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ABSTRACT Dynamic Vision Sensor (DVS) pixels produce an asynchronous variable-rate address-event
output that represents brightness changes at the pixel. Since these sensors produce frame-free output, they
are ideal for real-time dynamic vision applications with real-time latency and power system constraints.
Event-based filtering algorithms have been proposed to post-process the asynchronous event output to
reduce sensor noise, extract low level features, and track objects, among others. These postprocessing
algorithms help to increase the performance and accuracy of further processing for tasks such as classification
using spike-based learning (ie. ConvNets), stereo vision, and visually-servoed robots, etc. This paper
presents an FPGA-based library of these postprocessing event-based algorithmswith implementation details;
specifically background activity (noise) filtering, pixel masking, object motion detection and object tracking.
The latencies of these filters on the Field Programmable Gate Array (FPGA) platform are below 300ns with
an average latency reduction of 188% (maximum of 570%) over the software versions running on a desktop
PC CPU. This open-source event-based filter IP library for FPGA has been tested on two different platforms
and scenarios using different synthesis and implementation tools for Lattice and Xilinx vendors.

INDEX TERMS Neuromorphic engineering, address-event-representation (AER), dynamic vision, frame-
free vision, event-based processing, event-based filters, field programmable gate arrays (FPGA), VHDL.

I. INTRODUCTION
Dynamic Vision Sensors (DVSs) [1], [2] mimic part of the
biological retina’s functionality in silicon chips using an
asynchronous output representation called Address Event
Representation (AER) [3], [4]. Each sensing unit, or pixel
in these vision sensors, models simple ON and OFF retinal
ganglion cells. The main advantages of these vision sensors
are the sparseness of their visual information, their low-
latency response, and their high dynamic range. A sensed log-
intensity brightness change by any of the pixels is sent out in
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typically less than 1ms after it is produced. This architecture
is radically different to frame-based cameras used in artificial
vision. Conventional cameras measure the intensity over a
short period of time (exposure time) in all the pixels, and
then they then send out the entire frame. This frame transfer
is done even though in many scenarios, only a few pixels have
changed since the last captured frame.

The biological retina is the only source of visual infor-
mation to the brain. Visual processing begins when photons
stimulate the light-sensitive photoreceptor rod and cone cells
in the retina. These cells convert the information into elec-
trical signals and send them through intermediate networked
layers of cells to around 15-20 types of retinal ganglion cells.
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They perform visual processing before visual information
arrives to the visual cortex in the brain. The DVS pixel
implements a simplified model of the ON and OFF transient
ganglion cells. Other ganglion cell functionality, such as the
local and global motion detection and approach responses,
aer implemented in both software (jAER [5]) and hardware
within the EU VISUALISE project [6].

In the central nervous system, high priority information
arrives first to the brain, so it is processed in a higher
priority, or even in an involuntary and reflexive way. The
use of digital cameras to emulate such kind of processing
demands an enormous amount of computational resources
to extract that crucial information from the frames in the
available interframe time. For hard real-time systems, this
biological mimicking approach is valuable and results in
visual embedded systems that are able to perform relatively
complex visual tasks, like fast object detection and tracking,
as we demonstrate in this work.

This paper presents a set of event-based filters, with
improvements and extensions over previous works, that are
designed to remove uninformative events (for e.g. back-
ground noise events) or useless ones (mask filter), and feature
extractor algorithms (objects tracking, motion detection). The
aim of this work is to serve as a DVS post-processing mech-
anism for reducing latencies and increasing the accuracy of
any event-based processor (i.e. classifier, learning algorithm,
etc). We present digital architectures, with implementation
details, using hardware description languages for FPGAs.
We evaluate these architectures on two different platforms
so as to demonstrate their independence towards a particu-
lar FPGA vendor or embedded architecture. The library is
open-sourced1 to enable researchers to build on this work by
forking.

The paper is structured as follows: Section II presents
the related works, then Section III describes the basis of
the event-based neuromorphic processing and examples of
filters and feature extractors that process the sensor output.
Section IV gives the FPGA implementation details for these
algorithms. Section V describes the two FPGA platforms we
used, and Section VI shows the results.

II. RELATED WORK
Event-based algorithms for DVS have been reviewed in
[7]–[10]. Most of the object tracking proposed works
[11]–[15] are tested in software for desktop CPUs. In [11],
a cluster tracker is used to detect balls in real-time;
[12] extends the Fischler and Elschlager model to the event-
based domain; a corner detection event-based algorithm is
presented in [14]; in [15] the used method is the mean shift
as gradient descend for a robotic application in real-time;
authors on [13] used a mixed alternative where the object
is detected from a frame, and then it is followed in an event-
based manner during the inter-frame time, which is valid only
for DAVIS retina [2].

1https://github.com/RTC-research-group/EDIP_library

Other visual filters have been implemented in software [16]
(gaussian, bilateral and Canny edge detector), ASICs [17],
FPGAs [18], [19] or a combination of these two last; like [20],
where a mixed signal ASIC design implements a correlation
filter for DVS output events and it tells if that event must be
filtered or not, delegating that job to an FPGA. Recently [21]
presented an interesting DVS noise filter that uses only linear
arrays of memory for a 2D pixel array; it reduces memory
resources up to 10× less, but can only filter out noise at low
activity rates.

Reference [22] presents the first event-based, energy-
efficient approach for object detection and categorization
using the DAVIS [23], called PCA-RECT. This framework
requires a training phase in order to perform a kind of pattern
matching. It has been tested on FPGA and it has an accuracy
of 79% , which might be improved by DAVIS postprocessing
to reduce and clean the stream of events from noisy or not
correlated events.

Another event-based system that requires training phases
to accomplish the object-tracking problem is [24], which
offers promising results for several event-based algorithms
such as tracking or feature matching. The filters and algo-
rithms presented in this paper achieve a throughput perfor-
mance of only 59 keps2 running on an Intel Core i7 as C++
single-thread implementation, which could be considerably
improved on FPGA (such low event rates are only observed
in staring surveillance scenarios).

Other filters or event-based processing algorithms imple-
mented in hardware to improve their latencies are: (1) real-
time frequency detectors [25] for quadcopter motors with
low latency, where implementations are for an FPGA at
100MHz and simulated on an ASIC at 155MHz; and
(2) Padala et al. [26], where authors present a neural network-
based noise filtering for TrueNorth [27] with similar function-
ality of the background activity filter presented in this paper.
Its main advantage is the capacity for event generation, but
the millisecond resolution presented, although is enough for
their application (traffic monitoring), it might be reduced for
other high-speed real-time applications.

The filters and features extractors presented in this paper:
(1) does not require training from datasets, although the
mask filter requires a short observation time from the sensor;
(2) they have been tested both in software and FPGA to
highlight the latency improvements for FPGAs, their simple
components requirements and their viability for high-speed
visual applications; and (3), these algorithms belong to those
sensor post-processing event-based mechanishms that could
improve capabilities of more complex tasks.

