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Abstract:

Objective: Determining genetic and paracrine mechanisms behind 
endometrial regeneration in Asherman’s Syndrome and Endometrial 
Atrophy (AS/EA) patients after autologous CD133+ bone marrow-derived 
stem cells (CD133+BMDSCs) transplantation. 
Design: Retrospective study using human endometrial biopsies and 
mouse models.   
Setting: Fundación-IVI, IIS-La Fe, Valencia, Spain. 
Samples: Endometrial biopsies collected before and after 
CD133+BMDSCs therapy, from 8 women with AS/EA (NCT02144987). 
And uterus from 5 mice, with only left horns receiving CD133+BMDSCs 
therapy. 
Methods: In human samples, hematoxylin and eosin (H&E) staining, RNA 
arrays, PCR validation and neutrophil elastase (NE) 
immunohistochemistry (IHQ). In mouse samples, PCR validation and 
protein immunoarrays. 
Main outcome measures: H&E microscopic evaluation, RNA expression 
levels, PCR and growth/angiogenic factors quantification, NE IHQ signal. 
Results: Treatment improved endometrial morphology and thickness for 
all patients. In human samples, JUN, SERPINE1 and IL4 were up-
regulated while CCND1 and CXCL8, down-regulated, after treatment. The 
significant decrease of NE signal corroborated CXCL8 expression. Animal 
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model analysis confirmed human results and revealed a higher 
expression of pro-angiogenic cytokines (IL18, HGF, MCP1, MIP2) in 
treated uterine horns. 
Conclusions: CD133+BMDSCs seems to activate several factors through 
a paracrine mechanism to help endometrium regeneration, through an 
immunological tolerance milieu that precedes proliferation and 
angiogenic processes. Insight in these processes could bring us one step 
closer to a non-invasive treatment for AS/EA patients. 
Funding: ISCIII (PI17/01039, CD15/00057); Generalitat Valenciana 
(PROMETEO/2018/137, ACIF/2017/118, ACIF/2015/271). 
Keywords: Endometrial regeneration, bone marrow-derived stem cells, 
paracrine mechanisms, Asherman’s Syndrome, Endometrial Atrophy. 
Tweetable abstract: CD133+BMDSCs regenerate endometrium via an 
immunological tolerant milieu that heads proliferation and angiogenesis.
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23 ABSTRACT

24 Objective: Determining genetic and paracrine mechanisms behind endometrial 

25 regeneration in Asherman’s Syndrome and Endometrial Atrophy (AS/EA) 

26 patients after autologous CD133+ bone marrow-derived stem cells 

27 (CD133+BMDSCs) transplantation.

28 Design: Retrospective study using human endometrial biopsies and mouse 

29 models.  

30 Setting: Fundación-IVI, IIS-La Fe, Valencia, Spain.

31 Samples: Endometrial biopsies collected before and after CD133+BMDSCs 

32 therapy, from 8 women with AS/EA (NCT02144987). And uterus from 5 mice, 

33 with only left horns receiving CD133+BMDSCs therapy.

34 Methods: In human samples, hematoxylin and eosin (H&E) staining, RNA 

35 arrays, PCR validation and neutrophil elastase (NE) immunohistochemistry 

36 (IHQ). In mouse samples, PCR validation and protein immunoarrays.

37 Main outcome measures: H&E microscopic evaluation, RNA expression 

38 levels, PCR and growth/angiogenic factors quantification, NE IHQ signal.

39 Results: Treatment improved endometrial morphology and thickness for all 

40 patients. In human samples, JUN, SERPINE1 and IL4 were up-regulated while 

41 CCND1 and CXCL8, down-regulated, after treatment. The significant decrease 

42 of NE signal corroborated CXCL8 expression. Animal model analysis confirmed 

43 human results and revealed a higher expression of pro-angiogenic cytokines 

44 (IL18, HGF, MCP1, MIP2) in treated uterine horns. 

45 Conclusions: CD133+BMDSCs seems to activate several factors through a 

46 paracrine mechanism to help endometrium regeneration, through an 
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47 immunological tolerance milieu that precedes proliferation and angiogenic 

48 processes. Insight in these processes could bring us one step closer to a non-

49 invasive treatment for AS/EA patients. 

50 Funding: ISCIII (PI17/01039, CD15/00057); Generalitat Valenciana 

51 (PROMETEO/2018/137, ACIF/2017/118, ACIF/2015/271). 

