Analytic and Algebraic Geometry 3

Łódź University Press 2019, 79 – 92

DOI: http://dx.doi.org/10.18778/8142-814-9.07

GELFOND-MAHLER INEQUALITY FOR MULTIPOLYNOMIAL RESULTANTS

ALEKSANDRA GALA-JASKÓRZYŃSKA, KRZYSZTOF KURDYKA, KATARZYNA RUDNICKA, AND STANISŁAW SPODZIEJA

ABSTRACT. We give a bound of the height of a multipolynomial resultant in terms of polynomial degrees, the resultant of which applies. Additionally we give a Gelfond-Mahler type bound of the height of homogeneous divisors of a homogeneous polynomial.

1. Introduction

Let $f \in \mathbb{Z}[u]$, where $u = (u_1, \dots, u_N)$ is a system of variables and \mathbb{Z} is the ring of integers, be a nonzero polynomial of the form

$$f(u) = \sum_{|\nu| \leqslant d_f} a_{\nu} u^{\nu},$$

where $a_{\nu} \in \mathbb{Z}$, $u^{\nu} = u_1^{\nu_1} \cdots u_N^{\nu_N}$ and $|\nu| = \nu_1 + \cdots + \nu_N$ for $\nu = (\nu_1, \dots, \nu_N) \in \mathbb{N}^N$ and \mathbb{N} denotes the set of nonnegative integers. By the *height* of the polynomial f we mean

$$H(f) := \max\{|a_{\nu}| : \nu \in \mathbb{N}^{N}, |\nu| \le d_{f}\}.$$

Let $f_1, \ldots, f_r \in \mathbb{Z}[u]$ be nonzero polynomials, and let d_j be the degree of $f = f_1 \cdots f_r$ with respect to u_j for $j = 1, \ldots, N$.

A.P. Gelfond [3] obtained the following bound.

Theorem 1.1 (Gelfond).

(2)
$$H(f_1)\cdots H(f_r) \leq 2^{d_1+\cdots+d_N-k} \sqrt{(d_1+1)\cdots(d_N+1)}H(f)$$

where k is the number of variables u_i that genuinely appear in f.

²⁰¹⁰ Mathematics Subject Classification. Primary 13P15; Secondary 11C20, 12D10. Key words and phrases. Polynomial, homogeneous polynomial, multipolynomial resultant,

K. Mahler [6] introduced a measure M(f) of a polynomial $f \in \mathbb{C}[u]$ (currently called *Mahler measure*, see Section 2.1) and in [7] reproved (2) and proved the following

Theorem 1.2 (Mahler). Under notations of Theorem 1.1,

(3)
$$H(f) \leqslant 2^{d_1 + \dots + d_N - k} M(f).$$

Moreover,

(4)
$$L_1(f_1)\cdots L_1(f_r) \leqslant 2^{d_1+\cdots+d_N}M(f) \leqslant 2^{d_1+\cdots+d_N}L_1(f),$$

where $L_1(f) := \sum_{|\nu| \leqslant d_f} |a_{\nu}|$ is the L_1 -norm of a polynomial f of the form (1).

The aim of the article is to obtain a similar to the above-described estimates for the height, L_1 -norms and Mahler's measures of a resultant for systems of homogeneous forms. More precisely let d_0, \ldots, d_n be fixed positive integers and let f_0, \ldots, f_n be a system of homogeneous polynomials in $x = (x_0, \ldots, x_n)$ with indeterminate coefficients of degrees d_0, \ldots, d_n in x, respectively. By a resultant $\operatorname{Res}_{d_0, \ldots, d_n}$ we mean the unique irreducible polynomial in the coefficients of f_0, \ldots, f_n with integral coefficients such that for any specializations $f_{0,a_0}, \ldots, f_{n,a_n}$ of f_0, \ldots, f_n , the value $\operatorname{Res}_{d_0, \ldots, d_n}(f_{0,a_0}, \ldots, f_{n,a_n})$ is equal to zero if and only if the polynomials $f_{0,a_0}, \ldots, f_{n,a_n}$ have a common nontrivial zero. For basic notations and properties of the resultants, see Section 3.1 and for more detailed description on the resultant see for instance [2]. The main result of this paper is Theorem 3.12 which says that:

$$M(\operatorname{Res}_{d_0,\dots,d_n}) \leqslant (d_* + 1)^{nK_n d_*^n},$$

$$H(\operatorname{Res}_{d_0,\dots,d_n}) \leqslant (d_* + 1)^{n(K_n + n + 1)d_*^n - n(n + 1)},$$

$$L_1(\operatorname{Res}_{d_0,\dots,d_n}) \leqslant (d_* + 1)^{n(K_n + n + 1)d_*^n},$$

where $K_n = e^{n+1}/\sqrt{2\pi n}$ and $d_* = \max\{d_0, \ldots, d_n\}$. Moreover if $n \ge 2$ and $d_* \ge 4$ then we have the following estimates:

$$M(\operatorname{Res}_{d_0,...,d_n}) \leq (d_*)^{nK_n d_*^n},$$

$$H(\operatorname{Res}_{d_0,...,d_n}) \leq (d_*)^{n(K_n+n+1)d_*^n - n(n+1)},$$

$$L_1(\operatorname{Res}_{d_0,...,d_n}) \leq (d_*)^{n(K_n+n+1)d_*^n}.$$

Note that the above estimates of $L_1(\operatorname{Res}_{d_0,\dots,d_n})$ are not a direct consequences of the estimates of $H(\operatorname{Res}_{d_0,\dots,d_n})$ (see Remark 3.13).

