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Abstract: A Bayesian classifier mapped the Burned Area (BA) in the Northeastern Siberian boreal
forest (70◦N 120◦E–60◦N 170◦E) from 1982 to 2015. The algorithm selected the 0.05◦ (~5 km)
Long-Term Data Record (LTDR) version 3 and 4 data sets to generate 10-day BA composites.
Landsat-TM scenes of the entire study site in 2002, 2010, and 2011 assessed the spatial accuracy of this
LTDR-BA product, in comparison to Moderate-Resolution Imaging Spectroradiometer (MODIS)
MCD45A1 and MCD64A1 BA products. The LTDR-BA algorithm proves a reliable source to
quantify BA in this part of Siberia, where comprehensive BA remote sensing products since the
1980s are lacking. Once grouped by year and decade, this study explored the trends in fire activity.
The LTDR-BA estimates contained a high interannual variability with a maximum of 2.42 million ha in
2002, an average of 0.78 million ha/year, and a standard deviation of 0.61 million ha. Going from 6.36
in the 1980s to 10.21 million ha BA in the 2010s, there was a positive linear BA trend of approximately
1.28 million ha/decade during these last four decades in the Northeastern Siberian boreal forest.
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1. Introduction

Boreal forests contain as much as five times the carbon in temperate forests and almost double
that in tropical forests [1–4]. Boreal forests act as giant storehouses of carbon emissions to play
a vital role in the global carbon cycle and in regulating climate change [5,6]. However, large and
recurrent wildfires, one of the most important disturbances that affect boreal forests, have just the
opposite effect, increasing gas emissions and changing the forests’ biophysical characteristics [7–9].
Therefore, the estimation of Burned Areas (BA) is fundamental to quantifying the role of wildfire in
the climate system. In fact, research efforts are increasing in attempts to fully understand this role.
At a regional scale, the Canadian-based Boreal Ecosystem-Atmosphere Study (BOREAS) seeks to
improve predictions of the CO2 stored in boreal forests and analyzes satellite data to adjust simulations
and to anticipate the impact, interactions, and its effects on climate change [10–12]. At a global
scale, the programs that stand out in this regard are the Global Observation of Forest and Landcover
Dynamics (GOFC/GOLD) under the Global Terrestrial Observing System (GTOS) and the International
Geosphere–Biosphere Program (IGBP).
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Currently, several satellite missions provide researchers with daily imagery and higher-level land
and atmosphere products required to implement accurate algorithms to map BA globally [13–16].
The Moderate-Resolution Imaging Spectroradiometer (MODIS) onboard the National Aeronautics
and Space Administration’s (NASA) Terra and Aqua satellites, the Advanced Very High Resolution
Radiometer (AVHRR) onboard the series of National Oceanic and Atmospheric Administration
(NOAA) satellites, and VEGETATION (VGT) onboard Systeme Pour I’Observation de la Terre (SPOT)
4 and 5 satellites are examples of such initiatives.

Multiple algorithms have mapped BA from remote sensing data since the mid-1980s, both locally
and globally. The most widely used methods detect spectral changes in land cover from pairs of pre-
and post-fire images. In a recent study, Huang et al. [17] found that near-infrared (NIR), red-edge,
and shortwave infrared (SWIR) bands are the most sensitive to the change in reflectance caused by
wildfires. These results are in line with the findings of other similar studies that apply vegetation
indices specifically designed to map BA [18–21]. Other algorithms develop strategies based on the
temperature difference between active fires and their cooler surroundings [22–24]. However, it is
very difficult to accurately estimate the actual BA with this methodology, unless the radiometric,
spatial, and temporal resolutions of the remote sensor are in accordance with the temperature, size,
and duration of the fire [25–28]. Finally, hybrid algorithms combine both of the previous methods and
can successfully map BA [22,25,29–31].

There are several global BA products based on satellite data [32]. For their reliability and period
covered, the best BA products come from MODIS Collections 5 and 5.1 (MCD45A1) and Collection 6
(MCD64A1) [22,33–35] from the year 2000 onwards; the Global Fire Emissions Database version 4
(GFED-4) BA available from mid-1995 through the present [36] and considered the longest global BA
product currently available; and the most recent MODIS product, Fire_cci v5.0, that will be available
for years 2001 to 2016 [37].

The enhanced temporal, spatial, and spectral resolutions of the products previously defined and
the availability of supporting geospatial datasets for validation have rendered many studies that
mapped BA in boreal forest in North America [19,38–44]. However, BA satellite remote sensing in
Siberia is scarce [45–48]. This region lacks validation datasets [49] because wildfire records are poorly
documented [13,50,51]. In addition, BA estimations from satellite data show strong discrepancies
from those reported in the official records [14,16,47,48,52,53]. Goldammer et al. [54] indicate that these
disagreements are due to the lack of financial resources that limit the authorities from monitoring
wildfires, the large extent of Siberia, and the diverse vegetation types.

Wildfires are a natural phenomenon in the boreal forests of Siberia. Most of these fires occur during
the fire season that runs from May to August. Wildfire frequency correlates with air temperature
anomalies and the Standardized Precipitation Evapotranspiration Index (SPEI) [51]. Historically,
human activities have altered that natural fire regime [55]. Official statistics in Russia indicate that
humans cause more than 65 percent of fires and lightning strikes cause about 17 percent. The remaining
fires reported as unknown cause were also mostly due to lightning. Nevertheless, lightning is not such
a critical fire cause in other fire-prone regions like the Mediterranean Basin. For example, Vazquez and
Moreno [56] reported lightning as the cause of only 3.3% of fires in Spain from the year 1974 to 1994.

Despite the absence of accurate data, it is clear that the boreal forest fires in Siberia cause smoke
pollution in large areas. The consequent risk to human health and other negative impacts to this
ecosystem lack a corresponding protection and prevention plan. Nevertheless, its worst contribution
refers to the increase in global CO2 emissions, which in turn can significantly increase the occurrence
of fires and cause a positive feedback for CO2 and global temperatures. The Intergovernmental Panel
on Climate Change predicts that Siberia will be one of most-affected regions from climate change [57].
Therefore, it is essential to have reliable information on the number of fires and the area burned to
assess the conversion of Siberian boreal forests from a carbon sink to a carbon source.

The goal of the present study is to map BA in the Northeastern Siberian boreal forest. The proposed
method applies a Bayesian network algorithm to the Long-Term Data Record (LTDR) from NASA.
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The LTDR is the longest global daily dataset available for use in climate studies. The LTDR produces
a consistent long-term dataset at a spatial resolution of 0.05◦ (~5 km) based on daily data from
the AVHRR on board NOAA satellites, and daily data acquired by MODIS onboard NASA’s Terra
and Aqua satellites [58]. This unique remote sensing data time series can help us to monitor and
understand wildfires [59], climate, and vegetation interaction. The BA product generated here, named
LTDR-BA, is compared to other BA products such as MCD45A1, MCD64A1, and GFED-4. Furthermore,
Landsat-TM scenes evaluated the spatial accuracy of these products in 2002, 2010, and 2011. Siberia
lacks validation data for the pre-MODIS era (1982–1999). Hence, we also tested the algorithm’s
performance in neighboring Alaska to ensure consistency between the pre- and post-MODIS eras.