52 Keywords: Endometrial regeneration, bone marrow-derived stem cells, 

53 paracrine mechanisms, Asherman’s Syndrome, Endometrial Atrophy.

54 Tweetable abstract: CD133+BMDSCs regenerate endometrium via an 

55 immunological tolerant milieu that heads proliferation and angiogenesis.
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57 INTRODUCTION

58 Stem cell therapy is a widely used technique in regenerative medicine that has 

59 provided promising results recently. Therapies using autologous stem cells can 

60 successfully treat different diseases such as limb ischemia1, or multiple 

61 myeloma.2 While adult/somatic stem cells are present in many tissues,3 adult 

62 bone marrow is a well-known reservoir of mesenchymal stem cells and 

63 endothelial progenitor cells (EPCs).4,5 CD133 is a surface antigen that defines a 

64 broad population of adult/somatic stem cells, including EPCs.6 The regenerative 

65 properties of CD133+ hematopoietic bone marrow-derived stem cells 

66 (CD133+BMDSCs) have been demonstrated in many fields, most notably in 

67 ischemic heart conditions.7 

68 Recent evidence supports that paracrine actions provoked by these cells play 

69 an essential role in mediating regeneration via releasing biologically active 

70 factors.8 The main premise defining this concept was described by Baraniak 

71 and McDevitt: “a recent paradigm shift has emerged suggesting that beneficial 

72 effects of stem cells may not be restricted to cell restoration alone, but also due 

73 to their transient paracrine actions”.9 

74 From all endometrial pathologies, Asherman’s Syndrome (AS) and Endometrial 

75 Atrophy (EA) are some of the most relevant for assisted reproduction. AS is 

76 characterized by intrauterine adhesions caused by curettage or uterine traumas, 

77 leading to a lack of functional endometrium.10 Meanwhile, EA caused by poor 

78 endometrial growth resulting from several risk factors (lack of estrogens, 

79 surgical interventions or idiopathic causes). Women with AS/EA have a higher 

80 risk of impaired implantation, early miscarriage, and  diminished pregnancy 

81 rate.11 Though different treatments have been tried (exogenous estrogen, low-
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82 dose aspirin, vaginal sildenafil citrate),12 only stem cell therapy has 

83 demonstrated to be effective.13–18 Moreover, BMDSCs and their paracrine 

84 effects have shown promising results in ovarian rejuvenation,19 follicular 

85 restoration,20 embryo culture21,22 and chronic pelvic disease treatment23. 

86 In this context, our group has recently completed an innovative study showing 

87 the regenerative effects of CD133+BMDSCs in human18 and murine15 AS/EA 

88 models. The low frequency of stem cell engraftment in our animal model 

89 appeared insufficient to explain the described significant improvement of 

90 endometrial regeneration. This observation supports the mentioned premise 

91 that the final effectors of the regenerative process are soluble factors released 

92 by the transplanted CD133+BMDSCs.24 

93 This report represents a continuation of these previous studies,15,18 where we 

94 further investigate different factors and mechanisms that are induced by 

95 CD133+BMDSCs and assist endometrial recovery. The identification of these 

96 transient effects could be valuable to learn the specific patterns of endometrial 

97 regeneration and to possibly create non-invasive therapies for AS/EA.  

98 MATERIAL AND METHODS

99 Study participants, experimental design and histological analysis

100 Eight patients from our previous pilot study (ClinicalTrials.gov NCT02144987),18 

101 were selected for this project. A detailed description of these patients is given in 

102 S2.

103 Samples used for this study were human endometrial formalin-fixed and 

104 paraffin-embedded (FFPE) biopsies obtained before and three months after 

105 autologous CD133+BMDSCs injection. All biopsies were taken during the 
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106 proliferative phase under hormonal replacement therapy cycles (estradiol alone 

107 before progesterone). Experimental design is detailed in Figure 1. 

108 Hematoxylin and eosin (H&E) stain using standard protocols were performed: 

109 morphological, microanatomical and histological analysis of individual samples 

110 were carried out and compared individually in both groups (Figure 1). 

