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Abstract: A study was conducted to explore the efficacy of potential biocontrol agent
Cladobotryum mycophilum against different phytopathogenic fungi. The growth rates of 24 isolates
of C. mycophilum were determined, and their antagonistic activity was analysed in vitro and in vivo
against Botrytis cinerea, Fusarium oxysporum f. sp. radicis-lycopersici, Fusarium oxysporum f.sp.
cucumerinum, Fusarium solani, Phytophthora parasitica, Phytophthora capsici, Pythium aphanidermatum and
Mycosphaerella melonis. Most isolates grow rapidly, reaching the opposite end of the Petri dish within
72–96 h. Under dual-culture assays, C. mycophilum showed antagonistic activity in vitro against all
phytopathogenic fungi tested, with mycelial growth inhibition ranging from 30 to 90% against all the
different phytopathogens tested. Similarly, of all the selected isolates, CL60A, CL17A and CL18A
significantly (p < 0.05) reduced the disease incidence and severity in the plant assays compared
to the controls for the different pathosystems studied. Based on these results, we conclude that
C. mycophilum can be considered as a potential biological control agent in agriculture. This is the first
study of Cladobotryum mycophilum as a biological control agent for different diseases caused by highly
relevant phytopathogens in horticulture.

Keywords: biological control; Cladobotryum; Mycosphaerella; Pythium; Phytophthora;
Fusarium; Botrytis

1. Introduction

Cobweb, caused by a mycopathogenic fungus (Oudem.) W. Gams and Hooz (teleomorph
Hypomyces odoratus G.R.W. Arnold), is one of the most serious diseases affecting white button
mushroom (Agaricus bisporus (Lange) Imbach) cultures worldwide [1–4]. Its occurrence generally
reduces the production and quality, and thus generates economic losses because of mainly cap spotting,
the reduction of crop surface and the necessity of early crop termination when the disease becomes
epidemic [5]. The main symptoms of cobweb are characterised by the occurrence of a white fluffy
mycelium over the surface of the casing layer and attacks on primordia and developing fruitbodies.
The pathogen can also cause two types of cap spotting that may even appear post-harvest, affecting
the profitability of the product [6]. Recently, C. mycophilum has been identified as the causal agent of
cobweb in cultivated king oyster mushroom (Pleurotus eryngii (DC.: Fr.) Quél.) in Spain and Korea [7–9]
and oyster mushroom (Pleurotus ostreatus (Jacq.) P. Kumm.) in Spain [10]. Methods to control cobweb
include strict hygiene measures to prevent dispersion of the conidia and the application of fungicides,
mainly prochloraz and metrafenone [11].
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Fungal associations with other fungi are termed fungicolous fungi [12,13]. The aggressive
fungicolous taxa, such as Gliocladium spp. and Trichoderma spp., have led to numerous studies on these
fungi as biological control agents [14]. Most species of the Cladobotryum genus are characterised by
rapid growth and colonisation of the parasitic basidiomycete [4]. Considering their high mycoparasitic
capacity, these species are potential candidates for use as biological control agents against key
agricultural phytopathogens. However, few in vitro studies have shown the antagonistic activity of
Cladobotryum against phytopathogenic fungi. In this context, Bastos et al. [15] describe C. amazonense
as a new hyperparasite of Crinipellis perniciosa, that causes ‘witches’ broom disease’ in the cocoa tree.
Marzuki et al. [16] assess a 74.8 and 74.7% decrease in the mycelial growth of Ganoderma lucidum and
G. boninense, respectively, at the hand of Cladobotryum semicirculare, and showed the in vitro antagonistic
activity of C. semicirculare isolates against G. boninense and other fungal pathogens, including Fusarium
sp and Phoma sp., assessing 55 and 60% rates of inhibition, respectively. Similarly, Ramos [17] evaluated
the in vitro and in vivo antagonistic activity of C. pinarense, C. semicirculare and C. virescens in the
control of the phytopathogens Alternaria brassicicola, Corynespora cassiicola and Fusarium chlamydosporum.
The findings showed that the three Cladobotryum species had an antagonistic effect on the pathogens
studied, with no harm to plants or fruits, highlighting a fungicidal effect on filtered extracts of the
three antagonistic isolates.

