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Abstract—We introduce a general approach to characterize
composite fading models based on inverse gamma (IG) shad-
owing. We first determine to what extent the IG distribution
is an adequate choice for modeling shadow fading, by means
of a comprehensive test with field measurements and other
distributions conventionally used for this purpose. Then, we prove
that the probability density function and cumulative density
function of any IG-based composite fading model are directly
expressed in terms of a Laplace-domain statistic of the underlying
fast fading model, and in some relevant cases, as a mixture
of well-known state-of-the-art distributions. We exemplify our
approach by presenting a composite IG/two-wave with diffuse
power fading model, for which its statistical characterization is
directly obtained in a simple form.

Index Terms—Shadowing, fading, inverse gamma distribution,
composite fading models.

I. INTRODUCTION

In wireless channels, the random fluctuations affecting the
radio signals have been classically divided into two types: fast
fading, as a result of the multipath propagation, and shadow
fading or shadowing, which is caused by the presence of
large objects like trees or buildings. Aiming to analyze and
improve the performance of wireless communication systems,
considerable efforts have been devoted to the characterization
of these two effects. For instance, several models are used to
describe the statistical behavior of fast fading, including both
the classical ones such as Rayleigh, Rice, and Nakagami-m
[1–3] as well as generalized models [4, 5]. With respect to
shadow fading, the lognormal distribution is widely accepted
as the right choice [2, 6], supported by empirical verification.

In practice, both fast fading and shadowing occur simultane-
ously, although at different time scales. Therefore, composite
fading models arise to characterize the combined impact of
these two effects. In the literature, there are two different
alternatives to incorporate the effect of shadowing on the top
of fading: line-of-sight (LoS) shadowing, where the shadowing
only affects the specular component [7], and multiplicative
shadowing, in which both the specular and scattered fading
components are shadowed [8]. Examples of the first type
of composite models are the Rician shadowed [7], the κ-µ
shadowed [9] and the fluctuating Beckmann [10]. On the other
hand, multiplicative shadowing composite models originally
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arose as a combination of lognormally-distributed shadowing
and classical fading models like Rayleigh or Nakagami-m
[2, 11]. However, all these models inherit the complicated for-
mulation of the lognormal distribution, considerably limiting
their usefulness for further analytical calculations.

Alternatively to the lognormal distribution, the gamma dis-
tribution has also been proposed in the literature, showing its
suitability to model shadowing through goodness-of-fit tests
[12, 13]. Due to its mathematical tractability, new composite
models arose as a combination of gamma shadowing and
different fast fading distributions, e.g. the K distribution
(Gamma/Rayleigh) [14], Gamma/Weibull [15], Gamma/κ-µ
and Gamma/η-µ [16]. A double shadowing model combining
LoS fluctuation due to human-body shadowing with multi-
plicative shadowing was recently introduced [17]. A different
alternative to model shadowing is given in [18–20], where
the inverse Gaussian distribution is proposed; this approach is
specially accurate to approximate the lognormal distribution
when the variance of shadowing is very large. In the recent
years, the inverse gamma (IG) distribution has been used to
characterize shadowing based upon the fact that it admits a
relatively simple mathematical formulation. Based on the IG
distribution, different composite models have been proposed
[8, 21]. However, a rigorous empirical validation to assess the
adequacy of the IG distribution to model shadow fading has
not been performed in depth. To the best our knowledge, this
has only been partially addressed in [22].

