequencing (GBS) was used 

for genetic analysis and linkage analysis was performed using JoinMap version 4. 

Quantitative trait loci (QTL) analysis of the above yield and yield –related traits were 

performed using single marker analysis (SMA) employing composite interval (CIM) 

using stepwise regression linear model. A total of 42 QTL were detected in three 

families. In AL 201 × ICPL 20325, five QTL were identified for DTF, PHT, NPP and 

HSW on chromosomes 2, 3, 6 and 10. In ICP 5529 × ICP 7035, seven QTL were 

identified for DTF, PHT, NSB, NPP and HSW on chromosomes 2, 6 and 9, whereas 

in ICP 8863 × ICPL 87119, a total of 30 QTL were identified for DTF, PHT, NPB, NSB, 

NPP, NSP and SYDP on chromosomes 1, 2, 3, 4, 5, 6, 10 and 11. The number of 

QTL ranged from 1 for HSW to 16 for DTF, and the phenotypic value explained 

(PVE%) ranged between 10.35-16.27% in AL 201× ICPL 20325,10.44 -17.9 in ICP 

5529 × ICP7035 and 10.71-89.12% in ICP 8863 × ICPL 87119. The detected QTL 

were co-localized within the same genomic regions indicating the presence of 

pleiotropic effect or linkage. Validation for the accuracy and consistency of the 

identified QTL in several, independent and diverse mapping populations is required 

for fine mapping and further use in marker-assisted selection programs. 

Keywords: composite interval mapping, linkage maps, quantitative trait loci, 

pigeonpea 
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5.1. Introduction 

Molecular markers and genetic maps are useful resources for genetic analysis 

or to undertake marker-assisted breeding in crop improvement programs 

(Yang et al. 2011). Genetic mapping involves several steps including DNA 

extraction from target species, identification of diagnostic molecular markers 

linked with desired genes, parental screening, genotyping, construction of 

linkage maps and linkage analysis (Semagn et al. 2006). 

 

Molecular (DNA) markers are segments of DNA that can be detected through 

specific laboratory techniques (Datta et al. 2011). Genomic variation analysis 

is an essential component of plant genetics and crop improvement programs 

(Deschamps et al. 2012). DNA polymorphisms can be directly related to 

phenotypic differences or it may indicate genetic interrelationships between 

individuals in populations (Rafalski 2002).  

 

Singe nucleotide polymorphism (SNP) markers have been increasingly used 

for QTL mapping studies (Jones et al. 2007). This is primarily, because SNPs 

are highly abundant in the genomes and, therefore, they can provide the 

highest map resolution compared to other marker systems (Jones et al. 2007). 

 

Genotyping typically involves the generation of allele-specific products for 

SNPs of interest followed by their detection for genotype determination (Kim 

and Misra 2007). The two key components for genotyping germplasm are 

finding DNA sequence polymorphism and assaying the markers across a full 

set of test materials (Poland and Rife 2012). The strength of the sequence –

based genotyping is the completion of the marker discovery and genotyping at 

the same time (Poland and Rife 2012).  

 

Genotyping by sequencing (GBS) is among the popular genotyping platforms 

that are used nowadays. It is a robust genotyping method based on the 

sequencing of partial genome representations and has been developed for 

parallel high-throughput genotyping (Elshire et al. 2011). Generally, GBS 

utilizes one or more restriction enzymes (Poland et al. 2012) to digest the 
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genome into fragments that are then sequenced by parallel high-throughput 

methods. Genome complexity reduction, makes GBS to be easy, quick, 

extremely specific, highly reproducible, and enables reaching important 

regions of the genome that are inaccessible to sequence capture approaches. 

By choosing appropriate restriction enzymes, repetitive regions of genomes 

can be avoided and lower copy regions can be targeted with two to three-fold 

higher efficiency (Gore et al. 2007; Gore et al. 2009), which tremendously 

simplifies computationally challenging alignment problems in species with high 

levels of genetic diversity (Elshire et al. 2011). 

 

Constructing a linkage map is, essentially, the finding of a linear arrangement 

of markers from recombination values (Stam 1993). A genetic linkage map is 

a representation of the genome that shows the relative position and distances 

between markers or genes along chromosomes. It does not show the physical 

distance between these markers but the genetic distance, defined as a 

function of the crossover frequency during meiosis (Foulongne-Oriol 2012). 

Distance between genes on chromosomes is usually expressed in 

centimorgans (cM) (Stam 1993). Genetic maps are constructed using different 

types and sizes of mapping populations, marker systems, statistical packages 

and procedures (Ferreira et al. 2006).  

 

Pigeonpea [Cajanus cajan (L.) Millspaugh] is an important food legume 

predominantly cultivated in the tropical and subtropical regions of Asia and 

Africa. It is a diploid (2n = 22), often cross-pollinated crop with a genome size 

of 858 Mbp (Greilhuber and Obermayer 1998). Intra- and inter-specific F2 

populations have been developed in pigeonpea for the purpose of constructing 

linkage maps for important agronomic traits such as Fusarium wilt resistance 

(Bohra et al. 2012), determinacy (Mir et al. 2014), plant type (Dhanasekar et 

al. 2010) and drought tolerance (Saxena et al. 2011).  

 

During the last six decades, pigeonpea productivity has remained stagnant at 

around 780 kg/ha (Phazamala et al. 2015). The relatively low yields of the crop 

may be attributed to non-availability of improved cultivars, poor crop husbandry 



93 

 

and exposure to a number of biotic and abiotic stresses in pigeonpea growing 

regions (Varshney et al. 2012). Narrow genetic diversity in cultivated 

germplasm has further hampered the efficiency of conventional breeding as 

well as development and utilization of genomic tools (Varshney et al. 2010). 

Genomic assisted breeding has the potential to enhance genetic gains in 

conventional pigeonpea breeding. 

 

Marker-assisted recurrent selection and genomic selection methods will now 

be feasible for pigeonpea breeding, and may be even further advanced by 

genotyping by sequencing that can be done with the help of the drafted 

genome sequence of the crop (Varshney et al. 2012). In pigeonpea, 

construction of linkage maps has been challenging. Nonetheless few linkage 

maps were constructed using different categories of markers, such as Diversity 

Array Technology (DArT) markers (Yang et al. 2011), simple sequence repeat 

(SSR) markers (Bohra et al. 2011; Gnanesh et al. 2011), Kompetitive Allele 

Specific PCR (KASP) assays (Saxena et al. 2012), and Golden Gate SNP 

assays (Kumawat et al. 2012). 

