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Abstract: A series of pyrazolo-fused 4-azafluorenones (indeno[1,2-b]pyrazolo[4,3-e]pyridines, IPP)
were synthesized via the three-component reaction between arylaldehydes, 3-methyl-1H-pyrazol-
5-amine and 1,3-indanedione in an ionic liquid as a catalyst at room temperature. The applied synthetic
route has the advantages of easy work-up under mild reaction conditions presenting moderate
yields and an environmentally benign procedure. A theoretical study based on conceptual-density
functional theory has been done, bond reactivity indices have been calculated and an electrophilic
and nucleophilic character of localized orbitals has been determined to analyze the possible
electronic mechanisms.

Keywords: ionic liquid; condensation; 4-azafluorenones; ultrasound; reaction mechanism; mass
spectrometry; DFT studies

1. Introduction

4-Azafluorenone (5H-indeno [1,2-b]pyridin-5-one) derivatives have aroused great interest in recent
years due to their antimicrobial and antimalarial activities [1,2]. These compounds are inhibitors of
phosphodiesterase IV [3], participate in adenosine A2a receptor binding [4], are calcium antagonists [5],
and have anti-inflammatory/anti-allergic properties [6]. They are also used in the treatment
of hyperlipoproteinemia and neurodegenerative diseases [4], and present anticancer activity [7].
Indenopyridine scaffold (I) is active against Candida albicans in micro molar concentrations [8],
polifothine (II) is an anti-cholinergic alkaloid obtained from Polyalthia longifolia [9,10], indenoquinoline
(III) shows antibacterial activity against Gram-positive and Gram-negative bacteria [11] and TAS-103
(IV) antitumor activity [12] (Figure 1).
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aliphatic aldehydes (2), and 1,3-indanedione (3) using conventional and unconventional methods 

[13] (Table 1), where 5-amino-pyrazoles are the most studied heterocyclic amines in this strategy. 

3-methyl-1-phenyl-1H-pyrazole-5-amine (1) has been the most intensively studied skeleton, 

Nikpassand et al. (2010) reported the three-component regioselective reaction between 3-methyl-

1H-pyrazol-5-amine, 1,3-indanedione, and arylaldehydes in ethanol under ultrasound irradiation 

without achieving the aromatization of the final product [14]. Most of the reported synthetic 

methods for the synthesis of fused indenopyridines require high temperatures, long reaction times 

and the use of toxic solvents. Some of the reported methods resulted in low yields and involved 

cumbersome product isolation procedures. Thus, a simple, efficient, and green method to 

synthesize IPP is the attractive synthetic task (Table 1). 
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Previous Work 

Water, MW, 100 °C, 5–9 min (10 examples; 95%–97%) [15] 

Water, InCl3 (20% mol), reflux, 45–60 min (3 examples; 87–93%) [16] 

DMF, Et3N (cat) reflux 6-8 h (9 examples; 47%–69%) [17] 

L-proline (10% mol), EtOH 80 °C, 0.5–2 h (17 examples; 85%–97%) [18] 

SDS, Water, 90 °C, 4–13 h (14 examples; 86%–98%) [19] 

[bmim]Br, 95 °C, 2–5 h (17 examples; 79%–96%) [20] 

This work; [HMIM]I, H2O), 10–20 min (8 examples; 27%–95%) 
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environmentally favorable chemical methodologies and technologies. In this sense, the selection of 

an environmentally benign solvent has gained much attention. On the basis of this fact, the selection 

of an environmentally benign solvent, as well as the reduction of the number of reaction steps in 

convergent and lineal synthetic strategies have gained much attention. Multicomponent reaction 

(MCR) is a convergent reaction, in which three or more starting materials react (one-pot processes) 

to form a product. MCRs are of great interest in diversity-oriented synthesis, especially to generate 

compound libraries for screening purposes. The synthetic versatility of MCRs has gained attention 

in modern organic synthesis as the number of their applications has significantly increased in 

medicinal chemistry, drug discovery programs, combinatorial chemistry, natural product 

synthesis, agrochemistry, synthesis of heterocyclic systems, and polymer chemistry among others 

[21–25]. 

Sonochemistry has emerged as an alternative, in the induction of organic reactions, to 

conventional methods. Improved reaction yields, shorter reaction times, milder conditions, less 

byproduct formation, and simplicity in experimental handling can be achieved. The 

abovementioned characteristics undoubtedly represent advantageous environmental factors, 

Figure 1. Bioactive molecules with indenopyridine ring.

The main methodology reported for the synthesis of indeno[1,2-b]-pyrazolo[4,3-e]pyridines
(IPP) includes the reaction between amino-aromatic or heteroaromatic substrates (1), aromatic or
aliphatic aldehydes (2), and 1,3-indanedione (3) using conventional and unconventional methods [13]
(Table 1), where 5-amino-pyrazoles are the most studied heterocyclic amines in this strategy.
3-methyl-1-phenyl-1H-pyrazole-5-amine (1) has been the most intensively studied skeleton, Nikpassand
et al. (2010) reported the three-component regioselective reaction between 3-methyl-1H-pyrazol-
5-amine, 1,3-indanedione, and arylaldehydes in ethanol under ultrasound irradiation without achieving
the aromatization of the final product [14]. Most of the reported synthetic methods for the synthesis of
fused indenopyridines require high temperatures, long reaction times and the use of toxic solvents.
Some of the reported methods resulted in low yields and involved cumbersome product isolation
procedures. Thus, a simple, efficient, and green method to synthesize IPP is the attractive synthetic
task (Table 1).

Table 1. Synthetic methods reported for the synthesis of indeno[1,2-b]-pyrazolo[4,3-e]pyridines (IPP).
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Previous Work

Water, MW, 100 ◦C, 5–9 min (10 examples; 95%–97%) [15]
Water, InCl3 (20% mol), reflux, 45–60 min (3 examples; 87–93%) [16]

DMF, Et3N (cat) reflux 6-8 h (9 examples; 47%–69%) [17]
L-proline (10% mol), EtOH 80 ◦C, 0.5–2 h (17 examples; 85%–97%) [18]

SDS, Water, 90 ◦C, 4–13 h (14 examples; 86%–98%) [19]
[bmim]Br, 95 ◦C, 2–5 h (17 examples; 79%–96%) [20]

This work; [HMIM]I, H2O), 10–20 min (8 examples; 27%–95%)

One of the most important principles of Green chemistry is the research and development of
environmentally favorable chemical methodologies and technologies. In this sense, the selection of an
environmentally benign solvent has gained much attention. On the basis of this fact, the selection of an
environmentally benign solvent, as well as the reduction of the number of reaction steps in convergent
and lineal synthetic strategies have gained much attention. Multicomponent reaction (MCR) is a
convergent reaction, in which three or more starting materials react (one-pot processes) to form a
product. MCRs are of great interest in diversity-oriented synthesis, especially to generate compound
libraries for screening purposes. The synthetic versatility of MCRs has gained attention in modern
organic synthesis as the number of their applications has significantly increased in medicinal chemistry,
drug discovery programs, combinatorial chemistry, natural product synthesis, agrochemistry, synthesis
of heterocyclic systems, and polymer chemistry among others [21–25].

