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Abstract

In analog to digital conversion, it’s necessary to provide a reference voltage to the Ana-

log to Digital Converter (ADC), in order to quantify the input signal. However, as the

ADC has a switch constantly commuting on its input it will cause perturbations on the

reference voltage provided by the Bandgap circuit. Thus, it will interfere with the normal

behaviour of the Bandgap circuit, which will longer be capable of provide the desired

reference voltage.

Besides, if the reference voltage is not constant in the desired value the output code gen-

erated by the ADC will have errors.

In order to avoid conversion errors it will be needed to introduce a buffer between the

Bandgap and the ADC. Thus, taking advantage from the characteristics of the buffer (low

output impedance, high input impedance and unitary gain) the system will be capable of

recover from the perturbations introduced by the ADC in the reference voltage.

Therefore, in this thesis are studied some of the already existing architectures of buffers,

in order to see the advantages and disadvantages of each one. This way were chosen the

best three architectures from a theoretical point of view, to implement and simulate, to

obtain all the needed information in order to better compare them.

Keywords: Buffer, ADC, Bandgap, Unitary gain, Low power consumption, Reference

voltage.
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Resumo

Em conversão de analógico para digital é necessário fornecer uma tensão de referência ao

ADC de forma a quantificar o sinal de entrada. Contudo, como o ADC tem um interruptor

a comutar constantemente na sua entrada vão ser introduzidas perturbações na tensão

de referência fornecida pelo circuito de Bandgap. Assim, o normal funcionamento do

circuito de Bandgap vai ficar em causa, o que vai impossibilitar o fornecimento da tensão

de referência desejada.

Alem disso, se a tensão de referência for diferente do desejado então o código na saída do

ADC vai apresentar erros.

De forma a evitar erros de conversão será necessário introduzir um buffer entre o Badgap

e o ADC. Portanto, ao tirar partido das caracteirísticas do buffer (baixa impedância de

saída, alta impedância de entrada, e ganho unitário) o sistema será capaz de recuperar

das perturbações introduzidas pelo ADC na tensão de referência.

Portanto, nesta dissertação são estudadas algumas arquiteturas de buffers já existentes,

para ver quais são as vantagens e desvantagens de cada uma. Desta forma foram escolhi-

das as três melhores arquiteturas do ponto de vista teórico, para implementar e simular,

para obter toda a informação necessária de forma a compará-las melhor.

Palavras-chave: Buffer, ADC, Bandgap, Ganho unitário, Baixo consumo energético, Ten-

são de referência.
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1
Introduction

This Chapter describes the main features of a voltage buffer as well as its importance in

integrated circuit. It also explains the purpose of this project and the special importance

of a buffer in analog to digital conversion. Finally, a brief resume of the contents present

in each Chapter of this thesis is presented.

1.1 Context and Motivation

A voltage buffer is a circuit that presents three main features: low output impedance, high

input impedance and unitary gain. These characteristics make this kind of circuits very

useful for applications where it’s necessary to connect two different circuits, for the signal

to be transferred without one circuit affecting the behaviour of the other one. This can

occur due to the large amount of current required when the delta-sigma ADC start the

conversion process, which will cause a perturbation in the reference voltage. In analog to

digital conversion, the ADC compares the input voltage to a reference voltage to produce

the digital binary output code. So if the reference voltage has perturbations, then the

generated code may be wrong, which may cause unwanted behaviours on the system

where the ADC is inserted.

Figure 1.1 is a high-level representation of a buffer that can be represented as an amplifier

with an unitary gain, or it can also be represented with a voltage follower, and with an

ideal opamp.

This project consists in the design of a reference buffer for a delta-sigma ADC with cur-

rent Digital to Analog Converter (DAC). To do so, it will be necessary to study different

approaches and see the benefits and the disadvantages of using each one. After that,

it’s necessary to choose the approach that gives the best results according to the desired

specifications, presented in Table 1.1.
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(a) Simple buffer.
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(b) Opamp buffer.

Figure 1.1: High level representation of a buffer.

These specifications are very restricted, since the delta-sigma ADC is already imple-

mented and according to that implementation it will be needed to build a buffer capable

of achieve such requirements.

Table 1.1: Buffer design specifications.

Bandwidth 100− 200 MHz
Technology UMC 130 nm

Reference Voltage 1.2 V
Supply Voltage 2.5 V

Output Impedance (DC) < 500 Ω

Biasing Current < 200 µA
η ≥ 30 %

Positive Power Supply Rejection Ratio (PSRR) > 40 dB

VNs <
1.2
212

√
OSR

OSR 100

In Table 1.1 VNs represents the noise of the system and η represents the efficiency of

the system. As the supply voltage and the reference voltage of the system have differ-

ent values it isn’t possible to achieve an efficiency of 100%. Thus, in an ideal situation,

the maximum efficiency attainable is η =
1.2× i
2.5× i

× 100 = 48%. Therefore, the results dis-

played on the last chapters are normalized, which means that 48% is equivalent to 100%.

1.2 Main Contributions and Problem Approach

The purpose of this project is to implement a system capable of provide a stable reference

voltage to the delta-sigma ADC. To do so it is needed to introduce a buffer between the

Bandgap and the ADC. With such a system it’s assured that the reference voltage pro-

vided by the Bandgap circuit is not affected by the ADC. Since the buffer will be capable

of recover from the perturbations that the ADC will cause on its output voltage.

Thus, the first step to do was stablish the conditions in which the circuits will be imple-

mented and simulated. Beforehand, it was noticed that was necessary to use an error

amplifier on the feedback of the buffer, in order to the voltage at the output of the buffer

be equal to the reference voltage provided to the system. Besides, the error amplifier also
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helps to increase the positive PSRR, which means that greater gain of the error amplifier

results in a greater PSRR.

In Figure 1.2 is shown an high level representation of the system after adding the ampli-

fier to the feedback of the buffer.
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Figure 1.2: Buffer with error amplifier.

Since this buffer is being projected to provide a reference voltage for a delta-sigma ADC

with current DAC is also needed to take that into account. Thus, in Figure 1.3, is an

high level representation of the system after adding the DAC. As this is a circuit that re-

ceives digital signals controlled by a clock, it will introduce perturbations in the reference

voltage, which allows to simulate the behaviour of the ADC.
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Figure 1.3: Buffer with error amplifier providing a reference voltage to a DAC.

1.3 Thesis Structure

This thesis is structured in five chapters, where are presented the most relevant aspects

for the development of this project.

In the Chapter 1 are presented the fundamental aspects of a buffer and the main goals

to achieve. In Chapter 2 are introduced some of the already existing architectures, as

well as a brief theoretical analysis of them. In Chapter 3 are selected the best three

architectures from the theoretical point of view, and are explained the methodologies
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used to implement those architectures. In Chapter 4 are displayed the results obtained

form the architectures defined in Chapter 3 and is also done a comparison between those

architectures in order to see the advantages and disadvantages of each one. Finally, in

Chapter 5 are summarized all the considerations and methodologies used and is also

suggested some work to develop as a way to improve this project.
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2
State of the Art

In this chapter some of the already existing topologies of buffers will be studied. In each

section a theoretical analysis of the buffer presented will be made, in order to understand

its main features such as the gain, output impedance, noise and output swing. After that,

a coarse sizing will be made, in order to see the energetic efficiency of each topology for a

certain output impedance. Lastly, at the end of this chapter, a comparison between the dif-

ferent topologies will be made in order to see which are the advantages and disadvantages

of each topology.

2.1 Common Drain (CD) Amplifier

A Common Drain (CD) amplifier (Figure 2.1) is the simplest possible circuit that works

as a voltage buffer. However, it has a great disadvantage, because the current through

transistor M1 is dependent of the output current [1], and the gain of the circuit can be

less than one for resistive loads [2]. Therefore, if it is desired to obtain a small output

impedance, is necessary to increase the aspect ratio of M1, resulting in a large power

consumption [1]. Another disadvantage of this circuit is the limited sourcing capability

by the biasing current, and the absence of linearity in the output [3]. The main advantage

of this circuit is its simplicity and the capability of sinking large current from the load

[2].

Analysing this circuit, it can be concluded that the output impedance is low and the gain

of the circuit is approximately unitary.

RO =
1

gm1 + gds1
(2.1)

AV (s = 0) =
gm1

gds1 + gm1
(2.2)
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Figure 2.1: Common Drain Amplifier.

Based on: [2].

With the gain expression, it is possible to obtain the follow-up error expression, using the

the following method:

AV (s = 0) =
gm1

gds1 + gm1

⇐⇒ AV =
1

gds1
gm1

+ 1

⇐⇒ AV =
1

FE + 1

(2.3)

FE =
gds1
gm1

(2.4)

It’s also possible to see by the analysis of the circuit that the CD has one zero and one pole.

Doing a stability analysis, it can be observed that the circuit is always stable, because both

the pole and the zero are stable (Figure 2.2).

Using the exact expression of the gain (Av(s , 0)) can be calculated the expression of the

pole, and that is what will define the bandwidth of the circuit.

ωp =
gm1 + gds1

Cl + csb1 + cgs1
(2.5)

Finally, the noise and the output swing of the circuit was calculated.

V 2
Nin ≈

γ4KBT
gm1

(2.6)

∆V opp = Vdd − 2Vdsat (2.7)

The following structures are based on the source follower, and some changes are made to

the arrangement of the circuit to reduce its disadvantages.
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Figure 2.2: Root Locus of the CD.

2.2 Flipped Voltage Follower (FVF)

The Flipped Voltage Follower (FVF) (Figure 2.3) allows a constant current through the

transistor M1 due to the current source Ib, and under this condition, the unitary gain is

achieved independently of the output current [1], [2]. By adding transistor M2, there is

no longer the previous limitation of sourcing current. However, this change limits the

sinking capability of the FVF because of the biasing current [1]-[3]. The big advantage of

using a FVF is the aptitude of using a very low voltage supply. Another improvement can

be done to this circuit, adding a resistor on the closed loop between the gate of M2 and

the drain of M1 [4], resulting in a better bandwidth.

The main application of the FVF is as a voltage buffer with Direct Current (DC) level

shifting [5], but it is also used as a current sensing element.

By analysing the circuit, the expressions of the output impedance and the expression of

the gain are obtained. Comparing the output impedance of the FVF with the impedance

of the CD it can be observed that the FVF impedance is lower. Plus, it’s also possible to

obtain a unitary gain.

RO ≈
1

gm1gm2rds1
(2.8)

AV (s = 0) =
gm1gm2

gm2gds1 + gds1gds2 + gm1gm2
(2.9)

By the expression of the gain it’s possible to obtain the follow-up error expression.

FE =
gds1
gm1

+
gds1gds2
gm1gm2

(2.10)

It’s also possible to see that the FVF has a lower noise than the CD although the FVF has
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Figure 2.3: Flipped Voltage Follower.

Based on: [2].

two transistors, but as the transistor M1 is cascode its noise is negligible. In the worst

case scenario the output swing is lower than the CD output swing.

V 2
Nin ≈

γ4KBT gm2

(gm1gm2rds1)2 (2.11)

∆V opp = Vdd − 3Vdsat (2.12)

With regard to stability, it’s also possible to conclude that the system is always stable due

to its two stable poles and two stable zeros, which can be visualized in Figure 2.4.
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Figure 2.4: Root Locus of the FVF.

Using the exact expression of the gain it’s possible to calculate the existing poles and
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comparing both expressions it’s possible to obtain the dominant pole.

ωp ≈
gm2

cgd1 + cdb1 + cgs2 + cgd2
(2.13)

2.3 FVF Differential Structure (DFVF)

The FVF Differential Structure (DFVF) is a FVF based circuit and it presents a Class-AB

behaviour. On the DFVF the output is available as either current or voltage, and this

characteristic can be very advantageous, since it allows a simplification of the circuit as

well as a reduction in noise and in the number of poles and zeros [2].

The DFVF can be used to build low-power low-voltage Class-AB output stages and can

be used as a transconductance Operational Amplifier (OA). As a transconductance OA,

the DFVF achieves a large Common mode rejection ratio (CMRR) [2], and if two DFVF

are used a fully differential behaviour can be obtained.
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Figure 2.5: FVF Differential Structure.

Based on: [2].

Using the small signal analysis, it’s possible to obtain the expressions of the gain and

output impedance. Comparatively to the FVF circuit, the gain remains equal but the

output impedance is different. However, the output impedance of the circuit remains

low.

RO ≈
gm1gm2 + gds1gm3

gm1gm2gm3 + gm2gm3gds1
(2.14)

AV (s = 0) =
gm1gm2

gm2gds1 + gds1gds2 + gm1gm2
(2.15)
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With the expression of the gain calculated above, it’s possible to get the follow-up error

expression.