Quantitative trait locus (QTL) analysis is a statistical method that links two 

types of information phenotypic data (trait measurements) and genotypic data 

(usually molecular markers) in an attempt to explain the genetic basis of 

variation in complex traits (Falconer and Mackay 1996; Kearsey 1998). There 

are several softwares that are useful in QTL analysis for gene detection and 

mapping. These includes MAPMAKER/QTL (Lincoln et al. 1993), QTL 

Cartographer (Basten et al. 1994), QGene (Nelson 1997), PLABQTL (Utz and 

Melchinger 1996) and MapQTL (Van Ooijen and Maliepaard 1996).  

Different mapping studies have been conducted in pigeonpea for the major 

biotic and abiotic stresses, in which both QTLs and candidate genes have been 

reported for drought tolerance as well as for the major diseases such as 

Fusarium wilt and Sterility Mosaic Diseases (SMD). For instance, through 

pigeonpea genome analysis (Varshney et al. 2012), identified 111 proteins 

which were homologous to drought-responsive universal stress proteins. For 

Fusarium wilt, two random amplified polymorphic DNA (RAPD) markers were 

http://journal.frontiersin.org/article/10.3389/fpls.2015.00050/full#B102
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reported by Kotresh et al. (2006), four sequence characterized amplified 

regions (SCAR) markers (Prasanthi et al. 2009), and six SSR markers (Singh 

et al. 2013). In the case of SMD, Gnanesh et al. (2011) identified six QTL 

explaining up to 24.72% phenotypic variation on linkage group (LG) 7 and LG 

9. Further, other studies  attempted to map genes controlling important 

agronomic traits in pigeonpea such as earliness and plant height (Kumawat et 

al. 2012), fertility restoration (Bohra et al. 2011), and determinacy (Mir et al. 

2013, 2014).  

 

Genomics-assisted breeding (GAB) is a useful breeding tool that enables 

breeders to select suitable parents for different crossing programs to achieve 

novel combinations leading to selection of elite breeding lines (Phazamala et 

al. 2015). However, inadequate genomic resources coupled with the narrow 

genetic base in cultivated gene pool caused serious impediment to applying 

GAB for pigeonpea improvement (Varshney et al. 2010). Therefore, there is 

need to explore and map candidate genes controlling economic traits in 

pigeonpea to accelerate conventional breeding and to enhance yield. The 

objective of this study was to identify QTL associated with eight yield and yield-

related traits using 420 F2 progenies developed from the following three 

diverse pigeonpea families: AL 201 × ICPL 20325, ICP 5529 × ICP 7035 and 

ICP 8863 × ICPL 87119.  

 

5.2. Materials and methods 

5.2.1. Development of mapping populations 

Mapping populations derived from crosses involving three diverse parents 

were used in the current study. These were AL 201 × ICPL 20325, ICP 8863 

× ICPL 87119 and ICP 5529 × ICP 7035. The F1 and F2 generations were 

grown under field conditions at the research farm of ICRISAT, Patancheru 

during 2013 and 2014. The three mapping populations were field grown with 

inter-row spacing of 60 cm and intra-row spacing of 20 cm. True F1s were 

selfed in 2015 rain season using the single seed decent method to generate 

the mapping populations in each genetic combination. A total of 166 genotypes 

http://journal.frontiersin.org/article/10.3389/fpls.2015.00050/full#B25
http://journal.frontiersin.org/article/10.3389/fpls.2015.00050/full#B51
http://journal.frontiersin.org/article/10.3389/fpls.2015.00050/full#B82
http://journal.frontiersin.org/article/10.3389/fpls.2015.00050/full#B82
http://journal.frontiersin.org/article/10.3389/fpls.2015.00050/full#B19
http://journal.frontiersin.org/article/10.3389/fpls.2015.00050/full#B30
http://journal.frontiersin.org/article/10.3389/fpls.2015.00050/full#B30
http://journal.frontiersin.org/article/10.3389/fpls.2015.00050/full#B5
http://journal.frontiersin.org/article/10.3389/fpls.2015.00050/full#B45
http://journal.frontiersin.org/article/10.3389/fpls.2015.00050/full#B45
http://journal.frontiersin.org/article/10.3389/fpls.2015.00050/full#B44
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from AL 201 × ICPL 20325, 131 from ICP 8863 × ICPL 87119 and 123 from 

ICP 5529 × ICP 7035 were selected for phenotyping. 

5.2.2. Phenotyping of F2 progenies 

Phenotypic data was collected on individual plants in which observations were 

recorded on days to 50% flowering (DTF), plant height (PH, expressed in cm), 

number of primary branches per plant (NPB), number of secondary branches 

per plant (NSB), number of pods per plant (NPP), number of seeds per pod 

(NSP), 100 seed weight (gram per 100 seed), and seed yield per plant(SYDP) 

(gram per plant). Briefly, the data were collected as follows: 

Days to flowering were recorded as number of days from planting to the date 

when 50% of the plants showed flowers. Plant height was measured as the 

height to the nearest centimeters of a stretched plant from ground level to the 

tip of the main stem at harvest. Number of primary branches were counted as 

number of branches (productive and unproductive) arising from the main stem 

and counted at harvest. Numbers of secondary branches were determined as 

the total number of branches arising from primary branches. Number of pods 

were counted as the total number of matured pods obtained at harvest. 

Number of seeds per pod was determined as the average number of seeds of 

10 sampled pods. 100-seed weight was determined as the weight to the 

nearest grams of one hundred clean whole dry seeds Seed yield was the seed 

weight measured to the nearest grams per plant. With an exception of DTF, all 

other measurements were recorded at maturity. 

5.2.3. DNA extraction  

Seeds of the parents and F2 progenies were sown in the field. Leaf samples 

were collected from parents and F2 progenies. About DNA was extracted from 

100 mg wet weight of a leaf sample collected from a three-week old plant. 

Extracted DNA was purified using NucleoSpin® 96 Plant II Core Kit protocol. 

The DNA was quantified and submitted for GBS analysis. The DNA from F1 

individuals and parents were isolated using the protocol suggested by Cuc et 

al. (2008). 