Sonochemistry has emerged as an alternative, in the induction of organic reactions, to conventional
methods. Improved reaction yields, shorter reaction times, milder conditions, less byproduct formation,
and simplicity in experimental handling can be achieved. The abovementioned characteristics
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undoubtedly represent advantageous environmental factors, especially when the sonication is combined
with the use of water or ionic liquids as solvents, or is applied in multicomponent reactions [26].

The use of solvents is a constant source of concern, since it gives rise to toxicity, hazard, pollution,
and waste treatment issues. Solvents generally account for the major source of the wasted mass of a
given process or a synthetic pathway [27]. Since many organic compounds are difficult to dissolve in
water and the disposal of contaminated aqueous streams is expensive, the use of water as a solvent has
certain limitations [28].

In this sense, room temperature ionic liquids (RTILs) continue to expand significantly due to their
unusual physical and chemical properties, such as high thermal stability, lack of inflammability, low
volatility, chemical stability, and excellent miscibility with many organic compounds. RTILs based on
the 1-alkyl-3-methylimidazolium cation are a promising alternative to the conventional solvents [29].
For example, 1-alkyl-3-methylimidazolium salts have been used in many types of chemical reactions,
such as Michael [30], Sakurai [31], Friedlander [32], Mannich [33], Heck [34], Suzuki cross-coupling [35]
acting as solvents or catalysts.

Hydrogen bonding interaction is a cornerstone in the organocatalysis. The great ability of ionic
liquids to form hydrogen bonds along with its good physicochemical properties has made these
excellent organocatalysts in a various organic reaction. Being Diels-Alder [36] cycloadditions the most
often applied Baylis-Hillman [37], acetylation of alcohols [38], Knoevenagel condensation [39], and
aldol condensation [40].

Perhaps the potentially most powerful way in which an ionic liquid can be used in catalysis is as a
combination of solvent and catalyst. The solubilities of the reaction components (starting materials,
products, catalyst, and co-solvents) and any specific interaction that may take place between the solvent
and solutes are of great importance in the catalysis area. The ionic liquids have been called to fulfill
this dual role catalyst-solvent in catalyzing various chemical reactions. In this sense Peng and Deng
(2001) described the use of RTILs based on [bmim]+ and [bpy]+ as catalytic media for the cycloaddition
of carbon dioxide to propylene oxide, reporting that [bmim]BF4 is the best catalytic medium for the
reaction [41]. On the other hand, radical polymerization of methyl methacrylate (MMA) mediated by
copper (I) in [bmim]PF6 have been described by Carmichael, authors demonstrated that the ionic liquid
under study is an excellent solvent for CuI-N-propyl-2-pyridylmethanimine mediated living radical
polymerization of MMA [42]. In both examples, RTILs catalyst mixtures are recycled and reused.

In this work, we describe a convenient regioselective synthesis of IPP in the absence of a metal
catalyst. The reactions under study present short reaction times, moderate yields, use RTILs as a
catalyst-solvent and ultrasound as an energy source. All compounds were evaluated as anticholinergic
and antibacterial agents. Adsorption, distribution, metabolism, and excretion (ADME) predictions
revealed favorable pharmacokinetic parameters for the synthesized compounds, which warrant their
suitability as potential bioactive compounds. The computational calculations explain the action mode
of RTILs used in the study.

2. Results

Motivated by the versatility and benefits offered by multicomponent reactions and with the purpose
of creating efficient, versatile, and eco-friendly methodologies, we planned a facile three-component
reaction for the construction of fused indeno[1,2-b]-pyrazolo[4,3-e]pyridines (IPP) heterocycles using
an aminopyrazole (1), an aldehyde derivative (2), and indanedione (3).

In an attempt to explore the reactivity, efficiency, and yields for the synthesis of a series of IPP with
ionic liquid as a catalyst, we tested different conditions for the MCR where 1, nicotinaldehyde (2a) and
indanedione (3) react to afford 4a using different solvents, metal catalyst and additives (see Table 2).
As shown in Table 2, the expected product was obtained in good yield in water under ultrasound at
room temperature (entry 4); ILs (ionic liquid) at 10% mol. Higher ILs catalyst load (20% mol) did not
improve the yield of the product to a greater extent (see Entry 6).
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Table 2. Synthesis of 4a under different reaction conditions a.

Entry Conditions Yield (%)

1 EtOH, Sonication, 20 min 60
2 H2O, Sonication, 20 min -
3 AcOH, , Sonication, 1,5 h 65
4 [HMIM]I (10%), Sonication, 10 min 95
5 [HMIM]I (15%), Sonication, 10 min 92
6 [HMIM]I (20%), Sonication, 10 min 92
7 InCl3, (10%), Water, Sonication 30min 54
8 InCl3, (20%), Water, Sonication 30min 68

a Reaction conditions: 2 mL ionic liquid or 2 mL organic solvent (entry 1, 2, and 3), nicotinaldehyde (2; 0.107 g,
1.0 mmol), aminopyrazole (1; 0.173 g, 1.0 mmol), and indanedione (3; 0.146 g, 1.0 mmol).

To optimize this methodology, different IPP (4a–k), were prepared using several aldehydes
(3a–j). Table 3 shows the structure, yield, and melting point of the prepared compounds. Moreover,
synthesized compounds were evaluated as cholinesterase inhibitors (for IC50 values see Table 3).

In order to study this protocol in relation to the 1,3-dicarbonyl component, we carried out the
reaction with the following compounds, 1,3-dicarbonyl: 2,4-pentanedione, ethyl acetoacetate, and
active methylene 1-indanone generating the compounds 4i, 4j, and 4k respectively. As we can see, all the
active methylenes (3) were efficiently annulated with aldehydes (2a–k) generating the corresponding
Knoevenagel adduct intermediate (5), evidence of the above were the compounds 5a–c, which failed to
make the Michael addition

As a general trend, this reaction is tolerant to a large variety of aldehydes (with electron-withdrawing
and electron-releasing substituents). Diverse adducts could be prepared in good yields (up to 95%),
demonstrating the versatility of this one-pot process. This variety of results seems very attractive for
the establishment of structure-activity relationships for biological evaluation.