2. Materials and Methods

2.1. Study Area

The Northeastern Siberian boreal forest study region in Figure 1 contains boreal forest similar
to its neighbor Alaska. It consists mostly of rather small Larix Mill. (larch) conifers due to the severe
subarctic continental climate. The mean annual precipitation runs from 1800 mm in the driest interior
valleys to 3000 mm in the mountains. The maximum precipitation occurs in mid to late summers.
The low evapotranspiration rates support the forest vegetation throughout the region. Temperatures
at valley locations can reach 20 ◦C in the summer and −30 ◦C in the winter, decreasing with elevation
and increasing with coastal proximity [60].
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2.2. LTDR Data Preprocessing

A NASA server provides the daily global LTDR version 4 (1981–2016) and version 3 continuation
dataset (2000–2008) (https://ltdr.nascom.nasa.gov/cgi-bin/ltdr/ltdrPage.cgi). The files in hierarchical
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data format (HDF) contain separate Scientific Data Sets (SDS). All SDS arrays cover the globe at a 0.05◦

spatial resolution as a Climate Modeling Grid (CMG) with 7200 × 3600 pixels. Further processing
included the conversion from HDF to a binary sequential (BSQ) format (Table 1). Transformation to
physical values considered the quality assessment (QA) fields to filter clouds. The Clouds from AVHRR
Phase I (CLAVR-1) algorithm generated a cloud mask from the cloud flag in QA fields of the Daily
Surface Reflectance product (AVH09C1) [61]. The CLAVR-1 is a pixel-level cloud mask that combines
all of the spectral information from AVHRR. Missing and invalid values found in LTDR v4, from the
NOAA-16 and 18 satellites from 2000 to 2008, made the MODIS-based LTDR v3 (continuation) the
preferred choice for this period. The maximum brightness temperature T criterion constructed 10-day
composites from the LTDR-BSQ files for the entire study period. The objective of this step was mainly
to eliminate atmospheric effects, such as residual clouds and cloud shadows, present in the images
that could interfere with the discrimination of the burned pixels [62,63]. This composition criterion
achieved the highest performance in discerning burned/unburned area in the study region [63].

Table 1. Long-Term Data Record (LTDR)-binary sequential (BSQ) and their respective bands from the
original LTDR-hierarchical data format (HDF) files.

LTDR-BSQ (1981–2016) LTDR-HDF

Band Name Description LTDR v4
(1981–1999, 2009–2016)

LTDR v3 (Continuation)
(2000–2008)

ρ1
Surface reflectance for red

channel (RED)
SREFL_CH1
(0.5–0.7 µm)

Bidirectional Reflectance Distribution
Function (BRDF) corrected surface

reflectance Band 1
(0.62–0.67 µm)

ρ2
Surface reflectance for near

infrared channel (NIR)
SREFL_CH2
(0.7–1.0 µm)

BRDF corrected surface reflectance Band 2
(0.84–0.88 µm)

T Top of Atmosphere (TOA)
brightness temperature

BT_CH3
(3.55–3.93 µm)

Brightness temperature Band 31
(10.78–11.28 µm)

QA Quality assessment field QA Internal CM

2.3. BA Algorithm

The BA algorithm (Figure 2) identifies potential fire dates for a given year using the highest
burned boreal forest index criterion (BBFI) from the 10-day composite LTDR-BSQ files [42]. Following
Moreno-Ruiz et al. [64], the algorithm calculates a set of twelve statistical variables based on the surface
reflectance bands ρ1 and ρ2, the brightness temperature T, BBFI, and Global Environmental Monitoring
Index (GEMI), whose expressions are BBFI = (1/ρ2 + T/2), GEMI = η(1 − 0.25η) − (ρ1 − 0.125)/(1 − ρ1)
where η = [2(ρ2

2 − ρ1
2) + 1.5ρ2 + 0.5ρ1]/(ρ2 + ρ1 + 0.5), for the pre-fire and post-fire 10-day composite of

potential fire dates for the fire event year, the year before, and the year after.
The twelve parameters are grouped in three categories. The first one detects burned pixels with

vegetation in the year of the fire. The algorithm selects the variables that measure the maxima of BBFI,
GEMI, and T; the differences of the medians of GEMI before and after the fire; and the minimum of
ρ2 in the year of the fire. The second category detects nonburned pixels in the year before the fire.
The variables in this category measure the differences in the GEMI, BBFI, and ρ2 indices’ medians
between the post-fire period of the year the fire occurred in and the previous year, as well as the
maximum value of the BBFI index for the year before the fire. The third category finds the remaining
burned pixels in the year after the fire. The variables in this category measure the maximum of BBFI
and T in the year after the fire, together with the difference of the medians of the GEMI index between
the year of the fire and the year after.

A Bayesian network classifier calculated the normalized probability for unburned/burned
classes using a training set based on unburned/burned reference data for the study region
in the year 2010. The higher positive pixels indicated a higher classification probability as
a burned pixel. This normalized probability is computed by multiplying the individual conditional
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probabilities for each selected statistical variable and burned/unburned class based on the training set.
The Bayesian network classifier is available within the Waikato Environment for Knowledge Analysis
(WEKA) machine learning package (http://www.cs.waikato.ac.nz/~ml/index.html, last accessed
on 3 December 2017). The algorithm also applies neighborhood conditions for spatial coherence to
minimize commission and omission errors. Isolated burned pixels are downgraded to an unburned
class whereas low-probability burned pixels surrounded by burned neighbors are upgraded to
a burned class. The resulting probability maps label pixels as burned when their probability value is
greater than 0. Annual burned/nonburned maps combined the output from the 10-day composites,
after transforming to an Albers conical equal area projection with 5 km pixels.
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later to obtain annual maps of burned area (b).

2.4. BA Time Series

The LTDR-BA product requires variables from the year, and those before and after. Therefore,
it generated BA for the Northeastern Siberian boreal forest from 1982 to 2015 with data from 1981
to 2016. A comparison to other products, such as MCD45A1, MCD64A1, and GFED-4, assured the
LTDR-BA’s performance. These products were not always available for the entire LTDR-BA period
(Table 2). The University of Maryland FTP site stores these datasets (ftp://fuoco.geog.umd.edu/).
These monthly BA images needed merging to generate annual BA maps and reprojection to Albers
conical equal area, to minimize distortions and maintain equivalent square shapes [39]. The MCD45A1
(Collection 5.1) contains the burn date and detection confidence levels 1 through 4. The MCD64A1
(Collection 6) has five layers: the burn date, the burn date uncertainty, the quality assurance, and the
first and last burning days. The GFED-4 includes seven layers: the BA (ha/100), the BA uncertainty,
the source, the tree cover distribution, the land cover distribution, the fire persistence, and the peat
fraction. The LTDR-BA comparison to GFED-4 included only from 1995 to 2000, since GFED-4 uses
MCD64A1 after year 2000.

http://www.cs.waikato.ac.nz/~ml/index.html
ftp://fuoco.geog.umd.edu/
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Table 2. Comparison between MCD45A1, MCD64A1, GFED-4, and LTDR Burned Area (BA) products
for this study.

