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Abstract

The dynamics of liquidity risk is an important issue in what concerns banks’ activity.

It can be approached by studying the evolution of banks’ clients deposits in order to

mitigate the probability of bankruptcy and to efficiently manage banks’ resources. A

sound liquidity risk model is also an important component of any liquidity stress testing

methodology.

In this research1, we aim to develop a model that can help banks to properly manage

their activity, by explaining the evolution of clients deposits throughout time. For this

purpose, we considered the momentum, a frequently used tool in finance that helps to

clarify observed trends. Therefore, we obtained an AR(2) model that was then used to

simulate trajectories, through the use of the R software, for possible evolutions of the

deposits.

Another feature that we pondered was panel data. By considering different banks in

our sample, the simulations would generate varied trajectories, including both good and

bad scenarios, which is useful for stress testing purposes. The mostly referred model in

the literature is the AR(1) model with only one time series, which often does not generate

distress episodes.

In order to validate our model we had to perform several tests, including to the nor-

mality and autocorrelation of the residuals of our model. Furthermore, we considered

the most used model in the literature for comparison with two different individual banks.

We simulated trajectories for all cases and evaluated them through the use of indicators

such as the Maximum Drawdown and density plots.

When simulating trajectories for banks’ deposits, the panel data model gives more

realistic scenarios, including episodes of financial distress, showing much higher draw-

downs and density plots that present a wide range of possible values, corresponding to

booms and financial crises. Therefore, our methodology is more suitable for planning the

management of banks’ resources, as well as for conducting liquidity stress tests.

Keywords: Liquidity risk; Non-maturity deposits; Banks’ activity management; Autore-

gressive models; Panel data modeling; Maximum Drawdown; R software; Computational

simulation.

1This research was developed with public data and is independent from Montepio, so it does not reflect
the views of this institution.
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Resumo

A dinâmica do risco de liquidez é um assunto importante no que diz respeito à atividade

bancária. Pode ser abordada através do estudo da evolução dos depósitos bancários dos

clientes de forma a mitigar a probabilidade de falência dos bancos e a gerir os recursos

dos mesmo de forma eficiente. Um modelo de risco de liquidez sensato é também uma

componente importante de qualquer metodologia de stress testing de liquidez.

Neste trabalho2, o nosso objetivo é desenvolver um modelo que possa ajudar os ban-

cos a gerir a sua atividade de forma apropriada, explicando a evolução dos depósitos

dos seus clientes ao longo do tempo. Com este propósito, considerámos o momentum,

uma ferramenta frequentemente utilizada na área financeira que contribui para clarificar

tendências observadas. Assim, obtivemos um modelo AR(2) que foi seguidamente utili-

zado para simular trajetórias, através do uso do R software, de possíveis evoluções dos

depósitos.

Outra característica que ponderámos foi usar dados em painel. Ao considerar dife-

rentes bancos na nossa amostra, as simulações originariam trajetórias variadas, incluindo

tanto cenários bons como cenários maus, o que é útil ao testar cenários de stress. O mo-

delo mais referido na literatura é o modelo AR(1) com apenas uma série temporal, o que

frequentemente não gera episódios de crise nas simulações.

De forma a validar o nosso modelo, realizámos diversos testes, incluindo à norma-

lidade e à autocorrelação dos resíduos do nosso modelo. Além disso, considerámos o

modelo mais utilizado na literatura para fins de comparação aplicando-o a dois bancos de

forma individual. Simulámos trajetórias para todos os casos e avaliámo-las através do uso

de indicadores tais como o Maximum Drawdown e gráficos de densidade de probabilidade.

Ao simular trajetórias para os depósitos bancários, o modelo de dados em painel apre-

senta cenários mais realistas, incluindo episódios de dificuldade financeira, através de

quedas muito mais acentuadas e gráficos de densidade de probabilidade que apresentam

uma grande variedade de valores possíveis, correspondendo tanto a períodos de prosperi-

dade como a crises financeiras. Concluindo, a nossa metodologia é mais apropriada para

a gestão dos recursos bancários, assim como para executar o stress testing de liquidez.

2A investigação aqui apresentada é realizada com dados públicos e é independente da atividade no Banco
Montepio, não refletindo as visões desta instituição.
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1
Introduction

The study of the dynamics of deposit volumes is a very important exercise for two main

reasons: first, it is a critical tool for liquidity stress testing purposes; second, it should be

used in the development of asset-liability optimization frameworks such as described in

Birge and Júdice (2013). Thus, it is necessary to study the liquidity risk, which can be

represented by the non-maturity deposits held by clients. Such non-maturity accounts

have already been researched by many authors, namely with an AR(1) model with normal

residuals, and even including some exogenous variables, such as the market interest rate.

However, given that the models are usually only calibrated to a single bank, the models

do not incorporate episodes of stress and suffer from survivorship bias.

In a context of bank balance sheet management, both Hałaj (2016) and Lipton (2015)

consider an AR(1) model but, when it comes to its estimation, they only give examples of

values of the parameters, since they don’t have a formal sample for the calibration.

While studying the arbitrage-free valuation and theoretical hedging of deposits, Jarrow

and van Deventer (1998) considered an AR(1) model, which was put in practice by Janosi,

Jarrow, and Zullo (1999). They tested data of four different types of accounts from the

Federal Reserve Bulletin, which lead them to some remarkable values of the R2, but

with at least one non-significant variable in each account, either the trend or the market

interest rate. This model was also tested by Benbachir and Hamzi (2016), while comparing

it with ARMA models, treating separately deposits from individuals and enterprises held

at a Moroccan commercial bank. The AIC (Akaike Information Criterion) suggested an

ARMA(2,2) model for individuals and an ARMA(1,2) model for enterprises.

O’Brien (2000) also considered an AR(1) model, including exogenous variables such as

the GDP and the market interest rate, and even used data of two types of accounts from

1



CHAPTER 1. INTRODUCTION

99 different banks. The predictions showed that the deposits in the NOW (Negotiable

Order of Withdrawal) accounts would rise with time, while the MMDA’s (Money Market

Deposit Accounts) would fall. Even though the sample is comprised of many banks, the

model only calibrates one bank deposit series. Consequently, such a model cannot take

into account episodes of surviving banks and failed banks simultaneously.

Fu and Feng (1985) used an MA(1) model in their research, applied to the second differ-

ences of log(Xt), with Xt representing the savings deposits of urban and rural residents.

Their prediction was that the deposits would rise with time, which meets the trend of

their sample.

Our research has lead us to an AR(2) panel data model, which, unlike previous research,

is simultaneously calibrated to a sample of 9 banks, with different number of observations.

Moreover, the two lags in the AR(2) model allow us to consider the presence of the

momentum, a frequently used indicator in finance. Actually, the trend of the dependent

variable revealed to be a relevant indicator of the evolution of clients deposits.

The 9 banks were selected according to the criterion of having an average of at least

10 billion euros in deposits throughout their time series. We proceeded to its estimation,

in the R software, by using the OLS (Ordinary Least Squares) method, and simulated

different possible paths for the deposits in the following 30 years. The results show that

there is an increasing trend in every case, with the particularity of simulating some "bank

runs", which is due to the panel data sample.

By considering 9 banks simultaneously, liquidity risk isn’t underestimated. That is, the

model won’t discard the possibility of financial crises, as it happens in samples with only

one time series. For example, if one bank follows a model that considered a sample of

only one time series, not including episodes of stress, it might invest in only a few liquid

assets. This situation would be acceptable according to that model, because it wouldn’t

be able to simulate any crisis, but there’s a chance of something going wrong. In that case,

that bank would most likely face financial distress because it wouldn’t be prepared for

such an occurrence, ending up without enough resources to face that situation.

In order to compare our results, we chose two individual banks from our sample. We

estimated an AR(1) and an AR(2) models for those and we excluded the lattest because

its second coefficient was not relevant at a level of significance of 5% for both banks.

Therefore, by considering the AR(1) model for the comparison, we tested both banks for

normality and autocorrelation in the residuals. We verified the same results for the two

cases: the residuals seemed to follow a Normal distribution and not to be autocorrelated.

2



Thus, we simulated trajectories for the chosen banks with the referred assumptions

and we only obtained optimistic results, since the worst case scenario would be an almost

plain path after a very significant growth. Furthermore, the obtained maximum draw-

downs were significantly different from the ones that resulted from the panel data model.

The latter would be much greater, indicating severe falls of the deposits, representing

periods of crisis. This also represents the unrealistic optimism in the individual banks

simulations, derived from the use of only a single time series for estimation purposes.

Since we use panel data, our model avoids survivorship bias, as it takes into account

events of bankruptcy and acquisitions. Thus, we obtain more realistic simulations because

these include bad scenarios as well. Therefore, our model is also more adequate for stress

testing.

We now present the structure of this work: Chapter 2 describes the Autoregressive

and Panel Data models, with an introduction regarding the Multiple Linear Regression

models, followed by their estimators and respective properties. The residuals of the

models as well as the tests performed to validate our model are also studied in this

chapter. Chapter 3 presents an overall description of the data used and how it was

considered in our research. Furthermore, it is in this chapter that the calibration of the

model is developed. Chapter 4 discusses the computational simulations of the deposits

paths obtained with our model while comparing them to the most frequently considered

model. In Chapter 5 some final remarks are presented, concluding our work.

3
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2
Autoregressive Processes and Panel Data

Modeling

In this chapter we will introduce the models, their parameters’ estimators and their

properties that were useful to our research. We will also explain different types of data

because the goal of our research, of building a model for the deposits evolution by using

data from several banks, uses panel data and needs some understanding of what precedes

this organization of the collected sample.

2.1 Multiple Linear Regression

2.1.1 Model

A multiple linear regression consists in a model in which there is a dependent variable

that is explained by a linear combination of some independent variables (also called

explanatory variables or regressors). The dependent variable is what is intended to be

studied while the independent variables are the characteristics of the phenomenon we

consider that better reach our goal. That is, in order to explain and simulate the dependent

variable, we collect data on the explanatory variables.