M. Sombra in [9], as a corollary from a study of the height of the mixed sparse resultant, gave an estimation of $H(\text{Res}_{d,...,d})$:

$$H(\text{Res}_{d,...,d}) \leq (d+1)^{n(n+1)!d^n}.$$

Since $K_n + n + 1 = n + 1 + e^{n+1}/\sqrt{2\pi n} < (n+1)!$ for $n \ge 3$, so the estimation (26) is more explicit than the above for $n \ge 3$.

The paper is organized as follows. In Section 2 we collect basic notations concering the Mahler measure of a polynomial and we prove a Mahler type bounds for

the height and the L_1 -norm of multihomogeneous polynomials (see Lemma 2.2). The proof of Theorem 3.12 we give in Section 3. The crucial role in the proof plays an estimation of the L_1 norm of the Macaulay discriminant of a coefficients matrix for a powers of polynomials f_0, \ldots, f_n (see Lemma 3.9).

Additionally, in Section 4 we give Corollaries 4.1 and 4.2 which are versions of Theorems 1.1 and 1.2 for the multihomogeneous and homogeneous polynomials cases.

2. Auxiliary results

2.1. **Notations.** Let $f \in \mathbb{C}[u]$, where $u = (u_1, \dots, u_N)$ is a system of variables, be a nonzero polynomial of the form

$$f(u) = \sum_{|\nu| \leqslant d_f} a_{\nu} u^{\nu},$$

where for $\nu = (\nu_1, \dots, \nu_N) \in \mathbb{N}^N$ the coefficient a_{ν} is a complex number and we put $|\nu| = \nu_1 + \dots + \nu_N$ and $u^{\nu} = u_1^{\nu_1} \cdots u_N^{\nu_N}$.

In this section I denotes the interval [0,1] and i the imaginary unit (i.e., $i^2 = -1$). Let $\mathbf{e}: I^N \to \mathbb{C}^N$ be a mapping defined by

$$\mathbf{e}(\mathbf{t}) = (\exp(2\pi t_1 i), \dots, \exp(2\pi t_N i))$$
 for $\mathbf{t} = (t_1, \dots, t_N) \in I^N$.

For a complex polynomial $f \in \mathbb{C}[u]$, the number

$$M(f) = \exp\left(\int_{I^N} \log|f(\mathbf{e}(\mathbf{t}))| d\mathbf{t}\right)$$

is called the *Mahler measure* of f (see [7]). A signification property of the Mahler measure is the following (see [7]): for $f, g \in \mathbb{C}[u]$,

(6)
$$M(fg) = M(f)M(g).$$

Moreover, if $f \in \mathbb{Z}[u]$, $f \neq 0$, then (see for instance [8, Corollary 2]),

$$(7) M(f) \geqslant 1.$$

By L_2 -norm of a polynomial $f \in \mathbb{C}[u]$ we mean

$$L_2(f) = \left(\int_{I^N} |f(\mathbf{e}(\mathbf{t}))|^2 d\mathbf{t} \right)^{1/2}.$$

For a polynomial $f \in \mathbb{C}[u]$ of the form (5) we have

(8)
$$L_2(f) = \left(\sum_{|\nu| \leqslant d_f} |a_{\nu}|^2\right)^{1/2},$$

By Jensen's inequality we obtain

$$(9) M(f) \leqslant L_2(f).$$

2.2. Mahler type inequalities for multihomogeneous polynomials. By analogous argument as in [7] we obtain the following lemma.

Lemma 2.1. Let $f \in \mathbb{C}[u]$, where $u = (u_1, \dots, u_N)$, be a homogeneous polynomial of degree $d_f > 0$ of the form

$$f(u) = \sum_{|\nu| = d_f} a_{\nu} u^{\nu}.$$

Then there are homogeneous polynomials $f_{k_1,\ldots,k_\ell} \in \mathbb{C}[u_{\ell+1},\ldots,u_N]$, with $\deg f_{k_1,\ldots,k_\ell} = d_f - k_1 - \cdots - k_\ell$ for $k_1 + \cdots + k_\ell \leqslant d_f$, $\ell = 1,\ldots,N$, such that

$$f(u_1, \dots, u_N) = \sum_{k_1=0}^{d_f} f_{k_1}(u_2, \dots, u_N) u_1^{k_1}$$

$$f_{k_1, \dots, k_{\ell-1}}(u_\ell, \dots, u_N) = \sum_{k_\ell=0}^{d_f-k_1-\dots-k_{\ell-1}} f_{k_1, \dots, k_\ell}(u_{\ell+1}, \dots, u_N) u_\ell^{k_\ell}.$$

Moreover, for any $\nu = (\nu_1, \dots, \nu_N) \in \mathbb{N}^N$, $|\nu| = d_f$, we have

$$|a_{\nu}| = |f_{\nu}| \leqslant \binom{d_f - \nu_1 - \dots - \nu_{N-1}}{\nu_N} M(f_{\nu_1, \dots, \nu_{N-1}}),$$

$$M(f_{\nu_1}) \leqslant \binom{d_f}{\nu_1} M(f),$$

$$M(f_{\nu_1, \dots, \nu_{\ell}}) \leqslant \binom{d_f - \nu_1 - \dots - \nu_{\ell-1}}{\nu_{\ell}} M(f_{\nu_1, \dots, \nu_{\ell-1}}), \ 2 \leqslant \ell \leqslant N.$$

In particular,

$$|a_{\nu}| \leqslant \binom{d_f}{\nu_1} \binom{d_f - \nu_1}{\nu_2} \cdots \binom{d_f - \nu_1 - \cdots - \nu_{N-1}}{\nu_N} M(f)$$
$$\leqslant \binom{d_f}{\nu_1, \dots, \nu_N} M(f) \leqslant N^{d_f - 1} M(f)$$

and so,

$$H(f) \leqslant N^{d_f - 1} M(f),$$

 $L_1(f) \leqslant N^{d_f} M(f).$

Let now m, d_0, \ldots, d_n be fixed positive integers, $n \in \mathbb{N}$, and let

$$u_{(m,j)} = (u_{m,j,\nu} : \nu \in \mathbb{N}^{m+1}, |\nu| = d_j), \quad j = 0, \dots, n,$$

be systems of variables. In fact $u_{(m,j)}$ is a system of

$$N_{m,d_j} := \begin{pmatrix} d_j + m \\ m \end{pmatrix}$$

variables.