BA Product MCD45A1 MCD64A1 GFED-4 LTDR-BA

Coverage Global Global Global NE Siberia
Sensor MODIS MODIS VIRS and ATSR (*) AVHRR, MODIS

Satellite Terra and Aqua Terra and Aqua ERS (*) NOAA, Terra and Aqua
Time span 2000–2015 2000–2015 1995–2000 1982–2015

Spatial resolution 500 m 500 m 0.25◦ (~25 km) 0.05◦ (~5 km)
Temporal resolution Monthly Monthly Monthly 10 days

Algorithm [34] [22] [36] [64]
(*) VIRS: Visible and Infra Red Scanner; ATSR: Along Track Scanning Radiometer; ERS: European Remote Sensing.

2.5. Accuracy Assessment of LTDR-BA

The existence of BA products with higher spatial resolutions in the MODIS era split the analysis
into before and after the year 2000 to assess the LTDR-BA accuracy. This assessment plotted annual
LTDR-BA in comparison with MCD45A1 and MCD64A1 for the MODIS era. The test also included
correlation analysis between the products. The lack of official BA data in the study region made it
necessary to build a reference BA for years 2002, 2010, and 2011 with a large set of 152 Landsat-TM
images obtained from the United States Geological Survey (USGS)-provided pre- and post-fire
information at 30 m spatial resolution (Table 3). The year 2010 was selected because it trained
the LTDR-BA algorithm and the other two years because they rendered the highest discrepancies
between LTDR-BA and MCD64A1. Expert visual interpretation identified and delineated fires over
1000 ha. The interpreter visualized pre- and post-fire false color Landsat-TM composites with bands 7
(2.09–2.35 µm), 4 (0.77–0.90 µm), and 3 (0.63–0.69 µm). The following step was to resample the results
to 500 m and transform to Albers conical equal area projection. A linear regression between the annual
BA products and the reference evaluated the BA proportions on 50 km × 50 km grids. The distribution
of these grids was uniform over the entire region. The commission and omission errors gathered the
data at this 50 km spatial resolution, to prevent errors due to co-georeferencing of the images [43].

Table 3. Reference BA data from Landsat-TM images.

Year Number of
Fires Identified

Number of Landsat-TM
Images Used

Total BA
(ha)

BA by Fire (ha)

Median First Quartile Third Quartile

2002 113 66 4,103,748.09 7554.06 3996.63 24,199.38
2010 88 53 1,940,381.73 8198.37 3998.43 18,308.70
2011 58 33 1,176,964.11 5909.22 3575.07 17,997.93
Total 259 152 7,221,093.93 7562.29 3915.22 20,290.22

Landsat-TM images in the USGS database are scarce for the pre-MODIS era in the Northeastern
Siberian region. Consequently, the LTDR-BA algorithm tested its consistency in Alaska since it is
close to Siberia and similar in latitude, vegetation, and weather conditions. Cloud cover frequency
could differ between Siberia and Alaska, but the selection of the best cloud-free radiometric values
from 10-day composites minimizes the possible impact of this factor. Ground truth data from the
Alaskan Fire Service (AFS) are available [39,42,65–67]. The 1982–1999 fire polygons registered in the
AFS database served as the BA ground truth for the Alaskan region (70◦N, 168.5◦E, 60◦N, −141◦E).
The maximum area within the pixel was assigned a burned/nonburned value after resampling the
results to 500 m and transforming to Albers conical equal area projection. These reference annual BA
maps used the percentage BA at the subpixel level to aggregate to 5 km. The accuracy assessment
plotted annual LTDR-BA in comparison with the AFS dataset. The test also included correlation
analysis between them. The comparison to GFED-4 was also possible since 1995, not only for Alaska
but also for the Northeastern Siberian region.
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3. Results

3.1. Annual NE Siberian Boreal Forest LTDR-BA Maps for the Period 1982–2015

The LTDR-BA algorithm generated annual maps of the Northeastern Siberian boreal forest for
the 1982–2015 period. Grouping BA by decade in Figure 3 demonstrates the largest BA in the 2000s.
Furthermore, a linear regression model built with normalized BA suggests a positive trend in BA
with time (R2 = 0.8335, slope = 128,323.5, intersect = −247,719,953 and p-value < 0.1) (Figure 4).
This normalization process assigns the average BA/year of its decade to the years with no data.
Therefore, 1980 and 1981 receive the average BA/year from the 1980s decade and 2016, 2017, 2018,
and 2019 take that from the 2010s. The LTDR-BA estimated approximately 27.49 million ha for the
1982–2015 period with an uneven annual distribution. The largest BA of 2.63 million ha occurred in
2002, whereas the lowest was in 2004, with only 0.14 million ha (Figure 5). MCD64A1 estimated the
largest annual BA values, followed by LTDR-BA and MCD45A1. The highest discrepancy among
the products happened in 2002, which was the year with the largest BA. The R2 between MCD64A1
and MCD45A1, and LTDR-BA in the common period (2000–2015) were 0.929 and 0.890, respectively.
GFED-4 estimated larger annual BA than LTDR-BA in the period of overlap (1995–2000), with higher
discrepancies in 1996 and 1998 and a lower R2 of 0.438. The LTDR-BA and GFED-4 estimated similar
BA for the year 2000, larger than the other two BA products.
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BA products.

3.2. Accuracy Assessment of LTDR-BA

The BA accuracy assessment with the Landsat-TM images for 2002, 2010, and 2011 in Table 4
revealed that MCD64A1 performed the best (88.80%), followed by LTDR-BA (64.68%) and MCD45A1
(43.51%). It is worth mentioning that the three products obtained the lowest total BA in 2011. This year
had also a more fragmented BA, with smaller fire sizes. The R2 between the MCD45A1, MCD64A1,
and LTDR-BA, and the reference Landsat-TM in 50 km × 50 km grids also indicated higher R2 and
a slope closer to 1 for MCD64A1, followed by LTDR-BA and MCD45A1 (Figure 6). LTDR-BA incurred
the highest commission errors, while MCD45A1 rendered the highest omission errors (Table 5).

Table 4. Relative MCD45A1, MCD64A1, and LTDR BA percentages versus the reference Landsat-TM
data for the Northeastern Siberian boreal region in 2002, 2010, and 2011.