 

http://www.mn-net.com/tabid/10905/default.aspx
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5.2.4. Polymerase chain reactions  

Polymerase chain reactions (PCRs) for amplification of SSR loci were 

performed in a 96-well micro titre plate (ABgene, Rockford, IL, USA) using 

thermal cycler GeneAmp PCR System 9700 (Applied Biosystems, Foster City, 

CA, USA). The reaction volume consisted of 5μl containing 0.5 μl of 10 x PCR 

buffer (SibEnzyme, Novosibirsk, Russia), 1.0 μl of 15 mM MgCl2, 0.25 μl of 

2 mM dNTPs, 0.50 μl of 2 pmol/μl primer anchored with M13-tail (MWG-

Biotech AG, Bangalore, India), 0.1 U of Taq polymerase (SibEnzyme, 

Novosibirsk, Russia) and 1.0 μl (5 ng/μl) of template DNA. A touch down PCR 

programme was used to amplify the DNA fragments: initial denaturation was 

for 5 min at 95 °C followed by five cycles of denaturation for 20 s at 94 °C, 

annealing for 20 s at 60 °C (the annealing temperature for each cycle being 

reduced by 1 °C per cycle) and extension for 30 s at 72°C. Subsequently, 35 

cycles of denaturation at 94 °C for 20 s followed by annealing for 20 s at 56°C 

and extension for 30 s at 72°C and 20 min of final extension at 72°C. The PCR 

products were checked for amplification on 1.2 % agarose gel. Amplified 

products were separated on capillary electrophoresis using ABI 3730 (Applied 

Biosystems, Foster City, CA, USA). 

 

5.2.5. SSR analysis 

Markers polymorphic between the parental lines as identified in Bohra et al. 

(2011) were used for genotyping the respective mapping population. Indel 

primers were used for the identification of polymorphic markers in AL 201 × 

ICPL 20325, whereas SSR markers were used in ICP 8863 × ICPL 87119 and 

ICP5529 × ICP 7035.  

 

5.2.6. Genotyping-by-sequencing 

A GBS was used for SNP calling between the parents and genotyping the F2s 

as described by Elshire et al. (2011). GBS libraries from the parental lines and 

F2s were prepared using ApeKI endonuclease (recognition site: G/CWCG) and 

sequenced using the Illumina HiSeq 2000 platform (Illumina Inc, San Diego, 

CA, USA). Genomic DNA of selected mapping population and parental lines 

were subjected for restriction digestion using endonuclease ApeKI for 2 h at 

http://link.springer.com/search?dc.title=dNTPs&facet-content-type=ReferenceWorkEntry&sortOrder=relevance
http://link.springer.com/article/10.1007/s00122-012-1916-5/fulltext.html#CR1
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75 °C. Adapters with unique multiple× sequence index (barcodes) were ligated 

to the sticky ends using ligase buffer with ATP and T4 ligase. Samples were 

incubated at 22 °C for 1 h and heated to 65 °C for 30 min to inactivate the T4 

ligase. Aliquot of each sample (5 μl) was pooled (multiplexed) and purified to 

remove the excess adapters. DNA samples were eluted in a final volume of 50 

μl. PCR was performed to increase the restriction fragments from each library 

using primers complementary to the corresponding adapters. The amplified 

pools constituting the “sequencing library,” were cleaned up and evaluated for 

fragment sizes using a DNA analyzer. Libraries without adapter dimers were 

subjected to sequencing. 

 

5.2.7. Linkage mapping 

The GBS data obtained were first de-multiplexed and SNPs were identified 

using GATK pipeline. Those SNPs with known and polymorphic alleles in 

parental genotypes (AL 201, ICP20325, ICP 8863, ICPL 87119, ICP 5529 and 

ICP 7035) were extracted and used for further processing. Initially, SNPs 

having more than 30% missing data were filtered out. Lines having more than 

70% missing data were also removed from further analysis. Parent dependent 

sliding window based bin mapping approach was utilized to identify 

recombination breakpoints. The LD analysis clearly differentiates the SNPs on 

11 pigeonpea pseudomolecules.  

Genotype data were assembled for all segregating markers on all individuals 

from three mapping populations and linkage analysis was performed using 

Join Map version 4.1 using Regression mapping algorithm (Van Ooijen 2006). 

All markers were subjected to a Chi-squared test for fit to a 1:2:1 (A: H: B) ratio 

at 5% level of significance to identify markers with distorted segregation ratios. 

Logarithm of Odds (LOD) scores of 6 to 10 were examined, using the Kosambi 

map function, and a maximum distance of 40 cM was employed to determine 

the linkage between two markers. A LOD score of 10.0 was selected to 

develop the linkage maps. Recombination values were converted to genetic 

distances using the Kosambi mapping function (Kosambi 1994). 
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‘‘Locus genotype frequency’’ function was used to calculate the values for 

all the markers. Map calculations were performed with parameters like LOD 

value >3.0, recombination frequency B0.40 and the   jump threshold for 

removal of loci = 5. Placement of markers into different linkage groups (LGs) 

was done with ‘‘LOD groupings’’ and ‘‘Create group using the mapping tree’’ 

commands. Mean  contributions or average contributions to the goodness 

of fit of each locus were also checked to determine the best fitting position for 

markers in genetic maps. The markers showing negative map distances or a 

large jump in mean v2 values were discarded. Final maps were drawn with the 

help of Map-Chart version 2.2 (Voorrips 2002). 

 

5.2.8. QTL analysis for seed yield and yield –related traits 

Genotyping and phenotyping data from three mapping populations; AL 201 × 

ICPL 20325, ICP 8863 × ICPL 87119 and ICP 5529 × ICP 7035) were analyzed 

employing composite interval (CIM) in the WinQTL Cartographer version 2.5 

(Wang et al. 2007). CIM analysis was performed applying the standard model 

6, with a genome scan interval (walk speed) of 1cM. The ‘’forward-backward 

stepwise regression’’ was used to set number of marker co factor as 

background control. A window size of 10cM was used to block out signals 

within 10cM on either side of the flanking markers or QTL test site. Thresholds 

were determined by permutation tests using 1,000 permutations and a 

significance interval of 0.05. 

 

MapChart program was used to displays charts of a series of linkage groups 

and imports linkage data from map files, produced by software for linkage 

analysis.  

In summary, the steps that were used for QTL analysis in this study included, 

making crosses and generating mapping population, identifying markers that 

are polymorphic between the three pairs of parents, generating marker data, 

generating linkage maps of molecular markers, collecting phenotypic 

measurements of QTL yield and yield-related traits, and mapping QTLs 

(Association of QTL with marker). 
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5.3. Results  

5.3.1. Parental screening for marker polymorphism 

Out of 63 SSR markers screened for parental polymorphism between AL 201 

and  ICPL 20325, only 2 (2%) were found to be polymorphic.These were CciD 

260 and 261. For two crosses, i.e., ICP 8863 × ICPL 87119 and ICP 5529 × 

ICP 7035, 51 and 56 SSR markers were used, in that order. Out of 51 SSR 

markers used for parental polymorphism between ICP 8863  and ICPL 87119, 

only 3 (2%) were found to be polymorphic.These markers were CcM 0095, 

0126 and 0147. For polymorphism between ICP 5529 and ICP 7035, 

polymorphic SSR markers identified were CcM 0047, 0195 and 1001, which 

were 2% of the total numbers of markers used. All these markers were used 

for genotyping F2 plants as follows; 166 plants in AL 201 × ICPL 20325, 123 

plants in ICP 5529 × ICP 7035 and 131 plants in ICP 8863 × ICPL 87119. 