In this work, we aim to find answer to two key questions: (a)
is the use of the IG distribution to model shadowing supported
by practical evidences?, and (b) does the IG distribution bring
additional benefits to other alternatives? In order to answer the
first one, we perform an extensive set of goodness-of-fit tests
using empirical data measurements. Once this is accomplished,
we present a general approach to the statistical characterization
of composite fading channels with IG shadowing. Notably,
we show that the probability density function (PDF) and
the cumulative distribution function (CDF) of the composite
fading distribution can be directly expressed in terms of a
generalization of the moment generating function (MGF) of
the fast fading model. This holds for any arbitrary choice of
fading distribution, and allows to use existing results in the
literature to fully characterize the statistics of the composite
fading model.
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II. EMPIRICAL VALIDATION OF IG SHADOWING

A. Definitions of shadowing distributions

Definition 1 (Lognormal distribution): Let X be a random
variable (RV) following a Gaussian distribution with mean
µ and variance σ2. Then, the RV Y = eX is lognormally
distributed with CDF

FL
Y (µ, σ; y) =

1

2
+

1

2
erf

(
ln y − µ√

2σ2

)
(1)

where erf(·) is the error function [23, eq. (7.1.1)].
Definition 2 (Gamma distribution): Let Y be a RV following

a gamma distribution with shape parameter k and E[Y ] = Ω.
Then, the PDF and CDF of Y are given by

fG
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kk

Γ(k)Ωk
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with Γ(·) and γ(·, ·) the gamma function and the lower
incomplete gamma function, respectively [23, eqs. (6.1.1) and
(6.5.2)].

Definition 3 (Inverse Gaussian distribution): Let Y be a RV
following an inverse Gaussian distribution with parameters µI
and λ. Then, the CDF of Y is given by
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Definition 4 (Inverse gamma distribution): Let Y be a RV
following an IG distribution with shape parameter α and
E[Y ] = Ωi. Then, the PDF and CDF of Y are given by

f Ig
Y (α,Ωi; y) =

Ωαi (α− 1)α

Γ(α)
y−α−1e−Ωi(α−1)/y, (5)

F Ig
Y (α,Ωi; y) =

1

Γ(k)
Γ(k,Ωi(α− 1)/y), (6)

where Γ(·, ·) is the upper incomplete gamma function [23, eq.
(6.5.3)].

B. Fitting to field measurements

In order to check the suitability of the inverse gamma
distribution to model shadowing, we here compare empirical
CDFs obtained from data measurements in different scenarios
with the different models defined in the previous subsection,
i.e. lognormal, gamma, inverse Gaussian and inverse gamma.
Specifically, the Cramer-von Mises test is used for the com-
parison, which is a more powerful option than the well-known
Kolmogorov-Smirnov test, i.e. the probability of accepting the
alternative hypothesis when the alternative hypothesis is true
is higher in the Cramer-von Mises test [13, 24]. It is defined as
the integrated mean square error between the empirical CDF,
F̂ξ(x), and the theoretical one, Fξ(x), i.e.

ω2 =

∫ ∞
−∞

∣∣∣F̂ξ(x)− Fξ(x)
∣∣∣2 dx. (7)
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Fig. 1. Shadowing CDF for data in [25, Fig. 4], corresponding to urban and
suburban scenarios at 169 MHz. Parameters for urban scenario: lognormal
(µ = 0.0476, σ = 1.083), gamma (k = 1.15, Ω = 1.572), inverse gamma
(α = 1.18, Ωi = 4.65) and inverse Gaussian (µi = 1.864, λ = 1.041).
Parameters for suburban scenario: lognormal (µ = 0, σ = 0.325), gamma
(k = 10.14, Ω = 1.014), inverse gamma (α = 9.8, Ωi = 1.05) and inverse
Gaussian (µi = 1.036, λ = 9.573).

TABLE I
RESULTS OF THE CRAMÉR-VON MISES TEST, ω2 , FOR DATA IN FIGS. 1-3.

SHOWED VALUES ARE NORMALIZED BY 10−3 .