Year Landsat-TM (ha) MCD45A1 (%) MCD64A1 (%) LTDR (%)

2002 4,103,748.09 39.37 87.82 64.03
2010 1,940,381.73 59.96 97.34 82.55
2011 1,176,964.11 30.85 78.15 37.47
Total 7,221,093.93 43.51 88.80 64.68

Table 5. Commission (CE) and omission (OE) errors (%) for MCD45A1, MCD64A1, and LTDR BA
products versus the reference Landsat-TM data for the Northeastern Siberian boreal region in 2002,
2010, and 2011.

MCD45A1 MCD64A1 LTDR-BA

Year CE (%) OE (%) CE (%) OE (%) CE (%) OE (%)

2002 3 61 9 18 6 38
2010 4 42 16 18 22 34
2011 13 70 39 48 43 77
All 5 57 15 23 15 43
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Figure 6. Scattering plots of the BA proportions in 50 km × 50 km grids from the different BA
products vs reference data for years 2002, 2010, and 2011 for the Northeastern Siberian boreal region.
p-value < 0.001 for all cases.
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The AFS database registered approximately 5.56 million ha BA in the 1982–1999 period for the
Alaskan boreal region, with an uneven annual distribution (Figure 7). The largest BA of 1.29 million ha
occurred in 1990, whereas the lowest was in 1995, with only 0.02 million ha burned. The LTDR-BA
product trained in the Northeastern Siberian boreal region followed the AFS BA pattern, with an
overall underestimation. This was not the case for the GFED-4 product, since it reported a similar total
BA from 1995 to 1999. The highest discrepancy between LTDR-BA and AFS occurred in 1997, when the
overall R2 was 0.898.
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4. Discussion

Annual LTDR-BA estimations are comparable to other BA products with higher spatial resolutions,
like MCD45A1 and MCD64A1 in the MODIS era (Tables 4 and 5 and Figures 5 and 6). Furthermore,
the LTDR-BA dataset provides the largest BA time series for the Northeastern Siberian boreal
region from remote sensing data from 1982 to 2015. No other reliable BA sources for this study
region are available in the pre-MODIS era. Over 20 million ha burned throughout the Russian
Federation in the period 1982–1999, according to the official data provided by Avialesookhrana
(https://www.fire.uni-freiburg.de/iffn/iffn_37/15-IFFN-37-Russia.pdf). Nevertheless, LTDR-BA
detected 12 million ha in the Northeastern region of Siberia alone. Other studies also confirm high
discrepancies with the official data. For example, Conard et al. [68] estimated 13.3 million ha burned in
the year 1998 in Russia from AVHRR data, compared to the 3 million ha registered by Avialesookhrana.
Additionally, Sukhinin et al. [48] also estimated 4.2 times the official area from AVHRR images in the
period 1996–2002.

The detailed analysis for the years 2002, 2010, and 2011 shows significant variability among the
positional accuracy of the BA estimations, with the worst results in 2011, especially for the LTDR-BA
product. The count, size, fragmentation, and severity of the fires registered that year could explain
these higher errors. Moreno-Ruiz et al. [43] also found similar variability in their BA accuracy analysis
for the North American boreal region. In addition, the analysis of the scatter plots of the different
products versus the reference Landsat-TM data using 50 km × 50 km grids in Figure 6 reveals that
the average determination coefficients of the linear regression model of the BA percentage versus the
reference data are similar.

LTDR-BA rendered a 15% commission error (Table 5). This value is similar to that for the official
MCD64A1 MODIS product. In contrast, the 43% omission error is relatively large in comparison to the
23% of the MCD64A1, but still lower than the 57% of the MCD45A1 product. Moreno-Ruiz et al. [43]
analyzed the Pareto boundaries for the North American BA from Alaska and Canada reference data
versus the LTDR-BA product. They demonstrated that the main contribution to the commission and
omission errors came from the low data spatial resolution in relation to the BA size. This fact leaves
little room for LTDR-BA algorithm improvement, whereas other algorithms applied to higher spatial
resolutions like MODIS could benefit from further development.

https://www.fire.uni-freiburg.de/iffn/iffn_37/15-IFFN-37-Russia.pdf
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LTDR-BA and MCD64A1 products have a coincident temporal pattern for the MODIS era.
The 2000–2008 period shows the greatest discrepancy between them, corresponding to the use of
LTDR version 3 (continuation) obtained from the MODIS. During these years, it was not possible to
select LTDR version 4 obtained from AVHRR-NOAA N16 and N18, due to the lack of radiometric
coherence and missing data. Given that version 3 (continuation) lacks the corresponding T3
channel of AVHRR, LTDR-BA had to process the MODIS channel equivalent to the T4 channel.
This band is less sensitive to the active fire response, which resulted in a lower BA estimate [43,69].
Additionally, it should also be noted that the Bayesian algorithm makes use of the year prior to the
occurrence of fire to reduce false detections. The MODIS sensor was not operational in June of 2001
(https://modaps.modaps.eosdis.nasa.gov/services/production/outages_terra.html), which also has
a negative influence on the results of the algorithm for the year 2002.

The Alaskan boreal region served to validate the LTDR-BA for the pre-MODIS era, since there are
no reference values available in Northeastern Siberia for these years. There was a strong correlation
between the LTDR-BA data and the reference AFS data (Figure 7). In contrast, GFED-4 data did not
match the LTDR-BA data, nor the reference AFS. GFED-4 and LTDR-BA adjust particularly well for
this period in Northeastern Siberia. Years 1995–1999 correspond to AVHRR-N14 in the LTDR data set.
A poor adjustment of the calibration coefficients occurred due to the degradation of N14 channels 1
and 2 [70].

Decadal LTDR-BA projections for the Northeastern Siberian boreal region indicate a linear increase
of 1.28 million ha/decade. Alaska rendered similar results from the AFS with a linear increase of
1.83 million ha/decade. The LTDR-BA time series delivered a high correlation (R2 = 0.898) with the
AFS database in Alaska in the period 1982–2015 (Figure 6). The estimated linear increase for Alaska
would be 1.58 million ha/decade, similar to that obtained in Siberia. These results suggest that the
effect of fire on boreal forests has a homogeneous incremental pattern of area burned over the last four
decades. Numerous studies on global also change estimate growing fire activity in boreal regions as
a result of global warming [71–73]. Extrapolating this trend to the entire boreal region (North America
and Eurasia) results in a total increase of about 50 million ha of BA per decade.

5. Conclusions

This study built a comprehensive BA time series (1982–2015) for the Northeastern Siberian boreal
region using a Bayesian network algorithm from the LTDR v3 continuation and v4 datasets at 0.05◦

spatial resolution. This time series is the longest developed for this region. It constitutes a unique data
source for the pre-MODIS era (1980s and 1990s) for long-term studies of fire dynamics in this region.

