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Abstract: This paper unifies several versions of the Orlicz–Pettis theorem that incorporate
summability methods. We show that a series is unconditionally convergent if and only if the series
is weakly subseries convergent with respect to a regular linear summability method. This includes
results using matrix summability, statistical convergence with respect to an ideal, and other variations
of summability methods.
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1. Introduction

Let X be a normed space. A linear summability method R on X is a rule to assign limits to a
sequence, that is, it is a linear mapR : DR ⊂ XN → X. A summability methodR is said to be regular
if, for each convergent sequence (xn)n in X, that is, limn→∞ xn = x0, we have thatR((xn)n) = x0.

The methods of summability were born at the beginning of the 20th century, with the development
of the theory of Fourier Analysis. For example, statistical convergence and strong Cesàro convergence
were introduced respectively by Zygmund [1] and Hardy [2], and both concepts were surprisingly
connected thanks to the work of Connor [3] fifty years later. Since then, the Summability Theory
has taken on a life of its own, with deep and beautiful results (see the recent monographs [4,5] for
historical notes). Moreover, the theory has important applications on Applied Mathematics (see the
recent monograph by Mursaleen [6]).

The Orlicz–Pettis Theorem is a classic result concerning a convergent series, so beautiful that it
has attracted the interest of many mathematicians and it has been strengthened and generalized in
many directions. An early survey is Kalton’s paper [7]. The reader can see in [8–19] recent results
about the Orlicz–Pettis type Theorems.

Let us recall that a series ∑i xi in a Banach space X is said to be unconditionally convergent (u.c) if,
for each permutation of the natural numbers π : N→ N, we have that ∑i xπ(i) is convergent. A series
∑i xi is weak-subseries convergent if, for any M ⊂ N, there exists xM ∈ X such that the partial sums
SM

n = ∑n
i=1 χM(i)xi converges weakly to xM (here χM(·) denotes the characteristic function on M).

The classical Orlicz–Pettis Theorem states that a series ∑i xi is unconditionally convergent if and only
if ∑i xi is weakly subseries convergent.

Diestel and Faires sharpened the classical result by Orlicz–Pettis in the following sense ([20] I.4.7).
Let X be a Banach space that contains no copy of `∞ and let Γ be a total subset of X?. Then, a formal
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series ∑n xn in X such that every subseries is Γ-convergent, that is, for each subset A ⊂ N, there exists
xA ∈ X, such that ∑n x?(xn) = x?(xA) for all x? ∈ Γ; then, ∑n xn is norm unconditionally convergent.

On the other hand, attempts have been made to replace weak convergence with other (weak)
summability method. At this point, we find several results in the literature. For instance, the
Orlicz–Pettis Theorem remains true if we replace the weak convergence by the weak statistical
convergence (see [8]). It is also true for the weak-Cesàro convergence [21], for the weak A-convergence,
A being an infinite matrix with non-negative entries [22], for the weak-statistical Cesàro convergence [9],
and more recently for the wp-strong Cesàro convergence [15]. In this note, we aim to unify all known
results, obtaining an Orlicz–Pettis Theorem for a general summability method; of course, we need to
place some limits on the summability method because the result fails for an arbitrarily summability
method. Namely, the result is true for any linear regular summability method. It is surprising how
we can weaken the weak convergence hypothesis in the Orlicz–Pettis result by almost any other
weaker summability method. The paper is organized as follows: in Section 2, we will show a General
Orlicz–Pettis Theorem for summability methods. Next, we will see how effectively our result unifies
the known results, and we will see new applications.

2. Main Results

Let ρ be a linear summability method, that is, a subset Dρ ⊂ RN and a linear function ρ : Dρ →
R, which assigns a unique real number ρ((xn)) to a sequence (xn) ∈ Dρ. In addition, ρ is said to be
regular, if, for every convergent sequence limn xn = x0, the sequence (xn), ρ-converge to the same
limit. A summability method ρ induces a weak summability methodR in X as follows: a sequence
(xn) ∈ XN isR-convergent to x0 ∈ X if and only if f (xn) is ρ-convergent to f (x0) for all f ∈ X?. Let us
observe that, in general, the convergence methodR could be degenerate, that is, DR = ∅. However,
if ρ is regular, then DR is non-empty; moreover,R is also regular.