ω2 × 103 Lognormal Gamma Inv. Gamma Inv. Gaussian

Fig. 1 urban 2.255 1.057 10.59 4.908

Fig. 1 suburban 1.291 1.182 1.072 1.094

Fig. 2 (a) 2.941 5.499 1.521 2.607

Fig. 2 (b) 1.627 1.100 2.400 1.713

Fig. 3 0.0429 0.0224 0.0215 0.0220

Aiming to cover a wide variety of propagation environ-
ments, empirical distributions have been obtained from data
measurements in three different scenarios: urban and suburban
scenarios for smart wireless metering systems at 169 MHz
[25], suburban at 910.25 MHz [14] and indoor scenarios at 26
GHz (mmWave) [26]. Since shadowing data are usually given
in logarithmic scale (typically as deviations over the path loss
in dB), the fitting is not performed over the shadowing random
variable (RV) ξ but over ln ξ. Therefore, the corresponding
change of variables is required in the theoretical CDFs in
Definitions 1-4. Taking that into account, the empirical and
theoretical CDFs for each scenario are depicted in Figs. 1-3,
and the results for the Cramer-von Mises test are shown in
Table I, while the distribution parameters for each case are
detailed in the figure captions.

From Table I, the use of inverse gamma distribution to
model shadowing seems a reasonable choice, or at least as
much as the gamma or lognormal distributions. In fact, it
provides the most accurate fitting to the empirical CDF in three
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Fig. 2. Shadowing CDF data in [14, Fig. 1-2], corresponding to suburban
scenarios at 910.25 MHz. Parameters for case (a): lognormal (µ = 7.05,
σ = 0.572), gamma (k = 3.448, Ω = 1300), inverse gamma (α = 3.315,
Ωi = 1440) and inverse Gaussian (µi = 1351.9, λ = 3620.3). Parameters
for case (b): lognormal (µ = 6.09, σ = 0.398), gamma (k = 6.792, Ω =
467.36), inverse gamma (α = 6.54, Ωi = 487.36) and inverse Gaussian
(µi = 475.38, λ = 2856.3).
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Fig. 3. Shadowing CDF for data in [26, Fig. 3b], corresponding to an indoor
scenario at 26 GHz. Parameters: lognormal (µ = 0, σ = 0.011), gamma
(k = 8319, Ω = 0.998), inverse gamma (α = 8316, Ωi = 1) and inverse
Gaussian (µi = 1, λ = 8310).

of the cases under analysis, whilst the widely used lognormal
distribution is always outperformed by either the gamma or the
inverse gamma models. Note also that in the indoor mmWave
scenario (Fig. 3), there are little differences between these
models due to the low variance of shadowing measurements.

Based on these results, inverse gamma composite models are
justified, since there does not seem to be any major drawback
in using the inverse gamma distribution instead of the other
alternatives. Most importantly, its mathematical tractability

will lead to simpler expressions for the main statistics of
composite models than those resulting from considering log-
normal, gamma or inverse Gaussian shadowing. This will be
now formally stated in the following section.

III. STATISTICAL CHARACTERIZATION OF INVERSE
GAMMA COMPOSITE FADING MODELS

A. Physical model

Consider a RV W characterizing the instantaneous received
signal power in a multipath propagation scenario affected by
both shadowing and fast fading. Then, W can be expressed as

W = Ω ξ̂X̂ (8)

where Ω is the mean signal power and ξ̂ and X̂ are in-
dependent RVs representing respectively the shadowing and
the fast fading, with E[ξ̂] = Ωξ and E[X̂] = ΩX . Due
to its mathematical tractability and its suitability to model
shadowing, we consider that ξ̂ is inverse gamma distributed
with shape parameter m and PDF f Ig

ξ̂
(m,Ωξ; t) given in (5),

while X̂ follows any arbitrary fading distribution. For the sake
of simplicity, W can be rewritten as

W = W ξX (9)

where W , E[W ] = Ω Ωξ ΩX and ξ and X are the
normalized versions of ξ̂ and X̂ , i.e. ξ is an inverse gamma
RV with shape parameter m and E[ξ] = 1 and X follows any
fading distribution with E[X] = 1. Note that the value of m
is directly related to the severity of shadowing. Smaller values
of m mean that the variance of the IG distribution is larger,
while large values of m render less spread values of ξ. This
can also be observed from the parameters used in Figs. 1-3.

