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Abstract: The regional controls of biodiversity patterns have been traditionally evaluated 

using structural and compositional components at the species level, but evaluation of the 

functional component at the ecosystem level is still scarce. During the last decades, the role 

of ecosystem functioning in management and conservation has increased. Our aim was to 

use satellite-derived Ecosystem Functional Types (EFTs, patches of the land-surface with 

similar carbon gain dynamics) to characterize the regional patterns of ecosystem functional 

diversity and to evaluate the environmental and human controls that determine EFT 

richness across natural and human-modified systems in temperate South America. The EFT 

identification was based on three descriptors of carbon gain dynamics derived from 

seasonal curves of the MODIS Enhanced Vegetation Index (EVI): annual mean (surrogate 

of primary production), seasonal coefficient of variation (indicator of seasonality) and date 

of maximum EVI (descriptor of phenology). As observed for species richness in the 

southern hemisphere, water availability, not energy, emerged as the main climatic driver of 
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EFT richness in natural areas of temperate South America. In anthropogenic areas, the role 

of both water and energy decreased and increasing human intervention increased richness 

at low levels of human influence, but decreased richness at high levels of human influence. 

Keywords: ecosystem functional diversity; ecosystem functional types; ecosystem 

functioning; environmental controls; human controls; MODIS EVI; richness; South America 

 

1. Introduction 

The biodiversity of an area is comprised of three components—composition, structure and 

function—evaluated at all levels of the biological hierarchy, from genes to ecoregions [1]. 

Composition deals with the identity and variety of entities in a collection (e.g., species lists and 

diversity indices); structure is the physical organization or pattern of a system (e.g., habitat complexity 

or physiognomy of vegetation); and function involves ecological and evolutionary processes (e.g., 

information, matter and energy exchanges) [1]. Traditionally, inventorying and monitoring biodiversity 

have been based on structural and compositional features (mainly at the species level), but rarely on 

functional features of ecosystems [1,2]. During the last decade, though, the role of ecosystem 

functioning in both environmental management and biodiversity conservation has significantly 

increased [3]. The ecosystem functioning dimension of biodiversity has gained attention given that 

global change effects on biodiversity are particularly noticeable at the ecosystem level [4] and have a 

faster influence on functional than on structural or compositional characteristics of ecosystems [5,6]. 

Both bottom-up and top-down strategies have been developed to characterize the spatial and temporal 

heterogeneity of ecosystem functioning based on the concept of Ecosystem Functional Types, i.e., 

patches of the land-surface that exchange energy and matter in a similar way and show coordinated 

and specified responses to environmental factors [7,8]. 

Bottom-up strategies to define EFTs by grouping organisms based on common structural and 

functional properties were first suggested by Shugart [9] to scale-up emergent functional properties 

from organisms to landscapes. Successive efforts have developed this strategy (e.g., [10–14]) on the 

basis of different relationships between ecosystem functioning and the traits used to classify species 

into functional types (e.g., plant functional types, [15]). However, there is a debate as to whether the 

functioning of ecosystems can be fully understood solely in terms of its component parts [16,17]. For 

instance, Wright et al. [18] showed how a priori classifications of plant functional types seldom result in 

significantly better predictions of ecosystem functioning than random classifications of functional types. 

Alternatively, top-down strategies make use of functional characters of ecosystems identifiable at the 

regional scale (e.g., with the aid of remote sensors) to define EFTs. Soriano and Paruelo [19] first 

developed an approach to identify functional units (named biozones) based on the seasonal dynamics of 

net primary production. Such functional units were later defined as groups of ecosystems showing 

similar dynamics of primary production [8,20] and can be interpreted as patches of the land surface that 

exchange mass and energy in a common way, showing coordinated and specified responses to 

environmental factors [7]. This basic approach has been further developed in several studies to 

characterize ecosystem functioning (e.g., [8,21–25]), offering the potential of linking atmospheric and 
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ecosystem processes in land-surface and climate modeling [26,27], which has been shown to 

significantly improve weather forecasts [28,29]. Similar methodological approaches that explicitly 

include the temporal dynamics of vegetation indices have also been used to characterize environmental 

heterogeneity at the regional scale. Though such classifications did not use the term EFTs, they were also 

based on the dynamics of primary production at the regional scale and aimed to identify homogeneous 

areas in terms of ecosystem dynamics, e.g., bioclimatic zones [30], isogrowth zones [31,32], dynamic 

habitats [33,34], dynamic land-covers [35] or phenological classes [36]. 

Many studies have evaluated the environmental controls of regional patterns of species richness using 

species field counts (e.g., [37–42]), with an increasing number of them taking advantage of remote 

sensing information (e.g., [33,43–50]). Globally, these studies found a stronger effect of water than of 

energy on species richness in the southern hemisphere than in the northern hemisphere [38]. In the 

northern hemisphere, though, Whittaker et al. [51] showed how water is more limiting in southern 

Europe compared to energy in northern Europe and how water has greater explanatory power than 

energy for plant species richness compared to animals (Table 1 and Figure 3 in Whittaker et al. [51]). 

