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Resumo 

O parasita Toxoplasma gondii infecta mais de um terço da humanidade sendo a 

toxoplasmose uma ameaça permanente, uma vez que os seres humanos permanecem infectados a 

vida toda. Esta tese de doutoramento teve como objetivo enriquecer o conhecimento sobre a 

toxoplasmose em Portugal e implementar abordagens optimizadas para a propagação de T. gondii 

no laboratório de referência. 

Começámos por avaliar a seroprevalência da população portuguesa comparando três 

estudos transversais ao longo de três décadas (1979/80, 2001-2002, 2013), com especial foco nas 

mulheres em idade fértil. Observámos uma tendência decrescente da seroprevalência ao longo do 

tempo (de 47 % em 1979/80 para 22 % em 2013), aumentando esta com a idade. O cenário 

observado para as mulheres em idade fértil indica que mais de 80 % são suscetíveis à infecção 

primária encontrando-se assim em risco de contrair toxoplasmose. 

Focámo-nos também no estudo do parasita e caracterizámos geneticamente 48 estirpes 

isoladas a partir de amostras biológicas de pacientes diagnosticados no Instituto Nacional de 

Saúde (INSA), para os quais efetuámos uma avaliação retrospectiva que estimou 1,6% de novos 

casos de toxoplasmose congénita nos últimos 10 anos. Este estudo revelou variações genéticas 

nas estirpes de T. gondii causadoras de infecção, mais especificamente, a existência de uma 

proporção considerável (21 %) de estirpes recombinantes, que se acredita estarem associadas a 

fenótipos específicos. 

Finalmente, avaliámos diversas abordagens laboratoriais com o objectivo de reduzir a 

utilização do número de ratinhos sacrificados na actividade laboratorial de referência. Concluímos 

que a propagação de uma forma alternada do parasita numa uma linhagem celular e em ratinhos 

constitui um procedimento laboratorial promissor, pois, para além de reduzir o número de animais 

sacrificados em mais de 80 %, permite também que T. gondii não perca a sua virulência, mantendo 

potencialmente o seu genoma inalterado. 

Globalmente, esta tese de doutoramento não só contribuiu para o conhecimento da 

toxoplasmose em Portugal, ao nível do individuo, elucidando a tendência cronológica do estado 

imunitário da população portuguesa, bem como ao nível do parasita, identificando o perfil 

genético das estirpes de T. gondii circulantes causadoras de infecção humana e a sua virulência 

no ratinho. Finalmente, esta dissertação de doutoramento estabeleceu procedimentos que 

modificaram o modus operandi do laboratório de referência que visam uma redução significativa 

do número de ratinhos sacrificados. 

 

Palavras-chave  Toxoplasma gondii; Genotipagem; Estirpes recombinantes; Toxoplasmose 

congénita; Seroprevalencia; Vigilância laboratorial. 
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Abstract 

Toxoplasma gondii infects over a third of the world's humanity and toxoplasmosis  

constitutes a life-long threat since humans remain infected throughout life. This PhD dissertation 

aimed to enrich the knowledge on toxoplasmosis in Portugal and to implement updated 

approaches regarding T. gondii propagation in the reference laboratory.  

We started by evaluating the seroprevalence in Portugal by comparing three cross-sectional 

studies spanning three decades (1979/80, 2001-2002, 2013), with focus on childbearing women. 

Seroprevalence showed a decreasing trend over time (from 47 % in 1979/80 to 22 % in 2013) and 

increased with age. The scenario observed for childbearing women indicates that more than 80 % 

of these are susceptible to primary infection and thus to congenital toxoplasmosis.  

We also focused on the parasite and genetically characterized 48 strains isolated from 

biological samples from patients attending to the NIH, for which a retrospective evaluation 

estimated 1.6 % of new cases of congenital toxoplasmosis in the last 10 years. This study revealed 

genetic variations in T. gondii and more specifically the existence of a considerable proportion 

(21 %) of recombinant strains, which are believed to be associated with specific phenotypes. 

Finally, we evaluated laboratory approaches towards the reduction of sacrificed mice in 

toxoplasmosis reference laboratories. We observed that the alternate passaging of the parasite in 

a cell line and in mice constitutes a promising laboratory procedure as, besides the reduction of 

sacrificed mice in more than 80 %, it enabled T. gondii to retain the virulence potential while 

keeping a putative stable genome.  

Globally, this PhD dissertation not only increased the knowledge on toxoplasmosis in 

Portugal by elucidating the chronological trend of the immune status of the population and the 

general genetic profile of the T. gondii strains causing human infection, but it also modified the 

modus operandi of the reference laboratory towards the significant reduction of scarified mice.  

 

 

Keywords  Toxoplasma gondii; Genotyping; Recombinant strains; congenital toxoplasmosis; 

Seroprevelenve; Laboratory surveillance. 
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1. General Introduction 

1.1. Toxoplasma gondii, the parasite 

1.1.1. Historical background and taxonomy 

The Toxoplasma gondii (T. gondii) is an apicomplexan protozoan parasite and one of the 

most successful parasites worldwide due to its ability to infect all warm blooded animals including 

humans. One third of the world’s human population is assumed to be infected with T. gondii 

(Louis M. Weissa; Weiss and Dubey, 2009; Innes, 2010). This ubiquitous obligate intracellular 

organism was first discovered in 1908 by Charles Nicolle and Louis Manceaux at the Pasteur 

Institute in Tunis, who found the parasite in the liver and spleen of a North African rodent, named 

gundi (Ctenodactylus gundi) and initially presumed it was a species of Leishmania. In the same 

year, Alfonso Splendore, a Brazilian scientist discovered the parasite in a rabbit (Oryctolagus 

cuniculus) and again mistakenly identified it as Leishmania (Ferguson D, 2009). However in 1909 

following experimental infection and microscopic analysis, the parasite was renamed to 

Toxoplasma gondii as described by Nicolle and Manceaux (Nicolle and Manceaux, 1909; 

Ferguson D, 2009) due to the bow shaped morphology of the extracellular stage of the parasite - 

tachyzoite; Toxo is derived from Greek for bow, plasma meaning life and gondii because its 

original host was C. gundi. In 1914 Castellani was probably the first to describe a T. gondii–like 

parasite in smears of the blood and spleen from a 14-year-old boy from Ceylon who died from a 

disease characterized by severe anemia, fever and spleenomegaly. (Louis M. Weissa; Cheng et 

al., 2015). 

In 1923, Janků observed parasitic cysts in the retina of an eleven month old child who was 

suffering from hydrocephalus (Janků, 1928). In the same year the first identified case of 

congenital toxoplasmosis was reported by Wolf and Cowen from a 3 day old child who had 

developed seizures (Wolf et al., 1939). The baby only survived for one month and following post 

mortem cerebral calcification, retinochoroiditis, and hydrocephalus were observed.  In this same 

year Sabin isolated T. gondii from two children from Cincinnati, named R.H. (initials of the 

patients name), aged 6 years old and the other named W.B.D. aged 8 years, with encephalitis 

(Sabin, 1941). This strain, designated “RH” became the laboratory prototypical Type I strain and 

since 1938 it has been passed in mice in many laboratories worldwide. In 1941, Pinkerton and 

Henderson reported atypical pneumonia on two adults who died and in whom they demonstrated 

T. gondii as the etiological agent. These were the first reports of acute toxoplasmosis in adults 

without neurological signs. In the 1950’s T. gondii parasites were discovered in enucleated eyes 

(Wilder, 1952), and this type of ocular toxoplasmosis was presumed to be a consequence of 

congenital transmission of the parasite. However, more recent studies have also described a 
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greater number of cases than expected of ocular toxoplasmosis due to postnatal acquired infection 

(Montoya and Remington, 1996; Burnett et al., 1998; Gilbert et al., 2008).  

The development of a serological test, the dye test, in 1948 by Albert Sabin and Harry 

Feldman was a major advance in the study of toxoplasmosis (Sabin and Feldman, 1948). The 

ability to identify T. gondii infections based on this serological method allowed epidemiological 

studies on the incidence of infection, demonstrating the widespread world-wide prevalence of this 

infection in humans. It also allowed the identification of clinical signs compatible with the 

diagnosis of congenital toxoplasmosis (Sabin and Feldman, 1948; Feldman and Miller, 1956). As 

such, Sabin determined that the simultaneous occurrence of clinical signs of hydrocephalus or 

microcephalus, intracerebral calcification and chorioretinitis, could be used to identify cases of 

congenital toxoplasmosis, what is nowadays known as the classical triad of symptoms of 

congenital toxoplasmosis (Sabin, 1941, 1942). 

In 1965 Desmonts and colleagues confirmed the transmission by the carnivorous route, 

which had been previously presupposed by Weinman and Chandler (Weinman and Chandler, 

1954) and by Jacobs et al. (1960). In 1972, Wallace and his colleagues began epidemiological 

surveys in regions where habitants ate raw or undercooked meat and observed a high frequency 

of infection in humans, demonstrating the transmission route through carnivorism. Anteriorly in 

1969, Kean et al. described the first outbreak of toxoplasmosis in Cornell University medical 

students after eating insufficiently cooked hamburgers. However, in 1959 Rawal in a study in 

vegetarians observed a frequency equivalent to that found in carnivores, and the diffusion of the 

parasitizes in this group was not clarified. In 1970 the cycle of this parasite is definitively clarified, 

with the discovery by Dubey et al. of the sexual development of T. gondii in the intestine of cats 

(Frenkel et al., 1970), thus felids are still presumed to be the only definitive host. An important 

step in the history of T. gondii occurred in the 1980’s when AIDS patients were found to develop 

clinical symptoms of the parasite (Luft and Remington, 1992). T. gondii was identified as a major 

opportunistic infection for these immunocompromised patients, where either newly acquired 

infection or recrudescence of latent infection would frequently cause encephalitis (Luft and 

Remington, 1992). 

The most recent developments for T. gondii are its possible effect on behavior changes in 

both animals (Berdoy et al., 2000; Ingram et al., 2013), and humans. Although the link to T. 

gondii infection and behavioral problems in humans is not completely clear, several reports have 

associated infection to schizophrenia (Torrey et al., 2012), increased risk taking and road traffic 

accidents (Flegr et al., 2009) and an increased risk of suicide (Lester, 2012). Also, the emergence 

of genetically different strains of the parasite have been linked to several fatal cases of acquired 
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infection in immuno-competent individuals (Carme et al., 2002, 2009; Ajzenberg et al., 2016), 

further highlighting the potential public health risk of the parasite.  

According to the current taxonomic classification, T. gondii belongs to the Kingdom 

Protista, sub - Kingdom Protozoa (Goldfuss, 1918), Phylum Apicomplexa (Levine, 1970), Class 

Sporozoasida (Leukart, 1879), Subclass Coccidiasina (Leukart, 1879), Order Eimeriorina (Leger, 

1911), Family Toxoplasmatidae (Biocca, 1956) (Hill et al., 2005; Dubey, 2010) and genus 

Toxoplasma (Nicolle and Manceaux, 1909). There is only one species, T. gondii; one of the most 

successful parasitic organisms.  

 

1.1.2. Biology 

There are three infective stages of T. gondii: a rapidly dividing invasive tachyzoite   

(Figure 1.1), a slowly dividing bradyzoite in tissue cysts, and an environmental stage, the 

sporozoite, protected inside an oocyst (Figure 1.2). Tachyzoites are crescent-shaped cells, 

approximately 5 m long and 2 m wide, with a pointed apical end and a round posterior end. 

They are limited by a complex membrane, named the pellicle, closely connected with a 

cytoskeleton involved in the structural integrity and motility of the cell. They possess a nucleus, 

a mitochondria, a Golgi complex, ribosomes, an endoplasmic reticulum, and a multiple -

membrane-bound plastid-like organelle called the apicoplast (Roos et al., 1999). As other 

members of the phylum Apicomplexa, they concentrate in their apical area a specialized 

cytoskeletal structure (the conoid, implicated in cell invasion) and numerous secretory organelles 

(rhoptries [ROPs], dense granules, and micronemes). Tachyzoites are the dissemination form and 

they are able to invade cells of all vertebrate, where they multiply in a parasitophorous vacuole. 

Bradyzoites result from the conversion of tachyzoites into a slow-dividing stage and form tissue 

cysts. These cysts are spheroid in brain cells or elongated in muscular cells, vary in size and can 

contain only two bradyzoites or thousands with a latent metabolism. Cysts remain intracellular 

throughout their lifetime and the death of the host cell may produce the disruption of the cyst wall 

and the consequent liberation of bradyzoites. The resistance of bradyzoites to the acid pepsin (1- 

to 2-h survival into pepsin-HCl) allows their transmission through ingestion. Oocysts are ovoid 

structures with two sporocysts (after sporulation) and with an exceptionally resistant double wall 

that enables the parasite to survive for long periods in adverse conditions. (Robert-Gangneux and 

Dardé, 2012). 
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Figure 1.1 Graphic representation of a tachyzoite. 

Image source: VectorStock.com/11563382. 
 

 

 

Figure 1.2 A) Bradyzoites inside a cyst of a laboratory mouse brain (100x, 40x e 10x objective), B) Free 

stained tachyzoites on laboratory mouse ascites , C) Sporolated and unsporulated Oocysts.  

Image source: National Reference Laboratory of Parasitic and Fungal Infections. 
 

 

1.1.3. Life cycle 

The life cycle of the parasite was fully understood with the discovery of T. gondii oocysts 

in cat faeces (Hutchison et al., 1969, 1971) it evidenced the central role of the cat as the only 

definitive host harboring the sexual developmental stages within the small intestine and spreading 

millions of oocysts through feces to the environment. The life cycle (Figure 1.3) consists of 

asexual reproduction in the intermediate hosts (including humans) and sexual reproduction in the 

intestinal mucosa of the definitive host. A unique feature that characterizes T. gondii life cycle is 

that it can be transmitted not only between intermediate and definitive hosts (sexual cycle) but 

also between intermediate hosts via carnivorism (asexual cycle) or even between definitive hosts. 

Oocysts take 3-7 days to sporulate in the environment and become infective by meiosis process 

leading to the formation of a sporulated oocyst with two sporocysts, each containing four haploid 

sporozoites (Holliman et al., 2003). Intermediate hosts in nature (including birds and rodents) 

become infected after ingesting soil, water or plant material contaminated with these oocysts. 

After oocyst ingestion, sporozoites are released and penetrate the intestinal epithelium. Then, they 

transform into tachyzoites and become surrounded by a parasitophorous vacuole that protects 
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them from host defense mechanisms. The tachyzoite multiplies asexually by endodygeny and 

they spread first to mesenteric lymph nodes and then to the several organs by invasion of the 

bloodstream (Hill et al., 2005; Jones and Dubey, 2010). After several multiplication cycles, 

tachyzoites give rise to bradyzoites, and tissue cysts arise as early as 7 to 10 days post infection 

and may remain throughout lifetime in the hosts, predominantly in the brain or muscles (Jones 

and Dubey, 2010; Dubey, 2010; Robert-Gangneux and Dardé, 2012). After the ingestion by a cat 

of cysts present in tissues of an intermediate host, gastric enzymes destroy the cyst wall. 

Bradyzoites settle within enterocytes, where they undergo a number of asexual multiplications, 

with the development of merozoites within schizonts. This process is followed by the formation 

of male and female gametes (gametogony) (Ferguson, 2002). After fertilization, oocysts formed 

within enterocytes are released by the disruption of the cell and are excreted as unsporulated forms 

in cat feces. On the other hand, after the ingestion of the tissue cysts by an intermediate host 

through raw or undercooked meat, cysts are ruptured as they pass through the digestive tract, 

causing the release of bradyzoites. The bradyzoites will infect the intestinal epithelium of the new 

host and differentiate back into the rapidly dividing tachyzoite stage for dissemination throughout 

the body. In addition, if the acute phase occurs during pregnancy, the parasite can cross the 

placenta and infect the fetus (congenital transmission) (Robert-Gangneux and Dardé, 2012). 
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Figure 1.3 Life cycle of Toxoplasma gondii. Cats are the definitive host where sexual replication takes 

place. Following replication within enterocytes of the gut (merogony), male and female gametes are formed  

within the host cell. Fusion of gametes leads to the formation of diploid oocysts that are shed  in cat faeces 

and undergo meiosis in the environment to yield eight haploid progeny. Oocysts contaminate food and 

water, providing a route of infection for intermediate hosts. In the intermediate host (birds and rodents) 

asexual replication occurs. Acute infection is characterized by fast replicating tachyzoites that disseminate 

throughout the body. Differentiation to slow-growing bradyzoites within tissue cysts leads to long-term 

chronic infection. Ingestion of tissue cysts via omnivorous or carnivorous feeding can lead to transmission 

to other intermediate hosts or to cats, which re-initiates the sexual phase of the life cycle. Many animals  

serve as intermediate hosts, including farm animals. Humans become infected by eating undercooked meat  

containing tissue cysts or by the ingestion of oocysts in contaminated water (de Moura et al., 2006; Jones 

and Dubey, 2012). T. gondii can infect the brain and other organs as well as the foetus following a congenital 

infection. 

Image adapted from Hunter and Sibley. Nature Reviews Microbiology 2012 Nov;  10:766-778 (Hunter and 

Sibley, 2012). 
 

1.1.4. Mechanism of cell Invasion 

T. gondii is a successful parasite because it can spread across many biomes and species, 

and has developed specialized processes to invade and replicate efficiently within cells. It is an 

obligate intracellular parasite, implying that it cannot survive outside a cell, which provides the 

parasite a safe, secure home full of nutrients and a refuge from the immune system of the host 

(Tosh et al., 2016). Invasion is an active process based on parasite motility and the sequential 

secretion of proteins from specialized secretory organelles, the micronemes, the rhoptries, and the 
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dense granules. The micronemes and rhoptries are localized at the apical end of the parasite, where 

they function to form the anchor and tight junction to host cell (Huynh et al., 2006; Dlugonska, 

2008). Secreted dense granule synthesizes proteins to facilitate the remodeling of host processes 

to help replication of the parasite (Bougdour et al., 2014). A fourth organelle, the apicoplast that 

contains essential metabolic pathways is also envolved in the cell invasion process (Arisue and 

Hashimoto, 2015). T. gondii invasion starts with parasite attachment to the host cell plasma 

membrane. First, the parasite contacts its apical end to the plasmatic membrane of a cell and then 

secretes proteins that will promote parasite adhesion. It requires the calcium-dependent secretion 

of adhesins from micronemes, such as the microneme protein MIC2, which recognize host cell 

receptors and promote parasite reorientation and attachment. Cell invasion relies on a complex 

interaction between the host cell surface and the parasite, a process called gliding motility, a 

complex motor system promoted by actin-myosin interactions and dynamic rearrangements of 

the parasite cytoskeleton (Carruthers and Boothroyd, 2007). 

Entry is a rapid process (15 to 30 s), apical membrane antigen (AMA1) secreted from 

micronemes and the secretion of rhoptry (ROP) neck proteins (RONs) inserted into the host cell 

membrane (Dubremetz, 2007) plays part in the anchoring process and creation of a tight junction 

between the parasite and the host cell plasma membranes (Blader et al., 2015), called the moving 

junction. The moving junction complex (AMA1-RON2) allows for host cell membrane 

invagination and movement of the parasite into the cell (Dobrowolski and Sibley, 1996; 

Håkansson et al., 2001). When the parasite fully enters the host cell, it is covered by a membrane 

made of a conglomerate of host lipid bilayer and secreted parasite lipids and proteins, resulting in 

a specialized vacuole called the parasitophorous vacuole (PV) (Suss-Toby et al., 1996). Host 

transmembrane proteins and proteins found in lipid rafts are excluded during the formation of the 

PV (Blader et al., 2015). The PV will be the focal point of interaction with the host cell, through 

which the parasite will import nutrients and export secreted proteins to create an environment 

ready for replication (Blader and Koshy, 2014). Soon after invasion, the PV localizes in the 

perinuclear region and associates with several host organelles, including the endoplasmic 

reticulum, Golgi complex, and mitochondria (de Melo et al., 1992; Sinai et al., 1997; Walker et 

al., 2008). The formation of the nascent parasitophorous vacuole membrane (PVM) requires the 

secretion of proteins from the ROPs. ROP18 one of these proteins is associated with the cytosolic 

face of the PVM and exerts protein kinase activity, which has a profound effect on parasite growth 

and virulence (El Hajj et al., 2007), and ROP16 is able to manipulate host gene expression, 

affecting interleukin secretion (Laliberté and Carruthers, 2008). Within the PV, tachyzoites divide 

during a 6 to 9 h cycle, by endodyogeny and they exit the cell usually after 64 to 128 parasites 

have accumulated in the PV (Black and Boothroyd, 2000). The egress of T. gondii tachyzoites 

from the host cell is performed through the rupture of the PV and the host cell plasma membrane, 
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releasing free parasites in the medium an active process that is dependent upon a rise in the 

calcium concentration (Sibley, 2010). This process can be triggered by parasite produced abscisic 

acid or other vacuole acidification and/or by the NTPases segregation. Egress occurs within 

minutes and once outside the infected host cell, the parasites use gliding motility to move and 

invade a new cell (Håkansson et al., 1999; Heintzelman, 2015; Periz et al., 2017) (Figure 1.4). 

 

 

Figure 1.4: Mechanism of cell invasion.  

Image source: Clinical Microbiology Reviews (Robert-Gangneux and Dardé, 2012). 

 
 

1.1.5. The Genome 

T. gondii has a ~65 Mb genome, comprising of 14 chromosomes which range from 

approximately 2 Mb – 7.5 Mb as shown in Figure 1.5 (Khan et al., 2005). The genome is closely 

related to another apicomplexan protozoan parasite, Neospora caninum (N. Caninum), and it is 

thought that around 28 million years ago the two parasites diverged from a common ancestor, due 

to the speciation of the definitive hosts (cats - T. gondii, dogs - N. Caninum) (Reid et al., 2012). 

In comparison to other apiocomplexan parasites, such as Cyptosporidium parvum (C. Parvum) 

and Theileria parva (T. parva), the genome of T. gondii is significantly larger, it contains more 

introns, more predicted genes and has a lower gene density (Delbac et al., 2001). One possible 

reason for the difference in size compared to other apicomplexans can be due to the large number 

of secondary hosts which this parasite is able to establish within (Roos, 2005). In 2005, a 

composite genome map was derived from genetic crosses and linkage analysis of the three main 

archetypal T. gondii lineages (I, II, III) (Khan et al., 2005). The genetic linkage map that was 

generated identified 250 species specific markers, of which 12 are most commonly used for strain 



 Chapter I 
General Introduction 

 

 

11 

genotyping by PCR-RFLP. The Figure 1.5 details each of these individual markers and also 

highlights markers which are strain specific and those which are present on all three archetypal 

strains. A fourth clonal lineage, designated haplotype 12, is largely confined to North America 

and more common in wild animals (Khan et al., 2011) was designated. Su and colleagues 

classified T. gondii strains into 15 different haplotypes, defining six major clades (Su et al., 2012). 

However, Minot and colleagues disagree with this theory (Minot et al., 2012). The online genome 

database ToxoDB (http://toxodb.org/toxo/) provides further detailed information about the 

genome and the functional genomics of T. gondii. It also provides genome sequence information 

(including the facility to BLAST sequences), gene expression and proteomics data (Gajria et al., 

2008), which helps support research on the parasite. The most recent study published in 2016 

compared four tissue-cyst forming coccidian parasites and showed that three of these organisms 

N. caninum , Hammondia hammondi and T. gondii have a similar total genome size of 62–65 Mb 

while the Sarcocystis neurona genome is larger due to expanded repeats and much larger introns. 

All four genomes have identical GC compositions and are predicted to encode from 7,000 to more 

than 8,000 genes located on 14 chromosomes, as with T. gondii. This work reveals that tandem 

amplification and diversification of secretory pathogenesis determinants is the primary 

characteristic that distinguishes the closely related genomes of these parasites and also disclosed 

that the unusual population structure of this parasite is characterized by clade-specific inheritance 

of large conserved haploblocks that are significantly enriched in tandemly clustered secretory 

pathogenesis determinants. The shared heritage of these conserved haploblocks, which show a 

different ancestry than the genome as a whole, may thus influence transmission, host range and 

pathogenicity (Lorenzi et al., 2016). 
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Figure 1.5 Genetic linkage maps for the 14 chromosomes of Toxoplasma gondii. Individual markers are 

shown to the right of the vertical bar and chromosome numbers are given above each map. Markers that 

map to the same node are indicated to the right of a solid vertical bar. The corresponding genetic distances 

between each node are given to the left of each map and the total sizes in cM are shown at the bottom of 

each chromosome. Polymorphisms that are unique to type I are shown in red, those unique to type II are 

shown in green, those unique to type III are shown in blue and markers that contain multiple polymorphism 

are shown in yellow. Maps were constructed using MAPMAKER from the analysis of 71 recombinant 

progeny using 250 genetic markers. Markers that include data analyzed by Southern blot a re followed by 

the suffix ‘.c’. 

Image source: Nucleic Acids Research, https://doi.org/10.1093/nar/gki604 (Khan et al., 2005). 

 

 

1.1.6. Genetic variation and disease severity 

T. gondii has not only the capacity to propagate asexually but also sexually in its feline 

definitive host. Therefore, sexual recombination should provide for a high genetic diversity  

between T. gondii strains worldwide. However, the population structure of this parasite was 

initially described as being highly clonal and showing a low genetic diversity. Genotyping studies 

of T. gondii started in the 1990s and were based on a single marker, predominantly Sag2 (Howe 

et al., 1997; Fuentes et al., 2001; Sabaj et al., 2010) and GRA6 (Fazaeli et al., 2000; Messaritakis 

et al., 2008), but these methodologies didn’t allow the identification of non-clonal strains. Thus 

these methodologies were optimized in order to determine more precisely the presence of 

polymorphisms in the population and with the addition of new PCR-RFLP markers (Su et al., 

2006) and by microsatellite analysis (Ajzenberg et al., 2005, 2010), this was achieved. Genetic 

https://doi.org/10.1093/nar/gki604
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studies of isolates from Europe and the United States suggested the presence of a clonal 

population structure stable in time and space (Darde et al., 1988; Sibley and Boothroyd, 1992; 

Howe and Sibley, 1995; Ajzenberg et al., 2002a; Khan et al., 2007) where the majority of isolates 

(> 94 %) are grouped into three main clonal multilocus genotypes I, II and III. This simple clonal 

structure is accompanied by a low level of genetic divergence among the three lineages (only 1 

to 2 % divergence at the DNA sequence level between lineages). However, multilocus and 

multichromosome genotyping of isolates from other continents revealed a much more complex 

population structure with a greater genetic diversity, likely reflecting a history of more frequent 

genetic exchanges and genetic drift (Lehmann et al., 2004; Ajzenberg et al., 2004) (Table 1.1). 

The majority of isolates from South America, Africa and Asia are not included in the three major 

lineages (with the exception of type III, which is really cosmopolitan). These deferent genotypes 

lead to the description of new haplogroups, some of them largely distributed over continents, 

being considered other successful clonal lineages (Khan et al., 2007). So far, 12 haplogroups 

(including the 3 initially described lineages, types I, II, and III) have been described (Khan et al., 

2007, 2011), based on sequence-based analyses, but these haplogroups are not totally 

homogenous, and more specific markers revealed subclustering that may be associated with 

geographical origins and phenotypic characteristics. Based on the classical genotyping, from 

Northern (Jokelainen et al., 2011) to Southern Europe (De Sousa et al., 2006), the population 

structure of T. gondii shows a clonal profile, with a predominance of the type II lineage strains. 

The other two clonal lineages are sporadically found in Europe. While the three clonal lineages 

predominate in North America and Europe, strains from other regions in the world appear to have 

genotypes that are more diverse. By analyzing isolates from South America, Asia and Africa by 

using PCR-RFLP or microsatellite markers, it was revealed that the majority of these isolates 

have the classical type I, II, and III alleles identical to those in the main three lineages, but some 

novel alleles were also detected. These ‘new’ genotypes were designated as atypical, exotic, 

recombinant or non-archetypal genotypes (Grigg et al., 2001a; Ajzenberg et al., 2004). The 

recombinant genotypes have mixtures of classical alleles, while atypical, unusual, non-

archetypical or exotic strains are characterized by the existence of many unique polymorphisms 

and novel alleles (Grigg et al., 2001a; Su et al., 2003; Ajzenberg et al., 2004). Phylogenetic 

analysis, based on microsatellites, suggests that these atypical genotypes are phylogenetically 

disseminated with no clear structure, or association with the main three lineages. Although there 

is clear divergence among these strains, essentially due to the mixture of alleles, the overall level 

of sequence polymorphism provided by single nucleotide polymorphisms is modest. (Grigg et al., 

2001a; Su et al., 2003; Ajzenberg et al., 2004). The isolation of atypical strains, which do not fit 

into these three major lineages, is rare in Europe and likely suggests contamination by non-

European strains either during residence abroad or after the consumption of imported food 
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(Ajzenberg et al., 2009). In North America, the population structure appeared similar to that 

observed in Europe, with a predominance of type II strains (Howe and Sibley, 1995). South 

America is an area with a high level of diversity for T. gondii and type II seems to be very rare 

(Dubey et al., 2007a). The high level of genetic diversity observed in this continent is maximal 

in the wild Amazonian area, with many unique polymorphisms (Ajzenberg et al., 2004). It is 

believed that, in the Amazonia area, the interpenetration of anthropized and wild rainforest 

environments leads to hybridization between strains that may represent a potential risk for human 

health. In Asia, it has been shown that strains have more limited genetic diversity compared to 

South America (Dubey et al., 2007b). Isolates from Cameroon that were analyzed via 

microsatellites revealed the existence of fixed combination of type I and III alleles, suggesting a 

unique clonal African type (Ajzenberg et al., 2004).  