Proposition 1. If ρ is regular, thenR is regular.

Proof. Let us suppose that limn→∞ ‖xn − x0‖ = 0; then, for each f ∈ X?, limn→∞ | f (xn)− f (x0)| = 0,

since ρ is regular f (xn)
ρ−→ f (x0). Therefore, xn

R−→ x0 as desired.

Theorem 1. Let X be a real Banach space, ρ a regular summability method on R andR the summability method
induced by ρ. Then, a series ∑i xi is unconditionally convergent if and only ∑i xi is R-subseries convergent
in X.

Proof. Let ∑i xi be an unconditionally convergent series, and let M ⊂ N. By applying the classical
Orlicz–Pettis Theorem, we obtain that there exists xM ∈ X such that the sequence SM

n = ∑n
i=1 χM(i)xi

weakly converges to xM, that is, for each f ∈ X?, we have that the sequence ∑n
i=1 χM(i) f (xi)

|·|−→
f (xM). Since ρ is regular, we have that ∑n

i=1 χM(i) f (xi)
ρ−→ f (xM) for each f ∈ X?, that is,

SM
n = ∑n

i=1 χM(i)xi R-converges to xM, as desired.
Now, let us suppose that, for any M ⊂ N, there exists xM such that SM

n = ∑n
i=1 χM(i)xi

R-converges to xM. First of all, we will prove that ∑i xi is a weakly unconditionally Cauchy series.
If not, let us argue by contradiction, so let us suppose that there exists f ∈ X? such that ∑i | f (xi)| = +∞.
Let us consider the following subsets M = {i ∈ N : f (xi) ≥ 0} and N = {i ∈ N : f (xi) < 0}.
In addition, let us define the sequence

εi =

{
1 if i ∈ M

−1 if i ∈ N,
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then ∑∞
i=1 εi f (xi) = +∞, hence the sequence ∑n

i=1 εixi does notR converge to any L ∈ X. On the other

hand, by hypothesis, given M, N ⊂ N, there exists that xM, xN ∈ X such that ∑n
i=1 χM(i)xi

R−→ xM

and ∑n
i=1 χN(i)xi

R−→ xN . Therefore,

n

∑
i=1

εi f (xi) =
n

∑
i=1

χM(i) f (xi)−
n

∑
i=1

χN(i) f (xi)
ρ−→ f (xM)− f (xN) = f (xM − xN),

a contradiction. Therefore, for any f ∈ X?, we have ∑i | f (xi)| < ∞.
Now, let us show that, given M ⊂ N, there exists xM ∈ X such that ∑n

i=1 χM(i)xi weakly converges
to xM. Let f ∈ X?, since ∑i | f (xi)| < ∞, we deduce that the series ∑n

i=1 χM(i) f (xi) is convergent to
some λM, f ∈ R, and hence ρ-convergent to λM, f . On the other hand, by hypothesis, there exists xM ∈ X

such that ∑n
i=1 χM(i)xi

R−→ xM, that is, for each f ∈ X?, we have that ∑n
i=1 χM(i) f (xi)

ρ−→ f (xM).
Therefore, λM, f = f (XM). Hence, we obtain that, for any f ∈ X?, the sequence ∑n

i=1 χM(i) f (xi)

converges to f (xM), that is, ∑n
i=1 χM(i)xi weakly converges to xM. Thus, by applying the classical

Orlicz–Pettis Theorem, we obtain that the series ∑i xi is unconditionally convergent as desired.

Remark 1. The following example was pointed out by one of the referees. Let us consider the following
linear summability method: ρ, a sequence (xn) ⊂ R is said to be ρ-convergent to x0 if limn→∞

xn
n2 = x0.

