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Abstract

The manufacturing industry always has been one of the leading energy consumers, so

companies in this area are always trying to use the best tools provided by the evolution

of the technology, to analyse and lower the production costs. Many known studies don’t

mind inconveniences such as stopping the production of the factory to perform studies

or deep architecture improvements in the transport system.

The proposed solution offers two different sets of tools. A device adapter, that targets

the gather and storage of data, from industrial robotic cells devices, being the main re-

quirement for a data analysis application, and a data analysis system, that analyses the

stored data, without changing the existing production model. The analysis procedure

aims the energy usage of a cell and its robot, and the duration of the executed processes.

This solution was tested in two different robotic cells, that execute the same process.

Multiple executions with different robot velocities were performed in order to gather

the required data to provide an analysis and the conclusion was that, for both cells, the

energy usage for each executed product was lower when the robot speed was higher, and

that one of the cells is more efficient that other cell when executing at high speed but less

efficient on lower velocities.

Keywords: manufacturing, energy, data analysis, optimisation
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Resumo

A indústria de manufatura sempre foi um dos principais consumidores de energia,

pelo que as empresas nesta área estão sempre a tentar usar as melhores ferramentas forne-

cidas pela evolução da tecnologia, para analisar e reduzir os custos de produção. Muitos

estudos conhecidos não se importam com inconvenientes como interromper a produção

da fábrica para realizar estudos ou melhorias profundas na arquitetura do sistema de

transporte.

A solução proposta oferece dois conjuntos diferentes de ferramentas. Um adaptador

de dispositivo, que visa a coleta e armazenamento de dados, de dispositivos de células ro-

bóticas industriais, sendo estes dados o requisito principal numa aplicação de tratamento

de dados, e um sistema de análise de dados que analisa os dados armazenados sem alterar

o modelo de produção existente. O procedimento de análise visa o consumo energético

de uma célula robótica e a duração dos processos executados.

Esta solução foi testada em duas células robóticas diferentes, que executam o mesmo

processo. Múltiplas execuções com diferentes velocidades do robô foram realizadas para

reunir os dados necessários para fornecer uma análise e a conclusão foi que, para ambas

as células, o uso de energia para cada produto executado foi menor quando a velocidade

do robô foi maior, e que uma das células foi mais eficiente do que a outra célula quando

executadas em maior velocidade, mas menos eficientes em velocidades mais baixas.

Palavras-chave: manufatura, energia, análise de dados, otimização
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1
Introduction

1.1 Problem Description

In the latest years, energy consumption has been one of the greatest concerns in al-

most every industry. Energy efficiency has been recognised as one of the key issues in

achieving sustainable manufacturing. Most factories and their processes were designed

and constructed with the cost as the most important economic factor (Karnouskos et al.

2009). The energy consumed by a manufacturing process is a major direct measure of

its impact on the environment. The energy consumed usually translates to the amount

of energy that has been produced from fossil-fired plants or captive generators, having

a strong link with the depletion and degradation of the environment and also to climate

change issues as a fallout of the resulting CO2 emissions (Krishnan et al. 2009).

Continuous changeover leaves little space for optimisation with traditional automa-

tion technology. The demand for reduced time to market when deploying new products

causes system integrators to rush the machinery without fine tuning their parameters in

an optimal way, causing the equipments to consume more energy than actually needed,

leading to additional costs and waste.

With the evolution of the technology, most companies are trying to create new solu-

tions to address this problem, by applying new methods of management and data analysis.

In the manufacturing industry, the optimisation of processes can lead to a lower execution

time and better use of its resources which by consequence will lower production costs.

Accordingly with the European Commission in (Buchholz 2011), process monitoring

and control can provide support in reducing the consumption of energy, for optimising

1



CHAPTER 1. INTRODUCTION

the performance and resource consumption on machine level and factory and supply

chain level, where decision- support systems consider energy consumption globally.

For new factories, that are build accordingly with the new industrial revolution, most

of the new devices are already equipped with tools that provide data access, and by being

able to access data from the devices it is possible to achieve energy monitorization. But

this does not happen in older factories, which mainly contains outdated devices, since

these devices do not contain the needed features to communicate with more recent sys-

tems that could access and use their data. In most of these cases, it is too expensive to

buy and install solutions to achieve data monitorization in a complete production factory,

since this would lead to a need of reconfiguration of devices, which can only be done

when they are not executing, consequently leading to delays in the productions orders.

In the manufacturing industry, every phase of a product execution is programmed and

scheduled in order to achieve a targeted production goal. This means that solutions that

bring data access cannot have any impact in the execution time of any of the processes.

1.2 Goals

The goal is to extract and analyse data from industrial robotic cells in order to monitor

the status of the cell during executions, keep track of error that occur and offer suggestions

to reduce energy consumption. To achieve this goal, a few questions are placed:

• How is it possible to retrieve and monitor data from an industrial robotic cell with-

out compromising its standard behaviour and performance?

• Which parameters can be changed in order to optimise its energy usage?

It is proposed the implementation of two different applications, where one targets

data retrieval and storage, and the other one the analysis of that data. Both applications

must be completely decoupled, allowing them to be used together or apart, in other

solutions.

1.3 Accomplished Work

The architecture presented in chapter 4 is divided in two applications. The first appli-

cation concerns about data extraction and storage, allowing it to be used by the second

application, which regards data analysis and the display of the results.

The data extraction application is meant to connect to an industrial robotic cell, com-

prised by multiple devices, being one of them an industrial robotic arm. After a connec-

tion to the devices is established, an user should be able to select any number of variables

2
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to be stored in a local database, in pre-defined cycle time, once the industrial robotic cell

starts producing.

With the database filled with some data, a user shall connect to it, using the data anal-

ysis application read its data. If the data stored allows it, this application shall calculate

the energy used by the robotic cell, for each product, for each phase of a product and its

duration. The velocity of the robot for every execution will also be stored, allowing for a

comparison between executions of different velocities to be made. Some of the errors that

happen during the data storage should also be detected during the analysis. All results

are presented in tables and/or charts.

After the analysis is performed, it is possible to generate suggestions, indicating the

robot velocity to achieve lower energy usage, but still meeting the requirements, which

are a number of executed products in a given time.

1.4 Dissertation Outline

This dissertation is composed by seven main chapters: Introduction, State of the Art,
Supporting Concepts, Architecture, Implementation, Validation and Conclusion and Future
Work.

The first and current chapter, Introduction, provides a short introduction of the re-

search problem, the main goals to be achieved and the activities developed to achieve

them.

The State of the Art briefs the context of this work. Starts by an overview of the evolu-

tion in the manufacturing industry and the introduction of Industry 4.0, and it is followed

by a brief summary on data analysis and its applications in manufacturing for energy

management.

The third chapter, Supporting Concepts, is comprised by a description of the OPC

communication protocols and it characteristics. A comparison between SQL and NoSQL

databases is also presented.

In the Architecture chapter, the architecture for a system capable of extracting and

analysing data is presented, detailing its different layers and requirements, including the

data analysis procedure.

The Implementation chapter presents the implementation of the architecture detailed

in the previous chapter, from the data extraction application to the data analysis.

3



CHAPTER 1. INTRODUCTION

In the sixth chapter, Validation, the validation environment is presented, comprised

by two industrial robotic cells, their working process and the charges performed in order

to extract all the required information. It is also described five test cases, each one of

them targeting different features of the developed work. The deliverables resulted from

this research are also presented.

Finally, the chapter Conclusion and Future Work is a critic overview of the work devel-

oped for this dissertation and its potential future research directions.

4
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2
State of the Art

In the beginning of production, a small number of models and construction variants

made mass production result in an optimisation of the production lines, through the

specialisation of labour. Changes in society organisation and structure as well as in

markets and economy conditions trigger new and more challenging requirements for

manufacturing industry. These changes cause increase demand for highly customised

and customised models, as well as to the high number of different products available to

the customer. To handle these changes, production lines with new structures and features

were developed, on which the standard optimisation methods implemented so far were

not enough. Data monitoring and analysis processes started being developed targeting

optimisation. In order to answer these new requirements, the industry needed to evolve.

2.1 Production and Manufacturing

After World War 1, the demand for manufactured goods and products drastically in-

creased. Henry Ford devised a methodology that consisted in mass production assembly

lines to generate large volumes of standardised units. This method brings high advan-

tages for low-mix and high-volume productions, since it minimises the production costs

by using using interchangeable parts where one part could readily replace another instead

of building an entire product from the beginning. In 1971, the Toyota Production System

(TPS) was introduced. The main goal of TPS is to reduce production costs by minimising

sources of wastes, which were commonplace in mass production systems, including over-

production, waiting, transport, processing, inventory, motion and defects. To be able to

understand what needed to be changed, all production processes started being measured

and assessed to determine and eliminate sources of waste while still maintaining high

quality standards that are expected of the product. Unlike mass production, TPS is more

5
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suitable for low-mix and low-volume applications, typically triggered by customer-pull

or producing only when an order has been initiated to reduce inventory costs. This new

methodology triggered new similar philosophies that aim on reducing waste, such as lean

principles and six sigma techniques (Lee et al. 2013a).

In order to deal with changeable volume and mix productions, in the manufacturing

industry there is a concept called Flexible Manufacturing Systems (FMS), that allows for

a variety of products to be produced in the same system. It consists of expensive, general-

purpose Computer Numerically Controlled (CNC) machines and other programmable

automation. Because of the single-tool operation of the CNC machines, the FMS through-

put is lower than that of dedicated lines. This combination makes the cost per part

relatively high. Therefore, the FMS production capacity is usually lower than that of

dedicated lines and their initial cost is higher, which causes this typology to have a low

level of acceptance and satisfaction (Koren et al. 1999).

Given the downsides of FMS, a new paradigm appear, called Reconfigurable Man-

ufacturing System (RMS). The RMS consists in using modular equipment as building

blocks to realise the required system functionality for the production of a part family.

