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GELFOND-MAHLER INEQUALITY
FOR MULTIPOLYNOMIAL RESULTANTS

ALEKSANDRA GALA-JASKORZYNSKA, KRZYSZTOF KURDYKA,
KATARZYNA RUDNICKA, AND STANISLAW SPODZIEJA

ABSTRACT. We give a bound of the height of a multipolynomial resultant in
terms of polynomial degrees, the resultant of which applies. Additionally we
give a Gelfond-Mahler type bound of the height of homogeneous divisors of a
homogeneous polynomial.

1. INTRODUCTION

Let f € Z[u], where u = (u1,...,un) is a system of variables and Z is the ring
of integers, be a nonzero polynomial of the form
(1) fw) =" au,
lv|<dy
where a, € Z, u¥ = u{*---u ¥ and |[v| =vy + -+ vy for v = (v1,...,vy) € NV

and N denotes the set of nonnegative integers. By the height of the polynomial f
we mean
H(f) := max{|a,| : v € NV, |v| < d;}.

Let fi,..., fr € Z[u] be nonzero polynomials, and let d; be the degree of f =
fi--- fr with respect to u; for j =1,...,N.

AP. Gelfond [3] obtained the following bound.
Theorem 1.1 (Gelfond).
) H(f1) - H(f) < 20 G0 1) (dx + DH()

where k is the number of variables u; that genuinely appear in f.
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K. Mabhler [6] introduced a measure M (f) of a polynomial f € C[u] (currently
called Mahler measure, see Section 2.1) and in [7] reproved (2) and proved the
following

Theorem 1.2 (Mahler). Under notations of Theorem 1.1,

3) H(f) <20t v =kp(f).
Moreover,
(4) Ly(fo) -+ La(fr) 20T VM (f) <20 HaN Ly (f),

where Ly(f) := ZMgdf |ay,| is the Li-norm of a polynomial f of the form (1).

The aim of the article is to obtain a similar to the above-described estimates
for the height, L;-norms and Mahler’s measures of a resultant for systems of
homogeneous forms. More precisely let dy,...,d, be fixed positive integers and
let fo,...,fn be a system of homogeneous polynomials in z = (zo,...,z,) with
indeterminate coefficients of degrees dy,...,d, in z, respectively. By a resul-
tant Resg,, . 4, We mean the unique irreducible polynomial in the coefficients of
fos ..., fn with integral coeflicients such that for any specializations fo 40, - - fn,an
of fo,..., fn, the value Resgy 4, (fo,a0-- -+ fn.a,) i equal to zero if and only if
the polynomials fy 4, - - -, fn,a, have a common nontrivial zero. For basic notations
and properties of the resultants, see Section 3.1 and for more detailed description
on the resultant see for instance [2]. The main result of this paper is Theorem 3.12
which says that:

M (Resa,....a,) < (de + 1)nKndj;7
H(Resq,....a,) < (di + 1)Kn bt Dl —n(n+1)
Li(Resqy... a,) < (dy + 1)"EntntDdr

where K,, = e"!/y/2mn and d. = max{do, ...,d,}. Moreover if n > 2 and d, > 4
then we have the following estimates:
M (Resq,.....a,) < (du)" %,
4 ) < (d*)n(Kn+n+l)df—n(n+1)’
<

Li(Resay....a,) < (d,)"EntntDdy,

Note that the above estimates of Lq(Resg,, . q,) are not a direct consequences of
the estimates of H(Resq,....q,) (see Remark 3.13).

M. Sombra in [9], as a corollary from a study of the height of the mixed sparse
resultant, gave an estimation of H(Resg,.. q):

H(Resq.... q) < (d 4 1)mnFDHd”

Since K,, +n+1=n+1+¢e""/v/2mn < (n+1)! for n > 3, so the estimation (26)
is more explicit than the above for n > 3.