From Lemma 2.1, by a similar method as in [7], we obtain the following Mahler type inequalities for multihomogeneous polynomials.

Lemma 2.2. Let $f \in \mathbb{Z}[u_{(m,0)}, \ldots, u_{(m,n)}]$ be a nonzero polynomial such that f is homogeneous as a polynomial in each system of variables $u_{(m,j)}$. Then for any polynomial $g \in \mathbb{Z}[u_{(m,0)}, \ldots, u_{(m,n)}]$ which divides f in $\mathbb{Z}[u_{(m,0)}, \ldots, u_{(m,n)}]$ and have degree e_j with respect to system $u_{(m,j)}$ for $j = 0, \ldots, n$, we have

$$H(g) \leqslant \left(\prod_{j=0}^n N_{m,d_j}^{e_j-1}\right) M(g) \leqslant \left(\prod_{j=0}^n N_{m,d_j}^{e_j-1}\right) M(f)$$

and

$$L_1(g) \leqslant \left(\prod_{j=0}^n N_{m,d_j}^{e_j}\right) M(g) \leqslant \left(\prod_{j=0}^n N_{m,d_j}^{e_j}\right) M(f).$$

Proof. For simplicity $u_{(m,j)}$ we denote by $u_{(j)}$ and N_{m,d_j} – by N_j for $j=0,\ldots,n$. Let $g\in\mathbb{Z}[u_{(0)},\ldots,u_{(n)}]$ be a divisor of f in $\mathbb{Z}[u_{(0)},\ldots,u_{(n)}]$ and let $g_1=f/g$. By the assumptions, g is a homogeneous polynomial as a polynomial in each $u_{(j)}$ of some degree e_j for $j=0,\ldots,n$. Let

$$\mathscr{I} = \{ \eta = (\eta^{(0)}, \dots, \eta^{(n)}) \in \mathbb{N}^{N_0} \times \dots \times \mathbb{N}^{N_n} : |\eta^{(j)}| = e_j$$
 for $j = 0, \dots, n \}.$

The polynomial g is of the form

$$g(u_{(0)},\ldots,u_{(n)}) = \sum_{\eta \in \mathscr{I}} C_{\eta} J_{\eta},$$

where $C_{\eta} \in \mathbb{Z}$ and $J_{\eta} = u_{(0)}^{\eta^{(0)}} \cdots u_{(n)}^{\eta^{(n)}}$ for $\eta = (\eta^{(0)}, \dots, \eta^{(n)}) \in \mathscr{I}$. So, we may write

$$g(u_{(0)},\ldots,u_{(n)}) = \sum_{|\eta^{(0)}|=e_0} g_{1,\eta^{(0)}}(u_{(1)},\ldots,u_{(n)}) u_{(0)}^{\eta^{(0)}},$$

where $g_{1,\eta^{(0)}} \in \mathbb{Z}[u_{(1)},\ldots,u_{(n)}]$ for $\eta^{(0)} \in \mathbb{N}^{N_0}$, $|\eta^{(0)}| = e_0$. By induction for $j = 1,\ldots,n$ we may write

$$g_{j,\eta^{(j-1)}}(u_{(j)},\ldots,u_{(n)}) = \sum_{|\eta^{(j)}|=e_j} g_{j+1,\eta^{(j)}}(u_{(j+1)},\ldots,u_{(n)})u_{(j)}^{\eta^{(j)}},$$

where $g_{j+1,\eta^{(j)}} \in \mathbb{Z}[u_{(j+1)},\ldots,u_{(n)}]$ for $\eta^{(j)} \in \mathbb{N}^{N_j}$, $|\eta^{(j)}| = e_j$. Then any coefficient $C_{\eta}, \eta \in \mathscr{I}$, is a coefficient of some polynomial $g_{n,\eta^{(n-1)}}$. Then applying n+1 times Lemma 2.1, we obtain

$$H(g) \leqslant N_0^{e_0 - 1} \cdots N_n^{e_n - 1} M(g)$$

and

$$L_1(g) \leqslant N_0^{e_0} \cdots N_n^{e_n} M(g).$$

Since g_1 have integral coefficients, by (7) we have $M(g_1) \ge 1$. Then (6) gives the assertion.

3. Height of a multipolynomial resultant

3.1. Basic notations on a multipolynomial resultant. Recall some notations and facts concerning the resultant for several homogeneous polynomials (see [2], see also [1]).

In this section $x = (x_0, \dots, x_n)$ is a system of n + 1 variables.

Let d_0, \ldots, d_n be fixed positive integers and let $u_{(0)}, \ldots, u_{(n)}$ be systems of variables of the form

(10)
$$u_{(j)} = (u_{j,\nu} : \nu \in \mathbb{N}^{n+1}, \ |\nu| = d_j), \quad j = 0, \dots, n,$$

In fact $u_{(m,j)}$ is a system of

$$(11) N_{d_j} := \binom{d_j + n}{n}$$

variables.