Instead of providing a general flexibility through the use of equipment with built-in high

functionality, as in FMS, it provides customised flexibility through scalability and recon-

figuration as needed when needed to meet market requirements. The main goal of RMS

is reducing lead time for launching new systems and reconfiguring existing systems, and

rapid manufacturing modification and quick integration of new technologies and new

functions into existing systems using basic process modules that would be rearranged

quickly and reliably (El Maraghy 2006).

2.1.1 Manufacturing and Industry 4.0

The manufacturing industry has been faced with a need that refers to the consump-

tion of highly customised products. For several years the concept of mass production,

characterised by the production of the same product on a large scale, has been widely

implemented, but today it is imperative to treat variations of product types and can no

longer respond to the challenges of modernity and dynamism. Large production lots,

production lines with identical machines and processes, and standardisation of products

no longer exist.

From the first industrial revolution (mechanisation through water and steam power)

to the mass production and assembly lines using electricity in the second, the fourth

industrial revolution, also known as industry 4.0, takes what was started in the third with

the adoption of computers and automation and enhance it with smart and autonomous
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systems with the aid of data and machine learning.

As stated in (Rüßmann et al. 2015), the Industry 4.0 is powered by nine foundational

technologies advances: the cloud, additive manufacturing, augmented reality, big data

and analytics, autonomous robots, simulation, horizontal and vertical system integration,

the industrial internet of things, and cyber-security. The merging and cooperation be-

tween these technologies can bring great benefits like integrating production and logistics

processes, enhancing cooperation among machines and humans and increasing efficiency

on the factory floor. In the future, the car-making process will be overseen by automatic

job-control systems. These systems will use data integration to modify the manufacturing

process automatically, making multiple order systems obsolete. Car component suppliers

will automatically adjust their processes on the basis of new orders from the automaker,

maximising just-in-time logistics. This change will reduce the costs of logistics and oper-

ations.

The industry 4.0 focuses heavily on inter-connectivity, automation, machine learning,

and real-time data. It represents a new paradigm shift in industrial production, with

the digitisation within factories, the combination of Internet technologies and future-

oriented technologies related with “smart” machines and products, targeting a modular

and efficient manufacturing system and scenarios in which products control their own

manufacturing process, allowing the production of individual products in a batch size

of one while maintaining the economic conditions of mass production. This industrial

revolution is related to a range of fundamental concepts, such as: smart factories, cyber-

physical Systems, self-organisation, new systems in distribution and procurement, new

systems in the development of products and services, adaptation to human needs and

corporate Social Responsibility (Lasi et al. 2014).

In figure 2.1 is displayed an example of an extensive integration of different compo-

nents into the supply chain regarding Industry 4.0. The cyber-physical production net-

work is characterised by autonomous actions independent from the location, widespread

integration, automated services, and by its ability to react context-specifically to cus-

tomers needs and requirements. Among the different protagonists, manifold informa-

tional interrelations and inter-dependencies exist.
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Figure 2.1: Example for inter-dependencies of a supply chain in the context of Industry
4.0, from (Lasi et al. 2014).

2.2 Data Analysis

With the development of computing, there is an increase in the data flow generated

by machines and systems. Knowing that these systems can not be represented by simple

models of known physical principles, the data they generate becomes a great help when

analysed. Data analysis is the process of inspecting, cleansing, transforming, and mod-

elling data with the goal of discovering useful information, reveal connections between

system variables, informing conclusions, and supporting decision-making. Data analysis

has multiple approaches, encompassing diverse techniques, while being used in different

business, science, and social science domains. In today’s business, data analysis is play-

ing a role in making decisions more scientific and helping the business achieve effective

operation (Xia and Gong 2014).

Now there is more data than ever before with high variety, its volume keeps increas-

ing continuously, to a level that traditional tools are not able to process, making useful

real time information harder to get, which creates great advantages for those capable of

handling it (Fan and Bifet 2013).
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A data analysis process can divided in multiple phases, were results of later phases

may become new inputs for early phases. These phases are: data requirements, data col-

lection, data processing, data cleaning, exploratory data analysis, modelling data analysis,

modelling and algorithms, data product, and communication (Schutt and O’Neil 2013).

2.2.1 Data Analysis applied to Manufacturing

In the latest years, almost everyone in the manufacturing industry is talking about

the Industry 4.0 and how smart factories are the future of manufacturing. One of the

key aspects of a smart factory is having multiple devices capable of data transfer between

them, such as sensors. With the technological evolution, smaller sensors are produced ca-

pable of being integrated almost anywhere, in any device. Having these sensors scattered

across a factory can provide a great volume and diversity of data that can be used to create

overviews of system status (Akbar et al. 2009). With the right sensors installed, these

overviews can also contain energy data. In (Sung and Hsu 2011) is discussed the develop-

ment of a smart sensor capable of measuring not only the energy used but also detect the

ground vibration and more. Having access to different sort of data may provide a more

focused analysis results. Energy efficiency is one of the targets for many future factories.

As stated in (Feng et al. 2015), "Energy consumption in the automotive manufacturing

plant is an important topic due to its implications on total plant operational costs and

therefore the cost of the output product.", and is considered a critical requirement for

accelerated economic growth (Krishnan et al. 2009).

In manufacturing, the data retrieved by sensors and actuators are interpreted as

events. Any parameter change that have an impact in the system state is considered

an event. When there are events that are triggered by other events, they are treated as

complex events, which means that powerful data analysis tools are required to under-

stand these patterns (Babiceanu and Seker 2016).

Some authors defend that there are three main stages that enable factory optimisa-

tion: monitoring, analysis and management (Cannata et al. 2009). Monitoring is having

processes described in terms of data, including energy values for each machine, allowing

its stages to be registered. Using the data acquired from monitoring, an analysis method

can be developed and applied to better understand the behaviour and resource usage of

each machine. The management phase is acting on the results achieved in the other stages.

2.2.2 Data Analysis applied to Energy Management in Manufacturing

Data analysis in manufacturing is considered a really important step by (Gamarra

et al. 2016), as it should be for anyone interested in smart factories. It goes similar as
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stated in (Cannata et al. 2009) previously, to achieve any optimisation, first the data

needs to be selected, analysed to produce some results and then validated. But still there

is no defined standard in manufacturing to handle and analyse data regarding optimi-

sation, so in different factories, diverse methods are applied trying to achieve the same

goal. In (Boselli et al. 2004) is stated that the most cost efficient and effective way to

achieve an optimal operating point of machines and entire production systems is to have

a decentralised architecture, where each machine is responsible for its own optimisation,

by offering the capability to learn models of their energy consumption behaviour, during

a normal operation. It is also defended that a generic energy monitoring and control solu-

tion could be developed, combining it with simple frameworks with access mechanisms

allowing the capability of connecting to different components and controls, being OPC

one of the referred mechanisms, for being supported by many manufactures.

In (Cupek et al. 2014) refers to energy consumption in machines that use compressed

air, that are used in almost every factory. His study took place in a laboratory with

pneumatic devices, targeting the transport and assembly of parts between stations. The

monitoring of the air usage in these machines is of great interest in manufacturing, being

its optimisation a really important aspect.

As stated by (Peng and Xu 2015), "The first step towards energy efficiency is to de-

velop an effective approach in understanding and characterising energy consumption of a

manufacturing system."Defends that a feature-based approach can be adopted to support

a wider range of applications in the manufacturing domain, rather than a operation-

based approach. And also that to achieve a better optimisation, only the machine data

is not enough but other aspects should be taken into consideration, as shown in figure 2.2.
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Figure 2.2: Three data sets required in the feature-based approach, from (Peng and Xu
2015).

However, the relationship between the two approaches is equally important. Feature-

based approach is to provide a widely applicable energy reference across different ma-

chine tool systems, while operation-based approach offers actual energy estimation based

on a specific machining system. The former can be treated as energy footprint of a part,

and the latter is energy footprint of a machine tool and certain operations performed

using this machine tool. The figure 2.3 displays some of the aspects related to the energy

consumption evaluation for each approach.

There are not many energy models that can be directly applied in a feature-based ap-

proach, which results in them being considered as significant contributors in an operation-

based approach, but these models are not satisfactory in supporting energy evaluation in

different manufacturing stages. Based on various data required in a machining system,

a Confidence-Level-ASSociated (CLASS) energy rating schema is proposed to help users

in understanding energy evaluation, by turning energy consumption figures into useful

indicators.

In (Feng et al. 2015), a systematic energy classification in the final assembly depart-

ment is suggested in order to provide a more transparent understanding of the energy

consumption in different categories, like:

• Lighting: responsible, in average, for 15% of the total energy consumption in a
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Figure 2.3: Support energy consumption evaluation in sustainable manufacturing, from
(Peng and Xu 2015).

factory;

• Heating, ventilation and air conditioning (HVAC): energy used can originate from

electricity, as well as natural gas, hot water, and chilled water, which are used to

maintain a good working environment;

• Sub-assemblies: most of the energy consumption is electricity and compressed air;

• Main line: this process involves multiple robots to handle the body;

• In-plant transportation: energy consumption does not rely only on the transporta-

tion tool design, but also on the in-plant transportation planning and scheduling;

• Conveyor: the energy consumption is highly related to its power and time of use;

2.2.3 Predictive Manufacturing

The globalisation of the world’s economies is a major challenge to local industries and

it is pushing the manufacturing sector to its next transformation – predictive manufac-

turing.

Transparency is the ability of an organisation to unravel and quantify uncertainties

to determine an objective estimation of its manufacturing capability and readiness. In

order to achieve transparency, the manufacturing industry has to transform itself into
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predictive manufacturing, which requires using advanced prediction tools enabling sys-

tematic data analysis resulting into information that can explain the uncertainties and

help the responsible personnel to make more informed decisions. Prognostics and health

management is a critical research domain that leverages on advanced predictive tools. By

being able to estimate when an equipment is going start failing, it is possible to reduce the

impact by allowing the users to prepare alternatives or solutions to prevent performance

loss of the manufacturing system (Lee et al. 2013b).