Many studies have also evaluated the positive relationship between stability and species richness (and 

vice versa); [52–54]) and the role that spatial heterogeneity plays in favoring richness [55–57]. In 

addition, human activities have become a major control of the Earth’s system [58], affecting both 

biodiversity patterns and drivers [59–63]. The strength of such effects varies locally depending on the 

human pressure and the biodiversity component. Responses ranged from increases in species richness 

due to the introduction of exotics at low human pressure [59], to species loss or displacements at high 

rates of human intervention [64,65]. However, most of these studies focused at the species level and on 

the compositional component of biodiversity, but paid little attention to the functional aspects of 

biodiversity at the ecosystem level [3]. 

In this article, our aim was to use EFTs to characterize the regional patterns of ecosystem functional 

diversity and to evaluate the environmental and human controls that determine EFT richness. We 

compared such controls across natural and human-modified systems in temperate South America. We 

chose this portion of South America, since it includes a very broad range of environmental gradients: 

(1) Four out of the five big Köppen climate classes described for the world are represented in the 

region (A: tropical/megathermal climates, B: dry climates, C: temperate/mesothermal climates and D: 

continental/microthermal climates [66]; (2) Vegetation types vary from extreme deserts to grasslands, 

steppes, matorrals, dry forests and both evergreen and deciduous humid forests (from the World 

Wildlife Foundation Ecoregions Map, Figure 1 in [67] ); (3) Land-use strongly varies from some of the 

largest expanses of the remaining wild areas of the world to the intensively cropped, pastured and 

urbanized areas of SE Brazil and E Argentina [68]. The following hypotheses (H) guided our analyses: 

H1. The main drivers of EFT richness switch from climatic variables in natural environments to 

human influence variables in anthropogenic environments. 

H2. In natural environments of temperate South America, H2a) water availability is a stronger 

limiting factor for EFT richness than energy variables, and EFT richness has a positive relationship 

with both H2b) water availability and H2c) energy. 

H3. In natural environments, climate stability (daily and seasonal) has a positive effect on  

EFT richness. 
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H4. Across human influence gradients, land use has a positive effect on EFT richness at low rates of 

human pressure, but it switches to negative effects at high rates of human intervention. 

H5. Since topographic roughness increases spatial heterogeneity, it should have a positive 

relationship with EFT richness. 

Figure 1. Study area showing the World Wildlife Foundation Ecoregions map of South 

America [67]. 
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2. Material and Methods  

2.1. EFT Identification 

Ecosystem Functional Types (EFTs) were identified following the approach by  

Alcaraz-Segura et al. ([21,27]). EFTs were defined using fixed limits between classes, which captures 

the year-to-year dynamics and allows for inter-annual comparisons. The EFT identification was based 

on the Enhanced Vegetation Index derived from the MODIS MOD13C1 product for the 2001–2008 

period and for the non-tropical portion of South America. This dataset consists of a 16-day maximum 

value composite global images at a spatial resolution of 0.05° × 0.05° (~25 km2 at the Equator). EFTs 

were derived from three metrics of the EVI seasonal dynamics for each year that are widely known to 

capture most of the variability of the EVI time-series [8,69]: EVI annual mean (EVI_Mean), EVI 

seasonal coefficient of variation (EVI_sCV) and date of the maximum EVI value (DMAX). 

EVI_Mean is a linear estimator of annual primary production, one of the most integrative descriptors 

of ecosystem functioning [70]; EVI_sCV is a descriptor of the differences in carbon gains between 

seasons; and DMAX is a phenological indicator of the growing season [8,21,71,72]. Then, the range of 

values of each EVI metric was divided into four intervals, giving a potential number of 4 × 4 × 4 = 64 

EFTs. In the case of DMAX, the four intervals agreed with the four seasons of the year that occur in 

temperate ecosystems. In the case of EVI_Mean and EVI_sCV, we calculated the first, second and 

third quartiles of the histograms of each variable for each year. Then, the limits between intervals were 

fixed as the 8-year median of each quartile for each variable. We assigned codes to each EFT 

following the terminology suggested by Paruelo et al. ([8]) based on two letters and a number (three 

characters). The first letter of the code (capital) corresponded to the EVI_Mean level, ranging from A 

to D for low to high (increasing) EVI_Mean. The second letter (small) showed the seasonal CV, 

ranging from a to d for high (decreasing) to low EVI_sCV. The numbers indicated the season of 

maximum EVI (1–4: spring, summer, autumn and winter). The definition and coding of EFTs were 

based only on descriptors of ecosystem functioning and allow for an ecological interpretation of the 

legend. Once we had the fixed limits between the four intervals of each variable, we applied them to 

each year to obtain eight EFT maps. Since EFT maps exhibited minor changes across years, we finally 

selected the median of these interannual values to summarize the ecosystem functional heterogeneity 

of the 2001–2008 period.  

2.2. Controls of Ecosystem Functional Diversity 

EFT richness was used as an indicator of ecosystem functional diversity. Climate, relief 

(topographic roughness), water-bodies and land-use (croplands and pastures) were used as explanatory 

variables. EFT richness was calculated by counting the number of different EFTs (obtained at the 

0.05° × 0.05° MODIS pixel size) that fell within each 0.05° × 0.05° cell of the climate dataset (which 

was used as the reference grid for the statistical analyses). The climate variables were extracted from the 

Climate Research Unit (CRU) TS3.10 dataset and consisted of a monthly gridded time-series at a spatial 

resolution of 0.05° × 0.05°. They included precipitation, potential evapotranspiration, temperature, 

diurnal temperature range, frequency of wet days and frequency of frosts for the 2001–2008 period. 