Let $f_0, \ldots, f_n \in \mathbb{C}[u_{(0)}, \ldots, u_{(n)}, x]$ be homogeneous polynomials in x of degrees d_0, \ldots, d_n , respectively of the forms

$$f_j(u_{(0)}, \dots, u_{(n)}, x) = \sum_{\substack{\nu \in \mathbb{N}^{n+1} \\ |\nu| = d_j}} u_{j,\nu} x^{\nu}, \quad j = 0, \dots, n.$$

In fact $f_j \in \mathbb{Z}[u_{(j)}, x]$.

For any $a_j = (a_{j,\nu} : \nu \in \mathbb{N}^{n+1}, \ |\nu| = d_j) \in \mathbb{C}^{N_{d_j}}$ by, $f_{j,a_j} \in \mathbb{C}[x]$ we denote the specialization of f_j , i.e., the polynomial $f_{j,a_j}(x) = f_j(a_j,x)$.

Fact 3.1 ([2], Chapter 13). There exists a unique polynomial $P_{d_0,...,d_n} \in \mathbb{Z}[u_{(0)},...,u_{(n)}]$ such that:

(i) For any $a_0 \in \mathbb{C}^{N_{d_0}}, \dots, a_n \in \mathbb{C}^{N_{d_n}}$

$$P_{d_0,\ldots,d_n}(a_0,\ldots,a_n)=0 \Leftrightarrow f_{0,a_0},\ldots,f_{n,a_n} \text{ have a common}$$

nontrivial zero.

(ii) For
$$a_0 \in \mathbb{C}^{N_{d_0}}, \dots, a_n \in \mathbb{C}^{N_{d_n}}$$
 such that $f_{0,a_0} = x_0^{d_0}, \dots, f_{n,a_n} = x_n^{d_n},$
$$P_{d_0,\dots,d_n}(a_0,\dots,a_n) = 1.$$

(iii) $P_{d_0,...,d_n}$ is irreducible in $\mathbb{C}[u_{(0)},...,u_{(n)}]$.

The polynomial $P_{d_0,...,d_n}$ in Fact 3.1 is called *resultant* or *multipolynomial* resultant and denoted by $\operatorname{Res}_{d_0,...,d_n}$ or shortly by Res. We will also write $\operatorname{Res}(f_{0,a_0},\ldots,f_{n,a_n})$ instead of $\operatorname{Res}(a_0,\ldots,a_n)$.

Fact 3.2 ([2], Proposition 1.1 in Chapter 13). For any j = 0, ..., n the resultant $\operatorname{Res}_{d_0,...,d_n}$ is a homogeneous polynomial in $u_{(j)}$ of degree $d_0 \cdots d_{j-1} d_{j+1} \cdots d_n$.

Set

$$\delta = d_0 + \dots + d_n - n,$$

and let

$$S_j = \{ \nu = (\nu_0, \dots, \nu_n) \in \mathbb{N}^{n+1} : |\nu| = \delta, \ \nu_0 < d_0, \dots,$$

$$\nu_{j-1} < d_{j-1}, \nu_j \geqslant d_j \} \text{ for } j = 0, \dots, n.$$

Fact 3.3. The sets S_0, \ldots, S_n are mutually disjoint and

(12)
$$\{\nu \in \mathbb{N}^{n+1} : |\nu| = \delta\} = S_0 \cup \dots \cup S_n.$$

Consider the following system of equations

(13)
$$\begin{cases} \frac{x^{\nu}}{x_0^{d_0}} f_0(u_{(0)}, x) = 0 & \text{for } \nu \in S_0 \\ \vdots \\ \frac{x^{\nu}}{x_n^{d_n}} f_n(u_{(n)}, x) = 0 & \text{for } \nu \in S_n. \end{cases}$$

Any of the above equation is homegenous of degree δ and depends on

$$N_{d_0,\dots,d_n} = \begin{pmatrix} d_0 + \dots + d_n \\ n \end{pmatrix}$$

monomials of degree δ . Let's arrange these monomials in a sequence J_1, \ldots, J_N . Then (13) one can consider as a system of N linear equations with N indeterminates J_1, \ldots, J_N . Denote by $\mathcal{D}_{d_0, \ldots, d_n}$ the matrix of this system of equations and by D_{d_0, \ldots, d_n} – the determinat of $\mathcal{D}_{d_0, \ldots, d_n}$. From Fact 3.3 and the definition of D_{d_0, \ldots, d_n} we easily obtain the following fact.

Fact 3.4. For
$$a_j \in \mathbb{C}^{N_{d_j}}$$
 such that $f_{j,a_j}(x) = x_j^{d_j}$, $j = 0, ..., n$, we have $|D_{d_0,...,d_n}(a_0,...,a_n)| = 1$,

In particular, $D_{d_0,...,d_n} \neq 0$.

Proof. Indeed, by Fact 3.3, for the assumed specializations f_{j,a_j} , $j=0,\ldots,n$, the matrix $\mathcal{D}_{d_0,\ldots,d_n}(f_{0,a_0},\ldots,f_{n,a_n})$ have in any row and any column exactly one nonzero entry equal to 1.

From the definition of $D_{d_0,...,d_n}$ we see that $D_{d_0,...,d_n}$ is a homogeneous polynomoal in $u_{(j)}$ of degree equal to the number of elements $\#S_j$ of S_j and the total degree equal to $N_{d_0,...,d_n}$. Moreover, we have the following Macaulay result [5, Theorem 6] (see also [4] and [2, Theorem 1.5 in Chapter 13] for Caley determinantal formula).

Fact 3.5. The polynomial $D_{d_0,...,d_n}$ is divisible by $\operatorname{Res}_{d_0,...,d_n}$ in $\mathbb{Z}[u_{(0)},\ldots,u_{(n)}]$.