FE =
gds1
gm1

+
gds1gds2
gm1gm2

(2.16)

By observation of Figure 2.5 it’s possible to see that this circuit continues to have just one

transistor contributing to the overall noise, the transistor M2. The transistors M1 and M3

have a negligible noise, because they are cascode transistors. Also, by observation, it’s

possible to calculate the output swing.

V 2
Nin ≈ γ4KBT gm2

(
gm1gm2 + gds1(gm2 + gm3)

gm1gm2gm3

)2

(2.17)

∆V opp = Vdd − 2Vdsat −VCl (2.18)

By analysing the exact expression of the gain it’s possible to see that this circuit has two

zeros and three poles. So, the circuit will always be stable, since both poles and zeros are

stable. By doing the root locus (Figure 2.6) it’s possible to confirm that.
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Figure 2.6: Root Locus of the DFVF.

Comparing the three expressions of the poles present in the circuit it’s possible to con-

clude that the dominant pole is given by:

ωp ≈
gm2

cdb1 + cgd1 + cgd2 + cgs2
(2.19)

2.4 Bulk-driven FVF (BdFVF)

As a way to improve the FVF a bulk-driven transistor can be used instead of an ideal cur-

rent source (Figure 2.7). This change will allow the circuit to obtain a Class-AB behaviour
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instead of a Class-A behaviour, and consequently obtain a symmetrical slew rate instead

of an asymmetrical slew rate [6].

To establish the bias current of the circuit is used a voltage Vb that fixes the Vsg voltage

of the transistor M3. To guarantee that the bias current is preserved, the node between

the drain of the transistors M2 and M3 controls the transistors M1 and M3 [6]. In the case

of Vin rising too fast the voltage in this node decreases and the transistor M3 starts to

provide a larger current. As a consequence of that rise, the transistor M1 will be turned

off, and the output voltage will increase with the input voltage until the circuit reaches a

balance state [6].
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Figure 2.7: Bulk-driven FVF.

Based on: [6].

By analysing the circuit it’s possible to obtain the expressions of the gain and output

impedance. As expected, it exhibits unitary gain and the output impedance is also very

low.

RO ≈
gds2 + gds3

gds1(gds2 + gds3) + gm2(gds3 + gm1)
(2.20)

AV (s = 0) ≈
gm2(gds3 + gm1)

gds1(gds2 + gds3) + gm2(gds3 + gm1)
(2.21)

From the gain expression it’s possible to get the follow-up error expression.

FE =
gds1(gds2 + gds3)
gm2(gds3 + gm1)

(2.22)

Comparing to the FVF this circuit has one more transistor, so the noise will be slightly

higher. In this case, the transistors that will contribute to the noise of the circuit are

the transistors M1 and M3, as the transistor M2 is in cascode configuration its noise is
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negligible. In relation to the output swing peak, to peak it remains equal compared to

the original FVF.

V 2
Nin ≈

4KBT (gm1 + gm3)
(gm1gm2(rds2//rds3))2 (2.23)

∆V opp = Vdd − 3Vdsat (2.24)

From the exact expression of the gain, it’s also possible to see that this circuit has two poles

and two zeros, so the root locus of this circuit will be similar to the root locus of the FVF

(Figure 2.4). This way the circuit will be stable, since its poles and zeros remain stable.

From the expressions of the two poles that can be obtained from the exact expression of

the gain, it’s possible to see which is the dominant pole and get its expression.

ωp ≈
gm1

cgd1 + cgs1 + cgd2 + cdb2 + cgd3
(2.25)

2.5 Level Shifted FVF (LSFVF)

This is another circuit that, as the one mentioned in Section 2.4, also uses a bulk-driven

transistor as a current source to improve the performance of the circuit from Class-A

to Class-AB (Figure 2.8). However, this one has a level shifted feedback that allows

increasing the input and output swing of the circuit [7].
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Figure 2.8: Level Shifted FVF.

Based on: [7].

In this case the feedback of the circuit is made by the transistor M4 that is used as a

level shifter in order to increase the swing of the circuit as referred previously. As in

Section 2.4, the Vb at the gate of transistor M3 is used to set the bias current of transistors

12



2.5. LEVEL SHIFTED FVF (LSFVF)

M1 −M3, and also to establish the Vsg voltage of transistor M3. If the input voltage of the

circuit suffers a very fast growth, then the voltage at the nodes X and Y will decrease. The

opposite situation (fast decreasing of the input voltage) will make the voltage at node X

grow and, as a consequence, the transistor M3 will provide a larger source current that

also gives a larger current in the output capacitance Cl [7].

Doing the Alternating Current (AC) analysis of the circuit it’s possible to obtain the

expressions of the gain and output resistance which, as expected presents a unitary gain

and a low output impedance, respectively.

RO ≈
gds2 + gds3

gds1(gds2 + gds3) + gm2(gds3 + gm1)
(2.26)

AV (s = 0) ≈
gm2(gds3 + gm1)

gds1(gds2 + gds3) + gm2(gds3 + gm1)
(2.27)

Comparing these expressions with the ones of Section 2.4 it’s possible to see that they are

equal. In other words, these circuits have the same gain and output impedance.

With the gain expression it’s possible to obtain the follow-up error expression.

FE =
gds1(gds2 + gds3)
gm2(gds3 + gm1)

(2.28)

In comparison with the circuit of the Section 2.4, this circuit has one more transistor

contributing to the total noise. So, the transistors that will affect the overall noise are

the transistors M1, M3 and M4. As explained previously, the noise of transistor M2

is negligible, because this is a cascode transistor. Relatively to the output swing, it’s

expected to obtain something similar to the circuit from Section 2.4.

V 2
Nin ≈

4KBT (gm1 + gm3 + gm4)
(gm1gm2(rds2//rds3))2 (2.29)

∆V opp = Vdd − 3Vdsat (2.30)

Comparing the expressions (2.29) and (2.23) it’s possible to see that the noise of both

circuits is very similar and the only change is that this circuit has one more transistor that

contributes to the noise.

Looking to the exact expression of the gain it’s possible to see that the circuit will intro-

duce one more zero when compared to the circuit described in Section 2.4. Therefore,

this circuit has three poles and three zeros, which will result in a stable system (Figure

2.9).

By the approximated expressions of the poles, it’s possible to get the expression of the

dominant pole.

ωp ≈
gm1

Cc + cgd1 + cgs1 + cgs4 + csb4
(2.31)
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Figure 2.9: Root Locus of the LSFVF.

2.6 Wide bandwidth buffer (Wbb)

This buffer is based on the FVF and has the aim of keeping a small load capacitance,

while at the same time provides a low power consumption and a large bandwidth, with-

out increasing the the transistors dimensions (Figure 2.10). This is achieved through the

improvement of the transconductance of the transistors using a feedback strategy [8].
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Figure 2.10: Wide bandwidth buffer.

Based on: [8].

To achieve a better bandwidth without increasing the aspect ratio of M1 it’s necessary to

improve the transconductance of the transistorM2 through the feedback loop constituted

by the transistors M1, M3, and M4. In order to obtain a linear circuit, was needed to add
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2.6. WIDE BANDWIDTH BUFFER (WBB)

an extra current source represented by the transistor M6, which will provide a larger bias

current to the transistor M2. The resistance Rc used between the gates of transistors M2

and M3 was used to face the peck that appears when a small load capacitance is used to

obtain a larger bandwidth [8].

Through circuit analysis it’s possible to achieve the approximate expressions of the cir-

cuit. As expected, an approximately unitary gain was achieved, as well as a low output

impedance.

RO ≈
gm3gds1 + gm4gds1 + gm3gds5 + gm4gds5

gm1gm2gm4 + gm2gm4gds1 + gm1gm3gds5 + gm1gm4gds5
(2.32)

AV (s = 0) ≈
gm1gm2gm4 + gm1gm3gds5 + gm1gm4gds5

gm1gm2gm4 + gm2gm4gds1 + gm1gm3gds5 + gm1gm4gds5
(2.33)

Through the gain expression is possible to get the follow-up error expression.

FE =
gm2gm4gds1

gm1(gm2gm4 + gds5(gm3 + gm4))
(2.34)

Observing the circuit, it’s possible to see that there are four transistors contributing to the

noise (M2, M3, M5 and M6) , as well as the resistance Rc. The transistors M1 and M4 have

a negligible noise because they are cascode transistors. The output swing will remain

equal for the worst case.
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Figure 2.11: Root Locus of the Wbb.

V 2
Nin ≈ 4KBT

(
gm3gds1 + gm4gds1 + gm3gds5 + gm4gds5
gm1gm2gm4 + gm1gm3gds5 + gm1gm4gds5

)2

(
γ(gm2 + gm3 + gm5 + gm6) +

1
Rc

) (2.35)

∆V opp = Vdd − 3Vdsat (2.36)
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Analysing the exact expression of the gain, it’s possible to conclude that this circuit has

four poles and four zeros, resulting in a stable system, as shown in Figure 2.11.

By approximation, all the poles’ expressions were calculated allowing to determine the

expression of the dominant pole.

ωp ≈
(1 + gm1)gm2gm4 + gds5gm1(gm3 + gm4)

(cdb3 + cgs3 + cgs4 + csb4)gm1gm4
(2.37)

2.7 Super Source Follower (SSF)

This circuit is an update of the basic Source Follower circuit and it uses negative feedback

(through the transistor M2) in order to improve its linearity and its output impedance

(Figure 2.12). This feedback is formed by the transistors M1 and M2, and due to it the

drain current of M1 is not affected by the output current as in the Source Follower [9].

However, this circuit has a disadvantage regarding large input signal application, since

the transistors parameters will change, causing a signal distortion [9].
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Based on: [9].

The circuit analysis allows to obtain the expressions of the gain and of the output impedance.

RO ≈
gds1

gm1gm2 + gds1(gds2 + gL + gm2)
(2.38)

AV (s = 0) ≈
gm1gm2

gm1gm2 + gds1(gds2 + gL + gm2)
(2.39)

As expected, the gain obtained is approximately unitary and the output impedance is

very low. By the gain expression it’s possible to achieve the follow-up error expression.

FE =
gds1(gds2 + gL + gm2)

gm2gm1
(2.40)
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2.8. BUFFER WITH HIGH LINEARITY AND ADJUSTABLE OUTPUT

IMPEDANCE

Regarding noise, both transistors and the resistance RL will affect its overall value. Com-

paring this circuit with the Source Follower leads to the conclusion of a smaller output

swing on the present one.

V 2
Nin ≈ 4KBT

(
gds1

gm1gm2

)2 (
γ(gm1 + gm2) +

1
RL

)
(2.41)

∆V opp = Vdd − 3Vdsat (2.42)

By analysing the exact expression of the gain it’s possible to see that this circuit has two

poles and two zeros, which constitutes a stable system as can be observed in Figure 2.4.

With the calculation of the approximated expressions of the poles it’s possible to obtain

the dominant pole expression.

ωp ≈
gm2

cdb1 + cgd1 + cgd2 + cgs2
(2.43)

2.8 Buffer with high linearity and adjustable output

impedance

This circuit is an evolution of the Super Source Follower, in two aspects, linearity, and

output impedance (Figure 2.13). In this circuit is added another feedback loop, so the

circuit stays with two feedback loops. One loop is used to improve the linearity of the

circuit while the other one is used to adjust the output impedance. This way, the output

impedance depends on a resistor R1 and on the size ratio of M2 and M4. To improve the

gain of the circuit was used the resistor Rin [9].
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Figure 2.13: Buffer with high linearity and adjustable output impedance.

Based on: [9].

Analysing the circuit is possible to obtain the expressions of the output impedance and
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gain. As expected, the gain is approximately unitary and the output impedance is low

and dependent of R1.

RO ≈
gm2

(g1 + gds4 + gL)gm2 + (g1 + gds3)gm4
(2.44)

AV (s = 0) ≈
g1gm2 + (g1 + gds2 + gin)gm4

(g1 + gds4 + gL)gm2 + (g1 + gds3)gm4
(2.45)

Through the gain expression is possible to get the follow-up error expression.

FE ≈
(gds4 + gL)gm2 + gds3gm4

g1(gm2 + gm4)
(2.46)

By observation of the circuit is possible to see that the transistors M1, M2 and M4 will

contribute to the overall noise, as well as the resistors R1, RL and Rin. The noise of

transistor M3 is negligible because this transistor is folded cascode. Also, by observation,

is possible to get the output swing expression.