111 RNA isolation and reverse transcription

112 Human endometrial tissues were cut into 5-µm sections per block and condition 

113 (before/after treatment). Samples were randomly joined into 2 pools: patients 

114 #1-#4 (pool 1) and patients #5-#8 (pool 2). These pools were treated for RNA 

115 isolation accordingly the RNeasy FFPE Handbook protocol (QIAGEN, 

116 Germany). 

117 For reverse transcription, the First-Strand cDNA Synthesis protocol from FFPE 

118 samples (QIAGEN, Germany) was used. 

119 Molecular analysis and gene expression arrays

120 Before performing the arrays, cDNA was evaluated with the housekeeping gene 

121 GAPDH (QIAGEN, Germany) by quantitative real-time PCR (qRT-PCR). Then 

122 three qRT-PCR s with RT2 Profiler PCR Arrays format C (QIAGEN, Germany) 

123 were carried out for before and after treatment (pools 1 and 2): PAHS-040ZC: 

124 Human EGF/PDGF Signaling Pathway, PAHS-041ZC: Human Growth Factors, 

125 and PAHS-072ZC: Human Angiogenic Growth Factors. These 3 arrays were 

126 selected based on previous results which suggested proregenerative and 

127 proangiogenic effects as a result of the stem cell therapy.15,18

128 Bioinformatics data analysis
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129 Analysis of the qRT-PCR data was performed following the approach of Yuan et 

130 al.25 Then, a t-test was calculated for each gene comparing ΔCT values 

131 between both groups. CT values of statistically significant genes were 

132 represented in a heatmap with rows and columns ordered using hierarchical 

133 clustering.

134 After analyzing gene expression arrays, the KEGG (Kyoto Encyclopedia of 

135 Genes and Genomes) pathway database was used by manually annotation of 

136 the genes.26 

137 Human gene array validation 

138 To verify the results, the expression of JUN (jun proto-oncogene, c-Jun), 

139 CCND1 (cyclin D1) and CXCL8 (C-X-C motif chemokine ligand 8) was 

140 analyzed. qRT-PCR was performed using specific primers (Thermo Fisher 

141 Scientific, USA) (S3). Relative gene expression levels were determined by the 

142 ΔΔCt and normalized to GAPDH. Qiagen Data Analysis Software 

143 (https://www.qiagen.com/shop/genes-and-pathways/data-analysis-center-

144 overview-page/) was used to calculate fold regulation (FR). 

145 Neutrophil elastase protein expression 

146 Immunohistochemistry for neutrophil elastase (NE) in the human samples was 

147 performed. Deparaffinized tissue sections were incubated with monoclonal 

148 mouse anti-human NE (1:100; M0752 Dako, Agilent, CA, USA); human tonsil 

149 was used as positive control. Then the Envision HRP system was used (K4065, 

150 Dako, Agilent, CA, USA).  

151 Randomly chosen areas at X20 magnification of NE stained slides were 

152 evaluated by three blinded observers. An average of 2,400 cells were counted, 
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153 by Image-Pro Plus Software v6.3 (MediaCybernetics, MD, USA), to analyze 

154 stained cells in before/after treatment samples. Total NE expression was 

155 presented as the mean percentage of positive signals versus total cells with 

156 their corresponding standard deviation (SD). 

157 Murine models with Asherman’s Syndrome and human CD133+BMDSCs 

158 transplantation: validation of human results and protein immunoarrays

159 Uteri (n=5) from previously previous published work were used.15 Here, both 

160 horns were mechanically damaged and the left horns were treated by 

161 intrauterine injection with human CD133+BMDSCs, the damaged right horns 

162 were maintained as controls (Figure 4A).

163 Firstly, some of the differentially expressed human genes were validated in the 

164 mouse model: Jun, Serpine1 (PAI-1, plasminogen activator inhibitor-1) and 

165 Ccnd1. To note IL4 (Interleukin 4) or CXCL8 were not tested, the former cannot 

166 be detected in NOD-SCID mice due to its dynamic activity in allograft rejection 

167 via T cells27 and the latter is not expressed in mice.28 RNA extraction and qRT-

168 PCR were performed as detailed before; specific primers are in S3. Secondly, 

169 cytokine profile and growth and angiogenesis factors in the uterine tissue were 

170 measured. After deparaffination and rehydration, total protein extraction was 