Epidemiological studies have shown that type I strains are rare in human and animal 

infections, however has been linked to reactivation of the parasite in immunocompromised 

individuals (Khan et al., 2005) and type II strains are considered to be the most common source 

of human toxoplasmosis (Howe and Sibley, 1995). In North America and Europe, most cases of 

human toxoplasmosis in AIDS and congenital infections are associated with type II strains (Howe 

and Sibley, 1995; Howe et al., 1997; Ajzenberg et al., 2002a). However, a study in Spain reported 

dominance of type II strains in AIDS patients, while type I strains were associated with congenital 

infections (Fuentes et al., 2001). Another study from the USA revealed the relationship between 

severe ocular toxoplasmosis in immnunocompetent patients and type I strains and new 

recombinant genotypes (Grigg et al., 2001a). The severity of T. gondii acute infection is 

considered to be one of the most significant phenotypes among T. gondii strains. Very little is 

known concerning circulating strains in Portugal, a small scale study was  performed in France 

with Portuguese sera that reported a majority of type II humans strains (Sousa et al., 2008; 

Ajzenberg et al., 2009) and  other European study that enrolled only two Portuguese isolates 

(Ajzenberg et al., 2009) revelled that were both type II. 

The technological development accompanied with the cost reduction of the Whole Genome 

Sequence (WGS) methodology will allow in mid-term the sequencing of multiple complete 

genomes of T. gondii, allowing understanding of the real degree of genetic variability of this 

protozoan, frequency of recombination and potential genotype - phenotype associations. 
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Table 1.1 Geographical distribution of Toxoplasma gondii genotypes and potential relationships with  

human disease. 

Table Source: Adapted from Clinical Microbiology Reviews (Robert-Gangneux and Dardé, 2012). 

 

Geographical 

area 
Genotypes Clinical features of human Toxoplasmosis  

Europe 

 

Type II (haplogroup 2), highly 

predominant; 

Type III, more in South; 

Other genotypes sporadically observed 

Asymptomatic or benign disease in 

immunocompetent individuals associated 

with type II or III; 

retinochoroiditis in immunocompetent 

patients 

North 

America 

Type II (haplogroup 2); Haplogroup 12; 

Type III (haplogroup 3); 

Other genotypes 

Asymptomatic or benign disease in 

immunocompetent individuals associated 

with type II or III 

South and 

Central 

America 

Africa (haplogroup 6); 

Type II occasionally; 

Type I rarely; 

Highly atypical genotypes in the 

Amazonian forest 

Higher rate and severity of retinochoroiditis 

in immunocompetent patients and in those 

with congenital toxoplasmosis; 

disseminated, potentially lethal, cases 

observed with the most atypical genotypes  

Africa 

African 1, 2, 3 (haplogroup 6); 

Type III (haplogroup 3); 

Type II 

Higher rate of retinochoroiditis  than in 

Europe 

Asia Type III (haplogroup 3); No data 

 

 

1.1.7. Assessment of strain virulence 

Experimental virulence is usually defined with the mouse model after the intraperitoneal 

inoculation with a given number of tachyzoites. Type I strains are highly virulent, have a lethal 

dose (LD100) (the minimal dose which causes 100 % mortality) of a single infectious organism, 

leading to the death of mice less than 10 days after the inoculation of about 10 tachyzoites. On 

the other hand, mouse non virulent strains, normally from type II and III, have a lethal dose of  

> 10 infectious organisms and usually generate chronic infection in the mouse (Sibley et al., 

2002). Isolates from other clonal lineages or from atypical strains range from the highly virulent 

to the intermediate or non-virulent phenotype, according to differences in the combination of 

genes that they have inherited. Genotypes with a majority of type I alleles are usually more 

virulent (Saeij et al., 2005a) The mouse-virulent strains exhibit some characteristics that may 

explain the rapid dissemination of the parasite and the higher tissue burden observed in mice and 

other susceptible hosts: improved migration across polarized epithelia or across the extracellular 

matrix, higher rates of the ex vivo penetration of the lamina propria of mucosa and submucosa 

(Barragan and Sibley, 2002), and in cell culture, higher growth rates and lower rates of 

interconversion from tachyzoites to bradyzoites. Experimental crosses between strains with 

different virulence patterns facilitated the identification of several polymorphic genes coding for 
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secreted factors of T. gondii associated with differences in the expression of virulence in mice 

(Taylor et al., 2006; Reese et al., 2011). These key virulence factors are secretory proteins 

discharged from apical organelles, the rhoptries. The proteins of this rhoptry family (ROP5, 

ROP16, and ROP18) exert kinase or pseudokinase activity. They are injected directly into the 

host cell and play a role during the process of parasite invasion or in the induction of interleukin-

12 (IL-12) secretion by mouse macrophages (Robben et al., 2004). 

T. gondii is considered to be a successful organism because it has the ability to cross 

biological barriers such as blood-brain barrier, placenta, or gut epithelium (Saeij et al., 2005a). 

However, the expression of virulence in humans is a complex phenomenon due to many other 

factors that may influence the pathogenicity of a given strain, namely: parasitic factors such as 

the infectious stage, the inoculums and the genetic background of the strain and immune status of 

the host. (Robert-Gangneux and Dardé, 2012). 

 

1.2. Toxoplasmosis, the human disease 

1.2.1. Pathophysiology 

Toxoplasmosis is the infectious disease caused by T. gondii. The pathophysiology of this 

infection results from the dissemination of tachyzoites throughout the body. Tachyzoites speedily 

invade monocytes and gain access to the blood flow (after trans-epithelial passage across the 

intestinal barrier) and from there to all organs (Robert-Gangneux and Dardé, 2012). In acute 

toxoplasmosis, a host may die due to necrosis (caused by intracellular growth of tachyzoites) of 

the intestine and mesenteric lymph nodes before severe damage of other organs. Focal areas of 

necrosis may develop in many organs; the clinical picture is determined by the extent of injury to 

these organs, especially vital organs such as the eyes, heart, and adrenals (Dubey, 2010). If the 

host survives, the invasive stages (tachyzoites) convert into a latent form (bradyzoites) within 

cells and persist as cysts, generally in muscles, retina, and brain, for a lifetime following the onset 

of an efficient immune response. The immunity is predominantly cell mediated and activated 

macrophages and T cells play a central role, while interferon gama (y) and other cytokines induce 

an effective immune response. The specific antibody in the presence of complement eliminates 

extracellular parasites (Holliman et al., 2003). 

 

1.2.2. Transmission 

Human infection is acquired by ingestion of tissue cysts in raw, poorly cooked or cured 

meat, notably lamb and pork. Consumption of meat from warm blooded animals is considered the 

major source of infection in Western countries (Cook et al., 2000). The transmission can occur 
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also by or ingestion of sporulated oocysts derived from contaminating soil, water or inadequately 

washed vegetables / fruit or directly from cat faeces. Once sporulated, oocysts are resistant to 

adverse environmental conditions, it can remain viable in a moist environment for more than a 

year, in very low (icy) or high water temperatures for long periods of time and can resist to 

chemical and physical treatments currently applied in water treatment plants, including 

chlorination and ozone treatment (Dumètre et al., 2008). When primary infection is acquired by 

a pregnant woman, tachyzoites can colonize placental tissues during the dissemination process 

and access the foetus. The risk of transmission and the severity of disease depend on the 

gestational stage at which the mother first becomes infected. Congenital infection is the most 

important part of the disease burden due to T. gondii infection in humans.  

Rarely, infection can be acquired via an organ transplant, as cysts can be found potentially 

in any organ T. gondii infection can be transmitted through a cyst-containing organ from a donor 

with infection acquired in the past to a nonimmunized recipient (Robert-Gangneux and Dardé, 

2012). One the other hand toxoplasmosis associated with bone marrow transplant is a rare event 

and is usually due to reactivation of the recipients previously quiescent chronic infection.  

(Holliman et al., 2003). As well as the transmission by blood transfusion because the duration of 

parasitemia following acute infection is limited. The eye can be reached by T. gondii via the 

bloodstream in the form of free tachyzoites or as tachyzoites that exist in circulating leukocytes 

(Roberts and McLeod, 1999). These establish in the retina and form cysts. Pathology occurs due 

to the release of tachyzoites as a consequence of the rupture of tissue cysts which result in invasion 

and inflammation of the retina. Another rarely event and not significant from an epidemiological 

point of view is the transmission by the consumption of unpasteurized goat’s milk (Tenter, 2000).  

 

1.2.3. Clinical Features 

1.2.3.1. The immonocompetent patient 

Primary infection of T. gondii is asymptomatic and passes unnoticed in the majority of 

immunocompetent patients. (Holliman et al., 2003) Nevertheless in some cases the symptomatic 

infection can occur being the most common presentation fever, muscle weakness and painless 

cervical or occipital lymphadenopathy in the form of lymph node enlargement without tenderness 

or suppuration for about 4 - 6 weeks or even months in some cases (Ho-Yen, 2009). Infected 

humans remain infected for their whole lives and cysts persist a life-long threat to the individua l.  

Parasite reactivation can occur as a result of immunosuppressive factors such as AIDS, or 

medication for inflammatory disease or transplantations (Porter and Sande, 1992). 
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1.2.3.2. The immunosuppressed patient 

When for any reason an immunosuppression happens, the opportunistic reactivation of a 

latent T. gondii infection can occur. AIDS patients and transplant recipients constitute examples 

of this. Toxoplasmosis is the most common cause of focal brain lesions and one of the most 

frequent opportunistic infections in AIDS patients leading to a fatal outcome and representing a 

life-threatening disease. Central Nervous System (CNS) lesions are caused by tissue destruction 

as a result of tachyzoite proliferation yielding immunopathologic effects caused by inflammatory 

response (Denkers and Gazzinelli, 1998). It has been shown that the existence of encysted 

bradyzoites in the CNS is associated with high incidence of toxoplasmic encephalitis in these 

individuals (Denkers and Gazzinelli, 1998). In the beginning of HIV emergence, prior to the 

development of anti-viral therapy, it was found that toxoplasmic encephalitis developed in about 

10-50 % of AIDS patients with chronic T. gondii infection (McCabe and Remington, 1988). In 

addition, the parasite can reactivate in the eye causing retinochoroiditis, or in the lung causing 

pneumonitis and acute respiratory failure (Luft and Remington, 1992; Ho-Yen, 2009).  

Toxoplasmosis represents a life threading complication to organ graft recipients being the 

most common transplanted organs, the heart, lung, liver and kidney. The infected recipients 

develop fever, deterioration of consciousness and signs of respiratory failure usually 3-5 weeks 

after the surgery. 

 

1.2.3.3. Ocular disease 

Ocular toxoplasmosis is one of the most common sequelae of chronic toxoplasmosis and 

presents in the form of retinochoroiditis with the presence of typical lesions, which are white focal 

lesions often associated with a vitreous inflammatory reaction. It can occur in congenitally or 

post-natal acquired infection resulting from acute infection or reactivation of dormant infection. 

However, ocular toxoplasmosis is more commonly associated with congenital infection (Brézin 

et al., 1994). Reactivation of infection and retinal disease in individuals with acquired, rather than 

non-congenital, toxoplasmosis is associated in some cases with reduction of immunity (Nicholson 

and Wolchok, 1976; Holland et al., 1988). In addition, it has been suggested that ocular 

toxoplasmosis can occur through transmission from the brain to the eye through the optic nerve 

(Mets et al., 1996). Furthermore, the development of tissue cysts that contain bradyzoites inside 

the eye can be involved in the reactivation of toxoplasmosis and is considered to be a significant 

feature in toxoplasmic retinochoroiditis pathogenesis which causes acute inflammation and can 

result in retinal scars that might cause blurred vision or blindness (Roberts and McLeod, 1999). 

Ocular infection can be manifested as pain, tearing, photophobia and finally loss of vision 

(Montoya and Remington, 1996; Holland, 2003, 2004; Ho-Yen, 2009). 
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1.2.3.4. Congenital toxoplasmosis 

T. gondii infection can be transmitted congenitally if the mother acquires the infection 

during pregnancy, as parasites cross the placenta and infect the foetus. The risk of infection being 

passed to the foetus increases as gestation progresses, however, inversely, the severity of disease 

decreases with an increase in gestation period (Dunn et al., 1999; Cook et al., 2000). Without 

treatment of the mother during pregnancy, the incidence of acquired foetal infection during the 

first trimester is 10 % - 15 %, in the second trimester is 30 % and in the third is 60 % (Wong and 

Remington, 1994). If the mother receives treatment with spiramycin, these incidences decrease to 

4.5 %, 17.3 % and 28.9 %, respectively (Wong and Remington, 1994). Congenital infection can 

occasionally result from reactivation of infection in immunosuppressed women if acquired before 

pregnancy (Wong and Remington, 1994). The variety of manifestations of congenital infection 

that occur in the foetus and in infants include spontaneous abortion, still-birth, a live infant with 

classic signs of congenital toxoplasmosis such as hydrocephalus or microcephalus, cerebral 

calcifications, mental retardation, seizures and retinochoroiditis (Hill and Dubey, 2002). The 

majority of cases are asymptomatic at birth, but most will develop neurological or ocular 

manifestations later in their lives. (Figure 1.6)  

 

  

Figure 1.6: Clinical signs A) cerebral calcifications, B) Retina lesions due to ocular toxoplasmosis ,C) 

Newborn with hydrocephalus. 

Image source http://wiki.ggc.edu/wiki/toxoplasma_gondii 
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1.2.4. The Diagnosis 

In most instances the non specific nature of the signs and symptoms of toxoplasmosis do 

not permit reliable diagnosis based only on the clinical findings. Its detection depends mainly on 

biological, serological, or histological methods or on the combination of some of these methods 

(Hill et al., 2005). However due to the diversity of T. gondii infection, investigations must be 

selected which are appropriated to that patient group. (Holliman et al., 2003) 

 

1.2.4.1. The immonocompetent patient 

The diagnosis of T. gondii infection in immunocompetent subjects relies on serology. As 

the infection is often asymptomatic, serologic diagnosis is usually retrospective and is used to 

determine the immune status. Available serologic procedures for the detection of T. gondii 

humoral antibodies include; the Sabin-Feldman dye test (DT), the modified agglutination test 

(MAT), the indirect hemagglutination test (IHAT) the indirect fluorescent antibody assay (IFA), 

the direct agglutination test (DAT), the latex agglutination test (LAT), the enzyme-linked 

immunosorbent assay (ELISA), and the immunosorbent agglutination assay test (IAAT). The 

IFA, IAAT, and ELISA tests have been modified to detect IgM antibodies (Remington et al., 

1995). Immunosorbent agglutination assays (ISAGAs) are also suitable for IgM, IgA, or IgE 

detection. The methylene blue dye test for the detection of antibodies, introduced in 1948 by Sabin 

and Feldman, is maintained as a gold standard for serology tests by reference laboratories, but is 

labor-intensive and requires a continual supply of live organisms. 

Immunoglobulin A and IgM  are produced during the first week following infection and 

reach a plateau within one month, these antibodies appear sooner than the IgG antibodies and 

disappear faster than IgG antibodies after recovery (Remington et al., 1995). Specfic IgE 

antibodies are also produced early and rapidly disappear. Specific IgM antibodies typically 

decrease after one to six months and disappear in 25 % of patients within less than seven months 

but commonly remain detectable for a year or longer with the most sensitive methodologies such 

as the ISAGA. Concerning that IgG antibodies are synthesized 1 to 3 weeks after the initial rise 

in IgM levels, IgG synthesis reaches a plateau within 2 or 3 months, then decreases and then 

persists lifelong as residual titers. Since IgG can persist for the life time, IgM, which typically 

persists for 1 - 6 months, is used as a marker of recent infection, (Wilson and McAuley, 1999).   
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1.2.4.2. The immunosuppressed patient  

Diagnosis of organ donor or transplant recipient and HIV patient  

Since acute toxoplasmosis in immunocompromised patients can be rapidly lethal, its 

diagnosis is an emergency. Whether serology is essential to estimate whether the patient is at risk 

for a reactivation of infection, evidence of evolutive infection is provided by the demonstration 

of tachyzoites in fluids or tissues by PCR or microscopic examination. In spite of be a highly 

sensitive method, in this case mice inoculation is not the first line of diagnosis because the time 

consuming. Several samples can be collected according to clinical signs and the type of 

immunosuppression. In transplant patients, where disseminated toxoplasmosis is frequent, 

parasites can be detected in bronchoalveolar lavage fluid (BAL), blood, bone marrow aspirate, 

cerebrospinal fluid (CSF), or virtually any biopsy specimen from a deep site. In HIV patients the 

most frequent presentation of this infection is the cerebral toxoplasmosis and the most effective 

approach is to perform PCR in CSF and blood. 

 

1.2.4.3. Ocular disease 

The diagnosis of retinochoroiditis is based on an ophthalmological examination together 

with PCR detection of T. gondii DNA in aqueous humor or vitreous fluid.  

 

1.2.4.4. Congenital Toxoplasmosis 

Prenatal diagnosis and follow-up of pregnancy  

Maternal infection during pregnancy is confirmed by serological methods and performed a 

puncture of amniotic fluid (AM) after 16 / 18 weeks of gestation and at least 4 weeks after 

maternal infection. Prenatal diagnosis relies mostly on the PCR based detection of parasite, DNA 

targets include the 110 copies ITS1 region of T. gondii (Tenter et al., 1994; Hurtado et al., 2001), 

the 35 copies B1 region (Burg et al., 1989) and the 300 copies 529 bp repeat element (Homan et 

al., 2000) but in most reference laboratories, amniotic fluid is also inoculated in mice. This in 

vivo assay relies on the animal inoculation with the AM and then the detection of an antibody 

response in the animals by the examination of mice serum samples by direct agglutination on 10 

days, 3 weeks and 6 weeks after inoculation. Finally, microscopic identification of the parasite 

tissue cysts in the mouse brain is performed in order to confirm the presence of brain cyst i.e. a 

positive result. 
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Postnatal diagnosis and follow-up of newborns  

At birth, the neonate undergoes a complete clinical and neurological health check. In order 

to detect cerebral calcifications a transfontanellar ultrasound examination is performed followed 

by a computed tomography in the case of observed abnormalities. During the first week of life an 

examination of the ocular fundus is performed and is repeated every 3 or 4 months. Follow- up 

of newborns is essential and is based on (i) parasite detection in placenta or newborn blood and 

(ii) serologic analysis of newborn serum to chek the presence of specific antibodies which would 

be evidence of a congenital infection. Serologic diagnosis commonly relies on the detection of 

specific antibody produced by the newborn. The detection of specific IgM or IgA antibodies, 

which cannot cross the placental barrier (to the exception of low molecular weight IgM) is a key 

marker of fetal infection. As maternal IgG is passively transferred in utero, this single assay can’t 

be a way to diagnosis of fetal infection. Consequently, a qualitative analysis is needed to 

differentiate between maternal antibodies and antibodies synthesized by the infected newborn, a 

comparative analysis of mother- and neonate-specific IgG/ low molecular weight IgM may help 

provide serologic evidence of fetal infection. This is allowed by the Immumoblot (IB) that 

perform a qualitative analysis of specific IgG or IgM by a comparison of band patterns, 

respectively, from paired mother-newborn sera in the first 2 or 3 months after birth. The 

parasitological examination of placenta and newborn blood at birth, is performed as in prenatal 

diagnosis, using mice inoculation, once more this in vivo assay relies on the animal inoculation 

with the placenta/ newborn blood and then the detection of an antibody response in the animals 

by the examination of mice serum samples by direct agglutination on 10 days, 3 weeks and 6 

weeks after inoculation. The detection of parasites in the placenta and/or newborn blood is the 

only evidence of congenital toxoplasmosis at birth (Robert-Gangneux et al., 2010).  

 

1.2.5. Prevention and Treatment 

Women during pregnancy or seronegative after conception and immunosupressed 

individuals should be given guidance to reduce the risk of acquiring toxoplasmosis. Fruit and 

vegetables should be washed properly, meats should be well cooked and hand wash after 

preparing raw meet should be emphasized. Gloves should be used when gardening or managing 

cat litters or cats directly. 

Treatment drugs for toxoplasmosis target the tachyzoite stage of the parasite and do not 

eradicate encysted parasites in the tissues. Pyrimethamine, considered the most effective drug 

against toxoplasmosis, is a folic acid antagonist and can cause suppression of the bone marrow, 

thus is administered with another folinic acid leucovorin that protects the bone marrow from the 

toxic effects of pyrimethamine. A second drug, such as sulfadiazine or clindamycin, should also 

be included.  



 Chapter I 
General Introduction 

 

 

23 

 

1.2.5.1. The immonocompetent patient 

The treatment is rarely indicated in adults with lymphadenopathic toxoplasmosis because 

this form of the disease is usually self-limited. If visceral disease is clinically evident or symptoms 

are severe or persistent, treatment may be indicated for 2 to 4 weeks (CDC). 

 

1.2.5.2. The immunosuppressed Patient 

Toxoplasmosis in immunodeficient patients is often fatal if not treated. Treatment is 

recommended for at least 4 to 6 weeks beyond resolution of all clinical signs and symptoms, but 

may be required for 6 months or longer. Relapses are known to occur in AIDS patients and 

maintenance therapy is recommended until a significant immunologic improvement is achieved 

in response to antiretroviral therapy. Pyrimethamine, folinic acid (leucovorin), and sulfadiazine 

are standards of therapy for immunodeficient patients (CDC). 

 

1.2.5.3. Ocular disease 

The treatment is dependent of acuteness of the lesion, degree of inflammation, visual acuity 

and size, location and persistence of the lesion. The classic therapy for ocular toxoplasmosis 

consists of pyrimethamine, sulfadiazine and folinic acid. (CDC) 

 

1.2.5.4. Congenital toxoplasmosis  

In general, spiramycin is recommended for women whose infections were acquired and 

diagnosed before 18 weeks gestation and infection of the fetus is not documented. Spiramycin 

acts to reduce transmission to the fetus and is most effective if initiated within 8 weeks of 

seroconversion. Pyrimethamine, sulfadiazine and folic acid are recommended for infections 

acquired after 18 weeks of gestation and infection in the fetus is a reality. Congenitally infected 

newborns are generally treated with pyrimethamine, a sulfonamide and folic acid for 12 months 

(CDC). 

 

1.2.6. Epidemiology and Burden of disease 

The prevalence of specific antibodies to T. gondii is directly proportional to the age of the 

individual and or a population, indicating that infection is acquired throughout life. The incidence 

of infection shows marked geographical variations and these differences are associated with diet, 

level of hygiene, host susceptibility, cat contact and climate (humidity of the soil). Consequently, 

toxoplasmosis is most common in warm, wet, with a large cat population areas and where meat 

is eaten light cooked or raw. Moist conditions can increase oocyst survival during long periods of 
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heat, which likely accounts for the high prevalence in tropical countries of South America and 

Africa. According to a review study (Pappas et al., 2009) the global status of T. gondii 

seroprevalence in women of reproductive age or pregnant ranged from above 60 % in countries 

such as Brazil, Gabon, Indonesia, Germany, and Iran, to less than 10 % in United Kingdom and 

Korea. Another recent review study which encompassed 88 countries (Flegr et al., 2014) showed 

that the lowest seroprevalence (1 %) was found in some countries in the Far East and the highest 

(90 %) in some parts of European and South American countries. In European countries, the 

prevalence ranges between 10 % to 60 % and in some regions as high as 90 %. Ingestion of raw, 

undercooked or cured meat is the primary risk factor in Europe (Holliman et al., 2003). 

Concerning the United States, the Center for Disease Control and Prevention (CDC) reported an 

overall seroprevalence of 11 %. In many developed countries, T. gondii seroprevalence declined 

sharply over the past three decades. (Cook et al., 2000; Gargaté et al., 2016) which may be 

associated with the practice of freezing meet, introduction of intensive farming techniques 

separating cats from livestock, and prevention strategies that includes elucidation of pregnant 

women and  immunocompromised individuals about the sources of infection. According to the 

last European Centre for Desease Prevention and Control (ECDC) Annual Epidemiological 

Report for 2016 of congenital toxoplasmosis data (ECDC, 2017), 242 confirmed cases of 

congenital toxoplasmosis were reported in the EU/EEA, with France accounting for 81% of all 

confirmed cases due to the active screening of pregnant women. The notification rate was 6.7 

cases per 100 000 live births, with the highest rates in France (24.9) followed by Poland (5.2). In 

2016, gender was reported for 98 % of the congenital toxoplasmosis cases, with a male-to-female 

ratio of 1.1:1. Of 203 cases with known outcome, five were reported to have died, giving a case 

fatality of 2.5 %. No seasonal pattern was observed for this infection disease. 

Symptoms of toxoplasmosis can be lifelong, namely, children whose born with congenital 

toxoplasmosis or individuals with ocular toxoplasmosis (whether acquired postnatally or 

congenitally) which, at its most severe, can cause blindness. A small number of studies within 

Greece, Netherlands and the USA have studied the disease burden of foodborne pathogens, 

comparing organisms such as Campylobacter spp (Campylobacter), Salmonella enteric 

(Salmonella), Listeria monocytogenes (Listeria), Cryptosporidium parvum (C. parvum), 

Escherichia coli O157:H7 with T. gondii (Gkogka et al., 2011; Hoffmann et al., 2012; Havelaar 

et al., 2012; Batz et al., 2012). This research has taken into account the annual cost or disability 

of illness linking it to either quality-adjusted life-years (QALYs) or disability-adjusted life- years 

(DALYs). These findings showed that T. gondii ranked third, after Salmonella and 

Campylobacter, based on QALYs in the USA, and from representative data taken in 2009 from 

Netherlands, T. gondii ranked highest among 14 other foodborne pathogens when DALY’s were 

used to classify these pathogens. Other results from another study (Flegr et al., 2014) suggest that 
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the prevalence of toxoplasmosis in 88 countries is correlated with various disease burden 

measured with age standardized Disability Adjusted Life Years (DALY) or with age standardized 

mortality being the highest among all foodborne pathogens. According to a WHO study the global 

annual incidence of congenital toxoplasmosis was estimated to be 190 100 cases, this was 

equivalent to a burden of 1.20 million DALYs and high burdens were seen in South America and 

in some Middle Eastern and low-income countries (Torgerson and Mastroiacovo, 2013). The high 

disease burden reported in these publications highlights the lifelong effects that T. gondii can have 

on infected individuals. 

 

1.3. Sate of the Art before this work 

In Portugal, the last epidemiological data concerning T. gondi seroprevalence reported to 

1979, on behalf of the 1st National Serological Survey, and showed a global prevalence of 47 %, 

where the highest rates were obtained in the north and central Portuguese regions, and was higher 

in individuals above 15 years old (Ângelo, 1983). The small-scale serological studies conducted 

in the last years enrolled solely pregnant women and showed prevalence rates of approximately 

30 %. The deficit of the current epidemiological situation of toxoplasmosis in Portugal was 

recognized by the Directorate General of Health, which stated in Guideline Nº 37/2011 of 

30/09/2011 DGS that screening of toxoplasmosis should be performed in surveillance low risk 

pregnancies and that there was few data of the immune status of women in Portugal for 

toxoplasmosis. Thus, we believe that the evaluation of seroprevalence of this infection in 

Portuguese population is of great importance in public health because it allows us to infer the risk 

of infection, namely of pregnant women and of women in childbearing age, allowing health 

authorities to perform an effective prevention for this life threat infection.  

Genetic studies integrating intermediary and definitive hosts were lacking in Portugal, in 

spite of the three genotypes have already been described in animals, revealing a majority of type 

II strains (De Sousa et al., 2006; Dubey et al., 2006, 2007a). In humans there were only two 

evaluations regarding the genetic variability of T. gondii strains in Portugal (Sousa et al., 2008; 

Ajzenberg et al., 2009) which were limited and only one used the classical typing method, which 

hampers the comparison of the molecular epidemiology data with the scenarios from other 

countries. Thus, the understanding of the molecular epidemiology of T. gondii circulating strains 

in Portugal would certainly be useful to highlight the transmission routes and preview clinical 

presentation of the infection. 

According to the World Health Organization and Health Protection Agency guidelines, the 

gold standard methodology for the laboratory diagnosis of congenital toxoplasmosis is 

inoculation in mice of the diverse biological products. This methodology is also used for 
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maintaining/propagating the isolated strains in reference laboratories. However, this technique 

presents several disadvantages for the latter purpose. Indeed, it requires the sacrifice of many 

animals, which is badly seen in the light of animal welfare and is highly laborious and time 

consuming. In this way, it would be important to reduce the number of mice sacrificed in the in 

vivo model. 