In many cases, ionic liquids can be easily recycled, based on this background [43,44], we decided
to carry out the recycling experiments in which the IL was reused. Different cycles were realized in the
consecutive obtainment of 4a. A total of three cycles were realized, between cycle and cycle the product
of the reaction was obtained by centrifugation and filtration of the resulting mixture. [HMIM]I-water
solution was recovered and reused and its reaction yield was calculated. In the first cycle, 4a was
obtained with 95% yield in 10 min after the reaction started. Consecutively, the resulting IL was reused
for cycles 2 and 3 and we obtained a 72% and 41% yield respectively (Table 4).

A reasonable mechanism for the synthesis of products 4a–k is outlined in Scheme 1. It expects to
proceed via Knoevenagel condensation of 2 and 3 giving an intermediate 5. It may be proposed that
the [HMIM]I catalyst facilitates the formation of the intermediate 5 acting as Lewis acid, and removing
the necessity of use of an additional acid catalyst. The Lewis acidity is conferred by the –CH proton
between nitrogen atoms of imidazole core, capable of bonding with the carbonyl oxygen of the diketone
3, which reacted with aldehyde 2 to afford the intermediate 5, the Michael addition of the latter with
1 open-chain intermediate [6], which is subsequently cyclized, dehydrated, and dehydrogenated to
afford the aromatized product 4 [45,46]. In an attempt to confirm the proposed reaction mechanism,
a screening of the three-component reaction was performed by time-of-flight mass spectrometry
(TOFMS) in the positive mode and an off-line manner. Figures 2 and 3 show the full-scan positive
ion ESI (Electrospray ionization) mass spectrum progress of the reaction employing the optimized
reaction conditions “entry 4” (Table 2). Thus at the beginning of the reaction the ions at m/z 146 and 167
corresponding to the species [3]+ and [HMIM]+ were observed, after two minutes of the reaction the ion
at m/z 441 [3-[HMIM]I−]+ resulted at the adduct formation 3 was observed (Scheme 1). The formation
of adduct 3 confirms the ability of [HMIM]I− as a Lewis acid catalyst. Additionally the ion at m/z
108 [2a + H]+ was observed in the ESI-MS spectrum (Figure 3a). After five minutes of the reaction
we observed the ion at m/z 420 [5-[HMIM] + H2O]+ corresponding to aldolic condensation between
nicotinaldehyde 2a and the diketone activated 3 containing to [HMIM]I− through intermolecular
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hydrogen bonding (Figure 3b), also the final product of Knoevenagel condensation (ion at m/z 237 [5 +

2H]+) was observed. At this point the Michael addition of 1 to 5 was carried out and subsequently
cycled, dehydrated, and dehydrogenated to afford the aromatized product 4.

Table 3. Synthesis of indeno[1,2-b]-pyrazolo[4,3-e]pyridines (IPP; 4a–k).
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3. Theoretical Analysis

The influence of the catalyst in the first stages of the reaction was analyzed, which was where a
greater influence of the catalyst was expected. In each of the three systems of Scheme 2 the reactivity
with and without the catalyst was compared. The theoretical reactivity has been studied using bond
reactivity indices ∆ f (NBO)

i [47,48] based on a dual descriptor [49] and projected on the natural bond
orbitals (NBOs) obtained for each system [50,51].
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Scheme 2. Reasonable reaction mechanism for the first stages of the reaction.

3.1. Effect of the Field Generated by the Catalyst

The catalyst used in the experimental study [HMIM]I has been taken into account by the field
created by a partial charge (of +0.209 electrons) without a base that has been obtained using the
Hirshfeld population analysis [52,53] and also it has been taken into account when the molecular
geometry was optimized. In this case, the use of partial charges without a base has the important
advantage of not introducing basis set superposition error (BSSE) in the comparisons. It was expected
that the interaction of the reactants with the catalyst was electrostatic, this justifies satisfactorily that
the catalyst was replaced by the main charge that influences the reactants.

3.2. Theoretical Analysis of the First System

Scheme 3 shows the mechanism proposed for the first stage of the reaction. Figure 4 shows
a graph with the values of the bond reactivity index corresponding to the NBOs with the greatest
influence on the reactivity of Scheme 3 (for simplicity, core orbitals and high-energy Rydberg orbitals
were excluded). In this case the calculations were made without including the catalyst. As it can be
seen, the NBOs with the most nucleophilic character are the lone-pairs (LPs) NBOs 36 and 37 (O15
and O16 atoms respectively). On the other hand, the most electrophilic orbitals were NBOs 39 and 40
π-antibonding orbitals (bonds C7–O16 and C9–15 respectively). It is worth noting that the symmetry of
the reactivity index values was coherent with the symmetry of the molecule and this did not happens
(see below) when we considered the field of the catalyst in the calculations.

Catalysts 2019, 9, x FOR PEER REVIEW 8 of 22 

 

37 (O15 and O16 atoms respectively). On the other hand, the most electrophilic orbitals were NBOs 

39 and 40 -antibonding orbitals (bonds C7–O16 and C9–15 respectively). It is worth noting that 

the symmetry of the reactivity index values was coherent with the symmetry of the molecule and 

this did not happens (see below) when we considered the field of the catalyst in the calculations. 

 

Scheme 3. Reasonable reaction mechanism for the first stage of the reaction. 

 

Scheme 3. Reasonable reaction mechanism for the first stage of the reaction.



Catalysts 2019, 9, 820 8 of 22

Catalysts 2019, 9, x FOR PEER REVIEW 8 of 22 

 

37 (O15 and O16 atoms respectively). On the other hand, the most electrophilic orbitals were NBOs 

39 and 40 -antibonding orbitals (bonds C7–O16 and C9–15 respectively). It is worth noting that 

the symmetry of the reactivity index values was coherent with the symmetry of the molecule and 

this did not happens (see below) when we considered the field of the catalyst in the calculations. 

 

Scheme 3. Reasonable reaction mechanism for the first stage of the reaction. 

 

Figure 4. Bond reactivity index ∆ f (NBO)
i corresponding to the natural bond orbitals (NBOs) with

the greatest influence on the reactivity of Scheme 3. In this case the calculations were made without
including the catalyst.