As Ribeiro (2014) shows, a multiple linear regression model may be presented in equa-

tion form:

yt = β1xt1 + β2xt2 + ...+ βkxtk + εt (2.1)

where: yt represents the tth observation of the dependent variable y; xtj represents the tth

observation of the independent variables xj , with t = 1, ...,T denoting the different obser-

vations of each variable in the sample and j = 1, ..., k the number of explanatory variables;

5



CHAPTER 2. AUTOREGRESSIVE PROCESSES AND PANEL DATA MODELING

βj are the coefficients of the corresponding independent variables, the parameters to be

estimated; εt are the error components. Denoting the error component, εt represents the

difference between yt and the sum of xtjβj , in each time period, where βj is not observable.

These variables, when estimated, are called the residuals of the model. If we want an

independent term in the model we just have to consider xt1 = 1, obtaining:

yt = β1 + β2xt2 + ...+ βkxtk + εt . (2.2)

This model can also be represented in matrix form:


y1

y2
...

yT


=


1 x12 . . . x1k

1 x22 . . . x2k
...

...
. . .

...

1 xT 2 . . . xT k




β1

β2
...

βk


+


ε1

ε2
...

εT


as indicated by the following representation:

Y = Xβ + ε (2.3)

where: Y denotes the T ×1 vector of the dependent variables’ observations; X denotes the

T ×k independent variables’ observations; β represents the k×1 vector of the independent

variables’ coefficients; ε represents the T × 1 vector of the residual variables.

There are some contexts in which we only want to study the evolution of a specific phe-

nomenon or feature over time, so we will only consider its lagged values as explanatory

variables. This case will be explained in Section 2.2.

According to Hansen (2000), the following standard assumptions are those that allow

estimators with good properties:

1. The sample is i.i.d. (independent and identically distributed);

2. E[εi |xi] = 0;

3. E[ε2
i |xi] = σ2;

4. Qxx = E[x′tjxtj ] > 0 is invertible;

5. Cov(εt , εs|X) = 0, with t, s = 1, ...,T , t , s.
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These assumptions mean the following:

1. Independency means that, in the same sample, the actions of each individual or

firm (that is being the target of our research) don’t have an impact on the other

individuals or firms’ actions. Also, if the sample is identically distributed, the

obtained observations from one individual or firm follow the same distribution as

the observations from the other individuals or firms;

2. There is strict exogeneity, which means that the explanatory variables aren’t corre-

lated with the residuals of the model;

3. The model is homoskedastic, which implies that the conditioned variances don’t

depend on the explanatory variables; that is, they are identical across the individual

observations;

4. There is no exact multicollinearity allowed and so the regressors can’t be perfectly

correlated with each other. This restricts them not to be linear combinations of each

other;

5. There is an absence of autocorrelation in the residuals. This condition is particularly

important in order to use the Ordinary Least Squares (OLS) method to estimate the

coefficients of the variables of the model.

As it is possible to notice, only one out of the five assumptions doesn’t include the

variable εt. This variable, the error component, is very important because it influences

the consistency of the estimates of the explanatory variables’ coefficients.

2.1.2 Ordinary Least Squares

2.1.2.1 Estimator

When estimating the parameters of a model, we want the residuals to be as small as

possible because it means that the estimates of the coefficients are as close as possible to

the observed values. Therefore, a way of achieving this goal is to minimize the sum of the

squared residuals, which brings us to the OLS (Ordinary Least Squares) estimator.

This is the usual estimator of the parameters that, given the previous assumptions for

the multiple linear regression model, is intended to minimize the following expression:

ψ(β) = (Y−Xβ)′(Y−Xβ) (2.4)

with respect to β. This expression has the following components: Y as the vector of the

dependent variables; X as the matrix of the explanatory variables; β as the vector of the

coefficients; (Y−Xβ)′ as the transposed matrix of (Y−Xβ). Through differential calculus,

we may obtain the OLS estimator, β̂:

7
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β̂ = (X′X)−1(X′Y). (2.5)

2.1.2.2 Properties of the Estimator

Given the previous assumptions, Hansen (2000) states that the OLS estimator has the

following properties:

1. E[β̂|X] = β

2. V ar(β̂|X) = σ2(X′X)−1

which mean that:

1. The OLS estimator is unbiased when it is conditioned by the regressors;

2. The estimator’s conditional variance-covariance matrix depends on the variance

of the regression error, which, considering homoskedasticity, is constant and rep-

resented by σ2. Here, an absence of autocorrelation among the residuals is also

evident.

2.1.2.3 Residuals

While studying linear regression models it is important to take the residuals into con-

sideration. For example, the fact that they follow some distribution or not may alter the

properties of the estimators of the regression coefficients. Thus, in this context, Hansen

(2000) refers that the residuals must have the following properties:

1. E[ε̂t |X] = 0

2. V ar[ε̂t |X] = Mσ2

1. We can get to this conclusion by using the error’s orthogonal projection, the M

matrix from Property 2: M = In −X(X′X)−1X′, because ε̂t = Mεt;

2. In addition to using the error’s orthogonal projection, we have to consider the vari-

ance of the regression error, as in the second property of the OLS estimator, σ2. This

result is due to homoskedasticity.

When calculating the residuals, as referred before, we need to have estimates of the

parameters of the model. Hence, when computing these quantities, we are also recording

the adjusted values of the dependent variable, which allow us to obtain the coefficient of

determination.

8



2.1. MULTIPLE LINEAR REGRESSION

2.1.2.4 Coefficient of Determination

According to Ribeiro (2014), the coefficient of determination of a model, represented

by R2, is a quotient calculated with two different resources: the adjusted and the observed

values of the dependent variable of the model. By considering the squared sum of both

of these quantities, the R2 measures the ability of the independent variables to explain

the dependent variable. This may be used as a tool to evaluate the quality of our model

and to thus help us understand whether it is reasonable to simulate future values of the

variable in study with the adjusted model.

However, this instrument may guide us to misleading conclusions since its value in-

creases every time a new explanatory variable is added. A possible solution for this

issue is the adjusted coefficient of determination, R̄2, which considers the residuals of the

model, again using their squared sum, and adapts the quantities by considering the num-

ber of observations and the number of coefficients. Consequently, there is a compensation

if the sum of squared residuals gets smaller when adding a new independent variable.

2.1.3 Normality Tests

Since the normality among the residuals would allow us to make more accurate simula-

tions (see Chapter 4) and to better characterize the estimators’ distributions, we needed to

test these components. Thus, we will briefly introduce the Shapiro-Wilk and the Jarque-

Bera tests for normality.

2.1.3.1 Shapiro-Wilk

This test has been created because distributional assumptions are important when

working with statistics since they help to perform inference, even though these might

not always be reached. Therefore, according to Shapiro and Wilk (1965), it tests whether

a sample follows a Normal distribution or not, under the composite null hypothesis of

normality, by comparing its order statistics with the ones from a Normal distribution.

Therefore, to start with, we must consider that a normal sample wi may be represented

as follows:

wi = µ+ σzi (2.6)

with: µ as the mean of the sample and σ as its standard deviation; zi representing a

random variable that follows a Normal distribution with mean equal to 0 and variance

equal to 1; i = 1, ...,n representing the number of observations from the sample. Both µ

and σ are unknown, but for our case we just need the estimator for σ , σ̂ , which, as cited

by Shapiro and Wilk (1965), is the following:
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σ̂ =
m′V−1(m1′ − 1m′)V−1w

1′V−11m′V−1m− (1’V−1m)2
(2.7)

with:

• 1′ as a row vector of ones;

• m′ = (m1,m2, ...,mn) representing a vector with each element given by E[z]i =mi ;

• V representing the variance-covariance matrix of the vector m′.

Hence, we have the following test statistic:

W =
R4σ̂2

C2S2 (2.8)

where:

• R2 = m′V−1m;

• C2 = m′V−1V−1m;

• S2 =
∑n
i=1(wi − w̄)2.

and the null-hypothesis should be rejected if the p-value is smaller than the chosen

significance level.

This test was later adapted to bigger samples by Royston (1982) and it is easily imple-

mented in the R-software with a function that comes in the initial packages, shapiro.test().
This version has a simpler test statistic, defined as follows:

W ′n =

(∑n
i=1 biwi

)2∑n
i=1(wi − w̄)2 (2.9)

with

bT = (b1,b2, ...,bn) =
mT

(mTm)
1
2

, (2.10)

which makes the test statistic simpler because it doesn’t include the variance-covariance

matrix anymore. However, it can be applied to the sample because it has similar power

compared to the original version of the test.
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2.1.3.2 Jarque-Bera

This test, by Jarque and Bera (1987), specializes in the verification of the normality

of the residuals and uses the Lagrange multiplier method to test the null hypothesis of

normality. Also, it compares the skewness and kurtosis of the sample data to the ones of

the Normal distribution. Finally, this method originates an asymptotically efficient test

that is computationally feasible because it only needs the first four sample moments of

the ordinary least-squares residuals.

Since this test compares the values of the skewness and kurtosis, these are present in

the test statistic. Thus, if the respective values are too far from the ones of the Normal

distribution, the calculations reject the null hypothesis of normality.

In order to apply this test, we need to consider the regression model presented in

equation (2.1) with some assumptions about the error component, as it has to:

• be i.i.d;

• be homoskedastic;

• have zero mean.

Thus, we have that the test statistic, JBn, follows a χ2 distribution with 2 degrees of

freedom and is given by:

JBn = n
(
b2

1
6

+
(b2 − 3)2

24

)
(2.11)

where

b1 =
µ̂3

(µ̂2)
3
2

and b2 =
µ̂4

(µ̂2)2 (2.12)

estimate the sample’s skewness and kurtosis using the sample moments of the ordinary

least-squares residuals, calculated as follows:

µ̂j =
1
n

n∑
i=1

(Xi − X̄)j , j = 2,3,4. (2.13)

This test is also easily implemented in the R-software with a single function, jb.norm.test(),
even though a specific package is required.

2.2 Autoregressive Processes

The data must follow a chronological order so that we can study autoregressive models.

Here, the dependent variable is in the time period that we want to explain and we need

information from previous time periods to make simulations. Thus, stochastic processes

have an important role here. Since, according to J. E. P. Box, Jenkins, and Reinsel (1970),
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these are sequences of random variables that evolve according to probability laws, we

may consider a realization of them: time series.

2.2.1 Time Series

According to Hansen (1994) and Ribeiro (2014), we can say that we are in the presence

of a time series when our data refer to the same cross-section unit (an individual, an

entity, etc.) for many periods of time, with its observations associated to a chronological

order. That is, we get a sequence of observations regarding the same cross-section unit.