The goal of a predictive manufacturing system is to provide machines and systems

with “self-aware” capabilities. The core technology is the smart computational agent that

contains smart software to conduct predictive modeling functionalities (Lee et al. 2013a).

In order to be able to provide assertive forecasts, the data must be well organised

within the system. The Cyber-Physical System (CPS) is the representation of the physical

components into computational capabilities. There are two main functional components

that comprises a CPS: the advanced connectivity that ensures real-time data acquisition

from machines and devices and the actual feedback from the system; and intelligent data

management, analytics and computational capability (Lee et al. 2015). These components

can be splitted into five levels: smart connection; data-to-information conversion; cyber;

cognition; configuration. Predictive analytics techniques have been applied to improve

manufacturing system control (Lechevalier et al. 2015).

Prevention and early identifying of faults can provide significant savings for manu-

facturing enterprises. Predictive techniques have been used for fault diagnosis in manu-

facturing applications (Lechevalier et al. 2015).

2.3 Global conclusions

The manufacturing industry have been creating multiple paradigms through the years,

following the market requirements and trying to achieve an optimal manufacturing state,

where the wasted resources are at a minimum.

In short, it is stated in this chapter the importance and beneficial impact that a

paradigm like the one imposed by Industry 4.0 can have in the manufacturing indus-

try, not only at the shop-floor level but in the complete supply chain, as explained in (Lasi

et al. 2014).

In (Boselli et al. 2004) a decentralised approach is defended to be the best way to

achieve an optimal operating point for each machine, while in (Peng and Xu 2015) a

feature-based approach is taken, claiming that the machine data is important but not
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enough for a more successful optimisation.

There are multiple approaches regarding energy management and optimisation since

there is no defined standard yet. There is a great limitation regarding the process optimi-

sation in many cases, since the range of inputs to reconfigure to achieve an optimisation

is usually small. Nevertheless, the system performance must be analysed so that optimi-

sation possibilities may be found.
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3
Supporting Concepts

In this chapter are described some of the technologies used in the development of this

thesis and concepts that helped selecting those technologies. These concepts are divided

in two categories: communication protocols and databases.

3.1 Communication Protocols

Open Platform Communications (OPC) protocols are greatly used across multiple

industry environments, to interact with different devices. Two different sets of specifica-

tions for these protocols are described bellow.

3.1.1 Open Platform Communications Classic

The OPC Classic specifications are based on Microsoft Windows technology using the

COM/DCOM (Distributed Component Object Model) for the exchange of data between

software components (OPC Foundation 2019a). The specifications provide separate defi-

nitions for accessing process data, alarms and historical data:

• OPC Data Access (OPC DA) - The OPC DA specification defines the exchange of

data including values, time and quality information;

• OPC Alarms and Events (OPC AE) - The OPC AE specification defines the exchange

of alarm and event type message information, as well as variable states and state

management;

• OPC Historical Data Access (OPC HDA) - The OPC HDA specification defines query

methods and analytics that may be applied to historical, time-stamped data.
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Being all these specifications based on Microsoft Windows, they are only compatible

with Microsoft systems.

3.1.2 Open Platform Communications Unified Architecture

With the introduction of service-oriented architectures in manufacturing systems

came new challenges in security and data modelling. The OPC Foundation developed the

OPC Unified Architecture (UA) specifications to address these needs and at the same time

provided a feature-rich technology open-platform architecture that was future-proof, scal-

able and extensible. The OPC-UA is a platform agnostic service-oriented architecture that

integrates all the functionality of the individual OPC Classic specifications into one ex-

tensible framework (OPC Foundation 2019b). This multi-layered approach accomplishes

the original design specification goals of:

• Functional equivalence: all COM OPC Classic specifications are mapped to UA;

• Platform independence: from an embedded micro-controller to cloud-based infras-

tructure;

• Secure: encryption, authentication, and auditing;

• Extensible: ability to add new features without affecting existing applications;

• Comprehensive information modelling: for defining complex information.

In (Lehnhoff et al. 2012) are stated the advantages of using OPC-UA as a communi-

cation medium between a system and its devices, regarding smart grids. Since it offers

information modelling, allows for enriching data with meta-data and thus exchanging

information with known semantic rather than just exchanging pure data. It offers a client-

server based connection-oriented communication, that with mechanisms like heartbeat

and acknowledgements a reliable communication is guaranteed. A secure communication

infrastructure is provided, handling authenticity, authorisation, confidentiality, complete-

ness, availability, and traceability. The client can browse or query the server structure to

access its data, including information about the nodes and references between them. It is

also possible to set subscriptions of variables, where the changes occurred in the server

are automatically transmitted to the client. In figure 3.1 is an example of the mapping

of the Common Information Model (CIM; IEC 61970/61968) onto the OPC-UA address

space is shown.

It is stated in (Palm et al. 2015) that currently there are no open reference implemen-

tation to be used in research for free but efforts are being made to achieve that, mainly

by the open62541 project, which consists in developing an open source platform of the

OPC-UA protocol. Examples of multiple application scenarios are also given in the paper.
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Figure 3.1: Mapping of the CIM data structure onto the OPC-UA address space, from
(Lehnhoff et al. 2012).

In (Dorofeev et al. 2018) a concept is presented, to enable Plug-and-Produce, where

an OPC-UA server is configured, by parsing an Automation Markup Language (AML) file

that holds the description of a workstation, that contains the functionalities and structure

of a workstation. Then the server is registered in a known Local Discovery Service (LDS)

that is being monitored by a higher level called Manufacturing Service Bus (MSB). The

MSB gets a notification that a new server was registered, then it creates a new OPC-UA

client that is used to read the address space of the discovered OPC-UA server. Once

the parsing is completed, the MSB knows all of the capabilities that the workstation

holds, which processes it can execute and how to trigger them, information that is then

shared with the rest of the system. With multiple OPC-UA servers configured using this

concept, it is possible to propagate all individual and shared capabilities, of complete

manufacturing lines, to higher levels to be managed, granting a new access level to those

lines and devices properties.

3.2 Databases

The existing database technologies can be divided into two groups: relational and

non-relational databases. As explained in (Foote 2016), relational databases, also known

as Structured Query Language (SQL) databases, are a set of formally described tables

from which data can be accessed or reassembled in many different ways without hav-

ing to reorganise the database tables. The standard user and application programming

interface (API) of a relational database is SQL. SQL statements are used both for in-

teractive queries for information from a relational database and for gathering data for
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reports. Relational databases use the ACID (Atomicity, Consistency, Isolation, Durabil-

ity) system, which ensures consistency of data in all situations of data management but

obviously takes longer to process because of all those relations and its branching nature.

Non-relational or NoSQL databases use the BASE system (basically available, soft-state,

eventually consistent) that provides a mechanism for storage and retrieval of data. Non-

relational databases forgo the table form of rows and columns relational databases use in

favour of specialised frameworks to store data, which can be accessed by special query

APIs. To enable fast throughput of vast amounts of data the best option for performance

is "in memory", rather than reading and writing from disks.

3.2.1 SQL vs NoSQL

Both types of databases have different characteristics on which, depending on the

solution or system where they are or will be implemented, their selection may vary.

A table with the pros and cons of a relational database can be found bellow:

Table 3.1: Relation databases pros and cons table, data from (Foote 2016).

SQL databases

Pros Cons

Relational databases work with struc-

tured data

Relational Databases do not scale out hor-

izontally very well (concurrency and data

size), only vertically

They support ACID transactional consis-

tency and support “joins”

Data is normalised, meaning lots of joins,

which affects speed

They come with built-in data integrity

and a large eco-system

They have problems working with semi-

structured data

Relationships in this system have con-

straints

There is limitless indexing.

A table with the pros and cons of a non-relational database can be found bellow:

Table 3.2: Non-relation databases pros and cons table, data from (Foote 2016).
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NoSQL databases

Pros Cons

They scale out horizontally and work with

unstructured and semi-structured data.

Some support ACID transactional consis-

tency

Weaker or eventual consistency (BASE) in-

stead of ACID

Schema-free or Schema-on-read options Limited support for joins

High availability Data is denormalised, requiring mass up-

dates

Many NoSQL databases are open source,

but there are considerable training, setup,

and developments costs. There are now

also numerous commercial products avail-

able

Does not have built-in data integrity

(must do in code)

Limited indexing

In (Gyorodi et al. 2015), a study was made comparing some aspects and performance

of a relational database and a non-relational database, MySQL and MongoDB respectively.

As it is said in the same paper, "Relational databases are widely used in most of the

applications and they have good performance when they handle a limited amount of data.

To handle a huge volume of data like internet, multimedia and social media the use of

traditional relational databases are inefficient."That said, when someone thinks about

the amount of data to retrieve from industrial devices for status monitoring and energy

optimisation, the data volume must be huge. In MySQL, data is stored in tables, which

contains rows and columns. In MongoDB, data is stored in collections, which contains

documents and fields. Still referring to (Gyorodi et al. 2015), a trial was made where the

same data, with great volume, was inserted in both databases. MySQL took 440 seconds

to insert all data, while MongoDB did it in 0.29 seconds. Testing query operations, two

examples were made to select data, where MySQL took 0.0018 and 0.6478 seconds, and

MongoDB did it in 0.0011 and 0.0052 seconds. Again, two new examples were created

to update some data from the databases and MySQL needed 0.0987 and 0.0428 seconds

and MongoDB only 0.0021 and 0.0013 seconds. These trials allowed to evaluate the

advantages of using a NoSQL database when dealing with large volumes of data, which

is almost every case when handling data analysis in the manufacturing area.