V 2
Nin ≈ 4KBT

(
gm2

g1gm2 + (g1 + gds2 + gin)gm4

)2

(
γ(gm1 + gm2 + gm4) +

1
RL

+
1
R1

+
1
Rin

) (2.47)

∆V opp = Vdd − 2Vdsat (2.48)

Considering the exact expression of the gain is possible to see that the circuit has five
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Figure 2.14: Root Locus of the buffer with high linearity and adjustable output
impedance.

poles and five zeros. This constitutes a stable system as demonstrated in Figure 2.14. By
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2.9. TWO STAGE QFG BUFFER

the approximated expressions of the poles is possible to achieve the expression of the

dominant pole.

ωp ≈
g1(gm2 + gm4)

(C1 + cdb4 +CL)gm2
(2.49)

2.9 Two stage QFG buffer

This buffer introduces a technique of Quasi-Floating Gate (QFG) (Figure 2.15), without

using any DC level shift from the input to the output, in order to avoid problems resulting

from it, due to the temperature dependence of the DC level shifting circuits. This circuit

also allows to obtain Class-AB behaviour without using any additional supply voltage

[10].

The QFG technique consists in stabilize the gate voltage of one transistor from the DC

point of view, but from the signal point of view this voltage can be considered a floating

voltage. Is it what happens in the gate of transistor M2, and in order to this be possible

was added a big resistance, and a capacitor Cbat in the gate of M2 [10].
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Figure 2.15: Two stage QFG buffer.

Based on: [10].

Another characteristic of this circuit is the capability to work with a small quiescent

current in order to save static power, and at the same time exhibit a large slew rate due

to the large output current. Case the input voltage rises too fast, the output of this circuit

is also capable of follow the variation occurred, providing a large current at the load.

Due to the big value of Rlarge the Cbat capacitor will act like a DC voltage, because it will

not discharge fast, and this will increase the Vsg voltage of M2, which will provide the

required current at the output. With the increase of the V sg voltage atM2, its gate voltage

decreases, and hence the drain current of M1 will also decrease below Ib. Otherwise if

the input voltage decreases, then the gate voltage of transistors M1 and M2 will decrease,
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the drain current of M1 will increase, and the drain current of M2 will decrease, which

denote the sinking capability of this circuit at the load [10].

Therefore, this kind of circuit is very useful for applications that require an accurate

operation with low quiescent power consumption [10].

Using a transconductance amplifier (Figure 2.17) and doing an AC analysis in the circuit

is possible to obtain the expressions of the gain and output impedance. As expected, the

gain is unitary and the output impedance is low.

RO ≈
gout4

gm1gm4 + (gds1 + gds2)gout4
(2.50)

AV (s = 0) ≈
gm1gm4

gm1gm4 + (gds1 + gds2)gout4
(2.51)

In the expressions (2.50) and (2.51) the transconductances gm4 and gout4 represent the

components of the transconductance amplifier. By analysing the gain expression calcu-

lated above is possible to get the follow-up error expression.

FE ≈
(gds1 + gds2)gout4

gm1gm4
(2.52)

Regarding the noise, is possible to see that this circuit has two transistors (M1 and M2),

and two resistors (Rc and Rlarge) that will contribute to the overall noise. By observation

is also possible to calculate the output swing expression.

V 2
Nin ≈

4KBT
(gm1gm4Rout4)2

(
γ(gm1 + gm2) +

1
Rc

+
1

Rlarge

)
(2.53)

∆V opp = Vdd − 2Vdsat (2.54)

Using the exact expression of the gain is possible to see that this circuit has four poles and

three zeros, which constitute a stable system (Figure 2.18). Based on the gain expression is

possible to calculate the approximated expressions of the poles, and consequently achieve

the dominant pole, where Cp4 represents the parasitic capacitances of the transconduc-

tance amplifier.

ωp ≈
gm1

Cbat +Cc + cgd1 + cgs1 +Cp4
(2.55)

2.10 Low Drop-out (LDO) regulators

The Low Drop-out (LDO) regulators are very important components for the system-on-

chip (SoC) circuits because there are multiple supply voltages used for the different

components that integrate the chip.

The main function of a LDO regulator is to provide the voltage supply that the other

circuits need, and at the same time protect them from the disturbances that may happen

on the supply voltage [11].

In the next sections, it will be observed some designs of LDO regulators.
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2.10. LOW DROP-OUT (LDO) REGULATORS

2.10.1 Shunt-series LDO (SsLDO)

The Shunt-series LDO (SsLDO) regulator allows to obtain a very low output impedance

and a gain approximately equal to one (Figure 2.16).

This SsLDO is divided in two control loops, one shunt section and one series section.

The shunt section constituted by the amplifier A1 and the transistor M1 deals with fast

transients, and the series section composed by the amplifier A2 and transistorM2 handles

low frequency load current fluctuations. Besides that, on its output, there is a capacitor

Cd that takes care of very fast current changes [12]. After analysing this circuit it was
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Figure 2.16: Shunt-series LDO.

Based on: [12].

possible to obtain the next expressions of the output impedance and gain, considering A1

and A2 as ideal amplifiers.

RO ≈
g1 + gds1

g1gm1 +A1g1gm1 +A2gm1gm2 +A2gm2gds1 +A1A2gm1gm2
(2.56)

AV (s = 0) ≈
A1g1gm1 +A2g1gm2 +A2gm2gds1 +A1A2gm1gm2

g1gm1 +A1g1gm1 +A2gm1gm2 +A2gm2gds1 +A1A2gm1gm2
(2.57)

In the FVF there’s only one transistor that contributes to the noise but on this LDO there

is also a resistor that contributes to the noise. Lastly it was calculated the output swing.

V 2
Nin ≈

4KBT
(A1A2gm1gm2(rds1//R1))2

(
γgm2 +

1
R1

)
(2.58)

∆V opp = Vdd − 2Vdsat −Vs (2.59)

Replacing the amplifiers A1 and A2 by the circuit of Figure 2.17 the gain and output

impedance expressions will be calculated once again. This change is needed in order to

be possible to get all the expressions of poles and zeros.
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Figure 2.17: Transconductance Amplifier.

RO ≈
(g1 + gds1)gout3gout4

gm1gm2gm3gm4 − gds1gm2gm3gout4
(2.60)

AV (s = 0) ≈
gm1gm4

gm1gm4 − gds1gout4
(2.61)

In the expressions (2.60) and (2.61), the transconductances gout3 and gm3 are related to

the components of A2, and the transconductances gout4 and gm4 to the components of

A1. By the gain expression calculated after the change of the amplifiers by the transcon-

ductance amplifiers is possible to get the follow-up error expression.

FE =
gds1gout4
gm1gm4

(2.62)

With this change is also possible to obtain another expression of the input noise.

V 2
Nin ≈

4KBT
(gm1gm2gm3gm4Rout3Rout4(rds1//R1))2

(
γgm2 +

1
R1

)
(2.63)

This expression meets the expected result, because the gain of the transconductance
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Figure 2.18: Root Locus of the SsLDO.

amplifier is Av = gmRout.
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From the analysis of the exact expression of the gain it is possible to conclude that this

circuit has five poles and four zeros, but in order to obtain a manageable expression it will

be considered that the parasitic capacitance cgd1 of transistor M1 is negligible, and thus

simplifying the system to have four poles and three zeros. This results in a stable system

as shown in Figure 2.18. Further on, if this circuit reveals itself important, then will be

considered the most difficult scenario comprising the parasitic capacitances. Taking into

account this simplification is possible to obtain the dominant pole expression, where Cp3

represents the parasitic capacitances of the transconductance amplifier A2.

ωp ≈
gm2

cgd2 + cgs2 +Cp3
(2.64)

2.10.2 Capacitor free LDO (CfLDO)

This is a Capacitor free LDO (CfLDO) that presents an architecture with a fast and a slow

loop (Figure 2.19). The circuit can be divided into three different parts: (1) a common

source (CS) stage at the output, (2) a fast differential stage that has a feedback from the

output stage forming the fast loop of the circuit, and (3) a slow operational amplifier that

has a feedback from the output stage forming the slow loop of the circuit.

The fast loop of the circuit has the purpose of deleting the spikes caused by a step in the

load, that is felt on the output of the LDO. The slow loop has the purpose of controlling

the gate voltage of M2 and M3, that allows to stabilize the DC voltage at the output [11].
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Figure 2.19: Capacitor free LDO.

Based on: [11].

To facilitate the analysis of the CfLDO stage by stage analysis was made, and the resulting

expressions were combined to obtain the final expressions for the gain, output impedance

and noise.

In order to obtain the gain expression of the circuit the open loop gain of each stage were

calculated, and from those expressions, the closed loop gain was obtained using Mason’s
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rule.

AOL2(s = 0) ≈ −
(g1 + g2)gm1

g2gds1 + g1(g2 + gds1)
(2.65)

AOL1(s = 0) ≈ −
gm5

gds3 + gds5
(2.66)

AOL0(s = 0) ≈
gm13gm7

(gds12 + gds13)(gds7 + gds9)
(2.67)

The above expressions represent the open loop gain of each stage, where AOL2 represents

the CS stage, AOL1 represents the fast differential stage, and AOL0 represents the slow op-

erational amplifier. As referenced above, this circuit has two loops so, will be needed to

calculate the final expression taking the two loops into account. Therefore, to introduce

the fast loop:

AV 21 =
AOL2AOL1

1 +AOL2AOL1
(2.68)

And to introduce the slow loop a similar step was made that allows to obtain the gain

expression.

AV =
AOL0AV 21

1 +AOL0AV 21
(2.69)

AV ≈
(g1+g2)gm1gm13gm5gm7

(g1+g2)gm1gm13gm5gm7+(g1g2+gds1(g1+g2))(gds12+gds13)(gds3+gds5)(gds7+gds9) (2.70)

As expected the expression obtained represents a unitary gain, and with this expression

is possible to obtain the follow-up error expression.

FE =
(g1g2 + gds1(g1 + g2))(gds12 + gds13)(gds3 + gds5)(gds7 + gds9)

(g1 + g2)gm1gm13gm5gm7
(2.71)

After with the calculation of the output impedance is possible to verify that this circuit

has a low output impedance, as expected.

RO ≈
(g1 + g2)(gds12 + gds13)gds3gds9(gm7 + gm8)

g1gm1gm13gm3gm7gm8
(2.72)

Considering all the stages of the circuit, the transistors that will contribute to the overall

noise are transistors M1 −M3, M6, and M9 −M13, the remaining transistors are cascode

and as explained previously his noise is negligible. Since this circuit has two resistors

they will also contribute to the noise, and, by inspection is possible to get the output

swing expression.

V 2
Nin ≈ 4KBT

(
(g1 + g2)(gds12 + gds13)2gds3gds9(gds7 + gds9)(gm7 + gm8)

g1gm1gm13gm3gm7gm8

)2

(
γ(gm1 + gm2 + gm3 + gm6 + gm9 + gm10 + gm11 + gm12 + gm13) +

1
R1

+
1
R2

) (2.73)
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∆V opp = Vdd −Vdsat −VR1
−VR2

(2.74)

By observation of the exact expression of the gain is possible to conclude that this circuit

has four poles and four zeros, constituting a stable system. In Figure 2.11 can be observed

the root locus of an architecture with the same number of poles and zeros. From the gain

expression is possible to get the expressions of the poles and observing them, obtain the

dominant pole expression.

ωp ≈
gm1R1

cdb3 + cdb5 + cgd3 + cgd5
(2.75)

Analysing this expression is possible to see that the pole frequency is also dependent

of R1 which means that there is some margin to change the bandwidth of the circuit if

needed.

2.10.3 Cascaded FVF (CAFVF)

This architecture is another improved circuit driven from the FVF. As in the Level Shifted

FVF (LSFVF), this circuit also introduces another transistor in the feedback loop, that is

biased by a voltage Vb on its gate, and by a bias current on its drain (Figure 2.20). This

way, the transistor M3 can be compared to a common gate amplifier that will provide

extra gain in the feedback loop, and also reduce the output impedance [13].
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Figure 2.20: Cascaded FVF based LDO.

Based on: [13].

Doing an AC analysis of the circuit is possible to get the expressions of the gain and of

the output impedance.

RO ≈
gds1gds3

gds1gm2gm3 + gm1gm2gm3
(2.76)

AV (s = 0) ≈
gm1

gds1 + gm1
(2.77)
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Using the gain expression calculated above is possible to obtain the follow-up error ex-

pression.