This feature allows us to make simulations based on events that happened in the past.

In summary, in time series we have:

• One cross-section unit;

• A sequence of time periods.

2.2.2 Model

As referred in Section 2.1.1, an AR(k) (Autoregressive of order k) model implies that

the dependent variable’s behaviour is justified by its own observations in the previous k

time periods. Including an independent term and an error component we have:

yt = α + β1yt−1 + ...+ βkyt−k + εt , (2.14)

where: yt represents the dependent variable; α represents the independent term, a con-

stant; yt−1, ..., yt−k represent the dependent variable’s previous k observations; βj represent

the variables’ coefficients, the parameters to be estimated; εt represents the error compo-

nent; j = 1, ..., k denotes the number of considered previous time periods in the model;

t = 1, ...,T denotes the time period whose observed values we want to explain, which

implies that t > k.

There’s one more factor to ponder in this context: the error component must be a white

noise, which, according to Ribeiro (2014), implies that its:

• expected value is zero;

• variance doesn’t depend on time;

• covariance only depends on the considered lags, and not on time itself.

The model’s autocorrelation and partial autocorrelation functions, ACF and PACF re-

spectively, are useful to identify the most appropriate order of an AR model. These will

be approached in the following section.
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2.2.3 Autocorrelation

2.2.3.1 Autocorrelation Function

In order to obtain the ACF, J. E. P. Box et al. (1970) start with the definition of autoco-

variance at lag k:

γk = cov[zt , zt+k] = E[(zt −µ)(zt+k −µ)] (2.15)

where: zt and zt+k are observed values, separated by k time periods, from a time series; µ

is the mean of the stochastic process {zt} (assumed to have a constant mean). With this

information, the authors explain that we need to consider the autocorrelation at lag k,

which is given by:

ρk =
γk√

E[(zt −µ)2]E[(zt+k −µ)2]
(2.16)

where the variables and parameters mean the same as in equation (2.15). Here, there’s an

important concept highlighted by Hansen (1994) that can have an impact on this formula:

it is considered that a stochastic process is strictly stationary if the joint distributions of

any two elements zt and zt+k , with k being the number of time periods that separates the

observations, doesn’t depend on t but on k. Plus, if a process that satisfies this condition

has finite second moments, then it is also considered weakly stationary, which means that

their mean and autocovariances don’t depend on the time period t. That is, a stochas-

tic process is weakly stationary if its mean and the covariance between any two of its

components only depend on their relative positions in the succession and not on their

absolute positions. Thus, in the presence of a stationary process, its variance is the same

in every time period, including both times t and t + k. Therefore, we obtain the following

expression for the autocorrelation at lag k:

ρk =
γk
σ2
z

=
γk
γ0

(2.17)

where σ2
z equals the variance of the process {zt}.

Once having these data, we just need to plot ρk against k. By considering only the

positive lags, we get the desired ACF, which is the same as analyzing the upper triangular

part of the autocorrelation matrix.

The Autocorrelation Function of an AR process should geometrically converge to zero

as the lag variable grows. For an autoregressive process to be stationary, some restrictions

on the coefficients of the model must be met. We’ll limit our research to two different

cases:

• The AR(1) model: yt = α + β1yt−1 + εt, where |β1| < 1;
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• The AR(2) model: yt = α + β1yt−1 + β2yt−2 + εt, where:

∗ β1 + β2 < 1;

∗ β2 − β1 < 1;

∗ −1 < β2 < 1.

Depending on the values of the coefficients, we get two possible scenarios for the ACF

function, for instance in the AR(1) case:

• If β1 is positive, the ACF graphic decays to zero;

• If β1 is negative, the ACF graphic only decays to zero in modulus; that is, the graphic

will be alternating between positive and negative values on each turn, each time

being smaller to the previous one in modulus.

2.2.3.2 Partial Autocorrelation Function

As shown by J. E. P. Box et al. (1970), the Partial Autocorrelation Function is the last

coefficient in an autoregressive representation of order k. That is, in the models:

yj = βk1yj−1 + ...+ βk(k−1)yj−k+1 + βkkyj−k , j = 1,2, ..., k (2.18)

where each βkj represents βj in the respective AR(k) model, the Partial Autocorrelation

Function is represented by βkk .

For an AR(k) process, the PACF cuts the effect of the correlation between variables

that are separated by a difference of at least k time periods. This turns the values of the

function into zero for all the higher lags and characterizes the most appropriate lag order

for the considered model.

2.2.3.3 Ljung-Box Test for Autocorrelation

This test was developed by G. Box and Ljung (1978) as an improved version of the

Box-Pierce test for Autocorrelation (see G. Box and Pierce (1970)) and it contributes to

the diagnostic checking of a model, originally proposed by J. E. P. Box et al. (1970). It

aims to evaluate the goodness of fit of a stationary AR(k) model by assessing its sample’s

residuals’ autocorrelations, verifying whether these are equal to zero or not. Therefore,

its null hypothesis corresponds to the absence of autocorrelation among the residuals,

which means that these are i.i.d..

The authors begin by considering a stationary process, {wt}, defined by an AR(k) model,

as well as its sequence of errors, {aj} which are i.i.d.. These follow a Normal distribution

with zero mean and constant variance equal to σ2.
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The estimated autocorrelations, since the values of the residuals are used, are calculated

by:

r̂p =

∑n
t=p+1 ât ât−p∑n

t=1 â
2
t

, p = 1,2, ... (2.19)

where: t = 1, ...,n is the number of observations of the time series; p = 1,2, ... is the consid-

ered lag separating the variables.

With these data, the authors suggest the following test statistic:

Q̃(r̂) = n(n+ 2)
m∑
p=1

(n− p)−1r̂2
p (2.20)

with m representing the first sample autocorrelations and being small in comparison to

n. This quantity approximates a χ2 distribution with m − k degrees of freedom, only

exceeding its variance. The test statistic shown in equation (2.20) has better results

compared to the one originally proposed by G. Box and Pierce (1970) because the latter

is an approximation of 2.20, which biases its distribution.

This test has another advantage: there’s statistical evidence that the non-normality of

the residuals doesn’t affect the results. The errors only need to have finite variance in

order to ensure the referred results.

2.3 Panel Data

Since our research focuses on panel data, there are two more types of data that we must

introduce and are clarified in Ribeiro (2014): cross-sectional data and panel data.

2.3.1 Cross-sectional Data

Cross-sectional data differ in two aspects when compared to time series: cross-sectional

data do not consider only one cross-section unit; in different periods of time there may

be observations for several cross-section units. That is, in cross-sectional data the data

collection isn’t necessarily loyal to the previously stored observations. Therefore, while in

time series we know that we are always referring to the same individual or the same firm,

here that’s not likely to happen. In fact, in different time periods we may have different

cross-section units. Hence, we have observations from many cross-section units and also

a chronological order.

In summary, in cross-sectional data we have:

• Many cross-section units;
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• A sequence of time periods;

• The hypothesis of having different cross-section units in different periods of time.

2.3.2 Panel Data

The goal of our research is to study the evolution of clients deposits for several banks

simultaneously and to be able to simulate those deposits evolution through the use of the

momentum. Since that can be done by means of panel data, we must develop this concept

before clarifying the respective model. We first described the concepts of time series and

of cross-sectional data because panel data is a combination of both, as explained below.

Panel data consists on a data structure that includes both cross-section units (that can

be individuals, firms, etc.) and sequenced time. Essentially, the aim of a study with a

sample of this nature is to observe the evolution of certain attributes of many entities

over time in order to make better simulations in comparison to only one time series. For

instance, in the case of a small sample, the amount of observations in time is compensated

for having more individuals or firms with recorded observations. Hence, in this context,

the cross-section units must remain the same (there can’t be a swap, as an opposition to

cross-sectional data) and the observations for each one of them must be chronologically

organized. Moreover, there may be the case in which the number of observations of at

least one cross-section unit is different from the remaining. When this happens, we can

say that we have an unbalanced panel.

In summary, in panel data we have:

• Many cross-section units;

• A sequence of time periods;

• The same cross-section units over time.

2.3.3 Model

We will work with the basic linear panel data model used in econometrics that Wooldridge

(2002) describes by the following equation, for each i = 1, ...,n:

yit = β1ix1it + ...+ βkixkit + εit , t = 1, ...,T (2.21)

where: yit is the dependent variable; xjit, with j = 1,2, ..., k and t = 1,2, ...,T , are the

independent variables; βji , with j = 1,2, ..., k, are the linear model coefficients; j = 1, ..., k is

the number of independent variables; i = 1, ...,n is the individual index; t = 1, ...,T is the

time index; εit, with t = 1,2, ...,T , is the error component, a random disturbance term. We

can also represent this model with a different notation, where the model in the population

is:
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yt = xtβ + εt (2.22)

where we observe the same variables, for all the considered T time periods, but for each

cross-section unit i. Here: xt is a 1× k vector, for all t; β is a k × 1 vector; both yt and εt
are scalars. xt can be represented as shown below:

xt = [xt1 xt2 . . . xtk]. (2.23)

If we want to refer to an equation that specifically targets a cross-section unit i, during

a concrete time period t, we should represent equation (2.22) with the i subscript as well:

yit = xitβ + εit (2.24)

with

xit = [x1it x2it . . . xkit]. (2.25)

Finally, this model also has a matrix representation:


yi1
yi2
...

yiT


=


x1i1 x2i1 . . . xki1
x1i2 x2i2 . . . xki2
...

...
. . .

...

x1iT x2iT . . . xkiT




β1i

β2i
...

βki


+


εi1
εi2
...

εiT


defined by the following equation:

Yi = Xiβ + εi (2.26)

where: Yi is a T ×1 vector; Xi is the T ×k matrix Xi = (x′i1,x
′
i2, . . . ,x

′
iT )′; β is a k×1 vector; εi

is a T ×1 vector that, as it will be explained in Section 2.3.5, may have its own components:

εi = ciA+ui (2.27)

that are: ci , the unobserved effect, as a constant for each cross-section unit i; A as a column

vector of dimension T of ones; ui as a T × 1 vector that contains the idiosyncratic errors.