3.2.2 Non-relational databases

There are multiple different implementations of non-relational databases. In (Swami-

nathan and Elmasri 2016), a comparison is made between MongoDB, Cassandra and

HBase, mainly taking into consideration the volume of data being managed. For this

evaluation, 4 different types of trials were created: read and write, read-only, write-only
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and scan-only, with different data volumes. The results for read and write showed that

Cassandra have the best performance, followed by HBase. For read-only, MongoDB have

the best performance, with Cassandra as second best. Write-only best performer was

HBase, followed by Cassandra. For searching data, Cassandra performed better than

HBase and MongoDB. In (Mahajan and Zong 2018), trials were made to prove the impact

of query optimisation on both, Cassandra and MongoDB. A volume data of 100GB of data

was used and the conclusion was that query optimisation can lead to better performance

with lower energy usage, being the best results achieved with MongoDB.
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4
Architecture

One of the topics around Industry 4.0 is data monitoring and process optimisation.

The proposed architecture aims the gathering and analysis of data from industrial robotic

cells, capable of providing a dynamic data gathering method and display of analysis re-

sults of processes and sub-processes executions.

The proposed architecture is divided in two different stages: data gathering/storage,

which represents the data flow from the robotic cell devices to the database, and data

analysis, where the data is read from the database and analysed. A simplified view of this

architecture can be seen in figure 4.1.

An industrial robotic cell provides different sorts of data which can describe the pro-

cess being executed, by analysing energy consumption, robot speed, task in execution

and errors. Two applications will be developed targeting the different stages, where the

first one will be responsible for data availability and storage into a database, while the

second one will retrieve the data stored into the database, analyse it and provide the user

with the results. Both applications shall be independent from each other, allowing them

to be used in different solutions. The connection link between both applications will

be the database. By using both applications in an industrial system, it will be possible

to monitor not only the energy consumption of the industrial cell and robot in the dif-

ferent production stages, but also the duration on each process and which errors occurred.

Taking a closer look at figure 4.1, it is expected that the data to be retrieved from

the system is not generated only by one device, but multiple devices, which comprise

a robotic cell. The data from these devices shall be made accessible using the OPC-UA

technology. The Device Adapter application, to be developed, will be able to contain
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Figure 4.1: Global architecture.
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multiple OPC-UA clients, to connect to each device, and then forwarding the data to the

selected database. This application will be able to be used from a computer or a simple

Raspberry Pi. The application will also implement the required interfaces to connect to

the targeted databases. The second application, Energy Manager, will also implement the

required interfaces to read the data from the selected databases, and it will display the

results of the data analysis of the gathered data.

4.1 Data gathering (Device Adapter)

Industrial equipments/devices are built to last lots and lots of years, meaning that,

older devices have limited communication capabilities when dealing with newer systems,

including databases. To surpass this limitation, it was decided that a middle-ware was

needed in order to ease the data gathering from the devices of the robotic cell and stor-

age into the database. The perfect scenario would be for all devices to have an OPC-UA

server integrated, but since that is not the reality, we need to prepare for the other cases.

As shown in the figure 4.1, three types of devices can be found: devices with an OPC-

UA server already integrated, devices with an OPC-DA server and devices with no OPC

server.

The OPC-DA communication protocol uses COM/DCOM as communication medium,

it is operating system dependent, creating limitations when communicating between

different devices, a protocol upgrade was needed. The OPC UA protocol uses TCP/IP

(Transmission Control Protocol/Internet Protocol) as communication medium, solving

many OPC-DA limitations, making it the perfect candidate for this solution. So, for

devices with an OPC-DA Server integrated, an OPC-UA wrapper needs to be installed,

in order to translate the OPC-DA configurations and variables and expose them as an

OPC-UA server. For devices with no OPC server, an OPC-UA server needs to be installed,

communicating with each other through TCP/IP.

Since the data to be retrieved can be different from robotic cell to robotic cell, this

middle-ware needs a HMI (Human-Machine Interface), allowing the user to select the

devices to connect to, select the data to save and also allow the user to view it in real

time.There were identified the use cases shown in figure 4.2.
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Figure 4.2: Device Adapter use cases.

This middleware is called Device Adapter. In the figure 4.3 is shown the data flow

between the Device Adapter and one of the devices. After establishing a connection with

a device, using the OPC-UA protocol, the Device Adapter gets all variable from the server,

allowing the user to select the ones to monitor. For each selected variables, an OPC-UA

subscription event, running in a different java thread, is created, where the variable value

is read every cycle of a defined period and stored within the Device Adapter, in a hashmap.

If any error occurs while reading a variable, a default error value must be set in the De-

vice Adapter. This errors includes device shut-down or connection interrupted. After the

connection with the device is re-established, the variables subscriptions are automatically

set again, updating the values locally.
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Figure 4.3: Device Adapter connection with devices flow chart.

The figure 4.4 shows the data flow between the Device Adapter and a database. As rep-

resented in the figure 4.4, after the Device Adapter successfully connects with a database,

the data storage process can start, in a separate java thread, where in pre-defined time

cycles, the data from the hashmap will be saved into the database. As explained in the

previous flow chat (figure 4.3), variable reading errors are dealt by setting a default error

value to the variables involved. This value will be also stored into the database, allowing

the user to detect that something wrong happened with one or more of the devices.
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Figure 4.4: Device Adapter connection with the database flow chart.

4.2 Database

In order to provide a more detailed and assertive analysis to the robotic cell data, it

is required a large volume of data. This data must be stored somewhere in order to be

consulted and used by data analysis applications. For that, a database is required. The

data to be stored is originated from a robotic cell and it contains information capable of

characterise the status of the cell, like the energy being used by the robot, by the entire

cell or which process is being executed.

As explained in the previous section (4.1), the user can select any number of variables

from devices to be monitored and stored into the database, this means that the database

must be capable of dealing this semi-structured data. Considering this, a not relational

database is a must, since these databases have no problem receiving different data struc-

tures, after all there is no model. Taking not only this into consideration but also what

was described in section 3.2, the database to be implement must be a NoSQL database.

The database is the middle layer between the Device Adaper and the Energy Manager.

It will be connected to the Device Adapter, which has implemented the required interface

and it will be the only input source of all data into the database. As described in the
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previous section (section 4.1), the database will receive all variables values every cycle,

with a pre-defined cycle time. Once in the database, the data can be used by any other

user or application, including the Energy Manager, which also will have the required

interface implemented to communicate with the database.

4.3 Data analysis (Energy Manager)

After the data is stored into the database, it needs to be analysed. Data analysis is

the main goal of the second application to be developed for this solution. It shall have

a modular architecture, allowing it to be compatible with other databases implemented

with different technologies, with only minor adjustments.

This application shall allow the user to filter the data to be analysed, in order to pro-

vide a more precise analysis. A date filter allows to get data only from the selected date

interval, for example to analyse the system behaviour in a specific day. In the manufac-

turing industry, the duration of a process is one of the most important aspects, since a

delay in one process may result in delays in the product plans, which leads to production

orders and schedules not been achieved, that can turn out to be expensive. A cycle time

filter may be helpful identifying these cases. But of course that any other filters for dif-

ferent data fields existing in the database may be developed, to meet any requirements

established.

The application should also be equipped with a raw data view, in order to visualise

the data without any analysis. To show the results, this application will provide tables

and linear and bar graphics, targeting the energy usage, allowing to compare multiple

processes, finding out the most efficient. It should also be possible, not only to access

historical data but also real time data, meaning that the results must keep being updated

every time there is new data. It is also important to compare the time in which the robot

is operating in manual and automatic modes. The considered use cases can be found in

figure 4.5.

In the figure 4.6 is displayed the data flow of the Energy Manager. Since it is not

possible to do data analysis without data, the first step within the Energy Manager is

connecting to a database. After the connection is established, the user will be able to

search its data, with or without setting any of the filters. The process is then followed by

the data analysis and the display of its raw data in the the Energy Manager HMI. After

the data analysis is completed, the results should be presented in charts. If the database

contains the data regarding the status of the executed processes, it should be possible to

split the data analysis for each phase of a process, meaning, split the data by tasks, allow

a more detailed analysis for different tasks.
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Figure 4.5: Energy Manager use cases.

A recipe is the aggregation of different tasks and inputs of the executed process, mean-

ing that, a new recipe is set if any of tasks changes (new robot programs for pick, weld or

drop) or if the execution speed changes. So when a process is executed multiple times but

with different velocities, for each velocity a new recipe is created. The recipe identifier is

created in the Device Adapter. If multiple Recipes are stored in the database, it should

be possible create a suggestion, highlighting the more efficient recipe for execution.
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Figure 4.6: Energy Manager actions flow chart.
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5
Implementation

The implementation described in this chapter follows the architecture described in

chapter 4. It was developed using the programming language JAVA.

5.1 Device Adapter

As explained in the previous chapter, the device adapter is the connecting bridge

between the robotic cell and the database. Since all the data to be gathered is exposed

in different OPC-UA servers, the middleware would need multiple clients to connect

to them. So the first step was searching for an OPC-UA library that allowed OPC-UA

client implementation. An open-source library was found, MILO. This library allowed

for multiple clients to be developed, one for each device. After a successful connection

with each device, the Device Adapter connects with the database, by using the "MongoDB

Java Driver", and the storage process starts. To be able to execute all theses processes,

the computer where the middle-ware is being executed must be able to connect with the

robotic cell and the database.

5.1.1 Connection and data gathering with the devices

An OPC-UA client connects to an OPC-UA server, accessing all its exposed variables.

As it is explained in figure 5.1, the user must know the OPC-UA server endpoint/URL (IP,

port and server name) in order to connect to it. The communication session stays open

until there is not data exchange for two minutes. The endpoint of the last server is saved

in a configuration file, so at the next application start up, the server URL will be filled in

the Device Adapter. There are different fields for each device server.
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Figure 5.1: Sequence diagram of Device Adapter connecting to a device.