  

On checking the genotyping data obtained for all polymorphic loci for 

segregation ratio, 72.42%, 81.34% and 90.35% marker loci were found in 

normal segregation (1A:2H:1B) in AL 201 × ICPL 20325, ICP 5529 × ICP 7035 

and ICP 8863 × ICPL 87119 respectively. 

 

5.3.2. Linkage map construction 

The segregation data for the SSR loci showing the normal segregation in each 

of the above mapping population were used for constructing genetic maps for 

the respective mapping population by using MapChart. Three linkage maps 

were constructed in the present study (Table 5.1). The arrangements of the 

linkage groups as it appears in the constructed maps, followed the order of 

chromosomes, e.g., LG1 represents chromosome 1, LG 2 represents 

chromosome 2 etc.  

 

5.3.2.1. Descriptions of three linkage maps constructed. 

The linkage map of 1901 loci resolved into 11 linkage groups covering a total 

length of 1574.982 cM in AL 201 × ICPL 20325. An average distance between 
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the adjacent markers were 0.83 cM. Map lengths between linkage groups 

ranged from 35.606 cM in LG 5 to 285.358 cM in LG 2 (Table 5.1). 

In the population of ICP 8863 × ICPL 87119, a total of 2132 loci were mapped 

with a total length of 1446.725cM (Table 5.1). The average marker interval was 

1.47cM. LG 5 had the lowest map length (74.87cM) whereas LG11 had the 

highest map length of 224.27cM (Table 5.1). 

In the population of ICP 5529 × ICP 7035 population, a total of 1831 loci were 

used to construct a map spanning 1733.16 cM, and, an average inter-marker 

distance of 0.94 cM. LG 5 had the least map length of (4.891cM), whereas 

LG11 had the highest map length of 470.903 cM (Table 5.1). 

 

Table 5.1 Summary features of linkage maps constructed in three mapping 
populations 
 

Summary parameters 
AL 201 × 

ICPL 20325 

Mapping populations 
ICP 5529 × 
ICP 7035 

 
ICP 8863 × 
ICPL 87119 

Number of F2 lines 166 123 
 

131 

Number of total scored 
markers 3486 2256 

 
9403 

Number of total mapped loci 1901 1831 
 

2132 

Total map length(cM ) 1574.98 
 

1733.16 

 
1446.725 

Range of map length(cM) 
LG 5(35.61)- 
LG 2(285.36) 

LG 5(4.89)- 
LG 11(470.9) 

 
LG 5(74.87)-

LG 11(224.27) 

Inter-marker distance (cM) 0.83 0.94 
 

1.47 

 

5.3.3. QTL analysis 

A total of 42 QTLs were identified for eight yield and yield-related traits across 

three mapping populations of pigeonpea using CIM in the current study. The 

population that had the highest number of QTL (30) was ICP 8863 × ICPL 

87119, followed by ICP 5529 × ICP 7035 (7) and AL 201 × ICPL 20325 (5). 

When comparing the number of QTLs detected across 11 chromosomes in 

three populations, chromosome 2 had highest number (8), whereas 
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chromosomes 4 and 5 each had the lowest (1) QTL. The details of the QTL 

analysis for each population is presented below:  

QTLs for yield and yield-related traits based on AL 201 × ICPL 20325 

population 

This family had the lowest number of QTLs detected amongst the three test 

populations (Table 5.2). A total of 5 QTLs were detected for DTF, PHT and NPP 

in this family. Of the 5 QTLs, three were contributed by ICPL 20325 and the 

remaining two contributed by AL 201. Table 5.2 summarizes the QTLs detected 

in this family. Distribution of the QTLs on the linkage map of AL 201 × ICPL 

20325 is shown in Figure 5.1 

One QTL, qDF6.1, was detected for DTF on the chromosome 6. It was situated 

on position 164.91cM with LOD value of 3.4. The percentage phenotypic 

variation explained by this QTL was 14.19%. The qDF6.1 showed negative 

additive effect indicating that the allele for increasing days to 50% flowering at 

this locus was contributed by ICPL 20325 (Table 5.2). 

Two QTLs, qPH10.1 and qPH10.2, were detected for PHT on chromosome 10. 

Their positions were 13.61 and 53.2cM, with the LOD values of 3.6 and 2.8, 

respectively. The percentage phenotypic variations explained were 10.45 and 

10.35%, respectively (Table 5.2). The two QTLs showed negative additive effect 

indicating that the allele for increasing plant height at this locus was contributed 

by ICPL 20325.Thus, AL 201 has a dwarfing allele at the two identified loci. 

One QTL, qPD3.1, was detected for the number of pods plant-1 on chromosome 

3 positioned at 142.81cM. The LOD and PVE of this QTL were 2.8 and 16.27%, 

respectively. The qPD3.1 showed positive additive effect indicating that AL 201 

contribute allele that is responsible for increasing the number of pods in the 

locus. One QTL, qSW2.1, was detected for 100-seed weight on chromosome 3. 

This QTL was detected on position 56.01cM with LOD of 3.5. The phenotypic 

variation explained by this QTL was 11.73% (Table 5.2). This QTL showed 

positive additive effect, indicating that alleles for increasing number of seeds per 

pod were contributed by AL 201. 
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Table 5.2 Additive quantitative trait loci (QTLs) for yield and related traits detected in the AL 201 × ICPL 20325 population of  

166 F2 progenies by composite interval mapping (CIM) and single marker analysis (SMA). 

KEY: DTF=Days to 50% flowering, PHT = Plant height in cm, NPB = Number of primary branches, NSB = Number of secondary branches, 
 NPP= Number of pods plant-1, NSP = Number of seeds pod-1, HSW =100-seed weight in g/100 seeds, SYDP = Seed yield plant-1(in 
g/plant).  
aLOD score that exceeds the threshold are shown with font bold script (QTLs below a LOD score of 3.0 were not included, except 
where QTLs were available only at LOD >2<3. cM=Centi Morgan 
bPVE: Variance explained by the QTLs 

cAdditive effect: positive values of the additive effect indicate that alleles from AL 201 were in the direction of increasing the trait score. 
 