Biological control of diseases caused by phytopathogenic fungi has not been described for
Cladobotryum mycophilum. Therefore, the main objective of this study is to determine: (a) The growth
rate of 24 C. mycophilum isolates; (b) the in vitro antagonistic activity of such isolates against eight
phytopathogens of interest in agriculture; (c) the in vivo capacity for controlling the development of
the disease caused by such phytopathogens in different pathosystems under greenhouse conditions.

2. Materials and Methods

2.1. Fungal Isolates

A total of 24 isolates previously identified as C. mycophilum used in this study were obtained
from A. bisporus crops showing cobweb disease symptoms [3]. The phytopathogenic fungi used were:
Botrytis cinerea Pers (BOT), Fusarium oxysporum f. sp. radicis-lycopersici Jarvis and Shoem (FORL),
Fusarium oxysporum f.sp. cucumerinum Owen (FOC), Fusarium solani (Mart.) Sacc (FL), Phytophthora
parasitica Dastur var. nicotianae (Breda de Haan) Tucker (PH), Phytophthora capsici Leonian (PC),
Pythium aphanidermatum (Edson) Fitzp (PY) and Mycosphaerella melonis (Pass.)(MM).

Plants infected with the pathogens were collected from different crops in the province of Almeria
(Spain) during 2016–2018. Selected stem and leaf sections with active lesions were cut, and tissue
pieces from the boundaries between healthy and discoloured areas were planted on potato dextrose
agar. Pathogenicity tests were carried out to confirm their pathogenic capacity.

Fungal isolate was grown on PDA for 5 or 15 days at (25–27) ± 2 ◦C under dark conditions.
Spore suspensions of Cladobotryum and phytopathogens isolates were prepared by flooding plates
of 10-day-old cultures with sterile distilled water, scraping with a sterile glass rod and filtering and
adjusted to a concentration of 1 × 106 spores/mL with a Neubauer haemocytometer.

2.2. Growth Conditions of the Cladobotryum Isolates in PDA

Twenty-four isolates of C. mycophilum were cultured at 25 ◦C for 7 d in PDA. Mycelium discs
(5 mm diameter) were obtained from the edges of the PDA plates and inoculated into new PDA at
0.5 cm from the edge. The plates were incubated for 4–7 d at 25 ◦C. The colony diameters were recorded
every day during culturing. The experiment was completely randomised with five replicates.

2.3. Screening Test of Antagonistic Isolates

The 24 isolates of C. mycophilum were screened for their antagonism in vitro against eight
phytopathogens by adopting the confrontation assay of Santos et al. [18].
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Petri dishes (9 cm diameter) containing 17 mL of PDA (Bioxon, Becton Dickinson, Mexico) were
prepared. In this test, 0.5-cm plugs of mycelium with active growth of each isolate were placed at the
ends of Petri dishes with a distance of 8 cm between the two fungi, antagonist-phytopathogen.

A plug of PDA medium was used as control treatment while the pathogen plug was placed at the
other side. The plates were then assessed by measuring the distances between pathogen and fungal
cultures. Results were transformed into percentages of mycelium growth inhibition. These tests were
carried out in quintuplicate.

2.4. Greenhouse Evaluation of Selected Antagonists of C. mycophilum on the Severity of Eight Phytopathogens

Biocontrol activity of selected Cladobotryum mycophilum isolates on different pathosystems was
determined: B. cinerea-tomato, F. oxysporum f. sp. radicis-lycopersici-tomato, Fusarium oxysporum
f.sp. cucumerinum-cucumber, Fusarium solani-tomato, Phytophthora parasitica-tomato, Phytophthora
capsica-pepper, Pythium aphanidermatum-melon and Mycosphaerella melonis-melon. All seeds were
disinfected with 2% hypochlorite for 3 min and washed liberally with tap water to eliminate residues.
Subsequently, the seeds were pregerminated in darkness in a humid room at 25 ◦C and transplanted
to 500 mL pots into a commercial peat mix, with one seed per pot. Simultaneously to sowing, 5 mL
of water (T0) or 5 mL spore suspension of each isolate of Cladobotryum was placed in each pot at
1 × 106 propagules/plant.