2.3.4 Ordinary Least Squares in a Panel Data Context

For the OLS estimates of β to be consistent in a Panel Data context, Wooldridge (2002)

describes the assumptions that had to be verified:

1. E[x′tεt] = 0

2. rank(
∑T
t=1E[x′txt]) = k
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3. a) E[ε2
t x
′
txt] = σ2E[x′txt] where E[ε2

t ] = σ2

b) E[εtεsx′txs] = 0 , s , t(with 0 as a null vector)

considering that:

1. For the orthogonality condition to hold, it’s only necessary to check if the explana-

tory variables are correlated or not to the residual variable. In case they are not, the

condition is satisfied because:

E[x′tεt] = E[E[x′tεt |x′t]] = E[x′tE[εt |x′t]] = 0.

Here, it is still important to notice that both the explanatory and the residual vari-

ables are referring to the same time period, so we have no information about the

relation between xt and εs, with s , t.

2. No variable is a linear combination of any other variable. Here, k represents the

number of explanatory variables.

3. This condition includes two topics:

a) Homoskedasticity, with an explanation similar to the first property, but regard-

ing the conditional variance:

E[x′txtε
2
t ] = E[E[x′txtε

2
t |x′txt]] = E[x′txtE[ε2

t |x′txt]] = E[x′txtσ
2
t ] = σ2E[x′txt];

b) Absence of correlation between the errors and the variables in different time

periods. For this condition to hold, it is only necessary that E[εtεs|xtxs] = 0.

2.3.5 Unobserved Effects

Considering that there are unobserved effects, Wooldridge (2002) presents the follow-

ing model:

yit = xitβ + ci +uit (2.28)

where ci is the unobserved effects component and uit denotes the idiosyncratic error

component. These, as indicated in Section 2.3.3, are the elements that make εit = ci +uit
the composite error. Here, the idiosyncratic error must be i.i.d. and have zero as its

expected value and σ2
u as its variance.

The unobserved effects highlight the specific characteristics of each cross-section unit:

they add another reason to justify why panel data models are useful. Indeed, more data

is relevant to get more information and avoid problems, such as trends, meaning that

if we have a sample of only one individual, then we cannot simulate behaviours that

are different from the ones that that individual has. For example, if we are studying
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the behaviour of a bank that is really successful and has a time series of its deposits

continuously growing, we cannot expect a model using that information to simulate a fall

in any point of time.

2.3.6 Estimation Methods

In panel data models it is usual to consider the residual variable as a sum of two

components: the idiosyncratic error, that was denoted by uit in equation (2.28), and a

more specific component usually referred to as the unobserved effects, denoted by ci in the

same equation. The latter is an unobserved variable that only changes according to each

cross-section unit and not according to time. Since it is constant in time, it is commonly

stated as a "fixed effect". It used to be considered that the unobserved effects could either

be constant (fixed effects) or a random variable (random effects) but, most recently, this

approach has turned into the study of existence of correlation between the unobserved

effects and the independent variables. Depending on the results, the unobserved effects

can either be considered fixed effects or random effects.

2.3.7 Random Effects

While studying random effects, we consider that the unobserved effects are not cor-

related with the explanatory variables. In this case, there are more restrictions to take

into consideration compared to the OLS estimator presented in the basic linear panel

data model. For example, we need to add strict exogeneity to the orthogonality condition.

Thus, the necessary assumptions are the following:

1. a) E[uit |xi , ci] = 0, t = 1, ...,T

b) E[ci |xi] = E[ci] = 0

2. rank(E[X′iΩ
−1Xi]) = k with Ω = E[εiε′i ]

3. a) E[uiu′i |xi , ci] = σ2
u IT

b) E[c2
i |xi] = σ2

c

which mean that:

1. a) The independent variables are uncorrelated with the idiosyncratic error in any

considered time period due to strict exogeneity;

b) There is orthogonality between the independent variables and the unobserved

effects. This specific condition is useful to obtain the asymptotic variance of

the random effects estimator in a GLS (Generalized Least Squares) context;

2. A rank condition implies that the estimator is consistent in the GLS method. Here,

it is assumed that the variance-covariance matrix of the composite error conditional

on the independent variables, Ω, is constant;
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3. a) The idiosyncratic errors are uncorrelated with each other over time and have

constant variances;

b) The unobserved effects are homoskedastic.

In order to calculate this estimator, we must focus on Assumption 2., where we consider

the following matrix for the variances and covariances of εi , which has the structure

presented in equation (2.27):

E[εiε
′
i ] =


σ2
c + σ2

u σ2
c . . . σ2

c

σ2
c σ2

c + σ2
u . . . σ2

c
...

...
. . .

...

σ2
c σ2

c . . . σ2
c + σ2

u


.

Therefore, it is possible to notice that E[εiε′i ] = σ2
u IT + σ2

c B, with B being a T × T matrix

of ones. So, considering σ̂2
u and σ̂2

c as consistent estimators of σ2
u and σ2

c , respectively, we

get the consistent estimator of the whole matrix: Ω̂ = σ̂2
u IT + σ̂2

c B. Thus, we obtain the

random effects estimator:

β̂ =

 n∑
i=1

X′iΩ̂
−1
Xi

−1  n∑
i=1

X′iΩ̂
−1
yi

 . (2.29)

If the assumptions of this model are verified, this estimator is efficient, as well as

asymptoticaly equivalent to the GLS case.

2.3.8 Fixed Effects

Now considering that the unobserved effects, which are constant, are correlated with

the explanatory variables, we have simpler assumptions:

1. E[uit |xi , ci] = 0

2. rank(
∑T
t=1E[ẍ′itẍit]) = rank(E[Ẍ′iẌi]) = k

3. E[uiu′i |xi , ci] = σ2
u IT

in which we must consider that:

1. This assumption is equal to Assumption 1.a) from the random effects model. It

dismisses Assumption 1.b) because, in the fixed effects context, there is no need

to restrict E[ci |xi]. Hence, this analysis is more robust than the random effects per-

spective. However, since the unobserved effects are correlated to the independent

variables, the latter must not contain features that are time-constant. That is be-

cause it is impossible to distinguish whether the effects of time-constant factors

come from the observable or from the unobservable variables.
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2. In order to have Assumption 2., we consider that ẍit = xit − x̄i , with x̄i = T −1 ∑T
t=1xit,

obtaining time-demeaning values that cut out the impact of the unobserved effects.

As a result, time-constant elements of the xit vectors are replaced by zero for all t.

Here, is is intended to make sure that the estimator works asymptotically, forbid-

ding the independent variables to have time-constant elements.

3. This assumption has the same meaning as Assumption 3.a from the random effects

model and has the purpose to ensure efficiency of the fixed effects estimator.

Once again, we start by Assumption 2. to get to our estimator:

β̂ =

 n∑
i=1

Ẍ′iẌi

−1  n∑
i=1

Ẍ′i ÿi

 (2.30)

which is unbiased when conditioned by X. Furthermore, Assumption 3. assures that this

estimator is efficient.
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3
Deposits Data and Model

In this chapter, first we will describe the data that was used to estimate the model and

then we will present the obtained estimates and observe how they explain our final model

choice. Furthermore, we will interpret our models’ coefficients and take a closer look at

its residuals.

Remark 3.0.1. Notice that the pictures (graphics and tables) representing values of clients
deposits will be in thousands of euros.

3.1 Deposits Data

3.1.1 The Whole Sample

For this research, we collected information from 51 Portuguese banks, including suc-

cessful ones, some that went bankrupt and some that were acquired by other banks that

are also in the sample. Their deposits were registered annually from the year of 1992 until

2017. All of these banks contained at least 4 observations and had up to 26, summing a

total of 713 observations. The fact that each bank disposes of a small amount of records

doesn’t harm the results because, by using panel data, there is a compensation, since the

whole sample is included in the same model. More details about the whole sample can

be found in Table 3.1.

Table 3.1: Whole sample’s summary statistics

Minimum Median Maximum Mean Standard Deviation

379 1 002 690 73 426 264 6 310 595 12 350 636
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CHAPTER 3. DEPOSITS DATA AND MODEL

In the table above, we can see that there is a wide range of clients deposits that varies

from 379 thousand euros to 73 billion euros. However, the median of the sample is only 1

billion euros, which doesn’t mean that there are more small banks, because there are small

banks with only 4 observations as well as there are small banks with over 20 observations.

Furthermore, the mean of the clients deposits is approximately 6 billion euros, which is

relevant, since considering that the median is 1 billion euros, more than one half of the

observations does not reach the mean value. This implies that, not only a considerable

amount of observations does not attain the 6 billion euros as also the remaining deposits

are significantly greater than the median. Finally, there is a fluctuation of approximately

12 billion euros in the overall deposits evidenced by their standard deviation.

However, we didn’t consider the 51 banks in our research. We selected a smaller sample

of banks according to the criterion of having an average of at least 10 billion euros in

clients deposits. This is because the average growth rate of banks with different dimen-

sions are distinct from one another. For instance, if a bank has 100 million euros in clients

deposits, it can easily double its value even within one year. However, a bank that has 10

billion euros will take several years to double that amount. By adjusting models to banks

by their dimension, it is possible to make better simulations in each context.

3.1.2 Large Banks

In the used sample we consider annual deposits data from 9 Portuguese banks and

we present the collected data in Table A.1 and in Table A.2. The clients deposits were

collected between 1992 and 2017, summing a total of 129 observations, though only 111

estimated residuals resulted from the estimation. This is due to the use of an AR(2) model

in the estimation, since it can’t consider the first 2 observations of each bank as it would

need previous values to those.

According to our data structure, we are considering panel data: our cross-section units

are the 9 Portuguese banks and the time considered starts in 1992 and ends in 2017.

However, our panel is unbalanced since we don’t have observations for all the banks in

all the considered years. This happens because some of the banks that were taken into

account have gone bankrupt or because there was only available information from a date

later than 1992. The historical series for the banks deposits can be found from Figure 3.1

to Figure 3.9.