FE =
gds1
gm1

(2.78)

By circuit observation is possible to see that the circuit has one transistor that will con-

tribute to the overall noise (M2), and that the transistors M1 and M3 have a negligible

noise, because they are cascode transistors. Besides that, the resistor RE will also con-

tribute to the noise. And analysing the circuit is possible to get the output swing expres-

sion.

V 2
Nin ≈

4KBT
(gm1gm2gm3rds1rds3)2

(
γgm2 +

1
RE

)
(2.79)

∆V opp = Vdd − 3Vdsat (2.80)

With the exact expression of the gain is possible to see that this circuit has three poles

and three zeros, constituting a stable system. In Figure 2.9 is possible to see an example

of a system with the same number of poles and zeros. Calculating the approximated

expressions of the poles is possible to get the dominant pole expression.

ωp ≈
gm2

cdb3 + cgd2 + cgd3 + cgs2
(2.81)

2.10.4 Buffered FVF (BFVF)

This circuit is based on the LSFVF and on the Cascaded FVF (CAFVF) and its aim is to

gather the advantages of both topologies (Figure 2.21). This way the circuit is capable

of reduce the loading requirement, increase the loop gain in order to improve the load

regulation, improve the stability, and allows to have a larger bandwidth. Therefore, this

circuit has a feedback loop with two transistors: one that can be interpreted as a common

gate amplifier (M4), and the other which can be interpreted as a source follower. In other

words, the feedback loop is a junction of the architectures referred above [13].

In this structure, the drain voltage of M1 is defined by the bias voltage Vb and by the

V gs voltage of M4, which removes the minimum loading constraint present in other

topologies. Nevertheless, the bias voltage cannot assume the value we want, because

otherwise some transistors may enter the triode region. This way, if the bias voltage is

too low, the transistor of I1 enters the triode region. Otherwise if the bias voltage is too

high, the transistor M4 enters the triode region[13]. Another function of transistor M4 is

to ensure that the transistor M1 will work in the saturation region, no matter which is the

bias current of I1 [14].

By analysing the circuit in closed loop is possible to get the expressions of both the output
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Figure 2.21: Buffered FVF based LDO.

Based on: [13].

impedance and gain.

RO ≈
gds1gds4

gds1gm2gm4 + gm1gm2gm4
(2.82)

AV (s = 0) ≈
gm1

gds1 + gm1
(2.83)

As expected, the output impedance is low, and the gain is unitary. Using this expression

is possible to get the follow-up error expression.

FE =
gds1
gm1

(2.84)

In relation to the noise, is possible to see that this circuit has two transistors and one

resistance that will contribute to the overall noise (M2, M3 and RE). Transistors M1 and

M4 have a negligible noise because, as explained previously, they are cascode transistors.

Also, by observation of the circuit, is possible to calculate the output swing.

V 2
Nin ≈

4KBT
(gm1gm2gm4rds1rds4)2

(
γ(gm2 + gm3) +

1
RE

)
(2.85)

∆V opp = Vdd − 3Vdsat (2.86)

Using the exact expression of the gain, it can be noticed that this circuit has four poles

and four zeros. Since all poles and all zeros remain stable, the circuit will also remain

stable. Figure 2.11 constitutes an example of a stable system with the same number of

roots. Knowing the approximate expressions of the poles, is possible to get the dominant

pole.

ωp ≈
gm2

cgd2 + cgs2 + cgs3 + csb3
(2.87)
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2.11 Results analysis

On this section a coarse design will be made of the architectures studied in the previous

sections. To do so it will be assumed that
gmi
gdsi

∼ 10 and gm =
2ID
Vdsat

. Therefore, the Vdsat

voltage established is 50mV for all the cases. Then, the necessary supplied current will

be calculated, in order to obtain an output impedance of 1Ω.

Table 2.1: Coarse design of the different topologies (Part 1/2).

Circuit/Section
Characteristics CD FVF DFVF BdFVF LsFVF Wbb SSF

Ib (A) 25 m 2.5 m 50 m 5 m 5 m 4.26 m 6.82 m
Ro (Ω) 1 1 1 1 1 1 1

Table 2.2: Coarse design of the different topologies (Part 2/2).

Circuit/Section
Characteristics (2.8) (2.9) SsLDO CfLDO CAFVF BFVF

Ib (A) - 2.5 m 25 µ 400 µ 250 µ 250 µ
Ro (Ω) 1 1 1 1 1 1

To obtain the results displayed on Table 2.1 and Table 2.2 it was necessary to make several

assumptions in each architecture:

• Common Drain Amplifier: in this case, it was considered that the current flowing

through transistor M1 is only dependent of the current source. In other words,

was considered an ideal situation where the output doesn’t affect the transistor,

Iout = 0A;

• FVF Differential Structure: in this case, a greater approximation was made com-

pared to the one considered in the equation (2.14), RO ≈
1
gm3

. Then, it was assumed

that the drain current of transistor M3 was half the bias current;

• Wide bandwidth buffer: in this case, was considered that the gate current of M4 is

zero and that the current flowing in transistors M2−M4 is the double of the current

flowing in the remaining transistors;

• Super Source Follower: in this circuit was considered that the gate current of M2

is zero and that ID1 = 3 ∗ ID2;

• Buffer with high linearity and adjustable output impedance: the crass design

made in the previous architectures is not applicable in this situation, because after

normalizing the gm of transistors M2 and M4 the output impedance is no longer

dependent of gm, RO ≈
R1

2
;
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• Two stage QFG buffer: in this circuit was considered that the current flowing in

transistors M1 and M2 is equal, and that the current flowing in the amplifier is also

the same;

• Shunt-series LDO: in this case, was considered that the bias current of the circuit

is equal in the two transistors and in the two transconductance amplifiers;

• Capacitor free LDO: in this situation was considered that the bias voltages Vb1 and

Vb2 are equal, the current that flows in M12 and M13 is equal to 2× Ib, the current

that flows in M1 is 0.5× Ib and that the current in the remaining transistors is equal

to Ib. It was also considered that the resistors R1 and R2 are sized with 1Ω;

• Cascaded FVF: in this case, was assumed that the gate current of transistor M2 is

zero, the current flowing in M1 and M2 is equal and the drain current of transistor

M3 is twice the current observed in the transistors M1 and M2;

• Buffered FVF: in this architecture was considered that the gate current of transistors

M2 and M3 is zero, the current flowing in M1 is equal in M2 and that transistor M4

presents two times the current when compared to M1 and M2.

The next Tables summarize all the theoretical analysis made in the previous sections, in

order to be easier to compare the differences between them. This way joining the results

presented in Tables (2.1 to 2.6) will be possible to choose the best architectures to study

with more detail in the next Chapter.
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Table 2.3: Comparison of the different topologies (Part 1/4).

Circuit/Section

Characteristics CD FVF DFVF BdFVF

Gain
gm1

gds1 + gm1

gm1gm2

gm2gds1 + gm1gm2

gm1gm2

gm2gds1 + gm1gm2

gm1gm2

gds1(gds2 + gds3) + gm1gm2

Output impedance
1
gm1

1
gm1gm2rds1

1
gm3

gds2 + gds3
gds1(gds2 + gds3) + gm2gm1

∆V opp Vdd − 2Vdsat Vdd − 3Vdsat Vdd − 2Vdsat −VCl Vdd − 3Vdsat

V 2
Nin

γ4KBT
gm1

γ4KBT gm2

(gm1gm2rds1)2

γ4KBT gm2

(gm3)2
4KBT (gm1 + gm3)

(gm1gm2(rds2//rds3))2

Bandwidth
gm1 + gds1

Cl + csb1 + cgs1

gm2

cgd1 + cdb1 + cgs2 + cgd2

gm2

cdb1 + cgd1 + cgd2 + cgs2

gm1

cgd1 + cgs1 + cgd2 + cdb2 + cgd3

Follow-up error
gds1
gm1

gds1
gm1

+
gds1gds2
gm1gm2

gds1
gm1

+
gds1gds2
gm1gm2

gds1(gds2 + gds3)
gm2(gds3 + gm1)
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Table 2.4: Comparison of the different topologies (Part 2/4).

Circuit/Section

Characteristics LSFVF Wbb SSF

Gain
gm1gm2

gds1(gds2 + gds3) + gm1gm2

gm1(gm2gm4 + gds5(gm3 + gm4))
(gds1 + gm1)gm2gm4 + gds5gm1(gm3 + gm4)

gm1gm2

gm1gm2 + gds1(gds2 + gL + gm2)

Output impedance
gds2 + gds3

gds1(gds2 + gds3) + gm2gm1

(gds1 + gds5)(gm3 + gm4)
(gds1 + gm1)gm2gm4 + gds5gm1(gm3 + gm4)

gds1
gm1gm2 + gds1(gds2 + gL + gm2)

∆V opp Vdd − 3Vdsat Vdd − 3Vdsat Vdd − 3Vdsat

V 2
Nin

4KBT (gm1 + gm3 + gm4)
(gm1gm2(rds2//rds3))2

4KBT ((gds1 + gds5)(gm3 + gm4))2X1

(gm1(gm2gm4 + gds5(gm3 + gm4)))2
4KBTX2

(gm1gm2rds1)2

Bandwidth
gm1

Cc + cgd1 + cgs1 + cgs4 + csb4

(1 + gm1)gm2gm4 + gds5gm1(gm3 + gm4)
(cdb3 + cgs3 + cgs4 + csb4)gm1gm4

gm2

cdb1 + cgd1 + cgd2 + cgs2

Follow-up error
gds1(gds2 + gds3)
gm2(gds3 + gm1)

gm2gm4gds1
gm1(gm2gm4 + gds5(gm3 + gm4))

gds1(gds2 + gL + gm2)
gm2gm1

X1 = γ(gm2 + gm3 + gm5 + gm6) +
1
Rc

X2 = γ(gm1 + gm2) +
1
RL
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Table 2.5: Comparison of the different topologies (Part 3/4).

Circuit/Section

Characteristics (2.8) (2.9) SsLDO

Gain
g1gm2 + (g1 + gds2 + gin)gm4

(g1 + gds4 + gL)gm2 + (g1 + gds3)gm4

gm1gm4

gm1gm4 + (gds1 + gds2)gout4

gm1gm4

gm1gm4 − gds1gout4

Output impedance
gm2

(g1 + gds4 + gL)gm2 + (g1 + gds3)gm4

gout4
gm1gm4 + (gds1 + gds2)gout4

(g1 + gds1)gout3gout4
gm1gm2gm3gm4

∆V opp Vdd − 2Vdsat Vdd − 2Vdsat Vdd − 2Vdsat −Vs

V 2
Nin

4KBT (gm2)2X3

(g1gm2 + (g1 + gds2 + gin)gm4)2
4KBT

(gm1gm4Rout4)2

(
γ(gm1 + gm2) +

1
Rc

+
1

Rlarge

)
4KBT
(X4)2

(
γgm2 +

1
R1

)
Bandwidth

g1(gm2 + gm4)
(C1 + cdb4 +CL)gm2

gm1

Cbat +Cc + cgd1 + cgs1 +Cp4

gm2

cgd2 + cgs2 +Cp3

Follow-up error
(gds4 + gL)gm2 + gds3gm4

g1(gm2 + gm4)
(gds1 + gds2)gout4

gm1gm4

gds1gout4
gm1gm4

X3 = γ(gm1 + gm2 + gm4) +
1
RL

+
1
R1

+
1
Rin

X4 = gm1gm2gm3gm4Rout3Rout4(rds1//R1)
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Table 2.6: Comparison of the different topologies (Part 4/4).

Circuit/Section

Characteristics CfLDO CAFVF BFVF

Gain
(g1 + g2)gm1gm13gm5gm7

(g1 + g2)gm1gm13gm5gm7 +X5

gm1

gds1 + gm1

gm1

gds1 + gm1

Output impedance
(g1 + g2)(gds12 + gds13)gds3gds9(gm7 + gm8)

g1gm1gm13gm3gm7gm8

gds1gds3
gds1gm2gm3 + gm1gm2gm3

gds1gds4
gds1gm2gm4 + gm1gm2gm4

∆V opp Vdd −Vdsat −VR1
−VR2

Vdd − 3Vdsat Vdd − 3Vdsat

V 2
Nin 4KBTX6

4KBT
(gm1gm2gm3rds1rds3)2

(
γgm2 +

1
RE

)
4KBT

(gm1gm2gm4rds1rds4)2X7

Bandwidth
gm1R1

cdb3 + cdb5 + cgd3 + cgd5

gm2

cdb3 + cgd2 + cgd3 + cgs2

gm2

cgd2 + cgs2 + cgs3 + csb3

Follow-up error
X5

(g1 + g2)gm1gm13gm5gm7

gds1
gm1

gds1
gm1

X5 = (g1g2 + gds1(g1 + g2))(gds12 + gds13)(gds3 + gds5)(gds7 + gds9)

X6 =
(

(g1 + g2)(gds12 + gds13)2gds3gds9(gds7 + gds9)(gm7 + gm8)
g1gm1gm13gm3gm7gm8

)2 (
γ(gm1 + gm2 + gm3 + gm6 + gm9 + gm10 + gm11 + gm12 + gm13) +

1
R1

+
1
R2

)

X7 =
(
γ(gm2 + gm3) +

1
RE

)
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3
Buffer Implementation

Considering the work done in the previous Chapter, now the best topologies from a

theoretical point of view will be selected and a more careful design will be done.