 
 
 
 
 
 
 

Trait QTL Chromosome Left marker Right Marker Chromosome position 
(cM) 

aLOD 

 

bPVE(%) ac 

DTF qDF6.1 6 bin_6_14812515 bin_6_16686080 164.91 3.4 14.19 -2.01 

PHT qPH10.1 10 bin_10_9715332 bin_10_1018363 13.61 3.6 10.45 -3.57 

qPH10.2 10 bin_10_1415083 bin_10_1487802 53.21 2.8 10.35 -3.64 

NPP qPD3.1 3 bin_3_17446054 bin_3_17032102 142.81 2.8 16.27 12.3 

HSW qSW2.1 2 bin_2_24823105 bin_2_17156189 56.01 3.5 11.73 0.22 
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QTLs for yield and yield-related traits based on ICP 5529 × ICP 7035 

population 

A total of 7 QTLs were detected in this family. Of these QTLs, only one was 

contributed by ICP7035, whereas the remaining six were contributed by 

ICP5529. Summary of the QTL analysis for ICP 5529 × ICP 7035 is presented 

in Table 5.2, while distribution of the QTLs on the linkage map of ICP 5529 × 

ICP 7035 is shown in Figure 5.2. 

Two QTL, qDF9.1 and qDF9.2, were identified for days to 50% flowering on 

chromosome 9 at 29.41 and 38.51cM, respectively. These QTL had LOD 

values of 5.4 and 3.8, in that order. The phenotypic variations explained by the 

two QTLs were 17.9 and 13.68%, respectively (Table 5.3). Both QTL showed 

positive additive effect indicating that allele for regulating days to 50% 

flowering was contributed by ICP 5529. 

One QTL, qPH6.1, was detected for plant height on chromosome 6 (Table 5.3). 

It was located on position 89.71cM. The QTL had LOD score of 3.4 with PVE 

of 12.74%. The QTL exhibited a positive additive effect implying that ICP 5529 

was responsible for increasing plant height, thus ICP 7035 has a dwarfing 

allele at qPH6.1 (Table 5.3). One QTL (qSB9.1), was detected for the number 

of secondary branches on chromosome 9 (91.81cM). The LOD and PVE 

values of this QTL were 3.6 and 10.85% respectively (Table 5.3). This QTLs 

showed a positive additive effects suggesting that ICP 5529 contributed allele 

for the number of secondary branches. 

Two QTLs were detected for the number of pods plant-1 (Table 5.3). One QTL 

(qPD2.1), was detected on chromosome 2 (265.41cM), with LOD of 2.8 and 

PVE of 15.06% (Table 5.3). One QTL (qPD9.1 was detected on chromosome 

9(66.71cM) with LOD of 3.4. The Phenotypic variation explained by this QTL 

was 11.3% (Table 5.3). The two QTLs exhibited contrasting additive effect, 

with qPD2.1 showing positive effect implying ICP5529 contributed to the 

increasing number of pods per plant, whereas qPD9.1 showed negative 

additive effect, indicating that allele for increasing the number of pods per plant 

at this locus was contributed by ICP 7035. 
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One QTL was detected for seed size on chromosome 2. The QTL (qSW2.2) 

was located on position 209.41cM with LOD of 2.9 and PVE of 10.44% 

(Table 5.3). It showed positive additive effect, indicating that alleles for the 

seed size were contributed by ICP 5529 in ICP 5529 × ICP 7035. 
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Table 5.3. Additive quantitative trait loci (QTLs) for yield and related traits detected in the ICP 5529 × ICP 7035 population 

of 123 F2 progenies by composite interval mapping (CIM) and single marker analysis (SMA).  

Trait QTL Chromosome Left Marker Right Marker Chromosome 

position (cM) 

aLOD 

 

bPVE(%) ac 

DTF qDF9.1 9 bin_9_7216021 bin_9_7130175 29.41 5.4 17.90 4.89 

qDF9.2 9 bin_9_5264669 bin_9_5235033 38.51 3.8 13.68 3.84 

PHT qPH6.1 6 bin_6_9816505 bin_6_11736735 89.71 3.4 12.74 4.73 

NSB qSB9.1 9 bin_9_2552282- bin_9_873651 91.81 3.6 10.85 3.80 

NPP qPD2.1 2 bin_2_20119592- bin_2_20797782 265.41 2.8 15.06 40.51 

qPD9.1 9 bin_9_4870443- bin_9_3995906 66.71 3.4 11.30 -8.88 

HSW qSW2.2 2 bin_2_17046545- bin_2_17611489 209.41 2.9 10.44 2.75 

KEY: DTF =Days to 50% flowering, PHT =Plant height in cm, NPB = Number of primary branches, NSB = Number of secondary 
branches, NPP = Number of pods plant-1, NSP = Number of seeds pod-1, HSW= 100-seed weight in g/100 seeds, SYDP= Seed yield 
plant-1(in g/plant. 
aLOD score that exceeds the threshold are shown with font bold script (QTLs below a LOD score of 3.0 were not included, except where 
QTLs were available only at LOD >2<3. cM=Centi Morgan  

bPVE: Variance explained by the QTLs 

cAdditive effect: positive values of the additive effect indicate that alleles from ICP5529 were in the direction of increasing the trait 
score. 
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QTLs for yield and yield-related traits based on ICP 8863 × ICPL 87119 

population 

This family had the highest number of QTLs (30). Of the 30 QTLs,18 were 

contributed by ICP 8863, whereas ICPL87119 contributed 12 QTLs. Summary 

of the QTLs detected in ICP 8863 × ICPL 87119 are presented in Table 5.4 

and distribution of the QTLs on the linkage map of ICP 5529 × ICP 7035 is 

shown in Figure 5.3. 

Days to 50% flowering had the highest number of QTLs (16) detected amongst 

traits studied in this family. The number QTLs were 2, 1, 3, 1, 2, 3 and 4, 

positioned on chromosomes 1, 2, 3, 4, 6, 10 and 11 respectively. The detected 

QTL ranged in their LOD scores from 3.0 to 5.7, each explaining 11.8 -76.1% 

phenotypic variation (Table 5.4). All observed QTLs showed negative additive 

effect indicating that ICP8863 is responsible for contribution of alleles 

increasing days to 50% flowering at all loci controlling this trait. 

One QTL, qPH2.1, was detected for plant height on chromosome 2 (78.21cM). 

The QTL had LOD score of 3.8 and PVE of 16.23%. The detected QTL showed 

a positive additive effect indicating that allele for increasing plant height was 

contributed by ICP 8863. 

A total of five QTL (qPB 2.1, qPB 6.2, qPB 9.2, qPB 10.1 and qPB 11.1) were 

detected for the number of primary branches in this family. These QTLs were 

located on chromosomes 2, 6, 9, 10 and 11 (Table 5.4). The LOD of these 

QTLs ranged from 3.1 to 5.0 explaining 25.26 to 63.85% PVE. All five QTLs 

showed a positive additive effect indicating that allele for increasing the 

number of primary branches was contributed by ICP 8863. 