Figure 5 shows the values of the bond reactivity index ∆ f (NBO)
i of the most relevant NBOs for

the reactivity of Scheme 3, but this case the catalyst was included in the calculations. It can be seen
that the NBOs with the highest nucleophilic character were the LPs NBO 34 and 36 (O15 and O16
respectively) but now the values were different, the value of one of them had increased while the other
one had decreased due to the effect of the catalyst. Something equivalent happens with the orbitals,
with a higher electrophilic character, NBOs 39 and 41 (π-antibonding orbitals of double bonds C7–O16
and C9–15). The increase of the electrophile character of NBO 41 helped the electronic movements
of Scheme 3, since this orbital attracted the displaced charge due to the loss of hydrogen H14 and
stabilized the displaced charge of the bond C7–O16 (π-bonding), on the other hand the increase in the
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nucleophilic character of LP NBO 36 helped the uptake of a solvent proton and the formation of the
alcohol group (see Scheme 2).

Catalysts 2019, 9, x FOR PEER REVIEW 9 of 22 

 

Figure 4. Bond reactivity index 
)NBO(

if  corresponding to the natural bond orbitals (NBOs) with 

the greatest influence on the reactivity of Scheme 3. In this case the calculations were made without 

including the catalyst. 

Figure 5 shows the values of the bond reactivity index 
)NBO(

if of the most relevant NBOs for 

the reactivity of Scheme 3, but this case the catalyst was included in the calculations. It can be seen 

that the NBOs with the highest nucleophilic character were the LPs NBO 34 and 36 (O15 and O16 

respectively) but now the values were different, the value of one of them had increased while the 

other one had decreased due to the effect of the catalyst. Something equivalent happens with the 

orbitals, with a higher electrophilic character, NBOs 39 and 41 (-antibonding orbitals of double 

bonds C7–O16 and C9–15). The increase of the electrophile character of NBO 41 helped the 

electronic movements of Scheme 3, since this orbital attracted the displaced charge due to the loss 

of hydrogen H14 and stabilized the displaced charge of the bond C7–O16 (-bonding), on the other 

hand the increase in the nucleophilic character of LP NBO 36 helped the uptake of a solvent proton 

and the formation of the alcohol group (see Scheme 2). 

 

-0.4 

-0.3 

-0.2 

-0.1 

0.0 

0.1 

0.2 

0.3 

0.4 

34 35 36 37 38 39 40 41 42 43 44 45 

)NBO(

if

NBO 

Figure 5. Bond reactivity index ∆ f (NBO)
i corresponding to the NBOs with the greatest influence on the

reactivity of Scheme 3. In this case the calculations were made including the catalyst.

3.3. Theoretical Analysis of the Second System

Scheme 4 shows the mechanism proposed for the second stage. In Figure 6 you can see a graph
with the values of the bond reactivity index ∆ f (NBO)

i for the most important NBOs of the reactivity
of Scheme 4. In this case the calculations were made without including the catalyst. As can be seen,
the highest nucleophilic localized-orbital was the π-bonding NBO 34 (bond C8–C9) and the highest
electrophilic one was the π-antibonding NBO 39 (bond C8–C9). In this case, Figure 7 shows that the
effect of the catalyst had almost no influence on the bond reactivity indices. In any case, the values
obtained for the NBOs were consistent with the reactivity shown in Scheme 4, the high nucleophilic
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character of the NBO 34 justified the attack to the carbonyl group by the electrons of the C8–C9 double
bond and the electrophilic character of the NBO 39 helped the displacement of the electron pair from
O15 to C9 and the formation of the double bond C9–O15.
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3.4. Theoretical Analysis of the Third System

Scheme 5 shows the proposed mechanism for the third stage and Figure 8 a graph with the
values of the bond reactivity index ∆ f (NBO)

i for the most reactive NBOs in this stage. In this case the
calculations were made without including the catalyst. The NBOs with greater nucleophilic character
were the NBOs 39 and 40 (LPs of O13 and O14), on the other hand the orbitals of greater electrophilic
character were the π-antibonding NBOs 42 and 43 (bonds C8–O13 and C7–14), the π-antibonding NBO
47 also had a high electrophilic character but somewhat less. In Figure 9 we can see that the effect of
the catalyst was similar to the first stage, the NBOs with the most electrophilic character were still the
π-antibonding NBOs 42 and 43 (bonds C8–O13 and C7–14) but the values were no longer equal, the
value of the NBO 42 had increased while the NBO 43 had decreased due to the effect of the catalyst, the
increase of the NBO 42 helped the Scheme 5 mechanism since it facilitated the electronic movement of
the electrons of the double bond C15–C16 towards the C8–C15 bond and the electrons of the C8–O13
double bond towards the O13 atom. On the other hand, the π-antibonding NBO 47 that had a high
electrophilic character and the greater influence in Scheme 5 had not been affected by the catalyst.
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4. Biological Activities

All compounds were tested for the acetylcholinesterase (AChE) and butyrilcholinesterase (BuChE)
inhibition and the respective inhibitory activities were studied using the method described by
Ellman [54] in order to determine the rate of hydrolysis in the presence of the inhibitor. The cholinesterase
activity was compared with galanthamine as a reference compound.

Among 13 compounds under study, only 4c and 4g presented moderate activity against AChE,
with IC50 values of 265 and 424 µM respectively. However, these IC50 values were not comparable with
galanthamine (0.54 µM), which was used as a standard inhibitor. The other 11 compounds showed IC50

values higher than 500 µg/mL and therefore, were not interesting as feasible AChE/BuChE inhibitors.
To elucidate the binding mechanism of 4c (IC50 = 265 µM ) with AChE (X-ray crystal structure