,,,,,

The paper is organized as follows. In Section 2 we collect basic notations con-
cering the Mahler measure of a polynomial and we prove a Mahler type bounds for
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the height and the Lj-norm of multihomogeneous polynomials (see Lemma 2.2).
The proof of Theorem 3.12 we give in Section 3. The crucial role in the proof plays
an estimation of the L; norm of the Macaulay discriminant of a coeflicients matrix
for a powers of polynomials fo,..., f, (see Lemma 3.9).

Additionally, in Section 4 we give Corollaries 4.1 and 4.2 which are versions
of Theorems 1.1 and 1.2 for the multihomogeneous and homogeneous polynomials
cases.

2. AUXILIARY RESULTS

2.1. Notations. Let f € Clu], where u = (u1,...,up) is a system of variables, be
a nonzero polynomial of the form

(5) fw =3 au,
lv|<dy

where for v = (v1,...,vn) € NV the coefficient a, is a complex number and we
put [v| =vi + -+ vy and v’ =uft -l

In this section I denotes the interval [0, 1] and i the imaginary unit (i.e., i = —1).
Let e : IN — CV be a mapping defined by

e(t) = (exp(2ntii),...,exp(2ntyni)) for t = (t1,...,ty) € IV.

For a complex polynomial f € Clu], the number

M) = e ([ toslite(e)iae)

is called the Mahler measure of f (see [7]). A significient property of the Mahler
measure is the following (see [7]): for f, g € C[u],

(6) M(fg) = M(f)M(g).
Moreover, if f € Z[u], f # 0, then (see for instance [8, Corollary 2]),
(7) M(f) > 1.

By Lo-norm of a polynomial f € Clu] we mean

Lin = ([ reora)

For a polynomial f € Clu| of the form (5) we have
1/2
() Li(f)=| > lal|
lvI<dy

By Jensen’s inequality we obtain

9) M(f) < La(f).
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2.2. Mahler type inequalities for multihomogeneous polynomials. By
analogous argument as in [7] we obtain the following lemma.

Lemma 2.1. Let f € Clu], where u = (u1,...,un), be a homogeneous polynomial
of degree d¢ > 0 of the form
flu) = Z a,u”.
\

v|=ds

Then there are homogeneous polynomials fi,,. .k, € Clugts,...,un], with
degfkh“_,;w = df —ky — - — kg for k1 + -+ ks < df, ¢ =1,...,N, such
that

df

.f(uh 7UN):ka1(u27 ,UN)ulfl
k=0
df—ki—-—ke_1
Treobe (Ues - un) = Z i (e, o un g
ke=0

Moreover, for any v = (v1,...,vy) € NV, |v| = dyf, we have

d — V] —...—VUN-1
ol =18 (Y T T M )

d
M(f,,) << f)M(f),
41
M(foren) < (df L W_1>M(fu1, v ) 2<ESN
In particular,
lay| < (if) (df_V1> (df_VI _"'_VN1>M<f)
1 19 UN

and so,
H(f) < NU=M(f),
Li(f) < NUM(f).
Let now m, dy, . ..,d, be fixed positive integers, n € N, and let

U, j) = (U jp 1V E \ A lv|=4d;), j7=0,...,n,

be systems of variables. In fact u(, ;) is a system of

d:
Ny, = ( J;rlm)

variables.
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From Lemma 2.1, by a similar method as in [7], we obtain the following Mahler
type inequalities for multihomogeneous polynomials.

Lemma 2.2. Let f € Z[ugn,0),---»Um,n)) be a nonzero polynomial such that f
is homogeneous as a polynomial in each system of variables u(y, jy. Then for any
polynomial g € Zu(m o), - -, Utm,ny] which divides f in L o), Uamn)] and
have degree e; with respect to system u(,, 5y for j =0,...,n, we have

H Ny HNﬁfd (f)

and

n

|| s H Ny | M)

Proof. For simplicity u(,, ;) we denote by u(;y and Ny, 4; —by N;j for j =0,...,n
Let g € Z[u(gy, . .-, u(y)) be a divisor of f in Z[u(y,...,uw)] and let g1 = f/g. By
the assumptions, g is a homogeneous polynomial as a polynomial in each wu ;) of
some degree ¢; for j =0,...,n. Let