 

1.4. Aims of this thesis 

According to this, the general goal of this PhD thesis is to contribute for the knowledge of 

toxoplasmosis in Portugal, by means of three specific objectives, each one constituting one 

distinct chapter of this thesis: 

i) to evaluate the prevalence and evolution of antibodies anti T. gondii in the Portuguese 

population by comparing three cross - sectional studies spanning three decades, 1979/80, 20/2003 

and 2013 (Chapter II); 

ii) to perform a genetic and virulence characterization of T. gondii strains isolated from the 

several biological samples from the population with suspected toxoplasmosis that attended to the 

NIH to perform the laboratorial diagnosis of T. gondii. And also to describe the demographic 

characteristics of the referred patients and estimated the rate of new cases in the last 10 years 

(Chapter III); 

iii) to evaluate the use of an in vitro system based on a cell-line for strain propagation, in 

order to replace, or at least reduce, the use of the demanding animal model and to assess the 

potential genotypic alterations throughout cell line propagation by New Generation Sequencing 

(Chapter IV). 

We believe the achievement of these objectives will contribute to enhance the knowledge 

of toxoplasmosis in Portugal, which will be ultimately beneficial for the control of T. gondii 

infections and its potentially tragic outcome for the newborns and immunosupressed patients.
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2. Toxoplasma gondii seroprevalence in the Portuguese population: 

comparison of three cross-sectional studies spanning three decades 

2.1. Abstract 

Toxoplasma gondii is an obligate intracellular protozoan infecting up to one-third of the 

world's population, constituting a life threat if transmitted from mother to child during pregnancy. 

In Portugal, there is a lack of knowledge of the current epidemiological situation, as the unique 

toxoplasmosis National Serological Survey was performed in 1979/1980. Methods: We studied 

the seroprevalence trends in the Portuguese general population over the past 3 decades, by 

assessing chronological spread cross-sectional studies, with special focus on women of 

childbearing age, by age group, region and gender. Results: The T. gondii overall seroprevalence 

decreased from 47 % in 1979/1980 to 22 % (95 % CI 20 % to 24 %) in 2013. Generally, we 

observed that the prevalence of T. gondii IgG increased significantly with age and it decreased 

over time, both in the general population and in the childbearing women (18 % prevalence in 

2013). Conclusions: The scenario observed for the latter indicates that more than 80 % of 

childbearing women are susceptible to primary infection yielding a risk of congenital 

toxoplasmosis and respective sequelae. Since there is no vaccine to prevent human toxoplasmosis, 

the improvement of primary prevention constitutes a major tool to avoid infection in such 

susceptible groups. 

 

Keywords 
 
Toxoplasma gondii; epidemiology; pregnancy; congenital toxoplasmosis; laboratory surveillance. 

 

2.2. Introduction 

Toxoplasma gondii is an obligate intracellular protozoan parasite belonging to phylum 

apicomplexa, which infects most mammals worldwide. It undergoes a sexual cycle in the 

intestinal epithelium of the definitive host, members of the cat family, therein  transforms into to 

oocysts which are subsequently shed in the environment, and an asexual cycle in an intermediate 

hosts, such as birds, rodents and other mammals including human beings. (Holliman et al., 2003) 

Oocysts are extremely stable in the environment, and are transmitted to other hosts through 

inadvertent ingestion. Humans acquire T. gondii through ingestion of tissue cysts in the 

undercooked meat of intermediate hosts, mainly pork and lamb, or by the ingestion of water or 

food contaminated by faeces containing oocysts from the definitive host, (Cook et al., 2000) and 

rarely through transplantation of a infected organ (Hill and Dubey, 2002). While toxoplasmosis 
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is often benign in immunocompetent individuals (revealing no symptoms or may experience 

swollen lymph glands), it induces major complications in immunocompromised individuals and 

during pregnancy, constituting a life-threatening disease; congenital toxoplasmosis (transmission 

to the foetus when a pregnant woman acquires T. gondii infection for the first time during 

pregnancy) can result in abortion or lead to severe malformation of the foetus, or to visual or 

neurological injuries in the newborn, such as  hydrocephalus, cerebral calcification and/or 

chorioretinitis. Such patients may require prolonged, sometimes life-long, therapy. Also, recent 

studies suggest that subtle behavioural or personality changes may occur in T. gondii infected 

humans, (Flegr, 2012) and toxoplasmosis has recently been associated with neurological 

disorders, particularly schizophrenia (Holub et al., 2013) and bipolar disorder (Tedla et al., 

2011). However, evidence for causal relationships remains limited (Webster et al., 2013).  

T. gondii has a wide spectrum of prevalence across the globe and infects up to one-third of 

the world's population (Tenter, 2000). Several decades ago the reported prevalence among general 

population elsewhere in the world varied from 0 % in Eskimos to 94 % in Costa Rican and 

Guatemalan (Gibson and Coleman, 1958; Feldman, 1982). Cultural habits in regard to cooking 

food are likely the major cause of differences in the frequency of infection with T. gondii in many 

areas of the world. Consequently, there are large differences in the incidence of congenital 

infection that may vary from 1:1000 live births in France, to 1:10 000 in countries with a lower 

seroprevalence, and in the USA, it has been estimated that ∼3500 infants are born each year with 

congenital toxoplasmosis (Feldman, 1982). According to a study review (Pappas et al., 2009) the 

global status of T. gondii seroprevalence in women of reproductive age or pregnant ranges from 

above 60 % in countries such as Brazil, Gabon, Indonesia, Germany, and Iran, to less than 10 % 

in United Kingdom and Korea. In many countries, T. gondii seroprevalence declined sharply over 

the past three decades (Cook et al., 2000). The surveillance schemes of toxoplasmosis are very 

heterogeneous in European countries, which hinders the burden of congenital toxoplasmosis 

estimates comparison (ECDC, 2013). The first National Serological Survey was conducted in 

continental Portugal between 1979 and 1980 and showed T. gondii overall seroprevalence of 47 

% (Ângelo, 1983). Since then, no National Serological Surveys enrolling T. gondii antibodies 

were performed, but only small-scale studies (Ângelo, 2003), (Machado, 2005) (Lopes et al., 

2013). Thus, Portuguese health national authorities consider that there is a lack of knowledge of 

the current epidemiological situation of toxoplasmosis in Portugal, and the 2011 guidelines of the 

General Directorate of Health for toxoplasmosis screening establish the surveillance of low-risk 

pregnancy based on three monthly retesting of susceptible women (Ministério da Saúde: Direção-

Geral da Saúde, 2011). Of note, congenital toxoplasmosis is a mandatory notifiable disease in 

Portugal (Saúde, 2014), and its diagnosis should be performed in our laboratory at the National 

Reference Laboratory of Parasitic and Fungal Infections of the Portuguese National Institute of 

http://en.wikipedia.org/wiki/Neurological_disorder
http://en.wikipedia.org/wiki/Neurological_disorder
http://en.wikipedia.org/wiki/Schizophrenia
http://en.wikipedia.org/wiki/Causality
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Health. In this regard, considering our data, there are about three cases of congenital 

toxoplasmosis per year in Portugal (data not published). Considering that the unique overall 

population study performed in Portugal dates back to 35 years ago, the aim of this study was to 

describe the seroprevalence trends in the Portuguese general population (with special focus on 

women of childbearing age) over the past three decades (1979 – 1980 to 2013), by age group, 

region and gender. 

 

2.3. Material and Methods 

2.3.1. Study design and sampling 

In order to fulfil the defined objectives, three cross-sectional seroprevalence studies 

(1979/1980, 2001/2002 and 2013) were used. All of them were based on opportunistic sampling. 

Nevertheless, few biases are associated with this strategy in our study, as sera belonged to 

individuals seeking diverse blood analysis rather than specific T. gondii evaluation, which also 

reflects the vast majority of the general population. Furthermore, the same methodology was 

applied to all three surveys, ensuring their internal validity by increasing their comparability. The 

starting point was the T. gondii serological data released on behalf of the First Portuguese National 

Serological Survey in 1979/1980. This sample enrolled 1675 individuals of both genders, which 

were homogeneously distributed by the following stage groups: 8 months - 5 years, 6 - 15, 16 - 

30, 31 - 45 and ≥ 46 years. Each age group included individuals from each of the 18 districts of 

Portugal (Portuguese islands were not included) that were representative of the population of each 

district (Ângelo, 1983). Then, in this study, we processed two distinct samples. The first one was 

composed of sera belonging to the Second Portuguese National Serological Survey 2001 - 2002 

that aimed to estimate the prevalence of antibodies to vaccine-preventable diseases, and for this 

reason, the determination of antibodies for toxoplasmosis was not performed at that time. This 

sample enrolled 3525 individuals of both genders, and covered all age groups. Similar to the first 

serological survey, each age group included a number of individuals representative of the 

population of each of the 18 districts. For the participation of individuals, a document was 

prepared with the objectives and benefits of the study and informed consent was obtained either 

from the participants themselves or from their legal representatives (Freitas and Paixão, 2004). 

From these sera, we used a subsample of 1657 sera, which was established to detect the difference 

in antibodies prevalence between the 1979/1980 and 2001/2002 Portuguese National Serological 

Surveys of at least 5 %, with a power of 80 % and a significance level of 5 %. This subsample 

comprehended individuals of both genders, homogeneously distributed in five age groups: 8 

months - 5 years, 6 - 15, 16 - 30, 31 - 45 and ≥ 46 years. Each age group included individuals 

from each of the 18 districts (as in previous surveys, proportion within districts was ensured). It 
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served as baseline for the establishment of the sample size of the 2013 T. gondii serological 

survey, which was composed of 1440 individuals of both genders, homogeneously distributed in 

the same five age groups as the previous survey. In each age group, for both surveys, individuals 

were distributed by 18 districts of Portugal (Portuguese islands were not included) proportionally 

to the resident population. For the 2013 survey, individuals were selected (to fulfil the above cited 

requisites of age, gender and geography) from the attendees of the private clinical laboratory of 

Dr Joaquim Chaves during the period of January to December 2013. This is the largest Portuguese 

laboratory comprehending more than 40 sampling collection units dispersed throughout the whole 

country. No informed consent was obtained from each participant as, besides the information 

regarding gender and age, no further information was available to the laboratory. This procedure 

is in agreement with the Portuguese law No. 12/2005. 

 

2.3.2. Serological analysis 

Sera regarding the 2001/2002 seroprevalence study were analysed for the presence of T. 

gondii-specific antibodies in 2012, whereas the analysis for the 2013 survey was performed in 

2013, both at the National Reference Laboratory of Parasitic and Fungal Infections of the 

Portuguese National Institute of Health (NIH). T. gondii IgG-specific antibodies were detected 

by using the automated methodology enzyme linked fluorescent assay-sensibility 99.65 % 

(interval confidence (CI) 94.55 % to 97.39 %), specificity 99.92 % (CI 99.58 % to 100 %) and 

cut-off 4 ≤ titre < 8 IU/mL, with the VIDAS TOXO IgGII commercial reagents (bioMérieux SA, 

Marcy-l’Étoile, France) according to the manufacturer's instructions. For the resolution of 

equivocal samples (ie, 4 ≤ titre < 8 IU/mL), we retested them using a manual methodology of the 

direct agglutination test-sensibility 96.22 % (CI 94.55 % to 97.39 %), specificity 98.80 % (CI 

96.46 % to 99.60 %) and cut-off 4 IU/mL, by using the TOXO-Screen DA commercial reagents 

(bioMérieux SA, Marcy-l’Étoile, France), according to the manufacturer's instructions. Most of 

the epidemiological surveys are based on the IgG titre because IgG antibody positive titres can be 

detected 2 - 3 weeks after infection, reaching a maximum titre within 2 months. It then declines 

to a baseline level that persists throughout the remainder of one's life. These methodologies were 

not available at the time the first National Epidemiological Survey was performed (1979/1980), 

which used an in house indirect immunofluorescence method (Ângelo, 1983).  
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2.3.3. Statistical analysis 

Statistical analysis consisted of the estimation of the seroprevalences among the categories 

of the variables sex, age groups and region. Differences between the estimated seroprevalences 

were analysed using the χ2test, considering the significance level of 5 %. The stats package of R 

software (V.3.0.3) was used (R Development Core Team. R: A language and environment for 

statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2013. ISBN 3–

900051–07–0, URL. http://www.R-project.org). 

 

2.4. Results 

In the 2013 serological survey (n = 1440), we observed an overall prevalence of T. gondii 

antibodies of 22 % (95 % CI 20 % to 24 %), whereas in the 2001/2002 survey (n = 1657) the 

overall prevalence of T. gondii antibodies was 36 % (95 % CI 34 % to 39 %) (Figure 2.1A). The 

seroprevalence in the Portuguese population decreased by 11 % (95 % CI 7 % to 14 %) between 

1979/1980 and 2001/2002, 14 % (95 % CI 11 % to 17 %) between 2001/2002 and 2013, and 

25 % (95% CI 22% to 28%) between 1979/1980 and 2013. The significant decreasing trend during 

this 34 - year period is illustrated in Figure 2.1B. Since there were no statistically significant 

differences between the 18 districts (data not shown), we grouped them into four regions: north, 

centre, Lisbon area and south. In the 2013 survey, the seroprevalences ranged from 13 % (CI 95 

% 10 % to 17 %) in the north of Portugal to 33 % (CI 95 % 29 % to 37 %) in the south region 

(Table 2.1). 

http://www.r-project.org/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073473/figure/BMJOPEN2016011648F1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073473/figure/BMJOPEN2016011648F1/
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Figure 2.1 (A and B) (A) shows the evolution of Toxoplasma gondii seroprevalence in Portugal over the 

past three decades; (B) shows the sample sizes for the three National Serological Surveys, the precise 

estimated seroprevalences and respective 95 % confidence interval (CI). 

 

Table 2.1 Trends of Toxoplasma gondii seroprevalence in Portugal by region calculated with an interval 

confidence of 95 %. 

 

This finding is in opposition to the ones observed for the serological surveys of 1979–1980 

and 2001/02, where the seroprevalence was higher in the north, centre and Lisbon area. In 

particular, the north region presented the highest levels in the first two surveys but the lowest in 

the last survey, in opposition to the south. In general, a decreasing trend was observed for the 

prevalence of T. gondii antibodies over the studied years in the four regions, with the exception 

of the south region that showed an increase of 8 % (95 % CI 2 % to 19 %) between 2001/2002 

 

 
n 

1979/80 
Seroprevalence 

(%) 

 
n 

2001/02 
Seroprevalence  

(%) 

 
n 

2013 
Seroprevalence 

(%) 

North 405 
51 % (46% - 56%) 426 

45% (41%- 50%) 464 
13% (10% -17%) 

Centre 590 
47% (43%- 51%) 426 

38 % (0,33% -42%) 344 
29 % (25%- 34%) 

Lisbon 302 
47 % (41%- 52%) 630 

33 % (29% -37%) 504 
23% (20% -27%) 

South 378 
43% (38% - 48%) 171 

25 % (19% - 32%) 128 
33 % (25% - 41%) 
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and 2013 (Tables 2.1 and 2.2). In particular, the decrease observed for the north region between 

these two surveys was statistically significant (Table 2.2) 

 

Table 2.2 Multivariate analysis adjusted for gender, age group and region. 

The values represent the prevalence ratios between the 2013 and the 2001 / 2002 serological surveys. 

Data are not available for the 1979/1980 survey. 

 

 
 

 

Regarding the association between seroprevalence and age, we observed that the 

prevalence of specific T. gondii IgG increased significantly with this variable for each age group 

(eg, for the 2013 survey, χ2 test for trend in proportions gives a p value < 0.001) and it generally 

decreased over time (Figure 2.2). The only exception occurred for the age group ≥ 46 that revealed 

an increase from the 1979/1980 to the 2001/2002 survey. Considering solely the last two surveys 

(no data are available for the 1979/1980 survey, except for females between 15 and 45 years of 

age), the prevalence of specific T. gondii IgG decreased significantly for all age groups (except 

for 8 months – 5 years) (Table 2.2). 

 

 Prevalence ratios from 2002 to 2013 

North 0.37 (0.28 – 0.50) 

Centre 0.93 (0.72 – 1.20) 

Lisbon 0.84 (0.67 – 1.06) 

South 1.27 (0.82 – 1.95) 

8 months - 5 years 0.60 (0.13 – 2.80) 

6 – 15 years 0.21 (0.07 – 0.64) 

16 – 30 years 0.52 (0.35 – 0.76) 

31 – 45 years 0.70 (0.52 – 0.94) 

>= 46 years 0.83 (0.70 – 0.99) 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073473/table/BMJOPEN2016011648TB1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073473/table/BMJOPEN2016011648TB2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073473/figure/BMJOPEN2016011648F2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073473/table/BMJOPEN2016011648TB2/
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Figure 2.2 Comparison of Toxoplasma gondii seroprevalence trends, according to the data from three 

National Serological Surveys, by age groups. 

 
Concerning the seroprevalence distribution by gender, we observed no significant 

differences, either for the 2001/2002 or the 2013 survey. Both genders showed a significant 

decrease in prevalence between these two surveys (Table 2.3). 

 

Table 2.3 Toxoplasma gondii seroprevalence by gender and year of analysis calculated with an interval 

confidence of 95 %. 

  

 
 
 

Among the female population, we considered childbearing women aged 15–45 years, and 

observed a significant decreasing trend in the seroprevalence in this group: 53 % (95 % CI 48 % 

to 59 %) in 1979–1980, 35 % (95 % CI 32 % to 38 %) in 2001/2002 and 18 % (95 % CI 14 % to 

22 %) in 2013. We also subdivided this population into five groups: 15 - 20, 21 - 26, 27 - 32, 

33 - 38 and 39 - 45 years and observed that, like in the general population, there was a significant 

increase of T. gondii seroprevalence with age (except for a unique age group within the 1979 - 

1980 survey), and a significant decreasing trend over time (Table 2.4). 

 
 
 

 Male Female 

 n Prevalence % n Prevalence % 

2002 641 35% (31% -39%) 1016 38 % (35% - 41%) 

2013 638 22 % (19% -25%) 802 23 % (20% - 26%) 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073473/table/BMJOPEN2016011648TB3/
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Table 2.4 Toxoplasma gondii seroprevalence in childbearing women by age group calculated with an 

interval confidence of 95 % 
 

 

 

 

2.5. Discussion 

In this study, we aimed to perform a cross-sectional T. gondii seroprevalence study in the 

Portuguese population. We acknowledge the following limitations in this serological study, 

namely: (1) the lack of more complete personal and socioeconomic and demographic information, 

hampering an evaluation involving risk factors; (2) the probable lower sensitivity and/or 

specificity of the serological tests used in the first national survey when compared with the ones 

used in the latest surveys; (3) the use of different serological methods (1979/1980 vs the two most 

recent surveys); and (4) the use of both fresh (1979/1980 and 2013 surveys) and frozen 

(2001/2002) sera. We believe that some of these limitations could impact some false-negative 

and/or false-positive results and quantitative data (ie, the determination of serological titres), but 

less significantly impacted the determination of the immune status of the enrolled people, which 

was beyond the scope of this study. Also, sensitivity and specificity of the conventional methods 

most likely changed little over the years, as demonstrated, for instance, by the maintenance of the 

gold standard (Sabin-Feldman dye test) over the past 60 years. Finally, interassay variability is 

very unlikely to explain the large changes in seroprevalence observed from 1979/1980 to the 2013 

survey. The 2013 serological survey established an overall prevalence of T. gondii-specific IgG 

of 22 %. This value indicates a prevalence that is similar to what has been described for other 

Mediterranean countries, such as Spain, Italy and Greece (Gutiérrez-Zufiaurre et al., 2004; Diza 

et al., 2005; de Ory Manchón, 2009; Pappas et al., 2009; Pinto et al., 2012; Mosti et al., 2013), 

which could be associated with the similarity between these countries in terms of: (1) climate: 

seroprevalence may depend on the appropriate conditions for sporulation and oocysts survival in 

the environment, as oocysts maturation and transmission to a new host is faster at mild and wet 

climates (Tassi, 2007), which are not characteristic of these countries; (2) cat contact: cats are one 

of the major sources of infection, as they shed a large amount of oocysts via faeces, indoors and 

 1979 2002 2013 

"15-20" 51% (41%-60%) 19% (14%-25%) 4% (2%-10%) 

"21-26" 56% (44%-67%) 23% (18%-30%) 10% (4%-19%) 

"27-32" 46% (35%-58%) 34% (28%-41%) 17% (10%-28%) 

"33-38" 60% (45%-72%) 48% (40%-56%) 32% (20%-49%) 

"39-45" 60% (47%-72%) 62% (53%-69%) 50% (37%-63%) 
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outdoors, even after ingestion of a single bradyzoite or one tissue cyst (Hill and Dubey, 2002; 

Dabritz and Conrad, 2010). More, sporulated oocysts can survive for years in water, gardens, 

beach sands and farms, which constitute environmental features that are typical of these countries, 

enabling similar means of transmission due to the contact with the abundant stray and domestic 

cats in these environments (Hill and Dubey, 2002; Dabritz and Conrad, 2010), and (3) diet, the 

ingestion of raw, undercooked or cured meats is the primary risk factor in Europe for acquiring 

toxoplasmosis (Holliman et al., 2003), and these countries present the same nutritional behaviour 

and eating habits, namely the traditional consumption of cured meats and raw vegetables. 

Although the frequent cat contact and typical diet would support higher seroprevalences than 

those observed, other factors, such as the climate and population education (discussed below), 

most likely balance this trend. We observed a huge decrease in the T. gondii seroprevalence in 

Portugal, from 1979/1980 to the 2013 survey, as the first survey revealed a 47% rate (Ângelo, 

1983), which was low compared with the values reported in France, but sharply high when 

compared with north European countries. Curiously, the 2013 prevalence (22 %) remains low 

compared with France but is now sharply lower compared with some countries from the north of 

Europe such as Germany, Poland, Belgium, the Netherlands and Switzerland (Pappas et al., 

2009). We speculate that a possible explanation for those striking differences may rely on cultural 

habits in regard to eating and cooking practices. The sharp decreasing trend of T. gondii 

seroprevalence observed in Portugal during the past 34 years has been also reported in many 

studies performed in several developed countries (Nowakowska et al., 2006c). Since the 

consumption of raw or undercooked meat is considered to be the major source of T. gondii 

infection, we believe that this decreasing trend may be associated with: (1) the practice of freezing 

meat; (2) the changes in nutritional habits that took place in Portugal and Europe during the past 

years related to the wide access to fast foods and pre-prepared meals, including frozen meat meals 

and the decreasing number of home-prepared meals (Nowakowska et al., 2006c); (3) the 

introduction of intensive farming techniques involving the separation of cats from livestock, 

coupled with the reduction of breeding cattle in backyards (Holliman et al., 2003; Nowakowska 

et al., 2006c); (4) the release of legislation for toxoplasmosis, concerning sanitary inspection in 

the slaughterhouses; and (5) the improvements in health education and information by health 

professionals, as the lack of awareness of disease sources of transmission is a crucial factor in the 

risk of infection. 

Regarding the distribution of T. gondii seroprevalence by geographic region, we observed 

an intriguing phenomenon as, contradicting the continuous decrease detected in the north, centre 

and Lisbon area, there was an 8 % increase (table 2.1) of the seroprevalence in the south, from 

2001–2002 to the 2013 survey. Also, in the 2013 survey, this region was the one with the highest 

T. gondii seroprevalence (33 %), which was significantly higher (about 2.5 – fold) than the region 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073473/table/BMJOPEN2016011648TB1/
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showing the lowest values (north – 13 %). The variation in the geoseroprevalence of this parasite 

may be due to the local rainy conditions and altitude (Flegr et al., 2014). Nevertheless, this would 

explain the lower values observed for the south region in the first two surveys when compared 

with the other regions, but contradicts the scenario observed in the 2013 survey, as the south of 

Portugal presents a prominent lower altitude and is clearly drier and warmer than the remaining 

regions. 

In most human populations, the T. gondii seroprevalence increases with age, indicating that 

infection is acquired throughout life (Holliman et al., 2003). Our study was no exception and 

showed a higher seroprevalence in older age groups (for all geographical regions), most likely 

due to their longer exposure to the risk factors. 

Concerning childbearing women, we observed a significant decreasing trend in the  

T. gondii seroprevalence over time (Table 2.4). This observation is corroborated by other studies, 

which show that the prevalence of T. gondii infection in women of childbearing ages has 

decreased over the past 30 years (Bobić et al., 2011), and consequently, more women are now 

susceptible to the infection. Besides the factors stated above that most likely justify the 

seroprevalence decrease in the general population, the major factor associated with the decline 

observed for this target group most likely relies on the promotion of educational programmes 

yielding an improvement of the primary prevention. The currently observed seroprevalence of 

18 % indicates that about 80 % of Portuguese women are not immune against the T. gondii 

infection. Thus, the majority of potential pregnant women are susceptible to primary infection 

and the risk of congenital toxoplasmosis is high, a scenario that mirrors the one observed for 

several cities in Spain (Bartolomé Alvarez et al., 2008). The low prevalence observed among 

women of childbearing age should not be neglected. In fact, a recent study from the WHO 

(Torgerson and Mastroiacovo, 2013), which estimated the global burden of congenital 

toxoplasmosis by using a previously described prediction model (Larsen and Lebech, 1994), alerts 

that the global burden of the disease is considerably higher than that suggested by the congenital 

toxoplasmosis data. The incidence of infection is dependent on the general seroprevalence, 

determining the population susceptibility and the frequency of risk factors for toxoplasmosis 

acquisition. Therefore, seroprevalence should be considered the indicator to establish screening 

policies. Regarding this issue, several countries have no surveillance of the infection, whereas 

others focus solely on severe cases and few have surveillance targeted at congenital toxoplasmosis  

(European Food Safety Authority Panel on Biological, 2007). In Portugal, there is a surveillance 

system, which includes both the screening of pregnant women with follow-up during pregnancy 

of those who are not immune, in order to detect seroconversion, and the mandatory laboratory 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073473/table/BMJOPEN2016011648TB4/
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notification of congenital toxoplasmosis cases detected during this process (Ministério da Saúde: 

Direção-Geral da Saúde, 2011). 

This study reinforces that prenatal screening for toxoplasmosis is necessary due to the high 

rate of seronegative women exposed to infection and the probability of a high number of primary 

infections in the childbearing period. Targeted information should be crucially provided to 

childbearing and pregnant women by the health professionals regarding consumption of uncooked 

or cured meat, raw vegetables, contaminated drinking water and contact with cats. With one 

exception (Toxovax for sheep), there is no approved vaccine to prevent human or animal 

toxoplasmosis; therefore, primary prevention is the major tool to prevent the infection in the 

general population, mainly in high-risk individuals, such as immunocompromised, pregnant and 

childbearing women. Besides these primary prevention measures, there are several actions that 

will determine the prevention and control of T. gondii infection, including the governmental 

inspection of slaughterhouses and food production industries, the improvement of hygienic 

standards of abattoirs, the promotion of public educational schemes and the establishment of 

serological screening programmes. 
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3. Genetic and virulence characterization of Toxoplasma gondii isolates 

causing human infection in Portugal 

3.1. Abstract 

Toxoplasma gondii is an apicomplexan parasite responsible for toxoplasmosis which 

infects all warm-blooded vertebrates, including humans, this infection is mostly asymptomatic in 

immunocompetents but in immunocompromised individuals, may lead to death when associated 

with reactivation of cysts both in situations of congenital and acquired infection. The laboratorial 

notification of congenital toxoplasmosis cases is mandatory in our country being the pre and 

postnatal diagnosis of toxoplasmosis carried out in Portugal exclusively at National Institute of 

Health Doctor Ricardo Jorge (NIH). The majority of studies conducted in Europe have revealed 

that more than 80 % of strains isolated from human infections belong to genotype II, whereas 

genotypes I and III are responsible for a small number of cases. Atypical and recombinant strains 

are generally associated with more severe infections. In Portugal, there is a lack of data concerning 

genetic diversity as the classical typing studies in humans have never been performed. We aimed 

to determine the Sag2 and microsatellite-based (TUB2, TgM-A, W35, B17, B18) genotypes of T. 

gondii strains as well as to study their virulence in mice. These strains were isolated from the 

biological samples of the patients with suspected toxoplasmosis whose attented NIH, also we 

estimated the demographic characteristics of the referred patients in the last ten years. We 

analyzed 48 strains from congenital and acquired toxoplasmosis context. Sag2-based genotyping 

of T. gondii was achieved in all 48 strains where 35 (73 %) were classified as type II and 13 (27 

%) were type I. The multilocus PCR of five microsatellites allowed the classification of 10 strains 

(21 %) as recombinant strains that had been previously identified as type II or I by Sag2 typing. 

Seven out of the 48 strains, including three types I, three recombinant, and one type II, were 

virulent in mice. This study constitutes the first evidence of recombinant strains circulating in 

Portugal in humans from congenital infection, highlighting the need for a better evaluation of 

these strains as their phenotype is still barely understood. 