Put

$$d_* = \max\{d_0, \dots, d_n\}.$$

From the definition of the polynomial $D_{d_0,...,d_n}$ we obtain

Lemma 3.6.
$$L_1(D_{d_0,\dots,d_n}) \leqslant N_{d_0}^{\#S_0} \cdots N_{d_n}^{\#S_n} \leqslant {d_* + n \choose n}^{{n+1 \choose n}d_*}.$$

Proof. Let $D = D_{d_0,...,d_n}$ and $N_j = N_{d_j}$. Monomials of D are of the form

$$J_{\eta} = C_{\eta} u_{(0)}^{\eta^{(0)}} \cdots u_{(n)}^{\eta^{(n)}},$$

where $C_{\eta} \in \mathbb{Z}$ for $\eta = (\eta^{(0)}, \dots, \eta^{(n)}) \in \mathbb{N}^{N_0} \times \dots \times \mathbb{N}^{N_n}$ and $|\eta^{(j)}| = \#S_j$ for $j = 0, \dots, n$. Let $\eta^{(j)} = (\eta_{j,1}, \dots, \eta_{j,N_j})$. Then from definition of D,

$$|C_{\eta}| \leq \prod_{j=0}^{n} {\#S_{j} \choose \eta_{j,1}} {\#S_{j} - \eta_{j,1} \choose \eta_{j,2}} \cdots {\#S_{j} - \eta_{j,1} - \dots - \eta_{j,N_{j}-1} \choose \eta_{j,N_{j}}}$$

$$= \prod_{j=0}^{n} {\#S_{j} \choose \eta_{j,1}, \dots, \eta_{j,N_{j}}},$$

SO

$$L_1(D) \leqslant \sum_{\substack{\eta = (\eta^{(0)}, \dots, \eta^{(n)}) \in \mathbb{N}^{N_0 + \dots + N_n} \\ |\eta^{(k)}| = \#S_k \text{ for } k = 0, \dots, n}} \prod_{j=0}^n \binom{\#S_j}{\eta_{j,1}, \dots, \eta_{j,N_j}} \leqslant N_0^{\#S_0} \cdots N_n^{\#S_n},$$

which gives the first inequality in the assertion. Since $N_j \leq {d_*+n \choose n}$ and $\#S_0 + \cdots + \#S_n = N_{d_0,\dots,d_n} \leq {n+1 \choose n}$, then we obtain the second inequality in the assertion.

3.2. Multipolynomial resultant for powers of polynomials. Take any $k \in \mathbb{Z}$, k > 0. The resultant $\operatorname{Res}_{kd_0,...,kd_n}$ and the discriminant $D_{kd_0,...,kd_n}$ are polynomials with integer coefficients in a system of variables $w_k = (w_{(k,0)}, \ldots, w_{(k,n)})$, where

(14)
$$w_{(k,j)} = (w_{k,j,\nu} : \nu \in \mathbb{N}^{n+1}, \ |\nu| = kd_j),$$

is a system of indeterminate coefficients of the polynomial

$$F_{k,j}(w_{(k,j)}, x) = \sum_{\substack{\nu \in \mathbb{N}^{n+1} \\ |\nu| = kd_j}} w_{k,j,\nu} x^{\nu}, \quad j = 0, \dots, n.$$

In fact $w_{(k,j)}$ is a system of

$$(15) N_{kd_j} := \binom{kd_j + n}{n}$$

variables. From Fact 3.2 we have that $\operatorname{Res}_{kd_0,\dots,kd_n}$ is homogeneous in any system of variables $w_{(k,j)}$ of degree

$$e_{k,j} = k^n d_0 \cdots d_{j-1} d_{j+1} \cdots d_n, \quad j = 0, \dots, n.$$

The polynomial $D_{kd_0,...,kd_n}$ is also homogeneous in any system of variables $w_{(k,j)}$. Let $s_{k,j}$ be the degree of $D_{kd_0,...,kd_n}$ with respect to $w_{(k,j)}$, j=0,...,n. Obviously

(16)
$$s_{k,0} + \dots + s_{k,n} = \binom{k(d_0 + \dots + d_n)}{n}.$$

Let

$$\mathscr{I}_k = \{ \eta = (\eta^{(0)}, \dots, \eta^{(n)}) \in \mathbb{N}^{N_{kd_0}} \times \dots \times \mathbb{N}^{N_{kd_n}} : |\eta^{(j)}| = s_{k,j}$$
 for $j = 0, \dots, n \}.$

Then $D_{kd_0,...,kd_n}$ one can write

$$(17) D_{kd_0,\dots,kd_n} = \sum_{\eta \in \mathscr{I}_k} C_{\eta} J_{\eta},$$

where $C_{\eta} \in \mathbb{Z}$ for $\eta \in \mathscr{I}_k$ and

(18)
$$J_{\eta} = w_{(k,0)}^{\eta^{(0)}} \cdots w_{(k,n)}^{\eta^{(n)}} \quad \text{for } \eta = (\eta^{(0)}, \dots, \eta^{(n)}) \in \mathscr{I}_{k}.$$