The LTDR-BA product showed comparable results in terms of spatial and temporal accuracy with
other BA products with higher spatial resolution such as MCD45A1 and MCD64A1, where the latter
obtained the overall best results. The LTDR-BA, MCD64A1, and MCD45A1 products underestimated
BA in comparison with the reference Landsat-TM scenes for 2002, 2010, and 2011 by 35%, 11%, and 56%,
respectively. The annual BA distributions follow a similar temporal pattern, with over 0.95 R2.

The LTDR-BA algorithm trained in Northeastern Siberia underestimated BA in Alaska for the
pre-MODIS era by approximately 45%, with respect to the ground truth data obtained from the AFS.
The annual BA distributions followed a similar temporal pattern, with over 0.95 R2. Consequently,
this study infers a BA underestimation for Northeastern Siberia of between 35% and 45%. LTDR-BA
followed a similar temporal pattern to the GFED-4 for the available years 1995–1999. This product
becomes a reliable source for the 1980s and 1990s, when other products with a higher spatial/spectral
resolution like MCD64A1 and MCD45A1 are not available. It is also the longest continuous BA time
series for this region. As a result, almost four decades of LTDR-BA data grouped by year and decade
estimated a linear increase in BA of 1.28 million ha/decade. This increasing trend provides new
evidence of how global warning affects fire activity in the Northeastern Siberian boreal forest.

https://modaps.modaps.eosdis.nasa.gov/services/production/outages_terra.html
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Supplementary Materials: Fire polygons from Landsat imagery, used as reference BA for years 2002, 2010 and
2011 to assess the accuracy of LTDR-BA, are available online at http://www.mdpi.com/2072-4292/10/6/940/s1.

Author Contributions: J.R.G.-L. and J.A.M.-R. conceived, designed, and applied the methodology, and obtained
the results. All authors analyzed and discussed the results; D.R. and M.A. in collaboration with the rest of authors
wrote and contributed to the editing of the manuscript.

Funding: The Spanish Ministry of Economy and Competitiveness funded this work through the coordinated
project CGL2013-48202-C02-02.

Acknowledgments: We wish to thank the peer reviewers for their valuable comments and suggestions. We also
thank the LTDR project and its team for making the data available, and NASA, NOAA and USGS for processing
and distributing the MCD45A1, MCD64A1, GFED4, and LTDR datasets.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bonan, G.B.; Pollard, D.; Thompson, S.L. Effects of Boreal Forest Vegetation on Global Climate. Nature 1992,
359, 716–718. [CrossRef]

2. Fuchs, H.; Magdon, P.; Kleinn, C.; Flessa, H. Estimating aboveground carbon in a catchment of the Siberian
forest tundra: Combining satellite imagery and field inventory. Remote Sens. Environ. 2009, 113, 518–531.
[CrossRef]

3. Kasischke, E.; Christensen, N.J.; Stocks, B. Fire, global warming, and the carbon balance of boreal forests.
Ecol. Appl. 1995, 5, 437–451. [CrossRef]

4. Shuman, J.K.; Shugart, H.H.; O’Halloran, T.L. Sensitivity of Siberian larch forests to climate change.
Glob. Chang. Biol. 2011, 17, 2370–2384. [CrossRef]

5. Chapin, F.S.; Mcguire, A.D.; Randerson, J.; Pielke, R.; Baldocchi, D.; Hobbie, S.E.; Roulet, N.; Eugster, W.;
Kasischke, E.; Rastetter, E.B.; et al. Arctic and boreal ecosystems of western North America as components of
the climate system. Glob. Chang. Biol. 2000, 6, 211–223. [CrossRef]

6. Kasischke, E.S.; Hyer, E.J.; Novelli, P.C.; Bruhwiler, L.P.; French, N.H.F.; Sukhinin, A.I.; Hewson, J.H.;
Stocks, B.J. Influences of boreal fire emissions on Northern Hemisphere atmospheric carbon and carbon
monoxide. Glob. Biogeochem. Cycles 2005, 19, 1–16. [CrossRef]

7. Ahlgren, I.F.; Ahlgren, C.E. Ecological effects of forest fires. Bot. Rev. 1960, 26, 483–533. [CrossRef]
8. Harden, J.W.; Trumbore, S.E.; Stocks, B.J.; Hirsch, A.; Gower, S.T.; O’Neill, K.P.; Kasischke, E.S. The role of

fire in the boreal carbon budget. Glob. Chang. Biol. 2000, 6, 174–184. [CrossRef]
9. Kasischke, E.S.; Stocks, B.J. Fire, Climate Change, and Carbon Cycling in the Boreal Forest; Kasischke, E.S.,

Stocks, B.J., Eds.; Springer: New York, NY, USA, 2000; ISBN 978-0-387-21629-4.
10. Hall, J.V.; Loboda, T.V.; Giglio, L.; McCarty, G.W. A MODIS-based burned area assessment for Russian

croplands: Mapping requirements and challenges. Remote Sens. Environ. 2016, 184, 506–521. [CrossRef]
11. Krylov, A.; McCarty, J.L.; Potapov, P.; Loboda, T.; Tyukavina, A.; Turubanova, S.; Hansen, M.C. Remote

sensing estimates of stand-replacement fires in Russia, 2002–2011. Environ. Res. Lett. 2014, 9. [CrossRef]
12. Vinogradova, A.A.; Smirnov, N.S.; Korotkov, V.N.; Romanovskaya, A.A. Forest fires in Siberia and the Far

East: Emissions and atmospheric transport of black carbon to the Arctic. Atmos. Ocean. Opt. 2015, 28,
566–574. [CrossRef]

13. Chen, D.; Loboda, T.V.; Krylov, A.; Potapov, P.V. Mapping stand age dynamics of the Siberian larch forests
from recent Landsat observations. Remote Sens. Environ. 2016, 187. [CrossRef]

14. Chen, W.; Moriya, K.; Sakai, T.; Koyama, L.; Cao, C.X. Mapping a burned forest area from Landsat TM data
by multiple methods. Geomat. Nat. Hazards Risk 2014, 5705, 1–19. [CrossRef]

15. Liu, Z. Mapping recent burned patches in Siberian larch forest using Landsat and MODIS data. Eur. J.
Remote Sens. 2016, 49, 861–887. [CrossRef]

16. Vivchar, A. Wildfires in Russia in 2000–2008: Estimates of burnt areas using the satellite MODIS MCD45
data. Remote Sens. Lett. 2011, 2, 81–90. [CrossRef]