One QTL (qPD1.1) was detected for the number of pods plant-1 on 

chromosome 1 (43.81cM). The LOD and PVE of this QTL were 4.2 and 

10.71%, respectively (Table 5.4). The qPD1.1 showed positive additive effect 

showing that ICP8863 contribute allele that increases the number of pods per 

plant. 
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Only one QTL (qNS3.1) was detected for the number of seeds per pod in this 

family. The QTL was located on chromosome 3 (64.41cM). The detected QTL 

had LOD score of 2.6 and PVE of 36.69% (Table 5.4). The qNS3.1 showed 

positive additive effect indicating that ICP8863 contribute allele that increases 

the number of seed per pods. 

Two QTLs (qSY1.1 and qSY11.1) were detected for seed yield plant-1 (Table 

5.4). The qSY1.1 was located on the chromosome 1 (36.51cM) and had an 

LOD score of 3.2. The percentage phenotypic variation explained was 11.56%. 

The qSY11.1 was located on chromosome 11 (173.11) with LOD score and 

PVE of 2.9 and 52.86%, respectively. The qSY1.1 showed negative additive 

effect indicating that allele for increasing seed yield per plant at this locus was 

contributed by ICPL 87119. The qSY11.1 showed positive additive effect 

indicating that ICP 8863 was responsible for increasing seed yield per plant at 

this locus. 
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Table 5.4: Additive quantitative trait loci (QTLs) for yield and related traits detected in the ICP 8863 × ICPL 87119 population 

of 131 F2 progenies by composite interval mapping (CIM) and single marker analysis (SMA). 

Trait QTL  Chromosome Left Marker  Right marker Chromosome position 
(cM) 

aLOD 

 

bPVE(%) ac 

DTF 
 
 
 
 
 
 

qDF 1.1 1 bin1_9157099 bin1_7200644 50.21 4.0 34.44 -14.792 

qDF 1.2 1 bin1_14030807 bin1_1448640 43.81 3.9 17.14 20.674 

qDF 2.1 2 bin2_4297466 bin2_19392982 48.71 3.1 21.18 -6.8775 

qDF 3.1 3 bin3_1207862  bin3_4954564 68.01 4.6 34.47 -17.311 

qDF 3.2 3 bin3_10209623 bin3_7169460 48.61 3.8 20.81 -20.932 

qDF 3.3 3 bin3_24769020 bin3_27949764 99.71 3.0 18.61 -7.7634 

qDF 4.1 4 bin4_1914814 bin4_7430469 59.11 5.7 76.10 -12.524 

qDF 6.1 6 bin6_1722679 bin6_1268432 75.11 4.2 66.68 -11.113 

qDF 6.3 6 bin6_12699085 bin6_21827939 142.11 4.0 12.20 -17.451 

 qDF10.1 10 bin10_1685243 bin10_1193309 57.81 3.7 51.47 -20.932 

qDF10.2 10 bin10_9493594 bin10_5774921 43.01 3.1 28.11 -17.156 

qDF10.3 10 bin10_4017384 bin10_1523546 50.21 3.4 22.44 -13.713 

qDF11.1 11 bin11_3694012-  bin11_3938723 132.61 3.4 60.23 -18.351 

qDF11.2 11 bin11_4136792 bin11_3885695 148.81 3.5 47.29 -19.314 

qDF11.3 11 bin11_1124941 bin11_6660445 143.41 5.6 45.08 -17.651 

qDF11.4 11 bin11_7081991 bin_449383099 154.81 3.3 11.80 -20.948 

PHT qPH2.1 2 bin2_35999980 bin2_27801880 78.21 3.8 16.23 7.5002 
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Table 5.4 continued 

Trait QTL  Chromosome Left Marker  Right marker Chromosome position (cM) aLOD 

 

bPVE (%) ac 

NPB qPB 2.1 2 bin2_23127871 bin2_28049878 25.01 3.1 57.84 1.352 

qPB 6.2 6 bin6_16002188 bin6_4934 102.21 3.7 59.70 0.9571 

qPB 9.2 9 bin9_10383967 bin9_7150073 29.41 5.0 63.85 0.7812 

qPB10.1 10 bin10_3088979 bin10_1179518 91.41 3.4 38.03 0.5007 

qPB11.1 11 bin11_3080784 bin11_4511922 155.31 3.4 25.26 1.4128 

NSB qSB 2.1 2 bin2_32984051 bin2_1926109 63.51 3.4 89.12 7.437 

qSB 2.2 2 bin2_33644833 bin2_31156015 90.71 3.3 18.19 4.2416 

qSB 5.1 5 bin5_2573523  bin5_2848647 1.01 3.5 64.14 7.8219 
 

qSB 6.1 6 bin6_4936 bin6_11033681 112.01 3.3 24.33 7.8793 

qSB11.1 11 bin11_2589648 bin11_4405707 112.51 3.1 76.01 4.6353 

NPP qPD 1.1 1 bin1_17633179 bin1_12822551 43.81 4.2 10.71 91.831 

NSP qNS 3.1 3 bin3_2154488 bin3_28432102 64.41 2.6 36.69 -0.6663 

SYLD qSY 1.1 1 bin1_5674168-  bin1_11262983 36.51 3.2 11.56 -11.634 

qSY11.1 11 bin11_2064592 bin11_4558034 173.11 2.9 52.86 12.477 

KEY: DTF =Days to 50% flowering, PHT =Plant height in cm, NPB = Number of primary branches, NSB= Number of secondary branches, 
NPP =Number of pods plant-1, NSP = Number of seeds pod-1, HSW =100-seed weight in g/100 seeds, SYDP =Seed yield plant-1(in 
g/plant.  

aLOD score that exceeds the threshold are shown with font bold script (QTLs below a LOD score of 3.0 were not included, except where 
QTLs were available only at LOD >2<3. cM=Centi Morgan  

bPVE: Variance explained by the QTLs 
cAdditive effect: positive values of the additive effect indicate that alleles from ICP5529 were in the direction of increasing the trait score. 
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5.4. Discussion 

Mapping of quantitative trait loci associated with the yield and yield-related trait is 

an important step towards identification of important genomic regions associated 

with the key agronomic traits in crop species. In the present study a total of 42 

QTLs associated with eight important yield components of pigeonpea were 

identified. On the linkage groups where the QTLs are located, one to four QTLs 

were detected per group, with days to 50% flowering in ICP 8863 × ICPL 87119 

population having the highest number (4) of QTLs detected per linkage group 

(Table 5.4, Figure 5.3). 