III. NEUROMORPHIC EVENT-BASED
VISUAL PROCESSING
Event-based processing refers to the processing of those
information codified in events produced by neuromorphic
sensors. This processing is done before the sensor events are

2eps is events per second, keps is a thousand eps
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transmitted to high level algorithms such as ConvNets [28],
Deep Belief Networks [29] for classification tasks, or for
robotic applications [30]–[32]. This processing should pre-
serve the low latency property of the sensor output, which
comes about because of the asynchronous and quick readout
of the sensors such as the DVS. There are two main classes of
event-based sensor processing algorithms: filters and feature
extractors [7]. Filters cannot transform sensor information;
they can only apply small changes for improving the quality
of the signal, e.g. removing noise events or reducing the
activity. On the other hand, feature extractors extract a par-
ticular stimulus property such as edge orientation. Events can
be transmitted with additional information such as the best
feature at a pixel.

Let us suppose E = {e0, e1, e2, . . . , en} to be a set of
events coming out from the DVS sensor. Each of these events
is composed of four terms: ei = (si, xi, yi, ti), correspond-
ing to the polarity, x-address, y-address and timestamp of
the event respectively. Each filter algorithm is expressed
as in (1).

EFILTER = fFILTER(E) = {eF0 , eF1 , eF2 , . . . , eFk } (1)

where EFILTER ⊆ E and k ≤ n, i.e. EFILTER is a reduced set of E
produced by the filter fFILTER acting on E .
Similarly, a feature extractor can be expressed as in (2)

EFEATURE = fFEATURE (E) = {eFE0 , eFE1 , eFE2 , . . . , eFEp} (2)

where EFEATURE 6= E , and usually p 6= n, which means
that feature-extracted events are new ones (usually fewer in
number) produced by the algorithm as a result of an internal
calculation, as for example the center of mass of an object
over time.

This work presents in detail two filters: the background
activity filter (BAF), improved from [18], and the mask filter
(MF). It additionally presents two feature extractors: the
cluster object tracker (COT), with improvements over [19],
and the object motion detector (OMD); all implemented and
tested on FPGA. The filters have some parameters that can be
configured by the user to adjust the performance of the filter
to the behavior desired. This is done to make the filter flexible
for further models of retinas and other neuromorphic sensors
to come.

A. BACKGROUND ACTIVITY FILTER (BAF)
Due to transistor junction leakage and parasitic photo-
currents [33], the DVS pixels can produce event activity
unrelated to brightness changes, which looks like image noise
when the events are plotted in the form of an image histogram.
This activity produces continual output that will increase
power consumption and could lead to errors in the post-
processing algorithms, for example for tracking small objects,
where the background activity leads to phantom tracking
([34]–[36]). It is possible to filter outmost of this uncorrelated
activity.

FIGURE 1. Background activity filter: Top: Address-event-representation
mapping to address of 2D memory array of timestamps. Bottom-left: 2D
timestamp array representation, where px1-4 corresponds to subsampling
operation and nb1-nb8 represent the neighborhood of incoming address
(nb0). Right: Representation of temporal filtering condition.

1) ALGORITHM
According to (1), let us call EBAF the subset of E composed
of those events that have limited spatio-temporal correlation.
The spatial correlation is restricted to a cluster of pixel-
addresses around px1 = (a, b) pixel of radius nb and the
temporal correlation is defined by dtTH as a time interval
in between event ej and last spatially-correlated event ei,
as shown in Fig. 1., right side. For a given pixel address (a, b)
and a particular time-instant tj, let us call ej = (s, a, b, tj) the
last received event. For a neighborhood around (a, b) let us
call ti the maximum time-instant for that neighborhood that
obeys ti < tj:

ti = max{tp} (3)

where tp = time(ep), tp < tj, xp ∈ (a − nb, a + nb),
yp ∈ (b−nb, b+nb), being nb the radix of neighbors in x-axis
and y-axis considered for the filter, and (a, b) pixel is not
considered. This filter says that ej ∈ EBAF , if (tj− ti) ≤ dtTH .
When amoving object stimulates the DVS, a neighborhood

of pixels is usually active at the same time, generating events.
The BAF has been further improved by also filtering events
that are not correlated in space. In this way the filter removes
events that are not spatio-temporally correlated. There are two
possible ways to implement the spatial correlation: 1) Pixels
share a position of the 2D timestamps memory array within
a neighborhood (i.e. subsampling the event address by right
shifting the x- and y-parts to access the 2D array of stored
timestamps, px1-px4 in Fig. 1); and 2) by updating the last
event timestamp in a neighborhood of timestamps around the
corresponding pixel of the incoming event, avoiding its own
address. So isolated pixels, with no neighbors to update their
timestamps, will be filtered. 1) and 2) can be combined as in
this work.

2) SOFTWARE
The jAER implementation of a background activity
filter (BackgroundActivityFilter [5]) works as follows:
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the timestamp of an event is used to measure the inter-
event-interval times between that pixel and itself and all of
its nearest neighbors (called delta-times). These delta-times
(δt) are compared to a threshold to determine if this event
should be filtered. If the pixel or any of its neighbors has also
received an event within this time window, the event is passed
along; otherwise the event is regarded as uncorrelated and is
filtered out.

3) HARDWARE
Fig. 1 illustrates these two combined ideas (spatial and tem-
poral correlations). A 2D memory of 128 × 128 times-
tamps is addressed taking the 7 most significant bits of the
X (column) and Y (row) addresses per event. Thus, each
position of the array is shared by a neighborhood of 2nx2n

pixels (e.g. 4 pixels: px1 to px4), like in [20]. Extensive
spatial correlation is implemented taking more consecutive
positions of the timestamps array in X and Y directions
(e.g. nb1 to nb8 in the figure). This filter needs a dedicated
timer to measure the inter-event-intervals. When a new event
arrives, it is assumed that its address corresponds to nb0;
the filter reads the timestamp stored in nb0 (called ti) and
calculates the δt by subtracting current timer value (called
tj or tk to illustrate the two possible cases). Then, this δt is
compared to the configurable threshold (called dTH in the
figure). If δt is lower than dTH (the case of tj) then that new
event is sent out. If δt is bigger than dTH (tk case) then the
event is filtered. Finally, the filter stores the current timer
value (tj for case 1 or tk for case 2) in a set of neighbors around
nb0, except nb0.

FIGURE 2. Simplified BAF FSM diagram. Temporal correlation is
implemented using a global timer from which t0 and t1 are taken. Spatial
correlation is implemented by UPDATE RAM state through needed
iterations to cover all the neighbors around the incoming event.

This filter, implemented in VHDL, uses three main circuit
components: (a) a FSM to implement the control unit (see
Fig. 2 for a simplified version), (b) FPGA embedded block-
RAM memory to implement the 2D array of timestamps and
(c) a counter for time control (called Timer in Fig. 2).