B. Statistical characterization

We aim to characterize the composite fading model in (9),
giving general expressions for its main statistics in terms of
those of the underlying fading model X . Specifically, we will
show that the PDF and CDF of W can be readily obtained
from the generalized moment generating function (GMGF) of
X , which is defined below.

Definition 5 (GMGF): Let X be a continuous nonnegative
RV with PDF fX(x). Then the GMGF of X is defined as

φ
(n)
X (s) , E

[
XneXs

]
=

∫ ∞
0

xnexsfX(x)dx. (10)

Note that, if n ∈ N+, then the GMGF coincides with the nth

order derivative of the moment generating function (MGF),
defined as MX(s) = E[esX ] = φ

(0)
X (s).

With Definition 5, we now calculate the PDF and CDF of
W in the following lemmas.

Lemma 1: Let W be a RV characterizing the instantaneous
received signal power as in (9). Then, for m > 1, its PDF is
given by

fW (u) =
W

m
(m− 1)m

um+1Γ(m)
φ

(m)
X

(
(1−m)W

u

)
(11)



where φ(m)
X (·) is the GMGF of X in (10).

Proof: When conditioned on ξ, the PDF of W is

fW (u|ξ) =
1

Wξ
fX

(
u

Wξ

)
, (12)

with fX(·) the PDF of X . The unconditional PDF of W is
therefore obtained by averaging on 1/ξ as

fW (u) =

∫ ∞
0

1

W
tfX

(
u t

W

)
f1/ξ(t)dt (13)

where, since ξ is inverse gamma distributed then 1/ξ is gamma
distributed with PDF fG

1/ξ(m,m/(m− 1); t). Therefore, sub-
stituting in (13) and performing the change of variables
y = ut/W lead to

fW (u) =

[
W (m− 1)

]m
um+1Γ(m)

∫ ∞
0

fX(y)yme(1−m)Wy/udy.

(14)
The above integral correspond to the GMGF of X evaluated

at s = (1−m)W/u, obtaining (11) and completing the proof.

Lemma 2: Let W be a RV characterizing the instantaneous
received signal power as in (9). Then, for m > 1, its CDF is
given by

FW (u) = 1−
∞∑
n=0

[
W (m− 1)

]m+n

um+nΓ(m+ n+ 1)
φ

(m+n)
X

(
(1−m)

uW
−1

)
.

(15)
Proof: Similarly to the PDF, the CDF of W can be

calculated as

FW (u) =

∫ ∞
0

FX

(
u t

W

)
f1/ξ(t)dt. (16)

Performing the change of variables y = ut/W and integrating
by parts we obtain

FW (u) = 1−
∫ ∞

0

F1/ξ

(
W

u
y

)
fX(y)dy, (17)

where F1/ξ(·) is the CDF of 1/ξ, which is gamma distributed
with shape parameter m and Ω = m/(m−1). Therefore, using
(3) and [23, eqs. (6.5.4) and (6.5.24)] we can rewrite (17) as

FW (u) =1−
∞∑
n=0

[
W (m− 1)

]m+n

um+nΓ(m+ n+ 1)

×
∫ ∞

0

ym+ne(1−m)Wy/ufX(y)dy, (18)

where the integral corresponds to the GMGF of X given in
(10), yielding (15).

Lemmas 1 and 2 provide general expressions for the PDF
and CDF of W in terms of the GMGF of the underlying fading
model, unifying the statistical analysis of inverse gamma
composite fading models. Indeed, the analytical tractability of
these statistics will strongly depend on the ability to calculate
the GMGF of X . In the most general case where the GMGF of
X is unknown or has an intractable form, the integral in (10)

can be computed numerically, as it is generally well-behaved
since the exponential term should ensure the convergence.