Since

$$f_{j}^{k} = \sum_{\substack{\nu \in \mathbb{N}^{n+1} \\ |\nu| = kd_{j}}} x^{\nu} \sum_{\substack{\nu^{1}, \dots, \nu^{k} \in \mathbb{N}^{n+1} \\ \nu^{1} + \dots + \nu^{k} = \nu \\ |\nu^{1}| = \dots = |\nu^{k}| = d_{j}}} u_{j,\nu^{1}} \cdots u_{j,\nu^{k}}, \quad j = 0, \dots, n,$$

then we may define a mapping

$$W_{k} = (W_{(k,0)}, \dots, W_{(k,n)}) : \mathbb{C}^{N_{d_0}} \times \dots \times \mathbb{C}^{N_{d_n}} \to \mathbb{C}^{N_{kd_0}} \times \dots \times \mathbb{C}^{N_{kd_n}},$$
by $W_{(k,j)} = (W_{k,j,\nu} : \nu \in \mathbb{N}^{n+1}, |\nu| = kd_j)$ for $j = 0, \dots, n$, and
$$W_{k,j,\nu}(u_{(j)}) = \sum_{\substack{\nu^1, \dots, \nu^k \in \mathbb{N}^{n+1} \\ \nu^1 + \dots + \nu^k = \nu \\ |\nu^1| = \dots = |\nu^k| = d_j}} u_{j,\nu^1} \dots u_{j,\nu^k} \quad \text{for } \nu \in \mathbb{N}^{n+1}, |\nu| = kd_j.$$

In other words, $W_{(k,j)}$ is a system of coefficients of f_j^k as a polynomial in x. So for any positive integer k we may define

$$R_k = \text{Res}_{kd_0,...,kd_n}(f_0^k,...,f_n^k),$$

 $D_k = D_{kd_0,...,kd_n}(f_0^k,...,f_n^k).$

More precisely,

$$R_k = \operatorname{Res}_{kd_0,\dots,kd_n} \circ W_k ,$$

$$D_k = D_{kd_0,\dots,kd_n} \circ W_k .$$

Then from (17) and (18) we have

(19)
$$D_{k} = \sum_{\eta = (\eta^{(0)}, \dots, \eta^{(n)}) \in \mathscr{I}_{k}} C_{\eta} W_{(k,0)}^{\eta^{(0)}} \cdots W_{(k,n)}^{\eta^{(n)}}.$$

From Fact 3.4 we have

Fact 3.7. For any positive integer k we have $D_k \neq 0$.

From [2, Proposition 1.3 in Chapter 13] and [1, Theorem 3.2], we immediately obtain

Fact 3.8. For any positive integer k we have

$$\operatorname{Res}_{kd_0,\ldots,kd_n}(f_0^k,\ldots,f_n^k) = \operatorname{Res}_{d_0,\ldots,d_n}(f_0,\ldots,f_n)^{k^{n+1}}.$$

Recall that $d_* = \max\{d_0, \ldots, d_n\}$. Put

$$N_{*,k} = \binom{kd_* + n}{n}, \quad N_k^* = \binom{(n+1)kd_*}{n}, \quad k \in \mathbb{Z}, \ k > 0.$$

Lemma 3.9. $L_1(D_k) \leqslant (N_{*,1})^{kN_k^*} L_1(D_{kd_0,\dots,kd_n}).$

Proof. Indeed, for any j = 0, ..., n and any $\nu \in \mathbb{N}^{n+1}$, $|\nu| = kd_j$ the polynomial $W_{k,j,\nu}$ consists of at most $(N_{*,1})^k$ monomials with coefficients equal to 1, i.e., $(N_{*,1})^k$ is not smaller that

$$\#\{(\nu^1,\ldots,\nu^k)\in (\mathbb{N}^{n+1})^k: \nu^1+\cdots+\nu^k=\nu, \ |\nu^1|=\cdots=|\nu^k|=d_j\}$$

for j = 0, ..., n. So from (19) we easily see that

$$L_1(D_k) \leqslant \sum_{\eta = (\eta^{(0)}, \dots, \eta^{(n)}) \in \mathscr{I}_k} |C_{\eta}| (N_{*,1})^{k|\eta^{(0)}|} \cdots (N_{*,1})^{k|\eta^{(n)}|}.$$

Then (16) easily gives the assertion.

3.3. **Height of a multipolynomial resultant.** From Lemmas 2.2, 3.6 and 3.9 and Fact 3.8 we have

Lemma 3.10. For any $k \in \mathbb{Z}$, k > 0 we have

(20)
$$M(\operatorname{Res}_{d_0,\dots,d_n}) \leqslant (N_{*,1})^{N_k^*/k^n} (N_{*,k})^{N_k^*/k^{n+1}}.$$

(21)
$$H(\operatorname{Res}_{d_0,\dots,d_n}) \leqslant (N_{*,1})^{(n+1)d_*^n - n - 1} M(\operatorname{Res}_{d_0,\dots,d_n}),$$

(22)
$$L_1(\operatorname{Res}_{d_0,\dots,d_n}) \leqslant (N_{*,1})^{(n+1)d_*^n} M(\operatorname{Res}_{d_0,\dots,d_n}).$$

Proof. Let $e_j = d_0 \cdots d_{j-1} d_{j+1} \cdots d_n$ for $j = 0, \dots, n$. By Lemma 2.2 and (6) we obtain

$$H(\operatorname{Res}_{d_0,\dots,d_n}) \leqslant \left(\prod_{j=0}^n \left(N_{d_j}\right)^{e_j-1}\right) M(\operatorname{Res}_{d_0,\dots,d_n}^{k^{n+1}})^{1/k^{n+1}},$$

$$L_1(\operatorname{Res}_{d_0,\dots,d_n}) \leqslant \left(\prod_{j=0}^n \left(N_{d_j}\right)^{e_j}\right) M(\operatorname{Res}_{d_0,\dots,d_n}^{k^{n+1}})^{1/k^{n+1}}.$$

Since $e_0 + \cdots + e_n \leq (n+1)d_*^n$, then from the above we have

$$H(\operatorname{Res}_{d_0,...,d_n}) \leq (N_{*,1})^{(n+1)d_*^n - n - 1} M(\operatorname{Res}_{d_0,...,d_n}^{k^{n+1}})^{1/k^{n+1}},$$

$$L_1(\operatorname{Res}_{d_0,...,d_n}) \leq (N_{*,1})^{(n+1)d_*^n} M(\operatorname{Res}_{d_0,...,d_n}^{k^{n+1}})^{1/k^{n+1}}.$$

This, together with Fact 3.8, gives (21) and (22).