24



3.1. DEPOSITS DATA

2000 2005 2010 2015

15
00

00
00

25
00

00
00

Time series of Bank 1's Deposits

Year

B
an

k 
1'

s 
D

ep
os

its

Figure 3.1: Historical time series of Bank 1’s deposits
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Figure 3.2: Historical time series of Bank 2’s deposits
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Figure 3.3: Historical time series of Bank 3’s deposits
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Figure 3.4: Historical time series of Bank 4’s deposits
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Figure 3.5: Historical time series of Bank 5’s deposits
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Figure 3.6: Historical time series of Bank 6’s deposits
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Figure 3.7: Historical time series of Bank 7’s deposits
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Figure 3.8: Historical time series of Bank 8’s deposits
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Figure 3.9: Historical time series of Bank 9’s deposits

In these graphics, it is possible to observe that the time series of the clients deposits are

mainly growing. The decaying periods presented in the time series are usually associated

to crisis episodes that happened in Portugal, such as in the years of 2011 and 2014.

In general, these banks have more than 10 observations, which is important since we

are going to use an AR(2) model and it will cut on two estimated residuals for each bank.

Furthermore, it is also relevant to notice that many of these banks show downfalls at

some point of its time series, which will help to validate our simulations. That is, by

considering banks that have falls in their clients deposits somewhere in their time series,

it will contribute for the simulations to exhibit falls as well. If we would consider only

one time series, the simulations would result in characteristics similar to those, whether

it included falls or not. This is why panel data is relevant in this matter.

Concerning the sample itself, considering all the observations from the 9 banks re-

gardless of the dates, we were able to obtain the data description presented in Table 3.2,

shown below. Here, it is important to observe that even though the minimum value of

the deposits is under 10 billion euros, the average of the respective bank’s deposits is not.

Furthermore, the mean value of all banks is the one taken into consideration in the model

estimation as D̄, as follows.
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Table 3.2: Large Bank’s summary statistics

Minimum Median Maximum Mean (D̄) Standard Deviation

5 152 522 21 597 821 73 426 264 27 251 747 16 779 694

In this table, we have that the clients deposits vary from 5 billion euros to 73 billion

euros. Thus, the chosen banks have a wide range of values to be studied, which makes

it possible to make diverse simulations with the obtained model. Furthemore, since the

median of the sample is 20 billion euros, meaning that half of the observations of the

sample are below that value, and its mean is 30 billion euros, we have that most of the

observations are below the latter value. This is a similar case to the whole sample, as there

is a compensation of the deposits for some banks that have the highest records. Finally,

the standard deviation indicates that the overall deposits fluctuate in approximately 17

billion euros.

3.2 Model Estimation

A usually considered approach in finance includes the use of the momentum (see,

for example, Crombez (2001) and Jegadeesh and Titman (2001)). The momentum is,

essentially, the empirically observed trend that the data evidence. That is, the momentum

shows that if, in our case, the deposits tend to grow, they will continue to grow, and if

they tend to decay, they will keep decaying. This feature can be introduced by means of

an AR(2) model, thus that’s our proposal for the deposits evolution.

3.2.1 The Model

Considering a linear AR(2) model and representing by Di,t the clients deposits for bank

i at time t, with i = 1, ...,9 and t = 1, ...,T , equations (2.14) and (2.21) can be rewritten as:

Di,t = α + β1Di,t−1 + β2Di,t−2 + εit . (3.1)

For the data treatment we consider the plm package (Croissant and Millo, 2008) that

is available for the R software (R Core Team, 2014). This package adapts the estima-

tion methods to unbalanced panels, which is a feature that wasn’t provided by other

econometrics packages. The respective code is presented in Figure A.1.

Remark 3.2.1. Notice that the function plm with the option "pooling", centers the data using
the overall mean of the deposits. That is, the model is adjusted to the data D∗i,t =Di,t − D̄, i =

1, ...n, j = 1, ...,T , with D̄ = 1
nT

∑n
i=1

∑T
t=1Di,t representing the overall mean of the deposits.

By using the plm function with the referred option, we get the adjusted AR(2) pooled

model, estimating the model parameters through the OLS method without considering
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unobserved effects. This means that, not only there is not a specific intercept for each

bank, as also the estimates of the coefficients apply to all banks. This is important for us,

because our final goal is to obtain a plausible model (calibrated with data from different

banks, incorporating distinct scenarios), that we can use to simulate the clients deposits

evolution for a general bank. The estimation results are presented in Table 3.3, below.

Table 3.3: Estimated AR(2) coefficients

Estimate Standard Error P-value
α 1229300 427830 0.00489
β1 1.2082 0.10166 2× 10−16

β2 −0.22016 0.10328 0.03529

Since the p-values of all variables are smaller than 5%, there is statistical evidence that

all the considered variables are significant to this research. Furthermore, it is also possible

to verify that the parameters satisfy the stationarity conditions for an AR(2) process:

∗ 1.2082 + (−0.22016) < 1

∗ (−0.22016)− 1.2082 < 1

∗ −1 < −0.22016 < 1.

The results of the estimation also evidence an R2 of 0.98217, with the respective ad-

justed value of 0.981984, which means that the chosen independent variables can almost

completely explain the considered dependent variable. This allows the results to have

an economic interpretation. Therefore, we were able to work with the following model

equation:

D∗i,t = 1229300 + 1.2082D∗i,t−1 − 0.22016D∗i,t−2 + εit . (3.2)

Thus, we obtained an intercept of more than 1 billion euros, which is the independent

term of the model. It has a standard error of approximately 428 million euros, which

influences the variation of the demeaned deposits in that amount, in a given year, together

with the standard errors of the independent variables’ coefficients. Since β1 and β2 are

the parameters that measure the effect of the value of the demeaned deposits from the

previous time periods in the present, we have that: as β1 is positive and greater than one,

a value greater than the demeaned deposits in the previous time period will be added

to the intercept; as β2 is negative and approximately 20%, around one fifth of the value

of the demeaned deposits two time periods before will be subtracted to the previously

described sum. Finally, an error term with unknown distribution is added. However, the

interpretation of a model with demeaned deposits sounds very unnatural and it is hard

to account.
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Thus, we will now introduce the momentum representation, which, removing the effect

of the overall mean, is the following:

Di,t = D̄(1− 0.98804) + 1229300 + 0.98804Di,t−1 + 0.22016(Di,t−1 −Di,t−2) + εit (3.3)

and, considering that the overall mean is D̄ = 27251747, it can also be represented by:

Di,t = 1555231 + 0.98804Di,t−1 + 0.22016(Di,t−1 −Di,t−2) + εit . (3.4)

This equation might be easier for the reader to understand than the previous ones since

the momentum term already represents the trend that the time series has been following.

That is, if the deposits time series has been growing, this will be a positive term, otherwise

it will most certainly be negative. Therefore, since the first coefficient of the independent

variables is almost equal to one, we can conclude that the present value of the clients

deposits will be the value of the intercept, plus nearly the value assumed by the clients

deposits in the previous time period, plus approximately 20% of the trend of the series

in the two previous time periods, plus an error term.

With these estimates, we needed to test whether this model was accurate or not. In

order to get to valid conclusions, the residuals of the model had to be checked first.

3.2.2 Residuals

For the adjusted model we have the residuals histogram in Figure 3.10 and qq-plot in

Figure 3.11.

Histogram of Residuals

Residuals

F
re

qu
en

cy

−10000000 −5000000 0 5000000

0
5

10
15

20
25

Figure 3.10: AR(2) residuals for the bank deposits
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Figure 3.11: QQ-plot for the AR(2) residuals for the bank deposits

In these graphics, the residuals didn’t seem to follow a Normal distribution, as also

suggested by the residuals skewness and kurtosis that are presented in Table 3.4.

Table 3.4: Residuals skewness and kurtosis

Skewness Kurtosis
-0.6479653 6.517575

In order to validate our conclusions, we used both the Jarque-Bera and the Shapiro-Wilk

tests for normality. Furthermore, since the autocorrelation of the residuals also needed

to be tested, we present all the results in Table 3.5.

Table 3.5: P-values of the tests applied to the AR(2) model’s residuals

Test AR(2)

Jarque-Bera 2.2× 10−16

Shapiro-Wilk 4.946× 10−5

Ljung-Box 0.7315

According to the p-values of the normality tests, the null hypothesis of normality is re-

jected in both cases. This confirms that the residuals did not follow a Normal distribution,

both by the ordered statistics and by the skewness and kurtosis results.
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Finally, we preferred the Ljung-Box test for autocorrelation because it can be used in the

presence of non-normal disturbances, as an opposition to the Box-Pierce’s test-statistic.

This test returned a p-value of 0.7315, not rejecting the null hypothesis, which confirms

an absence of autocorrelation among the residuals of the AR(2) model.

3.2.3 Pooled Model

With non-normal residuals, some "pooling" tests, that is, procedures to test if individual

banks or time effects should be introduced in the model, couldn’t be applied to our model.

Consequently, we used a Lagrange Multipliers test by Breusch and Pagan (Breusch and

Pagan, 1980), which, as Honda, 1985 shows, is robust to non-normal disturbances while

testing both effects simultaneously. The result was a p-value of 0.1896, which means that

the null hypothesis of non-significant effects is not rejected. This represents statistical

evidence that there were neither individual nor time effects, which validates our model.

By using a pooled model, we are neither in the presence of random effects nor of fixed

effects. This implies that the estimation method does not have to consider unobserved

effects, which makes this model a generic model for banks of large dimension. It considers

both successful and failed banks, some with a few and others with lot of observations, as

well as with downfalls in their time series or constantly growing ones.
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4
Computational simulation and results

In this Chapter, we aim to discuss the results of the simulations that we were able to

generate with the estimated model from the previous chapter. Therefore, we present

their trajectories and compare them to simulations originated by the most commonly

used models at explaining clients deposits’ evolution. These are based in one single time

series, that is, these models consider individual banks.

4.1 Panel data results

With the model presented in equation (3.4), we simulated 9 trajectories for clients de-

posits for the following 30 years from the last recorded observation (the first 2 years in

the trajectories, correspond to initial given values for starting the AR(2) process simula-

tion). The considered mean value for all cases (including the individual banks that will

be studied in the following sections) was D̄ = 10000000 because it was the criterion for

choosing our sample, even though it doesn’t influence the simulated trajectories.

The fact that we didn’t choose the actual mean of the considered banks to perform the

simulations doesn’t change the results in meaning. That is, the graphics would look the

same except for a vertical translation of the graphics for the difference between the actual

mean and the value we chose for each case (see equation (3.3)). Therefore, we chose our

reference to select our sample as the initial position.

According to the final results in Chapter 3, regarding the residuals of the adjusted

model, its residuals did not follow a Normal distribution. Thus, we used a resampling

technique with replacement, which is known as the Bootstrap method, to simulate them.