For many fading models, the GMGF can be obtained in
closed form for arbitrary m. This is the case of the very general
κ-µ shadowed distribution [9] (which includes most popular
fading distributions as special cases), for which the GMGF
can be readily obtained from [27, eq. (11)] as

φ
(p)
κ-µS(s) =

(µ)pµ
µmm(1 + κ)µ

(m+ µκ)m(µ(1 + κ)− s)µ+p

2F1

(
m,µ+ p;µ;

µ2κ(µκ+m)−1

[µ− s/(1 + κ)]

)
, (19)

where it is assumed that the κ-µ shadowed fading model is
power normalized, and the parameter m inherent to the κ-µ
shadowed distribution is underlined in order not to be confused
with that of the IG distribution. This allows to derive the PDF
and CDF of all the composite models arising from the κ-µ
shadowed fading model in a straightforward manner.

In other cases, the GMGF of the fading model is readily
available in the literature for special values of m. This is the
case for instance of more sophisticated fading models such
as Beckmann or TWDP [28, 29] under the assumption of
m being a positive integer. Strikingly, even though neither
the Beckmann nor the TWDP distributions admit closed-form
expressions for their PDF or CDF, their respective composite
models do. Hence, somehow counterintuitively, the IG distri-
bution not only renders more general models, but at the same
time their mathematical complexity is relaxed. Moreover, if
we assume m ∈ N+ (or, equivalently, n ∈ N+), the CDF
expression in (15) simplifies to a finite sum of evaluations of
the GMGF of X , as stated next:

Corollary 1: Let W be a RV characterizing the instanta-
neous received signal power in (9), and assume m is a positive
integer, i.e m ∈ N+. Then, the CDF of W is expressed as

FW (u) =

m−1∑
n=0

(m− 1)nW
n

unΓ(n+ 1)
φ

(n)
X

(
(1−m)W

u

)
. (20)

Proof: Substituting in (17) the CDF of the gamma distri-
bution for integer shape parameter, m, which is given by

F1/ξ(t) = 1−
m−1∑
n=0

(m− 1)ntn

Γ(n+ 1)
e(1−m)t, (21)

and following the same steps as in Lemma 2, the proof is
completed.

Note that restricting the parameter m to take positive integer
values may have limited impact in practice from a goodness-
of-fit perspective, unless the shadowing variance is very large.

Last, but not least, the use of the IG distribution to model
shadow fading has an additional advantage. It is well-known
that the PDF of numerous fading models can be expressed in
terms of a mixture of gamma distributions as [30, eq. (1)]:

fX(u) =

N∑
i=1

wif
G
i (ki,Ωi;u) (22)



where fG
i (·) is the gamma PDF in (2), wi for i = 1, . . . , N

are constants and ki and Ωi are the parameters of the i-th
gamma distribution, which are obtained by using PDF or MGF
matching. In some cases, this mixture form naturally arises
by inspection [31, 32]. In all cases on which the PDF of
the fading model can be expressed as a mixture of gamma
distributions, the PDF of the IG-based composite fading model
is directly obtained as a mixture of F distributions as stated
in the following corollary:

Corollary 2: Let X be a RV characterizing the fast fading
with PDF as in (22). Then, the PDF of the instantaneous
received signal power W = ξX is given by

fW (u) =

N∑
i=1

wifF (m, ki,Ωi;u), (23)

where fF (·) is the PDF of the F distribution [33, eq. (6)]:

fF (m, k,Ω; t) =
(m− 1)mkk

B(m, k)

tk−1Ωm

((m− 1)Ω + kt)
m+k

(24)

with B(·, ·) the beta function [23, eq. (6.2.2)].
Proof: From (22), the PDF of W is calculated as

fW (u) =

N∑
i=1

wi

∫ ∞
0

tfG
i (ki,Ωi;ut)f1/ξ(t)dt, (25)

with fG
i (·) as in (2) and f1/ξ(t) = fG

1/ξ(m,m/(m − 1); t).
Using [34, eq. (3.381 4)] and performing some algebraic
manipulations, the proof is completed.