171 performed using Qproteome FFPE Tissue Kit (QIAGEN, Germany). Similar to 

172 the human model, two multiplex immunoarrays were done to investigate 

173 molecules involved in regeneration and angiogenic processes: Mouse Cytokine 

174 & Chemokine 26-plex ProcartaPlex Panel (Thermo Fisher Scientific, USA) and 

175 MILLIPLEX MAP Mouse Angiogenesis/Growth Factor Magnetic Bead Panel 

176 (MERCK, Germany). Quantification was carried out using a Luminex MagPix 

177 system and Luminex xPonent Software. 
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178 Statistical data analysis 

179 Statistical analysis was performed using GraphPad Prism 7.04 software. Data 

180 are presented as mean ± SD. A paired sample t-test was used to analyze NE 

181 signals in before/after treatment samples and in the immunoarrays data. P-

182 value<0.05 was considered as significant.

183 RESULTS

184 Endometrial reconstruction after cell therapy with CD133+BMDSCs

185 H&E staining of the human endometrium before treatment showed stromal 

186 compaction and a non-functional secretory glandular morphology in most of the 

187 samples (#1, #3, #4, #5, #8) (Figure 1, upper panel). In contrast, 3 months after 

188 treatment with CD133+BMDSCs, the endometrium displayed clear stromal 

189 organization and the morphology of the glands varied from inactive to secretory 

190 (Figure 1, lower panel). In all the cases, the histological pattern of the 

191 endometrial samples after treatment was improved from a functional point of 

192 view, with exceptional results in patients #1-#4, #7, and #8.  

193 Endometrial thickness in all patients ranged between 3 and 5 mm before 

194 treatment, after treatment this broadened to a range of 5 to 12 mm. More details 

195 can be found in S2. 

196 Gene expression arrays in samples before and after treatment

197 A total of 252 genes were analyzed from the three different gene arrays used. 

198 To note we are only taking those genes into account that have highly restricted 

199 significant expression patterns in both pools. Therefore, only six genes had a 

200 significantly different expression in the treatment group: JUN (p=0.037), ARAF 
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201 (p=0.049), and CCND1 (p=0.043) from the Human EGF/PDGF Signaling 

202 Pathway array; IL4 (p=0.041) from the Human Growth Factors array; and 

203 CXCL8 (p=0.036) and SERPINE1 (p=0.026) from the Human Angiogenic 

204 Growth Factors array. We discarded ARAF because it showed to be up-

205 regulated in pool 1 but down-regulated in pool 2. However, the other 5 genes 

206 show to be up- or down-regulated in both pools. JUN, an oncogene, 

207 SERPINE1, an inhibitor of fibrinolysis, and IL4, involved in immune response, 

208 were down-regulated, but became up-regulated after treatment. On the other 

209 hand, CCND1, a regulator of CDk4 kinase, and CXCL8, a potent mediator of 

210 the inflammatory response, were down-regulated after treatment. As seen in 

211 Figure 2B, CXCL8 was the gene with the highest FR between conditions. 

212 Selection and validation of reference genes

213 Validation of the 3 genes selected from the gene array results corroborated that 

214 in human samples JUN was up-regulated after the treatment (FR=1.429), while 

215 CCND1 and CXCL8 were down-regulated (FR=-1.434 and -26.546, 

216 respectively) (Figure 2B). 

217 Gene expression pattern analysis

218 The KEGG pathway database was used to characterize the differentially up-

219 regulated gene functions.26 Here it became apparent that JUN, SERPINE1 and 

220 IL4 could fundamentally influence cell cycle progression and angiogenesis, 

221 playing roles in anti-apoptosis, cell differentiation, proliferation and survival, 

222 cytokine production, cellular growth, and chemotaxis. Seven signal transduction 

223 pathways in wich these genes take part were identified: Wnt, MAPK, and TNF 
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224 pathways correlated to JUN; Wnt, HIPPO, and TGFβ pathways to SERPINE1; 

225 and, JAK-STAT, and PI3K-AKT to IL4 (Figure 2C).

226 Neutrophil elastase protein expression before and after treatment 

227 To demonstrate the effect of CXCL8 downregulation, a neutrophil 

228 chemoattractant, NE immunohistochemistry was performed (Figure 3A-B). After 

229 counting all positive signals, we detected a statistically significant decrease after 

230 treatment in all patients (p=0.025) (Figure 3).