After a successful connection with a device, a list of all variables available in its OPC-

UA server is loaded into the Device Adapter HMI (Human-Machine Interface), where the

user is able to select the ones that he wants to subscribe. Once the subscription is done,

the variables are saved into an hashMap, with the OPC-UA node identifier as key. The

hashMap variables are then stored into a XML (Extensible Markup Language) file, an

example of that file can be seen in 5.2.

If this file already exists when the Device Adapter gets the list of variables from the

device, the variables that match between the list and the file will automatically be tagged

for subscription. The variables in the hashmap will be display in the HMI, inside a table,
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Figure 5.2: Example of the variables file of the Device Adapter.

with the last updated values. The variable update process is shown in figure 5.3. The

list of subscribed variables can be changed at any time by simply (un)selecting variables

from the list and requesting the subscription again. If by any reason the link between

the Device Adapter and the device gets interrupted, the variables of that device that were

subscribed will be set with the value "bad".
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Figure 5.3: Sequence diagram of variables update.

5.1.2 Connection and storage with the database

After the Device Adapter and the database are connected, by setting the ip address

and port number of where the database is running and by selecting the collection name to

store the data, the user can request to start storing all of the subscribed variables values.

The storing process happens, in a different java thread, every 200 milliseconds, because

it is the same refresh rate as the OPC-UA subscription event, so a lower value would not

make sense at this point. In each cycle of this thread, a BSON document is created where

the name and value of all variables in the hashmap are added to, alongside with a date.

Then, this document is sent to the database by using one of the functions available from

the "MongoDB Java Driver", "insertOne(document)", which means that all subscribed

variables are stored into the database with each thread cycle. In figure 5.4 is described

the connecting and storage processes.
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Figure 5.4: Sequence diagram of Device Adapter connection to the database.
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5.2 Database

The NoSQL database selected for this solution was MongoDB. The MongoDB database

stores the incoming data through a table with multiple entries. As a non-relational

database, no model was developed. Being a NoSQL database, there is no problem storing

data with different structures, which is requirement, since the data to be stored depends

completely on the user selection, while using the Device Adapter, described in the pre-

vious section (5.1). Every interaction with this database in order to read or write data

into it, was done using mongoDB queries, using the "MongoDB Java Driver". The data

is stored in mongoDB documents, which are created in the Device Adapter, with each

document containing all selected variables (names and values), and them is stored in the

database. An example of an entry from the database can be seen in figure 5.5.

Figure 5.5: Example of an entry from the database.

The database was installed using a docker, in one of the servers at the Introsys facili-

ties, allowing anyone connected to the Introsys internal network to have access to its data.

5.3 Energy Manager

5.3.1 Configuration

In order to make the Energy Manager able to read data from different industrial

robotic cells a XML configuration file was created. Different robotic cells and different

36



5.3. ENERGY MANAGER

variables, but by mapping them in the configuration file, a connection is made between

the real variables and the Energy Manager variables. An example of a configuration file

is shown in figure 5.6.

Figure 5.6: Example of the configuration file.

5.3.2 Connection and search from the database

To connect the Energy Manager to the database, it was used the same library as in

the Device Adapter, MongoDB Java Driver. The driver contains tools that allow the

connection, searching and filtering of data. The connection process is the same as the

one explained in the sub-section 5.1.2, without the storing component, as it is shown in

figure 5.7.

The data search and filters are achieved by using queries. These queries allows for the

data to be filtered by any existing field into the database. Taking into consideration the

variables at table 6.3, some default filters were developed:

• Date - searches the database for data given a start date and/or end date ;

• Speed - searches the database for data where the robot speed was lower, higher or

equals than the given speed. Multiple speed values can be inserted;
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Figure 5.7: Sequence diagram of Energy Manager connection to the database.

• Cycle Time - searches the database for data containing execution cycles higher or

lower, depending the selection, than the given time;

After the search is made, the data analysis process starts. This process also occurs in

a dedicated java thread. The related diagram is found in 5.8.

5.3.3 Data analysis

As explained before, the data stored, including the energy values, is always instant

values, meaning that some calculations were needed to find out the true value for the

energy usage, for the robot and for the entire robotic cell. The energy data retrieved

from the robot is instant data. To calculate the energy usage between two instants, the

following equation was used:

E12 =
Ei1 +Ei2

2
∗ (t2 − t1)

With:

Ei1 = instant energy value for sample 1;

Ei2 = instant energy value for sample 2;
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Figure 5.8: Sequence diagram of Energy Manager search into the database.

t1 = time for sample 1;

t2 = time for sample 2;

E12 = energy used between sample 1 and sample 2;

The variable Cycle Time allows to the split the data of executions between cycles. Ev-

ery time that the Cycle Time value is lower than the previous one, it means that previous

cycle has ended and a new one just started. A java class was created, called EnergyData

to organise the results of the data analysis of a sample, meaning, between two instants.

The results stored for a sample are:

• Date - a variable containing the staring date and time of the sample;

• Duration - a variable containing the sample duration, in milliseconds;

• EnergyAxis - an array containing the energy usage, in watts, for each engine of the

robot, during a sample;

• EnergyRobot - a variable containing the sum of values of the EnergyAxis array;

• EnergyCell - a variable containing the energy usage, in watts, of the whole cell;
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• Cycle - a variable containing the cycle number;

• OtherData - a hashMap containing the other database fields and values of the re-

maining data for the sample;

• HaveError - a variable indicative if any error was found in the sample.

A list of EnergyData results is saved into the CycleData class, also created to provide a

better organisation. A CycleData contains the results of an execution cycle. These results

are:

• Cycle - a variable containing the cycle number;

• Duration - a variable containing the cycle duration, in milliseconds;

• EnergyAxis - an array containing the energy usage, in watts, for each engine of the

robot, during a cycle;

• EnergyRobot - a variable containing the sum of values of the EnergyAxis array;

• EnergyCell - a variable containing the energy usage, in watts, of the whole cell,

during a cycle;

• Faults - an array containing all errors detected during the analysis.

There is a CycleData for each execution cycle detected. Each CycleData is stored into

the Recipe class.

For each recipe found into the database, the following structure is stored:

• Name - a variable that contains the recipe identifier;

• CycleData - a list that contains the results explained before;

• EnergyAxis - an array that contains the sum of energy usage for each robot engine,

in all cycles;

• EnergyTotalRobot - a variable that contains the sum of EnergyAxis;

• EnergyTotalCell - a variable that contains the sum of energy usage of all cycles;

• TimeTotal - a variable that contains the sum of total duration of all cycles;

• StandardDeviation_cell - a variable that contains the standard deviation of the cell

energy usage, during the cycles;

• StandardDeviation_robot - a variable that contains the standard deviation of the

robot energy usage, during the cycles;
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• Energy_Hour_cell - a variable that contains the average energy usage of the cell for

an hour

• Energy_Hour_robot - a variable that contains the average energy usage of the robot

for an hour

• Energy_Average_cell - a variable that contains the average energy usage of the cell

during each cycle

• Energy_Average_robot - a variable that contains the average energy usage of the

robot during each cycle

• Speed - a variable that contains the robot speed value for the recipe

• Alarm - a variable that indicates if the robot energy usage of any cycle is high-

er/lower than the standard deviation.

Having the energy usage divided in multiple cycles, it is possible to calculate the

standard deviation of the robot energy usage for a recipe, using the following equation:

SD =

√∑CycleCount
i=0 (energyi − energym)2

CycleCount − 1

With:

energym = average of the total energy usage;

CycleCount = total number of cycles for the recipe;

In figure 5.9 is shown the organising structure of the Energy Manager. The class

"Data"holds all data structures of the system. It owns a "Map"called "recipeMap", that is

used to organise the data of each recipe detected in the database. It has as a key the recipe

identifier and an instance of the class "Recipe"as a value. The "Recipe"class structure was

described previously. It holds a list of "CycleData", where each "CycleData"represents

an execution cycle of a process. Its structure was also presented before. It has a list of

"EnergyData", where each element represents the analysis between two instants. This

structure allows for the data and analysis results to be divided between recipes, execution

cycles and instants. The class "Data"also owns a list of "Task"elements, each "Task"contains

some key aspects of a sub-process, that will be explained ahead in sub-section 5.3.6.
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Figure 5.9: Class diagram of Energy Manager structure.

42



5.3. ENERGY MANAGER

5.3.4 Alarms

As explained before, if the robot energy usage value of a cycle is lower or higher than

the average of the other cycle after applying the standard deviation, the energy usage was

not stable.

energy > energym + SD

or

energy < energym − SD

With:

energy = robot energy used in a cycle;

energym = average robot energy used in all cycle, for a recipe;

SD = standard deviation;

If one of these conditions is true, the related cycle will be tagged with an alarm.

In the HMI, there is a tab where all cycles, of all recipes, tagged with an alarm are

displayed, showing all its raw data from the database, and the rows where one or more

of the error variables are active, will have a different colour, red. It is possible to filter the

cycles that appear in this tab by (un)select the recipes check-boxes.

5.3.5 Charts

There is no better way than using charts to show the energy usage related to multiple

cycles or during a time period. The Energy Manager application is equipped with three

types of charts: linear chart, bar chart and pie chart.