For each climate variable, we obtained the long-term averages of the annual mean and of the seasonal 



Remote Sens. 2013, 5 132 

 

coefficient of variation. Since both the MODIS and CRU products follow standard global climate 

modeling grids, 100 MODIS pixels were regularly included within each CRU cell. Altitude and relief 

heterogeneity (topographic roughness) of the reference grid (the 0.5 × 0.5 CRU cells) were derived 

from the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (500 × 500 m pixel 

size). For each 0.05° × 0.05° cell, we calculated the standard deviation and coefficient of variation of 

mean altitude and slope. The percentages of croplands and pastures within each 0.05° × 0.05° cell were 

obtained from the harvested area maps for the year 2000 developed by Monfreda et al. ([73]) and 

Ramankutty et al. [74]) at a 0.08° spatial resolution. Finally, we obtained the percentage of water 

bodies and rivers (mapped at a 0.05° spatial resolution) contained in each 0.5 × 0.5 reference cell. For 

this, we first used the MODIS Quality Assessment information to flag as “water” those 0.05° × 0.05° 

pixels that were covered by water for more than 75% of the dates in the 2001–2008 period. Then we 

added as water bodies those 0.05° × 0.05° pixels with more than 50% of their area occupied by water 

bodies deeper than 10 m and larger than 10 km2 from the HydroSHEDS database [75] at a 30 arc sec 

spatial resolution (when more than 50% of the 30 s HydroSHEDS cells contained within a  

0.05° × 0.05° MODIS pixel corresponded to water bodies, that MODIS pixel was classified as water 

body). We decided to combine both datasets to produce a synthetic map of water bodies, because, from 

our experience, the combination of both produces a much better representation of surface waters than 

either of them separately. 

To assess whether there existed differences in the environmental and human controls of EFT 

richness across gradients of human influence, we first classified each 0.05° × 0.05° reference cell into 

three subsets according to the mean Human Influence Index (HII) [68] (dataset at 1 km × 1 km spatial 

resolution): natural ecosystems (0 < HII < 10), mixed (10 < HII < 20) and anthropogenic systems  

(20 < HII < 40). Thirty-five percent of pixels of the study area were classified as natural ecosystems, 

45% as mixed and 19% as anthropogenic. Then, to avoid multicolinearity, we discarded those 

explanatory variables that showed an absolute correlation coefficient greater than 0.7. Finally, to assess 

the main, one-to-one or single effect of each explanatory variable on EFT richness, we applied Poisson 

Generalized Linear Models (“glm” function in R) to the relationship between each explanatory 

variable or its quadratic transformation and the EFT richness. The Poisson distribution with Log link 

function was used, since EFT richness can be considered as a form of count data [76]. The relative 

goodness of fit index [77] of the Poisson distribution for EFT richness was 104.9%. Akaike 

Information Criteria was used to assess the differences in the deviance explained between models. To 

visualize the effect of each explanatory variable on EFT richness and the differences across  

human-influence categories, we used high-density colored scatter plots (“Image” function in R) and 

Local Polynomial Regression Fitting (LOESS) on the 10th, 50th and 90th percentiles (“Quantile.loess” 

function in R). 

Ecosystems are spatially structured, so environmental variables are often spatially autocorrelated, 

which can affect estimates of statistical significance. Following the approach by Whittaker et al. [51] 

and as a further step in our analysis, we tested for spatial autocorrelation using Moran’s I at different 

distance classes to create correlograms of the residuals (“correlation” function in R “ncf” package). 

The optimal number of distance classes was calculated following Sturge’s Rule [78] as: 1 + 3.3 

Log(m), where m is the number of elements in the triangular matrix of geographic distances. 
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3. Results 

3.1. Regional Patterns of Ecosystem Functional Diversity 

The Ecosystem Functional Types map presented in Figure 2 shows a synthetic characterization of 

spatial patterns of ecosystem functioning in temperate South America for the 2001–2008 period. 

Almost all possible combinations of EVI_mean, EVI_sCV and DMAX were identified in the study 

area. On average, most ecosystems showed EVI maxima in autumn and summer. EFTs with summer 

maxima tended to have medium-to-low productivity and high seasonality, while EFTs with autumn 

and spring maxima showed most of the possible combinations of productivity and seasonality. EFTs 

with EVI maxima during winter tended to exhibit either very low or very high productivity with very 

low seasonality values. The definition and coding of EFTs allow for an ecological interpretation of the 

legend in terms of the three EVI metrics related to productivity (EVI_Mean), seasonality (EVI_sCV) 

and phenology (DMAX). The greatest EVI_Mean (D) was reached in the Alto Paraná Atlantic Forests 

and in the Southwestern Amazonian Moist Forests. All spatial references in this article are based upon 

the WWF Ecoregions Map of the World [67]. The lowest EVI_Mean (A) occurred in the Atacama-

Sechura Deserts, in the Central Andean Dry Puna and in some central areas of the Patagonian Steppe. 

The EVI_sCV was relatively low (c, d) throughout the study area. The greatest seasonality (a) 

occurred in the highest altitudes of: (1) the southern Andes (highest parts of the Valdivian Temperate 

Forests) and (2) the northern Andes (Bolivian Montane Dry Forest and Central Andean Wet Puna). 