S ={n= (77(0),--.717(”)) e NVo x ... x NVn . |n(j)| =e;
for j=0,...,n}.
The polynomial g is of the form
g(u(0)7 cee au(n)) = Z Oan,

nesg

where C,, € Z and J,, = u?(();)) u?:;) for n = (n@,...,n™) € #. So, we may

write

©)
g(u(0)7 s Z 5 77(0) 1)y e ,U(n))U?O) )
|7 [=eo
where gy 0 € Z[ugy, -, U] for n©® ¢ NNo_ || = ¢5. By induction for
j=1,...,n we may write
&)
G0 UGy Um) = D G (U1, s U Uy
In(@)|=e;
where g; 1 ) € Z[u(j11y, - - -5 U] for nt) e NNi | |pl)| = ej. Then any coefficient

Cy, n € J, is a coefficient of some polynomial g,, ,,»n-1). Then applying n+1 times
Lemma 2.1, we obtain

H(g) < Ng°~'---Nim~'M(g)

and
Li(g) < Ng°--- Ny M(g).

Since g1 have integral coefficients, by (7) we have M(g1) > 1. Then (6) gives the
assertion. O
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3. HEIGHT OF A MULTIPOLYNOMIAL RESULTANT

3.1. Basic notations on a multipolynomial resultant. Recall some notations
and facts concerning the resultant for several homogeneous polynomials (see [2],
see also [1]).

In this section « = (xq,...,2,) is a system of n + 1 variables.

Let do, . .., dy be fixed positive integers and let g, . . ., u(,) be systems of vari-
ables of the form

(10) u(j) = (uj, sy e Nl lv|=4d;), §=0,...,n,

In fact u(y,, ) is a system of

(1) Ny, = (dj +n>

n
variables.
Let fo,..., fn € Cluy,. .., um), z] be homogeneous polynomials in x of degrees
dg, - . . ,dy, respectively of the forms
fj(U(o),...,’LL(n),l‘): Z uj,yxu, 7=0,...,n.
UeNn+1
lv|=d,

In fact f; € Zlugjy, z].

For any a; = (aj, : v € N**1 |y| = d;) € CN% by, fja; € Clz] we denote the
specialization of f;, i.e., the polynomial f; . (x) = fj(a;, ).

Fact 3.1 ([2], Chapter 13). There exists a unigque polynomial Py, . 4, €
Zluy, - - - u(ny] such that:

(i) For any ag € CNao ... a, € CNan
Py,....d,(ag,-..,0,) =0 < foags---» fra, have a common
nontrivial zero.
(ii) For ag € CNao, ... a, € CNan such that fo ., = xgo, vy Jra, = xdn,
Pdg,...,d" (ao, ey an) =1.
(iii) Pyy,...,a, 18 irreducible in Cluy, ..., U]

The polynomial Py, . 4, in Fact 3.1 is called resultant or multipolynomial
resultant and denoted by Resg,,. 4, or shortly by Res. We will also write
Res(fo.ags- - » fn,a,) instead of Res(ag, ..., an).

Fact 3.2 ([2], Proposition 1.1 in Chapter 13). For any j = 0,...,n the resultant
Resd,,....a, 8 a homogeneous polynomial in ;) of degree do---dj_1djy1---dy.
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Set
0=do+---+d,—mn,
and let
Sj :{V: (V(),...,Vn) e N°tl . |V| =4, vy <dp,...,
Vi1 < dj_1,Vj > d]} fOI‘j =0,...,n.
Fact 3.3. The sets Sy,...,S, are mutually disjoint and
(12) {ve Nty =6} =SoU---US,.