Three mapping populations were used in the present study. Linkage maps were 

constructed in the two mapping populations; AL 201× ICPL 20325 and ICP 5529 

× ICP7035. For a third population; 8863 × ICPL 87119, marker data were 

provided, in which more QTLs (30) were detected.  AL 201× ICPL 20325 had the 

least number of QTLs detected (5), whereas ICP 5529 × ICP7035 had 7 QTLs. 

This may be partly due to the high density of marker loci (2132) used in ICP 8863 

× ICPL 87119 population, as compared to AL 201× ICPL 20325 (1901) and ICP 

5529 × ICP7035 (1831). In addition, more divergent parents were used for 

developing ICP 8863 × ICPL 87119 population. 

The proportion of phenotypic variation explained (PVE) by individual QTLs in the 

current study ranged from 10.35 -16.27% in AL 201× ICPL 20325, 10.44 -17.9 in 

ICP 5529 × ICP7035 and 10.71-89.12% in ICP 8863 × ICPL 87119. This is very 

high variation, and there could be chances of being overestimated due to smaller 

size of all three mapping populations used. AL 201× ICPL 20325 had the highest 

number of genotypes used (166), whereas ICP 5529 × ICP7035 had the lowest 

(123). A population size of at least 200 genotypes is needed to detect a QTL with 

an explained variance of 5% (Van Ooijen 1992). For enhanced accuracy and 

power of QTL detection, increased number of genotypes rather than the number 

of loci used for analysis are crucial (Herrmann et al .2006). On the other hand, the 

power of detecting a QTL remains virtually the same no matter a map with an 

average locus distance of 10cM or with an infinite number of loci is used (Darvasi 
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et al. 1993). All maps constructed in the present study had average-inter loci 

distance ranging from 0.83 to 1.47cM implying that they are dense maps ideal for 

QTL mapping. 

The present study has added the QTLs information for three more traits; number 

of seeds per pod, 100-seed weight and seed yield per plant, which were not 

reported in the previous studies. Interestingly, the QTLs for 100-seed weight were 

detected in linkage group 2 in AL 201 x ICPL 20325 and ICP 5529 x ICP 7035.  

The findings in the present study are similar to that reported by Kumawat et al. 

(2012) in terms of co-localization of the QTLs for yield and yield related traits in 

pigeonpea. For instance, the region between 29.41 – 91.81cM in linkage group 9 

of the ICP5529 x ICP7035 population, five QTLs for days to 50% flowering, 

number of pods, plant height and secondary branches were located, with the 

QTLs for the later two separated by 2.1cM (Table 5.3). 

Likewise, in linkage group 2 of the ICP8863 x ICPL87119, five QTLs for days to 

50% flowering, plant height, number of primary branches and number of 

secondary were located in the region between 25.01cM - 90.71cM. This indicates 

the presence of pleiotropic effect or linkage. 

The usefulness of the identified QTLs is made based on their LOD scores. If the 

LOD score is high (Positive LOD), it means that the traits are closely linked, and 

therefore usually inherited together. Ideally, a LOD score greater than 3 is desired. 

 In the present study, 42 may be categorized in to 4 groups, based on the range 

of their LOD scores., The QTLs that had LOD score ranging 5- 6 were 3, those 

with LOD 4-5 were 6, LOD ranging from 3-4 (28) and a total of 5 QTLs had QTLs 

ranging between 2-3. 

However, QTLs detected in the present study requires further validation in 

different genetic background before they can be used in marker assisted selection 

(MAS). Therefore, there is need for QTL validation. Furthermore, unreplicated 

data of the F2 population was used in the current study which may have resulted 
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into higher-overestimated PVE. The future plan is to advance the same mapping 

populations to F2:3 populations to map the QTLs using available genotypic data. 

To be more confident, it will be feasible to use several diverse mapping 

populations for complete dissection of the yield and yield –related traits. 

 

5.5. Conclusions 

The present chapter aimed at identifying the genomic regions associated with 

days to 50% flowering, plant height, number of primary branches, number of 

secondary branches, number of pods plant-1, number of seeds pod-1, seed size, 

and seed yield plant-1 in three pigeonpea families of diverse genetic backgrounds 

using linkage mapping. Linkage map construction was followed by genetic 

analysis using Genotyping by Sequencing (GBS) platform. Quantitative Trait 

Linkage (QTL) analysis using single marker analysis (SMA) employing composite 

interval (CIM) detected a total of 42 QTLs with PVE ranging 10.35 -16.27%. The 

present work adds on to the QTLs information that have been reported so far on 

few studies related to QTL mapping for yield and yield-related traits in pigeonpea. 

The QTLs reported here on the key agronomic traits provide the basis for fine 

mapping studies. The detected QTLs and identified genomic regions will be useful 

for marker- assisted selection. However, detected QTLs requires further validation 

in several diverse, large and independent mapping populations. 
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                               General overview of the thesis findings 

Introduction and objectives of the study  

Pigeonpea is an important multi-purpose crop grown in the semi-arid regions of 

the world including in Tanzania. The yield potential of this crop, however, has 

been significantly affected by various biotic and abiotic stresses. Further, low level 

of genetic polymorphism limited the progress of conventional breeding 

necessitating the use of complementary genomic tools to develop high yielding 

pigeonpea varieties.  

Research findings in brief 

Phenotypic variability among F2 individuals of pigeonpea derived from 

three genetic backgrounds 

Six parents including AL 201, ICPL 20325, ICP 8863, ICPL87119, ICP 5529 and 

ICP 7035 were selected and crossed using a bi-parental mating scheme. The six 

parents and families derived from the three genetic background (AL 201 × ICPL 

20325, ICP 8863 × ICPL 87119 and ICP 5529 × ICP 7035) were field evaluated.  

 

The main findings of the chapter two were as follows: 

 Significant(P>0.05) phenotypic variation was observed in the medium 

maturing (ICP 8863 and ICPL 87119) and long maturing (ICP 5529 and 

ICP 7035) parents.  

 Significant variation was exhibited for days to 50% flowering, number of 

pods plant-1, number of seeds pod-1 and seed yield plant-1 among F2 

individuals derived from medium maturity parents, whereas individuals 

from late maturing parents showed significant variations in plant height, 

number of pods plant-1 and seed yield plant-1.  

 Transgressive segregations were recorded for all studied characters. 

Transgression was more pronounced in the families of ICP 5529 × ICP 

7035 and AL 201 × ICPL 20325.  
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 The study demonstrated the presence of considerable genetic variation 

among F2 individuals derived from the three genetic groups.  