The pie chart is used to show the time usage between the robot automatic and manual

mode. The bar chart is used to show the total energy usage by the robot between all

recipes searched. In the bar chart, by selecting one of the recipes, it is possible to view the

total energy usage divided by each engine of the robot. There are two possible views for

the linear chart: energy per cycle or energy per time. The energy per cycle chart shows

the energy usage for each cycle, for all recipes, while the energy per time chart shows the

energy usage, gathering the data in ten seconds groups. It is possible to draw the linear

chart showing the robot energy or the cell energy. It is also possible to view the following

information associated to a linear chart, for each recipe:

• RecipeID - recipe identifier;

• ProductID - product identifier;

• Speed - robots velocity;
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• [R] Energy (Wh) - total robot energy;

• [R] Energy/Cycle (Wh) - average robot energy per cycle;

• Standard Deviation - standard deviation of the total robot energy;

• Total Time (hh:mm:ss) - total duration;

• Time/Cycle (hh:mm:ss) - average duration per cycle;

• Energy/Hour (Wh) -

• Total Cycles - total number of cycles;

• [C] Energy (Wh) - total cell energy;

• [C] Energy/Cycle (Wh) - average cell energy per cycle;

• Cycles with error - cycle numbers containing errors;

• Alarms - energy usage anomaly found.

In the figure 5.10 there is the sequence diagram of a chart creation.
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Figure 5.10: Sequence diagram of Energy Manager graphics creation.

5.3.6 Tasks

Usually, it is possible to split a robotic cell process into smaller processes. These

smaller processes are called tasks. Information regarding the execution state of theses

tasks are comprised into the industrial robotic cell data. So, if that data is stored into the

database, the energy usage of the robot and cell can be analysed for each task. For this,

the first step is adding a task. In the figure 5.11 there is the sequence diagram of creating

a new task.

To create a task, not only an unique name needs to be set, but also 2 lists of variables

from the database: start and end variables. Associated to a variable there is also its value.

Once all the start variables values match the entries from the database, all the following

data will be associated to that task, until the end variables are met. After the data asso-

ciation is completed, the data analysis, like the one explained is the sub-section 5.3.3, is

applied. Upon the data analysis is completed, the results can be display by linear charts,
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Figure 5.11: Sequence diagram of adding tasks.

like those from 5.3.5. It is also possible to edit and remove existing tasks. In the figure

5.12 there is the sequence diagram of editing, removing or creating a new chart for a

select task.

Editing a task allows to change the start and end variables names and values.
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Figure 5.12: Sequence diagram of edit, remove and graphic creation for tasks.
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5.3.7 Suggestions

A suggestion will need as inputs the number of products to be executed (cycles) and

the time period to have those products finished. After this, the Energy Manger will

calculate a forecast for the energy usage to execute the all products and the respective

duration, using the average values, for each recipe, calculated from the data analysis,

previously executed. All recipes shall be listed, sorted by energy usage in ascending

order, but only if the execution time can be achieved. In figure 5.13 is shown the sequence

diagram of requesting a suggestion and getting the result.

Figure 5.13: Sequence diagram of Energy Manager suggestions.
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6
Validation

This thesis was tested and validated using two industrial robotic cells, owned by

Introsys. Each cell was developed and configured for different OEM (Original Equipment

Manufacturer) standards (programming and configurations methods/rules), but both of

them execute the same process.

6.1 Introsys Robotic Cells

The industrial robotic cells simulate the welding process of a car side spar. Each

cell comprises an industrial robot, that is responsible for carrying the spar, from the

loading station to the welding station, going through all welding spots pre-programmed,

returning to the starting station, to unload the spar. There is also a PLC (Programmable

Logic Controller), which is the brain of the whole process, orchestrates the different

components of the robotic cell (robot, security, operator). The robot have its own control

unit, responsible for executing pre-programmed tasks, when ordered by the PLC. Every

robotic cell have security areas, delimited and controlled by security components, such

as barriers, scanners and doors. These components ensure that there is no obstacle in the

robot working area. If the security area is violated, by the operator, hardware crash or

security failure, the robotic cell enters an error state and the robot will stop immediately.

After this, and some safety procedures completed, the robot will resume its execution.

The last component in this robotic cell is an energy module, that allows the extraction of

the energy usage of the entire cell.

6.1.1 Robotic cell - Ford standard

This industrial robotic cell was build and programmed under the Ford OEM standard,

so it can be referred as Ford robotic cell.
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Figure 6.1: Front image of the Ford robotic cell.

The figure 6.1 is picture of the Ford robotic cell. There, it is possible to view the robot

(A), equipped with the needed gripper to grab the spar from the loading station (C) and

move it until the welding station (B). In the figure 6.2 is an aerial view of the cell.

The table 6.1 shows all the components comprised by the robotic cell compliant with

the Ford standard.

Table 6.1: Ford robotic cell components
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Figure 6.2: Aerial view of the Ford robotic cell.

Component Manufacturer Type Communication Interface

KR C4 KUKA Robot controller Proprietary/Ethernet IP

210 R2700 extra KUKA Robot Digital wiring

Gripper Introsys Robot gripper Ethernet IP

PLC Allen Bradley Controller Ethernet IP

AB Safety I/O Allen Bradley I/O Ethernet IP

Panel View Plus 1250 Allen Bradley HMI Ethernet IP

Loading Station (Tool) Introsys Sub-assembly Ethernet IP

Welding Gun ARO Joining Unit Ethernet IP

Scanner PLS3000 SICK Operation safety Digital wiring

Light Barrier C4000 SICK Operation safety Digital wiring

WAGO 750-493 WAGO Energy measurement Ethernet IP

6.1.2 Robotic cell - Volkswagen standard

This industrial robotic cell was build and programmed under the Volkswagen OEM

standard, so it can be referred as Volkswagen robotic cell.

The figure 6.3 is a picture of the Volkswagen robotic cell. There, it is possible to view

the robot (A), equipped with the needed gripper to grab the spar from the loading station

(C) and move it until the welding station (B).
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Figure 6.3: Image of the Volkswagen robotic cell.

The table 6.2 shows all the components comprised by the robotic cell compliant with

the Volkswagen standard.

Table 6.2: Volkswagen robotic cell components

Component Manufacturer Type Communication Interface

R30-iB FANUC Robot controller Siemens/Profinet IO

R-2000iB 210F FANUC Robot Digital wiring

Gripper Introsys Robot gripper Profinet IO

PLC 319F 3PN DP Siemens Controller Profinet IO

Simatic IPC677C Siemens HMI Profinet IO

Loading Station (Tool) Introsys Sub-assembly Profinet IO

Welding Gun ARO Joining Unit Profinet IO

Scanner PLS3000 SICK Operation safety Digital wiring

Light Barrier C4000 SICK Operation safety Digital wiring

NZM3-XMC-MB EATON Energy measurement Digital wiring
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6.1.3 Robotic cells process

In the cells procedure, the spar is placed and removed from the loading station by

the operator, as shown in figure 6.4. This station is inside a security area, meaning that

the operator can only interact with the station when the robotic cell is not executing,

otherwise the it enters in error state. The aid the operator, there are lights indicating if

he should or not enter the loading area.

Figure 6.4: Loading station with spar.

The task to be analysed is described as follows:

1. The operator loads the spar into the loading station;

2. The loading station closes the clamps to grab the spar;

3. the robot goes to the loading station and grabs the spar;

4. The loading station opens the clamps.

5. The robot carries the spar to the welding station;

6. The welding procedure starts;

7. The robot moves between all pre-programmed welding spots;

8. The welding procedure ends;

9. The robot carries the spar to the loading station;

10. The loading station closes the clamps and the robot drops the spar;

11. The loading station opens the clamps;

12. The operator unloads the spar.

The process is similar in both cells.
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6.2 Robotic Cell Changes

To be able to expose the devices data, the communication protocols were updated.

The KUKA robot had already installed the KUKA OPC Server, the allows to expose the

selected robot variables through a OPC-DA server. As explained in the previous chapter,

to ease the communication between the robot and the computer connected to the robotic

cell, it was installed an "OPC-UA Wrapper"in the robot, that, just like the name sug-

gests, translates the robot OPC-DA server into an OPC-UA server exposing its variables

through OPC-UA protocol. The energy module was never used before, so it was not yet

programmed to fulfil its duty. To program it, it was used a proprietary software, "WAGO

I/O PRO CAA", allowing the variable of the instant energy usage of the entire cell to be

exposed, also using an OPC-DA server. To convert the OPC-DA server into an OPC-UA

server it was used exactly the same procedure as in the robot, meaning, an "OPC-UA

Wrapper"was installed. The ladder programming language was used to program the

module. To exposed the PLCs variables, was installed an OPC-UA server into the line

computer, connecting to the PLC through Ethernet/IP communication protocol.

6.2.1 Data to retrieve

To be able to analyse the energy consumption of the robotic cell there is a need, not

only have to save energy usage data but also the data the describes the task that the cell

is executing and other conditions, like robot velocity and if any error occurred during the

execution. All this data is not comprise in a single device, so the extraction goes through

three different devices: the robot, the energy module and the PLC.

From the PLC, being the unit the controls the whole process, is the device the more

data to be retrieved. Owning lots and lots of data, it would not make sense to analyse

list every single variable, but after some research and inputs from experienced colleagues

from Introsys, I was lead to a small group of variables that would help describe the differ-

ent tasks of the robot, like Operating mode (manual/automatic), finished tasks, execution

time and errors. Given all the data to be retrieved from the PLC, the only relevant data

from the robot was its velocity and the current usage of each engine, where these values

are the percentage of their maximum values.

The energy module only exposes the energy usage of the entire robotic cell. These

variables only contains its instant value, with a refresh rate of 200 milliseconds.

Table 6.3: List of the variables to be extracted from the devices.
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Variable Meaning

Actual Power1-6 Instant energy usage in watts (one variable for each of the six engines)

Auto Mode True if the robot is in automatic mode

Cycle Time Value of the current execution’s duration

Errors Multiple variables indicating errors

Home True if the robot is at home (starting) position

Job1-5 True when a task is completed

Last Cycle Value of the last cycle’s full duration

Manual Mode1-2 True if the robot is in manual mode

POWER Instant energy usage of the robotic cell in watts

Ready True if the robot is ready to execute

RecipeID Process in execution

Speed Percentage of the maximum velocity of the robot

6.3 Trials

The trials developed and shown in this section were made with the purpose of eval-

uation and validation of the different aspects of this tool, regarding the data analysis of

energy consumption of industrial cells. All data used for these test was originated in both

industrial robotic cells, described in section 6.1, it was gathered using the Device Adapter

and stored into the database.