To prepare Phytophthora parasitica, Phytophthora capsici and Pythium aphanidermatum inocula,
the procedure described by Diánez et al. was followed [19]. To obtain the inoculum, isolates were
grown on PDA for 7 d at 25◦C. Then, plates were incubated under fluorescent light for 3 d at 25 ◦C to
induce sporangium formation. Twenty-four hours before inoculation, fungal colonies were covered
with 20 mL of sterilized tap water and incubated under light overnight. During the inoculation day,
Petri dishes were placed at 4 ◦C for 30 min, followed by 60 min at room temperature to enhance
zoospore release from sporangia. The flooding water, containing zoospores and mycelium was filtered
through two layers of cheesecloth. The concentration of the zoospore suspension was adjusted to
approx. 104 zoospores mL−1 using a haemocytometer. The inoculum was used immediately. Inocula of
the other phytopathogens were prepared by scraping and subsequent filtration, as previously indicated.

The phytopathogen was inoculated when the plant had a second true leaf and was performed
using a sterile micropipette, by pouring the zoospores/conidias suspension (5 mL) uniformly over the
surface of the peat in each pot at a concentration of 104 propagules/mL. In the case of B. cinerea and
M. melonis, the pathogen was applied by spraying five times at the same concentration throughout the
plant. Previously, the first true leaf had been cut to facilitate pathogen entry.

All pathogenicity tests were performed under greenhouse conditions and at different seasons (for
B. cinerea the experiment were performed in winter; for the rest of the phytopathogens in spring) to
provide the ideal environmental conditions for each pathogen. The experimental units consisted of
four repetitions with 24 plants per pathosystem. The experiment were conducted using completely
randomized block designs.

Symptom severity was rated periodically, and 30–60 days after inoculation final disease severity
index was estimated according to the following scale: 0 = healthy plant; 1 = symptoms beginning;
2 = moderate symptoms; 3 = severely affected plant; and 4 = dead plant. Similarly, possible symptoms
caused by the application of different C. mycophilum isolates without pathogen were observed in melon,
tomato, pepper and cucumber plants.

2.5. Statistical Analysis

Data were analysed with analysis of variance (ANOVA), carried out using the Statgraphics
Centurion ver. (XVI) program to evaluate the parameter values differences. Differences between
treatments were determined by Duncan’s multiple range test at 5% of significance level.
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3. Results

3.1. Colony Growth of Cladobotryum Isolates

In Figure 1, the results obtained from the mycelial growth of 24 isolates of C. mycophilum are
shown. The colony growth of most isolates was fast, reaching the opposite end of the Petri dish within
72–96 h. The colour of the colonies ranged from yellowish to pink and turned purple after a few days,
except in isolate CL1381A, whose mycelium colour was greyish white. No isolates were discarded in
determining the antagonistic activity of Cladobotryum against phytopathogens.
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Figure 1. Mycelial growth of 24 isolates of C. mycophilum in vitro after 4 days. Mean standard deviation
is expressed in error bar (n = 5). For each isolate, columns marked with different letters indicate a
significant difference according to analyses of variance (p < 0.05).

3.2. Effects of Cladobotryum Isolates on the Radial Growth of Phytopathogens

In Table 1, the results obtained from the microbial antagonism for all phytopathogens
tested are observed. All C. mycophilum isolates have shown in vitro antagonistic activity
against all phytopathogenic fungi tested. The highest inhibition percentages were detected for
Phytophthora parasitica, which reached values higher than 90% for 12 Cladobotryum isolates. In contrast,
the lowest inhibition values were detected for Pythium aphanidermatum, whose maximum failed to
exceed 60% for the CL17A isolate. For the other phytopathogens, mycelial growth inhibition ranged
from 30 to 85%. Three isolates were selected for the in vivo tests, CL60A, CL17A and CL18A, because
they reached the highest values for the highest number of phytopathogens.
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Table 1. Antagonistic potential of Cladobotryum isolates against eight phytopathogens in dual culture on PDA medium. % mycelial inhibition was calculated as PIRG =

(R1 − R2) ÷ R1 × 100, where: PIRG: percentage inhibition of radial mycelia growth of the pathogen, R1: radial growth of pathogen in control plates, R2: radial growth
of pathogen in dual culture plates. Means with the same letter are not significantly different (LSD) according to ANOVA test (p < 0.05).