High seasonality (a, b) is also found in agricultural lands of central and northwestern Argentina (across 

the Espinal and Dry Chaco) and eastern Brazil (across the Caatinga and Atlantic Dry Forests). The 

lowest seasonality (d) was observed in both: (1) the driest ecoregions, like the Atacama Desert and the 

Patagonian Steppe and (2) in very humid ecoregions, like the Alto Paraná Atlantic Forests and the 

Southwestern Amazonian Moist Forests. The phenological indicator of the growing season, DMAX, 

showed that most areas of extratropical South America have summer (2) and autumn (3) EVI maxima. 

Spring (1) maxima were observed just in the southeastern half of the Humid Pampas and the 

Uruguayan Savanna. Winter (4) maxima are scarce and mainly occur in the northernmost Chilean 

Matorral and in the Southwestern Amazonian Moist Forests. 

EFT richness was not evenly distributed across temperate South America, but showed contrasting 

and aggregated patterns across geographic features and ecoregions (Figures 3 and 4). EFT richness was 

locally increased by the presence of water bodies, along main river valleys and along the coastlines of 

Southern Brazil, Uruguay and Central-East Argentina (Buenos Aires province). The greatest EFT 

richness was observed in ecotones between the major vegetation types and ecoregions, such as in: (1) 

the ecotone of the Peruvian and Bolivian Yungas with the Central Andean Wet Punas and the Bolivian 

Montane Dry Forests, (2) the entire region of the Beni Savanna, (3) the ecotone between the Cerrado 

Woodlands and Savannas, the Matto Grosso Seasonal Forest, the Chiquitano Dry Forest and the 

Pantanal, and (4) the ecotone between the Chilean Matorral and the Valdivian Temperate Rainforest. 

The lowest values of EFT richness were reached mainly in drylands, such as the Atacama-Sechura 

Deserts, the Patagonian Steppe and the Southern Low Monte and the central regions of Dry Chaco and 

Espinal ecoregions. Relatively low values were also observed in the Araucaria Moist Forests and in 

areas of the Southwestern Amazonian Moist Forests close to the Andes. 
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Figure 2. Ecosystem Functional Types (EFT) of temperate South America based on 

Moderate Resolution Imaging Spectroradiometer Enhanced Vegetation Index (MODIS-EVI) 

dynamics (0.05° pixel). The map shows the EFTs corresponding to the median of the  

2001–2008 period. Capital letters correspond to the EVI annual mean (EVI_Mean) level, 

ranging from A to D for low to high productivity. Small letters show the seasonal coefficient 

of variation (EVI_sCV), ranging from a to d for high to low seasonality of carbon gains. The 

numbers indicate the season of maximum EVI (DMAX): (1) spring, (2) summer, (3) autumn, 

(4) winter. The map uses the 0.05º Global Climate Model Grid in geographic projection. 
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Figure 3. Mean EFT richness across the different ecoregions of South America. Error bars 

indicate the spatial standard deviation. 
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Figure 4. Spatial patterns of Ecosystem Functional Types richness in temperate South 

America. The map shows the number of EFTs in each 0.05° × 0.05° grid cell. Rivers and 

water bodies are shown in white and ecoregion borders in gray. 
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3.2. Environmental and Human Controls of EFT Richness 

As observed for species richness in the southern hemisphere [38], water availability, not energy, 

emerged as the main driver of EFT richness in natural ecosystems of temperate South America 

(Tables 1 and 2). Precipitation, distance to water bodies, frequency of wet days and percentage of the 

pixel occupied by water explained from 11 to 24% of the variability in the EFT richness. As 

precipitation values are mainly determined by geographic factors, the EFT richness pattern is 

correlated with regional climatic zones. However, the occurrence of water bodies, mainly rivers, 

increased EFT richness even in humid lands. Variables that combine both energy and water were also 

relevant, such as potential evapotranspiration and the seasonality of potential evapotranspiration and 

vapor pressure. This is particularly important in inlands, where there is low influence of oceans (e.g., 

Patagonian Steppe and Dry Chaco). Among the energy variables, only the diurnal temperature range 

and its seasonality show relatively low AIC and explain a deviance greater than 10%.  
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Table 1. Deviance explained by the different Poisson Generalized Linear Models fitted 

between EFT richness and each explanatory variable (x1 column) or its quadratic 

transformation (x2 column). Models were compared across a gradient of the Human 

Influence Index (HII): Natural ecosystems (0 < HII < 10), mixed (10 < HII < 20) and 

anthropogenic systems (20 < HII < 40). Deviances are shown where p-values for the 

ANOVA Chi2 tests are lower than 0.01. The color scale is used to visualize, in green, those 

models that cumulated the greatest explained deviances and, in red, the lowest within the 

same category of human influence. 