231 Validation of human genes results and protein expression in murine 

232 models

233 It was confirmed in murine samples that Jun and Serpine1 genes up-regulated 

234 after the treatment (FR=1.215 and 2.231, respectively), while Ccnd1 was down-

235 regulated (FR=-2.921) (S1). 

236 Multiplex immunoarrays of the uterine horns were performed (injected -treated- 

237 and non-injected -not treated- with human CD133+BMDSCs) (Figure 4A). The 

238 expression of all proteins in the treated (n=5) and not treated (n=5) horns can 

239 be found in S4. From the 48 target proteins analyzed, four showed a statistically 

240 significantly higher expression in treated horns: IL18 (interleukin-18), HGF 

241 (hepatocyte growth factor), MCP-1 (C-C motif chemokine 2) and MIP2 (C-X-C 

242 motif chemokine 2) (Figure 4B-C). Other interesting proteins such as VEGFA 

243 (vascular endothelial growth factor A), FGF-2 (fibroblast growth factor 2), 

244 betacellulin, TNFα (tumor necrosis factor) or interleukin-10 also showed a 

245 tendency towards having a higher expression in the treated horn without being 

246 significant (S4).  

247 DISCUSSION 
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248 Main discussion

249 Even though this study is based on findings and samples previously obtained by 

250 our group,15,18 all the results showed and discussed here are completely new, 

251 reinforcing interesting and new concepts in the regenerative medicine field 

252 mainly in endometrial regeneration after stem cell therapy.

253 The present study elucidated for the first time some of the specific mechanisms 

254 responsible of endometrial tissue repair in patients suffering from AS/EA after 

255 specific autologous stem cell treatment. The identification of five differentially 

256 expressed genes (JUN, SERPINE1, IL4, CCND1 and CXCL8) related with the 

257 therapeutically potential of CD133+BMDSCs describes an immunomodulatory 

258 scenario and a subsequent dynamic regeneration. We also observed a 

259 decrease in the human NE expression influencing probably the inflammatory 

260 responses and the immune system in treated patients. After validating a number 

261 of these genes in both women and immunocompromised mice, mouse horns 

262 revealed to overexpress crucial angiogenic and reparative factors like IL18, 

263 HGF, MCP-1 and MIP2 after stem cell administration, reinforcing its 

264 regenerative potential.  

265 AS/EA are pathological conditions strongly related to subfertility and recurrent 

266 implantation failure.12,29 The implication of BMDSCs in endometrial tissue 

267 recovery has been widely documented in mouse models,17,30 macaques31 and 

268 humans32–34 however the specific events by which this grafting may improve the 

269 restoration still remains unknown. Current research efforts include elucidating 

270 the systems implicated in tissue regeneration driven by BMDSCs.8,9,35 Our aim 

271 is to decipher the stem cell mechanisms and paracrine signals implicated in the 
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272 recovery and regeneration of pathological endometrium after BMDSCs 

273 treatment in humans and mice.

274 The silencing of the immunologic milieu in treated women could be led mainly 

275 by the noteworthy down-regulation of CXCL8 gene; described as a cytokine 

276 involved in neutrophil activation and T cell chemotactic activity36 avoiding the 

277 production of an effective immune response.37 Moreover, we corroborated this 

278 by the arrest of neutrophils due to the significant reduction of NE expression.38 

279 Interestingly, some studies correlated the decrease of CCND1 gene expression, 

280 an oncogenic cell-cycle regulator which varies with the phase of the cell cycle in 

281 normal cells,39 with the down-regulation of CXCL8.39–41 A decline of CCND1 

282 indicates that cells are in S (synthesis) and G2-M (growth and mitosis) phases 

283 promoting a proper status for proliferation and functional endometrial 

284 recovery.39,42,43 

285 This hypothesis is supported further by the upregulation of the SERPINE1 

286 gene.44 SERPINE1 has been described to be mainly produced by the 

287 endothelium,45 is implicated in arterial remodeling in cardiac wound healing46 

288 and is required for keratinocyte migration during cutaneous injury repair.47 In the 

289 human endometrium, the increased expression of SERPINE1 was described 

290 throughout decidualization,48 giving rise to vascular remodeling and 

291 morphological and functional changes in the stromal cells.49 In our context it is 

292 likely that SERPINE1 may be an influencer toward differentiation and 

293 neovascularization during the regeneration of the stromal compartment. The 

294 increase of IL4 expression is correlated to higher proliferation, differentiation, 

295 and anti-apoptosis actions in several cell types including cancer cells;36,50 
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296 probably inferring here in the treated endometrium a cascade of regenerative 

297 events. 