Consider the following system of equations

;T:fo(u(o),x) =0 forvesS
0
(13)
%fn(u(n)ax) =0 forve Sn

Any of the above equation is homegenous of degree § and depends on

do+--+dy,
Nag.....d, = ( 0 n )

monomials of degree §. Let’s arrange these monomials in a sequence Jq, ..., Jy.
Then (13) one can consider as a system of N linear equations with /N indeterminates
J1,...,Jn. Denote by Z4,... 4, the matrix of this system of equations and by
Dg,.....d, — the determinat of Py, .. 4,. From Fact 3.3 and the definition of Dy, .. 4
we easily obtain the following fact.

n

Fact 3.4. Fora; € CN such that Jja;(x) =237, j=0,...,n, we have

..... dn(a()v"'van

In particular, Dq,. .. a, # 0.

n

Proof. Indeed, by Fact 3.3, for the assumed specializations f;.., j = 0,...,n,
the matrix P4, a, (fo.aps---» fn,a,) have in any row and any column exactly one
nonzero entry equal to 1. O

From the definition of Dy, ... 4, We see that Dy, . 4, is a homogeneous poly-
nomoal in u;y of degree equal to the number of elements #5; of S; and the total
degree equal to Ny, ... 4,. Moreover, we have the following Macaulay result [5, The-
orem 6] (see also [4] and [2, Theorem 1.5 in Chapter 13] for Caley determinantal
formula).

Fact 3.5. The polynomial Dg,.... 4, is divisible by Resq,,...a, i Lluy, ..., U]

.....

Put
d. = max{do,...,d,}.

From the definition of the polynomial Dy, . 4, we obtain
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(n+1)dx
Lemma 3.6. Li(Dy, .. 4,) < Nd#osO ey Nis" < (d;_n)( )
Proof. Let D = Dy, ... 4, and N; = Ny, . Monomials of D are of the form

e
(n) ’

where C,, € Z for n = (n@,...,n™) € NNo x ... x N¥ and |[n0)| = #8; for
j=0,...,n. Let n¥) = (n;1,...,m;n,). Then from definition of D,

- m, #S; =i — = N1
< ( ) (7,0 ()
5=0 5,1 15,2 N4,N;
H(n],la"'7n]N)

AR DI | (e e e e

= ... p(M)eNNo+ - +Nn j=0 5,155 M5,N;
[n™) |=#S for k=0,...,n

JIn —C’u(o) .

SO

which gives the first inequality in the assertion. Since IV; < (d*:") and #Sy +
-+ #S, = Nay.,...d, < (("T)d*), then we obtain the second inequality in the
assertion. 0

3.2. Multipolynomial resultant for powers of polynomials. Take any k € Z,
k > 0. The resultant Resgq,,....kq, and the discriminant Dygq,.... k4, are polynomials
with integer coefficients in a system of variables wy = (w,0), - - -, W(k,n)), Where

(14) Wik ,g) = (Whgp 2 v € N U] = kdj)
is a system of indeterminate coefficients of the polynomial

FkJ( ,j)) Z wk,j7u$ ] = O, ... n

veN"TL
[vi=kd;

In fact w ;) is a system of
kd; +n
(15) dej = < jn )

variables. From Fact 3.2 we have that Resgq,.... k4, is homogeneous in any system
of variables wy ;) of degree

ek,j:k”do"'dj—ldj+1"'dn, j=0,...,n

The polynomial Dyg,,. .. ka4, is also homogeneous in any system of variables wy, ;).
Let si ; be the degree of Dyg, ... ka, With respect to Wik,g), J =0,...,m. Obviously

k(do + -+ + dn
(16) 8k,0+"-+8k,n=<(° ) )>.
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Let

Io={n=00, ... ™) e NVro x x NNean : |pl)] = g ;
for j=0,...,n}.
Then Dyg,.... k4, One can write
(17) Dyra,....kd, = Z Cydy,
neI
where C), € Z for n € %, and

(0) (n) (0)

(18) Ty = Wiy Wy forn= 0O, ") e s

Since

k_ v o
1= E x E Ujpr Uik,  J=0,...,7,

VeNn+1 V17...,I/keNn+l
lv|=kd; Vi frF=p
vt |=-=[r"|=d,

then we may define a mapping
Wy = (W(k,o)» RN W(k,n)) :CNao x oo x CNan — CNrao % ... x (Cde",
by W jy = Wh v e N1 |y| = kd;) for j =0,...,n, and