Explained Deviance Natural.x1 Natural.x2 Mix.x1 Mix.x2 Anthropogenic.x1 Anthropogenic.x2 

W
at

er
 

%Water Bodies 0.09 0.11 0.06 0.06 0.13 0.13

Dist2Wat 0.15 0.17 0.01 0.03 0.04 0.06

Precipitation 0.14 0.24 0.03 0.10

WetDaysFrq 0.15 0.16 0.01 0.06

sCV_Pre 0.09 0.09   0.05     

W
at

er
 -

 

E
ne

rg
y 

 

PET 0.19 0.22 0.05 0.05 0.03 0.03

sCV_PET 0.01 0.10 0.12 0.05

sCV_VapP 0.07 0.12 0.11 0.11 0.05 0.06

E
ne

rg
y 

Temperature 0.03 0.08   0.02     

DTR 0.13 0.13 0.01 0.04 0.04 0.05

sCV_Tmp 0.01 0.02 0.01 0.03

sCV_DTR 0.09 0.12 0.04 0.05

sCV_FrostFrq 0.02 0.02     0.03 0.03

Relief CV_Altitude 0.02 0.02 0.06 0.06 0.18 0.20

H
um

an
 in

fl
ue

nc
e %Croplands     0.02 0.02 0.15 0.15

%Pastures 0.06 0.07 0.01 0.03 0.04 0.07

HII 0.01

CV_%Cropland 0.07 0.07 0.02 0.06 0.16

CV_%Pastures 0.05 0.05 0.01

CV_HII 0.01 0.01     0.14 0.15
Dist2Wat: distance to water bodies, WetDaysFrq: wet days frequency, sCV_Pre: seasonal coefficient of variation of 
precipitation, PET: potential evapotranspiration, sCV_VapP: seasonal coefficient of variation of vapor pressure, 
DTR: diurnal temperature range, sCV_Tmp: seasonal coefficient of variation of temperature, sCV_DTR: seasonal 
coefficient of variation of diurnal temperature range, sCV_FrostFrq: seasonal coefficient of variation of frost 
frequency, CV_Altitude: spatial coefficient of variation of altitude, HII: human influence index. 

In anthropogenic systems, human land-use reduced the influence of environmental controls on the 

EFT richness. The most important variables explaining the spatial patterns of EFT richness in these 

systems were those related to human land-use and topography. Relief heterogeneity (CV_Alt) 

explained the greatest amount of variability, which illustrates how topography determines the range of 

possible human land-uses. The percentage of croplands and the spatial variability in human pressure 

were also relevant. Finally, the occurrence of water bodies also determined part of the variability of the 

EFT richness in anthropogenic systems.  

In mixed environments, those with a mosaic of both natural and human-influenced ecosystems, the 

variance explained decreased in comparison with both natural and anthropogenic systems. Only 
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precipitation and water-energy variables related to the seasonality of potential evapotranspiration and 

vapor pressure showed percentages of variance greater than 10% and relatively low AIC. 

Table 2. Akaike Information Criteria of the different Poisson Generalized Linear Models 

fitted between EFT richness and each explanatory variable (x1 column) or its quadratic 

transformation (x2 column). Models were compared across a gradient of the Human 

Influence Index (HII): Natural ecosystems (0 < HII < 10), mixed (10 < HII < 20) and 

anthropogenic systems (20 < HII < 40). The color scale is used to visualize, in green, those 

models that showed the lowest AIC values and, in red, the greatest within the same 

category of human influence. 

AIC Natural.x1 Natural.x2 Mix.x1 Mix.x2 Anthropogenic.x1 Anthropogenic.x2

W
at

er
 

%Water Bodies 5182 5151 6132 6127 2460 2462

Dist2Wat 5083 5046 6201 6172 2515 2507

Precipitation 5086 4908 6176 6074 2537 2531

WetDaysFrq 5076 5053 6207 6129 2536 2537

sCV_Pre 5192 5191 6218 6146 2538 2538

W
at

er
 -

 

E
ne

rg
y 

 

PET 5011 4943 6144 6141 2522 2522

sCV_PET 5331 5174 6221 6045 2530 2512

sCV_VapP 5217 5125 6049 6049 2506 2504

E
ne

rg
y 

Temperature 5286 5199 6213 6200 2536 2533

DTR 5120 5114 6206 6162 2514 2513

sCV_Tmp 5335 5305 6200 6186 2538 2539

sCV_DTR 5186 5128 6154 6150 2534 2534

sCV_FrostFrq 5314 5306 6223 6222 2522 2524

Relief CV_Altitude 5315 5312 6129 6130 2428 2423

H
um

an
 in

fl
ue

nc
e %Croplands 5346 5348 6195 6193 2452 2450

%Pastures 5234 5230 6206 6177 2517 2500

HII 5346 5331 6223 6216 2537 2532

CV_%Cropland 5214 5214 6213 6194 2503 2445

CV_%Pastures 5264 5261 6211 6212 2538 2540

CV_HII 5331 5324 6221 6223 2456 2449
Dist2Wat: distance to water bodies, WetDaysFrq: wet days frequency, sCV_Pre: seasonal coefficient of variation of 
precipitation, PET: potential evapotranspiration, sCV_VapP: seasonal coefficient of variation of vapor pressure, 
DTR: diurnal temperature range, sCV_Tmp: seasonal coefficient of variation of temperature, sCV_DTR: seasonal 
coefficient of variation of diurnal temperature range, sCV_FrostFrq: seasonal coefficient of variation of frost 
frequency, CV_Altitude: spatial coefficient of variation of altitude, HII: human influence index. 