The FSM starts with the idle state. If a new AER event
arrives (Request signal of AER bus is active), the global timer
is read and its current value is stored in a register called t1.
At the same time (same state and clock cycle), the input event

address is stored in a register (dir). In the next clock cycle,
the last timestamp is read from address dir of the block-RAM.
That stored value is copied into the register t0. Then, in the
following clock cycles (8 if up to 8 neighbors nb1 − nb8
are used), the state machine accesses the block-RAM for
writing t1 in the 8 neighbors addresses (except nb0). The nb0
position, if updated, must be done when a new event arrives
for any of its neighbors. Once, all the neighbors’ positions
in memory have been updated with the new timestamp t1,
the state machine checks if t1− t0 is bigger or smaller than a
configurable threshold, dtTH , in order to decide if the current
incoming event must be filtered or passed through to next
event-processing blocks. Those 16 kwords of stored times-
tamps, requires a memory size of 64 kbytes. Xilinx Spartan 6
FPGAs have 36 kbit block-RAMs, which can be used as 1k
blocks of 36-bit; so 16 blocks are needed. For Lattice EC3P,
each embedded block RAM (EBR) has a size of 18 kbits
that can be used as a 512 elements of 36 bits, so 32 EBRs
are needed for this vendor. The timer is implemented using a
32-bit register that is incremented on every clock cycle.

B. MASK FILTER (MF)
There are two different situations that can be solved by using
MF: 1) Filtering a set of so-called hot pixels; those which due
to transistor mismatch have low temporal contrast thresholds
and thus high spontaneous noise activity. 2) Masking out
uninformative or distractor pixels, e.g. as in the slot car racer
demonstration in [36], where only the pixels corresponding
to the slot car race track should contribute to tracking the
slot car.

1) ALGORITHM
Let us suppose an array M with the same size array as the
silicon retina (AxB). This array will contain a bit at each
position: M = [ma,b],ma,b ∈ {0, 1}, 0 ≤ a ≤ A, 0 ≤ b ≤ B.
This bit will be understood as a mask to filter each of the
incoming events from the retina location. Therefore, EMASK
is defined as in (4).

EMASK ={eM0 , eM1 , eM2 , . . . , eMq}, //∀eMr | M (xMr , yMr )=1

(4)

TheM array is calculated beforehand bymonitoring events
for a period of time. If the frequency of events for a particular
address is higher than a threshold, the mask can be activated
for that address. In this case, the filter will be working as a
high-pass filter. In contrast, if the mask is inverted, when the
frequency is higher than the threshold, the behavior of the
filter will be as a low-pass filter.

2) SOFTWARE
The jAER MF (HotPixelFilter) filter is implemented in two
stages: an observation step and after that, the filtering step.
During the observation step, a list of pixel addresses whose
activity has a higher event rate than a configurable threshold
is generated. Using this list, the next step is to allow only
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FIGURE 3. Mask Filter FSM simplified diagram. array(ae) is the filtering
flag for the incoming event. Observe is a configuration signal that enables
the observing state for a period of Xms. timeout indicates that the
Observing time is due. Matrix is a memory used for the observing stage
to collect a histogram of events. In Update mask each position of array is
set if the same position of matrix is bigger than a configurable threshold.

the events from those pixels that are not on the list to be
communicated to the next block.

3) HARDWARE
for the implementation of MF a block-RAM for the observ-
ing step (256 × 256 × 5bits, called matrix in Fig. 3) and
a second and smaller block-RAM for the filtering step
(256 × 256 × 1bit , called array) are used. They will be
read per each incoming event to check if the event has to be
filtered or passed through. A FSM (see Fig. 3 for a simplified
diagram) takes care of the observing and filtering stages of
the MF. From the idle state (blue), it is possible to advance
to the observe stage or to process an incoming event in the
normal stage (yellow one), when the observation is activated
for a configurable time in ms. During the observation time,
each incoming event is used to increment (by one) its corre-
sponding position of the 256× 256× 5bit matrix. When the
algorithm starts, the matrix is empty (each address content
is zero). After the Observing time, the matrix has stored a
histogram of the incoming traffic during this time. Then,
the state machine evolves to a loop (green state) where the
array of 256 × 256 × 1bit is updated using a configurable
Threshold. The matrix is scanned and each 5-bit value is
compared to the Threshold. This filter has been implemented
in such a way that it is possible to invert the polarity of the
flag (from the Array) during the normal operation.

C. CLUSTER OBJECT TRACKER (COT)
Deep learning classifiers and robotic controllers can be more
accurate, effective, faster and therefore, lighter in resources
and power consumption if the event-based information com-
ing out from sensors is pre-filtered.

When using a DVS instead of a digital camera, information
(packetized into frames from digital cameras) is replaced by a
stream of events from DVS retinas. Each event indicates that
the processing is to advance to the next step of the algorithm.
Output events can be produced after processing one incoming
event, which means that all the layers can work in a pipeline
in a pseudo-simultaneous way [37].

1) ALGORITHM
A COT has to detect potential objects from DVS output
and then follows that object while it is moving through the

visual field. It can be seen that a cluster (square part of the
visual field) is detected when a configurable number of events
are correlated both in time and space. To allow multiple
objects detection and tracking, each tracker has to workwith a
reduced part of the visual field, which is called cluster. None
of these clusters can work with overlapped space addresses.
When a DVS senses a moving object, events sent are very
close in time and their x and y addresses use to be close
in space, because they belong to an object. If we focus the
attention on a particular moving object, it is possible to filter
all the activity not related to that object. Furthermore this
filtered activity can be mapped to the center of a new reduced
visual field that can be used as an input to a next processing
layer in a more accurate way, like a ConvNet classifier.

The tracker can be modeled in a similar way as in eq. (1).
Nevertheless, in this work, a tracker is modeled as a feature
extractor, where the center of mass (CM) of the cluster activ-
ity is calculated and continuously sent out as a new stream
of events. A tracker can be expressed mathematically as in
Eqs. (5)-(7):

ETRACKER = EFC ∪ ECM (5)

where EFC is the filter cluster operation and ECM is the center
of mass operation. A cluster is understood as an squared part
of the visual field around the tracked object. EFC and ECM
are formally expressed as (6) and (7):

EFC = fFilterCluster (E) = {eFC0 , eFC1 , . . . , eFCs},

EFC ⊆ E, ∀eFCs= ei | (xCM− RC

≤ xi ≤ xCM+ RC ;

yCM− RCM ≤ yi ≤ yCM+ RC ) (6)

ECM = fCenterMass(EFC )

= {eCM0 , eCM1 , . . . , eCMr }

∀eCMr | (xCMr = αxAVs + (1− α)xCMr−1;

yCMr = αyAVs + (1− α)yCMr−1)

∀eAVs | (xAVs = αxFCs + (1− α)xAVs−1;

yAVs = αyFCs + (1− α)yAVs−1) (7)

where EFC are the events from E (DVS output) that fall inside
the cluster, (xAV , yAV ) are the averaged center of mass of last
received events inside the cluster that are (xFC , yFC ), ECM is a
set of events that represent the smooth CM of the cluster over
the history, (xCM , yCM ) represents the current center, RC is
the cluster radius (half of a square side) and α is a mixing
factor.