17. Huang, H.; Roy, D.P.; Boschetti, L.; Zhang, H.K.; Yan, L.; Kumar, S.S.; Gomez-Dans, J.; Li, J. Separability
analysis of Sentinel-2A Multi-Spectral Instrument (MSI) data for burned area discrimination. Remote Sens.
2016, 8. [CrossRef]

http://www.mdpi.com/2072-4292/10/6/940/s1
http://dx.doi.org/10.1038/359716a0
http://dx.doi.org/10.1016/j.rse.2008.07.017
http://dx.doi.org/10.2307/1942034
http://dx.doi.org/10.1111/j.1365-2486.2011.02417.x
http://dx.doi.org/10.1046/j.1365-2486.2000.06022.x
http://dx.doi.org/10.1029/2004GB002300
http://dx.doi.org/10.1007/BF02940573
http://dx.doi.org/10.1046/j.1365-2486.2000.06019.x
http://dx.doi.org/10.1016/j.rse.2016.07.022
http://dx.doi.org/10.1088/1748-9326/9/10/105007
http://dx.doi.org/10.1134/S1024856015060184
http://dx.doi.org/10.1016/j.rse.2016.10.033
http://dx.doi.org/10.1080/19475705.2014.925982
http://dx.doi.org/10.5721/EuJRS20164945
http://dx.doi.org/10.1080/01431161.2010.499138
http://dx.doi.org/10.3390/rs8100873


Remote Sens. 2018, 10, 940 13 of 15

18. Loboda, T.; O’Neal, K.J.; Csiszar, I. Regionally adaptable dNBR-based algorithm for burned area mapping
from MODIS data. Remote Sens. Environ. 2007, 109, 429–442. [CrossRef]

19. Kasischke, E.S.; French, N.H.F. Locating and estimating the areal extent of wildfires in alaskan boreal forests
using multiple-season AVHRR NDVI composite data. Remote Sens. Environ. 1995, 51, 263–275. [CrossRef]

20. Zhang, Y.H.; Wooster, M.J.; Tutubalina, O.; Perry, G.L.W. Monthly burned area and forest fire carbon emission
estimates for the Russian Federation from SPOT VGT. Remote Sens. Environ. 2003, 87, 1–15. [CrossRef]

21. Tansey, K.; Grégoire, J.M.; Stroppiana, D.; Sousa, A.; Silva, J.; Pereira, J.M.C.; Boschetti, L.; Maggi, M.;
Brivio, P.A.; Fraser, R.; et al. Vegetation burning in the year 2000: Global burned area estimates from SPOT
VEGETATION data. J. Geophys. Res. D Atmos. 2004, 109, 1–22. [CrossRef]

22. Giglio, L.; Loboda, T.; Roy, D.P.; Quayle, B.; Justice, C.O. An active-fire based burned area mapping algorithm
for the MODIS sensor. Remote Sens. Environ. 2009, 113, 408–420. [CrossRef]

23. Bastarrika, A.; Chuvieco, E.; Martín, M.P. Mapping burned areas from landsat TM/ETM+ data with
a two-phase algorithm: Balancing omission and commission errors. Remote Sens. Environ. 2011, 115,
1003–1012. [CrossRef]

24. Kumar, S.S.; Roy, D.P. Global operational land imager Landsat-8 reflectance-based active fire detection
algorithm. Int. J. Digit. Earth 2018, 11, 154–178. [CrossRef]

25. Roy, D.P.; Giglio, L.; Kendall, J.D.; Justice, C.O. Multi-temporal active-fire based burn scar detection algorithm.
Int. J. Remote Sens. 1999, 20, 1031–1038. [CrossRef]

26. Oliva, P.; Schroeder, W. Assessment of VIIRS 375 m active fire detection product for direct burned area
mapping. Remote Sens. Environ. 2015, 160, 144–155. [CrossRef]

27. Giglio, L.; van der Werf, G.R.; Randerson, J.T.; Collatz, G.J.; Kasibhatla, P. Global estimation of burned area
using MODIS active fire observations. Atmos. Chem. Phys. 2006, 6, 957–974. [CrossRef]

28. Biswajeet, P.; Hamid, A. Forest Fire Detection and Monitoring using High Temporal MODIS and NOAA
AVHRR Satellite Images in Peninsular Malaysia. Disaster Adv. 2010, 3, 18–23.

29. Boschetti, L.; Roy, D.P.; Justice, C.O.; Humber, M.L. MODIS-Landsat fusion for large area 30 m burned area
mapping. Remote Sens. Environ. 2015, 161, 27–42. [CrossRef]

30. Fraser, R.H.; Li, Z.; Landry, R. SPOT VEGETATION for characterizing Boreal forest fires. Int. J. Remote Sens.
2000, 21, 3525–3532. [CrossRef]

31. Fraser, R.H.; Li, Z.; Cihlar, J. Hotspot and NDVI differencing synergy (HANDS): A new technique for burned
area mapping over boreal forest. Remote Sens. Environ. 2000, 74, 362–376. [CrossRef]

32. Mouillot, F.; Schultz, M.G.; Yue, C.; Cadule, P.; Tansey, K.; Ciais, P.; Chuvieco, E. Ten years of global burned
area products from spaceborne remote sensing—A review: Analysis of user needs and recommendations for
future developments. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 64–79. [CrossRef]

33. Justice, C.O.; Giglio, L.; Korontzi, S.; Owens, J.; Morisette, J.T.; Roy, D.; Descloitres, J.; Alleaume, S.;
Petitcolin, F.; Kaufman, Y. The MODIS fire products. Remote Sens. Environ. 2002, 83, 244–262. [CrossRef]

34. Roy, D.P.; Jin, Y.; Lewis, P.E.; Justice, C.O. Prototyping a global algorithm for systematic fire-affected area
mapping using MODIS time series data. Remote Sens. Environ. 2005, 97, 137–162. [CrossRef]

35. Roy, D.P.; Boschetti, L.; Justice, C.O.; Ju, J. The collection 5 MODIS burned area product—Global evaluation
by comparison with the MODIS active fire product. Remote Sens. Environ. 2008, 112, 3690–3707. [CrossRef]

36. Giglio, L.; Randerson, J.T.; Van Der Werf, G.R. Analysis of daily, monthly, and annual burned area using
the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 2013, 118, 317–328.
[CrossRef]

37. Chuvieco, E.; Lizundia-loiola, J.; Pettinari, M.L.; Ramo, R.; Padilla, M.; Mouillot, F.; Laurent, P.; Storm, T.;
Heil, A.; Plummer, S. Generation and analysis of a new global burned area product based on MODIS 250m
reflectance bands and thermal anomalies. Earth Syst. Sci. Data Discuss 2018, 512, 1–24. [CrossRef]

38. Al-Saadi, J.; Soja, A.; Pierce, R.B.; Szykman, J.; Wiedinmyer, C.; Emmons, L.K.; Kondragunta, S.; Zhang, X.;
Kittaka, C.; Schaak, T.; et al. Intercomparison of near-real-time biomass burning emissions estimates
constrained by satellite fire data. J. Appl. Remote Sens. 2008, 2. [CrossRef]

39. Chuvieco, E.; Englefield, P.; Trishchenko, A.P.; Luo, Y. Generation of long time series of burn area maps of the
boreal forest from NOAA-AVHRR composite data. Remote Sens. Environ. 2008, 112, 2381–2396. [CrossRef]