3.3. Sense of the Relationships between the EFT Richness and the Explanatory Variables 

In general, water availability increased EFT richness (Figure 5), particularly in natural systems 

(Figure 5(a,d,g,j)). The positive effect of the percentage of water bodies was observed across the 

human-influence gradient, which agrees with the observed spatial pattern of high EFT richness along 

major rivers and water bodies in Figure 4. In natural ecosystems, the presence of surface water not 

only tended to increase EFT richness locally in those pixels, but also in neighbor pixels (Figure 5(d)), 

resulting in decreasing richness with increasing distance to water bodies. Clear examples of this effect 

are the great EFT richness values observed along major rivers (such as Parana, Uruguay, Río Negro 
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and Río Colorado) and in flooded ecosystems (such as in Pantanal and Beni Savanna ecoregions). 

Precipitation and frequency of wet days showed similar positive effects on EFT richness, particularly 

in natural ecosystems, where they saturate with very humid conditions (over 1500 mm of precipitation, 

Figure 5(g,j)). In mixed and anthropogenic systems, precipitation and wet day frequency tended to 

increase EFT richness particularly in dry conditions, but the effect became negative in humid 

conditions (over 1,000–1,200 mm of rain). 

Figure 5. Relationship between EFT richness and “water availability” variables. The sense 

of the effect was visualized by using warmer colors for high point density and Local 

Polynomial Regression Fitting (LOESS) on the 10th, 50th and 90th percentile. Relationships 

were compared across a Human Influence Index (HII) gradient: natural (HII < 10), mixed 

(10 < HII < 20) and anthropogenic systems (HII > 20). PctWatBodies: % of water bodies; 

Dist2Wat: distance to water; Pre: precipitation; WetDaysFrq: wet days frequency. 

Natural Mixed Anthropogenic

 
(a) (b) (c) 

 
(d) (e) (f) 

 
(g) (h) (i) 
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Figure 5. Cont. 

(j) (k) (l) 

Explanatory variables associated with both energy and water availability, such as potential 

evapotranspiration, tended to be negatively correlated with EFT richness (Figure 6(a–c)): the greater 

the mean annual potential evapotranspiration, the lower the EFT richness, particularly in natural 

ecosystems. On the other hand, low seasonality in either potential evapotranspiration or vapor pressure 

was associated with high EFT richness, particularly in natural and mixed systems (Figure 6(d,e,g,h)).  

From the set of energy-related variables, only temperature showed a positive effect on EFT richness 

across natural and mixed ecosystems (Figure 7(a,b)). This positive effect of temperature on EFT 

richness was particularly noticeable in warmer locations (temperature greater than 20 °C). Increased 

diurnal temperature range had a negative effect on EFT richness (Figure 7(d)), while seasonal 

differences in the diurnal temperature range were positively related to EFT richness (Figure 7(g–i)).  

Relief heterogeneity showed a clear positive effect on EFT richness in human-influenced 

ecosystems (both anthropogenic and mixed, Figure 7(k,l)) and in natural ecosystems that occurred on 

irregular terrains (altitude coefficient of variation greater than 20%; Figure 7(j)). However, in natural 

ecosystems that occurred on smooth relief (up to a 10% of terrain altitude coefficients of variation), 

relief heterogeneity was negatively related to EFT richness (Figure 7(j)). 

The effect of the percentage of area occupied by crops on EFT richness varied from being positive 

at the early stages of cropland expansion, to negative when croplands started to spread out and 

dominate the landscape (Figure 8(a–c)). The introduction of croplands in a natural landscape at very 

low densities, up to 5% of natural vegetation replaced by crops (0.05 in the graph), showed a positive 

relationship with EFT richness, (Figure 8(a,b)). However, replacing more than 10% of natural 

vegetation by crops had a clear negative effect on EFT richness (Figure 8(b,c)). In contrast to crops, 

pasture maintained a positive relationship with EFT richness in natural ecosystems both at low and 

high percentages of pastured land (Figure 8(d)). In mixed and anthropogenic systems, such a positive 

effect of pasture on EFT richness occurred, just up to 40% of the cell being occupied by pastures 

(Figure 8(e,f)). The effect on EFT richness of the spatial variability in the percentage of croplands or in 

the human influence index was unclear (Figure 8(g–k)). Only in anthropogenic areas, the spatial 

heterogeneity in human influence within a cell showed a positive relationship with EFT  

richness (Figure 8(l)). 
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Figure 6. Relationship between the EFT richness and “energy - water availability” variables. 

To visualize the sense of the effect, we used warmer colors for high point density and Local 

Polynomial Regression Fitting (LOESS) on the 10th, 50th and 90th percentile. Relationships 

were compared across a Human Influence Index (HII) gradient: natural ecosystems (HII < 10), 

mixed (10 < HII < 20) and anthropogenic systems (HII > 20). PET: potential 

evapotranspiration; sCV_PET: seasonal coefficient of variation of potential evapotranspiration; 

sCV_VapP: seasonal coefficient of variation of vapor pressure. 

Natural Mixed Anthropogenic 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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Figure 7. Relationship between the EFT richness and “energy” and “relief” variables. To 

visualize the sense of the effect, we used warmer colors for high point density and Local 

Polynomial Regression Fitting (LOESS) on the 10th, 50th and 90th percentiles. Relationships 

were compared across a Human Influence Index (HII) gradient: natural (HII < 10), mixed 

(10 < HII < 20) and anthropogenic systems (HII > 20). Tmp: temperature; DTR: diurnal 

temperature range; sCV_DTR: seasonal coefficient of variation of DTR. 