2) SOFTWARE
The cluster object tracker algorithm is implemented in jAER
as the RectangularClusterTracker (RCT) proposed in [11]
and used in [38]. This algorithm processes event packets from
a DVS sensor as follows:
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1) For each event (of a packet), it finds a cluster that con-
tains the event, based on a distance criterion (like RC in (6)).
If a cluster exists, the cluster parameters (location and
velocity3) are updated using a mixing factor (α ≈ 0.01),
as expressed in Eq. (8):

xn+1 = (1− α)xn + αe (8)

where xn+1 is the updated location, xn is the old location and
e is the current event.

2) If the last incoming event does not fall in any cluster,
then a new cluster is inferred at this event location. This
new cluster will be visible in jAER after it has received a
configurable number of events (typically 30 events).

3) After all the events in a packet are processed according
to steps 1 and 2, the algorithm processes all the clusters
sequentially in the following way: (a) If a cluster does not
receive any new event for a configurable time, this cluster is
removed. (b) If two clusters have overlapping visual fields,
they aremerged into one new cluster. The new cluster location
is computed by averaging the locations of the two clusters.
This average is weighted according to the number of events
accumulated by each cluster.

3) HARDWARE
we propose a hardware COTS where each of the multiple
trackers should is initialized to wait for an object at differ-
ent initial locations and cluster sizes. As soon as a number
of events, Nev, fall into the cluster within a configurable
period of time, the object has been detected. A configurable
extension over the cluster size is always monitored by the
tracker for dynamic decision-making on cluster movements
and cluster size updates. Nev can be adjusted dynamically for
automatic adaptation to different object speeds and sizes as it
is commented in following epigraphs.

a: CASCADING CONNECTIVITY
This tracker can be replicated as many times as necessary on
an ASIC or a hardware reconfigurable device (i.e. FPGA),
using the cascaded connection as represented in Fig. 4.
The input stream goes to the first CM cell (CMCell).
This unit splits the input stream in two different streams:
(1) all the events for a detected object, calledCluster events in
the figure, and (2) the rest, called Pass Through events in the
figure. Furthermore, this cell produces a third port (3), called
CM events. This third port represents a feature extracted from
the input stream that corresponds to the CM of the detected
object over time. Port number 2 (Pass Through events) sends
out all the events not falling into the cluster of the current
tracker, so the output of this port represents the output of the
DVS where all the events of the first detected object have
been filtered. This output can be used by a next tracker for
detecting a different object in the visual field. The number

3This velocity of the software version of RCT is related to the latency
between cluster location changes. It is an output of the cluster.

FIGURE 4. Object Trackers connected in cascade and sharing an arbiter
output stage. The pass through port sends events that are not used. CM
events are the center of mass of detected objects. Cluster events are
those events over time detected as an object. All the buses are parallel
Address-Event-Representation.

FIGURE 5. Cluster Parameters: cm is the updated center of mass that has
a configurable initial value (InitCMx, InitCMy ) and a dynamic updating
with a low-pass-filter over time function LPF (AvgXae,AvgYae); g is the
half-width of the cluster with a configurable initial value (InitRadix) and a
dynamic updating of the events flow activity (g = g+ /− RadixStep) with
a configurable step; TH is the threshold of accumulated events in the cell
that makes it fire an output event indicating the center of mass. TH has
an initial configurable value (ClustNev ) and it also adapts itself
dynamically depending on the speed of the events (TH = TH ∗ /2) by a
factor of 2; RadixTX is the extension of the cluster. Its size is fixed and it
is used for deciding about the need of increasing or decreasing the
current cluster size (cyan square).

of trackers that can be implemented depends on the available
hardware resources of the FPGA (i.e. Slices).

b: EVENT COUNT CONSIDERATIONS
Thanks to the event-based representation of the visual infor-
mation, it is possible to have an updated calculation of the
CM for each incoming event from the sensor. However, since
the event-based information corresponds to a dynamically
moving visual stimulus, it is necessary to compromise on
the number of events (Nev) used for the CM calculation
(represented as TH in Fig. 5). If Nev is low, these events can
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vaguely represent the contour of the object, so the updated
CM could be imprecise. In contrast, if Nev is large, then
the current object location could be blurred. So Nev must
be precisely adjusted for each particular scenario. Object
speed also affects inversely the Nev parameter: If the object
is moving slowly, it is preferable to collect more events
to obtain a more precise CM calculation. But if the object
movement is faster, then Nev must be decreased in order to
have a good number of events that represent the current object
location without blurring. In this paper we present a dynamic
adjustment implementation for the Nev parameter in such a
way that for each CM output, after processing Nev events,
and taking into account the time difference between these
Nev events for two consecutive CM calculations, Nev can be
incremented or decremented.

c: SIZE MANAGEMENT
Another important issue around this object tracker is the
size of the object during approach. Suppose that we have a
fixed cluster size and that the detected object is approaching
our center of reference (our DVS sensor). In the beginning,
the object activates a small set of pixels in the DVS, but in
the end the object can activate the entire DVS visual field,
exceding the cluster.

In this novel hardware implementation, instead of having
a fixed cluster size, we have implemented an adaptive algo-
rithm that is able to change the size of the cluster dynam-
ically. This algorithm takes into account an extension over
the cluster size (orange area of Fig. 5). If there are events
in the extension of the cluster, it means that the cluster size
is too small and its size needs to be increased for a better
detection of an object. And, in contrast, if all the events
are falling in the cluster and no events fall in the cluster
extension, then it means that the object is small and the cluster
size can be reduced for the next iteration of the algorithm.
As shown in Fig 5, the cluster is the portion of the visual
field in between the limits (RTHxLG,RTHxRG) for x-axis
and (RTHyLG,RTHyHG) for y-axis. These limits are updated
every time the state machine of the tracker is in the idle state.
They represent a square which center is the latest calculated
CM and a radix/2 composed of g and RTH (radix threshold
as RadixTH in Table 1), where g is the radix/2 of the inner
cluster (blue in the figure) and RTH is the space in between
the inner and outer clusters (orange are in Fig. 5). Both g
and RTH have an initial value, but while RTH is static, g can
grow or shrink over time accordingly.

d: CM COMPUTATION
If Nev is large the time in between two calculations of
the CM could require a long latency, and it could also
require a large memory to store the events for the CM cal-
culation. To avoid these problems, in this work any mem-
ory or buffer is used to store events for CM calculations.
The average is made following Eq. (9), which represents the
average value of the x-location, implemented in the tracker

state machine.