That is, we used the residuals from the original time series in the simulations, randomly

distributed among the observations. The original residuals could be used more than once.
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Therefore, our simulations are presented from Figure 4.1 to Figure 4.3.
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Figure 4.1: Simulated trajectories with the model in equation (3.3) for 9 Banks - Case 1
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Figure 4.2: Simulated trajectories with the model in equation (3.3) for 9 Banks - Case 2
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Figure 4.3: Simulated trajectories with the model in equation (3.3) for 9 Banks - Case 3

In these simulations we are able to observe that there are always at least two distinct

scenarios: one in which the time series has almost a constant value until it reaches approx-

imately 30 billion euros in the end (corresponding to the red line in the three graphics);

another in which the time series is mainly growing, while either having a few accidents or

a slower growth. Here, it is possible to notice that there are never extremely fast growths,

as in the first 15 years of the simulations, approximately, the trajectories of the deposits

don’t evolve quickly to greater values, except for two paths in Case 2. We get a wide

range of possibilities that derives from the use of panel data, obtaining both good and

bad scenarios.

Considering the values that these time series can reach, we should recall that our data

include deposits from 5 billion euros to 73 billion euros, approximately. Therefore, it

is ordinary that the simulated time series can register both low and high values, such as

reaching 30 billion euros or 70 billion euros, respectively.

Thus, these simulations represent the various possible cases that a bank can face: pros-

perity, cautiousness or the risk of bankruptcy. This means that the model presented in

equation (3.3) can help banks to manage their activity, taking into account the many risks

that they may need to face.

Furthermore, we were able to obtain more indicators of the advantages of panel data

modelling, such as the Maximum Drawdown, which will be discussed in Section 4.3.

37



CHAPTER 4. COMPUTATIONAL SIMULATION AND RESULTS

4.2 Analysis of Individual Banks

In order to compare our model with the most commonly used by the authors referred

in Chapter 1, the AR(1) and the AR(2) models applied to individual banks, we chose 2

different banks from our sample: Bank 1 and Bank 5. We selected these banks mainly for

two factors: the number of observations of their time series was reasonable; their time

series had not big sudden falls.

Since we are considering autoregressive models it was not recommended to use a bank

with only a few observations (such as Bank 3 or Bank 4) because the estimated residuals

would have even less values and, as tested, the estimated coefficients of the respective

models would not be significant. Moreover, a consistently growing time series would

allow us to test the AR(1) simulations. That is, if this model would result in both good

and bad scenarios with a successful bank, then the use of panel data would be pointless.

However, as discussed before, with only one time series, the autoregressive models would

not be expected to simulate significantly different cases from the ones observed in the

respective time series.

4.2.1 Bank 1

To start with, we had to estimate the AR(1) and AR(2) models with Bank 1’s data in

order to check whether these models could be compared to ours. Using the R software,

as shown in Figure A.2 and in Figure A.3, we obtained the results of the coefficients’

estimations presented in Table 4.1 for the AR(2) case and in Table 4.2 for the AR(1) case.

Let us focus on the AR(2) model first.

Table 4.1: Estimated AR(2) coefficients for Bank 1

Estimate Standard Error P-value

α 2306783 2015825 0.2768

β1 1.02367 0.30087 0.0059

β2 −0.08804 0.30788 0.7802

Since β2 is not significant in the AR(2) model estimation, we checked both the ACF and

PACF of this model to check whether the AR(2) model was actually not appropriate for

this data. The results are presented in Figure 4.4 and in Figure 4.5.
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Figure 4.4: Autocorrelation Function in Bank 1’s time series
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Figure 4.5: Partial Autocorrelation Function in Bank 1’s time series
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As shown in the graphics above, the time series of Bank 1’s deposits is stationary and

the most appropriate autoregressive model to study them is the AR(1) model. Therefore,

there would be no point in proceeding with this model’s analysis. It is thus excluded

from our research. Let us now focus on the AR(1) case.

Table 4.2: Estimated AR(1) coefficients for Bank 1

Estimate Standard Error P-value

α 2038634 1705459 0.253

β1 0.95267 0.08542 5× 10−8

According to the PACF graphic, the AR(1) model seemed to be relevant, which was

proven by the significance of β1 in its estimation, as presented in Table 4.2. Furthermore,

the estimate of the respective coefficient is smaller than 1, which verifies that the data are

stationary. Finally, even though the intercept of this model is not significant, it won’t alter

the nature of the model because it is a constant and it is not associated to any variable,

thus it is not necessary to exclude it. Furthermore, this estimation resulted in an R2 of

0.9054, and in the respective adjusted value of 0.8981, which shows a good adjustment.

Before proceeding to the simulations, we only had to check the residuals of the esti-

mated model for normality and autocorrelation. For normality, we had some preliminary

results:

Table 4.3: Skewness and Kurtosis of the residuals of Bank 1 model

Moments AR(1)

Skewness 0.3499915

Kurtosis 3.280727

In Table 4.3, the values for the skewness and kurtosis of the residuals indicate normality,

since these are close to the reference values of the Normal distribution. However, as we

did in Chapter 3, we performed both Jarque-Bera and Shapiro-Wilk’s tests for normality

and the Ljung-Box test for autocorrelation. The results are the following:
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Table 4.4: P-values of the tests applied to the AR(1) model’s residuals

Test AR(1)

Jarque-Bera 0.81

Shapiro-Wilk 0.4825

Ljung-Box 0.804

Since all p-values are greater than 0.05, none of the null hypothesis is rejected. That

means that the residuals of the estimated AR(1) model are considered to follow a Normal

distribution and not to be autocorrelated. Thus, considering an AR(1) model with its

coefficient estimated at 0.95267 for its first lag and normal residuals, we obtained the

simulations presented from Figure 4.6 to Figure 4.8 for Bank 1’s clients deposits. The

respective graphics are shown below.
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Figure 4.6: Simulated trajectories with an AR(1) for Bank 1 - Case 1

41



CHAPTER 4. COMPUTATIONAL SIMULATION AND RESULTS

0 5 10 15 20 25 3010
00

00
00

30
00

00
00

50
00

00
00

Simulations for Bank 1 − Case 2

Year

C
lie

nt
s 

D
ep

os
its

Figure 4.7: Simulated trajectories with an AR(1) for Bank 1 - Case 2
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Figure 4.8: Simulated trajectories with an AR(1) for Bank 1 - Case 3

These simulations were obtained for the bank whose time series is represented in Figure

3.1 (Bank 1): a growing time series that starts at approximately 10 billion euros and

reaches a value close to 30 billion euros, except for an interval of two periods of time, in

which it decays.
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In the Figures above, it is possible to notice the constantly growing trend, except for the

green dashed line in the third case. Therefore, all the simulations are optimistic because

none of them represents big losses and neither downward trajectories. Furthermore, the

worst case scenario is maintaining the deposits at a roughly plain level of 30 billion euros

after a successful period.

The described graphics don’t evolve too quickly, which is reasonable, but since those

don’t show scenarios that are different from one another, those are not the most viable

source. That is, if a bank only takes these simulations into account when managing re-

sources, it will only consider good scenarios, which may lead to desastrous consequences

since there may be sudden "bank runs" that weren’t planned. This is one visible example

of the effects of using only one time series in simulations with an AR(1) model.

4.2.2 Bank 5

We’ll repeat the procedure applied to Bank 1. Thus, considering those obtained results,

we’ll start by estimating the AR(2) model with Bank 5’s deposits. The code used in the R
software is shown in Figure A.5 and the estimation results are presented below, in Table

4.5.

Table 4.5: Estimated AR(2) coefficients for Bank 5

Estimate Standard Error P-value

α 3888176 1887173 0.052

β1 1.333 0.2505 2.82× 10−5

β2 −0.3923 0.2417 0.12

As we verified in Bank 1, the second coefficient of the AR(2) model is not significant,

thus, once again, we will confirm this result with both the Autocorrelation Function and

the Partial Autocorrelation Function:
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Figure 4.9: Autocorrelation Function in Bank 5’s time series
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Figure 4.10: Partial Autocorrelation Function in Bank 5’s time series
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The results are similar to the ones found in Bank 1: the data appear to be stationary

but only the AR(1) model seems to be relevant for our research. Therefore, we will now

analyze the AR(1) model estimates:

Table 4.6: Estimated AR(1) coefficients for Bank 5

Estimate Standard Error P-value

α 4918310 1576701 0.00482

β1 0.9358 0.03054 2× 10−16

In Table 4.6, it is shown that both the intercept and the coefficient of the first lag of the

model are significant at a significance level of 5%. Furthermore, looking at the estimates,

we can confirm that the data are stationary, as initially revealed by the ACF. Finally, this

estimation resulted in an R2 of 0.9761, and in the respective adjusted value of 0.9751.

These values also indicate a good adjustment of the model to the sample.

We also checked the normality of the residuals of Bank 5 in order to decide the best

method in the simulations. Hence, we had to verify the respective skewness and kurtosis

for the considered model, with the respective results presented in Table 4.7.

Table 4.7: Skewness and Kurtosis of the residuals of Bank 5 models

Moments AR(1)

Skewness −0.6371799

Kurtosis 3.441407

The skewness and kurtosis of the residuals in this model are close to the values of the

Normal distribution. Thus, in order to validate these results, we performed the same tests

that we referred in the Bank 1’s case, including the verification of autocorrelation. The

results for all tests are presented in Table 4.8.

Table 4.8: P-values of the tests applied to the AR(1) model’s residuals

Test AR(1)

Jarque-Bera 0.175

Shapiro-Wilk 0.264

Ljung-Box 0.3265
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All of the obtained p-values are greater or equal than 0.05, which means that the null

hypothesis is never rejected. Therefore, we can assume that the residuals of the model

AR(1) for Bank 5 also follow a Normal distribution and do not verify autocorrelation.

Hence, we are now in the conditions to simulate this model.
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Figure 4.11: Simulated trajectories with an AR(1) for Bank 5 - Case 1
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Figure 4.12: Simulated trajectories with an AR(1) for Bank 5 - Case 2
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Figure 4.13: Simulated trajectories with an AR(1) for Bank 5 - Case 3

The simulations were now obtained for the bank whose deposits are represented in

Figure 3.5 (Bank 5): a series that starts near the 18 billion euros to grow until it reaches

approximately 70 billion euros, when it falls back to the 60 billion euros.