298 Beyond the events described above, affecting the endothelial and stromal 

299 compartments of the human endometrium, these effects were also 

300 accompanied by the epithelial endometrial differentiation presumably guided by 

301 JUN.51–54 The moderate up-regulation of this gene in treated patients was 

302 associated with the regeneration of the epithelial endometrial compartment due 

303 to its role as an important mediator of epithelial cell development and 

304 proliferation. The central role of JUN in proliferation and differentiation of 

305 primary human keratinocytes was shown by the formation of an aberrant 

306 epithelium in the murine epidermis when c-Jun is not expressed.55 Moreover, 

307 Salmi et al. described how JUN expression appeared to be associated with the 

308 proliferation of endometrial epithelial cells but remained relatively unchanged in 

309 the stromal compartment in human endometrium.56

310 To support our study we attempted to identify the repertoire of secreted factors 

311 in the animal model.15 Several detected human genes were also validated in 

312 mouse uterine tissue, increasing the possibility that the events observed in the 

313 animal model could be also taking place in the human endometrium. From all 

314 the selected factors analyzed (S4), IL18, HGF, MCP-1 and MIP2 showed a 

315 higher expression pattern on treated horns when compared with controls. 

316 IL18, commonly described as a pro-inflammatory cytokine, can also operate as 

317 an angiogenic factor,57 suggesting its role to promote neovascularization after 

318 tissue injury. Furthermore, HGF is not only implicated in endometrial remodeling 

319 during the estrous cycle but also in cell proliferation via auto/paracrine 

320 mechanisms in the mouse endometrium and mainly in epithelial cells.58,59 In 
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321 addition, HGF has been postulated to regulate its own activation by the 

322 upregulation of the protein product from SERPINE1 gene.60,61 And it has also 

323 been described to be up-regulated when JUN is overexpressed.62 Additionally, 

324 MCP-1 has been widely described in tissue repair, remodelling and angiogenic 

325 processes (induction of migration and sprouting of endothelial cells and the 

326 increase of vascular permeability).63,64 In relation to this, Butler et al.65 described 

327 MCP-1 and HGF (and also VEGFA) as angiocrine factors, which are defined as 

328 factors from vascular endothelial cells that have a paracrine action. Lastly, MIP-

329 2 has also been described to enhance cell proliferation, mainly in hepatic 

330 tissue.66 Interestingly, the pro-angiogenic properties shared among these 4 

331 factors correlate with the neovascularization and regenerative evidences we 

332 found on the human model. 

333 Strengths and limitations 

334 This study provides detailed information to explain complex mechanisms at 

335 gene and protein levels that are related to human endometrial regeneration 

336 after stem cell therapy. Findings can be generalized because the selection 

337 process is well-designed and samples are representative of the study 

338 population; moreover this was corroborated in a mouse model. Nevertheless, 

339 future studies using specific molecules identified in the murine model 

340 (cytokines, chemokines, growth and angiogenic factors) should be also tested in 

341 human endometrial tissue to assess our preliminary results as a non-invasive 

342 therapy in patients suffering AS/EA. To note that several factors identified in the 

343 murine model were related to the inflammatory response, but due to the fact we 

344 are working with NOD-SCID mice, we did not fixate our discussion/work in that 

345 direction.  
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346 Interpretation

347 Thanks to the elucidation of certain transient paracrine actions it is possible that 

348 these factors could be used in the future to enhance the therapeutic efficacy of 

349 stem cell approaches. In this sense, it starts to clarify the mechanisms of the 

350 regenerative process after stem cell therapy. In general, the mechanisms 

351 sustained by the transplanted stem cells were quite similar in human and 

352 murine models. Firstly, by the establishment of an immunotolerant milieu 

353 favoring regenerative events. Followed by the respective proliferation of the 

354 endothelial, stromal and epithelial compartments guided by very different and 

355 specific patterns. And all together accompanied by the global 

356 neovascularization process carried out by the well-named angiocrine factors. 

357 CONCLUSION

358 In conclusion, successful human endometrial regeneration after autologous 

359 CD133+BMDSCs therapy seems to depend on the ability of the immune system 

360 to become tolerant and receptive as well as on the capability of resident cells to 

361 promote tissue regeneration and neo-vascularization, all via paracrine actions. 