Xi = αX + (1− α)Xi−1 (9)

where Xi is the averaged x-address of the incoming events,
X is the current x-address of the new event, Xi−1 is the
last averaged calculation, i takes values from 1 to Nev, and
α is the mixing factor. The y-location is computed similarly.
In our hardware implementation, we have assumed α = 1/2n,
where n is a configurable parameter that increase or decrease
the number of last received event in the average. In this
case, all the division and multiplication operations can be
replaced by shift operations over the register that contains
these variables. When all the Nev events have been received
and processed, the couple (Xi,Yi) address is up to date. This
average represents directly the CM.

e: LIFETIME MANAGEMENT
If a cluster, for any reason, stops receiving events from the
sensor, it will be isolated in one region of the visual field.
If the current detected object leaves the visual field of the
sensor, or if the detected object was not a real object, the clus-
ter will be isolated. To avoid this situation, a timer is able
to reset the cluster tracker to its initial parameters. Every
time the tracker’s cluster receives an event, this timer is reset.
If the timer overflows (afterMAX clock cycles as commented
in Table 1), the cluster tracker is reset to initial parameters.

FIGURE 6. Simplified tracker FSM diagram.

f: COT FSM
Fig. 6 represents the simplified FSM diagram. InitCell state
is the initial state after an asynchronous reset. In this state all
the cluster parameters (shown in Table 1) are initialized with
the values that come from the software interface (as shown
in Table 3 in section V.C.1). Then, the state machine gets to
the idle state to wait for incoming events. In parallel, there
are two timers running (TC and TC2). TC manages the reset
of the cluster tracker because of the absence of incoming
events. TC2 measures the needed time for collecting Nev
events. The previous needed time is compared to the current
one to decide if Nev must be incremented or decremented
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TABLE 1. Cluster object tracker parameters.

dynamically by a factor of 2, as expressed in Fig. 5 with
TH parameter. When a new event arrives, the state machine
acknowledges and captures the address. Then it goes to the
EvDiscri state in order to discriminate if the event falls inside
the current cluster size or not. If the event does not fall in
the cluster size, the state machine goes to the EvPassTh state
where the event is sent out using the Pass Through port, and
idle state is reached again to wait for next event. In contrast,
if the received event fell in the cluster, then it depends on
how many events have already been received in the cluster in
order to perform the average calculation of the events in the
cluster, or the calculation of the next center of mass (CM).
If current received event does not sum Nev events, then the
FSM goes to EvNoProc state. In this state, the averaged X
and Y addresses (Xi,Yi) for the last received events is updated
using Eq. (9) with α = 1/2n as history (in order to use shift
register operations instead of multiplications and divisions).
Therefore, the averaged X and Y addresses are not taking into
account all Nev events, but the state machine waits for them
before performing the next calculations.

When the current number of received events inside the
cluster is exactly Nev, then the state machine moves to the
EvProc state. In this state, g (the dynamic radius cluster) is
updated taking into account the absence or presence of events
in between the cluster radius and the internal sub cluster,
as commented above (orange region of Fig. 5). In this state
it is possible to return to the InitCell state if the time since
the last CM calculation was long (TC overflows). In the other
case, the CM is calculated and the number of events (Nev) is
updated according to those dynamic properties commented.
Then an CM event is sent and the state machine will come
back to the idle state.

D. OBJECT MOTION DETECTOR (OMD)
The OMD is an implementation of the so-called Object
Motion Sensitive cell (OMS) found in the retina and reported
in [39] and [40]. This particular type of Retinal Ganglion

Cell (RGC) is excited by small objects moving in its
receptive field (RF) and is inhibited by synchronous sac-
cadic motion (global motion) in its surround. Preliminary
results for a software and FPGA implementation of this
RGC are presented in [6]. The implemented jAER model
(eu.visualize.ini.retinamodel.OMCOD class in [5]) relies on
a simplified form of the model in [39].

1) ALGORITHM
Fig. 7 illustrates the OMD algorithm. The RF of the OMD is
composed of equally-sized subunits, representing the bipolar
cells of the retina. The four central ones (see Fig. 7, left, red
cells) have positive weight and contribute to the excitation of
the OMD and all the surrounding ones have negative weights
and contribute to its inhibition (Fig. 7, left, blue cells).

FIGURE 7. Object motion senstive cell’s simplified computation.
Figure adapted from [6].

When an event e is received by a subunit, its membrane
voltage, Vex in the case of excitatory or Vin in the case of
inhibitory, is increased linearly. The address of the event e is
assigned to a particular subunit by subsampling its address.
Depending on the number of least significant bits which
are ignored, the size in DVS pixels of the subunits can be
increased by a power of two. Note that the polarity (s) of
the DVS event e is ignored because the OMD performs its
computation only on the energy of the movement detected
and not on its brightness change sign.

While these subunits integrate linearly over time, they
also exponentially decay over time with an adjustable time
constant τs (typically a few ms) to adapt to the current
visual situation. A non-linear rectification with saturation
then transforms this voltage value. The four non-linearly
transformed subunits belonging to the excitation center volt-
age are then summed together and normalized by their total
number. The same is done for the inhibiting subunits. This
way, overall normalized inhibition and excitation are calcu-
lated and their difference is computed to calculate the synap-
tic input. The latter simply adds to the integrate and fire (IF)
neuron’s membrane potential Vm which dictates whether the
OMD shall fire or not. The decision is taken with the compar-
ison of the threshold VIF . The total normalized excitation can
be scaled by a synaptic weight α which can ensure stability
and can allow the OMD to be adjusted to different visual
scenes. Finally, the IF neuron membrane potential Vm is
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also decayed exponentially with time constant τn (typically
30ms) to forget its integrated potential. Overall, the cell is
inhibited if there is a synchronous motion in the inhibitory
surround which cancels center excitation. If the excitatory
subunits are activated (in the case of a small moving object)
and not compensated by inhibition, then the cell fires. The
computation of the OMD can be modelled by (10) and (11).{

if Vme−t/τn ≤ VIF do not fire
if Vme−t/τn > VIF fire

(10)

Vm =
∫ t

0

(
α

4∑
i=1

tanh(Vexie
−t
τs )

4
−

k−4∑
i=1

tanh(Vinie
−t
τs )

k − 4

)
dt

(11)

where Vexi and Vini are the i’th excitatory and inhibitory
subunit membrane voltages respectively, k is the total number
of subunits, τn is the time constant of the integrate and fire
neuron and τs is the time constant of the subunits.

2) SOFTWARE
In [6] an array of 16 × 16 subunits were programmed in
jAER. By sliding by one subunit the excitation center of the
OMD across all subunits in the field of view, 15× 15 OMDs
were constructed. In the effort to reduce computation costs,
all subunits, including the central ones, were considered as
part of the common inhibiting surround to every OMD and
therefore need to be computed only once. This turns the term
k − 4 in the right hand side of (11) into just k . The result
was that all overlapping OMDs respond to object motion at
specific locations. The single OMD spikes in the presence of
a moving object and can be easily clustered in time and space
to form trackers, as presented in [6].