In the trajectories found from Figure 4.11 to Figure 4.13, we can observe a very signifi-

cant growth in the first 10 years. Furthermore, even more visibly than in Bank 1, we can

notice that every simulated trajectory is extraordinarily optimistic; not only the values

grow to extremely large values (as the series from which these derive) but also there

are never remarkable falls. These facts emphasize our previous points: with panel data

there are more realistic scenarios and the simulations with only one time series reflect

the sample itself.

4.3 Comparisons

As shown in the previous section, the model in equation (3.4) shows more diversified

case scenarios, including worse ones, than the AR(1) model applied to two different banks

(one at a time). That is, while the simulations with just one bank seem to be constantly

growing, and faster, according to the reached values, the results with panel data show the

possibilities of lacking resources and of sudden losses of money.
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4.3.1 Maximum Drawdown

While discussing the simulations of the 9 Banks, we referred an indicator called Maxi-

mum Drawdown (MDD). This is an indicator of downside risk, which we used to check

whether the obtained simulations were actually simulating bad scenarios. A Maximum

Drawdown is, in an observed evolution of a time series, the maximum fall of the values,

starting from a local maximum of the time series, before it is achieved a new local maxi-

mum. That is, when the time series reaches a maximum value and starts decaying, that

maximum is recorded until the series starts growing again and a new maximum is at-

tained. In the period of time contained between the two maximums, the lowest achieved

value is also recorded. The first maximum is subtracted to this minimum and the result

is divided by the first maximum as well and multiplied by 100 in order to register the fall

in percentage. Mathematically:

MDD =
Min−Max

Max
× 100 (4.1)

where Min is the minimum value attained between two maximums and Max is the first

local maximum of every two consecutive considered.

Through the analysis of the simulations, we noticed that the first 10 years were decisive

in the trend that the trajectories would take. Hence, we thought that it would be reason-

able to separate the analysis of the 9 trajectories of each case in two different situations:

considering the 30 years; only assessing the first 10 years. Thus, we would be able to

highlight the main problem of the AR(1) model with just one time series: the beginning

of the simulations never show episodes of sudden losses of money. Additionally, since

our goal is to have realistic simulations, we also chose to compare the referred MDD’s

with the ones from the historical data.

Since there are many simulations (or banks, in the case of historical data), we wouldn’t

use more than one MDD for each of them. Thus, we chose the maximum MDD of all

simulations of each category: the 9 Banks of our sample, Bank 1 and Bank 5. Also, for

comparing matters, we also calculated the average MDD in each case.

We’ll start by the historical data, since it’s our source of comparison. There’s a summary

of the several results in Table 4.9.

Table 4.9: Maximum Drawdowns of the Historical Data

Sample Maximum Average

9 Banks 29.435 % 11.34914 %
Bank 1 11.76489 % -
Bank 5 14.199638 % -
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These results will be our references. The 9 Banks have a maximum MDD of approxi-

mately 29% of the maximum considered in the calculus, while Bank 1 registered 11% and

Bank 5 recorded 14%. The latter two are represented in the corresponding time series,

exhibited in Figure 4.14, in Bank 1’s case, and in Figure 4.15, in Bank 5’s case.
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Figure 4.14: Bank 1’s deposits time series (dotted line) and its values considered in the
Maximum Drawdown calculus (solid line)
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Figure 4.15: Bank 5’s deposits time series (dotted line) and its values considered in the
Maximum Drawdown calculus (solid line)

49



CHAPTER 4. COMPUTATIONAL SIMULATION AND RESULTS

It is not intuitive to compare both MDD’s: while the one from Bank 5 is in the end of the

time series, thus representing a higher percentagem of a greater value (around 70 billion

euros), the one from Bank 1 is approximately in the middle of the time series, representing

a smaller percentage of a smaller value. However, we can notice that, since deposits time

series tend to be growing, the further they are from the origin of the graphic, the smaller

tend to be the percentage of the fall, because the same absolute value in comparison to

two different maximums, will have a bigger impact in the smallest value. Thus, 14% of

70 billion euros is a much bigger fall than 11% of 25 billion euros.

Regarding the average MDD’s, in the historical case, the individual banks only have

one time series, hence, it is not reasonable to calculate its average. However, the set of the

9 Banks allows us to obtain that quantity, which is approximately 11%. This value is very

close to the maximum MDD of Bank 1, which makes it an even more interesting bank to

consider in the comparisons.

Regarding the simulated values, we obtained the MDD’s for the referred distinct cases

presented in Table 4.10 and in Table 4.11, respectively considering 30, and specifically

the first 10, years from the simulations.

Table 4.10: Maximum Drawdowns of the Simulated Trajectories for 30 years

Sample Maximum Average

9 Banks 61.64756 % 31.42079 %

Bank 1 (AR(1)) 15.92397 % 11.43346 %

Bank 5 (AR(1)) 16.32471 % 8.964539 %

In the simulated trajectories for the 9 Banks, the worst case scenario had an MDD of ap-

proximately 61.65%, which is clearly greater than the remaining registered values. This

happens because our model makes it possible to simulate critical events sooner. Since

the trajectories don’t reach high values quickly, the biggest drawdowns happen earlier,

which causes the percentage of the fall to be bigger. However, this doesn’t mean that there

won’t be bad events afterwards; they just won’t have an effect as noticeable as in the first

periods of the simulations. Furthermore, since our trajectories for the 9 Banks register

more bad events throughout the whole series, its average is also greater in this case, with

a result of approximately 31%.

Regarding the first 10 years of the simulations, we noticed that Bank 1 registered greater

values than Bank 5, even though it had been the opposite case in the 30-year simulations.

This happens because the previously recorded MDD had been registered in the first 10

years of the simulated trajectories.
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Table 4.11: Maximum Drawdown of the first 10 years of the Simulations

Sample Maximum Average

9 Banks 44.36276 % 15.00251 %

Bank 1 (AR(1)) 15.92397 % 7.294522 %

Bank 5 (AR(1)) 9.236793 % 2.49694 %

It is also possible to notice that the tipically used model, the AR(1), has the smallest

values both in average and in maximum. Its results don’t seem to be realistic, since it

can’t simulate any crisis or sudden massive losses of money. Thus, it doesn’t seem to be

as reliable as the panel data AR(2) model.

4.3.2 Densities of the Simulated Deposits

Another form of comparison of the results of the simulations is by presenting them in

density plots. This could either be by the graphical representation of the probabilities of

the obtained values (hence density plots) or of the values themselves in histograms.

4.3.2.1 Histograms

We focused on simulations for 5 and 10 years, performing a total of 10 000 trajectories

for panel data and for each of the individual banks and recorded the last observation from

each trajectory for each case. The histograms are presented from Figure 4.16 to Figure

4.18.

Remark 4.3.1. Before proceeding to the analysis, we should notice that the negative values
of the deposits could be interpreted as bankruptcy or debts (for example, in case of external
financing), as well as simply the loss of that amount in clients deposits (because, as it was
already referred, the initial value of the trajectories is mainly illustrative).

The simulations results show that the tails of the density plots are more pronounced

with panel data. This represents a better adjustment of the models to the data. For

instance, Bank 1 and Bank 5’s simulations never consider events of bankruptcy, since the

simulations never reach the zero level. This reinforces the idea that the simulations of the

AR(1) model with only one bank are always too optimistic in the first time periods of the

simulations. Once again, this is not a reliable assumption because, otherwise, every time

the simulations would be created and there was a successful bank in study, there would

never be a bad case in the simulations. There should always be pessimistic simulations

as well when banks are stress testing so that they can better manage their activity.
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Figure 4.16: 9 Banks’ histogram for 5 years
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Figure 4.17: Bank 1’s histogram for 5 years
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Histogram of simulated deposits for Bank 5 for 5 years
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Figure 4.18: Bank 5’s histogram for 5 years

In order to have a more detailed view of the results, we recorded the quantiles regarding

the tails of the densities of the simulated deposits. These are presented in Table 4.12,

below.

Table 4.12: Quantiles for the 5-year simulations of clients deposits

Sample 1% 5% 95% 99%

9 Banks 1 588 987 7 131 494 26 900 452 31 056 477

Bank 1 10 259 667 12 689 774 25 672 700 28 259 616

Bank 5 22 255 994 25 914 712 44 278 112 48 026 598

This table, together with the histograms, shows that the deposits in the first quantile

have significant differences between each other. The 9 Banks register the minimum value

with approximately 1.6 billion euros, followed by Bank 1 with 10 billion euros. This

shows not only that the 9 Banks have the lowest values, reaching negative ones, but also

the previously referred optimism of the AR(1) model. Regarding the medium quantiles,

we can notice that even though the 9 Banks have the wider range, along with Bank 5, the

first also has the longest tails. The centered mass has higher frequencies for each value

while the tails evidence very small frequencies for a lot of other values. This evidences

the different scenarios presented in the simulations. Finally, the highest quantiles also
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highlight the spread of the tails, since even though the 9 Banks register the smallest 99%

quantile, they reach values that are over 10 billion euros from that record.

By analysing these results, we calculated the probability of the banks reaching zero

euros in clients deposits. With the 10 000 simulations for 5 years, this probability is

approximately 1.23% in the 9 banks case, and 0% in the remaining cases. This shows that

there is significant risk involved in the management of liquid assets. A 10 billion euros

fall in clients deposits will certainly influence the ability of a bank to respond to such a

financial crisis. Thus, the panel data model exhibits financial distress situations even in

the beginning of the simulations.

We will now present the histograms for the 10-year simulations below, from Figure

4.19 to Figure 4.21.

Histogram of simulated deposits for 9 banks for 10 years

Deposits

F
re

qu
en

cy

−10000000 0 10000000 30000000 50000000

0
10

0
30

0
50

0

Figure 4.19: 9 Banks’ histogram for 10 years
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Histogram of simulated deposits for Bank 1 for 10 years
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Figure 4.20: Bank 1’s histogram for 10 years

Histogram of simulated deposits for Bank 5 for 10 years
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Figure 4.21: Bank 5’s histogram for 10 years
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In the graphics above, there is a reinforcement of the discussed points from the cor-

responding records for the 5-year horizon. That is, the densities of the values along the

graphics are more concentrated in the panel data’s case. There appears to be a centered

mass of the most observed values, both in the panel data and in the individual banks

cases. Moreover, the individual banks, whose residuals were considered to follow a Nor-

mal distribution, show a greater evidence of their distribution in the 10-year simulations

as well.