Isolates
% Inhibition of Mycelial Growth

Plant Pathogens

Botrytis cinerea FORL Fusarium
solani FOC Phytophthora

parasitica
Mycosphaerella

melonis
Phytophthora

capsici
Pythium

aphanidermatum

CLR1A 68.25 ± 1.89 cdefg 72 ± 2.44 bc 76 ± 2.05 cdefg 73.75 ± 3.19 abc 81.25 ± 10.72 cdefg 86.5 ± 7.68 ab 66.5 ± 15.72 efg 49.25 ± 1.42 defg

CLR2A 68.5 ± 1.63 cdefg 71.25 ± 3.75 bc 77.5 ± 0.88 cdef 72.75 ± 2.05 abc 89.25 ± 0.68 abcdef 80.5 ± 3.38 abc 77 ± 2.88 abcd 48 ± 4.29 efghi

CLR2B 68.75 ± 3.53 cdefg 71.5 ± 1.05 bc 79.25 ± 1.12 bcd 72.25 ± 2.40 abc 89.5 ± 2.09 abcde 72 ± 1.68 cd 74 ± 1.85 bcde 51.5 ± 2.05 cdef

CL5A 58.75 ± 12.37 hi 47.75 ± 6.09 ef 70.25 ± 6.52 h 46.5 ± 7.97 g 71.75 ± 11.20 h 60.62 ± 11.39 e 63 ± 14.19 fgh 45.75 ± 3.25 ghijk

CL6A 73.5 ± 3.23 abc 76.25 ± 2.34 ab 82.5 ± 2.17 ab 78.25 ± 4.20 a 91 ± 2.85 ab 79.25 ± 3.26 abc 77.25 ± 1.63 abcd 53.25 ± 5.19 bcde

CL7A 76.25 ± 1.97 ab 73.25 ± 1.12 ab 80 ± 1.25 abc 76 ± 1.63 ab 91 ± 1.05 ab 78.25 ± 4.11 bc 79.75 ± 3.24 ab 53.5 ± 2.40 bcd

CL11A 74.5 ± 2.87 abc 75.75 ± 1.90 ab 79.75 ± 1.05 abcd 73 ± 2.44 abc 92 ± 4.73 ab 87.5 ± 4.76 ab 77.75 ± 2.24 abc 55.25 ± 4.54 abc

CL14A 79.25 ± 12.00 a 73.75 ± 3.95 ab 74.75 ± 3.69 efg 75.75 ± 1.68 ab 91 ± 2.71 ab 86.75 ± 1.90 ab 80.75 ± 1.43 ab 49 ± 9.28 defg

CL15A 62.75 ± 6.33 gh 46.75 ± 9.04 ef 74.75 ± 4.37 efg 59.75 ± 4.28 f 80.31 ± 14.10 bcdef 54 ± 16.52 ef 65.25 ± 14.43 fg 43.25 ± 4.72 ijkl

CL17A 73.25 ± 0.68 abc 80 ± 0.88 a 83 ± 2.09 ab 79 ± 0.56 a 93.75 ± 1.25 a 85.25 ± 1.37 ab 83.25 ± 3.60 a 59.25 ± 2.43 a

CL18A 72.5 ± 1.76 bcd 76.5 ± 1.63 ab 79.5 ± 4.11 abcd 76.25 ± 1.98 a 91.75 ± 0.68 ab 85.5 ± 2.59 ab 81.25 ± 1.53 ab 58.25 ± 1.42 ab

CL19A 64.25 ± 1.67 fgh 32.18 ± 2.13 h 74.5 ± 2.88 efg 30.83 ± 1.91 h 72.5 ± 5.00 gh 38.25 ± 2.44 g 55.25 ± 10.73 h 36.25 ± 8.14 m

CL40A 71.5 ± 1.04 bcde 48.5 ± 2.40 ef 79.75 ± 2.24 abcd 75.25 ± 1.63 ab 90 ± 3.75 abcd 62.5 ± 5.80 de 74.25 ± 1.12 bcde 48.5 ± 2.40 defghi

CL41A 47.25 ± 10.24 j 42 ± 12.39 fg 72 ± 3.60 gh 32.75 ± 1.63 h 66.67 ± 18.76 fgh 46.75 ± 14.16 fg 62.75 ± 8.45 fgh 21 ± 1.62 n