3) HARDWARE
With a total of 8×8 subunits, nine OMDs were implemented
in the center of the nine quadrants to obtain the most basic
directions about object motion. The hardware implementa-
tion differs from the jAER design because of its dual-layer
structure: a Mother Cell (MC), which computes global inhi-
bition shared among all OMDs and deals with the four-phase
AER handshake protocol with the outside FSMs; and nine
inner Daughter Cells (DC) which, in parallel, each calculate
the specific center excitation. TheMC forwards the incoming
AER request and data signals to the DCs if the input event e
falls in their excitation center. TheDCs then compute whether
the OMDs should fire or not, and the MC collects and sends
out their output. TheDC andMC therefore work together and
their FSMs (shown in Fig. 8) are co-dependent.
An 8 × 8 array of 16-bit registers called SubL is set up in

theMC and stores the linearly integratingmembrane potential
of the subunits. The array is updated for every incoming
event and at every decay operation. This global decay oper-
ation (Decay state of MC) of the subunits is regulated by a
high-priority counter (STD) with software-configurable τs.

FIGURE 8. OMD FSM of Mother Cell (MC) and Daughter Cell (DC). The MC
computes the global inhibition common to all OMDs and decays all
subunit activity periodically. Inhibition and subunit activation are then
passed to DC which computes center excitation. The DC performs
integration of excitation and inhibition and computes the membrane
potential of the IF neuron. The DC also computes the time decay of the IF
neuron’s membrane potential.

TABLE 2. Object motion detector parameters.

In this state, every subunit is decayed by a division by 2.
This overcomes the need of a Look Up Table (LUT) for
the exponential decay. If the input request signal REQi is
active, then the FSM can proceed toUpdate state. In this state,
the membrane potential subunit part of SubL, corresponding
to the subsampled incoming event, is increased by one unit
if the non-linearity that can be applied to it is still below
the saturation level SatNL (parameters in table 2). The non-
linearity is calculated and stored in another 8 × 8 array of
16-bit registers called SubNL. The non-linearity is imple-
mented through a multiplying factor of 2. If the incoming
event e falls within the excitation center of one of the DCs,
this DC starts its computation.
In its next state Inhibition, the MC calculates its global

inhibition by summing every potential in SubNL and storing it
in Inh. This value is then simultaneously divided by the total
number of subunits and multiplied by the synaptic weight
InhW. In the following state, CheckFiring, the MC checks
whether any of the DCs has acknowledged back, once they
have finished processing. At every clock cycle the request
signal of the MC, REQo, to the next FSM, is calculated as
the AND operation of all the DCs output request signals.
If the acknowledge signals of the DCs are ANDed and the
result is ‘0’, an output vector calledMCfire is composed with
the output bit of the nine DCs output bits, using one-hot
coding. The MC remains in this state for as long as any of
the following two conditions is not satisfied: either the MC
has requested to any of the DCs with their respective request
signal and any of them has acknowledged back; or no request
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to the DCs was sent. If any of these two conditions is instead
satisfied then the MC can move to its next and final state
WaitReqIn where ACKi, the acknowledge signal back to the
input is active and the request signals to theDCs are disabled.
TheMC returns to its Idle state only of the FSM preceding the
OMD has withdrawn its request REQi.
Similarly, the FSM of the DCs, also starts from its idle

state by setting the AER signals inactive, together with the
active-high firing output DCFire. When the overflow signal
of NTD is active, then the DC enters the Decay state where
the membrane potential of the neuron gets halved.

The DC moves to its next state Excitation when an active
low request from the MC is received. Here, the four SubNL
subunits composing the center of excitation of the DC, are
summed together and simultaneously divided by their total
number of center subunits and multiplied by the synaptic
weight ExW. The calculated excitation value is stored as Ex.
In the next state (SynIP), the net synaptic input NSI is com-
puted. In the next state, Membrane, the membrane potential
of the neuron is updated by the term NSI multiplied by DT
(period of time elpased from the last excitation received):
added or subtracted depending on the net balance of excita-
tion and inhibition received. Vmem is clipped at zero if the
result of the subtraction is negative. NSI is multiplied by DT
for the purpose of time integration. In the following state,
CheckFiring, if Vmem is larger than or equal to the threshold,
the next state will be Fire. If it is not, the DC skips to the
state Ack directly to complete the AER handshake. In Fire,
the firing output becomes active and the request signal of the
DC are propagated to the next FSM. Then the FSM switches
to Ack before returning to Idle. Since allDCswork in parallel,
and their firing output is stored by theMC in a one-hot coded
vector (MCFire), their processing delay does not scale upwith
their number.

IV. TESTING PLATFORMS
To demonstrate the portability, two different platforms,
developed in two different labs, have been used to test these
event-based processing filters and feature extractors: the
DevBoardUSB3 [11] from the Sensors group at the Institute
of NeuroInformatics fromUniversity of Zurich, and the AER-
Node [41] from the Robotic and Technology of Computers
Lab from University of Seville. The DevBoardUSB3 is based
on Lattice FPGA, while the AER-Node is based on Xilinx.
The sensors used are the cnmDV and the DAVIS [2], which
include the operational principle of the original DVS [1].
These platforms allows to use the retinas in real-time, or use
recorded streams of events taken from these sensors or syn-
thetically generated [42], [43].

A. DEVBOARDUSB3
This platform is a host platform for any event-based pro-
cessing algorithm for DVS sensors suitable for FPGA that
improve previous state of the art, like [44], [45]. The board,
as can be seen in Fig. 9, holds a DAVIS sensor, a Lattice ECP3
FPGA with 17k logic gates, an ADC, an Inertial Motion

FIGURE 9. DevBoardUSB3 platform photograph. Red rectangles indicate
connectors, LEDs, microcontroller, FPGA, ADC, IMU and DAVIS retina.

Unit (IMU) and a Cypress FX3 USB 3.0 Super-Speed micro-
controller [19]. The IMU is used for measuring movements
of the sensor [46]. It is composed of a gyroscope and an
accelerometer. An onboard ADC converts the analog scan
output of the sensor pixels in order to reconstruct a digital
frame in the host computer. At the same time, a flow of
DVS events is sent to the FPGA through a word-serial proto-
col. All the information is converted into events and a times-
tamp is assigned as needed for the data in the FPGA logic.
A CAVIAR [47] connector allows to connect to this frame-
work an external event source, like a sequencer [48]. The
Cypress USB3 microcontroller is also used to configure all
the parameters of the logic in the FPGA and those needed for
the DAVIS sensor. It allows connectivity to TrueNorth [27].