6.3.1 Access and search into the database

6.3.1.1 Description

The trial of access and search in the database was completed by connecting the Energy

Manager application and the database. After a successful connection, multiple filters were

applied, allowing for different range of data to be selected.

6.3.1.2 Inputs / Resources

As explained in the section 5.2, the MongoDB database used was deployed at the

Introsys facilities. For this test, to connect to MongoDB was used the "DB=Introsys"and

the "Collection=energyVW", collection where the Volkswagen cell data is stored. The

multiple filters used were:

• Date;

• Recipe;

• Speed;
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• Cycle time.

6.3.1.3 Performance

With the computer running the Energy Manager in the same local network as the

database, a successful connection was established. Then, a search was made, without

applying any filter, which return all data from the database. The first entry’s date was

22/08/2018, around 10h55, the latest was from the same day, at 16h48. The data re-

trieved is divided between six different recipes. A reference to these recipes can be found

in the figure 6.5.

Figure 6.5: Recipes retrieved from the database search, without applying any filter.

In order to validate the date filter, a filter was applied to get the data from the same

day, between 12h00 and 14h30, as shown in figure 6.6.

Figure 6.6: Date filter example.

With the filter applied, the data retrieved is only divided in three different recipes, as

can be seen in figure 6.7.

To verify the recipe filter and in order to validate the usage of multiple filters at the

same time, using the same date filter as before, a recipe filter was applied for recipes 3, 4,

and 5, as shown in figure 6.8.

Knowing that the previous date filter returned the recipes 2, 3 and 4, like it was shown

in figure 6.7, merging it with the recipe filter, the result must be matching recipes, in this
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Figure 6.7: Recipes retrieved from the database search, after applying the date filter.

Figure 6.8: Date and Recipe filter example.

case, the recipes 3 and 4, as it is presented in figure 6.9.

Figure 6.9: Recipes retrieved from the database search, after joining the date and recipe
filters.
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To validate the speed filter, a search was made for data where the execution velocity

was higher than 50, as shown in figure 6.10.

Figure 6.10: Speed filter example.

Since the data stored in the database is comprised with the velocities of 75, 62, 50,

38, 30 and 21, the expected result is the recipes where speed was 75 and 62, as it is

represented in figure 6.11.

Figure 6.11: Recipes retrieved from the database search, after applying a speed filter.

At last, in order to validate the cycle time filter, a filter for data where the cycle time

was lower than 40 000 milliseconds was set, as it is demonstrated in figure 6.12.

Figure 6.12: Cycle time filter example.

This search returned two different recipes, "1"and "2". Regarding recipe "2", the search

returned only one cycle, since all other cycle for that recipe had higher cycle time. This

result is shown in figure 6.13.
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Figure 6.13: Recipes retrieved from the database search, after applying a cycle time filter.
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6.3.2 Analysis and display of results

6.3.2.1 Description

After accessing the data, it is analysed and organised in multiple cycles and recipes.

6.3.2.2 Inputs / Resources

To test and validate the analysis and display of results, the data used regarding the

Volkswagen cell is stored under "DB = Introsys", "Collection = energyVW"and "Collection

= vw", and the data regarding the Ford cell is stored under "DB = Introsys", "Collection =

ford".

6.3.2.3 Performance

After a search is completed, in the collection "energyVW",the data analysis algorithm

starts automatically. This algorithm was explained previously, in subsection 5.3.3. An

overview of the result is displayed in figure 6.14.

When the algorithm process finishes, all data is organised in cycles, which will be

associated to a recipe. The energy values for the cell and robot are displayed along side

with its averages values and standard deviation values, for each recipe. It is also shown

the execution time of each cycle and its average.
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Figure 6.14: Example of the results tab.
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The energy usage data of the recipes can also be visualised using charts. An example

can be seen in figure 6.15.

Figure 6.15: Results chart.

In figure 6.16, it is possible to verify that the standard deviation values calculated for

the energy usage are low, regarding cell and the robot, in all recipes except for recipe "4",

where the standard deviation for the cell energy usage was much higher, but as we can

also view, an error was detected in that recipe.

The recipes "4"and "6"were tagged with "Alarms", meaning that at least for one of the

cycles the cell energy usage was higher or lower that the average cell energy usage of the

recipe adding or removing, respectively, four time the standard deviation calculated. All

data regarding the "Alarm"cycles can be viewed in the tab "Alarms". Clicking in the red

cell will move the view to the "Alarm"tab.

Figure 6.16: Results data of chart table.

In the figures 6.17 and 6.18 there are represented other results obtained from both

robotic cells, Volkswagen and Ford respectively. The collection holding this Volkswagen

data is collection "vw"and the collection holding the Ford data is collection "ford".

Figure 6.17: Results table of Volkswagen cell.

Since we are referring to different robotic cells, the internal programs used by each

one are not the same, they were programmed using different robot trajectories. However,
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Figure 6.18: Results table of Ford cell.

they can be considered similar because both represent a welding process, and in this case,

the data in the collections "vw"and "ford"was produced using the same number of weld-

ing spots. Analysing the results shown in figures 6.17 and 6.18, it is possible to verify that

there are six recipes for each cell and that the same velocities were used. Comparing the

cycle time between them, for the different recipes, it is possible to conclude that there is a

difference of 3 seconds, for the fastest recipe, and a difference of 1 seconds, for the slowest

recipe, where the Ford cell is the fastest one. Comparing the energy usage between both

cells it is possible to confirm that the values are identical, for the same execution speed.

Just as it was verified previously for another collection of data, the standard deviation

values calculated are low, between 0.07 and 1.05, validating the consistency of the data

retrieved, using the Device Adapter. Analysing the energy usage per hour calculated

for the cells, for the same velocity, the Ford cell have higher values, but the difference

is lower than 100 watts. As expected, the energy usage is directly connected with the

execution velocity of the robot, meaning that, execution with higher speed will result in

higher energy usage per hour.

However, observing the robots energy usage, the variations between the results ob-

tained for the different recipes are not those expected, because, ideally the cell energy

usage should mimic differences on the robot energy usage, meaning that, an increase

in the robots energy should trigger also an increase the cells energy, which was what

happened in the Ford cell, but changes of 10 watts in robot triggered changes higher than

100 watts in the cell. But in the Volkswagen cell, the opposite happened, an increase in

the robots energy usage, triggered a decrease in the cells energy usage.

After analysing these results, it is possible to state that lowering the execution velocity

triggers a higher energy usage producing each product. This happens mainly because of

the increase of the cycle time. Analysing the energy per hour registered in the different

recipes, for both cells, it is possible to verify that the energy per hour is lower when

executing with lower velocities.
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6.3.3 Error identification

6.3.3.1 Description

This trial aims to validate the different errors during an execution that the Energy

Manager is able to detect.

6.3.3.2 Inputs / Resources

To test and validate the error identification feature, the data used was from the Volk-

swagen cell and is stored under "DB = Introsys", "Collection = energyVW".

6.3.3.3 Performance

Still using the results from figure 6.16, it is possible to verify that at least one error was

detected in recipe "4", more particularly in the cycle 35, which was highly the probable

cause of the higher standard deviation value. More details regarding this recipe are shown

in the tab "Results", exemplified in figure 6.19, with recipe "4"already selected.

Figure 6.19: Recipe "4"results.

As it is demonstrated in figure 6.19, the robot energy usage was stable in all cycles,

including in the cycle 35, where the error was detected. However, the cells energy usage

was also stable, except in the cycle 35. Analysing the cycle time, it was 57 seconds in

all cycle, but in the cycle 35 drastically increased to 1 hour, 9 minutes and 4 seconds
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(01:09:04). Observing the column "Errors"in the line of the cycle 35, we can check that

error occurred was "E_scanner_ok", which means that one of the security areas of the

robotic cell was violated and no-one cleared it for more than one hour.

In figure 6.20 is shown the raw data regarding recipe 35. Looking into the columns

regarding the robot axis energy usage (the columns that start with "Actual_"), it is possible

to verify that right after the error occurs, about 800 milliseconds after, the robot energy

usage goes to zero, meaning that once the cell is in error state, the axis will not use

any energy. This is the reason why the value of the standard deviation regarding the

robots energy usage did not suffer any change, even with the extended duration on that

cycle. But the same did not happen with the cells energy usage ("POWER"column in

figure 6.20), since its value kept increasing even with the robot stop, which is what was

expected because every device is still turned on. After the security error was cleared, the

execution continued without any problem, since the following cycle did not have any

error.

Figure 6.20: Cycle 35 raw data, regarding recipe "4".

Using a different data source to create the results displayed in figure 6.21, it is possible

to verify that the Energy Manager can detect multiple errors, in different cycles.

65



CHAPTER 6. VALIDATION

Figure 6.21: Other results with errors.

6.3.4 Tasks detection and analysis

6.3.4.1 Description

This trial consisted on validating task feature of the Energy Manager. To be able to

configure this feature, the user must have some insight into the cells procedures and data

stored into the database.

6.3.4.2 Inputs / Resources

To test and validate this feature, the data used was from the Ford cell and is stored

under "DB = Introsys", "Collection = energyFord". Knowing the cells procedure, as ex-

plained in sub-section 6.1.3, the tasks analysed were "Pick", "Weld"and "Drop".

6.3.4.3 Performance

Knowing the process used to generate the data, three tasks were created. The first was

"Pick", which is the procedure part the goes from the start, grabs the car part and returns

to the starting position. Then there was "Weld", which consists on going to the welding

station, welding the spots and returning to the starting position. Finally the "Drop"that

represents going to the loading station, releasing the car part and returning the to starting

position. For each one of these tasks, some variable needed to be set to be able to detect

them. Regarding "Pick", the variables selected can be seen in figure 6.22.