By observation of the results displayed in the Section 2.11 there are three topologies that

clearly show better results than the other ones, and they are the CfLDO, the SsLDO, and

the Buffered FVF (BFVF).

The CfLDO is the best architecture from the theoretical point of view because it presents

the best output impedance, a very low noise, adjustable bandwidth and also a low follow-

up error. Relatively to the coarse design, this architecture appears in third place which

is not a surprise, since, in comparison to the other architectures, this is the one that has

more transistors working. Therefore, resulting in a large power consumption.

The SsLDO also stands out in the theoretical analysis, since it presents the second best

results concerning the output impedance, the noise and the follow-up error. In the coarse

design it presents the lowest power consumption.

The other choice was the BFVF, because it presents the second best coarse design, and it

also has a good behaviour from the theoretical point of view.

In some cases, the architecture from the Section 2.8 can also be interesting to be studied,

since its output impedance and bandwidth are dependent from the resistance R1.

In the next sections, the implementation of these architectures will be made, in order to

obtain the desired specifications using the gm/Id technique.

3.1 GM/ID Technique

As referred before, to do this implementation a technique known as gm/Id was used

instead of the traditional technique using the equations to do the calculations. So this

technique was chosen because it allows to model the behaviour of the transistors in all
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its working regions and this way it’s easier to design parameters, such as the transcon-

ductance (gm), the drain current and the intrinsic gain of the transistor [15], [16]. So,

the first step to use this methodology, is to fix the currents in order to satisfy the desired

parameters, and then the sizes are chosen, in order to satisfy the parameters that have to

be improved for the gm/Id chosen.

Thus to obtain the graphics that model the behaviours of the NMOS and PMOS tran-

sistors, the circuits shown in the Figure 3.1 were used, where is established the supply

voltage (1 V ) of the transistors, then a parametric variation of the gate voltage (from 0 V

to 1 V ) is done and finally are tested different dimensions for the transistors, in order to

observe the influence of length and width of the transistor in the different parameters.
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Figure 3.1: Transistors modulation.

This way it was possible to obtain the graphs displayed next (Figures 3.2 to 3.7), where

is presented the modulation of a NMOS and a PMOS transistors for different values of

length and width. Thus it’s possible to see which are the best dimensions for length and

width in a given region of gm/Id , taking into account the parameter to optimize (maximize

or minimize). After choosing the region of gm/Id it is necessary to choose the dimensions

that better satisfy the desired specifications.
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Figure 3.2: Intrinsic gain modulation.
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Figure 3.3: GM modulation.
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Figure 3.4: Drain current modulation.
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Figure 3.5: GDS modulation.
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Figure 3.6: CGG modulation.
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Figure 3.7: CDS modulation.

3.2 Sizing Methodology

In addition to using the gm/Id technique, other procedures were also used. Figure 3.8

illustrates all the procedures necessary to achieve the desired specifications for the circuit

in question. Next, are described with more detail all the Steps referred in Figure 3.8:

• Step 1: In the first step are obtained the equations to model the circuit;

• Step 2: According to the equations obtained is chosen a gm/Id region to size the

transistors;

• Step 3: Depending on the region chosen the transistors are sized in order to fulfil

all the desired specifications of the circuit;
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Figure 3.8: Flow chart demonstrating the methodology used to size the transistors of
architectures used to implement the buffer.

• Step 4: As a way to confirm if the goals are met all the necessary simulations are

done;

• OK: If “OK” is true the circuit is working as pretended, otherwise it isn’t;

• N: Is a variable used to count the number of iterations in the process.

Also, in the flow chart is a decision “N=5”. It represents the number of iterations to

resize the transistors before adjust the gm/Id region, but the number of iterations can be

adjusted as desired.

Beyond the steps illustrated in the flow chart, there were made some more considerations.

These considerations are relative to transistors working region. Thus all the transistors

were sized to work in the saturation region and with strong inversion. Nevertheless, in

some cases it was necessary to put some transistors working with moderate inversion to

achieve the desired results.

3.3 Error amplifiers

The purpose of this section is to study with some detail the architectures of the different

amplifiers used. Here is done a brief theoretical analysis of them, in order to obtain some
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informations of the circuits, such as the gain and the Gain Bandwidth Product (GBW),

and some simulations from these circuits are also shown in this section.

3.3.1 Two stage amplifier with Miller compensation

This is a two stage amplifier capable of obtaining an high open loop gain. However, this

circuit presents some stability problems, therefore, it was necessary to add a compen-

sation between the two stages [17]. A capacitor and a resistor were used to create such

compensation (Figure 3.9), in order to stabilize the circuit and, at the same time, have

control to adjust its phase margin and its GBW.
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Figure 3.9: Miller compensated amplifier.

Through circuit analysis, is possible to obtain the main equations to design the circuit,

the gain, the dominant pole and the GBW expressions.

AV (s = 0) ≈ gm1gm5(rds1//rds3)(rds5//rds7) (3.1)

ωp ≈
1

gm5(rds1//rds3)(rds5//rds7)Cc
(3.2)

GBW ≈
gm1

Cc
(3.3)

Considering these equations the circuit was designed to obtain a phase margin greater

than 60º and a GBW between 200 to 300 MHz, to make sure that the circuit is stable and

fast enough. Alongside this, it was also desirable to obtain the highest possible gain, to

increase the performance of the circuit.

According to this specifications, the sizes attributed to the transistors of this amplifier

are presented in Table 3.1. Besides that Rc = 10 KΩ, Cc = 200 f F and the drain current

of transistors M6 and M7 is respectively 60.84 µA and 63.60 µA.

It was possible to obtain a gain of 73 dB, and fulfil the desired specifications, obtaining a
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Table 3.1: Transistors size of the Miller compensated amplifier.

Device Width (µm) Length (µm) Fingers Multiplier
M1,M2 20 2.04 10 1
M3,M4 20 1.2 10 1
M5 20 0.6 10 1

M6,M7 9 2.04 3 1
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Figure 3.10: Frequency response of the Miller compensated amplifier.

GBW≈ 263 MHz and a phase margin equal to 96.5º (Figure 3.10).

In order to achieve these results, it was needed to adjust Rc and Cc to values that allowed

to achieve the desired phase margin and the desired GBW. It was also needed to adjust

the sizes of transistors in order to obtain a higher gain, and in case of gm1, it was also

taken into account that this transistor has direct influence in the GBW. Thus, transistor

M1 was set to work with a gm/Id ≈ 11. By observation of Figures 3.3a and 3.5a it’s clear

that the sizes attributed to the transistorM1 produce a small gm. Consequently, a smaller

compensation capacitance (Cc) can be used to adjust GBW. Moreover, the sizes attributed

to M1 produce high gds, which allows to increase the rds and the gain of the circuit. The

same situation occurs in the transistor M3, where is also used a high length to increase

the rds. Therefore, the transistorM5 (set to work with a gm/Id ≈ 8) has a lower length and

a higher width to increase the gm. This way, the sizes attributed contribute to increase

the gain of the amplifier.

3.3.2 Current Mirror OTA

The current mirror Operational Transconductance Amplifier (OTA) (Figure 3.11) is a

single stage amplifier and consequently its gain is lower than the gain of the amplifier

presented in the previous section. However, this circuit presents some advantages due

to its architecture, since it allows to reach stability without the use of any compensation,
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and also the output swing of this circuit is only dependent of the transistors M5 and M7

[18].

AV (s = 0) ≈ Bgm1gm5(rds5//rds7) (3.4)

ωp ≈
gds5 + gds7

cgd5 + cdb5 + cgd7 + cdb7
(3.5)

GBW ≈
Bgm1

cgd5 + cdb5 + cgd7 + cdb7
(3.6)

Analysing the circuit is possible to obtain the expressions needed to design the circuit,

such as the gain, the dominant pole and the GBW expressions.
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Figure 3.11: Current mirror OTA.
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Figure 3.12: Frequency response of the Current Mirror OTA.
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Table 3.2: Transistors size of the Current Mirror OTA.

Device Width (µm) Length (µm) Fingers Multiplier
M1,M2 4 0.68 2 1

M3,M4,M5,M6 4 0.30 2 1
M7,M8 80 4.42 20 1
M9 6 2.04 4 1

Taking into account the equations of this circuit it was designed to obtain a phase margin

greater than 60º and a GBW between 200 to 300 MHz. This way the transistors were sized

according to Table 3.2, besides that the drain current of transistor M9 is 38.60 µA.

Thus it was possible to obtain a gain of almost 36 dB, a phase margin of 77.4º and a

GBW≈ 263 MHz (Figure 3.12). In order to achieve the aforementioned was chosen a

β = 1 to have a more stable circuit. After were changed the sizes of transistors in order

to achieve the desired specifications, so transistor M1 was set to work with a gm/Id ≈ 11.

In this situation was impossible to set the sizes that produce the best value for the gain,

since this circuit doesn’t have compensation, it’s necessary to have extra care to stabilize

the circuit. So transistors M1 −M5 were set to have a high gm and transistors M7 −M8

were set to have higher parasitic capacitances to adjust the GBW and the phase margin.

3.4 DAC

The DAC represented in Figure 1.3 was implemented using the architecture present in

Figure 3.13, where R1 = R2 = 25KΩ. Here are represented three different inverters, all

of them have the same architecture. However, they are not equally sized, whence the

distinction between them.
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Figure 3.13: DAC architecture.

Figure 3.14 presents the architecture used to implement the inverters and in Table 3.3 is

possible to see the dimensions of the transistors used in each inverter.

Besides this, the digital signals applied on the input of the DAC have a period of 10 ns,
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Figure 3.14: Inverter architecture.

Table 3.3: Transistors size of the DAC inverters.

Device Width (µm) Length (nm) Fingers Multiplier

Inv A
MP 3 120 2 1
MN 1 120 2 1

Inv B
MP 1.5 120 1 1
MN 0.5 120 1 1

Inv C
MP 6 120 4 1
MN 2 120 4 1

but their pulse width is different in order to always have an active signal. So the pulse

width of D is 4.98 ns, and the pulse width of ¬D is 5 ns.

3.5 Delta-Sigma ADC

Considering that the buffer provides a reference voltage to a Delta-Sigma ADC, it is

necessary to make some considerations. So the overall architecture used is represented in

Figure 1.3, and the function of the DAC represented there is to simulate the behaviour of

switches Dout and ¬Dout present in the first integrator of the Delta-Sigma (Figure 3.15).
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TheDout switch is only connected in some periods of time, which will generate some noise

at the output transient voltage of the buffer. In order to calculate the aforementioned

noise, it was applied the following steps (assuming Rf ≈ R1): firstly, is integrated the

current if (t) when Dout is closed (Tclk) which allows to obtain the charge at capacitor C;

∆QN [n] =
∫ Tclk

0
if dt (3.7)

the second step is obtain the current iin through the charge calculated previously;

iin =
∆QN [n]
Tclk

(3.8)

lastly, it’s only needed to multiply the current iin by the resistor R1 and the voltage

obtained is the output transient voltage noise.

∆Vin[n] = iinR1 (3.9)

3.6 Common Drain Amplifier

Although this architecture is not in the best ones studied it will also be analysed and

implemented in order to have a reference point. As seen in Chapter 2, this circuit has the

worse theoretical characteristics, but it helps to see the evolution between this one to the

other architectures.

To implement this architecture, it was considered the circuit present in Figure 3.16 instead

of the simplified version present in Chapter 2.
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Figure 3.16: Common Drain Amplifier with the biasing circuit.

Taking into account the equations of this circuit present in Section 2.1, the size of its

transistors was calculated to obtain a stable circuit and, after that, the other characteristics

of the circuit were improved. Therefore it’s clear that the main objective to increase the

performance of the circuit is increase the transconductance (gm) of transistor M1. To do
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so, it was taken into account the equation gm =
2Id
Vdsat

, where is clear that a higher current

increases the transconductance. It was also taken into account the gm/Id technique where

is observable that a higher width for the transistor produces a higher gm. Nevertheless,

as mentioned before it’s necessary to keep the circuit stable, take in consideration the

power consumption and the area occupied by the circuit, so the sizes were attributed

accordingly.