40. Kasischke, E.S.; Loboda, T.; Giglio, L.; French, N.H.F.; Hoy, E.E.; De Jong, B.; Riano, D. Quantifying burned
area for North American forests: Implications for direct reduction of carbon stocks. J. Geophys. Res. Biogeosci.
2011, 116, 1–17. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2007.01.017
http://dx.doi.org/10.1016/0034-4257(93)00074-J
http://dx.doi.org/10.1016/S0034-4257(03)00141-X
http://dx.doi.org/10.1029/2003JD003598
http://dx.doi.org/10.1016/j.rse.2008.10.006
http://dx.doi.org/10.1016/j.rse.2010.12.005
http://dx.doi.org/10.1080/17538947.2017.1391341
http://dx.doi.org/10.1080/014311699213073
http://dx.doi.org/10.1016/j.rse.2015.01.010
http://dx.doi.org/10.5194/acp-6-957-2006
http://dx.doi.org/10.1016/j.rse.2015.01.022
http://dx.doi.org/10.1080/014311600750037534
http://dx.doi.org/10.1016/S0034-4257(00)00078-X
http://dx.doi.org/10.1016/j.jag.2013.05.014
http://dx.doi.org/10.1016/S0034-4257(02)00076-7
http://dx.doi.org/10.1016/j.rse.2005.04.007
http://dx.doi.org/10.1016/j.rse.2008.05.013
http://dx.doi.org/10.1002/jgrg.20042
http://dx.doi.org/10.5194/essd-2018-46
http://dx.doi.org/10.1117/1.2948785
http://dx.doi.org/10.1016/j.rse.2007.11.007
http://dx.doi.org/10.1029/2011JG001707


Remote Sens. 2018, 10, 940 14 of 15

41. Loboda, T.V.; French, N.H.F.; Hight-Harf, C.; Jenkins, L.; Miller, M.E. Mapping fire extent and burn severity
in Alaskan tussock tundra: An analysis of the spectral response of tundra vegetation to wildland fire.
Remote Sens. Environ. 2013, 134, 194–209. [CrossRef]

42. Moreno Ruiz, J.A.; Riaño, D.; Arbelo, M.; French, N.H.F.; Ustin, S.L.; Whiting, M.L. Burned area mapping
time series in Canada (1984–1999) from NOAA-AVHRR LTDR: A comparison with other remote sensing
products and fire perimeters. Remote Sens. Environ. 2012, 117, 407–414. [CrossRef]

43. Moreno Ruiz, J.A.; García Lázaro, J.R.; Del Águila Cano, I.; Leal, P.H. Burned area mapping in the North
American boreal forest using terra-MODIS LTDR (2001–2011): A comparison with the MCD45A1, MCD64A1
and BA GEOLAND-2 products. Remote Sens. 2013, 6, 815–840. [CrossRef]

44. Soja, A.J.; Al-Saadi, J.; Giglio, L.; Randall, D.; Kittaka, C.; Pouliot, G.; Kordzi, J.J.; Raffuse, S.; Pace, T.G.;
Pierce, T.E.; et al. Assessing satellite-based fire data for use in the National Emissions Inventory. J. Appl.
Remote Sens. 2009, 3. [CrossRef]

45. George, C.; Rowland, C.; Gerard, F.; Balzter, H. Retrospective mapping of burnt areas in Central Siberia
using a modification of the normalised difference water index. Remote Sens. Environ. 2006, 104. [CrossRef]

46. Huang, S.; Siegert, F.; Goldammer, J.G.; Sukhinin, A.I. Satellite-derived 2003 wildfires in southern Siberia
and their potential influence on carbon sequestration. Int. J. Remote Sens. 2009, 30, 1479–1492. [CrossRef]

47. Soja, A.J.; Sukhinin, A.I.; Cahoon, D.R., Jr.; Shugart, H.H.; Stackhouse, P.W., Jr. AVHRR-derived fire frequency,
distribution and area burned in Siberia. Int. J. Remote Sens. 2004, 25, 1939–1960. [CrossRef]

48. Sukhinin, A.I.; French, N.H.F.; Kasischke, E.S.; Hewson, J.H.; Soja, A.J.; Csiszar, I.A.; Hyer, E.J.; Loboda, T.;
Conrad, S.G.; Romasko, V.I.; et al. AVHRR-based mapping of fires in Russia: New products for fire
management and carbon cycle studies. Remote Sens. Environ. 2004, 93, 546–564. [CrossRef]

49. Eberle, J.; Urban, M.; Homolka, A.; Hüttich, C.; Schmullius, C. Multi-Source Data Integration and Analysis for
Land Monitoring in Siberia. In Novel Methods for Monitoring and Managing Land and Water Resources in Siberia;
Mueller, L., Sheudshen, A.K., Eulenstein, F., Eds.; Springer International Publishing: Cham, Switzerland,
2016; pp. 471–487, ISBN 978-3-319-24409-9.

50. De Groot, W.J.; Cantin, A.S.; Flannigan, M.D.; Soja, A.J.; Gowman, L.M.; Newbery, A. A comparison of
Canadian and Russian boreal forest fire regimes. For. Ecol. Manag. 2013, 294, 23–34. [CrossRef]

51. Ponomarev, E.I.; Kharuk, V.I.; Ranson, K.J. Wildfires dynamics in Siberian larch forests. Forests 2016, 7, 125.
[CrossRef]

52. Kukavskaya, E.A.; Soja, A.J.; Petkov, A.P.; Ponomarev, E.I.; Ivanova, G.A.; Conard, S.G. Fire emissions
estimates in Siberia: Evaluation of uncertainties in area burned, land cover, and fuel consumption. Can. J.
For. Res. 2012, 43, 493–506. [CrossRef]

53. Soja, A.J.; Cofer, W.R.; Shugart, H.H.; Sukhinin, A.I.; Stackhouse, P.W.; McRae, D.J.; Conard, S.G. Estimating
fire emissions and disparities in boreal Siberia (1998–2002). J. Geophys. Res. D Atmos. 2004, 109. [CrossRef]

54. Goldammer, J.G.; Stocks, B.J.; Sukhinin, A.I.; Ponomarev, E. Current Fire Regimes, Impacts and the Likely
Changes—II: Forest Fires in Russia—Past and Current Trends. In Vegetation Fires and Global Change: Challenges
for Concerted International Action; Global Fire Monitoring Center: Freiburg, Germany, 2013; pp. 181–207,
ISBN 9783941300781.

55. Kovacs, K.; Ranson, K.J.; Sun, G.; Kharuk, V.I. MODIS Fire Product and Anthropogenic Features in the
Central Siberian Landscape. Earth Interact. 2004, 8, 1–25. [CrossRef]

56. Vazquez, A.; Moreno, J. Patterns of Lightning-, and People-Caused Fires in Peninsular Spain. Int. J.
Wildland Fire 1998, 8, 103. [CrossRef]

57. Intergovernmental Panel on Climate Change. Climate Change 2014: Impacts, Adaptation, and Vulnerability.
Summaries, Frequently Asked Questions, and Cross-Chapter Boxes; IPCC: Geneva, Switzerland, 2014;
ISBN 9789291691418.