Natural Mixed Anthropogenic

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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Figure 7. Cont. 

(j) (k) (l) 

Figure 8. Relationship between the EFT richness and “human influence” variables. To 

visualize the sense of the effect, we used warmer colors for high point density and Local 

Polynomial Regression Fitting (LOESS) on the 10th, 50th and 90th percentiles. 

Relationships were compared across a gradient of Human Influence Index (HII): Natural 

ecosystems (HII < 10), mixed (10 < HII < 20) and anthropogenic systems (HII > 20). CV: 

spatial coefficient of variation; Pct: percentage. 

Natural Mixed Anthropogenic

(a) (b) (c) 

(d) (e) (f) 
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Figure 8. Cont. 

(g) (h) (i) 

(j) (k) (l) 

Moran’s I correlograms show significant spatial autocorrelation at the finest scale of analysis in the 

residuals of all models (Figure A1). However, autocorrelation strongly decreases within the first 

200 km and remains below 0.1 at 300 km and greater. This is indicative of the relatively high levels of 

unexplained deviance that remain after fitting very simple models (of just one single explanatory 

variable) across a very heterogeneous region. It is interesting to note that anthropogenic systems show 

the steepest decreases in spatial autocorrelation with distance and mixed systems the most gradual.  

4. Discussion  

The three components of biodiversity (composition, structure and function) at all levels of 

organization determine and, in fact, constitute the biodiversity of an area and should be considered in 

conservation efforts [1]. Recently, the ecosystem functioning dimension of biodiversity has gained 

attention [3] given that global change effects on biodiversity are particularly noticeable at the 

ecosystem level [4] and have a faster influence on functional than on structural or compositional 

characteristics of ecosystems [5,6]. Thus, understanding how environmental and human factors operate 

on the functional dimension of biodiversity at different scales is critical for sustaining and enhancing 

the Earth’s ecosystems. Here, we characterize the spatial patterns of functional diversity at the 

ecosystem level and provide evidence for the main controls of ecosystem functional diversity in 

temperate South America. Satellite-derived time-series of the Enhanced Vegetation Index were used to 

quantify functional diversity at the ecosystem level through the identification of Ecosystem Functional 

Types, defined here as ecological entities that have similar properties and dynamics of primary 

production. Numerous studies have successfully evaluated the use of remotely-sensed spectral 
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diversity to estimate species richness [79–83] and species beta-diversity [84,85]. Our study focused not 

on estimating the diversity of species composition or turn-over, but on assessing the diversity of 

ecosystem functioning.  

Our definition of EFTs is based on estimators of the seasonal dynamics of carbon gains, but remote 

sensing may provide additional functional variables to complement ecosystem functioning descriptions 

at the same and different spatial and temporal resolutions [3,86,87]. For instance, Fernández et al. [23] 

showed how adding shortwave albedo and surface temperature, two variables closely linked to the 

exchange of energy in ecosystems, to carbon gains descriptors helped to complement the ecosystem 

functioning characterization at more detailed spatial resolutions. Our EFT identification could have 

also been based on automatic algorithms (e.g., ISODATA or k-means, [8,23]) instead of on fixed-

limits between classes. However, when we assessed automatic unsupervised classifications with the 

three EVI traits, continuity in the final map was very low and biological interpretability of the classes 

was not straightforward. In addition, the limits between classes when using automatic algorithms 

change from year to year (since they depend on the input data). In contrast, once defined, our fixed-

limit classification approach allows for inter-annual comparisons, since we apply the same limits 

between classes in each year. 

EFT richness in temperate South America showed contrasting and aggregated patterns across 

geographic features and ecoregions, indicating that major controls of ecosystem functional diversity 

correlate with regional climatic zones. EFT richness patterns showed both the effect of large-scale 

geographical patterns, such as mountain ranges or flatlands and local scale features, such as rivers or 

lagoons. The presence and proximity of surface water along the main river valleys and Atlantic coastal 

lagoons locally increased EFT richness. Ecotones between major vegetation types and ecoregions also 

showed a local increase in EFT richness. This positive effect of ecotones on ecosystem functional 

diversity may play an important role in explaining regional beta-diversity patterns, since biome edges 

have been highlighted as global hotspots of congruence of high beta-diversity values for birds, 

amphibians and mammals [88].  

As was found to explain species richness patterns in the subtropical and warm temperate zones [38], 

water variables were revealed as the strongest control of EFT richness in natural and mixed systems, 

followed by water-energy balance variables. In addition, since the hydrological budget and the 

variability in temperature are the main driving factors that determine major vegetation types at global 

and regional scales [89,90], it was expected that the existence of biotic controls on EFT richness would 

be derived from the structure and composition of plant biodiversity. Thus, we found that ecoregions 

with the highest ecosystem functional diversity corresponded to humid forests and flooded ecosystems, 

particularly those that have a mosaic of forests and savannas with trees and shrubs [91,92]. However, 

ecoregions corresponding to grasslands and drylands showed the lowest EFT richness, which may be 

related to the role of frosts and droughts in constraining the diversity of plant species [37] and, hence, 

of ecosystem functional diversity.  