Thus the circuit was biased with 20 µA and the sizes attributed to the transistors are

present in Table 3.4. Besides that the load capacitance was sized with 1 pF and the drain

current of M2 is 82 µA. So the sizes of transistors were chosen the following way: in

Table 3.4: Transistors size of the Common Drain amplifier.

Device Width (µm) Length (µm) Fingers Multiplier
M1 20 0.34 10 1
M2 12 2.04 4 1
Mb 3 2.04 2 1

first place it was chosen a higher value for the length of transistors M2 and Mb, to obtain

a lower gm and a lower gds for those transistors; Then it was set a width of 12 µm for

transistor M2, to obtain a higher current on that branch; Finally, it was chosen the size of

transistor M1, in order to have a bandwidth of at least 100 MHz and to keep satisfying

the desired specifications.

By observing Figure 3.3a it’s clear that a lower length and a higher width increase the

value of gm1, because transistor M1 was set to work with a gm/Id ≈ 12.

3.7 Shunt-series LDO (SsLDO)

As seen in the Chapter 2, this circuit presents two control loops, and in those loops are

present two amplifiers (A1 and A2). Thus to implement them was required to use an

amplifier A1 with a higher GBW, and an amplifier A2 with a lower GBW. To implement

the amplifier A1 are used error amplifiers. The circuits used to implement it are present

in Section 3.3 where its characteristics are explained with more detail. On the other side

the amplifier A2 is an amplifier with a lower GBW and lower gain. Therefore, it was used

a differential pair to implement it.

Through circuit analysis (Figure 3.17) is possible to obtain the equations to design it, and

this way, as shown in Figure 3.18, is possible to obtain a gain of 46 dB, a GBW≈ 6.5 MHz

and a phase margin equal to 74.7º. In Table 3.5 are present the sizes of the differential

pair transistors, besides that the drain current of M5 is 1 µA. Two main characteristics

are observable: a low biasing current and transistors with high dimensions, due to the

need of obtain a small GBW. The transistor M1 was set to work with a gm/Id ≈ 50 and,

although the graphs of gm/Id technique don’t show the modulation for this region, it’s

observable that higher values of gm/Id tend to have lower parasitic capacitances and a

46



3.7. SHUNT-SERIES LDO (SSLDO)

lower transconductance.

V out

V i nV b M 1

M 2

M 3

I 1

I 2

I L

C l

RE

V ss

V DDI 3

M 4

V out

M 1

M 2M 3

V DDRlarge

I b Rc Cc

Cbat

C l

V i n

V DD

V out

V ss

V PV N

C c

Rc

M 1M 2

M 3M 4

M 5

M 6 M 7

V ss

V b V b

V ss

V DD

V N
V P

M 1M 2

M 3M 4 M 5M 6

M 8 M 7

M 9

V out

V b

1:BB :1

VCM

VCM

D

¬D

I A

I A

I B

I B

I C

I C

VrefVref

Vref Vref

V ss V ss

V ssV ss Vref

Vref

V ss

V ss

R1

R2

Di n Dout

Vref

V ss

M P

M N

V out

V i n

1

DAC
¬D

D VCM

VCM

I b

V bM b

V DD

V ss V ss

V out

V DD

V i n M 1

M 2

V b C l

V DD

V out

V P V N

M 1M 2

M 3M 4

M 5

V ss

V b

M 1

M 2

Cd

R1
R2

V b

V DD

V ss

V out

A2

A1

V s

C1

V i n

Figure 3.17: Differential pair.

AV (s = 0) ≈ gm1(rds1//rds3) (3.10)

ωp ≈
1

(rds1//rds3)(cdb1 + cgd1 + cdb3 + cgd3)
(3.11)

GBW ≈
gm1

cdb1 + cgd1 + cdb3 + cgd3
(3.12)
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Figure 3.18: Frequency response of the Differential pair.

Since the differential pair doesn’t have a load capacitor big enough, it was needed to add

the capacitor C1 in the buffer, as shown in Figure 3.19b, in order to do an AC uncoupling.

This way, the V gs voltage of the transistor M2 is held constant and the parasitic capaci-

tances at this node are eliminated, which results in a better positive PSRR and a faster
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Table 3.5: Transistors size of the Differential pair.

Device Width (µm) Length (µm) Fingers Multiplier
M1,M2 60 2.04 30 2
M3,M4 80 0.90 40 2
M5 2 2.04 10 1

response to any perturbation at the output of the buffer. To biasing the buffer and the

two amplifiers, the circuit in Figure 3.19a was used, where Vb is used in the buffer, Vb1 is

used in the amplifier A1 and Vb2 is used in the amplifier A2. It was also used a current

Ib = 20 µA, C1 = 500 f F, Cl = 1 pF, R1 = 20 KΩ, R2 = 26 KΩ and the sizes of both biasing

and buffer transistors are present in Table 3.6. This way, the drain current of transistors

M1 and M3 is respectively 53.87 µA and 41.59 µA.
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Figure 3.19: Shunt-series LDO with the biasing circuit.

In order to achieve this results, transistor M1 was set to work with a gm/Id ≈ 18. Con-

sidering this region, transistor M1 was sized to obtain a high gm, which increases the

performance of the circuit. On the other side, since the transistor M2 has a high con-

tribute for the noise, it was sized to achieve a lower gm. Therefore, it was preferable

to improve the noise over the bandwidth of the circuit, because a higher length on this

transistor improves the settling time and reduces the noise at the output transient voltage.

Besides these two transistors, the resistors R1, R2 and transistorM3 were sized in order to
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Table 3.6: Transistors size of the Shunt-series LDO.

Device Width (µm) Length (µm) Fingers Multiplier
M1 20 0.12 10 1
M2 40 3.60 20 1
M3 6 0.90 2 1

Mb1,Mb2 3 2.04 2 1
Mb3,Mb4 3 1.80 2 1
Mb5 40 2.04 10 1

regulate the current at transistors M1 and M2, as well as ensuring that those transistors

work in the saturation region.

3.8 Capacitor free LDO (CfLDO)

Contrary to the architectures studied previously, this one does not require the use of

the error amplifiers studied in Section 3.3, because it already has two feedback loops

where are used two error amplifiers (Figure 3.20). Thus it was only needed to size all the

components in the circuit to achieve the desired specifications and do the biasing circuit

for this buffer. But using the original circuit, the output voltage of this buffer would be

different from the reference voltage. Therefore, it was made a little modification to the

circuit to solve this problem, by removing the resistor R1. Besides that, it was needed to

set different speeds for the error amplifiers and, as the names suggest, the fast differential

stage was set with a fast speed and the slow operational amplifier with a slow speed. In

other words, the speed refers to the GBW of the amplifiers, which means that a fast speed

corresponds to a higher GBW and a slow speed corresponds to a lower GBW. To biasing

the circuit, it was used a simple current mirror like the one represented in Figure 3.16a.
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Figure 3.20: Capacitor free LDO.

The transistors of the circuit were sized according to Table 3.7. Besides that, R2 = 20 KΩ,

Cc = 500 f F, Cl = 1 pF, and Ib = 2 µA, which means that the drain current of transistors

M1, M6, M11 and M12 is respectively 83.78 µA, 7.86 µA, 2 µA and 2 µA.
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Table 3.7: Transistors size of the Capacitor free LDO.

Device Width (µm) Length (µm) Fingers Multiplier
M1 90 0.30 40 1

M2,M3 4 0.90 2 1
M4,M5 30 3.40 10 1
M6 8 2.04 4 1

M7,M8 20 2.04 10 1
M9,M10 2 1.20 2 1
M11,M12 2 2.04 2 1
M13 40 0.90 20 1
Mb 2 2.04 2 1

In order to achieve this results, transistor M1 was set to work with a gm/Id ≈ 20, so it was

sized to achieve a high gm, and therefore improving the performance of the circuit. For

the error amplifiers were chosen other regions to work, in order to obtain the desired GBW

as referred before. The transistor M4 was set to work with a gm/Id ≈ 24, transistor M7

was set to work with a gm/Id ≈ 37 and transistor M13 was set to work with a gm/Id ≈ 35.

Thus the slow operational amplifier was set to have a low GBW and a high gain and the

fast differential stage was set to have a high GBW and a high gain. But due to stability

problems, it was necessary to reduce the gain in both stages. Nevertheless, as both error

amplifiers act together, the circuit still achieves the desired specification for the positive

PSRR and is capable of keeping the output voltage equal to the reference voltage.
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Figure 3.21: Frequency response of the fast differential stage.

Figures 3.21 and 3.22 represent the frequency response of the fast differential stage and

of the slow operational amplifier respectively. For the fast differential amplifier was

possible to obtain a gain of 28 dB, a phase margin of 82.65º and, as desired, a high GBW

of approximately 323.6 MHz. On the other side, for the slow operational amplifier it was

possible to obtain a gain of 20 dB, a phase margin of 92.46º and, as desired, a low GBW
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Figure 3.22: Frequency response of the slow operational amplifier.

of ≈ 158.5 KHz.
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3.9 Buffered FVF (BFVF)

Unlike the previous architectures chosen to test, this one doesn’t have error amplifiers

in its original architecture. However, as seen before, its use is mandatory to regulate the

reference voltage as pretended. Thus the error amplifiers studied in Section 3.3 are used

in the simulations.
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Figure 3.23: Buffered FVF with the biasing circuit.

As in the previous architectures, the simplified version of this circuit is no longer consid-

ered, so there were used transistors to substitute the ideal current sources. It was used

the circuit present in Figure 3.23a to biasing the buffer and the error amplifier, where Vb,

Vb1 and Vb2 are used as represented in the buffer (Figure 3.23b) and Vb3 is used to biasing

the error amplifier. Taking this into account, the transistors used in both circuits were

sized according to Table 3.8. Besides that Ib = 20 µA, Cl = 1 pF, and RE = 10 KΩ, which

means that the drain current of transistors M1, M5, M6 and M7 is respectively 50.39 µA,

70.95 µA, 20.18 µA and 20.57 µA.

To achieve this results, transistor M1 was set to work with a gm/Id ≈ 26. This way, the

transistor was set to have a high gm in order to improve the gain. On the other side in first

place, transistors M2 and M4 were also sized to have a high gm and therefore decrease
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Table 3.8: Transistors size of the Buffered FVF.

Device Width (µm) Length (µm) Fingers Multiplier
M1 40 0.12 20 1
M2 80 0.60 40 1
M3 70 2.40 40 1
M4 40 1.02 20 1
M5 11 2.04 4 4

M6,M7 12 1.80 4 1
Mb1,Mb2 12 2.04 4 1

Mb3,Mb4,Mb5 12 1.80 4 1
Mb6 4 2.04 2 1
Mb7 3 2.04 2 1

the output impedance and increase the bandwidth of the circuit. But due to stability

problems, it was crucial to increase the length of this transistors. Although transistor

M3 doesn’t have a determinant relevance to improve the desired specifications, it was

decisive to reach stability.
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4
Simulation Results

Considering the implementation done in the previous chapter it were obtained the re-

sults displayed in next sections. To understand the behaviour of the circuit in extreme

situations, a corner simulation was done where some parameters are changed, such as

the temperature of the circuit and the speed of the N and P channels. Therefore, all the

results have a legend with this information, for example the legend "FS ,T= - 40º" means

that the circuit was simulated with a temperature of -40 ºC, the N channel is fast and the

P channel is slow. Besides that, the nominal simulation was made with a temperature of

27 ºC and with a regular speed for both N and P channels.

So the main objective of this study is to obtain the practical values of the theoretical

concepts analysed in Chapter 2. This way, is possible to see if these architectures are

good or not, as well as perceiving the advantages and disadvantages inherent to each

one. Therefore, there is a section at the end of this chapter that allows to better see the

differences of the architectures implemented through direct comparison.

4.1 Common Drain Amplifier

4.1.1 Miller compensated amplifier

Considering the architecture present in Figure 1.3, the following results were obtained

using the DAC presented in Section 3.4 and the Miller compensated amplifier.

From the gain simulation (Figure 4.1) it can be seen that, when the N channel is fast

and the temperature of the circuit is -40 ºC, some poles on the circuit become complex.

Therefore, the gain magnitude of the circuit increases before the bandwidth frequency .