From Fact 3.8 we also have $M(\operatorname{Res}_{d_0,\ldots,d_n}^{k^{n+1}})^{1/k^{n+1}}=M(R_k)^{1/k^{n+1}}$, and since $M(R_k)\leqslant M(D_k)$ (by (7) and Facts 3.5 and 3.7), so (9) gives

(23)
$$M(\operatorname{Res}_{d_0,\dots,d_n}^{k^{n+1}})^{1/k^{n+1}} \leqslant L_2(D_k)^{1/k^{n+1}}.$$

By Lemma 3.9 we have

(24)
$$L_1(D_k) \leqslant (N_{*,1})^{kN_k^*} L_1(D_{kd_0,\dots,kd_n}).$$

Since

$$N_{kd_j} \leqslant N_{*,k}, \quad \text{for } j = 0, \dots, n,$$

 $N_{kd_0,\dots,kd_n} \leqslant N_k^*,$

so, from Lemma 3.6 we obtain

$$L_1(D_{kd_0,...,kd_n}) \leqslant (N_{*,k})^{N_k^*} \quad \text{for } k > 0.$$

Since
$$L_2(D_k) \leqslant L_1(D_k)$$
 then (23) and (24) gives (20).

In general $N_k^* \leq (n+1)!(kd_*)^n$. It turns out that asymptotically this number has better properties.

Lemma 3.11.

$$\lim_{k \to \infty} \frac{N_k^*}{k^n} = \frac{(n+1)^n d_*^n}{n!} < \frac{e^{n+1}}{\sqrt{2\pi n}} d_*^n.$$

Proof. Indeed,

$$\frac{N_k^*}{k^n} = \frac{\prod_{j=1}^n [(n+1)kd_* - n + j]}{n!k^n},$$

so,

$$\lim_{k \to \infty} \frac{N_k^*}{k^n} = \frac{(n+1)^n d_*^n}{n!} = \left(\frac{n+1}{n}\right)^n \frac{n^n}{n!} d_*^n < e \frac{n^n}{n!} d_*^n.$$

Since from Stirling formula,

$$\frac{n^n}{n!} \leqslant \frac{e^{n-1/(12n+1)}}{\sqrt{2\pi n}},$$

then we obtain the assertion.

Lemmas 3.10 and 3.11 gives the main result of this paper.

Theorem 3.12. Let $d_* = \max\{d_0, ..., d_n\}$ and $K_n = e^{n+1}/\sqrt{2\pi n}, n > 0$. Then

(25)
$$M(\operatorname{Res}_{d_0,\dots,d_n}) \leq (d_* + 1)^{nK_n d_*^n},$$

(26)
$$H(\operatorname{Res}_{d_0,\dots,d_n}) \leq (d_* + 1)^{n(K_n + n + 1)d_*^n - n(n + 1)},$$

(27)
$$L_1(\operatorname{Res}_{d_0,\dots,d_n}) \leqslant (d_* + 1)^{n(K_n + n + 1)d_*^n}.$$

Moreover, if $n \ge 2$ and $d_* \ge 4$, then

(28)
$$M(\operatorname{Res}_{d_0,\dots,d_n}) \leqslant (d_*)^{nK_n d_*^n},$$

$$H(\operatorname{Res}_{d_0,\dots,d_n}) \leqslant (d_*)^{n(K_n+n+1)d_*^n - n(n+1)},$$

$$L_1(\operatorname{Res}_{d_0,\dots,d_n}) \leqslant (d_*)^{n(K_n+n+1)d_*^n}.$$

Proof. From Lemma 3.10 for nay $k \in \mathbb{Z}$, k > 0 we have

$$\begin{split} &M(\operatorname{Res}_{d_0,...,d_n}) \leqslant \left(N_{*,1}\right)^{N_k^*/k^n} \left(N_{*,k}\right)^{N_k^*/k^{n+1}}, \\ &H(\operatorname{Res}_{d_0,...,d_n}) \leqslant \left(N_{*,1}\right)^{(n+1)d_*^n - n - 1} \left(N_{*,1}\right)^{N_k^*/k^n} \left(N_{*,k}\right)^{N_k^*/k^{n+1}}, \\ &L_1(\operatorname{Res}_{d_0,...,d_n}) \leqslant \left(N_{*,1}\right)^{(n+1)d_*^n} \left(N_{*,1}\right)^{N_k^*/k^n} \left(N_{*,k}\right)^{N_k^*/k^{n+1}}. \end{split}$$

Since $1 \leq N_{*,k} \leq (kd_* + 1)^n$, then

(29)
$$\lim_{k \to \infty} (N_{*,k})^{1/k} = 1,$$

so passing to the limit as $k \to \infty$ in the above inequalities, by Lemma 3.11, we obtain (25), (26) and (27).

Since for $n \ge 2$ and $d_* \ge 4$ we have $N_{*,1} \le d_*^n$ then we obtain the second part of the assertion (28).