PDB code: 4eys, protein data bank) we performed its docking study by utilizing the Glide program [55].
The Glide program is contained in Maestro 11.0 software and Glide docking uses a series of hierarchical
filters to find the best possible ligand binding locations in a previously built receptor grid space.
The filters include a systematic search approach, which samples the positional, conformational, and
orientational space of the ligand before evaluating the energy interactions between the ligand and
the protein [55]. It is well known that two distinct binding sites exist in the active pocket of AChE
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peripheral binding site (PAS) and catalytic active site (CAS), located at the entrance and the bottom
of the active-site gorge, respectively. These sites are characterized by two tryptophan residues, Trp
84 at the active site and Trp 279 at the peripheral of the gorge (PAS). The simultaneous binding to
both the CAS and PAS has been suggested to be important in designing powerful and selective AChE
inhibitors [56]. The π–π stacking interactions between Trp286, pyridine aromatic rings, indene (in the
PAS), and Tyr 72 (at the entrance to the gorge leading) for compound 4c are presented in Figure 10.
Due to the lack of interaction with CAS, this binding mode caused its lower inhibitory activities
against AChE.
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Antimicrobial activities of Indeno-Pyridines 4a–h were evaluated using the microdilution
method [57]. The microorganisms used in these studies were Escherichia coli and Klebsiella pneumoniae,
human clinical isolated and Gram-positive bacteria, Enterococcus faecalis. The MIC values of all
compounds under study were between 400 and 1600 µg/mL, considerably exceeding the existing
values for standard antibiotics. The absorption, distribution, metabolism, and excretions (ADME)
properties of the molecules were obtained by the Molinspiration program; predicting some physical
and pharmaceutical properties (Table 5). It has been confirmed from previous research data that
the standard values for molecular weight (MW) and the polar surface area (PSA) are in the range
from 160 to 480 g/mol and <89 Å2 respectively. The predicted MW and PSA values for compounds
4a–h were comparable with standard values (Table 5). Lipinski's rule of five (RO5) values also
confirmed the therapeutic potential of the ligands. Hydrogen-bonding capacity was identified as an
important parameter for describing drug permeability. Research data revealed that poor permeation
was more likely when the HBA (hydrogen bond acceptors) and HBD (hydrogen bond donors) exceed
10 (unidades) and 5 respectively. The chemo-informatic analysis justified that the designed compounds
possessed HBA and HBD values less than 10 and 5, respectively.

Table 5. Calculated physicochemical descriptors for compounds 4a–k a.

Property Optimal Range 4a 4b 4c 4d 4e 4f 4g 4h 4i 4j 4k

MW <500 388 412 412 438 391 431 311 377 416 414 266
Log P <5 4.88 5.37 5.35 5.77 4.00 5.53 3.89 4.76 6.08 4.69 1.87

H Bond donors <5 0 0 0 0 0 1 0 0 0 0 1
H Bon Acceptors <10 5 5 5 5 6 6 4 5 4 6 5

Rotable Bonds <5 2 2 2 2 2 3 1 2 3 6 2
TPSA <89 60.68 71.58 71.58 60.68 65.61 85.09 47.79 60.93 33.96 60.96 71.54

a Values were calculated using Molinspiration Cheminformatics Software (2015), (http://www.molinspiration.com).

http://www.molinspiration.com
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The analysis of the theoretical results shows few violations of Lipinski’s rule because the major
calculated descriptors and properties were within range (molecular weight (g * mol−1) = 254–335; Log
P = 2.623–3.381, HB acceptors = 4–4.475, and HB donors = 0–0.5). Additionally, PSA is a parameter
important in the membrane penetration and the absorption and distribution of drugs respectably were
analyzed and the results were in the acceptable range.

5. Materials and Methods

5.1. Chemicals and Apparatus

The ultrasonic irradiation was performed by using a Branson ultrasonic cleaner bath, model 1510,
115v, 1.9 L with a mechanical timer (60 min with continuous hold) and heater switch, 47 kHz. The ionic
liquid was performed by using a Discover microwave apparatus (CEM Corporation, Matthews, NC,
USA). 1H and 13C NMR spectra (400 MHz for proton and 100 MHz for carbon) were recorded on
an AM-400 spectrometer (Bruker, Rheinstetten, Germany), using CDCl3, DMSO-d6, and CD3OD
as solvents. Tetramethylsilane (TMS) was used as an internal standard. IR spectra (KBr pellets,
500–4000 cm−1) were recorded on a NEXUS 670 FT-IR spectrophotometer (Thermo Nicolet, Madison,
WI, USA). High-resolution mass spectrometry ESI-MS and ESI-MS/MS analyses were conducted in
a high-resolution hybrid quadrupole (Q) and orthogonal time-of-flight (TOF) mass spectrometer
(Waters/Micromass Q-TOF micro, Manchester, UK) with a constant nebulizer temperature of 100 ◦C.
Melting points (uncorrected) were measured on an Electrothermal IA9100 melting point apparatus
(Stone, Staffs, UK). Reaction progress was monitored by means of thin-layer chromatography using
silica gel 60 (Merck, Darmstadt, Germany). All reagents were purchased from either Merck or Sigma
Aldrich (St. Louis, MO, USA) and used without further purification.

5.2. Procedure for the Synthesis of 1-Hexyl-3-Methyl-Imidazolium Iodide [HMIM]I

A mixture of imidazole (6.8 g, 100 mmol), 1-Iodehexane (16.5 g, 14 mL, 100 mmol) and K2CO3

(27.6 g, 200 mmol) in acetone (200 mL) was refluxed overnight. Upon filtration and removal of solvent,
the residue was subjected to flash chromatography with ethyl acetate to give 1-hexyl-1H-imidazole
product with 85% yield (12.9 g). Then a mixture of 1-hexyl-1H-imidazole (3 g, 20 mmol) and
iodomethane (3.1 g, 1.4 mL, 22 mmol) solvent-free was microwaved to 200 MW and a temperature of
80 ◦C for 5 min of reaction (optimum reaction condition). The completion of the reaction was marked
by the separation of dense IL. The product was isolated by decanting ethyl acetate to remove any
unreacted starting materials and solvent. Subsequently, the IL was washed with diethyl ether (4 mL ×
10 mL) and the ether layer was separated from the IL by decantation. The IL was finally dried under
reduced pressure to get rid of the volatile organic compounds to give [HMIM]I in a 95% yield (5.6 g).

5.3. General Procedure for the Synthesis of Indeno[2,1-e]Pyrazolo[5,4-b]Pyridines

To a 50 mL round-bottomed flask containing 3-methyl-1-phenyl-1H-pyrazol-5-amine (1 mmol),
and aldehyde (1 mmol) and 1,3-indanedione (1 mmol) in 10 mL water, [HMIM]I (10 mol%) was
added. The solution was irradiated at room temperature by ultrasound for a specified number of
minutes. After the completion of the reaction, as indicated by TLC, then the mixture resulting was
centrifugated and the obtained product was filtered and dried and if necessary was purified by column
chromatography on silica gel to give the pure product. The recovered [HMIM]I-water solution was
reused for subsequent runs.