The same situation occurs when the P channel is slow and the temperature is 125 ºC. In

other cases is also observable the effects of the complex poles created by those extreme

conditions, but nevertheless the cases referred are the worse scenarios.
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Figure 4.1: Gain of the CD amplifier, using the Miller compensated amplifier.
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Figure 4.2: Positive power supply rejection ratio of the CD amplifier, using the Miller
compensated amplifier.

According to the Table 1.1 is desired to obtain a positive PSRR greater than 40 dB and,

even in the worse case, this circuit can fulfil that specification. In Figure 4.2 are presented

the results obtained by this circuit. By observation is possible to conclude that when both

N and P channels are slow the circuit presents the worse behaviour.

For the output impedance was desired to obtain a DC value smaller that 500 Ω, which

means that, in the lowest frequencies, the output impedance has to assume values lower

than 500 Ω. In Figure 4.3b is possible to see that even the worse case overcome the

specification. Besides this it’s also observable a perturbation in higher frequencies, where

the value of the output impedance reach its highest value. But, as this only happens in
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Figure 4.3: Output Impedance of the CD amplifier, using the Miller compensated ampli-
fier.

an little interval of frequency, it doesn’t affect the overall proprieties of the buffer.
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(a) Equivalent input noise.
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Figure 4.4: Input referred noise of the CD amplifier, using the Miller compensated am-
plifier.

With regard to the noise (Figure 4.4), it’s possible to see an higher impact for low fre-

quencies than for higher ones, which means that the flicker noise (with higher impact at

low frequencies) is affecting the system, and this happens because there were only taken

measures to reduce the thermal noise (with higher impact at high frequencies). Never-

theless, assuming that the ADC to use in the future has at least an Oversampling Ratio

(OSR)=100, this buffer fulfil the desired specification of noise.

Once the overall characteristics of the buffer are studied, the next step is to observe its be-

haviour at the output. In Figure 4.5 is possible to see that the output voltage of the buffer

isn’t always constant at 1.2 V . This happens because the DAC has two digital signals in
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Figure 4.5: Output transient voltage of the CD amplifier, using the Miller compensated
amplifier.
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Figure 4.6: Perturbation in the output voltage.

its input, being that these signals are reversed, so the peaks of voltage happen when the

signals change from 0 to 1 and from 1 to 0 respectively (Figure 4.6). This generates a

cyclic behaviour because the buffer with the error amplifier is fast enough to stabilize the

system before the next iteration of the digital signals.

As it happens in the output voltage, the output current also has a cyclic behaviour (Figure

4.7), where the perturbations occur at the same time of the perturbations in the output

voltage.

Taking into account that the transient signals represented above have some noise, it’s

normal that at the end of each period the voltage obtained isn’t always the same.

Therefore, the methodology used to measure the output transient voltage noise (also ex-

plained in Section 3.5) is through the integration of the transient current. That allows to
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Figure 4.7: Output transient current of the CD amplifier, using the Miller compensated
amplifier.

obtain a representative histogram of the charge at the output of the buffer (Figure 4.8)

and the value of noise in the transient voltage, by doing the following calculation
∆Q
Tclk

R,

where R is the resistance at the output of the DAC, Tclk is the period of the digital signals

at the input of the DAC and ∆Q is the variation of charge at the output (Figure 4.8). This

way, the output transient voltage noise is 2 mV .
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Figure 4.8: Charge at the output of the CD amplifier, using the Miller compensated
amplifier.
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4.1.2 Current Mirror OTA

In order to better understand the influence of the error amplifier in the system, this sec-

tion presents the same simulations of the previous one, but now using the Current Mirror

OTA as an error amplifier.
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Figure 4.9: Gain of the CD amplifier, using the Current Mirror OTA.

For the gain (Figure 4.9), the circuit is capable of keeping it equal to one, but it’s observ-

able that the complex poles in the system have a bigger imaginary part, which causes

some perturbation at a frequency of 100 MHz.
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Figure 4.10: Positive power supply rejection ratio of the CD amplifier, using the Current
Mirror OTA.

However, since this error amplifier has a lower gain than the previous one, the positive
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PSRR decreases drastically (Figure 4.10) and, therefore, the CD amplifier is no longer ca-

pable of keeping a positive PSRR greater than 40 dB, not even for the nominal simulation.
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Figure 4.11: Output Impedance of the CD amplifier, using the Current Mirror OTA.

In the output impedance (Figure 4.11), the circuit is still capable of keeping it lower than

50 Ω at lower frequencies, but there is clearly a growth all along with the frequency,

which is due to the lower gain of this error amplifier.
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(a) Equivalent input noise.
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(b) Squared input noise.

Figure 4.12: Input referred noise of the CD amplifier, using the Current Mirror OTA.

With this error amplifier the level of noise also increases (Figure 4.12), but considering

the desired specification, the circuit is still capable of achieving it.

However, this circuit is not capable of keeping the reference voltage provided in its input

at its output (Figure 4.13), which isn’t desirable and makes this circuit useless.

But even with an unacceptable transient voltage at is output, the output transient current

is still very similar to the one obtained with the previous error amplifier (Figure 4.14),
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Figure 4.13: Output transient voltage of the CD amplifier, using the Current Mirror OTA.
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Figure 4.14: Output transient current of the CD amplifier, using the Current Mirror OTA.

meaning that the error amplifier has no influence in this parameter.

Finally, as the output transient voltage results aren’t acceptable, the measurement of the

output transient voltage noise isn’t reliable. Nevertheless it’s displayed the histogram of

the charge in Figure 4.15 and the value of the output transient voltage noise is 3.7 mV .
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Figure 4.15: Charge at the output of the CD amplifier, using the Current Mirror OTA.

4.2 Shunt-series LDO (SsLDO)

4.2.1 Miller compensated amplifier

Based on the implementation done in previous chapter, and using the Miller compensated

amplifier, was made a corner simulation to see the behaviour of the circuit in extreme

conditions. As in the Common Drain amplifier, there are some situations were the circuit

poles become complex. However, its imaginary values are lower than in the previous

situation, meaning that its impact is less significant (Figure 4.16).
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Figure 4.16: Gain of the SsLDO, using the Miller compensated amplifier.

The positive PSRR in this circuit (Figure 4.17) is much higher than in the previous buffer,

being always greater than 80 dB for lower frequencies. However, it turns out that its

bandwidth decreases as the PSRR increases.
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Figure 4.17: Positive power supply rejection ratio of the SsLDO, using the Miller compen-
sated amplifier.

In the output impedance (Figure 4.18) of the circuit there is, once again, a perturbation

in the highest frequencies, where the impedance even reaches values very close to 1 KΩ.

But, as pretended for the lowest frequencies, its value is small and even in the worst case

its value is below 2 mΩ.
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Figure 4.18: Output Impedance of the SsLDO, using the Miller compensated amplifier.

Regarding the noise (Figure 4.19), this circuit has the same behaviour than the previous

one, so there is, once again, a higher impact of the flicker noise.

Given that the main characteristics of the buffer assume results as expected, it’s time to

observe the transient response of this circuit. In the case of the output transient volt-

age (Figure 4.20), it’s possible to see that it takes some time to stabilize in a value and

after it remains constant with a cyclic behaviour. In the Figure 4.20b is represented the
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(a) Equivalent input noise.
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Figure 4.19: Input referred noise of the SsLDO, using the Miller compensated amplifier.

aforementioned phenomenon and it’s observable the perturbations caused by the DAC.

Besides that it’s also possible to see a faster response of the circuit when its temperature

is -40 ºC, and an higher perturbation in the output voltage when the N channel is fast.
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Figure 4.20: Output transient voltage of the SsLDO, using the Miller compensated ampli-
fier.

For the output transient current (Figure 4.21) it’s once again observed a cyclic behaviour

where the output current suffers a big perturbation when the digital signals of the DAC

change from 0 to 1 and from 1 to 0, respectively. As observed in the output voltage, a

lower temperature on the circuit corresponds to a faster response of it, but it also an

higher perturbation in the current at the output.

By the output transient current is also possible to obtain the histogram of charge at the

output (Figure 4.22) and, this way, obtain an output transient voltage noise of 1.8 mV .
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Figure 4.21: Output transient current of the SsLDO, using the Miller compensated ampli-
fier.
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Figure 4.22: Charge at the output of the SsLDO, using the Miller compensated amplifier.

4.2.2 Current Mirror OTA

As done in the previous buffer, this one is also tested with two different error amplifiers

to see the influence of it in the system.

Regarding the gain (Figure 4.23), it’s once again observable that this error amplifier

increases the imaginary part of the complex poles, creating a perturbation at higher fre-

quencies. However, it doesn’t affect the behaviour of the buffer.

For the positive PSRR it’s observable a decrease on its value (Figure 4.24), but neverthe-

less the circuit is capable of achieving values greater than 40 dB, as pretended. One

advantage of this error amplifier when compared to the previous one is that it increases

the bandwidth and the GBW of the positive PSRR.
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Figure 4.23: Gain of the SsLDO, using the Current Mirror OTA.
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Figure 4.24: Positive power supply rejection ratio of the SsLDO, using the Current Mirror
OTA.

In the output impedance (Figure 4.25), it’s observable once again an increase of its value

along the frequency, despite its value at lower frequencies still being lower than 200 mΩ.

The levels of noise also increase with this error amplifier for this buffer (Figure 4.26), but

considering the desired specification, this growth is not relevant to fulfil it.

For the output transient voltage (Figure 4.27) it’s observable a similar behaviour to the

previous error amplifier, but it’s also observable a slightly slower response to the pertur-

bations with this error amplifier. Still the circuit continues to have the expected reference

voltage in its output.
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Figure 4.25: Output Impedance of the SsLDO, using the Current Mirror OTA.
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(a) Equivalent input noise.
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Figure 4.26: Input referred noise of the SsLDO, using the Current Mirror OTA.
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Figure 4.27: Output transient voltage of the SsLDO, using the Current Mirror OTA.
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Figure 4.28: Output transient current of the SsLDO, using the Current Mirror OTA.

In the output transient current (Figure 4.28), there are no significant changes in it’s be-

haviour compared to the previous error amplifier.

Regarding the output transient voltage noise, it’s possible to observe once again that this

error amplifier has a higher noise, with a measured value of 2.5 mV . Figure 4.29 shows

the charge at the output.
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Figure 4.29: Charge at the output of the SsLDO, using the Current Mirror OTA.

4.3 Capacitor free LDO (CfLDO)

Considering the implementation done in previous chapter, was made a corner simula-

tion to test the behaviour of the circuit for extreme conditions. It was obtained the gain

present in Figure 4.30 where it’s observable that the system has complex poles, because
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there is a perturbation before 100 MHz.
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Figure 4.30: Gain of the CfLDO.

For the positive PSRR (Figure 4.31) this buffer can achieve values greater than 80 dB at

lower frequencies, and the error amplifiers used in this architecture also allow to have a

large bandwidth.
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Figure 4.31: Positive power supply rejection ratio of the CfLDO.

In the output impedance (Figure 4.32), this architecture allows to obtain a DC value lower

than 1.8 mΩ, but, as in the previous ones, there is a perturbation in higher frequencies,

where its value reaches 3 KΩ in the worst situations.

Regarding the noise (Figure 4.33), it’s observable a greater impact of the flicker noise in

lower frequencies, but there is also a greater amount of thermal noise for higher frequen-

cies, when compared to the previous buffers. Nevertheless, assuming a OSR=100, the
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Figure 4.32: Output Impedance of the CfLDO.

buffer still meets the desired specification.
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Figure 4.33: Input referred noise of the CfLDO.

Considering Figure 4.34 it’s observable that this buffer has a slower response to the per-

turbations caused by the DAC, therefore, the output transient voltage starts to assume a

sinusoidal behaviour around 1.2 V .

For the output transient current (Figure 4.35) is observed a behaviour similar to the pre-

vious architectures, even with a slower response in the output transient voltage.

By the output transient current is also possible to obtain the histogram of charge at the

output (Figure 4.36) and, this way, obtain an output transient voltage noise of 2.7 mV .
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Figure 4.34: Output transient voltage of the CfLDO.
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Figure 4.35: Output transient current of the CfLDO.
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Figure 4.36: Charge at the output of the CfLDO.
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4.4 Buffered FVF (BFVF)

4.4.1 Miller compensated amplifier

Based on the implementation done in previous chapter, was made a corner simulation

in order to see the behaviour of the circuit in extreme conditions. It was obtained the

gain present in Figure 4.37 where it’s observable that the temperature of the circuit has a

greater impact in this parameter.
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Figure 4.37: Gain of the BFVF, using the Miller compensated amplifier.