The above corollary provides a remarkable result, since if
the underlying fading model X can be expressed as in (22),
then the statistical characterization of the composite model
is straightforward, as we can leverage all the existing results
given for the simple F distribution.

Finally, note that although we give expressions for the main
statistics of the received signal power W , the PDF and CDF
of the received signal amplitude R can be straightforwardly
derived from (11) and (15) through a change of variables,
obtaining fR(r) = 2rfW (r2) and FR(r) = FW (r2).

IV. APPLICATION TO TWDP FADING MODEL

We now aim to provide a simple example to illustrate
the usefulness of our approach. The case of the TWDP
fading model is considered, which assumes the presence of
two dominant specular components and accurately fits field
measurements in a variety of propagation scenarios [4].

A. TWDP fading distribution

According to the TWDP fading model, the received signal
power WT is described as:

WT =
∣∣V1e

jϕ1 + V2e
jϕ2 + Z

∣∣2 , (26)

where V1 and V2 are constants representing the amplitude of
each specular component, ϕi and ϕ2 are RVs following a
uniform distribution, i.e. ϕ1,2 ∼ U [0, 2π) and Z is a complex
Gaussian RV such that Z ∼ CN (0, 2σ2). It is assumed that
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Fig. 4. PDF of the received signal amplitude under inverse gamma / TWDP
fading for K = 4 and different values of m, ∆ and W . Solid lines correspond
to theoretical calculations, markers correspond to MC simulations.

all the involved RVs are statistically independent. The model
is completely described by the parameters

K =
V 2

1 + V 2
2

2σ2
, ∆ =

2V1V2

V 2
1 + V 2

2

, (27)

and its PDF is only known in integral form [4, eq. (7)].

B. Inverse gamma/TWDP composite fading model

With the TWDP as baseline model, the composite fading
model is built as W = WξWT , where ξ follows an inverse
gamma distribution as in (9) and E[WT ] = 1. In this case,
a closed-form expression for the GMGF (10) is known when
n ∈ N+. Therefore, we can directly apply (11) and (20) to
characterize W , resulting:

fW (u) =
W

m
(m− 1)m

um+1Γ(m)
φ

(m)
WT

(
K,∆;

(1−m)W

u

)
, (28)

FW (u) =
m−1∑
n=0

(m− 1)nW
n

unΓ(n+ 1)
φ

(n)
WT

(
K,∆;

(1−m)

uW
−1

)
, (29)

where φ(m)
WT

(·) is obtained from [29, eq. (4)] with γ = 1. For
arbitrary m, the IG/TWDP composite fading model can be
expressed as an infinite mixture of F -distributions using [31]
and Corollary 2. The expressions for the PDFs and CDFs are
not explicitly reproduced here for the sake of compactness.

In order to visualize the impact of m in the distribution of
W , we show in Figs. 4-5 the PDF of the received signal am-
plitude calculated from (28) by performing the corresponding
change of variables, and contrasted the results with Monte
Carlo (MC) simulations. Besides, in order for these PDFs
not to be overlapped in the figures, we set different values
of W for each situation. As expected, with independence of
the parameters of the TWDP model, smaller values of m
render more spread PDFs, since shadowing can be seen as
an increment in the variance of the fast fading model. In turn,
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large values of m reduce the shadowing severity and, in the
limit (m→∞), the composite model converges to the baseline
fading model.

V. CONCLUSIONS

We showed that the use of the inverse gamma distribution
in the context of composite fading modeling is justified both
from empirical evidences and for mathematical tractability. We
also provided a general way of deriving the composite fading
distribution statistics, which in many cases can be carried out
by directly leveraging existing results in the literature.

REFERENCES

[1] M. K. Simon and M. S. Alouini, Digital communication over fading
channels. John Wiley & Sons, 2005, vol. 95.

[2] G. L. Stuber, ”Principles of Mobile Communication”, 2nd ed. Kluwer
Academic Publishers, 2002.