 

Keywords  Toxoplasma gondii, Genotype, Recombinant strain, Congenital toxoplasmosis  
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3.2. Introduction 

The Toxoplasma gondii is an apicomplexan protozoan parasite and one of the most 

successful parasites worldwide due to its ability to infect all warm blooded animals including 

humans. One third of the world’s human population is assumed to be infected with T. gondii 

(Weiss and Dubey, 2009; Innes, 2010). Toxoplasmosis is the infectious disease caused by this 

parasite and is mostly asymptomatic in immunocompetent individuals; however retinitis is often 

a cause of severe eye disease in healthy adults (Gilbert et al., 1999). In immunocompromised 

individuals, the infection may be severe or even lead to death when associated with reactivation 

of cysts in situations of congenital and acquired infection. During pregnancy, this infection can 

cause miscarriage or serious congenital diseases namely encephalitis, chorioretinitis, and 

lymphadenopathy. In the majority of newborns the infection may be asymptomatic; these 

children, when deprived of treatment, may develop recurrent toxoplasmosis which can lead to 

blindness and neurological problems during childhood and adolescence (Zhou et al., 2011), such 

as schizophrenia (Torrey et al., 2012), bipolar disorder (Del Grande et al., 2017), depression and 

attempts to suicide (Groër et al., 2011). In Portugal, there is a guideline for screening of pregnant 

women with follow-up during pregnancy of those who are not immune (Ministério da Saúde: 

Direção-Geral da Saúde, 2011). According to the document of the Ministry of Health, the 

laboratorial notification of congenital toxoplasmosis cases is mandatory (Saúde, 2014) also this 

document establishes that a case of congenital toxoplasmosis is confirmed by the existence of at 

least one of the following four criteria: a) confirmation of the presence of T. gondii in tissues or 

body fluids of the newborn; b) detection of nucleic acids of T. gondii in a biological sample (body 

fluids of the newborn); c) antibody specific response to T. gondii (Ig M, IgG and IgA) in a 

newborn; d) serum stable titers of T. gondii IgG every two months in children less than twelve 

months old. The first line of diagnosis of an infection acquired during pregnancy is the serology. 

Then, for the suspected cases, mice inoculation and PCR are performed in the amniotic fluid (AF) 

finally, after baby's birth the later two procedures are also applied to placenta (PL) and newborn 

blood (NBB). Thereby the whole pre and postnatal diagnosis of toxoplasmosis is composed by 

serological, molecular and mice inoculation approaches and is carried out in Portugal exclusively 

at National Institute of Health Doctor Ricardo Jorge (NIH), where we have a collection of 

biological products and strains that likely constitutes a national representation of this infection. 

Thus, the biological products from all over the country are routinely sent to NIH laboratory to 

confirm the presence of this parasite as well as to perform the molecular characterization of the 

isolates. It is believed that the number and the genetic diversity of parasites that are causing the 

infection play an important role in pathogenesis of T. gondii (Sarvi, 2019). Although the 

determinants of disease severity are not well understood, several factors such as host genotype, 

nutrition, immune status, infection load, and parasite genotype have been suggested to influence 
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the outcome of infection (Sibley et al., 2002). The distribution of T. gondii genotypes varies by 

geographic region (Lehmann et al., 2006). Genetic studies of isolates from Europe and the United 

States, suggested the presence of a clonal population structure stable in time and space (Darde et 

al., 1988; Sibley and Boothroyd, 1992; Dardé et al., 1992; Howe and Sibley, 1995; Ajzenberg et 

al., 2002a). The majority of the isolates (> 94 %) are linked into the three main clonal multilocus 

genotypes I, II and III, where the population structure of T. gondii in Europe (De Sousa et al., 

2006; Jokelainen et al., 2012) belongs predominantly to the type II lineage. In the south of Europe 

(Mediterranean countries), genetic diversity seems to be higher, revealing genotypes I and III and 

recombinant (Messaritakis et al., 2008; Mancianti et al., 2014; Vilares et al., 2014; Bacci et al., 

2015). A fourth clonal lineage (haplotype 4) has been described as the most common type in 

wildlife in North America (Dubey et al., 2011; Rajendran et al., 2012). These findings are based, 

not only on the classical typing procedures (Sag2 and microsatellite typing), but also on PCR-

RFLP by using other loci (Waap et al., 2008; Jokelainen et al., 2012; Vilares et al., 2014; Verma 

et al., 2015). In both animal and human samples, atypical and recombinant strains have been 

rarely reported (Bossi and Bricaire, 2004; Ajzenberg et al., 2004; Lehmann et al., 2006; 

Cavalcante et al., 2007; Vilares et al., 2014). Several studies revealed that recombinant (Dubey 

et al., 2007a; b) and atypical strains are associated with more severe symptoms in 

immunocompromised hosts, the atypical genotypes are frequently associated with severe 

toxoplasmosis also in the immunocompetent human patients (Grigg et al., 2001a; Bossi and 

Bricaire, 2004; Carme et al., 2011; Demar et al., 2012). In Portugal, there is a lack of data 

regarding the T. gondii genotype distribution in humans, and this issue gains special relevance 

since Portugal has a long history of trade and social interaction with Brazil and African countries, 

involving human and animal migrations and also import/export of food products. In fact, only one 

study has been published involving human samples (Sousa et al., 2008), but it was based on 

serotyping (antibodies anti-GRA6) rather than on molecular approaches. That study revealed a 

majority of type II strains but also an unexpected high prevalence of non-type II strains that could 

not be typed as type I or III, suggestive of a recombinant profile. The existence of recombinant 

strains was later reported in animals (Vilares et al., 2014). These results suggested the existence 

of a typing profile different from the one found in the other European countries (Sousa et al., 

2008). Considering this, our study aims to evaluate the T. gondii genotyping distribution and the 

virulence in mice of strains isolated from the biological samples of the patients with suspected 

toxoplasmosis. Also we describe the demographic characteristics of the referred patients, whose 

laboratory diagnosis was confirmed in the National Reference Laboratory of Parasitic and Fungal 

Infections of the NIH.   
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3.3. Materials and methods 

Sample  

We performed a retrospective analysis of the laboratory results of all cases with clinical 

suspicion of congenital and acquired toxoplasmosis, which have recourse to NIH for confirmation 

of infection, between January 2009 until December 2018. A total of 5722 cases were analysed 

(see Results for details) and we proceeded to study the molecular and virulence characteriza t ion 

of the strains isolated from the several biological samples of the positive cases. 

For the descriptive analysis of the demographic data of the confirmed cases we used the 

calculation of absolute and relative frequencies. 

 

Human biological products  

Different biological products, namely blood (mother and child), amniotic fluid and placenta 

were analysed for the laboratory confirmation of congenital infection (pre and postnatal). For the 

laboratory diagnosis of acquired infection were analysed cerebrospinal fluid (CSF), cerebral 

biopsy (CB), vitreous humor (VH) and aqueous humor (AH). 

 

T. gondii isolates  

All strains belong to the strain collection of the National Reference Laboratory of Parasitic 

and Fungal Infections at the Portuguese National Institute of Health (NIH) which is the 

responsible laboratory in Portugal for the pre - and postnatal diagnosis of toxoplasmosis at 

national level. We studied 48 T. gondii strains being 47 isolated in a congenital toxoplasmosis 

context from the follow biological samples: 31 strains were isolated from placentas (PL), 9 from 

umbilical cords blood (UCB), 5 from amniotic fluids (AF) and 2 from new born blood (NBB). In 

scope of aquireded toxoplasmosis, a single strain was isolated from a cerebral biopsy (CB) of a 

positive HIV with cerebral toxoplasmosis. The 48 strains revealed the following geographic 

distribution: 66.7 % were collected from the central region of Portugal, 25 % from the north,  

6.3 % from the south, and 2 % from the Azores islands. 

 

Laboratory confirmation  

For the laboratory confirmation of congenital infection (pre and postnatal) we performed: 

Serological methods such as  Direct Agglutination test (DAT) (bioMérieux SA, Marcy-l’Étoile, 

France), Enzyme-Linked Fluorescent Assay (ELFA), bioMérieux SA, Marcy-l’Étoile, France), 

Immunoglobulin Immunosorbent Agglutination Assay (ISAGA) (bioMérieux SA, Marcy-
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l’Étoile, France), and Imunoblot (IB) (LDBIO Diagnostics, Lyon, France); molecular methods 

(real-time PCR for amplification of the REP-529bp repeat region) (Kasper et al., 2009) and mice 

inoculation. 

 

Mice Inoculation  

The inoculation, maintenance, and euthanasia of mice were performed according to the 

Portuguese standards of the NIH, established for the pre- and postnatal diagnosis of 

toxoplasmosis, which are in accordance with the Protocol of International Guiding Principles for 

Biomedical Research Involving Animals as issued by the Council for the International 

Organizations of Medical Sciences. Briefly, all clinical samples were inoculated by 

intraperitoneal injection (1 ml/mouse) in female mice [Hsd: ICR (CD-1®); Harlan Ibérica, 

Barcelona], two each for the AF, BB, UCB, and CB, and four for PL samples with negative 

serology to endoparasites. AF were centrifuged and resuspended in 1 ml, and PL were pretreated 

with trypsin (1:250) and antibiotics (250 UI / ml penicillin and 500 μg / ml streptomycin) before 

the inoculation. The remaining biological samples were not subjected to any pretreatment 

protocol.  

The inoculated animals were monitored serologically by DAT at 10, 21, and 42 days post-

inoculation (p.i.), in order to check the presence of T. gondii-specific antibodies. At the end of 

this period, mice were euthanized by inhalation of 5 % halothane and confirmed death by physical 

examination. The general morphological state of organs was observed, and sample tissues were 

collected from the brain and were visualized by optical microscopy in order to search for T. gondii 

cysts.  

Although tissue cysts may develop in visceral organs, including the lungs, liver, and 

kidneys, they are more prevalent in the neural tissues, including the brain (Suzuki et al., 2010). 

Intact tissue cysts are believed not to cause any harm and can persist for the life of the 

immunocompetent host without causing a host inflammatory response (Dubey et al., 1998). We 

defined virulence at isolation (without knowledge of infecting dose) based on the mortality of 

mice within 4 months of infection and categorized isolates into two groups: virulent (death of  

100 % of mice) and nonvirulent (< 30 % death). 

 

T. gondii DNA extraction 

T. gondii DNA was extracted from two different mice samples, namely, the ascitic fluid or 

the brain, depending on the concentration of tachyzoites in microscopy of ascetic fluids. The   

T. gondii DNA extraction from ascitic fluids was performed by boiling 1 ml of the sample for  
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30 min. From tissue cysts (± 1 cm3), DNA was extracted by using the QIAamp DNA mini kit 

(Qiagen, Chatsworth, USA) according to the manufacturer’s tissue protocol, with slight 

modifications. These consisted of the homogenization of samples with 200 μl of extraction buffer 

and 40 μl of proteinase K and the DNA elution with 50 μl of elution buffer. 

 

Genotype analysis of T. gondii 

For genotyping purposes, all DNA samples from the inoculated mice were subjected to 

amplification and sequencing of the two ends of Sag2 gene and to a multiplex PCR of five 

microsatellites. The later included the beta-tubulin (TUB2) and the myosin A (TgM-A) genes as 

well as three expressed sequence tag (W35, B17, B18) markers (Howe et al. 1997; Ajzenberg et 

al. 2002, 2004). For Sag2, the PCR products were visualized in GelRED (Biotium Inc., Fremont, 

USA) stained 2 % agars gel electrophoresis, purified, and sequenced with an ABI 3130xl Genetic 

Analyzer (Applied Biosystems). For microsatellite analysis, capillary electrophoresis of PCR 

products was performed on the ABI 3130xl Genetic Analyzer (Applied Biosystems), and data 

were stored and analyzed with Gene Mapper (version 3.7; Applied Biosystems). MEGA5 

software (Tamura et al., 2007) was used to identify the genotypes by comparing the obtained 

sequences with the ones from reference strains available in GenBank (ME49-XM_018781602.1, 

VEG-LN714498.1, and RH-AY941252.1 and AY895019.1, RUB-AF357581.1, and MAS-

AF357580.1). 

 

3.4. Results 

Sample characterization 

During the ten years study period, 1459 cases of suspected toxoplasmosis were confirmed 

in a total of 5722 analyzed. Of these, 1436 (98.4 %) were patients with acquired infection and 23 

(1.6 %) were patients with congenital infection (Figure 3.1). 

Concerning the acquired infection, 93.4 % (1341/1436) were females, 5.5 % (79/1436) 

males and in 1.1 % (16/1436) of cases the gender was not known (Figure 3.2).  

Regarding the distribution of cases of acquired infection by age group, it was observed that 

the majority of the women belonged to the group 25-44 years old 75.8 % (588/1341), followed 

by the group aged 15 - 24 years 16.9 %, (226/1341), with the majority of men belonging to the 

age group between 25 and 64 years old. Of the 23 cases of confirmed congenital toxoplasmosis 

during the 10 years under analysis it was found that 22 were children under one year of age and 

one were a child belonging to 1- 4 years old (Table 3.1). The frequency of cases of congenital 

infection all over these ten years of study was 1.6 %, (23/1459). 
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Figure 3.1. Annual distribution of acquired and congenital Toxoplasma gondii infection, 2009-2018. 

Number of cases by year of diagnosis. 

 

 

 

Figure 3.2 Annual distribution of Toxoplasma gondii infection acquired by gender, 2009-2018. 

Number of cases by year of diagnosis.  
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Table 3.1. Annual distribution of acquired and congenital Toxoplasma gondii infection by age group,  

2009-2018. Number of cases by year of diagnosis . 

 

Age 

(years) 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Total 

< 1 1 4 3 4 2 0 3 0 3 2 22 

1 – 4 0 0 0 0 0 0 0 0 1 0 1 

5 – 14 4 0 0 0 0 2 3 1 0 2 12 

15 – 

24 

32 41 25 19 21 18 23 26 16 19 240 

25 – 

44 

66 106 115 75 88 124 147 112 140 80 1053 

45 – 

64 

1 0 9 7 3 6 4 2 6 2 40 

> 64 1 0 4 3 0 0 0 0 1 3 12 

AU 21 0 16 0 24 2 0 1 5 10 79 

Total 126 151 172 108 138 152 180 142 172 118 1459 

 

 

Analysis of virulence in mice 

Seven (Str_1, Str_3, Str_6, Str_11, Str_13, Str_18, Str_28) out of the 48 strains showed to 

be virulent in mice (Table 3.2), as they killed the mice after the first inoculation. Considering the 

location of tissue cysts, we searched for the presence of cysts in mice brain and found that, except 

for ten cases, all were positive. Two of the strains (Str_11, Str_3) that did not yield cysts in mice 

brain were virulent in mice. In this work, we did not observe moderate virulence (30% to less 

than 100 % mortality). 

 

Genotype analysis 

Sag2 genotyping was achieved in 100 % of samples and allowed the differentiation among 

the three “classical” T. gondii strain types. Thirty-five (73 %) strains were classified as type II, 

where 23 were isolated from mice inoculated with PL, four with AF, two with BB, and six with 

UCB. Thirteen (27 %) belonged to type I, where eight strains were isolated from mice inoculated 

with PL, one with AF, one with CB, and three with UCB (Table 3.2). PCR multiplex 

microsatellites analysis was applied to all samples and was highly efficient, it allowed the 

identification of 35 (73 %) strains as type II (25 PL, 3 AF, 1 BB, and 6 UCB), six (12.5 %) as 

type I (1 PL, 1 AF, 1 CB, and 3 UCB), one (2 %) as type III (1 PL), and six (12.5 %) as 

recombinant strains (4 PL, 1 AF, and 1 BB). Ten strains (21 %) identified by microsatellites 

analysis did not confirm the type previously identified by Sag2 typing. In fact, from these 10 

samples, three were identified as type II (previously classified as type I by Sag2), one as type III 

(previously classified as type I by Sag2), three as I/III recombinant strains (previously classified 
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as type I by Sag2), and three more as I/II recombinant strains (previously classified as type II by 

Sag2) (Table 3.2).  

Except one because we have no data, all the virulent strains were isolated in biological 

samples whose the newborns showed positive serology for IgG and IgM. Regarding PCR findings 

was negative or we had no data. Concerning newborn clinical features and treatment there is a 

lack of information from the clinicians to the laboratory (Table 3.2). 

 

Table 3.2. Virulence and genotyping analysis of Toxoplasma gondii strains and laboratorial and clinical 

features of the biological samples . 

 

Strain 
Number 

Biological 
sample 

Mice virulence 

/death day after 
inoculation 

Genotype 

NB 

Serology 
IgG/IgM 

NBB 
PCR 

NB 

clinical 
features 

Treatment 

1 AF V/9 I +/+ nd - - 

2 UCB NV I +/- - - - 

3 UCB V/9 I +/+ I - - 

4 AF NV II nd nd - - 

5 AF NV II +/+ - - - 

6 PL V/11 I nd nd - - 

7 PL NV II +/+ - - - 

8 PL NV II +/+ nd - - 

9 PL NV REC I/II +/+ - - - 

10 PL NV REC I/III +/- - - - 

11 PL V/7 REC I/III +/+ - - - 

12 PL NV II +/+ nd - - 

13 PL V/42 REC I/III +/+ - - Rov 

14 PL NV II +/- + - - 

15 UCB NV II +/- - - - 

16 PL NV II +/+ - - - 

17 PL NV REC I/II nd + - - 

18 PL V/120 II +/+ - - - 

19 UCB NV II nd - - - 

20 PL NV II +/+ - - Spir 

21 UCB NV II +/+ I - - 

22 PL NV II +/- I - Spir 

23 PL NV II +/+ nd - Rov 

24 UCB NV II +/+ - - No 

25 PL NV REC I/II +/+ I IC Rov 

26 PL NV II +/+ nd - Spir 

27 AF NV REC I/II Nd I - Spir 
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28 PL V/10 REC I/II +/+ nd - Rov 

29 PL NV II nd nd - - 

30 AF NV II +/- + - Sulf+Pyr 

31 CB NV I NA NA NA NA 

32 PL NV II +/+ - - No 

33 UCB NV II +/- - -  

34 UCB NV I +/+ + - - 

35 PL NV II nd nd IC+C No 

36 UCB NV II   IGR - 

37 PL NV II +/- - - - 

38 PL NV II +/+ + - Rov 

39 PL NV II +/- - - Spir 

40 PL NV II +/- - - - 

41 PL NV II nd - - No 

42 NBB NV REC I/II +/- + - - 

43 PL NV 
REC I/II 
or II/III 

+/- - - - 

44 PL NV II +/- nd - - 

45 PL NV II nd - - - 

46 PL NV II +/+ - - Spir 

47 PL NV II nd nd H Rov 

48 NBB NV II +/- - - Spir 

        

AF amniotic fluid, UCB umbilical cordon blood, PL placenta, CB cerebral biopsy, NB newborn, NBB newborn blood, 

NV nonvirulent, V virulent, REC recombinant , Sulfadiazine (Sulf) and pyrimethamine (Pyr), Spiramycin (Spir), 

Rovamycin (Rov), Not applicable (NA), Intracranial calcifications (IC), Chorioretinitis (C), Intrauterine growth 

retardation (IGR), hydrocephalus (H) No data (nd), Inhibition (I) Positive (+) and (-) Negative. 

 
 

3.5. Discussion  

According to the laboratory criteria applied to the diagnosis of congenital toxoplasmosis, 

the 23 cases of infection in this study obtained a positive result for IgG and IgM antibodies, 

molecular detection and mice inoculation, leading to their validation as congenital toxoplasmosis 

cases.  

As in other European countries, this study showed that that the greatest number of cases 

occurred in the 25 - 44 years of age and predominantly in women, what is expected because 

Portugal is one of the countries of the European Union where it is recommended to carry out the 

laboratory diagnosis of toxoplasmosis to all pregnant women and childbearing women who want 

to get pregnant (Ministério da Saúde: Direção-Geral da Saúde, 2011). With the exception of 

France, Germany and Poland that showed highest rates of new cases the new cases rates of 
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congenital toxoplasmosis found in this study is similar to the ones observed in the remain 

European coutries that range 0-4 cases per year (ECDC, 2017). In spite of the frequency of cases 

of congenital infection is low all over these ten years of study (1.6 %, 23/1459), it is important to 

emphasize that the majority of the acquired infections occurred in pregnant women, subsequently 

may have originated congenital infections. This fact demonstrates, for itself, the importance of 

laboratory toxoplasmosis surveillance in the pre-conception period and, even more, during 

pregnancy. According to the national seroprevalence study (corresponding to the study presented 

in Chapter II) (Gargaté et al., 2016) the 18% of seroprevalence in childbearing women indicates 

that about 80% of portuguese women are not immune against the T. gondii infection. Thus, the 

majority of potential pregnant women are susceptible to primary infection and the risk of 

congenital toxoplasmosis is high. Thus, the identification of cases of toxoplasmosis in the present 

study corroborates the results referenced in previous studies and demonstrates the importance of 

active surveillance and systematic diagnosis of this infection, particularly in pregnant women and 

immunocompromised individuals, because they are population groups where this parasite is 

responsible for high morbidity and lethality rates.  

In Portugal, as in most European countries, T. gondii isolates collected from animals (which 

enroll the majority of the studies) with chronic infections have shown remarkably little genetic 

diversity, where type I or recombinant strains have been rarely found (Herrmann et al., 2010, 

2013; Herrmann, 2012; Vilares et al., 2014). Concerning strains collected from human beings, 

type II predominates in Europe (Howe et al., 1997; Ajzenberg et al., 2005), mirroring the scenario 

found in animals. However, there is a lack of knowledge of the genetic diversity of 

T. gondii strains from human samples in Portugal. The only previously published data concerns 

the report of type II strains in two HIV seropositive individuals (Ajzenberg et al., 2009). In the 

present study, we enrolled 48 T. gondii strains collected throughout about two decades and 

observed that 67 % (32/48) of strains were classified as type II simultaneously by Sag2 and 

microsatellite procedures, which was quite similar to the genotypes distribution found in other 

European and US studies (Herrmann et al., 2014). The results of multilocus genotyping were in 

agreement with the Sag2 genotyping for 38/48 isolates. The ten discrepant strains reinforce the 

interest of using a multilocus approach. Particularly, seven Sag2 type I isolates exhibited a 

mixture of type I/III or I/II alleles and three type II isolates exhibited a mixture of type I/II, being 

considered as recombinant strains. In this regard, the microsatellite typing method, which uses 

one multiplex PCR to perform multilocus typing with five markers (Ajzenberg et al., 2005), was 

an efficient and essential tool for the identification of a molecular epidemiology scenario where 

21 % (10/48) of the investigated strains were found to be recombinant strains. These were 

described in Portugal for the first time in 2008 and also in 2014 (both in animals) (Waap et al., 

2008; Vilares et al., 2014). We speculate that the higher proportion of type I and recombinant 
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isolates in the human Portuguese sampling compared to other European studies (Howe et al., 

1997; Nowakowska et al., 2006a; Ajzenberg et al., 2010) may be explained by the fact that 

Portugal has a long history of trade and social interaction with South American countries (such 

as Brazil) and China (where atypical and recombinant strains are not uncommon), which involve 

human migrations, the import of food products (like meat or vegetables with the potential of 

transmitting the parasite), and also the presence of rats and cats (T. gondii intermediate and 

definitive hosts, respectively) in trading ships. Concerning the inoculation in mice, the virulence 

rate in vivo was quite low, 15 % (7/48), which is similar to the one observed in other countries 

(Ajzenberg et al., 2002a; Gebremedhin et al., 2014a). Two recombinant type I/III (Str_11, Str_13) 

and one recombinant type I/II (Str_28) were lethal to mice at the first inoculation and two of these 

(Str_11, Str_28) had the ability of transplacental transmission to the fetus. Unexpectedly, two 

type I strains were not lethal to mice, and mice death inoculated with one type II strain was 

observed. One could speculate that these strains may not be typical type I and II strains but instead 

recombinant strains that could not be identified with the limited number of molecular markers 

used. Another explanation for the observed virulence of the type II strain could be an elevated 

parasite load in the inocula. In fact, the biological samples are inoculated in mice according to the 

standard clinic diagnostic procedures, preventing the a priori determination of the number of 

parasites. 

As concluding remarks, this study presents the first data in Portugal concerning T. gondii 

genotyping from human samples and it reveals genetic variations in the predominant clonal 

lineages and more specifically the existence of a considerable proportion of recombinant strains. 

It is imperative to better characterize the genetic background of these unusual strains as unusual 

genotype-phenotype associations (e.g., implications in specific disease outcomes) may eventually 

be found for some recombinant profiles. In this regard, it will be important to strength the genetic 

characterization of T. gondii strains by analyzing several other loci that are polymorphic and 

genome dispersed, in order to better understand the degree of genomic mosaicism displayed by 

the circulating strains. 
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4. Parallel propagation of Toxoplasma gondii in vivo, in vitro and 

alternate models: towards less dependence on the mice model 

4.1. Abstract 

Toxoplasma gondii is an obligate intracellular protozoan able to infect most mammals 

worldwide. In pregnant women it can lead to severe birth defects or intrauterine death of the fetus. 

In immunocompromised patients, reactivation of latent infection may lead to life-threatening 

encephalitis. Almost everything we currently know about cell biology, immunology and genetics 

of T. gondii was achieved by using the RH virulent strain propagated in mice, as a model in the 

majority of the national reference laboratories for toxoplasmosis. According to the new 

recommendations concerning the animal welfare on behalf of their use in laboratory, we aimed to 

evaluate the potential of an in vitro system based on T. gondii propagation in cell-line, to replace, 

or at least reduce, the demanding animal model for strain propagation. 

We evaluated the genetic and phenotypic stability of the T. gondii RH strain throughout its 

parallel continuous propagation in mice, in human foreskin fibroblasts, and in an alternate fashion 

of these two procedures. We also assessed the virulence impact of RH strain after different periods 

of long-term propagation strictly in cells.  

Concerning the phenotypic impact of long-term tachyzoite passage in HFF we observed 

that the RH strain completely lost its virulence. On the other hand, we obtained a successful 

outcome with the alternate passaging of the parasite in HFF and in mice as this approach enabled 

T. gondii to maintain the virulence potential while keeping a putative stable genome. Although 

this strategy was very encouraging and putatively allows the reduction of sacrificed mice in more 

than 80 %, future studies are needed to evaluate its applicability to clinical strains, which are 

typically less virulent than the reference RH strain. 

 

Keywords: genetic stability . phenotypic stability . RH strain . mice inoculation . Tachizoites 
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4.2. Introduction 

Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan able to infect most 

mammals worldwide. The parasite exists in three stages: i) oocysts, the product of sexual 

recombination in the intestine of members of the feline family; ii) tachyzoites, the invasive, 

rapidly replicating intracellular stage of the parasite; and iii) bradyzoites, the slowly replicating 

stages found in cysts in latently infected hosts (Holliman et al., 2003). T. gondii infects up to a 

third of the world's human population and infection is mainly acquired by ingestion of food or 

water that is contaminated with oocysts shed by cats, or by eating undercooked or raw meat 

containing tissue cysts (Weiss and Dubey, 2009). This parasite crosses the intestinal, the placenta 

and the blood–brain barriers, and persists in its latent form in the central nervous system and 

muscle tissue. Primary infection is usually subclinical but in some patients it varies from a flu-

like syndrome to lymphadenopathy and retinochoroiditis; infection is mostly asymptomatic in 

pregnant women but can lead to severe birth defects or intrauterine death in the fetus. In 

immunocompromised patients, namely AIDS and organ transplantation patients, reactivation of 

latent infection may lead to life-threatening encephalitis (Weiss and Dubey, 2009). 

Almost everything we currently know about cell biology, immunology and genetics of  

T. gondii has been discovered using the RH strain as a model, which is a strain that was isolated 

in the USA by Albert Sabin from a 6-year-old boy who died of encephalitis in 1939 (Sabin, 1941).  

Strain genotyping revealed that more than 95 % of strains belonged to one of three major 

clonal lineages, known as types I, II and III which predominate in North America and Europe 

(Howe and Sibley, 1995). More recent genetic analyses identified a fourth lineage in North 

America (Khan et al., 2011). The RH strain and most of other highly virulent strains for mice 

were classified into lineage I, whereas the non-virulent strains mostly clustered into lineages II or 

III. The three lineages are all genetically identical, differing only by approximately 1–2% at the 

nucleotide level (Sibley et al., 2009). Still, despite their expectedly high genetic similarity, they 

can induce strong phenotypic differences in mice. Type I (high virulence) strains are mortal at all 

doses, are more motile than the less virulent strains and are able to migrate across cellular barriers, 

which may explain how they disseminate so rapidly in vivo and cause high mortality (Barragan 

and Sibley, 2002), whereas types II (intermediate virulence) and III (low virulence) strains are 

much less pathogenic(Sibley and Boothroyd, 1992).  

Population genetics and epidemiological studies have indicated a correlation between the 

geographic variations of this parasite genotype and disease manifestation in humans. For example, 

severe symptoms associated with ocular toxoplasmosis are more frequently reported in Brazil 

than in European countries (Grigg et al., 2001a; Holland, 2003), and numerous incidences of 

severe systemic toxoplasmosis in immunocompetent adults from French Guiana have been 
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reported, in some cases resulting in the deaths of the afflicted individuals (Ajzenberg et al., 2009); 

Darde et al., 1998; (Demar et al., 2012). Taken together, virulence of different T. gondii strains 

in mice appears to be generally correlated with disease manifestations in human cases (Yolken, 

2015). Therefore, determination of T. gondii virulence in mice could be invaluable in predicting 

the potential outcome of human infections. 