4a: 3-methyl-1-phenyl-4-(pyridin-3-yl)indeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-one. Yield: 95%
(368.7 mg); yellow solid, mp 214–216 ◦C; IR (KBr, cm−1): 3050, 1751, 1658, 1615, 1514, 1482, 1418, 1328,
1268, 1195, 1097,1016, 758 1H NMR (400 MHz, (CD3Cl) 2.07 (s, 3H), 7.34 (t, J = 8.0 Hz, 1H), 7.41 (t,
J = 8.0 Hz, 1H) 7.50–760 (m, 5H), 7.84 (d, J = 8.0 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 8.27 (d, J = 8.0 Hz,
1H), 8.74 (d, J = 8.0 Hz, 1H); 13C NMR (100 MHz, CD3Cl); 15.0 (CH3), 115.2 (C), 120.1 (C), 121.5 (2 ×
CH), 122.6 (CH), 123.5 (CH), 126.5 (CH), 128.6 (CH), 129.0 (2 × CH), 131.6 (CH), 134.8 (CH), 136.5 (CH),
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137.1 (C), 138.7 (C), 141.5 (C), 142.2 (C), 145.3 (C), 149.0 (CH), 150.3 (CH), 152.6 (C), 164.9 (C), 189.7 (C);
HRMS (ESI, m/z): Calcd for C25H16N4OK [M+K]+ 427.0961 found 427.1105. These spectroscopic data
correspond to the previously reported data [18,19].

4b: 4-(3-methyl-5-oxo-1-phenyl-1,5-dihydroindeno[1,2-b]pyrazolo[4,3-e]pyridin-4-yl)benzonitrile Yield:
53% (218.4 mg); yellow solid, mp > 300 ◦C; IR (KBr, cm−1): 3053, 2938, 1703, 1606, 1549, 1510, 1463,
1381, 1287, 1261, 1195, 1122, 965, 815, 762; 1H NMR (400 MHz, (CD3Cl) 2.12 (s, 3H), 7.27 (t, J = 8.0 Hz,
1H), 7.44 (t, J = 8.0 Hz, 1H), 7.54-7.64 (m, 6H), 7.88 (d, J = 8.0 Hz, 2H), 8.07 (d, J = 8.0 Hz, 1H), 8.37 (d,
J = 8.0 Hz, 2H); 13C NMR (100 MHz, CD3Cl); 14.9 (CH3), 115.2 (C), 118.1 (C), 1190 (C), 121.1 (2 × CH),
121.8 (CH), 125.5 (CH), 126.7(2x CH), 129.3 (2 × CH), 129.50 (2 × CH), 131.5 (CH), 132.7 (CH), 134.8 (C),
135.7 (C), 135.3 (C), 139.2 (C), 142.3 (C), 143. 8 (C), 146.2 (C), 153.4 (C), 162.3 (C), 190.2 (C); HRMS (ESI,
m/z): Calcd for C27H16N4ONa [M+Na]+ 435,1222 found 435.1021.

4c: 3-(3-methyl-5-oxo-1-phenyl-1,5-dihydroindeno[1,2-b]pyrazolo[4,3-e]pyridin-4-yl)benzonitrile Yield:
64% (263.8 mg); yellow solid, mp 295–297 ◦C IR (KBr, cm−1): 3062, 2231, 1667, 1595, 1508, 1485, 1328,
1268, 1204, 1120, 1022, 854, 755; 1H NMR (400 MHz, (CD3Cl) 1.81 (s, 3H), 7.15–7.41 (m, 8H), 7.61 (d,
J = 8.0 Hz, 2H), 7.76 (d, J = 8.0 Hz, 1H), 8.06 (d, J = 8.0 Hz, 1H); 13C NMR (100 MHz, CD3Cl); 14.8
(CH3), 113.1 (C), 114.7 (C), 118.4 (C), 119.7 (C), 121.6 (CH), 121. (2 × CH), 123.6 (CH), 126.6 (C), 129.1
(2 × CH), 129.5 (2 × CH), 131.8 (CH), 131.8(2 x CH), 135.0 (CH), 137.1 (C), 137.6(C), 138.7 (C), 142.3
(C), 142.8 (C), 145.1 (C), 152.7 (C), 164.9 (C), 189.6(C); HRMS (ESI, m/z): Calcd for C27H16N4O [M]+

412.1324 found 412.1213.

4d: 3-methyl-1-phenyl-4-(quinolin-3-yl)indeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-one. Yield: 27%
(118.3 mg); yellow solid, mp 200–202 ◦C IR (KBr, cm−1): 3058, 1793, 1737, 1602, 1511, 1384, 1251, 1126,
1031, 979, 906, 866, 756 1H NMR (400 MHz, (CD3Cl) 2.09 (s, 3H), 6.70 (s, 1H), 7.36 (t, J = 8.0 Hz, 1H),
7.43 (t, J = 8.0 Hz, 1H), 7.60 (m, 5H), 7.83 (t, J = 8.4 Hz, 1H), 7.92 (J = 8.1 Hz, 1H), 7.99 (d, J = 7.3 Hz,
1H), 8.24 (d, J = 8.0 Hz, 1H), 8.32 (m, 3H), 9.01 (d, J = 2.2 Hz, 1H); 13C NMR (100 MHz, CD3Cl); 15.3
(CH3), 115.5 (C), 120.4 (C), 121.6 (CH), 121.7 (2 x CH), 123.6 (CH), 125.7 (C), 126.6 (CH), 126.8 (C), 127.3
(CH), 128.2 (CH), 129.1 (2 × CH), 129.6 (CH), 130.5 (CH), 131.7 (CH), 134.9 (CH), 136.5 (CH), 137.2 (C),
138.8 (C), 141.9 (C), 142.3 (C), 145.4 (C), 148.1 (C), 149.7 (CH), 152.8 (C), 165.1 (C), 189.8 (C); HRMS (ESI,
m/z): Calcd for C29H19N4O [M+H]+ 439.1559 found 439.1572.

4e: 3-methyl-4-(1-methyl-1H-imidazol-2-yl)-1-phenylindeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-one
Yield: 69% (269.9 mg); yellow solid, mp 303–305 ◦C; IR (KBr, cm−1): 3097, 3062, 2952, 1612, 1592, 1505,
1415, 1256, 1210, 1111, 1016, 889, 750; 1H NMR (400 MHz, (CD3Cl) 2.20 (s, 3H), 3.58 (s, 3H), 7.17 (s, 1H),
7.30 (s, 1H), 7.36 (t, J = 8.0 Hz, 1H), 7.47 (t, J = 8.0 Hz, 1H), 7.55 (t, J = 8.0 Hz, 1H), 7.63 (d, J = 8.0 Hz, 1H),
7.68 (d, J = 8.0 Hz, 1H), 8.01 (d, J = 8.0 Hz, 2H), 8.28 (d, J = 8.0 Hz, 2H); 13C NMR (100 MHz, CD3Cl);
13.9 (CH3), 33.6 (CH3), 108.2 (C), 116.2 (C), 121.7 (2 × CH), 121.8 (CH), 122.0 (CH), 123.7 (CH), 126.5
(CH), 129.0 (2 × CH), 129.4 (CH), 131.7 (CH), 135.1 (C), 137.2 (CH), 138.8 (C), 139.2 (C), 142.6 (C), 146.2
(C), 164.6 (C), 189.5 (C); HRMS (ESI, m/z): Calcd for C24H17N5OK [M+K]+ 430.1070 found 430.1245.