Then, it is clearly in the realm of bounded sequences ρ|`∞ = 0. Thus, ρ is not regular. Now, let us consider
on `2 the summability method induced by ρ, which we denote by R. For every M ⊂ N, we have that

∑n
i=1 χM(i)ei

R−→ 0 = xM. However, ∑n
i=1 χM(i)ei is not norm convergent to 0. The argument of the proof

breaks down if we can’t guarantee that λM, f = f (xM). This fact highlights the importance of regularity in the
proof of the above result.

Now, let us see some applications of Theorem 1. We will say that I ⊂ P(N) is a non-trivial ideal if

1. I 6= ∅ and I 6= P(N).
2. If A, B ∈ I , then A ∪ B ∈ I .
3. If A ⊂ B and B ∈ I , then A ∈ I .
4. Additionally, we say that I is regular (or admissible) if it contains all finite subsets.

A non-trivial regular ideal I defines a regular summability method on any metric space. We will
say that a sequence (xn) ⊂ R is I-convergent to L ∈ R (in short L = I − limn→∞ xn) if, for any ε > 0,
the subset

A(ε) = {n ∈ N : |xn − L| > ε} ∈ I .

Thus, given a Banach space X, the I-convergence defines a weakly summability method in X;
we will say that a sequence (xn) ⊂ X is weakly-I convergent to x0 if and only if, for any f ∈ X?,

we have f (xn)
I−→ f (x0).

Corollary 1. Let I be a non-trivial ideal. Then, a series ∑i xi is a real Banach space; X is unconditionally
convergent if and only if ∑i xi is subseries weakly-I convergent.

In particular, if we consider the ideal Id of all subsets in N with zero density, the ideal convergence
induced by Id (which is non trivial and regular) is the statistical convergence. Therefore, the above
Corollary is also true for the weak-statistical convergence [8].

Now, let us consider a regular matrix summability method induced by an infinite matrix A = (aij),
which is defined as follows. A sequence (xn) ∈ RN is A-summable to L if limn→∞ ∑∞

j=1 anjxj = L.
A matrix A is regular if the usual convergence implies the A-convergence, and the limits are preserved.
Now, if X is a Banach space, then the matrix A also induces a summability method on a Banach space
X; we say that a sequence (xn) ∈ XN is A-convergent to x0 ∈ X if limn→∞ ∑∞

j=1 anjxj = x0. The matrix
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A also induces a weakly convergence, a sequence (xn) ∈ XN is weakly A-convergent to x0 ∈ X if, for
any f ∈ X?, we have that f (xn) is A-convergent to f (x0). Applying Theorem 1, we get:

Corollary 2. Let A be a regular matrix. Then, a series ∑i xi is unconditionally convergent if and only if ∑i xi
is subseries weak-A-convergent.

Thus, we obtain the results in [22]. In particular, if A is the Cesàro matrix, we obtain the results
in [21].

Let us consider the following summability method ρ: we will say that a sequence (xn) is Cesàro,
statistically convergent to L, if the Cesàro means

(
x1, x1+x2

2 , x1+x2+x3
3 · · ·

)
is statistically convergent to

L. Given a Banach space X, the summability method ρ induces a weakly summability method in X.
Namely, we say that a sequence (xn) ∈ XN is weakly statistically Cesàro convergent to x0 ∈ X if, for
every f ∈ X?, the sequence f (xn) is Cesàro statistically convergent to f (x0).

As a consequence, we obtain the results in [9].

Corollary 3. Let A be a regular matrix. Then, a series ∑i xi is unconditionally convergent if and only if ∑i xi
is subseries weakly statistically Cesàro-convergent.

In brief, Theorem 1 not only unifies the known results, but also can be widely applied to several
summability methods obtaining new versions of the Orlicz–Pettis theorem. For instance, it applies for
the Erdös–Ulam convergence, wp-Cesàro convergence, f -statistical convergence, etc. (see [15,23]).
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