The legislative regulations introduced in the last years by several countries had a huge 

impact on the development and evolution of the laboratory animal manipulation. The book of 

Russell and Burch of 1959, entitled The Principles of Humane Experimental Technique, became 

a central theme in laboratory animal science because it highlights how animal experimentation 

can be diminished or removed (Russell and Burch, 1959). These authors introduced the Three Rs 

concept, designating the terms Reduction (i.e., decrease the number of animals used), Refinement 

(i.e., diminish in the incidence or severity of painful or distressing procedures) and Replacement 

(i.e., substitution of living animals by in vitro techniques, computerized models, etc.), as a main 

guideline for the responsible use of animals in experiments. This concept is particularly applicable 

to T. gondii given the very high number of mice used in reference laboratories for strain 

maintenance and diagnosis. According to the new recommendations concerning the animal 

welfare on behalf of their use in laboratory, we aimed to evaluate the potential of an in vitro 

system based on T. gondii propagation in cell-line, to replace, or at least reduce, the demanding 

animal model for strain propagation. To reach this goal, we evaluated the genetic and phenotypic 

stability of the virulent T. gondii RH strain throughout its parallel propagation in mice, in human 

foreskin fibroblasts, and in an alternate fashion of these two procedures. 
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4.3. Material and Methods 

The RH strain used in the present study is routinely maintained in mice by syringe 

intraperitoneal inoculation passages of ascitic fluid at 2-day intervals at the National Reference 

Laboratory of Parasitic and Fungal infections from the National Institute of Health since 1985. 

 

General Workflow 

We prepared six suspensions of the RH strain obtained from the mice ascitic liquid  

(Figure 1), each containing about 1×105 of tachyzoites in 0.2 ml. The concentration of tachyzoites 

was determined by using a Neubauer chamber under light microscope (40 x magnification) and 

its viability was accessed after staining a cover slip with metilen blue at  

0.1 % (v/v). These suspensions were used to simultaneously inoculate in two mice (“experiment 

A”), in two cell culture flasks (“experiment B”) and in two additional cell culture flasks 

(“experiment C”). As represented in Figure 1, the experiment A consisted of continuous passages 

of the RH strain in mice, the experiment B consisted of continuous passages of the RH strain in a 

cell line, and finally, the experiment C consisted of intercalate passages of the RH strain in the 

cell line and in mice. This study was developed during a period of 10 months. At the harvesting 

steps (detailed below), a 500 µl aliquot was taken and frozen at – 20 ºC and – 80 ºC. From this 

large set, 30 samples (10 samples from each experiment A, B, and C), corresponding to one sample 

per month, were subjected to genetic characterization of the passages strain by Next Generation 

Sequencing (NGS) (also detailed below). Additionally, two control mice were injected with 

DMEM only and two cells culture flasks were used as control as well. 

In order to set up the time points enrolled in Experiment C (i.e., the decision of a suitable 

period regarding the maintenance of the tachyzoites in cells before passing them to mice), we 

preliminarily evaluated the time at which the tachyzoites revealed a considerable number and 

motility decrease and shape alteration (through microscopic evaluation). This time consisted of 

approximately three weeks (data not shown), so we opted for a highly conservative approach in 

Experiment C by designing it with periods of RH passaging in the cell line not exceeding one 

week. Concerning experiment B, which is a challenging mice-independent procedure, to avoid 

the culture loss, whenever a strong decrease on the number of harvested tachyzoites was observed 

(after approximately 12 days), the aliquot of the immediate previous passage was thawed and was 

used to proceed the continuous cell line culture.  
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Figure 4.1 Workflow of RH strain inoculations. Experiment A: continuous mice inoculation, which took 

place every two days; Experiment B: continuous cell line (Human foreskin fibroblasts) passages, taking 

place every 72 - 96 h; Experiment C: intercalate cell line passages and mice inoculation. Before each 

inoculation in mice, tachyzoites were propagated for two periods of 72 - 96 h (designated as “week” in the 

Figure) in the cell line. The study duration was about 44 weeks (about 10 months).  

* Although the experiment B consisted of a continuous passaging of the RH strain exclusively in the cell 

line, an aliquot taken from the harvesting procedure at week 3, 22 and 44 was used for a mice inoculation 

in order to evaluate the phenotypic impact after different periods of long -term propagation of T. gondii 

strictly in cells. 

 

 

Mice propagation 

We used female CD1 mice with 6-8 weeks old and weighted 16 - 18 grams [Hsd: ICR (CD-

1®); Harlan Ibérica, Barcelona]. Mice inoculation, maintenance and euthanasia were performed 

under the standards of the Portuguese NIH, which are in accordance with the Protocol of 

International Guiding Principles for Biomedical Research Involving Animals as issued by the 

Council for the International Organizations of Medical Sciences. Animals were housed in cages 
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and maintained under controlled conditions (21 ± 2 °C, 65 - 70 % humidity) and standard food 

and water ad libitum during the experiments. 

A suspension of the RH strain (0.2 ml, corresponding to 1×105 tachyzoites) was inoculated 

in mice by syringe intraperitoneal inoculation and after 48 hours mice were euthanized. Then, 

tachyzoites were harvested from the peritoneal cavity of infected mice by flushing with 5 ml of 

sterile phosphate buffer saline (PBS; 0.01 M, pH 7.2), and were centrifuged at 2000 rpm for 10 

min at room temperature to remove peritoneal cells and cellular debris. The pellets enriched with 

tachyzoites were recovered with PBS (PBS; 0.01 M, pH 7.2) and 0.2 ml of a 1×105 / ml suspension 

were intraperitoneally inoculated in another animal. Following this procedure, brain tissue was 

harvest from the mouse and observed in the light microscope in order to search for T. gondii cysts. 

Visual inspection was used to identify the phenotypic effect of T. gondii RH strain in mice, 

namely, the general condition of the animal, hair condition and stool consistency. This entire 

procedure was rigorously followed in experiment A, and, with exception of the timelines, also 

followed in experiment C for mice inoculation and harvesting. 

 

Cell culture propagation 

Human foreskin fibroblasts (HFF-1ATCC - SCRC-1041) obtained from ATCC were grown 

in 10 ml of culture medium using 25cm2 flasks (Sarstedt, 831810.002). For maintenance purposes, 

this cell line was grown in Dulbecco's Modified Eagle Medium DMEM (Gibco 42430-25) with 

10 % of heat inactivated fetal calf serum FCS (Gibco, 10270106), penicillin (12 ug/ml), 

streptomycin (10 ug / ml) (Gibco 15140 - 122) and (1 %) fungizone (Gibco 15290-018) and was 

incubated in 5 % CO2 at 37 °C and > 80 % humidity. Then, when a confluent monolayer was 

obtained, a maintenance medium (the same as above but supplemented with FCS 5 % instead of 

10 %) was used. Cells were routinely subcultured every 3 days by trypsination, 0.25 % trypsin 

(Gibco 25300 - 062) with 0.03 % EDTA solution and washing with phosphate-buffered saline (pH 

= 7.2).  

For the inoculation with the RH strain, after 70 % confluency of the cell line, 1ml of the 

suspension of tachyzoites (~ 1 × 105) were added to the cell line followed by an incubation at  

37 °C, > 80 % humidity and 5 % CO2 for 72 - 96 h. Two 25 cm2 flasks were always simultaneously 

inoculated. After this period, the medium was aspirated and the cells monolayer was washed with 

5 ml of sterile phosphate buffer saline (PBS; 0.01 M, pH 7.2) and scraped. The amount and the 

viability of tachyzoites harvest from the cell culture were determinate with a Neubauer chamber 

under light microscope (40 x magnification) after staining with metilen blue 0.1 %. These 

tachyzoites were then diluted to a final concentration of 1x105 per ml and constitute the new 

inoculum for a new set of two 25 cm2 flask with 70 % confluency of HFF cells. From each passage, 

https://www.thermofisher.com/pt/en/home/life-science/cell-culture/mammalian-cell-culture/classical-media/dmem.html
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a 500 ul aliquot was taken and freezed with 1ml of 50 % FBS and 1 ml of 20 % DMSO in cryovials 

with a cooling rate of 1 ºC per minute until reaching - 80 ºC and then they were placed in a - 80 

ºC freezer or in a liquid nitrogen tank. Whenever the need to use a frozen aliquot arose (see 

“general workflow” above), the frozen aliquot to be used for inoculation purposes, were placed 

in a water bath at 37 ºC with shaking, until completely thawed. In order to identify the phenotypic 

effect of the T. gondii RH strain on the inoculated cells, direct examination with a phase contrast 

optics microscope (40 x) was used. This entire procedure was rigorously followed in experiment 

B, and, with exception of the timelines, also followed in experiment C for cells inoculation and 

harvesting. 

Although the experiment B consisted of a continuous passaging of the RH strain 

exclusively in the cell line, an aliquot taken from the harvesting procedure at week 3, 22 and 44 

was used for a parallel mice inoculation in order to evaluate the phenotypic impact after different 

periods of long-term propagation of T. gondii strictly in cells. 

 

DNA extraction, PCR and Next Generation Sequencing (NGS) of RH T. gondii strain  

RH T. gondii DNA was extract directly from the ascitic fluid of tachyzoites suspension and 

from the tachyzoites harvest from HFF cells suspension by using the QIAamp DNA mini kit for 

tissues (Qiagen, Chatsworth, USA) according to the manufacturer’s tissue protocol. 

In order to perform a brief evaluation of the genetic stability of T. gondii on the course of 

the three described experiments, the following loci, which are spread by different T. gondii 

chromosomes (http://toxomap.wustl.edu/verticalmap08_01-2005high.jpg), were enrolled in this 

study: i) Sag2 (the classical typing gene); ii) three loci traditionally used for microsatellites-based 

typing (TgM-A, B18, W35); and, iii) five polymorphic loci potentially involved in 

adaptation/virulence (CB21-4, PK1, Gra6, Sag3, M102). Target regions and PCR primers for all 

loci are described in Table 4.1, and are divided in two panels (with and without 5’ adapters for 

amplicon-based NGS Illumina protocols), according to the amplicon size and the position of the 

target microsatellites within some amplicons. In order to generate high quality amplicons for 

subsequent high-throughput amplicon-based Next Generation Sequencing (NGS), different PCR 

were conducted. Briefly, a multiplex PCR was applied for loci M102, B18 and W35, while Sag2, 

TgM-A, CB21-4, PK1, Gra6, Sag3 were targeted by independent PCR. All PCR products were 

visualized in GelRED (Biotarget, Lisbon, Portugal) stained 2% agarose gel electrophoresis. For 

each sample selected for NGS (see above), PCR products, with and without Illumina adapters, 

were pooled separately, before being purified and  and subjected to the Nextera XT DNA Library 

Preparation protocol (Illumina Inc, San Diego, CA, USA), according to manufacturer’s 

http://toxomap.wustl.edu/verticalmap08_01-2005high.jpg
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instructions. Finally, libraries obtained from amplicons with and without Illumina adapters were 

independently sequenced (2 x 150bp paired-end reads) using a MiSeq (Illumina) equipment.  

 

Table 4.1 Loci, amplicon length and primers used for PCR. 

Locus Chr Foward Primer  Reverse Primer  Box 1
c
 Box 2

c
 

Amplicon 
length (bp) 

Pk 1 VI FI 5' TCA TCG CTG AAT CTC ATT GC 3' RI 5' CGC AAA GGG AGA CAA TCA GT 3' NA NA 

 

873 

Gra 6 X FI 5' TTT CCG AGC AGG TGA CCT 3' RE 5' TCG CCG AAG AGT TGA CAT AG 3' NA NA 

 

314 

Sag2 5' VIII F4E 5' GCTACCTCGAACAGGAACAC 3' R4E 5' GCATCAACAGTCTTCGTTGC 3' NA NA 

 

305 

Sag2 3' VIII F3E 5' TCTGTTCTCCGAAGTGACTCC 3' R3E 5' TCAAAGCGTGCATTATCGC 3' NA NA 

 

297 

Sag 3 XII FI 5' TCT TGT CGG GTG TTC ACT CA 3' RI 5' CAC AAG GAG ACC GAG AAG GA 3' NA NA 

 

211 

M 102 VIIa F 5' GAG CGA CGC CCG TAT GAT AAG G 3' R 5' CGC GCT GAG AAG CTG ACA TAC AG 3' NA NA 

 

427 

CB21-4 III F 5' CCA GGT GTT TCG ATA TTG AT 3' R 5' GCC TGT GTG GTG TTC GAA TC 3' TACGCATACA GTACATTCTT 

 

469 

TgM-A X Fa 5' GGCGTCGACATGAGTTTCTC 3'  Rb 5' TGGGCATGTAAATGTAGAGATG 3' CGTGTTTCCA TTTGTAAGTC 

 

207 

B18 VIIa Fa 5' TGGTCTTCACCCTTTCATCC 3' Rb 5' AGGGATAAGTTTCTTCACAACGA 3' TGCCTGTAGC GGATTCCGCA 

 

160 

W35 II Fa 5' GGTTCACTGGATCTTCTCCAA 3' Rb 5' AATGAACGTCGCTTGTTTCC 3' TCTTGGCTTT GTGTCGCTGT 

 

248 

 
 

 

 

Bioinformatics analyses 

For Single Nucleotide Polymorphisms (SNPs) / indel screening, NGS data was processed 

using the mapping-based bioinformatics pipeline implemented in INSaFLU 

(https://insaflu.insa.pt/), which is a web-based platform for amplicon-based NGS data analysis 

(Borges et al., 2018). Briefly, the core bioinformatics steps  involved: i) raw NGS reads quality 

analysis and improvement using FastQC v. 0.11.5; 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc) and Trimmomatic v. 0.27 

(http://www.usadellab.org/cms/index.php?page=trimmomatic), respectively; and, ii) reference-

based mapping, consensus generation and variant detection using the multisoftware tool Snippy 

v. 3.2-dev (https://github.com/tseemann/snippy), using a multi-FASTA file with representative 

sequences of RH strain of each one of the targets amplicons as reference sequence. Mapping 

results were inspected and confirmed through visual inspection using the Integrative Genomics 

Viewer (http://www.broadinstitute.org/igv).  

For in silico microsatellite-size analysis, we took advantage of a previously applied 

bioinformatics script (Pinto et al., 2016) that allows capturing, directly from NGS reads (after 

quality improvement with Trimmomatic), the repeat number profile within the microsatellite 

region (i.e., the microsatellite size). This strategy consists on the extraction and counting DNA 

a
 Primers with adapters  - TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG

c
Sequences contiguously flanking each side of the tandem repeat region that are used for in silico extraction of the microsatellite size. 

NA - not applicable

b
Primers with adapters - GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG

https://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.usadellab.org/cms/index.php?page=trimmomatic
https://github.com/tseemann/snippy
http://www.broadinstitute.org/igv
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sequences (i.e., the microsatellites sequences) that are flanked by two conserved, small DNA 

strings. The defined strings for the microsatellite-containing loci are detailed in Table 4.1. 

All raw sequence reads generated in the present study were deposited in the European 

Nucleotide Archive (ENA) (BioProject PRJEB34235). Detailed ENA accession numbers are 

described in Supplementary Table S1. 

4.4. Results 

Throughout the entire 10-month study, in experiment A, we observed that RH strain always 

killed the mice in two days and presented tachyzoites-rich ascites, with a median of 7.50 x 107 / 

ml (mean of 9.15 x 107 / ml SD 4.30 x 107 / ml) tachyzoites recovered in the harvest procedure 

(Figure 4.2). During these two days, the animal showed great prostration, completely bristly hair 

and soft stools (Figure 4.3). In the necropsy of the more than 200 mice enrolled in experiment A, 

no T. gondii cysts were observed in mice brain tissues. 

Figure 4.2 Experiment A: Continuous RH strain mice propagation. The squares represent the tachyzoites 

concentration harvested during the 10-month study period. 

 

 

Figure 4.3 Phenotypic evaluation on the course of experiment A. Panel A shows the phenotypic effect 

of RH strain propagation in mice, where mice can be observed totally prostrate in a corner of the cage 

and with bristly hair; Panel B represents the phenotypic effect of RH strain propagation in HFF, showing 

tachyzoites with a thin shape and motile rich ascites  (40x magnification). 

Image source: National Reference Laboratory of Parasitic and Fungal Infections. 
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Regarding experiment B, we observed an increase in the number of RH strain tachyzoites 

inside the cells within 6 to 9 h, and after approximately 24 h parasites formed rosettes with the 

apical ends directed towards the parasitophorous vacuole membrane and some of them were 

dispersed in the cytoplasm of the host cell. After 72 h, most of the cells were infected and some 

of them detached from the flask. After 96 h, the monolayer was destroyed and a large number of 

tachyzoites could be observed in the supernatant. These observations stood for the entire study 

period. (Figure 4.4) 

 

 

Figure 4.4 Phenotypic evaluation on the course of experiment B. Phenotypic effect of RH strain 

inoculation in HFF (40x magnification). Panel A - HFF monolayer; Panel B - Tachyzoites replicated in 

the cells within 6 to 9 h; Panel C - Tachyzoites formed rosettes with the apical ends directed towards 

parasitophorous vacuole membrane within 24 h; Panel D - Most of HFF are infected and some of them 

detached from the flask within 72 h and Panel E - Monolayer is destroyed and a large number of 

tachyzoites are in the supernatant within 96 h.  

Image source: National Reference Laboratory of Parasitic and Fungal Infections. 

 

We also observed that, in each cycle of three passages (approx. 12 days), the amount of 

tachyzoites that were harvested in each passage progressively decreased, from a median of  

3.36 x 107 / ml (3.58 x 107 / ml SD 7.16 x 106 / ml) in the first passage of each cycle, to a median 

of 1.05 x 107 /ml (mean of 1.08 x 107 / ml SD 1.28 x 106 / ml) in the last passage (Figure 4.5). 

Therefore, in order to avoid losing the strain, the aliquot of the immediate previous passage (i.e., 

second passage) was thawed and used for the subsequent inoculation. This yielded a highly 

homogeneous fluctuation dynamic of the tachyzoites recovery during the entire experiment B 

period (Figure 4.1) Also, within each of these three-passages cycles, the size of the tachyzoites 
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diminished and their shape became rounded, although these phenotypes were hardly seen after 

the first of the three passages.  

Figure 4.5 Experiment B: Continuous RH strain cell line propagation. The circles represent the tachyzoites 

concentrations that were harvested during the study period (60 passages of 72 - 96 h). The different colours 

represent the three passages within each cycle of ~12 days. 

 

We observed that the virulence of the RH strain after long periods of passages in the cell 

line strongly decreased. In fact, after different periods of long passaging in HFF (namely, after 3, 

22 and 44 weeks from the first inoculation), the two mice that were inoculated with the harvested 

tachyzoites did not die in short periods of time. In fact, one of them was euthanized for observation 

after seven days and the other lived for 11 months. The ones that were euthanized showed no 

tachyzoites in the ascitic liquid.  

Finally, regarding experiment C, during the entire 10 - month period, we observed a 

microscopic-based phenotypic profile of tachyzoites that was similar to the one described above 

for the first passage within each cycle of three passages of experiment B (i.e., timelines, rosettes 

formation and tachyzoites shape), i.e., with only sporadic and modest alterations when compared 

with the ones observed in the tachyzoites from the mice ascites.. We observed quite homogeneous 

values of the tachyzoites concentration that were harvested from the mice (median 7.05 x 107, 

mean of 7.03 x 107 / ml SD 8.43 x 106), which were in the same range as in experiment A. For the 

harvested tachyzoites from the cell line, the values obtained (median 2.60 x 107 / ml, mean of 2.35 

x 107 / ml SD 5.50 x 106 / ml) fitted the interval observed for the three passages within each 12-

day cycle of experiment B (Figure 4.6). For better visualization purposes, Figure 4.7 shows the 

comparison of tachyzoites yield between the three propagation experiments. 

We observed that, after each period of 72-96 h in the HFF cell line, the tachyzoites showed 

a virulence decreased phenotype in mice as they caused mice death only after about seven days. 
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Curiously, we observed no obvious decrease in the number of tachyzoites (Fig. 4.6 and 4.7) that 

were recovered in the ascites, when compared with experiment A. 

Figure 4.6: Experiment C: intercalate passages of the RH strain in the cell line and in mice. The circles and 

squares represent the tachyzoites concentration that were harvested from the cell line and mice, respectively, 

during the study period (44 weeks). 

Figure 4.7 Comparison of tachyzoites yield between propagation experiments. This dispersion graph 

displays the concentration of T. gondii (expressed as tachyzoites/ml) that were harvested during the 

three parallel propagation experiments: For experiments A and C, each value reflects the tachyzoites 

concentration that was harvested each week (a total of 44 weeks), while, for experiment B, each value 

reflects the tachyzoites concentration obtained after each passage (a total of 60 passages). For 

experiment B, it also shows the yield obtained after the first (red circles), second (blue circles), and third 

passage (green circles) within each cycle of three passages (~12 days). Circles and squares represent 

concentration values obtained from harvested cells and mice, respectively.  
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Finally, regarding the evaluation of potential genomic changes arising throughout 

propagation, which enrolled ten samples (about one per month) from each “experiment” and 

targeted nine genome loci, we observed no SNP/indels both chronologically (for a given 

experiment) and between experiments. Also, for microsatellite-harbouring loci (B18, W35, TgM 

A and CB21-4), we observed the same consensus microsatellite length (and profile) for all 

samples. Of note, the consensus lengths retrieved by our NGS/Bioinformatics-based approach for 

the RH strain matched the ones previously reported (Vilares et al., 2017) by traditional 

microsatellites-based analyses relying on electrophoresis-based DNA sizing. 

 

4.5. Discussion 

The maintenance of reference strains, namely the RH, in a National Reference Laboratory 

(NRL) is imperative since the Sabin- Feldedman dye test is the Gold Standard among serological 

test and requires fresh viable tachyzoites. While parasite propagation is obligatory for antigen 

production, it is also useful for tachyzoites enrichment for typing purposes, and can also provide 

vital information in studies focusing T. gondii lifecycle (and its particular stages) (Lambert et al., 

2006; Lachenmaier et al., 2014), host invasion and host–parasite interactions. Although some of 

these goals may be achieved by using cell-lines for tachyzoites’ propagation, such as antigen 

production (Evans R., 1999), the animal model remains crucial for studying the natural infection 

dynamics and parasite dissemination, and is required to confirm findings after initial in vitro 

investigations (Szabo and Finney, 2017). Also, the in vivo model has a vital role in a NRL because 

it is the gold standard method for the isolation of T. gondii strains in biological samples or body 

fluids (Derouin et al., 1987) constituting, for instance, the reference methodology in pre- and post-

natal diagnosis of toxoplasmosis. However, this in vivo procedure frequently involves the need to 

sacrifice hundreds of mice per year, and is also extremely laborious, requiring complex facilities 

and human skills either for the isolation of strains or for their maintenance process. Furthermore, 

the legislative regulations and the ethical measures that have been arising regarding the use of 

animals in the laboratory (EEC, 1986; Haywood and Carbone, 2009; 2010/63/EU, 2010) push the 

researchers towards the use of alternative approaches to diminish the animal manipulation. As 

such, recent technological advances rely, for instance, in the development of three-dimensional 

(3D) tissue culture models as well as on engineering specific tissues and organs for laboratory 

use. These improved models try to mimic in vivo host physiology and could replace current in 

vivo models, thus reducing the need for animal manipulation. For example, in the field of 

congenital toxoplasmosis, a recent study enrolling the development of a 3D culture system based 

on trophoblasts allowed to investigate the interaction between specialized cells of the embryonic 

epithelial that are in direct contact with maternal blood (syncytiotrophoblasts) (McConkey et al., 

2016) and T. gondii. However, in general, these developed models are in an embryonic stage and 
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still constitute a long shot for routine use in most laboratories. As such, on behalf of our role as 

the reference laboratory for toxoplasmosis at the Portuguese National Institute of Health, we 

aimed to investigate if we can replace, or at least reduce, the demanding animal model for strain 

propagation by using “feasible” methodologies. Therefore, we used three parallel approaches 

consisting of continuous passages of the RH strain in mice (Experiment A), in a cell line 

(Experiment B), and intercalate passages of the RH strain in the cell line and in mice (Experiment 

C).  

In order to compare the outcomes of each propagation experiment, we started to evaluate 

the tachyzoites capacity to maintain an active multiplication in a cell line throughout continuous 

passaging. As expected, throughout continuous propagation in mice (Experiment A) we always 

obtained tachyzoites-rich ascites with values for tachyzoites contentration in the harvesting 

processes (median of 7.50 x 107 / ml) that were up to 7.5 - fold higher than the ones obtained for 

the approach enrolling the exclusive propagation in the cell line. (Experiment B). Curiously, in 

Experiment C, which enrolled 46 passages in the cell line intercalated with 14 passages in mice, 

we faced a very encouraging scenario. In fact, not only we obtained tachyzoite-rich ascites with 

harvesting values (median of 7.05 x 107 / ml), similar to the ones obtained in Experiment A, but 

we also obtained tachyzoites yields in the multiples harvesting processes of the cell line (median 

of 7.05 x 107 / ml) about 2.5 - fold higher than the ones obtained at the end of each cycle in 

Experiment B (Figures 4.6 and 4.7). This suggests that, although the tachyzoites capacity to 

maintain an active multiplication in a cell line throughout continuous passaging decreases over 

time (we observed a ~3-fold decrease from the first to the third passage within each cycle of ~12 

days in Experiment B) (Figure 4.5), this capacity seems to be renewed when, after short periods 

in a cell line (e.g., one week, Experiment C), the tachyzoites are transferred to mice. 

A second evaluation consisted of assessing potential phenotypic alterations upon 

propagation of the parasite in a cell line, such as tachyzoites shape and motility. Contrasting to 

Experiment A for which we observed tachyzoite-rich ascites with tapered shape and with motility, 

the continuous propagation of tachyzoites in the cell line lead to a decrease in their size and to an 

alteration of its shape, which was notably seen at the end of each 12-days cycle. This was 

consistently observed for all 12 - days cycles of Experiment B. Noteworthy, minor phenotypic 

changes were observed in the microscopic observation of tachyzoites harvested from the cell line 

in Experiment C, whereas a typical phenotype could be seen in the mice ascites. 

Afterwards we evaluated the capacity to maintain a virulence phenotype in mice. Regarding 

Experiment A we observed that RH strain always killed the mice in two days, as is routinely 

observed in our laboratory for this strain. This is concordant with what is expected for T. gondii 

genotype I strains, which are usually responsible for lethal infections in mice, while types II and 
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III are significantly less virulent (Lambert et al., 2006). Several studies showed (Saeij et al., 

2005b; Kim et al., 2007) that a prolonged passage in mice of Type I RH strain leads to an 

attenuation of tissue cysts/bradyzoites formation, although this assumption is not consensual. 

There are still controversies on the potential of cyst formation of this strain but, similarly to 

several studies, (Asgari et al., 2013) we observed that our RH strain lost its ability of cystogenesis 

possible due to the prolonged and interrupt mice passages since 1985. In particular for Experiment 

B, we also evaluated the impact of the tachyzoites long-term passaging in the HFF cell line at 

three time points (at week 3, 22 and 44) after the first inoculation, and observed that the RH strain 

completely lost its virulence. In fact, when we inoculated the harvested parasite into two mice and 

euthanized one of them (the other died of old age) for observation, there were neither tachyzoites 

in its ascite nor cysts in the brain. In Experiment C, we observed an intermediate scenario, as 

some virulence decreased phenotype in mice was observed after ~1 week in cell culture 

(throughout the entire study period) because RH strain consistently killed the mice after about 

seven days and not in two days as in Experiment A. This strongly suggests that, although a 

continuous passaging in cell lines may be useful for some specific proposes (e.g., antigen 

production), this approach cannot be successfully used for maintaining T. gondii strains for other 

reference purposes as they unequivocally loose the virulence phenotype. Nevertheless, hybrid 

approaches such as the here presented in Experiment C seem to have the potential to overcome 

the virulence issue, which is crucial in most T. gondii reference laboratories. 

Finally in order to assess if the propagated RH strain underwent genomic changes 

throughout propagation (regardless the strategy), we conducted a humble genomic evaluation 

focused on both traditional typing loci and selected polymorphic loci that are genome-dispersed 

and are believed to play a role in adaptation. Whereas the hypothetical detection of genetic 

alterations throughout the study could suggest the putative inadequacy of using the selected 

approaches for strain maintenance, we observed no genetic changes throughout each experiment 

and between experiments. Thus, contrarily to the former hypothesis, no definitive conclusions 

about genetic stability can be taken, given the limited extent of the T. gondii genomic regions that 

were surveyed Nevertheless, broader evaluations at the genomic level are very challenging, 

considering both the large genome size (~65 Mb) and the high complexity of the 14 chromosomes 

of T. gondii . Genome-wide surveys would make this evaluation impractical and cost prohibitive. 