These results also evidence what we have been stating so far: the AR(1) model with

individual banks reflects the original time series. That is, the range of simulated values

is similar to the original sample. This justifies the large shape of Bank 1’s and Bank 5’s

histograms. Thus, panel data returns a more realistic result and we present the quantiles

that evidence the tails of the densities shown in the histograms above. These details are

exhibited in Table 4.13, below.

Table 4.13: Quantiles for the 10-year simulations of clients deposits

Sample 1% 5% 95% 99%

9 Banks 2 489 109 9 383 741 35 822 954 40 897 027

Bank 1 15 237 647 18 343 916 34 526 930 37 886 178

Bank 5 34 421 072 38 910 852 60 348 692 64 671 942

The results for the 10-year simulations, also considering the histograms, indicate the

aspects already referred. That is, the 9 Banks register the minimum value in the lowest

quantile again, revealing that these represent the only case in which the simulations attain

negative values, emphasizing the worst case scenarios. Furthermore, in the medium

quantiles, the results exhibit similar ranges in the panel data and Bank 5 cases again and

evidence the largest spread of the tails in the 9 Banks case. That is, the medium quantiles

are expected to show a certain variety of levels, while the tails of the densities should

present a greater spread of values in the panel data case. This is evidenced when reaching

the last considered quantile, where we can observe that the spread of the tails is bigger

in the 9 Banks case, expanding in more than 10 billion euros. This might be justified by

the fact that the simulations don’t reach the highest values in all the trajectories, which is

reasonable, since the survivorship bias is noticeable in the individual banks cases.

Therefore, the probability of the deposits reaching zero euros was calculated again for

the three cases. In the 9 Banks, comparing to the 5-year simulations, this value rose to

1.77%, and maintained its level as 0% in the individual banks cases. Thus, the 10-year

simulations also reinforced that the AR(2) model, considering the momentum, shows not

only that bad events can happen, as well as that those are more likely to happen as time

evolves.
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4.3.2.2 Density Plots

The density plots help to see the shape of the histograms. Thus, we have grouped them

in pairs, by category, considering the 5 and 10-year simulations, in order to compare

their evolution in time. We present them from Figure 4.22 to Figure 4.24, where it is

easier to notice the shapes of the densities of the simulated deposits. Consequently, the

simulations of the 9 Banks show a greater concentration of the deposits in a smaller range,

having a bigger spread of the tails, especially the left one, while in Bank 1 and in Bank 5

there is a greater expansion of the values in the center of the respective densities.

Regarding the evolution of each case from the 5-year to the 10-year simulations, it is

possible to verify that the 9 Banks reach a higher mean of their clients deposits and not a

higher minimum value in the left tail. This evidences the ability of the model to simulate

both good and bad scenarios. Furthermore, the assumed values of the simulated deposits

are more spread even in the center of mass of the distribution. That is, the values around

its mean have smaller densities but include more values with higher densities.

The description associated to the 9 Banks is not completely relatable to the individual

banks’ cases, as in both Bank 1 and Bank 5 the graphics seem to translate to the right.

Noticing by the tails and the means of the respective densities, the simulations only reach

higher values, both in minimum as in maximum. Thus, their means are also greater,

but their left tails don’t reach similar values as in the 5-year simulations. Moreover, the

densities are even similar from the 5-year to the 10-year simulations. This reflects the

consequences of using an AR(1) model with a single time series, specifically a constantly

growing one.
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Figure 4.22: 9 Banks’ density plots for 5 and 10 years

58



4.3. COMPARISONS

10000000 20000000 30000000 400000000.
00

00
00

00
0.

00
00

00
06

Density of simulated deposits for Bank 1 for 5 years

Deposits

D
en

si
ty

10000000 20000000 30000000 400000000.
00

00
00

00
0.

00
00

00
06

Density of simulated deposits for Bank 1 for 10 years

Deposits

D
en

si
ty

Figure 4.23: Bank 1’s density plot for 5 and 10 years
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Figure 4.24: Bank 5’s density plot for 5 and 10 years

60



C
h
a
p
t
e
r

5
Conclusions

The goal of this research was to develop a panel data model that could explain the

evolution of banks’ clients deposits using the momentum. This would be an innovation

in opposition to the usually referred AR(1) model with only one time series and it would

be important because it is an arising issue to study liquidity risk. In this subject, it is

relevant to try to understand how non-maturity deposits evolve throughout time, so that

banks can optimize their activity management.

Benbachir and Hamzi (2016) had already showed that the Autoregressive model of

order 2 could be relevant when explaining the non-maturity deposits. However, this idea

never got to be developed. Thus, we decided to include a momentum term in the model,

which is commonly used in the financial area, in order to generate a better interpretation

and comprehension of the deposits models.

In order to develop our model, we collected data on 51 Portuguese banks, restricting

it to the largest ones. That is, we only used a sample comprised of banks that had an

average of clients deposits of at least 10 billion euros, which were only 9. From this

sample we were able to use 129 observations, although only 111 residuals resulted from

the estimation. However, having a small sample wasn’t an issue because, since we were

using panel data, the diversified information from several banks would compensate its

quantity.

While developing our model, after checking its significance, we had to verify that

certain requirements were being met. For instance, the data had to be stationary and

the residuals of our model couldn’t suffer from autocorrelation. In order to validate our

model, we implemented several tests, that included the Shapiro-Wilk test for normality

and the Ljung-Box test for autocorrelation. Furthermore, we used the R software to
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perform inference, validate our model and analyze our sample. This procedure was also

applied to the models used in the comparisons, both an AR(1) and an AR(2) models with

a single time series for each.

Regarding the computational simulations, we generated 9 trajectories for our model

and 9 trajectories for each AR(1) model concerning the individual banks. These were

selected from our sample in order to make comparisons. The AR(2) models with just one

bank were excluded from the research because their second coefficient weren’t significant

in the estimations.

The results showed that the panel data model, in addition to showing a growing evolu-

tion of the deposits, would present more diversified case scenarios, including worse ones,

in the simulations, which goes against the frequently used models and samples. That is,

the problem with using AR(1) models with only one time series, is that the simulations

won’t be significantly different from the observed data. Therefore, if that model only uses

a constantly growing series in the sample, for example, then it won’t be able to simulate

falls for the future.

When simulating models with stress testing purposes or when trying to manage banks’

activity efficiently, a wide range of possibilities is pursued. That is, the dynamics of

liquidity risk must be taken into account and that can’t be achieved when considering

the actions of only one institution. A variety of cases must be considered when trying to

understand what could go wrong in financial operations.

When comparing the different models, we considered two indicators: the Maximum

Drawdown and the probability density of the simulated deposits. The Maximum Draw-

down is a commonly used indicator in finance, as it highlights the downfalls of the time

series. It considers the falls from each local maximum to the following local minimum

that arises before a new maximum is attained. This indicator is useful because it helps to

compare bad scenarios and to identify whether these happened in the beginning, in the

middle or in the end of the trajectories, facilitating comparisons in this matter. The prob-

ability density of the simulated deposits helps to understand whether the simulations are

realistic or not. By comparing the results, it is possible to infer which models present the

best results, both in the range of simulated possibilities and in the concentration of the

deposits.

The panel data model showed greater drawdowns, and also simulated episodes of

significant financial distress, as reinforced in the histograms and density plots. Therefore,

it helps to simulate more diversified scenarios and it is a better tool to manage banks’

activity, since it accounts the various possibilities associated with liquidity risk.
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For future work, it might also be interesting to analyze the results of a momentum

model with small and medium banks, also using a panel data sample in order to create

diversified scenarios.
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Appendix 1

Table A.1: Data - Part 1

Year Bank 1 Bank 2 Bank 3 Bank 4 Bank 5
1992 17893172.45
1993 20344784.07
1994 22597769.38
1995 16655819.48 25427858.86
1996 17845118.26 28136545.92
1997 18848445.25 30099764.57
1998 18489051.39 35450000.5
1999 19669012.68 38545789.65
2000 11115848 28920221 41160378
2001 12053116 29441050 43425050
2002 12330930 27088044 45083857
2003 12355632 30623978 44733023
2004 12435609 33608210 45403221
2005 14028451 34395431 50161963
2006 16235505 33244197 53767835
2007 20621866 39246611 54038767
2008 25633620 44907168 60127756
2009 22617852 46307233 64255685
2010 23240863 45609115 67680045
2011 24671328 47516110 13701919 70587491
2012 24621139 49389866 13255447 71404154
2013 25494961 48959752 14142828 67824469
2014 28134617 49816736 14314659 71134176
2015 28177814 51538583 12969431 73426264
2016 48797647 12467819 69680130
2017 63000000
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APPENDIX A. APPENDIX 1

Table A.2: Data - Part 2

Year Bank 6 Bank 7 Bank 8 Bank 9
1992 5152522.421 8026965.014
1993 6272662.882 8493011.841
1994 6964061.612 9203145.42
1995 9033978.113 10277147.08
1996 10414964.93 11108872.62
1997 11841078 11378418.01
1998 13073507.85 10972645.92
1999 14511936.23 11337721.09
2000 16159751
2001 17394740
2002 18667656
2003 20136614
2004 20371090 12953161 13851659
2005 20753083 12247389 15217252
2006 21993671 11082844 15622396
2007 23775030 11459761 16033144
2008 26386754 15301954 15700248
2009 25446450 15253588 15081297
2010 30819220 18262476 17018297
2011 34206162 20098566 19073613
2012 34540323 21395469 19659923
2013 36830893 20690967 19271178
2014 27838824 21597821 20345997
2015 27582142 27488734 26017806
2016 25989719 29094675 27672590
2017
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Figure A.1: Results of the estimation of an AR(2) model for the 9 banks

Figure A.2: Results of the estimation of an AR(1) model for Bank 1

69



APPENDIX A. APPENDIX 1

Figure A.3: Results of the estimation of an AR(2) model for Bank 1

Figure A.4: Results of the estimation of an AR(1) model for Bank 5
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Figure A.5: Results of the estimation of an AR(2) model for Bank 5
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