B. AER-NODE BOARD
The design purpose of this second platform was to enable
the development of mesh networks of neuromorphic chips
through the expansion connectors (parallel and SATA). SATA
connections are operated directly by the high-speed GTX
ports of the Xilinx Spartan 6 150LXT FPGAs, to allow
connectivity to other systems through serial-AER [49]. The
input can come from any event-based source compatible with
CAVIAR-AER buses: DVS retina, cochlea or hardware able
to sequence events [48]. The event-based output of this board
must be connected through the expansion connector to a
monitor hardware, like USBAERmini2 [48] or the OKAER-
tool [50], which allows the log of events in a file through
jAER or their real-time monitoring in the computer screen.
Through a daughter board that convert USB packets into SPI
commands the logic in the FPGA can be configured using
either MATLAB or jAER. Fig. 10 shows a photograph of the
board. It has two expansion connectors that are compatible
to CAVIAR connectors but with wider buses (28-bit plus
REQ/ACK). These expansion connectors can increase the
functionality of the board (i.e. USB to SPI bridge).

V. RESULTS
In this work, we have developed a library of IP blocks
for event-based visual processing for FPGA using VHDL.
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FIGURE 10. AER-Node board photograph. Red rectangles indicate
expansion input and output ports for specific daughter boards, power
supply and the SPI configuration bus.

A chain of these IP blocks with all the filters / feature
extractors has been implemented on the two FPGA platforms.
The available BLOCKRAM on these FPGAs are sufficient
for the implementation of the BAF matrix of timestamps,
the matrix of event histogram and the array of flags of theMF.
No additional onboard components are needed except the
USB to SPI bridge for the correct configuration of each filter
parameters.

In this section, we present experimental results for each
filter of the whole implemented chain (see Fig. 11).

FIGURE 11. Event-based processing chain tested on the FPGA.

Since the software and hardware filter produce equiva-
lent output, a relevant comparison is between processing
time, resource cost, and power. For the software algorithm,
we measure the average processing time per event using a
Core-i7 4702MQ 2.2GHz laptop with 16GB RAM running
Java 1.8.0. The Java implementation is optimized to min-
imize processing overhead and consists of single-threaded
Java virtual machine instructions, which are compiled during
runtime by the JIT compiler onto native CPU instructions.
For the FPGA implementation, we measure the processing
time per event in clock cycles times the clock frequency.
On FPGA, the processing time is the same as the latency, but
on a PC, there is additional latency from buffering input and
output data. Previously reports show that a PC running jAER
can achieve roundtrip DVS-to-USBmicrocontroller latencies
of 2-3ms.

Latency measurements of each block in the chain using
ChipScope IPCore for the FPGA and jAER CPU time for
software are shown in Table 4.

A. BACKGROUND ACTIVITY FILTER
Fig. 12. (left) shows a histogram of collected events from
a DVS128 retina. As it can be seen, there are many sparse
dots in the background where there are no objects. These dots
correspond to sporadic activity in the pixel circuit due mostly
to transistor leakage current. Fig. 12. (right) shows the same
histogram after the hardwareBAFfilter is applied using a very
brief δt of 100us. With this very brief correlation window,
only the high contrast features of car edges are passed through
and all the noise (plus a lot of signal) is filtered out.

FIGURE 12. Background activity filter input (left) and hardware output
(right) with a 100us δt constant.

This BAF implementation consumes 0.11% of the slice
registers, 0.59% of the slice LUTs and 5.97% of available
block-RAM on the Spartan 6 FPGA. The latency of this
hardware per event has been measured to be 14 clock cycles
with ChipScope in the AER-Node for a 50MHz clock, which
represents 280ns as shown in Table 4.

This latency has been averaged for the jAER software
version of this filter working with an AER stream com-
ing from a hardware setup that sequences a data file
through an USBAERmini2 connected to the computer. Then,
these monitored events are filtered in jAER and the soft-
ware per-event processing time are averaged and shown
in Table 4.

This comparision from software to hardware is fair because
it ensures that input and output event timestamps are in real-
time as for a DVS itself. Otherwise, if previous recorded
stream of events (i.e. an aedat file) is read from a hard-
disk file (including both event data and timestamps), its burst
reading operation from disk are much faster than receiving
these events from an AER hardware source. For the PC,
the averaged jAER processing time per event for this filter is
105 ns, which is faster than the hardware because of the wait
states added in the BAF state-machine for correct managing
of read-write operations in BRAM (Fig. 4). 4

4These wait states are needed for tested FPGAs because the embedded
BRAM requires it. HBM memories won’t require it.
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FIGURE 13. Mask filter result. Left:8.6ms 3D view of DVS, where top-left
side visual field (128× 128) has a damage that makes a neighborhood
of 6 pixels to be hot pixels, and it has another hot pixel at address (127,0).
Right side: 15ms 3D view of the Mask filter output showing a finger in
movement over time. All hot pixels have been removed.

B. MASK FILTER
Fig. 13(left) shows a 3D space-time view of the events that
represents DVS activity over time. We used a camera that
was damaged during the packaging process. The result of
this damage was a neighborhood of hot pixels. This sensor is
useless for any post-processing if this activity remains. In the
same figure (right), it can be seen the same 3D representation
an active the mask filter. This MF implementation consumes
0,09% of the slice registers, 0,25% of the slice LUTs and
8,95% of available Block RAM on the Spartan 6 FPGA. Both
jAER and FPGA latencies are shown in Table 4.

TABLE 3. BAF & COT filter parameter for experiments C.1 and C.2.

C. CLUSTER OBJECT TRACKER
In this subsection, we show the cluster tracker output under
different situations and platforms. For the two first experi-
ments, we have used the AER-Node platform [41] and similar
tracker parameters, as shown in Table 3. This COT imple-
mentation consumes 2.09% of the slice registers and 7.56%
of the slice LUTs on the Spartan 6 FPGA. No Block RAM is
needed. Latency comparisons between jAER and FPGA are
shown in Table 4.

1) SLOW SPEED OBJECTS
Previously recorded events from a 128 × 128 DVS retina,
which was set on a bridge over a 5-lane freeway monitoring

FIGURE 14. Top left: Histogram of DVS input to the system. Top right:
Histogram of the output of 3 trackers: Black dots represent Cluster events
and white dots represent the center of mass of the events that belong to
the cluster. Bottom: 3D representations of the 4 implemented trackers
output over time: Blue are cluster events and red are CM events.

many cars, have been used to test this framework for low
speed objects. These recorded events can be downloaded
from the INI Sensor’s group web. 5

Fig. 14 shows a histogram with the outputs of the trackers,
from the same stimulus shown in Fig. 13. In this histogram,
three object trackers are sending their results since only three
cars are in the visual field. The bottom graph represents a 3D
view of the trackers over time (cluster events in blue, and CM
events in red). Once a tracker losses a car it is reset and it starts
to track a new car. Fig. 15 shows the output for one tracker
(one car) over 1.2 seconds. Events falling inside the clusters
represent a moving car (blue). When the car is far away, only
a few events are produced at the horizon line (around row
address 50). The closer the car is to the bridge, the bigger it
becomes, and so, the more events are produced by the DVS
sensor (lower row addresses). Idle clusters are reset and used
again to track new objects.

5http://sensors.ini.uzh.ch/databases.html
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FIGURE 15. Car tracking using BAF and x4 trackers. Only 1 tracker output
is shown. Top: Without dynamic adaptation. Bottom: With dynamic
adaptation. Blue dots represent events that fall in the cluster. Red dots
represent CM events.