Of note, in this study, we unprecedentedly applied a robust NGS/bioinformatics approach for in 

silico extraction of the microsatellite size for three loci (TgM-A, B18, W35) traditionally used in 

microsatellites-based T. gondii genotyping. This technological innovation constitutes a proof-of-

concept that the traditional microsatellites analyses (based on laborious and error-prone 

electrophoresis-based DNA sizing) might be straightforwardly transfer to more robust 
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NGS/bioinformatics-based methodologies, while keeping backwards compatibility with 

“historical” typing data.  

As concluding remarks, the results of the present study demonstrate the feasibility of using 

tachyzoites propagation approaches based on alternate passages on mice and cell lines, strongly 

impacting the number of sacrificed mice. This would enable laboratories to maintain and 

propagate T. gondii strains and use them for virtually any purpose, as not only the replication 

capacity, shape and motility of tachyzoites seems to be maintained, but also the virulence appears 

not to be obliterated. Finally, although a humble genomic survey was performed, no apparent 

genetic alterations were observed as a consequence of in vitro propagation. Nevertheless, other 

evaluations will be needed, eventually enrolling other cell lines, propagation time lines and strains 

other than the reference strain RH (that is maintained in all reference labs) in order to reach more 

definite conclusions regarding the usefulness of T. gondii propagation approaches as the one 

presented here. 
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5. Final overview, concluding remarks and future perspectives  

T. gondii is one of the most successful parasitic organismsis that infects over a third of the 

world's humanity. Humans remain infected for their whole lives and this infection constitutes a 

life-long threat. The high disease burden reported in the multiple studies performed worldwide 

(referred in chapter I of this dissertation) highlights the lifetime effects that T. gondii can have on 

infected individuals and the worldwide public health concern that this infection represents. The 

main goal of this PhD thesis was to contribute for the knowledge of toxoplasmosis in Portugal. 

We pursued this goal essentially due to the existence of significant knowledge gaps regarding 

toxoplasmosis in our country. Firstly, Portuguese national health authorities considered that there 

was a lack of knowledge on the epidemiological situation of toxoplasmosis in Portugal, even 

though congenital toxoplasmosis is a mandatory notifiable disease in our country. Secondly, there 

was also a lack of data regarding the T. gondii circulating genotypes in humans and this issue 

gains special relevance since our country  has a long history of trade and social interaction with 

our ex colonies, involving human and animal migrations and also import/export of food products. 

Finally, on behalf of the animal welfare by imposition of legislative regulations introduced in the 

last years in Europe, we also developed laboratory approaches aiming at replacing, or at least 

reducing, the laboratory animal manipulation that is a daily requirement in a toxoplasmosis 

reference laboratory. 

In chapter II, we focused our efforts in evaluating the T. gondii seroprevalence in the 

Portuguese population by a comparison of three cross-sectional studies spanning three decades 

(1979 / 80, 2001 - 2002 and 2013). We assessed the seroprevalence trends in the Portuguese 

general population, by age group, region and gender with special focus on women of childbearing 

age. We analysed the presence of T. gondii IgG specific antibodies in 1657 sera from the 2001 - 

2002 survey and in 1440 sera from the 2013 survey, by using the automated methodology Enzyme 

Linked Fluorescent Assay for screening purposes and the Direct Agglutination Test to clarify the 

equivocal samples. Concerning the 1979/80 survey we didn’t perform laboratorial work because 

the data was already available. The T. gondii overall seroprevalence decreased from 47% in 

1979/1980 to 22 % in the 2013 survey, and concerning childbearing women we observed a 

decrease from 53 % in 1979 – 1980 to 18 % in 2013. We also observed that the prevalence of T. 

gondii IgG increased significantly with age, indicating that infection is acquired throughout life. 

The observation that T. gondii seroprevalence decreased over time, both in the general population 

and in the childbearing women, is in agreement with what was observed in many developed 

countries where T. gondii seroprevalence declined sharply over the past three decades 

(Nowakowska et al., 2006c). Of special relevance is the scenario obtained for childbearing 

women, indicating that about 80 % of Portuguese women are not immune against the T. gondii
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infection, and that the majority of potential pregnant women are susceptible to primary infection 

yielding a risk of congenital toxoplasmosis and respective sequel. Thus, the low prevalence 

observed among women of childbearing age should not be neglected. The incidence of infection 

is dependent on the general seroprevalence, determining the population susceptibility and the 

frequency of risk factors for toxoplasmosis acquisition. Therefore, seroprevalence should be 

considered a strong indicator to establish screening policies. This study reinforces that prenatal 

screening for toxoplasmosis is necessary due to the high rate of seronegative women exposed to 

infection and the consequent probability of a high number of primary infections in the 

childbearing period. Since there is no vaccine to prevent human toxoplasmosis, the improvement 

of primary prevention constitutes a major tool to avoid infection in the susceptible groups. We 

believe that the evaluation of seroprevalence of toxoplasmosis in Portuguese population was of 

great significance in public health because it allowed us to infer the risk of infection, namely of 

pregnant women and of women in childbearing age, allowing health authorities to perform an 

effective prevention for this life threat infection. Of note, this study would have been enriched if 

we had the opportunity to evaluate other risk factors of infection. However, this could not be 

performed due to the lack of more complete personal, socioeconomic and demographic 

information. To overcome this limitation and also in the context of epidemiological studies, we 

intend to give a step forward and identify the sources of T. gondii infection. We will discuss this 

issue afterwards in the future perspectives item. 

We then extended the focus of the study to the parasite, thus, on behalf of national reference 

laboratory mission, in chapter III we intended to genetically characterize the T. gondii strains 

isolated from the several biological samples from the population with suspected toxoplasmosis  

that attended to the NIH to perform the laboratorial diagnosis of T. gondii. We also studied the 

demographic characteristics of the referred patients and estimated the rate of new cases in the last 

10 years. The complete pre and postnatal diagnosis of congenital toxoplasmosis is composed by 

serological, molecular and mice inoculation approaches and this laboratory work are carried out 

in Portugal exclusively at NIH. Considering this, it is reasonable to assume that the existing 

collection of biological products and strains likely constitutes a national representation of this 

infection. A total of 5722 cases were analysed, being 1459 (25.5 %) cases confirmed as 

toxoplasmosis, 98.4 %, (1436 cases) of these were new cases of acquired toxoplasmosis and 1.6 

%, (23 cases) were new cases of congenital toxoplasmosis. With the exception of France, 

Germany and Poland that showed the highest rates of congenital toxoplasmosis in Europe, the 

number of new cases per year found in this study was similar to the ones observed in the other 

European countries (ECDC, 2013, 2015, 2017). This is somehow in line with the prevalence 

estimated in the Chapter II for the general Portuguese population in 2013 (22 %), which 

constitutes a low value when compared with the ones obtained in France, Germany and Poland 
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and some other countries from the north of Europe (Pappas et al., 2009). The policies of active 

screening of pregnant women in these countries, especially in France, can explain why these 

countries report the highest rates of congenital toxoplasmosis among reporting EU/EEA countries 

(ECDC, 2017). Concerning T. gondii genetic characterization, we analyzed 48 strains isolated in 

a congenital and acquired toxoplasmosis context from the biological samples of the referred 

positive cases. Similar  to other European studies (Nowakowska et al., 2006b; Ajzenberg et al., 

2015) we found a majority of type II strains (73 %; 35/48) using Sag2 classical PCR methodology. 

Curiously, we found 21 % (10/48) of recombinant strains by PCR of five microsatellites, although 

these strains had previously been identified as type II or I by Sag2 classical genotyping. This 

suggests that multi-loci approaches for typing purposes that may be developed in a near future 

may soon reveal a considerably higher recombination scenario in T. gondii than the one that is 

currently assumed. Regarding the virulence phenotype, we observed a virulence rate of 15 % 

(7/48) in mice inoculation, which was quite low but was similar to the one observed in other 

countries (Ajzenberg et al., 2002b; Gebremedhin et al., 2014b). An unexpected finding was that 

only three type I strains demonstrated virulence in mice, and, on the contrary, one type II strain 

killed the mice in 120 days after the first inoculation (and continued killing mice in less time in 

the subsequent passages). A possible explanation for this fact is that some of the strains classified 

as type I and II by classical Sag2 and 5 microsatellites may not be “true” type I and II but instead 

recombinant strains. The recombinant strains may be of great relevance, as it is believed that they 

are associated with more severe symptoms in immunocompetent and immunocompromised hosts 

and could pass through the placenta more easily than the archetypal strains (Grigg et al., 2001b). 

Nevertheless, revealing a recombinant character by simply using the traditional typing loci is 

certainly a too humble approach as the probability of finding recombinant strains increases if 

broader genomic regions are evaluated. Therefore it is imperative to better characterize the genetic 

background of these unusual strains as unusual genotype-phenotype associations (e.g., 

implications in specific disease outcomes) may eventually be found for some recombinant 

profiles. In this regard, it will be important to analyze several other loci that are polymorphic and 

genome dispersed, in order to better understand the degree of genomic mosaicism displayed by 

the circulating strains. Overall, this study presents the first data in Portugal concerning T. gondii 

genotyping from human samples and it reveals genetic variations in the predominant clonal 

lineages and more specifically the existence of a considerable proportion of recombinant strains. 

The tasks enrolled in this previous study, which are strongly associated with the role of the 

laboratory at the Portuguese NIH as the national reference laboratory, deeply involve the use of 

the animal model, not only to propagate the prototype T. gondii strains (e.g. RH strain) and the 

clinical isolates, but also to enrich the parasitic load of the biological samples to increase the 

success of the typing procedures. Thus, in Chapter IV we aimed to give a step forward towards 
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the improvement of good practices regarding the use of the animal model in our reference 

laboratory. To reach this goal, we evaluated the genetic and phenotypic stability of the virulent  

T. gondii RH strain throughout its parallel propagation in mice, in a cell line, and in an alternating 

way of these two procedures. To fulfill this objective we performed three parallel approaches 

during a period of 10 months, namely, a continuous passage of the RH strain in mice (Experiment 

A), a continuous passage of the RH strain in human foreskin fibroblasts (Experiment B) and the 

use of intercalate passages of the RH strain in the cell line and in mice (Experiment C). We then 

evaluated multiple phenotypic aspects, such as the capacity to maintain an active multiplication, 

the tachyzoites shape, number, motility, the capacity to maintain a virulence phenotype in mice, 

and also evaluated potential genotypic alterations throughout cell line versus mice propagation.  

One of the highlights of this study is our finding in Experiment C, namely, the observation of 

tachyzoite-rich ascites with harvesting values similar to the ones obtained in Experiment A. To 

reinforce the success of this experiment we also obtained tachyzoites yields in the multiples 

harvesting processes of the cell line about 2.5 - fold higher than the ones obtained at the end of 

each cycle in Experiment B. This outcome indicates that while the ability of tachyzoites to 

maintain active multiplication in a cell line during continuous passage decreases over time, this 

ability appears to be renewed when, after short periods in a cell line (eg, a week, experiment C), 

tachyzoites are transferred to mice. We also assessed the impact of long-term tachyzoite passage 

in the HFF cell line at three time points (at weeks 3, 22, and 44) after the first inoculation 

(Experiment B) and observed that the RH strain completely lost its virulence. We observed no 

tachyzoites in the ascites and no cysts in the brain after scarification of the mice inoculated with 

the parasite that was harvested from the referred three time points. Also, the other mouse that was 

inoculated with the same harvested parasite died of old age. These data strongly suggest that a 

long-term passaging of the parasite exclusively in a cell line is highly detrimental in terms of 

tachyzoites virulence. Concerning the evaluation of potential genomic changes throughout 

propagation, which enrolled ten samples (about one per month) from each “experiment” and 

targeted nine genome loci, we observed no SNP/indels both chronologically (for a given 

experiment) and between experiments, thus no apparent genetic alterations were observed as a 

consequence of in vitro propagation. Nevertheless, it should be emphasized that, although we 

surveyed loci that are polymorphic and believed to be involved in adaptation (de Melo Ferreira et 

al., 2006; Ajzenberg et al., 2010; Su et al., 2010), they represent just a tiny part of the large  

T. gondii genome, hampering strong conclusions about this specific evaluation.  

Since the publication of The Principles of Humane Experimental Technique,by Russell and 

Burch in 1959 (Russell and Burch, 1959), scientists and government agencies all over the world 

have endorsed replacement, reduction, and refinement as essential tools for promoting the humane 

treatment of research animals. In the Principles, Russell and Burch proposed a new applied 
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science that would improve the treatment of laboratory animals while advancing the quality of 

science in studies that use animal manipulation. They introduced the definitions of the 3Rs 

(“replacement, reduction, and refinement”), which subsequently have become known as 

‘alternative methods’ for minimizing the potential for animal pain and distress in biomedical 

research. It should be noted that it was not the use of animals in research that these scientist found 

problematic, but the infliction on research animals of unnecessary or avoidable pain, fear, stress, 

anxiety, bodily discomfort and other significantly unpleasant feelings (Tannenbaum and Bennett, 

2015) They defended the principle that, when it is scientifically appropriate to use animals in 

research or testing, all reasonable efforts should be made to minimize and, when possible, 

eliminate the stress experienced by these animals. At the NRL of the Portuguese NIH we can't 

abandon the animal model because it constitutes both the serological and isolation reference 

method for diagnosis of congenital and acquired toxoplasmosis, playing also irreplaceable roles 

in studies focusing natural infection dynamics and parasite dissemination. Nevertheless, our data 

suggests that we can significantly reduce the use of the demanding in vivo model and we will now 

adopt the Experiment C procedure for RH strain propagation in our laboratory. This would 

strongly impact, not only the number of sacrificed mice in our routine procedure, (about 360 

animals per year that we can reduce to about 70) but would also ensure the putative maintenance 

of the virulence of the passaged strain. 

As concluding remarks, we believe that this PhD dissertation contributes to the better 

knowledge of toxoplasmosis in Portugal in an epidemiological, genetic and animal 

experimentation manner. In fact, not only we used a human-targeted approach and determined the 

T. gondii seroprevalence throughout the last decades, but we also focused on the parasite by 

assessing the genetic variability of the disease-causing clones and their virulence in mice, and 

finally established procedures aiming at reducing the number of sacrificed animals that are 

routinely used for both diagnostic and research purposes. 
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Future perspectives: 

The future perspectives are drawn according to the results of this PhD dissertation and the 

laboratory's ability. Thus, we anticipate three major tasks to be developed in a near future: 

To overcome the lack of the identification of the risk factors of infection in the study 

described in Chapter II we intend to go a step forward and identify the sources of T. gondii 

infection. Eating undercooked meat is currently considered a major source of T. gondii infections 

in Europe, moreover, and as we have already observed, there are major geographical differences 

in the epidemiology of the parasite as well as in consumption habits, which affects the importance 

of different transmission routes and specific product types. In 2011 the identification of a 

sporozoite specific antigen (TgERP) enabled researchers to detect infections caused through 

oocysts by a serological method (Dolores Hill, Cathleen Coss, 2011) but identification through 

cysts is still missing. To accomplish this propose we aim to develop a novel NGS-MLST typing 

method that can detect within-genotype patterns that are important for understanding transmission 

routes and source tracing, and may improve preparedness to identify outbreaks and imported 

emerging atypical strains. The lack of information on the attribution to specific infection sources 

has hampered the development of effective intervention strategies and science-to-policy 

translation. 

On behalf of the data presented in chapter III, we will proceed with studies that are already 

ongoing in our laboratory towards the implementation of a multi loci NGS-based approach to 

perform a more robust genetic characterization of the T. gondii isolates. This will also allow us to 

better identify recombinant strains, which are believed to have specific phenotypic properties and 

likely geographical distribution. Ultimately, this may also be useful for future genotype-

phenotype association studies, which may reveal genomic structures potentially associated with 

an increased virulence phenotype and specific disease outcomes, launching basis for the 

development of proper prophylactic or therapeutic measures.  

Regarding the outputs of chapter IV, we aim to understand if the approach of Experiment 

C is also successfully adaptable to the collection of clinical strains in the Reference laboratory, 

and not only to the highly virulent RH strain that was enrolled in the pilot study. This would 

tremendously impact the routine laboratory procedures associated with the maintenance of the 

viable T. gondii strains, namely with the significative reduction of the sacrificed mice.  



 

81 

 

 

 

 

 

 

  

References 

  



 

82 

 



References 
 

 

83 

References 

2010/63/EU (2010). Directive 2010/63/EU of the European Parliament and of the Council of 22 
September 2010 on the protection of animals used for scientific purposes. Official Journal 
of the European Union 33–79. doi: 32010L0063. 

Ajzenberg, D., Bañuls, A. L., Tibayrenc, M. and Dardé, M. L. (2002a). Microsatellite analysis 
of Toxoplasma gondii shows considerable polymorphism structured into two main clonal 
groups. International journal for parasitology 32, 27–38. 

Ajzenberg, D., Cogné, N., Paris, L., Bessières, M., Thulliez, P., Filisetti, D., Pelloux, H., 
Marty, P. and Dardé, M. (2002b). Genotype of 86 Toxoplasma gondii Isolates Associated 
with Human Congenital Toxoplasmosis, and Correlation with Clinical Findings. The 
Journal of Infectious Diseases 186, 684–689. doi: 10.1086/342663. 

Ajzenberg, D., Bañuls, A. L., Su, C., Dumètre, A., Demar, M., Carme, B. and Dardé, M. L.  
(2004). Genetic diversity, clonality and sexuality in Toxoplasma gondii. International 
Journal for Parasitology 34, 1185–1196. doi: 10.1016/J.IJPARA.2004.06.007. 

Ajzenberg, D., Dumètre, A. and Dardé, M. L. (2005). Multiplex PCR for typing strains of 
Toxoplasma gondii. Journal of Clinical Microbiology 43, 1940–1943. doi: 
10.1128/JCM.43.4.1940-1943.2005. 

Ajzenberg, D., Yera, H., Marty, P., Paris, L., Dalle, F., Menotti, J., Aubert, D., Franck, J., 

Bessières, M., Quinio, D., Pelloux, H., Delhaes, L., Desbois, N., Thulliez, P., Robert-

Gangneux, F., Kauffmann-Lacroix, C., Pujol, S., Rabodonirina, M., Bougnoux, M., 

Cuisenier, B., Duhamel, C., Duong, T. H., Filisetti, D., Flori, P., Gay-Andrieu, F., 
Pratlong, F., Nevez, G., Totet, A., Carme, B., Bonnabau, H., Dardé, M. and Villena, I.  
(2009). Genotype of 88 Toxoplasma gondii isolates associated with toxoplasmosis in 
immunocompromised patients and correlation with clinical findings. The Journal of 
Infectious Diseases 199, 1155–1167. doi: 10.1086/597477. 

Ajzenberg, D., Collinet, F., Mercier, A., Vignoles, P. and Dardé, M. L.  (2010). Genotyping of 
Toxoplasma gondii isolates with 15 microsatellite markers in a single multiplex PCR assay. 
Journal of Clinical Microbiology 48, 4641–4645. doi: 10.1128/JCM.01152-10. 

Ajzenberg, D., Collinet, F., Aubert, D., Villena, I., Dardé, M.-L. and Devillard, S. (2015). The 
rural–urban effect on spatial genetic structure of type II Toxoplasma gondii strains involved 
in human congenital toxoplasmosis, France, 2002–2009. Infection, Genetics and Evolution 
36, 511–516. doi: 10.1016/J.MEEGID.2015.08.025. 

Ajzenberg, D., Yera, H., Marty, P., Paris, L., Dalle, F., Menotti, J.,  Aubert, D., Franck, J., 

Bessières, M., Quinio, D., Pelloux, H., Delhaes, L., Desbois, N., Thulliez, P., Robert‐

Gangneux, F., Kauffmann-Lacroix, C., Pujol, S., Rabodonirina, M., Bougnoux, M., 

Cuisenier, B., Duhamel, C., Duong, T. H., Filisetti, D., Flori, P., Gay‐Andrieu, F., 
Pratlong, F., Nevez, G., Totet, A., Carme, B., Bonnabau, H., Dardé, M., Villena, I., 

Bontell, I. L., Hall, N., Ashelford, K. E., Dubey, J. P., Boyle, J. P., Lindh, J., Smith, J. 

E., Burrells, A., Opsteegh, M., Pollock, K. G., Alexander, C. L., Chatterton, J., Evans, 

R., Walker, R., McKenzie, C. A., Hill, D., Innes, E. A., Katzer, F., Carneiro, A. C. A. V., 

Andrade, G. M., Costa, J. G. L., Pinheiro, B. V., Vasconcelos-Santos, D. V., Ferreira, A. 

M., Su, C., José Nélio Januário, Vitor, R. W. A., Li, M., Mo, X. W., Wang, L., Chen, H., 

Luo, Q. L., Wen, H. Q., Wei, W., Zhang, A. M., Du, J., Lu, F. L., Lun, Z. R., Shen, J. 
L., Rico-Torres, C. P., Vargas-Villavicencio, J. A., Correa, D., Vijaykumar, B. R., 

Lekshmi, S. U., Sai Kant, R., Vaigundan, D., Mahadevan, A., Rajendran, C., Shankar, 

S. K., Jayshree, R. S., Yang, N., Niedelman, W., Melo, M., Lu, D., Julien, L., Saeij, J. P. 

J., Farrell, A., Marth, G. T., Gubbels, M.-J., Su, C., Shwab, E. K., Zhou, P., Zhu, X. Q. 
and Dubey, J. P. (2016). Phylogeny and virulence divergency analyses of Toxoplasma 
gondii isolates from China. Parasites and Vectors 7, 1–12. doi: 10.1186/s13071-016-1610-
6. 

Ângelo, M. H. (1983). Inquérito Serológico Nacional, Portugal continental, 1979/80 Prevalência 
dos anticorpos antitoxoplasmose. Arq Ins Nac Saúde 8, 105–9. 

Ângelo, M. H. (2003). Legal dispositions and preventive strategies in congenital toxoplasmosis 



References 
 

 

84 

in Portugal. Archives de pediatrie 10, 25–6. 
Arisue, N. and Hashimoto, T. (2015). Phylogeny and evolution of apicoplasts and apicomplexan 

parasites. Parasitology international 64, 254–9. doi: 10.1016/j.parint.2014.10.005. 

Asgari, Q., Keshavarz, H., Shojaee, S., Motazedian, M. H., Mohebali, M., Miri, R., 
Mehrabani, D. and Rezaeian, M. (2013). In vitro and in vivo potential of RH strain of 
Toxoplasma gondii (type I) in tissue cyst forming. Iranian Journal of Parasitology 8, 367–
375. 

Bacci, C., Vismarra, A., Mangia, C., Bonardi, S., Bruini, I., Genchi, M., Kramer, L. and 
Brindani, F. (2015). Detection of Toxoplasma gondii in free-range, organic pigs in Italy 
using serological and molecular methods. International Journal of Food Microbiology 202, 
54–56. doi: 10.1016/j.ijfoodmicro.2015.03.002. 

Barragan, A. and Sibley, L. D. (2002). Transepithelial Migration of Toxoplasma gondii Is Linked 
to Parasite Motility and Virulence. The Journal of Experimental Medicine 195, 1625–1633. 
doi: 10.1084/jem.20020258. 

Bartolomé Alvarez, J., Martínez Serrano, M., Moreno Parrado, L., Lorente Ortuño, S. and 
Crespo Sánchez, M. D. (2008). Prevalence and incidence in Albacete, Spain, of 
Toxoplasma gondii infection in women of childbearing age: differences between immigrant 
and non-immigrant (2001-2007). Revista espanola de salud publica 82, 333–42. 

Batz, M. B., Hoffmann, S. and Morris, J. G. (2012). Ranking the Disease Burden of 14 
Pathogens in Food Sources in the United States Using Attribution Data from Outbreak 
Investigations and Expert Elicitation. Journal of Food Protection 75, 1278–1291. doi: 
10.4315/0362-028X.JFP-11-418. 

Berdoy, M., Webster, J. P. and Macdonald, D. W. (2000). Fatal attraction in rats infected with 
Toxoplasma gondii. Royal Society 267,. 

Black, M. W. and Boothroyd, J. C. (2000). Lytic Cycle of Toxoplasma gondii. Microbiology 
and Molecular Biology Reviews 64, 607–623. doi: 10.1128/mmbr.64.3.607-623.2000. 

Blader, I. J. and Koshy, A. A. (2014). Toxoplasma gondii development of its replicative niche: 
In its host cell and beyond. Eukaryotic Cell 13, 965–976. doi: 10.1128/EC.00081-14. 

Blader, I. J., Coleman, B. I., Chen, C.-T. and Gubbels, M.-J. (2015). Lytic Cycle of 
Toxoplasma gondii: 15 Years Later. Annual Review of Microbiology 69, 463–485. doi: 
10.1146/annurev-micro-091014-104100. 

Bobić, B., Nikolić, A., Klun, I. and Djurković-Djaković, O. (2011). Kinetics of Toxoplasma 
infection in the Balkans. Wiener klinische Wochenschrift 123 Suppl, 2–6. doi: 
10.1007/s00508-011-0052-6. 

Borges, V., Pinheiro, M., Pechirra, P., Guiomar, R. and Gome s, J. P. (2018). INSaFLU: an 
automated open web-based bioinformatics suite “from-reads” for influenza whole-genome-
sequencing-based surveillance. Genome Medicine 10, 46. doi: 10.1186/s13073-018-0555-0. 

Bossi, P. and Bricaire, F. (2004). Severe acute disseminated toxoplasmosis. Lancet (London, 
England) 364, 579. doi: 10.1016/S0140-6736(04)16841-4. 

Bougdour, A., Tardieux, I. and Hakimi, M. A. (2014). Toxoplasma exports dense granule 
proteins beyond the vacuole to the host cell nucleus and rewires the host genome expression. 
Cellular Microbiology 16, 334–343. doi: 10.1111/cmi.12255. 

Brézin, A. P., Kasner, L., Thulliez, P., Li, Q., Daffos, F., Nussenblatt, R. B. and Chan, C. C.  
(1994). Ocular toxoplasmosis in the fetus. Immunohistochemistry analysis and DNA 
amplification. Retina (Philadelphia, Pa.) 14, 19–26. 

Burg, J. L., Grover, C. M., Pouletty, P. and Boothroyd, J. C.  (1989). Direct and sensitive 
detection of a pathogenic protozoan, Toxoplasma gondii, by polymerase chain reaction. 
Journal of clinical microbiology 27, 1787–92. 

Burnett, A. J., Shortt, S. G., Isaac-Renton, J., King, A., Werker, D. and Bowie, W. R. (1998). 
Multiple cases of acquired toxoplasmosis retinitis presenting in an outbreak. Ophthalmology 
105, 1032–1037. doi: 10.1016/S0161-6420(98)96004-3. 

Carme, B., Bissuel, F., Ajzenberg, D., Bouyne, R., Aznar, C., Demar, M., Bichat, S., Louvel, 
D., Bourbigot, A. M., Peneau, C., Neron, P. and Dardé, M. L.  (2002). Severe acquired 
toxoplasmosis in immunocompetent adult patients in French Guiana. Journal of clinical 



References 
 

 

85 

microbiology 40, 4037–44. doi: 10.1128/jcm.40.11.4037-4044.2002. 
Carme, B., Demar, M., Ajzenberg, D. and Dardé, M. L. (2009). Severe acquired toxoplasmosis 

caused by wild cycle of Toxoplasma gondii, French Guiana. Emerging infectious diseases 
15, 656–8. doi: 10.3201/eid1504.081306. 

Carme, B., Bissuel, F., Ajzenberg, D., Bouyne, R., Aznar, C., Demar, M., Bichat, S., Louvel, 
D., Bourbigot, A. M., Peneau, C., Neron, P. and Darde, M. L. (2011). Severe Acquired 
Toxoplasmosis in Immunocompetent Adult Patients in French Guiana. 40, 18070. doi: 
10.1128/JCM.40.11.4037. 

Carruthers, V. and Boothroyd, J. C. (2007). Pulling together: an integrated model of 
Toxoplasma cell invasion. Current opinion in microbiology 10, 83–9. doi: 
10.1016/j.mib.2006.06.017. 

Cavalcante, A. C. R., Ferreira, A. M., Melo, M. N., Fux, B., Brandão, G. P. and Vitor, R. W. 
A. (2007). Virulence and molecular characterization of Toxoplasma gondii isolated from 
goats in Ceará, Brazil. Small Ruminant Research 69, 79–82. doi: 
10.1016/j.smallrumres.2005.12.023. 

CDC CDC. 
CDC https://www.cdc.gov/parasites/toxoplasmosis/health_professionals/index.html#tx. 

Cheng, W., Liu, F., Li, M., Hu, X., Chen, H., Pappoe, F., Luo, Q., Wen, H., Xing, T., Xu, Y. 
and Shen, J. (2015). Variation detection based on next-generation sequencing of type 
Chinese 1 strains of Toxoplasma gondii with different virulence from China. BMC Genomics 
16, 1–9. doi: 10.1186/s12864-015-2106-z. 

Cook, A. J., Gilbert, R. E., Buffolano, W., Zufferey, J., Petersen, E., Jenum, P. A., Foulon, 
W., Semprini, A. E. and Dunn, D. T. (2000). Sources of Toxoplasma infection in pregnant 
women: European multicentre case-control study. European Research Network on 
Congenital Toxoplasmosis. BMJ (Clinical research ed.) 321, 142–7. 