Human impacts on the landscape largely remove the influence of these environmental controls of 

EFT richness. Our analyses across large anthropogenic areas of South America provide additional 

evidence as to how human forces currently outweigh environmental drivers of ecosystem processes 

and biodiversity [58]. Variables related to livestock systems do not show significant influences on EFT 

richness. This lack of influence could be associated with the similarity of vegetation structure and 
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functioning between pastures and the vegetation type replaced (steppes, grasslands, dry forests or 

savannas). Such differences may become important for pastures derived from the clearing of humid 

forests. In contrast, the introduction of croplands and human developments clearly modified functional 

patterns of the landscape, with stronger effects on the seasonality of carbon gains than on total gains [93]. 

While low densities of croplands have positive effects on EFT richness, extending the coverage of 

croplands to over 5% of the land surface decreased ecosystem functional diversity. On the other hand, 

the increase of the spatial heterogeneity of different land-covers introduced by human land-uses, a 

main feature of anthropogenic systems [58], increased EFT richness. In this sense, the conversion of 

natural areas into croplands would only increase EFT richness if it increased the landscape spatial 

heterogeneity, which often occurs during the initial stages of cropland expansion. Another interesting 

point is the positive effect that pasture had on EFT richness, mainly at less than 20% of pastured area 

in natural ecosystems and 40% of pastured area in mixed and anthropogenic ecosystems.  

Since ecosystems are spatially structured, it is expected that environmental variables would show 

high levels of spatial autocorrelation [78]. In our analyses, anthropogenic systems showed the smallest 

residuals with regard to spatial autocorrelation. This reinforces our result that human influence has a 

greater effect on EFT richness in anthropogenic systems than other environmental variables have in 

natural or mixed systems, where the major drivers of EFT richness correspond to the regional climate. 

Previous studies also showed how human land-use strongly decouples the spatial pattern of ecosystem 

functions from that of energy and water climate variables [94]. In any case, the presence of spatial 

autocorrelation in the residuals after model fitting indicates the existence of systematic spatial patterns 

in data quality or of missing variables (e.g., [51,95,96]). For this reason, one should be cautious in 

interpreting those models that have both low explanatory power and high spatial autocorrelation  

in the residuals. 

5. Conclusions 

As far as we know, this is the first study that evaluates the main controls of functional diversity at 

the ecosystem level. Satellite-derived time-series of the Enhanced Vegetation Index were used to 

quantify the spatial patterns of ecosystem functional diversity in temperate South America through the 

identification of 64 Ecosystem Functional Types (EFTs), defined as ecological entities that have 

similar properties and dynamics of primary production. Our models of the relationship between EFT 

diversity and environmental variables are incomplete representations of factors influencing regional 

scale patterns of ecosystem functional diversity. However, our models highlight how the main drivers 

of EFT richness agree with those found for species richness. The models show that meaningful 

proportions of the variance in EFT richness can be accounted for by the single-effects of climate (up to 

24% explained by precipitation and 22% by potential evapotranspiration in natural environments), 

relief (20% explained by altitude coefficient of variation in anthropogenic environments) or  

human-influence (15% explained by the percentage of croplands in the landscape). Going back to our 

guiding hypotheses, we found general support for the consideration that water availability (24% 

variance explained by precipitation, 22% by distance to water and 16% by wet-days frequency) is the 

main limiting factor for EFT richness in natural environments of temperate South-America. It is 

followed by mixed water-energy (22% explained by potential evapotranspiration) and energy variables 
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(13% explained by diurnal temperature range) (Hypotheses H2a, H2b, H2c). Contrary to our 

expectations (H5), EFT richness is not strongly controlled by topographic roughness in natural 

environments (only 2% of explained deviance). However, in anthropogenic landscapes, the effects of 

both energy and water-related climate variables on EFT richness is largely removed (non-significant 

values of explained deviance), leaving human land-use (up to 16% deviance explained by the spatial 

variability of the percentage of croplands), relief heterogeneity (20% explained by altitude coefficient 

of variation) and the presence of surface water bodies (13% of explained deviance) as the main drivers 

of EFT richness. Temporal variability of climate did not show a clear effect on EFT richness (H3). 

While diurnal temperature range showed a negative relationship with EFT richness in natural 

environments, seasonality of the diurnal temperature range showed a weak positive effect. In contrast, 

seasonality of mixed water-energy variables (potential evapotranspiration and vapor pressure) showed 

a negative effect on EFT richness. In human influenced environments, the introduction of human land-

use has a positive effect on EFT richness at low rates of human pressure, but it switches to a negative 

effect at large or severe rates of human intervention (H4). For future work, our remote sensing 

approach to quantify functional diversity at the ecosystem level opens the possibility to evaluate how 

species diversity relates to ecosystem functional diversity and to determining if species and functional 

diversity show similar responses to environmental and human controls. 
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Appendix 

Figure A1. Moran’s I correlograms of the residuals obtained after fitting Generalized 

Linear Models (GLM) models to the relationship between EFT richness and different 

environmental variables using first (circles) and second (triangles) degree polynomials. 

Relationships were compared across a gradient of Human Influence Index (HII): Natural 

ecosystems (in black; HII < 10), mixed (in blue; 10 < HII < 20) and anthropogenic systems 

(in red; HII > 20). Significant Moran’s I values (p < 0.05; 100 resamples) are shown as 

solid symbols. (Same order as in Table 1). 
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