— n+1 —
Wi jw(ug) = E i --uj e for v e N |v| = kd;.
VL, ok eNn
u1+~~+l/k':u
vt |== vk |=d;

In other words, Wy ;) is a system of coefficients of ff as a polynomial in . So for
any positive integer £ we may define

Rk:ReSkdo ..... kdn(fécv"wfrlf)v
D = Didg,... kdn (f§+-- - £2).
More precisely,
Ry, = Resgay,....kd,, W
Dy, = Dia,,...,kd, © Wk .

Then from (17) and (18) we have

(19) Dy = 3 CoWik oy Wik,
n=n,....n(M)e7

From Fact 3.4 we have

Fact 3.7. For any positive integer k we have Dy # 0.

From [2, Proposition 1.3 in Chapter 13] and [1, Theorem 3.2], we immediately
obtain
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Fact 3.8. For any positive integer k we have

..... kd, (f&, .. fF) = Resay....a, (for -+ fn)

Recall that d. = max{dy,...,d,}. Put

* 1 *
N*,k=<kd +”>, N,j:((”+ )kd) keZ, k>0.

n n

kn+1

Lemma 3.9. Li(Dy) < (N 1) Ly (Dray... ka,)-

Proof. Indeed, for any j = 0,...,n and any v € N"™! |v| = kd; the polynomial
Wi, j,» consists of at most (N*’l)k monomials with coefficients equal to 1, i.e.,
(N*Vl)k is not smaller that

S AV W= (N“H)k e =y == R = dy)
for 5 =0,...,n. So from (19) we easily see that
L)< Y G W)

n=(n®,...nM)e

Then (16) easily gives the assertion. O

3.3. Height of a multipolynomial resultant. From Lemmas 2.2, 3.6 and 3.9
and Fact 3.8 we have

Lemma 3.10. For any k € Z, k > 0 we have

* n * n+1
(20) M(Resaq,....a,) < (Nu2)VE/E (N ) N0
(21) H(Resg,, ..a,) < (Ne) "% M (Resgg,....a,),
(22) Li(Resqy....a,) < (Noa) "% M(Resq,...a,).

Proof. Let ej = do---d;j_1dj41---d, for j =0,...,n. By Lemma 2.2 and (6) we
obtain

1 n+1 n+t1
H(Resg,,....d,) < (Ng,)” M(Reslj, 4 )",

=%

7=0

2 e n+1 nt1
Ll(ReSdo,m,dn) < H (Ndj> ’ M(Resso,uqdn)l/k :
=0

Since eg + « - - + e, < (n+ 1)d?, then from the above we have

H(Resq,,...a,) < (N 1)(n+1)df,;_n_1 M(ReS’é:ff,dn)”’“"’“,

)

mn n+1 n+1
Li(Resa,,...a,) < (Nag) "% M(Resh T VE™,

)

This, together with Fact 3.8, gives (21) and (22).
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From Fact 3.8 we also have M(Reslj:fl, JOVET = M(Rp)YF | and since

sUn

M(Ry) < M(Dyg) (by (7) and Facts 3.5 and 3.7), so (9) gives

(23) M(Resh - )VF < Lo(Dp) VR
By Lemma 3.9 we have
(24) L1(Dg) < (Noy)*™ Ly (Dpag.... ka, )

Since

o, from Lemma 3.6 we obtain
L1(Dga,... kd,) < (N*,k)N’: for k> 0.
Since La(Dy) < L1(Dy) then (23) and (24) gives (20). O
In general N < (n+ 1)I(kd.)". It turns out that asymptotically this number
has better properties.
Lemma 3.11.
o Ni_ (npndz et

k—oo k™ n! 2mn

Proof. Indeed,
Ny I l(n+ Dkdy —n+ ]

km nlkm ’
S0,
lim Ni = (n+1)"dy _(r* 1" ﬁd: < elndf.
k—oo kM n! n n! n!