Dabritz, H. A. and Conrad, P. A. (2010). Cats and Toxoplasma : Implications for Public Health. 
Zoonoses and Public Health 57, 34–52. doi: 10.1111/j.1863-2378.2009.01273.x. 

Darde, M. L., Bouteille, B. and Pestre-Alexandre, M. (1988). Isoenzymic characterization of 
seven strains of Toxoplasma gondii by isoelectrofocusing in polyacrylamide gels. The 
American journal of tropical medicine and hygiene 39, 551–8. doi: 
10.4269/ajtmh.1988.39.551. 

Dardé, M. L., Bouteille, B. and Pestre-Alexandre, M. (1992). Isoenzyme analysis of 35 
Toxoplasma gondii isolates and the biological and epidemiological implications. The 
Journal of parasitology 78, 786–94. 

de Melo, E. J. T., de Carvalho, T. U. and de Souza, W.  (1992). Penetration of Toxoplasma 
gondii into host cells induces changes in the distribution of the mitochondria and the 
endoplasmic reticulum. Cell Structure and Function 17, 311–317. doi: 10.1247/csf.17.311. 

de Melo Ferreira, A., Vitor, R. W. A., Gazzinelli, R. T. and Melo, M. N.  (2006). Genetic 
analysis of natural recombinant Brazilian Toxoplasma gondii strains by multilocus PCR-
RFLP. Infection, Genetics and Evolution 6, 22–31. doi: 10.1016/j.meegid.2004.12.004. 

de Moura, L., Bahia-Oliveira, L. M. G., Wada, M. Y., Jones, J. L., Tuboi, S. H., Carmo, E. 

H., Ramalho, W. M., Camargo, N. J., Trevisan, R., Graça, R. M. T., da Silva, A. J., 
Moura, I., Dubey, J. P. and Garrett, D. O. (2006). Waterborne toxoplasmosis, Brazil, from 
field to gene. Emerging infectious diseases 12, 326–9. doi: 10.3201/eid1202.041115. 

de Ory Manchón, F. (2009). Seroepidemiological surveys of non vaccine-preventable diseases 
and their interest in public health. Revista espanola de salud publica 83, 645–57. 

De Sousa, S., Ajzenberg, D., Canada, N., Freire, L., Da Costa, J. M. C., Dardé, M. L., 
Thulliez, P. and Dubey, J. P. (2006). Biologic and molecular characterization of 
Toxoplasma gondii isolates from pigs from Portugal. Veterinary Parasitology 135, 133–136. 
doi: 10.1016/j.vetpar.2005.08.012. 

Del Grande, C., Galli, L., Schiavi, E., Dell’Osso, L. and Bruschi, F. (2017). Is Toxoplasma 
gondii a Trigger of Bipolar Disorder? Pathogens 6, 3. doi: 10.3390/pathogens6010003. 

Delbac, F., Sänger, A., Neuhaus, E. M., Stratmann, R., Ajioka, J. W., Toursel, C., Herm-
Götz, A., Tomavo, S., Soldati, T. and Soldati, D. (2001). Toxoplasma gondii myosins B/C: 



References 
 

 

86 

One gene, two tails, two localizations, and a role in parasite division. Journal of Cell Biology 
155, 613–623. doi: 10.1083/jcb.200012116. 

Demar, M., Hommel, D., Djossou, F., Peneau, C., Boukhari, R., Louvel, D., Bourbigot, A.-
M., Nasser, V., Ajzenberg, D., Darde, M.-L. and Carme, B. (2012). Acute toxoplasmoses 
in immunocompetent patients hospitalized in an intensive care unit in French Guiana. 
Clinical microbiology and infection : the official publication of the European Society of 
Clinical Microbiology and Infectious Diseases 18, E221-31. doi: 10.1111/j.1469-
0691.2011.03648.x. 

Denkers, E. Y. and Gazzinelli, R. T. (1998). Regulation and function of T-cell-mediated 
immunity during Toxoplasma gondii infection. Clinical Microbiology Reviews 11, 569–588. 

Derouin, F., Mazeron, M. C. and Garin, V. J. F. (1987). Comparative study of tissue culture 
and mouse inoculation methods for demonstration of Toxoplasma gondii. Journal of Clinical 
Microbiology 25, 1597–1600. 

Diza, E., Frantzidou, F., Souliou, E., Arvanitidou, M., Gioula, G. and Antoniadis, A. (2005). 
Seroprevalence of Toxoplasma gondii in northern Greece during the last 20 years. Clinical 
microbiology and infection : the official publication of the European Society of Clinical 
Microbiology and Infectious Diseases 11, 719–23. doi: 10.1111/j.1469-0691.2005.01193.x. 

Dlugonska, H. (2008). Toxoplasma Rhoptries: Unique Secretory Organelles and Source of 
Promising Vaccine Proteins for Immunoprevention of Toxoplasmosis. Journal of 
Biomedicine and Biotechnology 2008, 1–7. doi: 10.1155/2008/632424. 

Dobrowolski, J. M. and Sibley, L. D. (1996). Toxoplasma invasion of mammalian cells is 
powered by the actin cytoskeleton of the parasite. Cell 84, 933–939. doi: 10.1016/S0092-
8674(00)81071-5. 

Dolores Hill, Cathleen Coss, J. P. D. (2011). Identification of a sporozoite-specific antigen from 
Toxoplasma gondii. Jornal Parasitology 97, 328–337. 

Dubey, J. P. (2010). Toxoplasmosis of Animals and Humans. CRC Press doi: 
10.1201/9781420092370. 

Dubey, J. P., Lindsay, D. S. and Speer, C. A. (1998). Structures of Toxoplasma gondii 
tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. 
Clinical microbiology reviews 11, 267–99. 

Dubey, J. P., Vianna, M. C. B., Sousa, S., Canada, N., Meireles, S., Correia da Costa, J. M., 
Marcet, P. L., Lehmann, T., Dardé, M. L. and Thulliez, P. (2006). Characterization of 
Toxoplasma gondii Isolates in Free-Range Chickens From Portugal. Journal of Parasitology 
92, 184–186. doi: 10.1645/GE-652R.1. 

Dubey, J. P., Sundar, N., Gennari, S. M., Minervino, A. H. H., Farias, N. A. d. R., Ruas, J. 
L., dos Santos, T. R. B., Cavalcante, G. T., Kwok, O. C. H. and Su, C.  (2007a). Biologic 
and genetic comparison of Toxoplasma gondii isolates in free-range chickens from the 
northern Pará state and the southern state Rio Grande do Sul, Brazil revealed highly diverse 
and distinct parasite populations. Veterinary Parasitology 143, 182–188. doi: 
10.1016/j.vetpar.2006.08.024. 

Dubey, J. P., Huong, L. T. T., Sundar, N. and Su, C.  (2007b). Genetic characterization of 
Toxoplasma gondii isolates in dogs from Vietnam suggests their South American origin. 
Veterinary Parasitology 146, 347–351. doi: 10.1016/j.vetpar.2007.03.008. 

Dubey, J. P., Velmurugan, G. V., Rajendran, C., Yabsley, M. J., Thomas, N. J., Beckmen, K. 
B., Sinnett, D., Ruid, D., Hart, J., Fair, P. A., McFee, W. E., Shearn-Bochsler, V., Kwok, 

O. C. H., Ferreira, L. R., Choudhary, S., Faria, E. B., Zhou, H., Felix, T. A. and Su, C.  
(2011). Genetic characterisation of Toxoplasma gondii in wildlife from North America 
revealed widespread and high prevalence of the fourth clonal type. International Journal for 
Parasitology 41, 1139–1147. doi: 10.1016/j.ijpara.2011.06.005. 

Dubremetz, J. F. (2007). Rhoptries are major players in Toxoplasma gondii invasion and host 
cell interaction. Cellular Microbiology 9, 841–848. doi: 10.1111/j.1462-5822.2007.00909.x.  

Dumètre, A., Le Bras, C., Baffet, M., Meneceur, P., Dubey, J. P., Derouin, F., Duguet, J. P., 
Joyeux, M. and Moulin, L. (2008). Effects of ozone and ultraviolet radiation treatments on 
the infectivity of Toxoplasma gondii oocysts. Veterinary Parasitology 153, 209–213. doi: 



References 
 

 

87 

10.1016/j.vetpar.2008.02.004. 
Dunn, D., Wallon, M., Peyron, F., Petersen, E., Peckham, C. and Gilbert, R.  (1999). Mother-

to-child transmission of toxoplasmosis: risk estimates for clinical counselling. The Lancet 
353, 1829–1833. doi: 10.1016/S0140-6736(98)08220-8. 

ECDC (2013). European Centre for Disease Prevention and Control. Annual Epidemiological 
Report 2013. Reporting on 2011 surveillance data and 2012 epidemic intelligence data 
Stockholm: ECDC, 2013. 

ECDC (2015). Annual epidemiological report for 2015 - Botulism. 
ECDC (2017). Annual epidemiological report for 2016 Congenital Toxoplasmosis. 7. 
EEC, 86 / 609 / (1986). COUNCIL DIRECTIVE of 24 November 1986. Official Journal of the 

European Communities 1–28. 
El Hajj, H., Lebrun, M., Arold, S. T., Vial, H., Labesse, G. and Dubremetz, J. F.  (2007). 

ROP18 is a rhoptry kinase controlling the intracellular proliferation of Toxoplasma gondii. 
PLoS Pathogens 3, 0200–0211. doi: 10.1371/journal.ppat.0030014. 

European Food Safety Authority Panel on Biological (2007). European Food Safety Authority 
Panel on Biological Hazards. Scientific opinion on Surveillance and monitoring of 
Toxoplasma in humans, food and animals. EFSA J 83, 1–64. 

Evans R. (1999). Cell-culture system for continuous production of Toxoplasma gondii 
tachyzoites. Eur J Clin Microbiol Infect Dis. 879–84. 

Fazaeli, A., Carter, P. E., Darde, M. L. and Pennington, T. H. (2000). Molecular typing of 
Toxoplasma gondii strains by GRA6 gene sequence analysis. International Journal for 
Parasitology 30, 637–642. doi: 10.1016/S0020-7519(00)00036-9. 

Feldman, H. A. (1982). Epidemiology of Toxoplasma infections. Epidemiologic Reviews 4, 204–
213. doi: 10.1093/oxfordjournals.epirev.a036247. 

Feldman, H. A. and Miller, L. T. (1956). Serological study of toxoplasmosis prevalence. 
American journal of hygiene 64, 320–35. 

Ferguson, D. J. P. (2002). Toxoplasma gondii and sex: essential or optional extra? Trends in 
Parasitology 18,. 

Ferguson D, D. J. P. (2009). Toxoplasma gondii: 1908-2008, homage to Nicolle, Manceaux and 
Splendore. Memorias do Instituto Oswaldo Cruz 104, 133–148. doi: 10.1590/S0074-
02762009000200003. 

Flegr, J. (2012). Influence of latent Toxoplasma infection on human personality, physiology and 
morphology: pros and cons of the Toxoplasma-human model in studying the manipulation 
hypothesis. Journal of Experimental Biology 216, 127–133. doi: 10.1242/jeb.073635. 

Flegr, J., Klose, J., Novotná, M., Berenreitterová, M. and Havlíček, J.  (2009). Increased 
incidence of traffic accidents in Toxoplasma-infected military drivers and protective effect 
RhD molecule revealed by a large-scale prospective cohort study. BMC Infectious Diseases 
9, 72. doi: 10.1186/1471-2334-9-72. 

Flegr, J., Prandota, J., Sovičková, M. and Israili, Z. H. (2014). Toxoplasmosis - A global threat. 
Correlation of latent toxoplasmosis with specific disease burden in a set of 88 countries. 
PLoS ONE 9,. doi: 10.1371/journal.pone.0090203. 

Freitas, M. G. and Paixão, M. T. (2004). Avaliação do Programa Nacional de Vacinação: 2° 
Inquérito Serológico Nacional Portugal Continental 2001–2002. Direcção-Geral da Saúde. 

Frenkel, J. K., Dubey, J. P. and Miller, N. L. (1970). Toxoplasma gondii in Cats: Fecal Stages 
Identified as Coccidian Oocysts. Science Vol. 167, 893–896. 

Fuentes, I., Rubio, J. M., Ramírez, C. and Alvar, J.  (2001). Genotypic characterization of 
Toxoplasma gondii strains associated with human toxoplasmosis in Spain: direct analysis 
from clinical samples. Journal of clinical microbiology 39, 1566–70. doi: 
10.1128/JCM.39.4.1566-1570.2001. 

Gajria, B., Bahl, A., Brestelli, J., Dommer, J., Fischer, S., Gao, X., Heiges, M., Iodice, J., 

Kissinger, J. C., Mackey, A. J., Pinney, D. F., Roos, D. S., Stoeckert, C. J., Wang, H. and 
Brunk, B. P. (2008). ToxoDB: An integrated Toxoplasma gondii database resource. Nucleic 
Acids Research 36, 553–556. doi: 10.1093/nar/gkm981. 

Gargaté, M. J., Ferreira, I., Vilares, A., Martins, S., Cardoso, C., Silva, S., Nunes, B. and 



References 
 

 

88 

Gomes, J. P. (2016). Toxoplasma gondii seroprevalence in the Portuguese population: 
comparison of three cross-sectional studies spanning three decades. BMJ open 6, e011648. 
doi: 10.1136/bmjopen-2016-011648. 

Gebremedhin, E. Z., Abdurahaman, M., Hadush, T. and Tessema, T. S.  (2014a). 
Seroprevalence and risk factors of Toxoplasma gondii infection in sheep and goats 
slaughtered for human consumption in Central Ethiopia. BMC Research Notes 7, 1–6. doi: 
10.1186/1756-0500-7-696. 

Gebremedhin, E. Z., Abdurahaman, M., Tessema, T. S., Tilahun, G., Cox, E., Goddeeris, B., 
Dorny, P., De Craeye, S., Dardé, M. L. and Ajzenberg, D.  (2014b). Isolation and 
genotyping of viable Toxoplasma gondii from sheep and goats in Ethiopia destined for 
human consumption. Parasites and Vectors 7, 1–8. doi: 10.1186/1756-3305-7-425. 

Gibson, C. L. and Coleman, N. (1958). The Prevalence of Toxoplasma Antibodies in Guatemala 
and Costa Rica. The American Journal of Tropical Medicine and Hygiene 7, 334–338. doi: 
10.4269/ajtmh.1958.7.334. 

Gilbert, R. E., Dunn, D. T., Lightman, S., Murray, P. I., Pavesio, C. E., Gormley, P. D., 
Masters, J., Parker, S. P. and Stanford, M. R. (1999). Incidence of symptomatic 
Toxoplasma eye disease : aetiology. Epidemiology and Infection 123, 283–289. 

Gilbert, R. E., Freeman, K., Lago, E. G., Bahia-Oliveira, L. M. G., Tan, H. K., Wallon, M., 

Buffolano, W., Stanford, M. R., Petersen, E., Thulliez, P., Rommand, S., Peyron, F., 

Schmidt, D. R., Paul, M., Prusa, A., Hayde, M., Pollak, A., Bessieres, M. H., Franck, J., 

Dumon, H., Bastien, P., Issert, E., Chemla, C., Ferret, N., Marty, P., Pelloux, H., 

Fricker-Hidalgo, H., Bost-Bru, C., Evengard, B., Malm, G., Semprini, E., Savasi, V., 
Melamed, J., Neto, E., Wilken de Abreu Oliveira, A. M., Peixe, R. G. and Cortina-
Borja, M. (2008). Ocular sequelae of congenital toxoplasmosis in Brazil compared with 
Europe. PLoS Neglected Tropical Diseases 2, 8–14. doi: 10.1371/journal.pntd.0000277. 

Gkogka, E., Reij, M. W., Havelaar, A. H., Zwietering, M. H. and Gorris, L. G. M.  (2011). 
Risk-based Estimate of Effect of Foodborne Diseases on Public Health, Greece. Emerging 
Infectious Diseases 17, 1581–1598. doi: 10.3201/eid1709.101766. 

Grigg, M. E., Ganatra, J., Boothroyd, J. C. and Margolis, T. P. (2001a). Unusual Abundance 
of Atypical Strains Associated with Human Ocular Toxoplasmosis. The Journal of Infectious 
Diseases 184, 633–639. doi: 10.1086/322800. 

Grigg, M. E., Bonnefoy, S., Hehl, A. B., Suzuki, Y. and Boothroyd, J. C. (2001b). Success and 
virulence in Toxoplasma as the result of sexual recombination between two distinct 
ancestries. Science 294, 161–165. doi: 10.1126/science.1061888. 

Groër, M. W., Yolken, R. H., Xiao, J.-C., Beckstead, J. W., Fuchs, D., Mohapatra, S. S., 
Seyfang, A. and Postolache, T. T. (2011). Prenatal depression and anxiety in Toxoplasma 
gondii–positive women. American Journal of Obstetrics and Gynecology  204, 433.e1-
433.e7. doi: 10.1016/j.ajog.2011.01.004. 

Gutiérrez-Zufiaurre, N., Sánchez-Hernández, J., Muñoz, S., Marín, R., Delgado, N., Sáenz, 
M. C., Muñoz-Bellido, J. L. and García-Rodríguez, J. A. (2004). Seroprevalence of 
antibodies against Treponema pallidum, Toxoplasma gondii, rubella virus, hepatitis B and C 
virus, and HIV in pregnant women. Enfermedades infecciosas y microbiologia clinica 22, 
512–6. 

Håkansson, S., Morisaki, H., Heuser, J. and Sibley, L. D.  (1999). Time-Lapse Video 
Microscopy of Gliding Motility in Toxoplasma gondii Reveals a Novel, Biphasic 
Mechanism of Cell Locomotion. Molecular Biology of the Cell 10, 3539–3547. doi: 
10.1091/mbc.10.11.3539. 

Håkansson, S., Charron, A. J. and Sibley, L. D. (2001). Toxoplasma evacuoles: A two-step 
process of secretion and fusion forms the parasitophorous vacuole. EMBO Journal 20, 
3132–3144. doi: 10.1093/emboj/20.12.3132. 

Havelaar, A. H., Haagsma, J. A., Mangen, M.-J. J., Kemmeren, J. M., Verhoef, L. P. B., 
Vijgen, S. M. C., Wilson, M., Friesema, I. H. M., Kortbeek, L. M., van Duynhoven, Y. 
T. H. P. and van Pelt, W. (2012). Disease burden of foodborne pathogens in the 
Netherlands, 2009. International Journal of Food Microbiology 156, 231–238. doi: 



References 
 

 

89 

10.1016/j.ijfoodmicro.2012.03.029. 
Haywood, J. and Carbone, C. (2009). International Guiding Principles for Biomedical 

Research Involving Animals. doi: 10.1111/j.1439-0272.1986.tb01827.x. 
Heintzelman, M. B. (2015). Gliding motility in apicomplexan parasites. Seminars in cell & 

developmental biology 46, 135–42. doi: 10.1016/j.semcdb.2015.09.020. 
Herrmann, D. (2012). Molecular typing of Toxoplasma gondii isolates from cats and humans in 

Germany. 
Herrmann, D. C., Pantchev, N., Vrhovec, M. G., Barutzki, D., Wilking, H., Fröhlich, A., 

Lüder, C. G. K., Conraths, F. J. and Schares, G. (2010). Atypical Toxoplasma gondii 
genotypes identified in oocysts shed by cats in Germany. International Journal for 
Parasitology 40, 285–292. doi: 10.1016/j.ijpara.2009.08.001. 

Herrmann, D. C., Wibbelt, G., Götz, M., Conraths, F. J. and Schares, G.  (2013). Genetic 
characterisation of Toxoplasma gondii isolates from European beavers (Castor fiber) and 
European wildcats (Felis silvestris silvestris). Veterinary Parasitology 191, 108–111. doi: 
10.1016/j.vetpar.2012.08.026. 

Herrmann, D. C., Maksimov, P., Hotop, A., Groß, U., Däubener, W., Liesenfeld, O.,  Pleyer, 
U., Conraths, F. J. and Schares, G. (2014). Genotyping of samples from German patients 
with ocular, cerebral and systemic toxoplasmosis reveals a predominance of Toxoplasma 
gondii type II. International Journal of Medical Microbiology 304, 911–916. doi: 
10.1016/j.ijmm.2014.06.008. 

Hill, D. and Dubey, J. P. (2002). Toxoplasma gondii: Transmission, diagnosis, and prevention. 
Clinical Microbiology and Infection 8, 634–640. doi: 10.1046/j.1469-0691.2002.00485.x. 

Hill, D. E., Chirukandoth, S. and Dubey, J. P. (2005). Biology and epidemiology of Toxoplasma 
gondii in man and animals. Animal health research reviews 6, 41–61. 

Ho-Yen, D. O. (2009). Toxoplasmosis. Medicine 37, 665–667. doi: 
10.1016/j.mpmed.2009.09.006. 

Hoffmann, S., Batz, M. B. and Morris, J. G. (2012). Annual Cost of Illness and Quality-
Adjusted Life Year Losses in the United States Due to 14 Foodborne Pathogens. Journal of 
Food Protection 75, 1292–1302. doi: 10.4315/0362-028x.jfp-11-417. 

Holland, G. N. (2003). Ocular toxoplasmosis: a global reassessment. American Journal of 
Ophthalmology 136, 973–988. doi: 10.1016/j.ajo.2003.09.040. 

Holland, G. N. (2004). Ocular toxoplasmosis: a global reassessment. Part II: disease 
manifestations and management. American journal of ophthalmology 137, 1–17. 

Holland, G. N., O’Connor, G. R., Diaz, R. F., Minasi, P. and Wara, W. M. (1988). Ocular 
toxoplasmosis in immunosuppressed nonhuman primates. Investigative ophthalmology & 
visual science 29, 835–42. 

Holliman, R. E., Coock, G. C. and Zumla, A. L. (2003). Manson’s Tropical diseases. ed. 
Saunders. 

Holub, D., Flegr, J., Dragomirecká, E., Rodriguez, M., Preiss, M., Novák, T., Čermák, J., 
Horáček, J., Kodym, P., Libiger, J., Höschl, C. and Motlová, L. B.  (2013). Differences 
in onset of disease and severity of psychopathology between toxoplasmosis-related and 
toxoplasmosis-unrelated schizophrenia. Acta Psychiatrica Scandinavica 127, 227–238. doi: 
10.1111/acps.12031. 

Homan, W. L., Vercammen, M., De Braekeleer, J. and Verschueren, H. (2000). Identification 
of a 200- to 300-fold repetitive 529 bp DNA fragment in Toxoplasma gondii, and its use for 
diagnostic and quantitative PCR. International journal for parasitology 30, 69–75. 

Howe, D. K. and Sibley, L. D. (1995). Toxoplasma gondii comprises three clonal lineages : 
correlation of parasite genotype with human disease function p30 surface antigen p22 
surface antigen rhoptry protein. The Journal of Infectious Diseases 1561–1566. 

Howe, D. K., Honoré, S., Derouin, F. and Sibley, L. D. (1997). Determination of genotypes of 
Toxoplasma gondii strains isolated from patients with toxoplasmosis. Journal of Clinical 
Microbiology 35, 1411–1414. 

Hunter, C. A. and Sibley, L. D. (2012). Modulation of innate immunity by Toxoplasma gondii 
virulence effectors. Nature Reviews Microbiology 10, 766–778. doi: 10.1038/nrmicro2858. 



References 
 

 

90 

Hurtado, A., Aduriz, G., Moreno, B., Barandika, J. and García-Pérez, A. L. (2001). Single 
tube nested PCR for the detection of Toxoplasma gondii in fetal tissues from naturally 
aborted ewes. Veterinary parasitology 102, 17–27. 

Hutchison, W. M., Dunachie, J. F., Siim, J. C. and Work, K. (1969). Life cycle of Toxoplasma 
gondii. BMJ 4, 806–806. doi: 10.1136/bmj.4.5686.806-b. 

Hutchison, W. M., Dunachie, J. F., Work, K. and Chr. Siim, J.  (1971). The life cycle of the 
coccidian parasite, Toxoplasma gondii, in the domestic cat. Transactions of the Royal Society 
of Tropical Medicine and Hygiene 65, 380–398. doi: 10.1016/0035-9203(71)90018-6. 

Huynh, M.-H., Harper, J. M. and Carruthers, V. B. (2006). Preparing for an invasion: charting 
the pathway of adhesion proteins to Toxoplasma micronemes. Parasitology Research 98, 
389–395. doi: 10.1007/s00436-005-0062-2. 

Ingram, W. M., Goodrich, L. M., Robey, E. A. and Eisen, M. B.  (2013). Mice infected with 
low-virulence strains of Toxoplasma gondii lose their innate aversion to cat urine, even after 
extensive parasite clearance. PLoS ONE 8, 1–6. doi: 10.1371/journal.pone.0075246. 

Innes, E. A. (2010). A brief history and overview of Toxoplasma gondii. Zoonoses and Public 
Health 57, 1–7. doi: 10.1111/j.1863-2378.2009.01276.x. 

Janků, J. (1928). Pathogenesis and pathologic anatomy of the “congenital coloboma” of the 
macula lutea in an eye of normal size, with microscopic detection of parasites in the rentna. 
Cesk Parasitol 62, 1021–1027, 1052–1059, 1081–1085, 1111–111, 1138–11. 

Jokelainen, P., Isomursu, M., Näreaho, A. and Oksanen, A. (2011). Natural Toxoplasma gondii 
infections in european brown hares and mountain hares in Finland: proportional mortality 
rate, antibody prevalence, and genetic characterization. Journal of Wildlife Diseases 47, 
154–163. doi: 10.7589/0090-3558-47.1.154. 

Jokelainen, P., Simola, O., Rantanen, E., Näreaho, A., Lohi, H. and Sukura, A.  (2012). Feline 
toxoplasmosis in Finland: Cross-sectional epidemiological study and case series study. 
Journal of Veterinary Diagnostic Investigation  24, 1115–1124. doi: 
10.1177/1040638712461787. 

Jones, J. L. and Dubey, J. P. (2010). Waterborne toxoplasmosis – Recent developments. 
Experimental Parasitology 124, 10–25. doi: 10.1016/j.exppara.2009.03.013. 

Jones, J. L. and Dubey, J. P. (2012). Foodborne Toxoplasmosis. Clinical Infectious Diseases 55, 
845–851. doi: 10.1093/cid/cis508. 

Kasper, D. C., Sadeghi, K., Prusa, A.-R., Reischer, G. H., Kratochwill, K., Förster-Waldl, E., 
Gerstl, N., Hayde, M., Pollak, A. and Herkner, K. R.  (2009). Quantitative real-time 
polymerase chain reaction for the accurate detection of Toxoplasma gondii in amniotic fluid. 
Diagnostic Microbiology and Infectious Disease 63, 10–15. doi: 
10.1016/j.diagmicrobio.2008.09.009. 

Khan, A., Taylor, S., Su, C., Mackey, A. J., Boyle, J., Cole, R., Glover, D., Tang, K., Paulsen, 
I. T., Berriman, M., Boothroyd, J. C., Pfefferkorn, E. R., Dubey, J. P., Ajioka, J. W., 
Roos, D. S., Wootton, J. C. and Sibley, L. D. (2005). Composite genome map and 
recombination parameters derived from three archetypal lineages of Toxoplasma gondii. 
Nucleic Acids Research 33, 2980–2992. doi: 10.1093/nar/gki604. 

Khan, A., Fux, B., Su, C., Dubey, J. P., Darde, M. L., Ajioka, J. W., Rosenthal, B. M. and 
Sibley, L. D. (2007). Recent transcontinental sweep of Toxoplasma gondii driven by a single 
monomorphic chromosome. Proceedings of the National Academy of Sciences 104, 14872–
14877. doi: 10.1073/pnas.0702356104. 

Khan, A., Dubey, J. P., Su, C., Ajioka, J. W., Rosenthal, B. M. and Sibley, L. D.  (2011). 
Genetic analyses of atypical Toxoplasma gondii strains reveal a fourth clonal lineage in 
North America. International Journal for Parasitology 41, 645–655. doi: 
10.1016/j.ijpara.2011.01.005. 

Kim, S. K., Karasov, A. and Boothroyd, J. C. (2007). Bradyzoite-specific surface antigen SRS9 
plays a role in maintaining Toxoplasma gondii persistence in the brain and in host control of 
parasite replication in the intestine. Infection and Immunity 75, 1626–1634. doi: 
10.1128/IAI.01862-06. 

Lachenmaier, S. M., Deli, M. A., Meissner, M. and Liesenfeld, O.  (2014). Europe PMC 



References 
 

 

91 

Funders Group Intracellular transport of Toxoplasma gondii through the blood – brain 
barrier. 232, 119–130. doi: 10.1016/j.jneuroim.2010.10.029.Intracellular. 

Laliberté, J. and Carruthers, V. B. (2008). Host cell manipulation by the human pathogen 
Toxoplasma gondii. Cellular and Molecular Life Sciences 65, 1900–1915. doi: 
10.1007/s00018-008-7556-x. 