58. Pedelty, J.; Devadiga, S.; Masuoka, E.; Brown, M.; Pinzon, J.; Tucker, C.; Vermote, E.; Prince, S.; Nagol, J.;
Justice, C.; et al. Generating a long-term land data record from the AVHRR and MODIS instruments.
In Proceedings of the Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; IEEE:
Piscataway, NJ, USA; pp. 1021–1024.

59. Chuvieco, E. Satellite Observation of Biomass Burning. In Earth Observation of Global Change: The Role
of Satellite Remote Sensing in Monitoring the Global Environment; Chuvieco, E., Ed.; Springer: Dordrecht,
The Netherlands, 2008; pp. 109–142, ISBN 978-1-4020-6358-9.

http://dx.doi.org/10.1016/j.rse.2013.03.003
http://dx.doi.org/10.1016/j.rse.2011.10.017
http://dx.doi.org/10.3390/rs6010815
http://dx.doi.org/10.1117/1.3148859
http://dx.doi.org/10.1016/j.rse.2006.05.015
http://dx.doi.org/10.1080/01431160802541549
http://dx.doi.org/10.1080/01431160310001609725
http://dx.doi.org/10.1016/j.rse.2004.08.011
http://dx.doi.org/10.1016/j.foreco.2012.07.033
http://dx.doi.org/10.3390/f7060125
http://dx.doi.org/10.1139/cjfr-2012-0367
http://dx.doi.org/10.1029/2004JD004570
http://dx.doi.org/10.1175/1087-3562(2004)8&lt;1:TROTTM&gt;2.0.CO;2
http://dx.doi.org/10.1071/WF9980103


Remote Sens. 2018, 10, 940 15 of 15

60. Swanson, D.K. A comparison of taiga flora in north-eastern Russia and Alaska/Yukon. J. Biogeogr. 2003, 30,
1109–1121. [CrossRef]

61. Stowe, L.L.; Davis, P.A.; McClain, E.P. Scientific Basis and Initial Evaluation of the CLAVR-1 Global
Clear/Cloud Classifcation Algorithm for the Advanced Very High Resolution Radiometer. J. Atmos.
Ocean. Technol. 1999, 16, 656–681. [CrossRef]

62. Barbosa, P.M.; Pereira, J.M.C.; Grégoire, J.-M. Compositing Criteria for Burned Area Assessment Using
Multitemporal Low Resolution Satellite Data. Remote Sens. Environ. 1998, 65, 38–49. [CrossRef]

63. Chuvieco, E.; Ventura, G.; Martín, M.P. AVHRR multitemporal compositing techniques for burned land
mapping. Int. J. Remote Sens. 2005, 26, 1013–1018. [CrossRef]

64. Moreno-Ruiz, J.A.; Garcia-Lazaro, J.R.; Riano, D.; Kefauver, S.C. The synergy of the 0.05◦ (~5 km) AVHRR
long-term data record (LTDR) and landsat TM archive to map large fires in the North American boreal region
from 1984 to 1998. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1157–1166. [CrossRef]

65. Chang, D.; Song, Y. Comparison of L3JRC and MODIS global burned area products from 2000 to 2007.
J. Geophys. Res. Atmos. 2009, 114, 1–20. [CrossRef]

66. Giglio, L.; Randerson, J.T.; van der Werf, G.R.; Kasibhatla, P.S.; Collatz, G.J.; Morton, D.C.; DeFries, R.S.
Assessing variability and long-term trends in burned area by merging multiple satellite fire products.
Biogeosci. Discuss. 2009, 6, 11577–11622. [CrossRef]

67. Núñez-Casillas, L.; García Lázaro, J.R.; Moreno-Ruiz, J.A.; Arbelo, M. A comparative analysis of burned area
datasets in canadian boreal forest in 2000. Sci. World J. 2013, 2013. [CrossRef] [PubMed]

68. Conard, S.G.; Sukhinin, A.I.; Stocks, B.J.; Cahoon, D.R.; Davidenko, E.P.; Ivanova, G.A. Determining effects
of area burned and fire severity on Carbon Cycling and Emissions in Siberia. Clim. Chang. 2002, 55, 197–211.
[CrossRef]

69. Dozier, J.A. A method for satellite identification of surface temperature fields of subpixel resolution.
Remote Sens. Environ. 1981, 11, 221–229. [CrossRef]

70. Tahnk, W.R.; Coakley, J. Improved calibration coefficients for NOAA-14 AVHRR visible and near-infrared
channels. Int. J. Remote Sens. 2001, 22, 1269–1283. [CrossRef]

71. Flannigan, M.D.; Krawchuk, M.A.; De Groot, W.J.; Wotton, B.M.; Gowman, L.M. Implications of changing
climate for global wildland fire. Int. J. Wildland Fire 2009, 18, 483–507. [CrossRef]

72. Kelly, R.; Chipman, M.L.; Higuera, P.E.; Stefanova, I.; Brubaker, L.B.; Hu, F.S. Recent burning of boreal
forests exceeds fire regime limits of the past 10,000 years. Proc. Natl. Acad. Sci. USA 2013, 110, 13055–13060.
[CrossRef] [PubMed]

73. Turetsky, M.R.; Kane, E.S.; Harden, J.W.; Ottmar, R.D.; Manies, K.L.; Hoy, E.; Kasischke, E.S. Recent
acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat. Geosci. 2011, 4,
27–31. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1046/j.1365-2699.2003.00901.x
http://dx.doi.org/10.1175/1520-0426(1999)016&lt;0656:SBAIEO&gt;2.0.CO;2
http://dx.doi.org/10.1016/S0034-4257(98)00016-9
http://dx.doi.org/10.1080/01431160412331299235
http://dx.doi.org/10.1109/JSTARS.2013.2292853
http://dx.doi.org/10.1029/2008JD011361
http://dx.doi.org/10.5194/bgd-6-11577-2009
http://dx.doi.org/10.1155/2013/289056
http://www.ncbi.nlm.nih.gov/pubmed/23818817
http://dx.doi.org/10.1023/A:1020207710195
http://dx.doi.org/10.1016/0034-4257(81)90021-3
http://dx.doi.org/10.1080/01431160151144341
http://dx.doi.org/10.1071/WF08187
http://dx.doi.org/10.1073/pnas.1305069110
http://www.ncbi.nlm.nih.gov/pubmed/23878258
http://dx.doi.org/10.1038/ngeo1027
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	LTDR Data Preprocessing 
	BA Algorithm 
	BA Time Series 
	Accuracy Assessment of LTDR-BA 

	Results 
	Annual NE Siberian Boreal Forest LTDR-BA Maps for the Period 1982–2015 
	Accuracy Assessment of LTDR-BA 

	Discussion 
	Conclusions 
	References