Since from Stirling formula,
n en—l/(12n+1)

n! 2mn

then we obtain the assertion. O

Lemmas 3.10 and 3.11 gives the main result of this paper.

Theorem 3.12. Let d. = max{dy,...,d,} and K, = e"t'/\/2mn,
n > 0. Then

(25) M(ResSay,.._a,) < (dy + 1)

(26) H(Resq,.....d,) < (ds + 1)n(Kn+n+1)d;}771(%1)7

(27) Li(Resqy....a,) < (d, + 1)nEntntDdl
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Moreover, if n > 2 and d, > 4, then

M(Resdo,...,dn) < (d*)nK"d:;
(28) H(Resq,,...q,) < (dy)"EntntDdi—n(nt1)
Ly (Resq,....q,) < (d,)"FntntDdl,

Proof. From Lemma 3.10 for nay k € Z, k > 0 we have
M(Resaq....a,) < (Noa) V" (V) M

)

n__. * /p.m * /pn+1
H(Resqy,...a,) < (Nu)"TDE7H (N, ) NEET (N g ) VE/E

)
)

Ll(Resdo dn) < ( *,1 )(n+1)d2 (N*,l)N):/kn (N*7k‘)N;/kn+1 .
Since 1 < N, < (kdi +1)", then
(29) lim (N, )% =1,
k—o0
so passing to the limit as k¥ — oo in the above inequalities, by Lemma 3.11, we
obtain (25), (26) and (27).

Since for n > 2 and d. > 4 we have N, ; < d then we obtain the second part
of the assertion (28). O

Remark 3.13. The estimation (27) of L1(Resa,.....d,) s not a direct consequence
of the estimation (26) of the height H(Resq,,... 4, ) because the number of coefficients
of Resq,,....q, can be bigger than (d. + D) +D  The number of coefficients of the
resultant can be estimated by

n d1+")+d covds 1d. ... d n
E = ( n 0 j—105+1 n < d* 1 n(n«‘rl)d*'
do,...,dn ]1:[0< do---dj_1djiy---dy, (dv +1)

4. GELFOND-MAHLER TYPE INEQUALITIES FOR HOMOGENEOUS POLYNOMIALS

As a corollaries from Lemma 2.2 we obtain the following Gelfond-Mahler type
theorems.

Corollary 4.1. Let f € Z[tu(m o), - - -, Uam,n)] be a nonzero polynomial such that f
is homogeneous of degree s; > 0 as a polynomial in each system of variables u(,, ;-
Then for any polynomials f1,..., fr € Z[u(m 0y, -, Uam,n)] such that f = fi--- fr
we have

(30) H(f1) - H Nyt | M)

3

n

P S5
N T N, 1 | HOP)

Jj=0 J=0

/N
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and

n n

BY) LA L) < | TN, | MO < [ TT Noa, | Lo ()

Jj=0 Jj=0

Proof. The left hand inequalities in (30) and (31) immediately follows from Lemma
2.2, because M(f1)--- M(fr) = M(f) from (6). Since the polynomial f is homo-
geneous with respoct to u,, ;) of degree s;, j =0,...,n, then from (9) we have

Sj + Nm,dj

Nova, ) H(f) < J_];[O\/Nm,d,.ﬂ H(f).

This gives the right hand inequalities in (30) and (31) and ends the proof. O

Jj=0

Applying Corollary 4.1 for n =0, dg = 1 and m = N — 1 and a homogenisation
(2o, ... ) = 208 fay /zo. ..., 2 /20) Of & polynomial f € Z[xy, ..., xy] we
obtain the following corollary.

Corollary 4.2. Let f € Z[x1,...,xm] be a nonzero polynomial of degree s > 0.
Then for any polynomials fi,...,fx € Z[x1,..., x| such that f = f1--- fr we
have

H(f1)- H(fi) < (N+1)" 7 M(f*) < (N+1)"VN+2°H(f)

and

Li(f1) - La(fi) < (N +1)°M(f*) < (N + 1)°L1(f).
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