Fig. 15 (top) represents the output of a tracker without
dynamic adaptation of Nev. When the car is closer (so bigger
and faster motion), CM output is not precise. Fig. 15 (bottom)
shows the output with dynamic capabilities. Nev is increased
at the same time the car is approaching, and the CM output
is more precise. CM inter event interval time is 150ms when
the car is far and 10ms when the car is closer. Nev is fixed to
15 events for the static version and it was initialized to 5 in the
dynamic one, where it oscillates between 10 and 80 depend-
ing on the distance of the car to the DVS.

2) HIGH SPEED OBJECTS
In this experiment, a set of 52 poker cards was riffled in
front of the DVS sensor in 500ms, i.e. at less than 10ms
per card. Regular frame-based digital cameras cannot capture
proper images to be processed in this scenario unless they
use a frame rate of over 200Hz, as stated in [37]. With
DVS events, no special operation is needed. The same cluster
radius and extension size tracker parameters (Table 1) are
used in both experiments. Fig 16 (top-left) is a histogram
of events produced by the falling cards in front of a DVS
retina in the 500ms window. On its right, the histogram of
events shown represents the output of one tracker for the same
falling card. The tracker initial position was configured for
that column shape to the top side of the visual field. The
bottom part of the figure shows thewhole output of the tracker
for the falling card from top to bottom of the retina visual field
(16msms). At the beginning the card is still and when the
finger releases the card, it speeds up. It can be seen how the
number of events inside the cluster per time unit keep growing
over time (blue dots), while number of CM events per time
unit starts to adjust itself to the increment of speed and
stays in the same range (same throughput). In the beginning,
the CM inter-event interval is 750µs, and then it is adjusted
at 25µs. Nev has an initial value of 3 events and it grows up to
12 to accommodate the stimulus.

FIGURE 16. Poker card fast tracking for 16ms with a Dynamic tracker.
Top-left represents a histogram of a poker card for 600us. Top-right is a
histogram of the tracker output for the same card ( 500us). Bottom is the
whole tracking.

3) SPINNING DOT TRACKING
With the DevBoardUSB3 platform, we have synthesized and
implemented in the FPGA an event-based processing chain
that includes the BAF, the MF and the COT. It also includes
the logic that enables this platform to work properly with the
DAVIS DVS events and the USB3 interface. The monitoring
logic for the FPGA [19] joins several state machines that take
care of different kinds of information and then a multiplexer
state machine that takes care of the timestamps assignment
for each kind of event. The communication between differ-
ent states machines is done by using small FIFOs. All col-
lected traffic in the output of the multiplexer state machine
is sent to the FIFO of the Cypress FX3 microcontroller,
so they are collected in jAER through a USB3.0 super-speed
interface.

With this logic, events arriving to jAER can be divided
in different categories in order to assign different colors to
different filter outputs. Fig. 17 (top) shows a 3D graph with a
temporal representation of the cluster tracker output when the
system is detecting and tracking a 1cm diameter dark circle
in a small white cupboard disc attached to a hand fan that
makes the circle to spin at 100rpm, so each spin is completed
in approximately 1ms. Red dots represent the events that fall
into the cluster, and blue dots correspond to the center of mass
of the circle over time. In this same figure (bottom), it is also
shown a screenshot of the jAER while it is monitoring both
the DAVIS output and the tracker output sharing the same
USB3.
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FIGURE 17. Spinning a disk with a black 1 cm circle at 100rpm. Top: 3D
temporal evolution graph of the cluster object tracker output and a
photograph of the stimulus generator. Bottom: A screenshot of the jAER
DVS spikes binned over 260µs, with cluster tracker events (pink) and
center of mass events (blue).

FIGURE 18. Nine OMDs firing in time when the spinning dot from Fig. 17
excites them. Spinning-dot flow of events in black, and OMD output
events in different colors.

D. OBJECT MOTION DETECTION
The output of the OMDwith 9 DCs is shown in Fig. 18. Each
DC is active when the spinning dot is inside its region. This
OMD implementation consumes 5% of the slice registers,

TABLE 4. Filter processing time/latency comparison between JAER and
FPGA.

12% of the slice LUTs and occupies 15% of the available
DSP slices on the Spartan 6 FPGA. Furthermore, no complex
components are required in the synthesis of the OMDs. Using
the on-chip logic analyzer provided by Xilinx (ChipScope)
synthesized together with the OMDs, the processing delay of
theOMDwasmeasured to be between 11 and 22 clock cycles,
below the microsecond event timestamping resolution of the
retina. This delay variation depends on the incoming event e
falling in one of the DC’s receptive fields, what requires
more computation. With a 50 MHz clock this corresponds
to a 220 and 440 ns delay respectively. Table 4 shows a
latency versus processing-time comparison between FPGA
and jAER, where the speedup percentage of improvement has
been calculated according to Amdahl’s law (Eq. (12)) [51]:

A =
texeslow
texef ast

≥ 1, A = (1+ X ), X = %improvement (12)

VI. CONCLUSION
This paper presents a set of event-based postprocessing
algorithms for visual information coming from a DVS event
camera. The description of the algorithms, with links to the
software jAER implementations, and hardware implementa-
tion details for FPGA are presented. This work demonstrates
that with simple resources (Finite State Machines composed
of flip-flops, adders, comparators; and SRAMs) it is possible
to implement efficient real-time event-based filters and fea-
ture extractors. Latencies of these algorithms are in the order
of hundreds of nanoseconds with 50MHz clock frequency
and they are faster (up to 570%) compared with the software
implementations in jAER running on a 2.2GHz i7 CPU.

More importantly, the FPGA architecure processes each
event as it arrives with nearly deterministic and sub-
millisecond latency, compared with a USB interface to a PC,
where thread scheduling and memory buffers contribute vari-
able latencies on the order of milliseconds [34]. These pre-
dictable and short latencies will enable closed-loop control
with greater than 1kHz bandwidth, which is only possible on
high-performance computers using specialized high-frame
rate cameras and powerful lighting.

Although we did not measure power consumption explic-
itly, the FPGA with wall-plug power consumption of under
10W consumes only 1/5 of the power of a typical fully-
loaded 50W laptop computer.
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The filters and features extractors presented in this paper
can be applied to other neuromorphic sensors such as the
silicon cochlea [52], or NAS [53] and the olfactory sen-
sor [54]. In order to benefit from presented results, they
could be applied to novel event-based processing systems
that use mesh networks of convolutions [28], or multiconvo-
lutional processors [55], [56] that allow the implementation
of ConvNets for event-based classification; and architectures
able to implement event-based fully connected spiking deep
networks, e.g. Minitaur [29].

Most of the implementations described here are avail-
able in the open-source jAER project6 and in our Git-Hub
repository.7 We hope that this work will stimulate the devel-
opment of further event-driven logic circuits for neuromor-
phic computing.
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