For the positive PSRR (Figure 4.38), it’s observable a behaviour similar to the SsLDO,

where is possible to obtain values greater than 80 dB for lower frequencies and also a

GBW between 100 and 300 MHz. Both BFVF and SsLDO have a similar behaviour in the

positive PSRR, because the error amplifier used in both is the same and, as seen before,

the error amplifier has a big influence in this parameter.

In this case, the output impedance (Figure 4.39) has a DC value lower than 400 µΩ in

almost all the cases except for the case "SS ,T= - 40º", where its value is greater than 6

mΩ. Nevertheless the buffer still meets the output impedance specification. For higher

frequencies it’s once again observable a perturbation where the output impedance reaches

almost 2 KΩ, but that doesn’t affect the behaviour of the buffer.

The input referred noise (Figure 4.40) presents a very similar behaviour to the SsLDO

architecture, where it’s observable a bigger influence of the flicker noise for lower fre-

quencies and a decrease in the noise value for higher frequencies.

Once the main characteristics of the buffer fulfil the desired specifications, it’s time to

observe the behaviour at the output of the buffer. This way it’s perceivable a very fast re-

sponse of the buffer for the output transient voltage (Figure 4.41). Taking into account the

perturbations caused by the DAC and comparing this results with the previous architec-

tures, it’s observable that this buffer reaches the 1.2 V quicker than the other architectures.
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Figure 4.38: Positive power supply rejection ratio of the BFVF, using the Miller compen-
sated amplifier.
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Figure 4.39: Output Impedance of the BFVF, using the Miller compensated amplifier.

As the output transient current is also perturbed by the DAC, and it’s behaviour “follows”

the output transient voltage it’s also observable a faster response of the buffer in this

parameter (Figure 4.42).

By obtaining the output transient voltage noise from the output transient current, it’s

observable that the final value for this parameter is 0.4 mV , which is smaller than the

values obtained in the previous architectures, and it’s due to the faster response of this

circuit. Figure 4.43 shows the charge at the output.
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Figure 4.40: Input referred noise of the BFVF, using the Miller compensated amplifier.
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Figure 4.41: Output transient voltage of the BFVF, using the Miller compensated ampli-
fier.

75



CHAPTER 4. SIMULATION RESULTS

time (s) #10-7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

I (
A

)

#10-4

-8

-7

-6

-5

-4

-3

-2

-1

0

1

Nominal
FF, T= - 40º
FF, T= 125º
SS, T= - 40º
SS, T= 125º
FS, T= - 40º
FS, T = 125º
SF, T= - 40º
SF, T= 125º

(a) Without zoom.

time (s) #10-8

4 4.5 5 5.5
I (

A
)

#10-4

-7

-6

-5

-4

-3

-2

-1

0

Nominal
FF, T= - 40º
FF, T= 125º
SS, T= - 40º
SS, T= 125º
FS, T= - 40º
FS, T = 125º
SF, T= - 40º
SF, T= 125º

(b) With zoom.

Figure 4.42: Output transient current of the BFVF, using the Miller compensated ampli-
fier.
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Figure 4.43: Charge at the output of the BFVF, using the Miller compensated amplifier.
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4.4.2 Current Mirror OTA

As done in the previous buffers, this one is also tested with two error amplifiers in order

to better understand its influence in the system and see if it’s the buffer that has bad/good

characteristics, or if it’s the error amplifier.
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Figure 4.44: Gain of the BFVF, using the Current Mirror OTA.

For the gain (Figure 4.44), with this error amplifier, are observed, once again, perturba-

tions at higher frequencies. But, as in the SsLDO, it doesn’t affect the behaviour of the

buffer.
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Figure 4.45: Positive power supply rejection ratio of the BFVF, using the Current Mirror
OTA.

This way, the positive PSRR (Figure 4.45) suffers a decrease in its value when compared to
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the previous error amplifier. At the same time the, the GBW and bandwidth frequencies

increase, as happened when the SsLDO was tested with this error amplifier.
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Figure 4.46: Output Impedance of the BFVF, using the Current Mirror OTA.

Similarly, the output impedance (Figure 4.46) also has suffered an increase along the

frequency, as in the previous buffers. But for lower frequencies its value doesn’t overtake

1.2 Ω.
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(a) Equivalent input noise.
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Figure 4.47: Input referred noise of the BFVF, using the Current Mirror OTA.

As expected the levels of noise have increased (Figure 4.47), but as in the previous cases,

that rise doesn’t affect the desired specification for the noise.

Regarding the output transient voltage (Figure 4.48), it’s observable a decrease in the

time to recover from the perturbations caused by the DAC, but nevertheless, the circuit is

still capable of responding fast enough to keep the reference voltage close to the desired

value.
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Figure 4.48: Output transient voltage of the BFVF, using the Current Mirror OTA.
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Figure 4.49: Output transient current of the BFVF, using the Current Mirror OTA.

Like in the previous cases, the change in the error amplifier doesn’t affect the output tran-

sient current (Figure 4.49), so it stays with a similar behaviour comparing to the previous

error amplifier.

For the output transient voltage noise it’s, once again, obtained a small output transient

voltage noise, with a measured value of 0.7 mV . Figure 4.50 shows the charge at the

output.
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Figure 4.50: Charge at the output of the BFVF, using the Current Mirror OTA.

4.5 Comparison between the different topologies

Considering the study done in the previous sections, now it will be done a comparison

between each architecture in order to observe the advantages and disadvantages of each

architecture. It was selected the nominal case (circuit temperature of 27 ºC and regular

speed for both N and P channels) of each architecture to do this comparison.

Taking this into account, it’s possible to see that all the architectures have a very similar

gain (Figure 4.51) and that the use of the current mirror OTA as error amplifier introduces

some perturbations close to 100 MHz.
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Figure 4.51: Gain comparison.

Regarding the positive PSRR (Figure 4.52), it’s possible to see that the BFVF and SsLDO
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architectures present very similar results when it’s used the same error amplifier. Besides

that, it’s observable a higher PSRR when it’s used the miller compensated amplifier and a

larger bandwidth when it’s used the current mirror OTA. As a middle term is present the

CfLDO architecture, which allows to obtain a positive PSRR greater than 80 dB and, at

the same time, a considerable bandwidth.
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Figure 4.52: Positive power supply rejection ratio comparison.

For the output impedance (Figure 4.53) its observable that all the circuits have a pertur-

bation close to 100 MHz, and that with the miller compensated amplifier it’s possible to

achieve a lower output impedance than with the current mirror OTA for lower frequen-

cies.
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Figure 4.53: Output Impedance comparison.

In the input referred noise (Figure 4.54) it’s observable that the error amplifier has a great

impact in this parameter, so there are only observed differences between the architectures
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with the same error amplifier in some points along the frequency. Besides that, it’s possi-

ble to see that the current mirror OTA produces more noise than the miller compensated

amplifier.
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Figure 4.54: Input referred noise comparison.

Regarding the output transient voltage (Figure 4.55), it’s observable that a faster recover

from the perturbations caused by the DAC means a longer time until the circuit stabilizes

at the reference voltage. Taking into account the results obtained, it’s also noticeable

that, when the CD and BFVF use the current mirror OTA as error amplifier, the reference

voltage obtained is more distant from the desired one.

time (s) #10-7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
 (

V
)

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.2

1.21

1.22

1.23

CD Miller
CD (CM OTA)
SsLDO Miller
SsLDO (CM OTA)
CfLDO
BFVF Miller
BFVF (CM OTA)

(a) Without zoom.

time (s) #10-8

4 4.5 5 5.5

V
 (

V
)

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.2

1.21

1.22

1.23

CD Miller
CD (CM OTA)
SsLDO Miller
SsLDO (CM OTA)
CfLDO
BFVF Miller
BFVF (CM OTA)

(b) With zoom.

Figure 4.55: Output transient voltage comparison.

For the output transient current (Figure 4.56) it’s observed a similar behaviour for all the

architectures, and the only thing that changes is the current achieved by the circuit when

it is perturbated by the DAC.

As the output transient voltage noise was obtained through histograms, it’s not done a
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Figure 4.56: Output transient current comparison.

comparison between them in just one figure due to the lack of readability, but the final

value obtained is compared in Table 4.1.

Regarding the results displayed, the Table 4.1 is used to better identify the advantages

and disadvantages of each architecture, through comparison of the results obtained in

the previous sections.
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Table 4.1: Comparison of the different topologies.

Circuit
Characteristics CD Miller CD (CM OTA) SsLDO Miller SsLDO (CM OTA) CfLDO BFVF Miller BFVF (CM OTA)

Gain (mdB) -0.13 -296.8 1.96 -181.5 8.95 0.62 -168.3
Bandwidth (MHz) 138 224 40 100 83 162 186

PSRR+ (dB) 77.2 38.16 89.44 52.02 85.22 88.82 51.48
GBW (PSRR+) (MHz) 234 631 200 437 107 200 282

DC Output
Impedance (Ω)

114.6 m 20.15 658.4 u 107.6 m 965.1 u 153.4 u 27.68 m

VNin2 (f V /sqrt(Hz))
at 10 MHz

0.23 1.35 0.24 1.25 23.8 0.23 1.3

Overshoot (V ) 1.204 – 1.203 1.201 1.204 1.22 1.209
Rise Time (ns) 0.9 – 1.2 2 2 0.4 0.5

Settling Time (ns) 3.8 – 2.7 3.2 4.4 2.2 3.8
Peak Current (µA) -91.3 -88 -99.5 -100.4 -163.5 -515 -512

η (%) 7.85 7.40 6.74 6.79 10.28 6.32 6.4
Output transient

voltage noise (mV )
2 – 1.8 2.5 2.7 0.4 0.7

Power
Consumption (µW )

555 455 692.5 592.5 185 725 625
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Conclusions and Future Work

5.1 Conclusions

The objective of the work developed in this project was to design a reference buffer for

a delta-sigma ADC. To do so, several topologies already implemented were studied, in

order to gather enough information for comparison. After such intense research the three

theoretically best architectures were chosen, with the intent of implement and simulate

them.

Taking into account the results of the first simulations, it was obvious the need of using

an error amplifier in the feedback of the buffer, in order to set the output voltage of the

buffer equal to the reference voltage. Thus the error amplifier has a great influence in

the behaviour of the whole system, because it influences several specifications, such as

the positive PSRR, the output transient response (voltage and current), the input referred

noise, the bandwidth and the output impedance. Therefore, as the error amplifiers were

implemented with approximately the same GBW, it was verified that an error amplifier

with a higher gain can improve the gain of the buffer, the positive PSRR, the output

impedance, the input referred noise, the response speed to the perturbations caused by

the DAC and the output transient voltage noise. On the other hand, an error amplifier

with a lower gain can improve the bandwidth of the buffer and the GBW of the positive

PSRR. So there are more advantages in using an error amplifier with a higher gain.

Considering the results obtained in previous chapters it’s noticeable that each architec-

ture has different pros and cons. Thus taking into account the architecture and the error

amplifier used, it was created Table 5.1 that allows to observe which is the best architec-

ture for each characteristic.
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Table 5.1: Best and worse architectures in each characteristic.

Characteristics Best Worse
Gain (mdB) BFVF Miller CD (CM OTA)

Bandwidth (MHz) BFVF (CM OTA) SsLDO Miller
PSRR+ (dB) SsLDO Miller CD (CM OTA)

GBW (PSRR+) (MHz) CD (CM OTA) CfLDO
DC Output

Impedance (Ω)
BFVF Miller CD (CM OTA)

VNin2 (f V /sqrt(Hz))
at 10 MHz

CD Miller / BFVF Miller CfLDO

Overshoot (V ) SsLDO (CM OTA) BFVF Miller
Rise Time (ns) BFVF Miller SsLDO (CM OTA) / CfLDO

Settling Time (ns) BFVF Miller CfLDO
Peak Current (µA) CD (CM OTA) BFVF Miller

η (%) CD Miller BFVF Miller
Output transient

voltage noise (mV )
BFVF Miller CfLDO

Power
Consumption (µW )

CfLDO BFVF Miller

5.2 Future Work

Regarding the study done in this thesis, it’s clear that not all the desired specifications

were fulfilled. So, as a possible future work, it would be necessary to do an improvement

in the implementation done in this project. In other words, it is necessary to find a way

to improve η and bandwidth of the system.

Besides that, it can also be made a root design of a new architecture, as a way to overcome

the disadvantages of the previous architectures. On the other hand, in order to compare

the area used by the architectures studied, it would be necessary to do a layout of them.

Finally, to obtain more reliable results, it would be necessary to do the implementation

and simulations with the Bandgap and Delta-Sigma ADC circuits.
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