 Transgressive segregants were selected for further selection and breeding 

of pigeonpea. 

Promising genotypes were identified for all the characters, on the basis of their 

performance (scored value), which was greater as compared to the mean 

value of their parental lines. 

 

Correlation and path-coefficient analyses of seed yield and related traits in 

newly developed pigeonpea populations 

The correlation study was carried out using three mapping populations; AL 201 × 

ICPL 20325, ICP 8863 × ICPL 87119 and ICP 5529 × ICP 7035, each comprising 

a total of 180 individuals. The F2 individuals were phenotyped for eight yield and 

yield-related traits. The data recorded were subjected to correlation and path-

coefficient analyses. The main findings of this chapter were as follows: 

 The highest phenotypic correlation with SYDP and the highest path co-

efficient value influencing seed yield plant-1 across all families was exhibited 

by the number of pods per plant (NPP).  

 NPP exhibited relatively the highest phenotypic correlation with SYDP across 

all mapping populations.  

 Path-coefficient analysis revealed that NPP had the highest path co-efficient 

value influencing SYDP across all families.  

 In the family AL 201 × ICPL 20325, the NPP had indirect effect on the SYDP 

through PHT and HSW.  

 In the families of ICP 8863 × ICPL 87119 and ICP 5529 × ICP 7035 selection 

for increased NSB and NSP had indirect effect on NPP.  

 The association using the direct path value indicates that NPP tends to serve 

as a first order or principal selection criterion to improve SYDP among 

accessions.  
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 Results from simple correlation and path coefficient analyses suggest that 

PHT, NSP, HSW and NSB are the most important selection criteria for 

improving seed yield in the newly developed pigeonpea populations.  

 

Prediction of gene action controlling yield and yield related traits in 

pigeonpea 

A total of 460 F2 plants from three F2 families; AL 201 × ICPL 20325, ICP8863 × 

ICPL 87119 and ICP 5529 × ICP 7035 were selected and phenotyped. Data 

collected were subjected to descriptive analysis to calculate the mean values of 

each trait, followed by calculation of the coefficients of skewness and kurtosis of 

phenotypic distribution in the F2 population. 

The main findings of this chapter were as follows: 

 Additive gene action conditioned by few to many genes predominantly 

affected the studied characters. 

 Complementary and duplicate gene actions were observed in the studied 

characters, with the former more pronounced in the studied population. For 

the traits where complementary gene interactions were observed, targeted 

pure line selection can be made in the segregating generations for attaining 

faster genetic gain, whereas duplicate gene effect can be exploited by inter-

mating the selected segregants and delay the selection of the traits for 

advanced generations. 

 

Quantitative trait loci mapping of yield and related –traits in pigeonpea 

This study identified quantitative trait loci (QTL) associated with eight yield and 

yield-related traits using 420 F2 progenies developed from three pigeonpea 

families: AL 201 × ICPL 20325, ICP 5529 × ICP 7035 and ICP 8863 × ICPL 87119. 

Data on important yield and yield-related parameters were collected. A total of 63 

indel markers were used in AL 201 × ICPL 20325, and 51 and 56 simple sequence 

repeat (SSR) markers were used for ICP 8863 × ICPL 87119 and ICP 5529 × ICP 
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7035, respectively. Genotyping by sequencing (GBS) was used for genetic 

analysis, while linkage analysis was performed using JoinMap version 4. 

Quantitative trait loci analysis of the above yield and yield–related traits were 

performed using single marker analysis (SMA) employing composite interval 

(CIM) using stepwise regression linear model. 

The main findings of this chapter were as follows: 

 A total of 42 QTL were detected in three families. In AL 201 × ICPL 20325, five 

QTL were identified for DTF, PHT, NPP and HSW located on chromosomes 

2, 3, 6 and 10. In ICP 5529 × ICP 7035, seven QTL were identified for DTF, 

PHT, NSB, NPP and HSW on chromosomes 2, 6 and 9, whereas in ICP 8863 

× ICPL 87119, a total of 30 QTL were identified for DTF, PHT, NPB, NSB, 

NPP, NSP and SYDP on chromosomes 1, 2, 3, 4, 5, 6, 10 and 11.  

 The number of QTL ranged from 1 for HSW to 16 for DTF, and the phenotypic 

value explained (PVE%) ranged between 10.35-16.27% in AL 201× ICPL 

20325,10.44-17.9 in ICP 5529 × ICP7035 and 10.71-89.12% in ICP 8863 × 

ICPL 87119. The detected QTL were co-localized within the same genomic 

regions indicating the presence of pleiotropic effect or linkage.  

 Validation for the accuracy and consistency of the identified QTL in several, 

independent and diverse mapping populations is required for fine mapping and 

further use in marker-assisted selection programs. 

Overall, the present study; (i) selected transgressive segregants that are useful 

genetic resources for further breeding, (ii) determined the most influential traits in 

pigeonpea breeding to improve seed yield and yield components and (iii) 

developed mapping populations segregating for yield and yield-related traits 

including AL 201 × ICPL 20325, ICP 5529 × ICP 7035 and ICP 8863 × ICPL87119. 

This provided 42 putative QTLs and genomic regions associated with seed yield 

in pigeonpea which could enable marker-assisted breeding in the crop. 
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Future work and recommendations 

The study involved F2 generation which is segregating. Individuals in early 

generation such as F2 population are heterogeneous, thus evaluation is made on 

individual plants and not on plot basis as it is the case with the advanced, 

homogeneous populations such as Recombinant Inbred Lines (RIL). There is a 

need of advancing the mapping populations to F2:3 and to advanced generations 

so that the progenies can be replicated. The use of single plant data at F2 

generation is biased. In addition, the Phenotypic Value Explained(PVE) for some 

of the QTLs were too higher and there could be chances of overestimation, due 

to the nature of the populations used. 

The QTLs have been detected using the mapping populations that had insufficient 

number of individuals to draw the conclusion. The future work is to increase the 

number of individuals so that the detected QTLs can be validated. The higher the 

number of individuals involved in QTL studies the more precise is the QTL 

detected from mapping studies. Multi location studies will further give indication 

on the consistence of the detected QTLs. 

Recommendations 

The choice of the appropriate parents for the development of a mapping 

population for QTL study is crucial. Mapping population of ICP 8863 × ICPL87119 

had more number of QTLs detected as compared to the other two populations. 

This could be due to the diverse nature of the parents that were used to develop 

this population. The more the diverse the parents are, the higher the chances of 

detecting the variations and QTLs. It would be feasible to give more attention to 

this mapping population in future mapping studies. 

Overall, the results obtained in this study can be a basis for the future QTL studies 

at advanced populations. 

 