Remark 3.13. The estimation (27) of $L_1(\operatorname{Res}_{d_0,\ldots,d_n})$ is not a direct consequence of the estimation (26) of the height $H(\operatorname{Res}_{d_0,\ldots,d_n})$ because the number of coefficients of $\operatorname{Res}_{d_0,\ldots,d_n}$ can be bigger than $(d_*+1)^{n(n+1)}$. The number of coefficients of the resultant can be estimated by

$$E_{d_0,\dots,d_n} := \prod_{j=0}^n \binom{\binom{d_j+n}{n} + d_0 \cdots d_{j-1} d_{j+1} \cdots d_n}{d_0 \cdots d_{j-1} d_{j+1} \cdots d_n} \leqslant (d_* + 1)^{n(n+1)d_*^n}.$$

4. Gelfond-Mahler type inequalities for homogeneous polynomials

As a corollaries from Lemma 2.2 we obtain the following Gelfond-Mahler type theorems.

Corollary 4.1. Let $f \in \mathbb{Z}[u_{(m,0)}, \ldots, u_{(m,n)}]$ be a nonzero polynomial such that f is homogeneous of degree $s_j > 0$ as a polynomial in each system of variables $u_{(m,j)}$. Then for any polynomials $f_1, \ldots, f_k \in \mathbb{Z}[u_{(m,0)}, \ldots, u_{(m,n)}]$ such that $f = f_1 \cdots f_k$ we have

(30)
$$H(f_1) \cdots H(f_k) \leqslant \left(\prod_{j=0}^n N_{m,d_j}^{s_j - 1} \right) M(f)$$

$$\leqslant \left(\prod_{j=0}^n N_{m,d_j}^{s_j - 1} \right) \left(\prod_{j=0}^n \sqrt{N_{m,d_j} + 1}^{s_j} \right) H(f)$$

and

(31)
$$L_1(f_1) \cdots L_1(f_k) \leqslant \left(\prod_{j=0}^n N_{m,d_j}^{s_j}\right) M(f) \leqslant \left(\prod_{j=0}^n N_{m,d_j}^{s_j}\right) L_1(f).$$

Proof. The left hand inequalities in (30) and (31) immediately follows from Lemma 2.2, because $M(f_1) \cdots M(f_k) = M(f)$ from (6). Since the polynomial f is homogeneous with respect to $u_{(m,j)}$ of degree s_j , $j = 0, \ldots, n$, then from (9) we have

$$M(f) \leqslant \left(\prod_{j=0}^{n} \sqrt{\binom{s_j + N_{m,d_j}}{N_{m,d_j}}}\right) H(f) \leqslant \left(\prod_{j=0}^{n} \sqrt{N_{m,d_j} + 1}^{s_j}\right) H(f).$$

This gives the right hand inequalities in (30) and (31) and ends the proof.

Applying Corollary 4.1 for n = 0, $d_0 = 1$ and m = N - 1 and a homogenisation $f^*(x_0, \ldots, x_m) := x_0^{\deg f} f(x_1/x_0, \ldots, x_m/x_0)$ of a polynomial $f \in \mathbb{Z}[x_1, \ldots, x_m]$ we obtain the following corollary.

Corollary 4.2. Let $f \in \mathbb{Z}[x_1, \ldots, x_m]$ be a nonzero polynomial of degree s > 0. Then for any polynomials $f_1, \ldots, f_k \in \mathbb{Z}[x_1, \ldots, x_m]$ such that $f = f_1 \cdots f_k$ we have

$$H(f_1)\cdots H(f_k) \leq (N+1)^{s-1}M(f^*) \leq (N+1)^{s-1}\sqrt{N+2}^sH(f)$$

and

$$L_1(f_1)\cdots L_1(f_k) \leqslant (N+1)^s M(f^*) \leqslant (N+1)^s L_1(f).$$

References

- [1] D.A. Cox, J. Little, D. O'Shea, *Using algebraic geometry*. Second edition, Graduate Texts in Mathematics, 185. Springer, New York, 2005.
- [2] I.M. Gelfand, M.M. Kapranov, A,V. Zelevinsky, Discriminants, resultants, and multidimensional determinants. Reprint of the 1994 edition. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA, 2008. x+523 pp.
- [3] A.P. Gelfond, Transtsendentnye i algebraitcheskie tchisla (Moscow, 1952)
- [4] J.P. Jouanolou, Formes d'inertie et résultant: un formulaire. Adv. Math. 126 (1997), no. 2, 119–250.
- [5] F. Macaulay, On some formulas in elimination, Proc. London Math. Soc. 3 (1902), 3–27.
- [6] K. Mahler, An application of Jensen's formula to polynomials. Mathematika 7 1960 98–100.
- [7] K. Mahler, On some inequalities for polynomials in several variables. J. London Math. Soc. 37 (1962), 341–344.
- [8] C.J. Smyth, A Kronecker-type theorem for complex polynomials in several variables. Canad. Math. Bull. 24 (1981), no. 4, 447–452.
- [9] M. Sombra, The height of the mixed sparse resultant. Amer. J. Math. 126 (2004), no. 6, 1253–1260.

(Aleksandra Gala-Jaskórzyńska) FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF ŁÓDŹ, S. BANACHA 22, 90-238 ŁÓDŹ, POLAND

E-mail address: agjaskorzynska@math.uni.lodz.pl

(Krzysztof Kurdyka) Laboratoire de Mathematiques (LAMA) Universié Savoie Mont Blanc, UMR-5127 de CNRS 73-376 Le Bourget-du-Lac cedex FRANCE

 $E ext{-}mail\ address: ext{Krzysztof.Kurdyka@univ-savoie.fr}$

(Katarzyna Rudnicka) Faculty of Mathematics and Computer Science, University of Łódź, S. Banacha 22, 90-238 Łódź, POLAND

E-mail address: kkuta@math.uni.lodz.pl

(Stanisław Spodzieja) FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF ŁÓDŹ, S. BANACHA 22, 90-238 ŁÓDŹ, POLAND

 $E ext{-}mail\ address: stanislaw.spodzieja@wmii.uni.lodz.pl}$