[3] M. Nakagami, “The m-distribution - a general formula of intensity
distribution of rapid fading,” Stat. Meth. Radio Wave Propag., vol. 47,
Dec. 1960.

[4] G. D. Durgin, T. S. Rappaport, and D. A. de Wolf, “New analytical
models and probability density functions for fading in wireless commu-
nications,” IEEE Trans. Commun., vol. 50, no. 6, pp. 1005–1015, Jun.
2002.

[5] M. D. Yacoub, “The κ-µ distribution and the η-µ distribution,” IEEE
Antennas Propag. Mag., vol. 49, no. 1, pp. 68–81, Feb. 2007.

[6] H. Hashemi, “The indoor radio propagation channel,” Proc. IEEE,
vol. 81, no. 7, pp. 943–968, Jul. 1993.

[7] A. Abdi, W. C. Lau, M. . Alouini, and M. Kaveh, “A new simple model
for land mobile satellite channels: first- and second-order statistics,”
IEEE Trans. Wireless Commun., vol. 2, no. 3, pp. 519–528, May 2003.

[8] S. K. Yoo, N. Bhargav, S. L. Cotton, P. C. Sofotasios, M. Matthaiou,
M. Valkama, and G. K. Karagiannidis, “The κ-µ; / inverse gamma and
η-µ; / inverse gamma composite fading models: Fundamental statistics
and empirical validation,” IEEE Trans. Commun., pp. 1–1, 2018.

[9] J. F. Paris, “Statistical characterization of κ - µ shadowed fading,” IEEE
Trans. Veh. Technol., vol. 63, no. 2, pp. 518–526, Feb. 2014.

[10] P. Ramirez-Espinosa, F. J. Lopez-Martinez, J. F. Paris, M. D. Yacoub,
and E. Martos-Naya, “An extension of the κ-µ shadowed fading model:
Statistical characterization and applications,” IEEE Trans. Veh. Technol.,
vol. 67, no. 5, pp. 3826–3837, May 2018.

[11] C. Loo, “A statistical model for a land mobile satellite link,” IEEE Trans.
Veh. Technol., vol. 34, no. 3, pp. 122–127, Aug. 1985.

[12] A. Abdi and M. Kaveh, “On the utility of gamma PDF in modeling
shadow fading (slow fading),” in IEEE 49th Veh. Technol. Conf., vol. 3,
May 1999, pp. 2308–2312.

[13] ——, “A comparative study of two shadow fading models in ultraw-
ideband and other wireless systems,” IEEE Trans. Wireless Commun.,
vol. 10, no. 5, pp. 1428–1434, May 2011.

[14] ——, “K distribution: an appropriate substitute for Rayleigh-lognormal
distribution in fading-shadowing wireless channels,” Electron. Lett.,
vol. 34, no. 9, pp. 851–852, Apr. 1998.

[15] P. S. Bithas, “Weibull-gamma composite distribution: alternative multi-
path/shadowing fading model,” Electron. Lett., vol. 45, no. 14, pp. 749
–751, Jul. 2009.

[16] H. Al-Hmood and H. S. Al-Raweshidy, “Unified modeling of composite
κ−µ /gamma, η−µ/gamma, and α−µ/gamma fading channels using
a mixture gamma distribution with applications to energy detection,”
IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 104–108, 2017.

[17] N. Simmons, C. R. N. da Silva, S. L. Cotton, P. C. Sofotasios, and M. D.
Yacoub, “Double Shadowing the Rician Fading Model,” IEEE Wireless
Commun. Lett., vol. 8, no. 2, pp. 344–347, Apr. 2019.

[18] Karmeshu and R. Agrawal, “On efficacy of rayleigh-inverse gaussian
distribution over k-distribution for wireless fading channels,” Wirel.
Commun. Mob. Com., vol. 7, pp. 1–7, 2007.

[19] T. Eltoft, “The rician inverse Gaussian distribution: a new model for
non-Rayleigh signal amplitude statistics,” IEEE Trans. Image Process.,
vol. 14, no. 11, pp. 1722–1735, Nov. 2005.