The "Home"variable is true when the robot is at the starting position, "Job1"represents

the picking action on the robot, so it goes true after the car part is grabbed, "Job2"is true

when the welding is completed and "Job5"is true when the car part is released.

For the "Weld", also four starting variables were set:

• Home as True;
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Figure 6.22: Task list and "Pick"configuration.

• Job1 as True;

• Job2 as False;

• Job5 as False.

And two ending variables:

• Home as True;

• Job2 as True;

And finally for "Drop":

• Home as True;

• Job1 as True;

• Job2 as True;

• Job5 as False.

And two ending variables:

• Home as True;

• Job5 as True;

After creating a task, it is possible to view the energy usage of the cell and robot by

chart. The charts display is exactly the same as those viewed previously, in figure 6.15,

where all displayed data is related only to the selected task, including the errors. In the

figure 6.23 is presented the data of the whole process. Regarding recipe "1", there were

errors in the cycles [9, 10, 15, 16], and in the cycle [5] for the recipe "6", and a standard

deviation calculated for the cell energy usage of 29.74 and 38.97, respectively.
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Figure 6.23: Results table of the complete process.

In figure 6.24 are displayed the results regarding the task "Pick", where errors were

detected in the cycles [10, 16] in the recipe "1". It is also possible to verify that the

standard deviation values are lower than those from the complete process, specially for

the recipe "6", because the error in the recipe did not occur during the "Pick"task.

Figure 6.24: Results table of the [Pick] task.

In figure 6.25 are shown the results of the task "Weld", where the errors detected were

only in the cycle [9] for the recipe "1"and in the cycle [5] in the recipe "6". After analysing

the values of the standard deviation, it is possible to conclude that the error in the cycle

[5] had a great impact in the cells energy usage, in the welding task, causing the standard

deviation value to be increase. This case validates that the "Tasks"feature of the Energy

Manager allows the detection of errors and the isolation of the affected sub-process.

Figure 6.25: Results table of the [Weld] task.

In figure 6.26 are presented the results targeting the "Drop"task, where the errors only

occurred in the recipe "1", in the cycle [9]. This error also had a great impact in the energy

usage of the cell that can be confirm by checking the standard deviation values.

Figure 6.26: Results table of the [Drop] task.

Observing the figures 6.24, 6.25 and 6.26 and adding the average duration for each

cycle of the different tasks, is achieved a difference of 5-6 seconds, comparing with the

average duration of the complete process. This difference is cause by the waiting time

between complete processes, since when a drop is concluded, the system waits for a user
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to go into the station to swap the car part. But, because the welding procedure is only

simulated, if the security barrier of the loading area is not interrupted in 5 seconds after

the "Drop", the robotic cell will start the process again. This waiting time is not included

in any of the tasks referred previously, which is the reason why the error detected in

the cycle [15] for the recipe "1"in the complete process, was not detected in any of the

individual tasks.

6.3.5 Suggestions analysis

6.3.5.1 Description

This trial was performed in order to validate the quality of the suggestions created

using the energy data retrieved from the robotic cells.

6.3.5.2 Inputs / Resources

To test and validate the error identification feature, the data used was from the Volk-

swagen cell and is stored under "DB = Introsys", "Collection = energyVW". Is was also

needed to select a product type to select only the recipes executed for that product, in this

case, product "A". A product quantity to execute and the targeted deadline also needed to

be introduced, which were 10 and 30 minutes, respectively.

6.3.5.3 Performance

As observed in the previous cases, six different recipes were analysed. To each one of

them is associated a product type and, in this case, all recipes are associated to the same

product, "A", since the only difference between them is the execution speed.

When a suggestion is requested, the first component to be verified is the execution

time. In this trial, if the execution time for a recipe to execute 10 products is higher

than 30 minutes, that recipe is excluded of being a possible option, without analysing

its energy usage. If no recipe is able to execute the 10 products in 30 minutes or less,

only one option is displayed. That recipe is the one with lower energy usage, but the

"bestOption"field will be set as "false". For recipes able to execute 10 products over 30

minutes, in this case, all of them, a forecast for the cell energy usage is calculated and

compared between different recipes. The recipe with lower energy usage is tagged with

"bestOption". Errors that occur during the data gather and storage can have a great impact

in the obtained results, so to deal with this problem, an option was added, allowing for

the cycles with errors to be removed from the data analysis results. In figure 6.27 is

displayed a suggestion result, where the error cycles were not removed. Observing the

column "Time"it is possible to check that all recipes execute the 10 products in less than

30 minutes. In the column "[C]Energy Total"are the values of the forecast for the 10

products execution, values between 176.69 and 329.99 watt-hour, where the lowest value

belongs to recipe "2", being tagged with "bestOption".
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Figure 6.27: Suggestion example, considering the errors occurred during the data gather-
ing.

In figure 6.28 is shown the result of the suggestion, but this time the error cycles were

removed from the results. After checking the column "Time"we can verify that execution

time for the recipe "1"is lower, comparing with the results of the first suggestion, went

from 21 minutes and 32 seconds to 8 minutes and 6 seconds, and the recipe "6"from 29

minutes and 26 seconds to 16 minutes and 16 seconds. A similar impact can be found in

the cells energy usage, for the same two recipes, being the recipe "1"suffered the greater

difference, since the cells energy usage went from 267.35 to 174.65 watts-hour. This new

value for recipe "1"is now the lowest forecast for the execution of 10 products, and it was

now tagged with "bestOption", instead of recipe "2". Observing these two examples we

can conclude that the errors that occur during the gather and storage phase have a great

impact in the energy usage, being its detection extremely important.

Figure 6.28: Suggestion example, removing the errors occurred during the data gathering.
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6.4 Other results

6.4.1 Impact in the current system

In order to validate if the data gathering process have any impact in the robotic

cell behaviour, some executions were performed without using any of the developed

components, where the cycle time was registered manually. For the Volkswagen cell,

using the same welding process used to generated the data shown in figure 6.17 with

a velocity of 75, a cycle time of around 51 seconds was registered, which was the same

value calculated by the analysis. In the Ford cell, using the same welding process used to

generated the data shown in figure 6.18 also with a velocity of 75, a cycle time of around

48 seconds was registered, the same value calculated by the analysis. These results prove

that the Device Adapter data gathering procedure has no impact in the duration of the

process.

6.4.2 Deliverables and Publications

Regarding the Energy Manager application, it was part of a bigger project, from Portu-

gal2020, that aimed the creation of a RDI Core, at Introsys, targeting the development of

several products and services in different areas, including manufacturing, on which, three

documents were created, specifying the details and results about the Energy Manager,

namely requirements, architecture and trials.

The data and results of the analysis of this solution were used in the writing of the

paper (Miranda et al. 2018), related to an European project called OpenMOS, from

Horizon2020, where the main goal was developing a common, openly accessible plug-

and-produce system. The data presented in that paper associated to "without OpenMOS",

in the "Results"section, were retrieved and analyse by the complete solution presented in

this thesis. The main goal of that section in the paper was to compare the behaviour of the

industrial robotic cells, with and without the OpenMOS technology integrated, since the

technology have an executor module implemented making it responsible for the executed

processes in the cells. Since the data gathering process presented in this thesis does not

have any impact in the execution process, the data retrieved from it is able to translate

the standard behaviour of the cells. To clarify, still in (Miranda et al. 2018), there is a

section entitle of "Device Adapter"but it is related to a different implementation than the

one presented in this thesis.
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Conclusion and future work

The developed solution indicates that is it possible to add monitoring capabilities

to existing manufacturing systems without compromising the standard behaviour of a

manufacturing robotic cell.

It was also shown that, having access to the required data, it is possible to analysis of

a manufacturing process and split the process and respective analysis into smaller tasks,

being able to determine the energy consumption and errors occurred in each one of them.

With the samples and trials presented, it is possible to state that simply speed varia-

tions in the robots execution have a great impact into the duration of a process and the

energy used in that process, meaning that, with higher velocities the process executes

faster and the energy used to execute that process is lower than executing with lower

velocities. The energy variations between velocities is mainly due to changes in the exe-

cution time, since the energy consumed per hour does not varies that drastically, for both

stations.

The trials performed allowed to conclude that, comparing the energy consumption

for each process between the Volkswagen and Ford stations, the Volkswagen station is

more energy efficient than the Ford station for higher robot velocities but less efficient

when the robot is executing with lower velocities.

By having a modular architecture allows for both applications developed under this

thesis to be used separately, which means that if someone already has a data analysis

application but does not have the data gathering process implement, he can simply use

the Device Adapter and the database described in the architecture and merge with his
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own solution. The same goes if the data storage process is already implemented and

the data analysis platform is the one missing, then he can use only the Energy Manager

alongside his own applications.

The results of this work were used in the writing of a scientific paper (Miranda et al.

2018) and in the writing of documents containing the details of the development, only

regarding the Energy Manager.

For future work, the Device Adapter should be compliant with more communica-

tion protocols, besides OPC-UA, allowing it to connect with a greater range of devices,

extracting their data. The Energy Manager application should offer more features and

capabilities, more related to predictive manufacturing, targeting maintenance. The analy-

sis process should be improved, introducing data mining algorithms. The result handling

should also be improved, granting the capability of creating new possible recipes, merg-

ing the more efficient sub-procedures (tasks) found in the analysed recipes. Ideally, it

should be possible to create completely new tasks to deliver more efficient results for a

target process, but for this to be possible, using the industrial robotic cells for welding

as an example, the analysis application needed to be aware of the targeted welding spots

and their coordinates, in order to provide more efficient robot trajectories. This possible

feature would need also to deal with possible collisions, meaning that, the robot trajecto-

ries are not always the shorter path between two spots because other component can be

in the working area, for example the welding station, and the trajectories are set to avoid

those.
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