Lambert, H., Hitziger, N., Dellacasa, I., Svensson, M. and Barragan, A.  (2006). Induction of 
dendritic cell migration upon Toxoplasma gondii infection potentiates parasite 
dissemination. Cellular Microbiology 8, 1611–1623. doi: 10.1111/j.1462-
5822.2006.00735.x. 

Larsen, S. O. and Lebech, M. (1994). Models for prediction of the frequency of toxoplasmosis 
in pregnancy in situations of changing infection rates. International journal of epidemiology 
23, 1309–14. doi: 10.1093/ije/23.6.1309. 

Lehmann, T., Graham, D. H., Dahl, E. R., Bahia-Oliveira, L. M. G., Gennari, S. M. and 
Dubey, J. P. (2004). Variation in the structure of Toxoplasma gondii and the roles of selfing, 
drift, and epistatic selection in maintaining linkage disequilibria. Infection, Genetics and 
Evolution 4, 107–114. doi: 10.1016/j.meegid.2004.01.007. 

Lehmann, T., Marcet, P. L., Graham, D. H., Dahl, E. R. and Dubey, J. P.  (2006). Globalization 
and the population structure of Toxoplasma gondii. Proceedings of the National Academy of 
Sciences 103, 11423–11428. doi: 10.1073/pnas.0601438103. 

Lester, D. (2012). Toxoplasma gondii and homicide. Psychological reports 111, 196–7. doi: 
10.2466/12.15.16.PR0.111.4.196-197. 

Lopes, A. P., Dubey, J. P., Neto, F., Rodrigues, A., Martins, T., Rodrigues, M. and Cardoso, 
L. (2013). Seroprevalence of Toxoplasma gondii infection in cattle, sheep, goats and pigs 
from the North of Portugal for human consumption. Veterinary Parasitology 193, 266–269. 
doi: 10.1016/j.vetpar.2012.12.001. 

Lorenzi, H., Khan, A., Behnke, M. S., Namasivayam, S., Swapna, L. S., Hadjithomas, M., 

Karamycheva, S., Pinney, D., Brunk, B. P., Ajioka, J. W., Ajzenberg, D., Boothroyd, J. 

C., Boyle, J. P., Dardé, M. L., Diaz-Miranda, M. A., Dubey, J. P., Fritz, H. M., Gennari, 

S. M., Gregory, B. D., Kim, K., Saeij, J. P. J., Su, C., White, M. W., Zhu, X. Q., Howe, 
D. K., Rosenthal, B. M., Grigg, M. E., Parkinson, J., Liu, L., Kissinger, J. C., Roos, D. 
S. and Sibley, L. D. (2016). Local admixture of amplified and diversified secreted 
pathogenesis determinants shapes mosaic Toxoplasma gondii genomes. Nature 
Communications 7,. doi: 10.1038/ncomms10147. 

Louis M. Weissa,  and J. P. D. Toxoplasmosis: a history of clinical observations. Int J Parasitol. 
2009 July 1; 39(8): 895–901. doi:10.1016/j.ijpara.2009.02.004. 

Luft, B. and Remington, J. (1992). Toxoplasmic Encephalitis in AIDS. Clinical Infectious 
Diseases 15, 211–222. 

Machado, M. (2005). Conhecimento e prevenção da toxoplasmose na grávida: contribuição para 
o estudo da toxoplasmose em Portugal. 

Mancianti, F., Nardoni, S., Papini, R., Mugnaini, L., Martini, M., Altomonte, I., Salari, F., 
D’Ascenzi, C. and Dubey, J. P. (2014). Detection and genotyping of Toxoplasma gondii 
DNA in the blood and milk of naturally infected donkeys (Equus asinus). Parasites and 
Vectors 7, 1–3. doi: 10.1186/1756-3305-7-165. 

McCabe, R. and Remington, J. S. (1988). Toxoplasmosis: the time has come. The New England 
journal of medicine 318, 313–5. doi: 10.1056/NEJM198802043180509. 

McConkey, C. A., Delorme-Axford, E., Nickerson, C. A., Kim, K. S., Sadovsky, Y., Boyle, J. 
P. and Coyne, C. B. (2016). A three-dimensional culture system recapitulates placental 
syncytiotrophoblast development and microbial resistance. Science Advances 2, 1–10. doi: 
10.1126/sciadv.1501462. 

Messaritakis, I., Detsika, M., Koliou, M., Sifakis, S. and Antoniou, M.  (2008). Prevalent 
Genotypes of Toxoplasma gondii in Pregnant Women and Patients from Crete and Cyprus. 

Mets, M. B., Holfels, E., Boyer, K. M., Swisher, C. N., Roizen, N., Stein, L., Stein, M., 

Hopkins, J., Withers, S., Mack, D., Luciano, R., Patel, D., Remington, J. S., Meier, P. 
and McLeod, R. (1996). Eye manifestations of congenital toxoplasmosis. Am J Ophthalmol 



References 
 

 

92 

122, 309–324. 
Ministério da Saúde: Direção-Geral da Saúde  (2011). Norma n.o 037/2011: Exames 

laboratoriais na gravidez de baixo risco. Norma da Direção‐Geral Da Saúde 10. 
Minot, S., Melo, M. B., Li, F., Lu, D., Niedelman, W., Levine, S. S. and Saeij, J. P. J.  (2012). 

Admixture and recombination among Toxoplasma gondii lineages explain global genome 
diversity. Proceedings of the National Academy of Sciences of the United States of America 
109, 13458–63. doi: 10.1073/pnas.1117047109. 

Montoya, J. G. and Remington, J. S. (1996). Toxoplasmic chorioretinitis in the setting of acute 
acquired toxoplasmosis. Clinical Infectious Diseases 23, 277–282. doi: 
10.1093/clinids/23.2.277. 

Mosti, M., Pinto, B., Giromella, A., Fabiani, S., Cristofani, R., Panichi, M. and Bruschi, F.  
(2013). A 4-year evaluation of toxoplasmosis seroprevalence in the general population and 
in women of reproductive age in central Italy. Epidemiology and infection 141, 2192–5. doi: 
10.1017/S0950268812002841. 

Nicholson, D. H. and Wolchok, E. B. (1976). Ocular toxoplasmosis in an adult receiving long-
term corticosteroid therapy. Archives of ophthalmology (Chicago, Ill. : 1960) 94, 248–54. 
doi: 10.1001/archopht.1976.03910030120009. 

Nicolle, C. and Manceaux, L. (1909). Sur un protozoaire nouveau du gondi. C R Seances Acad 
Sci. 148, 369–372. 

Nowakowska, D., Colón, I., Remington, J. S., Grigg, M., Golab, E., Wilczynski, J., David, 

L., Nowakowska, D., Colo, I., Remington, J. S., Grigg, M., Golab, E., Wilczynski, J. 
and Sibley, L. D. (2006a). Vleeschouwer - 2008 - The kinetics of acrylamide formation-
elimination in asparagine–glucose systems at different initial reactant concentrations and 
ratios. 44, 1382–1389. doi: 10.1128/JCM.44.4.1382. 

Nowakowska, D., Colón, I., Remington, J. S., Grigg, M., Golab, E., Wilczynski, J.  and Sibley, 
L. D. (2006b). Genotyping of Toxoplasma gondii by multiplex PCR and peptide-based 
serological testing of samples from infants in Poland diagnosed with congenital 
toxoplasmosis. Journal of clinical microbiology 44, 1382–9. doi: 10.1128/JCM.44.4.1382-
1389.2006. 

Nowakowska, D., Stray-Pedersen, B., Spiewak, E., Sobala, W., Małafiej, E. and Wilczyński, 
J. (2006c). Prevalence and estimated incidence of Toxoplasma infection among pregnant 
women in Poland: a decreasing trend in the younger population. Clinical microbiology and 
infection : the official publication of the European Society of Clinical Microbiology and 
Infectious Diseases 12, 913–7. doi: 10.1111/j.1469-0691.2006.01513.x. 

Pappas, G., Roussos, N. and Falagas, M. E. (2009). Toxoplasmosis snapshots: global status of 
Toxoplasma gondii seroprevalence and implications for pregnancy and congenital 
toxoplasmosis. International journal for parasitology 39, 1385–94. doi: 
10.1016/j.ijpara.2009.04.003. 

Periz, J., Whitelaw, J., Harding, C., Gras, S., Minina, M. I. D. R., Latorre-Barragan, F., 
Lemgruber, L., Reimer, M. A., Insall, R., Heaslip, A. and Meissner, M.  (2017). 
Toxoplasma gondii F-actin forms an extensive filamentous network required for material 
exchange and parasite maturation. eLife 6, 1–29. doi: 10.7554/eLife.24119. 

Pinto, B., Castagna, B., Mattei, R., Bruzzi, R., Chiumiento, L., Cristofani, R., Buffolano, W. 
and Bruschi, F. (2012). Seroprevalence for toxoplasmosis in individuals living in north 
west Tuscany: access to Toxo-test in central Italy. European journal of clinical microbiology 
& infectious diseases : official publication of the European Society of Clinical Microbiology 
31, 1151–6. doi: 10.1007/s10096-011-1422-8. 

Pinto, M., Borges, V., Antelo, M., Pinheiro, M., Nunes, A., Azevedo, J., Borrego, M. J., 
Mendonça, J., Carpinteiro, D., Vieira, L. and Gomes, J. P.  (2016). Genome-scale 
analysis of the non-cultivable Treponema pallidum reveals extensive within-patient genetic 
variation. Nature Microbiology 2,. doi: 10.1038/nmicrobiol.2016.190. 

Porter, S. B. and Sande, M. A. (1992). Toxoplasmosis of the Central Nervous System in the 
Acquired Immunodeficiency Syndrome. New England Journal of Medicine 327, 1643–
1648. doi: 10.1056/NEJM199212033272306. 



References 
 

 

93 

Rajendran, C., Su, C. and Dubey, J. P. (2012). Molecular genotyping of Toxoplasma gondii 
from Central and South America revealed high diversity within and between populations. 
Infection, Genetics and Evolution 12, 359–368. doi: 10.1016/j.meegid.2011.12.010. 

Reese, M. L., Zeiner, G. M., Saeij, J. P. J., Boothroyd, J. C. and Boyle, J. P. (2011). 
Polymorphic family of injected pseudokinases is paramount in Toxoplasma virulence. 
Proceedings of the National Academy of Sciences 108, 9625–9630. doi: 
10.1073/pnas.1015980108. 

Reid, A. J., Vermont, S. J., Cotton, J. A., Harris, D., Hill-Cawthorne, G. A., Könen-Waisman, 

S., Latham, S. M., Mourier, T., Norton, R., Quail, M. A., Sanders, M., Shanmugam, D., 

Sohal, A., Wasmuth, J. D., Brunk, B., Grigg, M. E., Howard, J. C., Parkinson, J., Roos, 
D. S., Trees, A. J., Berriman, M., Pain, A. and Wastling, J. M. (2012). Comparative 
genomics of the apicomplexan parasites Toxoplasma gondii and Neospora caninum: 
Coccidia differing in host range and transmission strategy. PLoS Pathogens 8,. doi: 
10.1371/journal.ppat.1002567. 

Remington, J. S., McLeod, R. and Desmonts, G. (1995). Toxoplasmosis, 4th Edn. ed. 
Remington, J. S. and Klein, J. O. WB Saunders. 

Robben, P. M., Mordue, D. G., Truscott, S. M., Takeda, K., Akira, S. and Sibley, L. D.  (2004). 
Production of IL-12 by Macrophages Infected with Toxoplasma gondii Depends on the 
Parasite Genotype. The Journal of Immunology 172, 3686–3694. doi: 
10.4049/jimmunol.172.6.3686. 

Robert-Gangneux, F. and Dardé, M. L. (2012). Epidemiology of and diagnostic strategies for 
toxoplasmosis. Clinical Microbiology Reviews 25, 264–296. doi: 10.1128/CMR.05013-11. 

Robert-Gangneux, F., Dupretz, P., Yvenou, C., Quinio, D., Poulain, P., Guiguen, C. and 
Gangneux, J.-P. (2010). Clinical relevance of placenta examination for the diagnosis of 
congenital toxoplasmosis. The Pediatric infectious disease journal 29, 33–8. doi: 
10.1097/INF.0b013e3181b20ed1. 

Roberts, F. and McLeod, R. (1999). Pathogenesis of toxoplasmic retinochoroiditis. Parasitology 
today (Personal ed.) 15, 51–7. 

Roos, D. S. (2005). GENETICS: Themes and Variations in Apicomplexan Parasite Biology. 
Science 309, 72–73. doi: 10.1126/science.1115252. 

Roos, D. S., Crawford, M. J., Donald, R. G., Kissinger, J. C., Klimczak, L. J. and Striepen, 
B. (1999). Origin, targeting, and function of the apicomplexan plastid. Current Opinion in 
Microbiology 2, 426–432. doi: 10.1016/S1369-5274(99)80075-7. 

Russell, W. M. S. and Burch, R. L. (1959). The Principles of Humane Experimental Technique. 
Sabaj, V., Galindo, M., Silva, D., Sandoval, L. and Rodríguez, J. C.  (2010). Analysis of 

Toxoplasma gondii surface antigen 2 gene (SAG2). Relevance of genotype I in clinical 
toxoplasmosis. Molecular Biology Reports 37, 2927–2933. doi: 10.1007/s11033-009-9854-
2. 

Sabin, A. B. (1941). Toxoplasmic encephalitis in children. J Am Med Assoc 116, 801–807. 
Sabin, A. B. (1942). Toxoplasmosis. A recently recognized disease of human beings. Adv Pediatr 

1, 1–53. 
Sabin, A. B. and Feldman, H. A. (1948). Dyes as Microchemical Indicators of a New Immunity 

Phenomenon Affecting a Protozoon. Science 10;108(2815):660–3. 
Saeij, J. P. J., Boyle, J. P. and Boothroyd, J. C. (2005a). Differences among the three major 

strains of Toxoplasma gondii and their specific interactions with the infected host. Trends in 
Parasitology 21, 476–481. doi: 10.1016/j.pt.2005.08.001. 

Saeij, J. P. J., Boyle, J. P., Grigg, M. E., Arrizabalaga, G. and Boothroyd, J. C.  (2005b). 
Bioluminescence imaging of Toxoplasma gondii infection in living mice reveals dramatic 
differences between strains. Infection and Immunity 73, 695–702. doi: 
10.1128/IAI.73.2.695-702.2005. 

Sarvi, S. (2019). Human toxoplasmosis: A systematic review for genetic diversity of Toxoplasma 
gondii in clinical samples. Epidemiology and Infection 147,. doi: 
10.1017/S0950268818002947. 

Saúde, M. D. A. (2014). Despacho no 5681-A/2014 de 29 de Abril, da Direção-Geral da Saúde. 



References 
 

 

94 

Diário da República, 2.a série 82, 2–20. 
Sibley, L. D. (2010). How apicomplexan parasites move in and out of cells. Current Opinion in 

Biotechnology 21, 592–598. doi: 10.1016/j.copbio.2010.05.009. 
Sibley, L. D. and Boothroyd, J. C. (1992). Virulent strains of Toxoplasma gondii comprise a 

single clonal lineage. Nature 359, 82–85. doi: 10.1038/359082a0. 
Sibley, L. D., Mordue, D. G., Su, C., Robben, P. M. and Howe, D. K.  (2002). Genetic 

approaches to studying virulence and pathogenesis in Toxoplasma gondii. Philosophical 
Transactions of the Royal Society B: Biological Sciences  357, 81–88. doi: 
10.1098/rstb.2001.1017. 

Sibley, L. D., Khan, A., Ajioka, J. W. and Rosenthal, B. M.  (2009). Genetic diversity of 
Toxoplasma gondii in animals and humans. Philosophical Transactions of the Royal Society 
B: Biological Sciences 364, 2749–2761. doi: 10.1098/rstb.2009.0087. 

Sinai, A. P., Webster, P. and Joiner, K. A. (1997). Association of host cell endoplasmic reticulum 
and mitochondria with the Toxoplasma gondii parasitophorous vacuole membrane: a high 
affinity interaction. 2128, 2117–2128. 

Sousa, S., Ajzenberg, D., Vilanova, M., Costa, J. and Dardé, M. L.  (2008). Use of GRA6-
derived synthetic polymorphic peptides in an immunoenzymatic assay to serotype 
Toxoplasma gondii in human serum samples collected from three continents. Clinical and 
Vaccine Immunology 15, 1380–1386. doi: 10.1128/CVI.00186-08. 

Su, C., Evans, D., Cole, R. H., Kissinger, J. C., Ajioka, J. W. and Sibley, L. D. (2003). Recent 
expansion of Toxoplasma through enhanced oral transmission. Science 299, 414–416. doi: 
10.1126/science.1078035. 

Su, C., Zhang, X. and Dubey, J. P. (2006). Genotyping of Toxoplasma gondii by multilocus 
PCR-RFLP markers: A high resolution and simple method for identification of parasites. 
International Journal for Parasitology 36, 841–848. doi: 10.1016/J.IJPARA.2006.03.003. 

Su, C., Shwab, E. K., Zhou, P., Zhu, X. Q. and Dubey, J. P. (2010). Moving towards an 
integrated approach to molecular detection and identification of Toxoplasma gondii. 
Parasitology 137, 1–11. doi: 10.1017/S0031182009991065. 

Su, C., Dubey, J. P., Ajzenberg, D., Khan, A., Ajioka, J. W., Rosenthal, B. M., Majumdar, D., 
Darde, M.-L., Zhu, X.-Q., Sibley, L. D. and Zhou, P. (2012). Globally diverse Toxoplasma 
gondii isolates comprise six major clades originating from a small number of distinct 
ancestral lineages. Proceedings of the National Academy of Sciences 109, 5844–5849. doi: 
10.1073/pnas.1203190109. 

Suss-Toby, E., Zimmerberg, J. and Ward, G. E. (1996). Toxoplasma invasion: the 
parasitophorous vacuole is formed from host cell plasma membrane and pinches off via a 
fission pore. Proceedings of the National Academy of Sciences 93, 8413–8418. doi: 
10.1073/pnas.93.16.8413. 

Suzuki, Y., Wang, X., Jortner, B. S., Payne, L., Ni, Y., Michie, S. A., Xu, B., Kudo, T. and 
Perkins, S. (2010). Removal of Toxoplasma gondii cysts from the brain by perforin-
mediated activity of CD8+ T cells. The American Journal of Pathology 176, 1607–1613. 
doi: 10.2353/ajpath.2010.090825. 

Szabo, E. K. and Finney, C. A. M. (2017). Toxoplasma gondii: One Organism, Multiple Models. 
Trends in Parasitology 33, 113–127. doi: 10.1016/j.pt.2016.11.007. 

Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007). MEGA4: Molecular Evolutionary 
Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution 24, 
1596–1599. doi: 10.1093/molbev/msm092. 

Tannenbaum, J. and Bennett, B. T. (2015). Russell and Burch’s 3Rs then and now: the need for 
clarity in definition and purpose. Journal of the American Association for Laboratory 
Animal Science : JAALAS 54, 120–32. 

Tassi, P. (2007). Toxoplasma gondii infection in horses. A review. Parassitologia 49, 7–15. 

Taylor, S., Barragan, A., Su, C., Fux, B., Fentress, S. J., Tang, K., Beatty, W. L., Hajj, H. El, 
Jerome, M., Behnke, M. S., White, M., Wootton, J. C. and Sibley, L. D.  (2006). A 
secreted serine-threonine kinase determines virulence in the eukaryotic pathogen 
Toxoplasma gondii. Science (New York, N.Y.) 314, 1776–80. doi: 10.1126/science.1133643. 



References 
 

 

95 

Tedla, Y., Shibre, T., Ali, O., Tadele, G., Woldeamanuel, Y., Asrat, D., Aseffa, A., Mihret, W., 
Abebe, M., Alem, A., Medhin, G. and Habte, A. (2011). Serum antibodies to Toxoplasma 
gondii and Herpesvidae family viruses in individuals with schizophrenia and bipolar 
disorder: a case-control study. Ethiopian medical journal 49, 211–20. 

Tenter, A. M. (2000). Toxoplasma gondii: from animals to humans. International journal for 
parasitology 30, 1217–1258. 

Tenter, A. M., Luton, K. and Johnson, A. M. (1994). Species-specific identification of 
Sarcocystis and Toxoplasma by PCR amplification of small subunit ribosomal RNA gene 
fragments. Applied parasitology 35, 173–88. 

Torgerson, P. R. and Mastroiacovo, P. (2013). The global burden of congenital toxoplasmosis: 
a systematic review. Bulletin of the World Health Organization 91, 501–508. doi: 
10.2471/blt.12.111732. 

Torrey, E. F., Bartko, J. J. and Yolken, R. H. (2012). Toxoplasma gondii and other risk factors 
for schizophrenia: An update. Schizophrenia Bulletin 38, 642–647. doi: 
10.1093/schbul/sbs043. 

Tosh, K. W., Mittereder, L., Bonne-Annee, S., Hieny, S., Nutman, T. B., Singer, S. M., Sher, 
A. and Jankovic, D. (2016). The IL-12 response of primary human dendritic cells and 
monocytes to Toxoplasma gondii is stimulated by phagocytosis of live parasites rather than 
host cell invasion. The Journal of Immunology 196, 345–356. doi: 
10.4049/jimmunol.1501558. 

Verma, S. K., Ajzenberg, D., Rivera-Sanchez, A., Su, C. and Dubey, J. P. (2015). Genetic 
characterization of Toxoplasma gondii isolates from Portugal, Austria and Israel reveals 
higher genetic variability within the type II lineage. Parasitology 142, 948–957. doi: 
10.1017/S0031182015000050. 

Vilares, A., Gargaté, M. J., Ferreira, I., Martins, S., Júlio, C., Waap, H., Ângelo, H. and 
Gomes, J. P. (2014). Isolation and molecular characterization of Toxoplasma gondii isolated 
from pigeons and stray cats in Lisbon, Portugal. Veterinary Parasitology 205, 506–511. doi: 
10.1016/j.vetpar.2014.08.006. 

Vilares, A., Gargaté, M. J., Ferreira, I., Martins, S. and Gomes, J. P.  (2017). Molecular and 
virulence characterization of Toxoplasma gondii strains isolated from humans in Portugal. 
Parasitology Research 116, 979–985. doi: 10.1007/s00436-017-5374-5. 

Waap, H., Vilares, A., Rebelo, E., Gomes, S. and Ângelo, H.  (2008). Epidemiological and 
genetic characterization of Toxoplasma gondii in urban pigeons from the area of Lisbon 
(Portugal). Veterinary Parasitology 157, 306–309. doi: 10.1016/j.vetpar.2008.07.017. 

Walker, M. E., Hjort, E. E., Smith, S. S., Tripathi, A., Hornick, J. E., Hinchcliffe, E. H., 
Archer, W. and Hager, K. M. (2008). Toxoplasma gondii actively remodels the microtubule 
network in host cells. Microbes and Infection 10, 1440–1449. doi: 
10.1016/j.micinf.2008.08.014. 

Webster, J. P., Kaushik, M., Bristow, G. C. and McConkey, G. A. (2013). Toxoplasma gondii 
infection, from predation to schizophrenia: can animal behaviour help us understand human 
behaviour? Journal of Experimental Biology 216, 99–112. doi: 10.1242/jeb.074716. 

Weinman, D. and Chandler, A. H. (1954). Toxoplasmosis in swine and rodents. Reciprocal oral 
infection and potential human hazard. Experimental Biology and Medicine 87, 211–216. 
doi: 10.3181/00379727-87-21337. 

Weiss, L. M. and Dubey, J. P. (2009). Toxoplasmosis: A history of clinical observations. 
International Journal for Parasitology 39, 895–901. doi: 10.1016/J.IJPARA.2009.02.004. 

Wilder, H. C. (1952). Toxoplasma chorioretinitis in adults. A.M.A. archives of ophthalmology 48, 
127–36. 

Wilson, M. and McAuley, J. B. (1999). Toxoplasma, 7th Edn. ed. Murray, P. J. ASM Press. 
Wolf, A., Cowen, D. and Paige, B. H. (1939). Toxoplasmic encephalomyelitis: III. A new case 

of granulomatous encephalomyelitis due to a protozoon. The American journal of pathology 
15, 657-694.11. 

Wong, S.-Y. and Remington, J. S. (1994). Toxoplasmosis in Pregnancy. Clinical Infectious 
Diseases 18, 853–862. doi: 10.1093/clinids/18.6.853. 



References 
 

 

96 

Yolken, J. X. R. H. (2015). Strain hypothesis of Toxoplasma gondii infection on the outcome of 
human diseases. Acta Physiologica 213, 828–845. 

Zhou, P., Li, H.-L., Zhu, X.-Q., Chen, Z., Lin, R.-Q., Zheng, H. and He, S. (2011). Toxoplasma 
gondii infection in humans in China. Parasites and Vectors 4, 1–9. doi: 10.1186/1756-3305-
4-165. 

 

 

 

 

 

 

 



 

97 

 

 

 

 

 

 

  

Supplementary Material 



 

98 

 

  



 

99 

Supplementary Table S 4.1 BioProject PRJEB34235 

European Nucleotide Archive (ENA) accession numbers. 

SAMPLE ID 

ENA 
BioProject 

READS ENA 

ACCESSION 

Tg_RH_1_A PRJEB34235 ERR3505173 

Tg_RH_2_A PRJEB34235 ERR3505211 

Tg_RH_3_A PRJEB34235 ERR3505219 

Tg_RH_4_A PRJEB34235 ERR3505218 

Tg_RH_5_A PRJEB34235 ERR3505214 

Tg_RH_6_A PRJEB34235 ERR3505175 

Tg_RH_7_A PRJEB34235 ERR3505196 

Tg_RH_8_A PRJEB34235 ERR3505188 

Tg_RH_9_A PRJEB34235 ERR3505191 

Tg_RH_10_A PRJEB34235 ERR3505210 

Tg_RH_11_A PRJEB34235 ERR3505195 

Tg_RH_12_A PRJEB34235 ERR3505202 

Tg_RH_13_A PRJEB34235 ERR3505183 

Tg_RH_14_A PRJEB34235 ERR3505208 

Tg_RH_15_A PRJEB34235 ERR3505201 

Tg_RH_16_A PRJEB34235 ERR3505162 

Tg_RH_17_A PRJEB34235 ERR3505161 

Tg_RH_18_A PRJEB34235 ERR3505169 

Tg_RH_19_A PRJEB34235 ERR3505213 

Tg_RH_20_A PRJEB34235 ERR3505174 

Tg_RH_21_A PRJEB34235 ERR3505198 

Tg_RH_22_A PRJEB34235 ERR3505160 

Tg_RH_23_A PRJEB34235 ERR3505178 

Tg_RH_24_A PRJEB34235 ERR3505205 

Tg_RH_25_A PRJEB34235 ERR3505204 

Tg_RH_27_A PRJEB34235 ERR3505171 

Tg_RH_28_A PRJEB34235 ERR3505212 

Tg_RH_30_A PRJEB34235 ERR3505203 

Tg_RH_31_A PRJEB34235 ERR3505159 

Tg_RH_32_A PRJEB34235 ERR3505166 



 

100 

Tg_RH_1_NA PRJEB34235 ERR3505163 

Tg_RH_2_NA PRJEB34235 ERR3505189 

Tg_RH_3_NA PRJEB34235 ERR3505179 

Tg_RH_4_NA PRJEB34235 ERR3505206 

Tg_RH_5_NA PRJEB34235 ERR3505168 

Tg_RH_6_NA PRJEB34235 ERR3505190 

Tg_RH_7_NA PRJEB34235 ERR3505164 

Tg_RH_8_NA PRJEB34235 ERR3505172 

Tg_RH_9_NA PRJEB34235 ERR3505167 

Tg_RH_10_NA PRJEB34235 ERR3505184 

Tg_RH_11_NA PRJEB34235 ERR3505182 

Tg_RH_12_NA PRJEB34235 ERR3505197 

Tg_RH_13_NA PRJEB34235 ERR3505170 

Tg_RH_14_NA PRJEB34235 ERR3505165 

Tg_RH_15_NA PRJEB34235 ERR3505199 

Tg_RH_16_NA PRJEB34235 ERR3505216 

Tg_RH_17_NA PRJEB34235 ERR3505215 

Tg_RH_18_NA PRJEB34235 ERR3505193 

Tg_RH_19_NA PRJEB34235 ERR3505186 

Tg_RH_20_NA PRJEB34235 ERR3505177 

Tg_RH_21_NA PRJEB34235 ERR3505209 

Tg_RH_22_NA PRJEB34235 ERR3505185 

Tg_RH_23_NA PRJEB34235 ERR3505194 

Tg_RH_24_NA PRJEB34235 ERR3505192 

Tg_RH_25_NA PRJEB34235 ERR3505180 

Tg_RH_26_NA PRJEB34235 ERR3505176 

Tg_RH_27_NA PRJEB34235 ERR3505181 

Tg_RH_28_NA PRJEB34235 ERR3505187 

Tg_RH_30_NA PRJEB34235 ERR3505217 

Tg_RH_31_NA* PRJEB34235 ERR3505200 

Tg_RH_32_NA* PRJEB34235 ERR3505207 

   * RH positive controls  