CL43A 70 ± 2.16 bcdef 61.25 ± 18.54 d 79 ± 3.58 bcd 60 ± 20.54 ef 92 ± 2.27 ab 80.25 ± 3.79 abc 76 ± 6.93 abcd 53.5 ± 7.72 bcd

CL45A 53 ± 5.49 ij 51 ± 3.79 e 70.25 ± 2.71 h 67 ± 6.47 cde 80.75 ± 5.90 defgh 64 ± 5.89 de 67 ± 3.81 efg 38.5 ± 4.08 lm

CL46A 65.75 ± 3.37 efg 53.5 ± 9.82 e 76.5 ± 5.89 cdef 64 ± 2.85 def 86.25 ± 9.80 abcdef 54.75 ± 10.66 ef 60 ± 11.28 gh 40.5 ± 4.80 klm

CL2A 71.5 ± 3.46 bcde 72 ± 1.43 bc 77.75 ± 1.37 cdef 74 ± 1.85 ab 90.75 ± 2.74 ab 88.75 ± 4.59 a 79.25 ± 3.49 abc 48.75 ± 4.05 defgh

CL30A 68 ± 1.89 cdefg 75 ± 1.25 ab 79.25 ± 1.43 bcd 75.5 ± 2.09 ab 90.5 ± 0.68 abc 82 ± 3.38 abc 78.75 ± 1.53 abc 51.5 ± 1.04 cdef

CL55A 70.5 ± 8.50 bcdef 70.25 ± 2.85 bc 78.25 ± 6.29 cde 72.75 ± 3.35 abc 87.75 ± 1.05 abcdef 77.75 ± 3.99 bc 76 ± 2.05 abcd 47 ± 3.81 fghij

CL60A 76.25 ± 1.97 ab 76.5 ± 3.47 ab 83.5 ± 4.18 a 76.75 ± 1.12 a 91.5 ± 1.85 ab 86.75 ± 1.90 ab 80 ± 2.34 ab 57.75 ± 1.85 ab

CL80A 68.75 ± 4.33 cdefg 35.5 ± 5.20 gh 75.75 ± 1.43 defg 69 ± 6.34 bcd 88.75 ± 11.39 abcdef 61 ± 22.73 e 71 ± 1.63 cdef 46.25 ± 4.23 fghij

CL1264 70.25 ± 1.85 bcdef 74 ± 1.85 ab 73.75 ± 4.15 fgh 75.25 ± 1.37 ab 93.25 ± 2.44 ab 80.75 ± 3.71 abc 77 ± 1.90 abcd 42.25 ± 4.08 jkl

CL1381 66.25 ± 1.25 defg 65 ± 2.05 cd 74.75 ± 1.05 efg 46.75 ± 2.05 g 80.25 ± 3.47 efgh 62.25 ± 2.05 de 69 ± 2.05 def 43.5 ± 2.23 hijkl

p 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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3.3. Biological Control of Cladobotryum Isolates against Several Diseases

The severity of the disease caused by the different phytopathogens tested decreased after
applying the three isolates, CL60A, CL17A and CL18A (Figure 2). Statistically significant differences
between all treatments and experimental controls were observed (p < 0.05). No symptom was
observed after applying CL60A, CL17A or CL18A in any plant tested (Figure 2), thus showing a plant
growth-promoting effect for different parameters (data not shown).
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Figure 2. Disease severity of phytopathogens in plants was rated 30–60 days after inoculation based on
a 0–4 scale: where 0 = no visible disease symptoms and 4 = plant dead. Mean standard deviation is
expressed in error bar (24 plants/repetition). Means with the same letter are not significantly different
(LSD) according to ANOVA test (p < 0.05).

Despite the lack of significant differences in the biological control of CL60A, CL17A and CL18A for
different oomycetes, CL18A has reduced the disease by 77.8, 82.3, and 88.9% for Pythium aphanidermatum,
Phytophthora capsici and Phytophthora parasitica, respectively. In the case of Fusaria, the disease reduction
shown by the different isolates ranged from 35 to 60% for F. solani and F. oxysporum f.sp. cucumerinum,



Agronomy 2019, 9, 891 7 of 9

and from 52.7 to 73.7% for F. oxysporum f. sp. radicis-lycopersici. Lower values were detected after
applying the three antagonistic isolates against B. cinerea and M. melonis. Thus, significant differences
were only observed when applying CL17A, which reduced the disease severity by 50% for B. cinerea
and by 37 to 42.1% in the control of Mycosphaerella melonis.