4f: 4-(3-methyl-5-oxo-1-phenyl-1,5-dihydroindeno[1,2-b]pyrazolo[4,3-e]pyridin-4-yl)benzoic acid.
Yield: 32% (137.9 mg); yellow solid, mp 274–276 ◦C; IR (KBr, cm−1): 3062, 2955, 2920, 2894, 2851, 1664,
1589, 1508, 1421, 1378, 1184, 1114, 923; 1H NMR (400 MHz, (CD3Cl) 2.06 (s, 3H), 7.38 (t, J = 8.0 Hz,
1H), 7.46 (t, J = 8.0 Hz, 1H), 7.57 (t, J = 8.0 Hz, 2H), 7.60–7.64 (m, 3H), 8.01 (d, J = 8.0 Hz, 1H), 8.07 (d,
J = 8.0 Hz, 1H), 8.30 (d, J = 8.0 Hz, 2H), 10.16 (s, 1H); 13C NMR (100 MHz, CD3Cl); 14.8 (CH3), 114.9
(C), 119.9 (C), 121.6 (CH), 121.7 (2 × CH), 123.6 (CH), 126.6 (CH), 129.1 (2 × CH), 129.4 (2 × CH), 129.5
(2 × CH), 131.7 (CH), 134.9 (CH), 136.7 (C), 137.2 (C), 138.8 (C), 139.1 (C), 142.3 (C), 143.8 (C), 145.4
(C), 152.7 (C), 165.0 (C), 189.7 (C), 191.7 (CH); HRMS (ESI, m/z): Calcd for C27H17N3O3Na [M+Na]+

454.1168 found 454.1354.

4g: 3-Methyl-1-phenylindeno[2,3-e]pyrazolo[3,4-b]pyridin-5(1H)-one [58]. Yield: 65% (220.9 mg);
yellow solid; mp 246–248 ◦C; IR (KBr, cm−1): 3390, 3054, 2923, 1716, 1613, 1589, 1502, 1337, 1290, 1138,
1028, 809, 781, 727, 636, 553; 1H NMR (400 MHz, DMSO-d6): 2.61 (s, 3H, CH3), 7.38 (t, J = 7.4 Hz, 1H),
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7.95 (d, J = 7.2 Hz, 1H), 8.28 (d, J = 7.7 Hz, 2H), 8.47 (s, 1H); 13CNMR (100 MHz, DMSO-d6) 11.3 (CH3),
116.0 (C), 120.5 (2 × CH), 120.7 (CH), 122.6 (C), 122.9 (CH), 125.7 (CH), 126.4 (CH), 128.5 (2 × CH), 131.3
(CH), 134.8 (CH), 136.3 (C), 138.3 (C), 141.8 (C), 145.5 (C), 152.2 (C), 163.5 (C), 188.9 (C); HRMS (ESI,
m/z): calcd for C20H13N3OK [M+K]+ 350.4350 found 349.4350.

4h: 4-(furan-2-yl)-3-methyl-1-phenylindeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-one. Yield: 78% (294.1 mg);
yellow solid, mp 200–202 ◦C IR (KBr, cm−1): 3053, 2923 1742, 1658, 1664, 1609, 1545, 1499, 1317, 1265,
1198, 1068, 961, 880; 1H NMR (400 MHz, (CD3Cl) 2.46 (s, 3H), 6.70 (s, 1H), 7.34 (t, J = 8.0 Hz, 1H), 7.42 (t,
J = 8.0 Hz, 1H), 7.53 (m, 4H), 7.65 (t, J = 7.3 Hz, 1H), 7.71 (s, 1H), 7.89 (d, J = 7.3 Hz, 1H), 8.26 (d, J = 8.0 Hz,
2H); 13C NMR (100 MHz, CD3Cl); 16.0 (CH3), 112.3 (CH), 113.7 (C), 117.2 (CH), 118.1(C), 121.2 (CH),
121.6 (2 × CH), 123.3 (CH), 126.3 (CH), 128.9 (2 × CH), 131.4 (CH), 133.0 (C), 134.5 (CH), 137.3 (C), 138.8
(C), 141.9 (C), 144.1 (CH), 145.1 (C), 146.0 (C), 153.1 (C), 165.0 (C), 189.4 (C); HRMS (ESI, m/z): Calcd for
C24H15N3O2K [M+K]+ 416.0801 found 416.1132.

4i: N,N-dimethyl-4-(3-methyl-1-phenyl-1,5-dihydroindeno[1,2-b]pyrazolo[4,3-e]pyridin-4-yl)aniline.
Yield: 63% (262.4 mg); green solid, mp 198–200 ◦C; 1H NMR (400 MHz, (CD3Cl); 2.14 (s, 3H), 2.94 (s,
6H), 3.68 (s, 2H), 6.72 (d, J = 8.0 Hz, 2H), 7.17 (m, 1H), 7.23 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.0 Hz, 1H),
7.35 (m, 3H), 7.43 (t, J = 8.0 Hz, 3H), 8.11 (d, J = 8.0 Hz, 1H); HRMS (ESI, m/z): Calcd for C28H24N4

[M]+ 416,2001 found 416,2122.

4j: Ethyl4-(4-(dimethylamino)phenyl)-3,6-dimethyl-1-phenyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate.
Yield: 71% (294.3 mg); orange crystals, mp 167–169 ◦C; IR (KBr, cm−1): 2975, 2885, 1728, 1612, 1528,
1430, 1239, 1204, 1106, 822, 744; 1H NMR (400 MHz, (CD3Cl); 1.06 (t, J = 7.0 Hz, 3H), 2.18 (s, 3H), 2.73
(s, 3H), 3.03 (s, 6H), 4.12 (q, J = 7.0 Hz, 2H ), 6.78 (d, J = 8.0 Hz, 2H), 7.27–7.30 (m, 3H), 7.51 (t, J = 8.0
Hz, 2H), 8.30 (d, J = 8.0 Hz, 2H); 13C NMR ( 100 MHz, CD3Cl); 13C NMR ( 100 MHz, CD3Cl); 13.8
(CH3), 14.9 (CH3), 23.7 (CH3), 40.3 (2 × CH3), 61.1 (CH2), 111.4 (2 × CH), 113.4 (C), 121.0 (2 × CH),
122.7 (C), 124.2 (C), 125.5 (CH), 128.9 (2 × CH), 129.7 (2 × CH), 139.4 (C), 143.7 (C), 144.7 (C), 150.2 (C),
150.5 (C), 155.4 (C), 169.2 (C); HRMS (ESI, m/z): Calcd for C25H26N4O2 [M]+ 414.2056 found 414.2055.