362 Taken into account the results presented here, the next steps would be the 

363 validation of these factors as truly effectors in both mouse and human AS/EA 

364 models and investigating if pregnancy and delivery rates would be improved. 
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609 FIGURE LEGENDS

610 Figure 1: Study design. (A) Before any treatment, an endometrial biopsy was 

611 obtained from women with Asherman’s Syndrome (AS) and/or Endometrial 

612 Atrophy (EA). Histology and microanatomy were analyzed by hematoxylin and 

613 eosin (H&E) staining (pictures showed in the upper panel, 10X; scale bar 0.2 

614 µm). (B, C) After that, human CD133+ bone marrow-derived stem cells 

615 (CD133+BMDSCs) were mobilized (by G-CSF, granulocyte colony-stimulating 

616 factor) and isolated from these patients by flow cytometry. (D) Isolated cells 

617 were autotransplanted in the same women and (E) another biopsy was obtained 

618 three months after the intervention (lower panel showing H&E staining after 

619 treatment, 10X; scale bar 0.2 µm). In parallel, these CD133+BMDSCs were also 

620 used for an animal model represented in the right side of the diagram (Cervelló 

621 et al., 2015).15 

622 Figure 2: Comparison of endometrial gene expression profile before/after 

623 CD133+BMDSCs therapy in patients with AS and EA.  (A) Heat map showing 

624 genes with significant different expression before/after treatment conditions. 

625 SERPINE1, JUN, and IL4 proved to be up-regulated after the treatment. 

626 Conversely, CCND1 and CXCL8 were down-regulated after the treatment. Fold 

627 regulation value is shown with a typical color gradation, in green for up-

628 regulation and in red for down-regulation situations, as shown in the right side of 

629 the figure. (B) qRT-PCR array data validation of selected genes (JUN, CCND1, 

630 and CXCL8) was performed in samples before/after treatment by qRT-PCR (to 

631 note we have analyzed two pools per each condition; n=4 patients per pool). 

632 Gene expression is represented as fold regulation; **Fold Regulation < -2. (C) 
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633 Schematic overview of up-regulated genes, metabolic pathways in which they 

634 are involved and biological processes they trigger. 

635 Figure 3. Neutrophil elastase endometrial protein expression in patients 

636 with AS and EA before/after cell therapy with autologous CD133+BMDSCs. 

637 (A) Schematic overview of the relation established among CXCL8 gene, 

638 neutrophils recruitment and neutrophil elastase (NE) expression at protein level. 

639 (B) Immunohistochemistry against NE of two representative histological 

640 samples (at 20X magnification) before/after treatment. Positive (human tonsil) 

641 and negative (absence of primary antibody) controls were used for NE 

642 immunohistochemistry. (C) A graphic showing the statistically significant 

643 difference in NE signal is showed, *paired samples t-test indicated significant 

644 differences <0.05 (p-value = 0.025).  

645 Figure 4. Comparison of protein expression profile in treated and not 

646 treated uterine horns (with human CD133+BMDSCs) in a mouse model 

647 with damaged uterus. (A) Diagram summarizing the methodology used in our 

648 animal model, where left horn was damaged and intrauterine injection 

649 performed with BMDSCs (named as treated), and right horn only with the 

650 damage (not treated).  (B) Proteins showing a statistically significant difference 

651 in tissue expression when treated and not treated uterine horns were compared: 

652 IL18, HGF, MCP-1 and MIP2; *paired samples t-test indicated significant 

653 differences (p-value < 0.05). **paired samples t-test indicated significant 

654 differences (p-value < 0.01). To note: the difference in expression of all proteins 

655 in treated horns showed to be at least twice as much as in the not treated 

656 horns. (C) Table with the main characteristics about IL18, HGF, MCP-1 and 

657 MIP2.  
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658 SUPPORTING INFORMATION

659 S1 (supplementary figure 1). PCR array data validation of selected genes 

660 in murine uterine tissue. Jun, Ccnd1 and Serpine1 were validated (as 

661 performed in human samples) in treated and not treated uterine horns by qRT-

662 PCR (to note we have analyzed two pools per each condition, n= 4 patients per 

663 pool).