4. Discussion

Numerous studies have reported using mycopathogenic fungi to control pests and diseases. Thus,
Ampelomyces quisqualis, a mycoparasite specific to Erysiphales, has been studied as a biocontrol agent [20],
and Sphaerellopsis filum has been used for the control of plant rust disease caused by Puccinia graminis
subsp. graminícola [21], among other examples. However, the aggressive fungicolous taxa most studied
and used in agriculture is Trichoderma, the genus by excellence [22–24].

In this study, we analysed the capacity of Cladobotryum isolates to control different phytopathogens
that cause severe damage in many crops in vitro and in vivo to assess whether we can consider
Cladobotryum as a potential biological control agent. All 24 C. mycophilum isolates have shown high
percentages of in vitro inhibition of the phytopathogens tested, as a result of high competition for
nutrients and space because of the rapid growth of Cladobotryum (Figure 3). These values are lower
in the case of P. aphanidermatum because this phytopathogen grows even faster, but antagonism
exceeds 50% for nine of the isolates tested. No inhibition halos for the production of metabolites
with fungistatic activity were observed, and the mycelium of Cladobotryum grew normally over that
of the phytopathogens, albeit showing mycelial degradation under the microscope. The production
of metabolites identified in these isolates has not been studied, but this genus is known to cause
hyphal lysis by producing a wide variety of secondary metabolites with marked antifungal as well
as antibacterial activities as well as repressive effects on cancer cells [25–27]. One of these fungal
metabolites is cladobotryal, a Cladobotryum varium isolate with antifungal activity [28].
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Figure 3. Antagonistic effects of Cladobotryum isolates against M. melonis (A), P. capsici (B) and F.
oxysporum f.sp. lycopersici (C) in dual culture. C show overgrowth of Cladobotryum covering the
Fusarium oxysporum f. sp. radicis-lycopersici (FORL) colony after 7 days of inoculation in dual culture.

In addition, very promising results have been obtained in in vivo tests. The best results have been
achieved with the three oomycetes tested, with high percentages of inhibition of disease development.
Bastos et al. [15] demonstrated that filtered cultures of C. amazonense are highly toxic to Phytophthora
palmivora spores; they reduce the disease level under field conditions. Similarly, tests conducted
by Bastos [29] confirm the inhibition of Crinipellis perniciosa, Microcyclus ulei and Hemileia vastatrix
spore germination, as well as the growth of other fungi and of Pseudomonas solanacearum. In turn,
Goh et al. [30] found similar results when using Cladobotryum semicirculare as a fungicolous antagonist,
which inhibited Rigidoporus microporus mycelial growth by 79% in a direct antagonism test as well as heat
stable antifungal Cladobotryum semicirculare filtrates. The authors also observed a reduction in disease
severity of white root disease in rubber trees (47 to 50%) by the application of Cladobotryum semicirculare.

To our knowledge, no phytopathogenic fungal control test has been described, neither in vitro
nor in vivo, for Cladobotryum mycophilum. Despite the good results, these studies must be continued to
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determine appropriate doses and modes of application to pathogens and culture environments, and to
identify the type of bioactive molecules responsible for such control.

Currently, there is a greater awareness of food safety, and consumers demand more sustainable
systems that do not harm the environment and biodiversity. One of the biggest challenges we face in
agricultural production is the reduction of risks and negative impacts of phytosanitary products and
fertilisers on human health and the environment, while maintaining agricultural productivity and
profitability. This is only possible by using new technologies in integrated production systems that
reduce waste and minimise environmental impacts. New mycopathogenic microorganisms that can be
used as tools for fungal disease control and plant probiotic microorganisms are needed to design new
control strategies that help meet present and future needs of agricultural production systems.

5. Conclusions

All Cladobotryum mycophilum isolates have shown the ability to inhibit the mycelial development
of eight phytopathogens. In this study, three potential Cladobotryum isolates have been selected for
their high capacity to control diseases caused by phytopathogens, both airborne and soil pathogens.
This is the first report of this mycopathogen as a beneficial fungus for agriculture.
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