4k: 1-(3,6-dimethyl-4-(pyridin-3-yl)-1H-pyrazolo[3,4-b]pyridin-5-yl)ethan-1-one. Yield: 49% (130.5 mg);
beige solid, mp 168–170 ◦C; IR (KBr, cm−1): 3386, 2932, 1618, 1574, 1525, 14441, 1369, 1233, 1025, 834,
700; 1H NMR (400 MHz, (CD3Cl); 2.40 (s, 3H), 2.42 (s, 3H), 2.65 (s, 3H), 6.30 (s, 1H), 6.40 (s, 1H), 7.17
(dd, J = 8.0, 4.9 Hz, 2H), 7.56 (d, J = 8.0 Hz, 2H), 8.44 (m, 1H); HRMS (ESI, m/z): Calcd for C15H15N4O
[M+H]+ 267,1246 found 267,1223.

5a: 2-((1H-pyrrol-3-yl)methylene)-1H-indene-1,3(2H)-dione. Yield: 61% (136.2 mg); Green solid, mp
158–160 ◦C; IR (KBr, cm−1): 1713, 1655, 1577, 1326, 1218, 1149, 1077, 758, 735, 591; 1H NMR (400 MHz,
(CD3Cl) 6.47 (s, 1H), 7.02 (s, 1H), 7.34 (bs, 1H), 7.67 (s, 1H), 7.71 (m, 2H), 7.88 (m, 2H), 13.10 (bs, 1H);
13C NMR (100 MHz, CD3Cl) 114.2 (CH), 120.0 (C), 122.6 (2 × CH), 126.5 (CH), 129.6 (CH), 130.6 (C),
133.1 (CH), 134.4 (CH), 134.7 (CH), 140.2 (C), 141.1 (C), 190.6 (C), 192.1 (C); HRMS (ESI, m/z): Calcd
for C14H9NO2 [M]+ 223.0633 found 223.0631. These spectroscopic data correspond to the previously
reported data [59–61].

5b: 2-(4-morpholinobenzylidene)-1H-indene-1,3(2H)-dione. Yield: 81% (258.7 mg); red solid, mp
257–259 ◦C; IR (KBr, cm−1): 2955, 2839, 1719, 1658, 1566, 1514, 1383, 1242, 1109, 1033, 923, 724; 1H NMR
(400 MHz, (CD3Cl) 3.43 (m, 4H), 3.87 (m, 4H), 8.92 (d, J = 8.0 Hz, 2H), 7.75 (m, 2H), 7.79 (s, 1H), 7.95 (m,
2H), 8.53 (d, J = 8.0 Hz, 2H); 13C NMR (100 MHz, CD3Cl); 46.8 (2 × CH2), 66.4 (2 × CH2), 113.1 (CH
× 2), 122.7 (CH × 2), 124.0 (C), 124.7 (C), 134.4 (CH), 134.6 (CH), 137.5 (CH × 2), 139.9 (C), 142.3 (C),
146.9 (CH), 154.2 (C), 189.8 (C), 191.3 (C); HRMS (ESI, m/z): Calcd for C20H17NO3 [M]+ 319.1208 found
319.1211. These spectroscopic data correspond to the previously reported data [62].

5c: 3-((1,3-dioxo-1,3-dihydro-2H-inden-2-ylidene)methyl)benzonitrile. Yield: 74% (191.7 mg); yellow
solid, mp 257–259 ◦C; IR (KBr, cm−1): 2955, 2839, 1719, 1658, 1566, 1514, 1383, 1242, 1109, 1033, 923, 724;
1H NMR (400 MHz, CD3Cl); 7.16 (t, J = 8.0 Hz, 1H), 7.88 (s, 1H), 7.98–8.05 (m, 5H), 8.66 (d, J = 8.0 Hz,
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1H), 8.92 (s, 1H); 13C NMR (100 MHz, CD3Cl); 112.2 (C), 118.7 (C), 123.7 (CH), 123.8 (CH), 130.4 (CH),
131.8 (C), 134.1(C), 135.9 (CH), 136.6 (CH), 136.7 (CH), 136.8 (CH), 138.1 (CH), 140.1 (C), 142.5 (C), 142.7
(CH), 188.9 (C), 189.3 (C). These spectroscopic data correspond to the previously reported data [63,64].

6. Computational Details

All the structures included in this study were optimized at B3LYP/6-31G(d) [65] theory level by
using the Gaussian09 package [66]. The densities, used in the new methodology, were calculated
at the same level of calculation for the neutral molecule, the cation and anion, through Gaussian09
software. The bond reactivity indices used in this study were calculated with UCA-FUKUI v.2.1
software (http://www2.uca.es/dept/quimica_fisica/software/UCA-FUKUI_v2.exe) [67]. Natural bond
orbital images were built using GaussView program [68].

7. Biological Evaluation

The inhibitory potency of the compounds as AChE inhibitors was evaluated from Electrophorus
electricus, with galantamine as reference compound. The selectivity was estimated with the inhibition
of the derivatives over butyrylcholinesterase (BuChE). Both inhibitory activities were evaluated by
the method of Ellman et al [54]. All compounds were evaluated as antibacterial agents using the
microdilution methods [57].

8. Conclusions

In conclusion, we reported a simple, highly efficient, and environmentally benign protocol
for the synthesis of pyrazolo-fused 4-azafluorenones (indeno[1,2-b]pyrazolo[4,3-e]pyridines, IPP)
through a multi-component reaction in IL by one-pot three-component condensation of arylaldehydes,
3-methyl-1H-pyrazol-5-amine, and 1,3-indanedione in an ionic liquid as a catalyst at room temperature
using sonochemical energy. This methodology has advantages of moderate yields in shorter reaction
times, the IL could be readily recovered and reused for several consecutive cycles, simple experimental,
and work-up procedures. We believe that this method will be more useful than the existing literature
methods for the synthesis of pyrazolo-fused 4-azafluorenones. A theoretical study, based on bond
reactivity indices, confirmed the proposed mechanism. The electrophilic and nucleophilic character of
localized orbitals was determined to obtain a reasonable mechanism. Finally, the biological potential
of the series of compounds was shown.
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