[20] P. C. Sofotasios, T. Tsiftsis, K. Ho Van, S. Freear, L. Wilhelmsson, and
M. Valkama, “The κ-µ/ig composite statistical distribution in RF and
FSO wireless channels,” 38th IEEE Veh. Technol. Conf., pp. 1–5, Sep.
2013.

[21] S. K. Yoo, S. L. Cotton, P. C. Sofotasios, M. Matthaiou, M. Valkama,
and G. K. Karagiannidis, “The Fisher–Snedecor F distribution: A simple
and accurate composite fading model,” IEEE Commun. Lett., vol. 21,
no. 7, pp. 1661–1664, Jul. 2017.

[22] P. S. Bithas, A. G. Kanatas, and D. W. Matolak, “Exploiting shadowing
stationarity for antenna selection in V2V communications,” IEEE Trans.
Veh. Technol., vol. 68, no. 2, pp. 1607–1615, Feb. 2019.

[23] M. Abramowitz, I. A. Stegun et al., Handbook of Mathematical Func-
tions with Formulas, Graphs, and Mathematical Tables. Dover, New
York, 1972, vol. 9.

[24] M. A. Stephens, “Edf statistics for goodness of fit and some compar-
isons,” J. Am. Stat. Assoc., vol. 69, no. 347, pp. 730–737, 1974.

[25] M. Barbiroli, F. Fuschini, G. Tartarini, and G. E. Corazza, “Smart
metering wireless networks at 169 MHz,” IEEE Access, vol. 5, pp. 8357–
8368, 2017.

[26] B. Ai, K. Guan, R. He, J. Li, G. Li, D. He, Z. Zhong, and K. M. S. Huq,
“On indoor millimeter wave massive MIMO channels: Measurement and
simulation,” IEEE J. Sel. Areas Commun., vol. 35, no. 7, pp. 1678–1690,
Jul. 2017.

[27] N. Bhargav, C. R. N. da Silva, S. L. Cotton, P. C. Sofotasios, and
M. D. Yacoub, “On shadowing the κ-µ fading model,” arXiv preprint
arXiv:1808.05013, 2018.

[28] J. P. Peña-Martı́n, J. M. Romero-Jerez, and F. J. Lopez-Martinez,
“Generalized MGF of Beckmann fading with applications to wireless
communications performance analysis,” IEEE Trans. Commun., vol. 65,
no. 9, pp. 3933–3943, Sep. 2017.

[29] ——, “Generalized MGF of the two-wave with diffuse power fading
model with applications,” EEE Trans. Veh. Technol., vol. 67, no. 6, pp.
5525–5529, Jun. 2018.

[30] S. Atapattu, C. Tellambura, and H. Jiang, “A mixture gamma distribution
to model the SNR of wireless channels,” IEEE Trans. Wireless Commun.,
vol. 10, no. 12, pp. 4193–4203, Dec. 2011.

[31] N. Y. Ermolova, “Capacity analysis of two-wave with diffuse power fad-
ing channels using a mixture of gamma distributions,” IEEE Commun.
Lett., vol. 20, no. 11, pp. 2245–2248, Nov 2016.

[32] F. J. Lopez-Martinez, J. F. Paris, and J. M. Romero-Jerez, “The κ- µ
shadowed fading model with integer fading parameters,” IEEE Trans.
Veh. Technol., vol. 66, no. 9, pp. 7653–7662, Sep. 2017.

[33] S. K. Yoo, P. C. Sofotasios, S. L. Cotton, S. Muhaidat, F. J. Lopez-
Martinez, J. M. Romero-Jerez, and G. K. Karagiannidis, “A comprehen-
sive analysis of the achievable channel capacity in F composite fading
channels,” IEEE Access, vol. 7, pp. 34 078–34 094, 2019.

[34] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and
Products. Academic Press, 2007.