664 S2 (supplementary table 1). Study participants. Clinical characteristics of the 

665 8 selected patients with Asherman’s Syndrome (AS) and Endometrial Atrophy 

666 (EA). The Asherman’s Syndrome Classification by ‘The American Fertility 

667 Society classification of intrauterine adhesions, 1988’.67 

668 S3 (supplementary table 2). Specific primers used for the validation of 

669 JUN, CCND1, CXCL8, CCND1 and GAPDH. GAPDH was used as 

670 housekeeping gene. JUN, CCND1 and GAPDH primers were common for both 

671 species, human (Hu) and mouse (Ms).

672 S4 (supplementary table 3). Multiplex immunoarrays data from animal 

673 model. All targets analyzed are shown, including detection limit, mean 

674 concentration expressed in pg/ml (with standard deviation (SD)) in treated and 

675 not treated uterine horns, and p-value. Targets in green are those showing 

676 statistically significant differences; *paired samples t-test indicated significant 

677 differences (p-value < 0.05); **paired samples t-test indicated significant 

678 differences (p-value < 0.01). Targets in blue are those showing an upper trend 

679 without being significants. ND: no detected. UDL: under detection limit.

680
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Figure 1: Study design. (A) Before any treatment, an endometrial biopsy was 
obtained from women with Asherman’s Syndrome (AS) and/or Endometrial 
Atrophy (EA). Histology and microanatomy were analyzed by hematoxylin and 
eosin (H&E) staining (pictures showed in the upper panel, 10X; scale bar 0.2 µm). 
(B, C) After that, human CD133+ bone marrow-derived stem cells 
(CD133+BMDSCs) were mobilized (by G-CSF, granulocyte colony-stimulating 
factor) and isolated from these patients by flow cytometry. (D) Isolated cells were 
autotransplanted in the same women and (E) another biopsy was obtained three 
months after the intervention (lower panel showing H&E staining after treatment, 
10X; scale bar 0.2 µm). In parallel, these CD133+BMDSCs were also used for an 
animal model represented in the right side of the diagram (Cervelló et al., 2015).15 
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Figure 2: Comparison of endometrial gene expression profile before/after CD133+BMDSCs therapy in patients with AS and 
EA.  (A) Heat map showing genes with significant different expression before/after treatment conditions. SERPINE1, JUN, and IL4 
proved to be up-regulated after the treatment. Conversely, CCND1 and CXCL8 were down-regulated after the treatment. Fold 
regulation value is shown with a typical color gradation, in green for up-regulation and in red for down-regulation situations, as shown 
in the right side of the figure. (B) qRT-PCR array data validation of selected genes (JUN, CCND1, and CXCL8) was performed in 
samples before/after treatment by qRT-PCR (to note we have analyzed two pools per each condition; n=4 patients per pool). Gene 
expression is represented as fold regulation; **Fold Regulation < -2. (C) Schematic overview of up-regulated genes, metabolic 
pathways in which they are involved and biological processes they trigger. 
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Figure 3. Neutrophil elastase endometrial protein expression in patients with AS and EA before/after cell therapy with 
autologous CD133+BMDSCs. (A) Schematic overview of the relation established among CXCL8 gene, neutrophils recruitment and 
neutrophil elastase (NE) expression at protein level. (B) Immunohistochemistry against NE of two representative histological samples 
(at 20X magnification) before/after treatment. Positive (human tonsil) and negative (absence of primary antibody) controls were used 
for NE immunohistochemistry. (C) A graphic showing the statistically significant difference in NE signal is showed, *paired samples t-
test indicated significant differences <0.05 (p-value = 0.025).  
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Figure 4. Comparison of protein expression profile in treated and not treated uterine horns (with human CD133+BMDSCs) in 
a mouse model with damaged uterus. (A) Diagram summarizing the methodology used in our animal model, where left horn was 
damaged and intrauterine injection performed with BMDSCs (named as treated), and right horn only with the damage (not treated).  
(B) Proteins showing a statistically significant difference in tissue expression when treated and not treated uterine horns were 
compared: IL18, HGF, MCP-1 and MIP2; *paired samples t-test indicated significant differences (p-value < 0.05). **paired samples t-
test indicated significant differences (p-value < 0.01). To note: the difference in expression of all proteins in treated horns showed to 
be at least twice as much as in the not treated horns. (C) Table with the main characteristics about IL18, HGF, MCP-1 and MIP2.  
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